• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2013-2015, Mellanox Technologies. All rights reserved.
3  * Copyright (c) 2020, Intel Corporation. All rights reserved.
4  *
5  * This software is available to you under a choice of one of two
6  * licenses.  You may choose to be licensed under the terms of the GNU
7  * General Public License (GPL) Version 2, available from the file
8  * COPYING in the main directory of this source tree, or the
9  * OpenIB.org BSD license below:
10  *
11  *     Redistribution and use in source and binary forms, with or
12  *     without modification, are permitted provided that the following
13  *     conditions are met:
14  *
15  *      - Redistributions of source code must retain the above
16  *        copyright notice, this list of conditions and the following
17  *        disclaimer.
18  *
19  *      - Redistributions in binary form must reproduce the above
20  *        copyright notice, this list of conditions and the following
21  *        disclaimer in the documentation and/or other materials
22  *        provided with the distribution.
23  *
24  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31  * SOFTWARE.
32  */
33 
34 
35 #include <linux/kref.h>
36 #include <linux/random.h>
37 #include <linux/debugfs.h>
38 #include <linux/export.h>
39 #include <linux/delay.h>
40 #include <linux/dma-buf.h>
41 #include <linux/dma-resv.h>
42 #include <rdma/ib_umem.h>
43 #include <rdma/ib_umem_odp.h>
44 #include <rdma/ib_verbs.h>
45 #include "dm.h"
46 #include "mlx5_ib.h"
47 
48 /*
49  * We can't use an array for xlt_emergency_page because dma_map_single doesn't
50  * work on kernel modules memory
51  */
52 void *xlt_emergency_page;
53 static DEFINE_MUTEX(xlt_emergency_page_mutex);
54 
55 enum {
56 	MAX_PENDING_REG_MR = 8,
57 };
58 
59 #define MLX5_UMR_ALIGN 2048
60 
61 static void
62 create_mkey_callback(int status, struct mlx5_async_work *context);
63 static struct mlx5_ib_mr *reg_create(struct ib_pd *pd, struct ib_umem *umem,
64 				     u64 iova, int access_flags,
65 				     unsigned int page_size, bool populate);
66 
set_mkc_access_pd_addr_fields(void * mkc,int acc,u64 start_addr,struct ib_pd * pd)67 static void set_mkc_access_pd_addr_fields(void *mkc, int acc, u64 start_addr,
68 					  struct ib_pd *pd)
69 {
70 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
71 	bool ro_pci_enabled = pcie_relaxed_ordering_enabled(dev->mdev->pdev);
72 
73 	MLX5_SET(mkc, mkc, a, !!(acc & IB_ACCESS_REMOTE_ATOMIC));
74 	MLX5_SET(mkc, mkc, rw, !!(acc & IB_ACCESS_REMOTE_WRITE));
75 	MLX5_SET(mkc, mkc, rr, !!(acc & IB_ACCESS_REMOTE_READ));
76 	MLX5_SET(mkc, mkc, lw, !!(acc & IB_ACCESS_LOCAL_WRITE));
77 	MLX5_SET(mkc, mkc, lr, 1);
78 
79 	if (MLX5_CAP_GEN(dev->mdev, relaxed_ordering_write))
80 		MLX5_SET(mkc, mkc, relaxed_ordering_write,
81 			 (acc & IB_ACCESS_RELAXED_ORDERING) && ro_pci_enabled);
82 	if (MLX5_CAP_GEN(dev->mdev, relaxed_ordering_read))
83 		MLX5_SET(mkc, mkc, relaxed_ordering_read,
84 			 (acc & IB_ACCESS_RELAXED_ORDERING) && ro_pci_enabled);
85 
86 	MLX5_SET(mkc, mkc, pd, to_mpd(pd)->pdn);
87 	MLX5_SET(mkc, mkc, qpn, 0xffffff);
88 	MLX5_SET64(mkc, mkc, start_addr, start_addr);
89 }
90 
91 static void
assign_mkey_variant(struct mlx5_ib_dev * dev,struct mlx5_core_mkey * mkey,u32 * in)92 assign_mkey_variant(struct mlx5_ib_dev *dev, struct mlx5_core_mkey *mkey,
93 		    u32 *in)
94 {
95 	u8 key = atomic_inc_return(&dev->mkey_var);
96 	void *mkc;
97 
98 	mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
99 	MLX5_SET(mkc, mkc, mkey_7_0, key);
100 	mkey->key = key;
101 }
102 
103 static int
mlx5_ib_create_mkey(struct mlx5_ib_dev * dev,struct mlx5_core_mkey * mkey,u32 * in,int inlen)104 mlx5_ib_create_mkey(struct mlx5_ib_dev *dev, struct mlx5_core_mkey *mkey,
105 		    u32 *in, int inlen)
106 {
107 	assign_mkey_variant(dev, mkey, in);
108 	return mlx5_core_create_mkey(dev->mdev, mkey, in, inlen);
109 }
110 
111 static int
mlx5_ib_create_mkey_cb(struct mlx5_ib_dev * dev,struct mlx5_core_mkey * mkey,struct mlx5_async_ctx * async_ctx,u32 * in,int inlen,u32 * out,int outlen,struct mlx5_async_work * context)112 mlx5_ib_create_mkey_cb(struct mlx5_ib_dev *dev,
113 		       struct mlx5_core_mkey *mkey,
114 		       struct mlx5_async_ctx *async_ctx,
115 		       u32 *in, int inlen, u32 *out, int outlen,
116 		       struct mlx5_async_work *context)
117 {
118 	MLX5_SET(create_mkey_in, in, opcode, MLX5_CMD_OP_CREATE_MKEY);
119 	assign_mkey_variant(dev, mkey, in);
120 	return mlx5_cmd_exec_cb(async_ctx, in, inlen, out, outlen,
121 				create_mkey_callback, context);
122 }
123 
124 static int mr_cache_max_order(struct mlx5_ib_dev *dev);
125 static void queue_adjust_cache_locked(struct mlx5_cache_ent *ent);
126 
umr_can_use_indirect_mkey(struct mlx5_ib_dev * dev)127 static bool umr_can_use_indirect_mkey(struct mlx5_ib_dev *dev)
128 {
129 	return !MLX5_CAP_GEN(dev->mdev, umr_indirect_mkey_disabled);
130 }
131 
destroy_mkey(struct mlx5_ib_dev * dev,struct mlx5_ib_mr * mr)132 static int destroy_mkey(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr)
133 {
134 	WARN_ON(xa_load(&dev->odp_mkeys, mlx5_base_mkey(mr->mmkey.key)));
135 
136 	return mlx5_core_destroy_mkey(dev->mdev, &mr->mmkey);
137 }
138 
create_mkey_callback(int status,struct mlx5_async_work * context)139 static void create_mkey_callback(int status, struct mlx5_async_work *context)
140 {
141 	struct mlx5_ib_mr *mr =
142 		container_of(context, struct mlx5_ib_mr, cb_work);
143 	struct mlx5_cache_ent *ent = mr->cache_ent;
144 	struct mlx5_ib_dev *dev = ent->dev;
145 	unsigned long flags;
146 
147 	if (status) {
148 		mlx5_ib_warn(dev, "async reg mr failed. status %d\n", status);
149 		kfree(mr);
150 		spin_lock_irqsave(&ent->lock, flags);
151 		ent->pending--;
152 		WRITE_ONCE(dev->fill_delay, 1);
153 		spin_unlock_irqrestore(&ent->lock, flags);
154 		mod_timer(&dev->delay_timer, jiffies + HZ);
155 		return;
156 	}
157 
158 	mr->mmkey.type = MLX5_MKEY_MR;
159 	mr->mmkey.key |= mlx5_idx_to_mkey(
160 		MLX5_GET(create_mkey_out, mr->out, mkey_index));
161 	init_waitqueue_head(&mr->mmkey.wait);
162 
163 	WRITE_ONCE(dev->cache.last_add, jiffies);
164 
165 	spin_lock_irqsave(&ent->lock, flags);
166 	list_add_tail(&mr->list, &ent->head);
167 	ent->available_mrs++;
168 	ent->total_mrs++;
169 	/* If we are doing fill_to_high_water then keep going. */
170 	queue_adjust_cache_locked(ent);
171 	ent->pending--;
172 	spin_unlock_irqrestore(&ent->lock, flags);
173 }
174 
alloc_cache_mr(struct mlx5_cache_ent * ent,void * mkc)175 static struct mlx5_ib_mr *alloc_cache_mr(struct mlx5_cache_ent *ent, void *mkc)
176 {
177 	struct mlx5_ib_mr *mr;
178 
179 	mr = kzalloc(sizeof(*mr), GFP_KERNEL);
180 	if (!mr)
181 		return NULL;
182 	mr->cache_ent = ent;
183 
184 	set_mkc_access_pd_addr_fields(mkc, 0, 0, ent->dev->umrc.pd);
185 	MLX5_SET(mkc, mkc, free, 1);
186 	MLX5_SET(mkc, mkc, umr_en, 1);
187 	MLX5_SET(mkc, mkc, access_mode_1_0, ent->access_mode & 0x3);
188 	MLX5_SET(mkc, mkc, access_mode_4_2, (ent->access_mode >> 2) & 0x7);
189 
190 	MLX5_SET(mkc, mkc, translations_octword_size, ent->xlt);
191 	MLX5_SET(mkc, mkc, log_page_size, ent->page);
192 	return mr;
193 }
194 
195 /* Asynchronously schedule new MRs to be populated in the cache. */
add_keys(struct mlx5_cache_ent * ent,unsigned int num)196 static int add_keys(struct mlx5_cache_ent *ent, unsigned int num)
197 {
198 	size_t inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
199 	struct mlx5_ib_mr *mr;
200 	void *mkc;
201 	u32 *in;
202 	int err = 0;
203 	int i;
204 
205 	in = kzalloc(inlen, GFP_KERNEL);
206 	if (!in)
207 		return -ENOMEM;
208 
209 	mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
210 	for (i = 0; i < num; i++) {
211 		mr = alloc_cache_mr(ent, mkc);
212 		if (!mr) {
213 			err = -ENOMEM;
214 			break;
215 		}
216 		spin_lock_irq(&ent->lock);
217 		if (ent->pending >= MAX_PENDING_REG_MR) {
218 			err = -EAGAIN;
219 			spin_unlock_irq(&ent->lock);
220 			kfree(mr);
221 			break;
222 		}
223 		ent->pending++;
224 		spin_unlock_irq(&ent->lock);
225 		err = mlx5_ib_create_mkey_cb(ent->dev, &mr->mmkey,
226 					     &ent->dev->async_ctx, in, inlen,
227 					     mr->out, sizeof(mr->out),
228 					     &mr->cb_work);
229 		if (err) {
230 			spin_lock_irq(&ent->lock);
231 			ent->pending--;
232 			spin_unlock_irq(&ent->lock);
233 			mlx5_ib_warn(ent->dev, "create mkey failed %d\n", err);
234 			kfree(mr);
235 			break;
236 		}
237 	}
238 
239 	kfree(in);
240 	return err;
241 }
242 
243 /* Synchronously create a MR in the cache */
create_cache_mr(struct mlx5_cache_ent * ent)244 static struct mlx5_ib_mr *create_cache_mr(struct mlx5_cache_ent *ent)
245 {
246 	size_t inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
247 	struct mlx5_ib_mr *mr;
248 	void *mkc;
249 	u32 *in;
250 	int err;
251 
252 	in = kzalloc(inlen, GFP_KERNEL);
253 	if (!in)
254 		return ERR_PTR(-ENOMEM);
255 	mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
256 
257 	mr = alloc_cache_mr(ent, mkc);
258 	if (!mr) {
259 		err = -ENOMEM;
260 		goto free_in;
261 	}
262 
263 	err = mlx5_core_create_mkey(ent->dev->mdev, &mr->mmkey, in, inlen);
264 	if (err)
265 		goto free_mr;
266 
267 	mr->mmkey.type = MLX5_MKEY_MR;
268 	WRITE_ONCE(ent->dev->cache.last_add, jiffies);
269 	spin_lock_irq(&ent->lock);
270 	ent->total_mrs++;
271 	spin_unlock_irq(&ent->lock);
272 	kfree(in);
273 	return mr;
274 free_mr:
275 	kfree(mr);
276 free_in:
277 	kfree(in);
278 	return ERR_PTR(err);
279 }
280 
remove_cache_mr_locked(struct mlx5_cache_ent * ent)281 static void remove_cache_mr_locked(struct mlx5_cache_ent *ent)
282 {
283 	struct mlx5_ib_mr *mr;
284 
285 	lockdep_assert_held(&ent->lock);
286 	if (list_empty(&ent->head))
287 		return;
288 	mr = list_first_entry(&ent->head, struct mlx5_ib_mr, list);
289 	list_del(&mr->list);
290 	ent->available_mrs--;
291 	ent->total_mrs--;
292 	spin_unlock_irq(&ent->lock);
293 	mlx5_core_destroy_mkey(ent->dev->mdev, &mr->mmkey);
294 	kfree(mr);
295 	spin_lock_irq(&ent->lock);
296 }
297 
resize_available_mrs(struct mlx5_cache_ent * ent,unsigned int target,bool limit_fill)298 static int resize_available_mrs(struct mlx5_cache_ent *ent, unsigned int target,
299 				bool limit_fill)
300 {
301 	int err;
302 
303 	lockdep_assert_held(&ent->lock);
304 
305 	while (true) {
306 		if (limit_fill)
307 			target = ent->limit * 2;
308 		if (target == ent->available_mrs + ent->pending)
309 			return 0;
310 		if (target > ent->available_mrs + ent->pending) {
311 			u32 todo = target - (ent->available_mrs + ent->pending);
312 
313 			spin_unlock_irq(&ent->lock);
314 			err = add_keys(ent, todo);
315 			if (err == -EAGAIN)
316 				usleep_range(3000, 5000);
317 			spin_lock_irq(&ent->lock);
318 			if (err) {
319 				if (err != -EAGAIN)
320 					return err;
321 			} else
322 				return 0;
323 		} else {
324 			remove_cache_mr_locked(ent);
325 		}
326 	}
327 }
328 
size_write(struct file * filp,const char __user * buf,size_t count,loff_t * pos)329 static ssize_t size_write(struct file *filp, const char __user *buf,
330 			  size_t count, loff_t *pos)
331 {
332 	struct mlx5_cache_ent *ent = filp->private_data;
333 	u32 target;
334 	int err;
335 
336 	err = kstrtou32_from_user(buf, count, 0, &target);
337 	if (err)
338 		return err;
339 
340 	/*
341 	 * Target is the new value of total_mrs the user requests, however we
342 	 * cannot free MRs that are in use. Compute the target value for
343 	 * available_mrs.
344 	 */
345 	spin_lock_irq(&ent->lock);
346 	if (target < ent->total_mrs - ent->available_mrs) {
347 		err = -EINVAL;
348 		goto err_unlock;
349 	}
350 	target = target - (ent->total_mrs - ent->available_mrs);
351 	if (target < ent->limit || target > ent->limit*2) {
352 		err = -EINVAL;
353 		goto err_unlock;
354 	}
355 	err = resize_available_mrs(ent, target, false);
356 	if (err)
357 		goto err_unlock;
358 	spin_unlock_irq(&ent->lock);
359 
360 	return count;
361 
362 err_unlock:
363 	spin_unlock_irq(&ent->lock);
364 	return err;
365 }
366 
size_read(struct file * filp,char __user * buf,size_t count,loff_t * pos)367 static ssize_t size_read(struct file *filp, char __user *buf, size_t count,
368 			 loff_t *pos)
369 {
370 	struct mlx5_cache_ent *ent = filp->private_data;
371 	char lbuf[20];
372 	int err;
373 
374 	err = snprintf(lbuf, sizeof(lbuf), "%d\n", ent->total_mrs);
375 	if (err < 0)
376 		return err;
377 
378 	return simple_read_from_buffer(buf, count, pos, lbuf, err);
379 }
380 
381 static const struct file_operations size_fops = {
382 	.owner	= THIS_MODULE,
383 	.open	= simple_open,
384 	.write	= size_write,
385 	.read	= size_read,
386 };
387 
limit_write(struct file * filp,const char __user * buf,size_t count,loff_t * pos)388 static ssize_t limit_write(struct file *filp, const char __user *buf,
389 			   size_t count, loff_t *pos)
390 {
391 	struct mlx5_cache_ent *ent = filp->private_data;
392 	u32 var;
393 	int err;
394 
395 	err = kstrtou32_from_user(buf, count, 0, &var);
396 	if (err)
397 		return err;
398 
399 	/*
400 	 * Upon set we immediately fill the cache to high water mark implied by
401 	 * the limit.
402 	 */
403 	spin_lock_irq(&ent->lock);
404 	ent->limit = var;
405 	err = resize_available_mrs(ent, 0, true);
406 	spin_unlock_irq(&ent->lock);
407 	if (err)
408 		return err;
409 	return count;
410 }
411 
limit_read(struct file * filp,char __user * buf,size_t count,loff_t * pos)412 static ssize_t limit_read(struct file *filp, char __user *buf, size_t count,
413 			  loff_t *pos)
414 {
415 	struct mlx5_cache_ent *ent = filp->private_data;
416 	char lbuf[20];
417 	int err;
418 
419 	err = snprintf(lbuf, sizeof(lbuf), "%d\n", ent->limit);
420 	if (err < 0)
421 		return err;
422 
423 	return simple_read_from_buffer(buf, count, pos, lbuf, err);
424 }
425 
426 static const struct file_operations limit_fops = {
427 	.owner	= THIS_MODULE,
428 	.open	= simple_open,
429 	.write	= limit_write,
430 	.read	= limit_read,
431 };
432 
someone_adding(struct mlx5_mr_cache * cache)433 static bool someone_adding(struct mlx5_mr_cache *cache)
434 {
435 	unsigned int i;
436 
437 	for (i = 0; i < MAX_MR_CACHE_ENTRIES; i++) {
438 		struct mlx5_cache_ent *ent = &cache->ent[i];
439 		bool ret;
440 
441 		spin_lock_irq(&ent->lock);
442 		ret = ent->available_mrs < ent->limit;
443 		spin_unlock_irq(&ent->lock);
444 		if (ret)
445 			return true;
446 	}
447 	return false;
448 }
449 
450 /*
451  * Check if the bucket is outside the high/low water mark and schedule an async
452  * update. The cache refill has hysteresis, once the low water mark is hit it is
453  * refilled up to the high mark.
454  */
queue_adjust_cache_locked(struct mlx5_cache_ent * ent)455 static void queue_adjust_cache_locked(struct mlx5_cache_ent *ent)
456 {
457 	lockdep_assert_held(&ent->lock);
458 
459 	if (ent->disabled || READ_ONCE(ent->dev->fill_delay))
460 		return;
461 	if (ent->available_mrs < ent->limit) {
462 		ent->fill_to_high_water = true;
463 		queue_work(ent->dev->cache.wq, &ent->work);
464 	} else if (ent->fill_to_high_water &&
465 		   ent->available_mrs + ent->pending < 2 * ent->limit) {
466 		/*
467 		 * Once we start populating due to hitting a low water mark
468 		 * continue until we pass the high water mark.
469 		 */
470 		queue_work(ent->dev->cache.wq, &ent->work);
471 	} else if (ent->available_mrs == 2 * ent->limit) {
472 		ent->fill_to_high_water = false;
473 	} else if (ent->available_mrs > 2 * ent->limit) {
474 		/* Queue deletion of excess entries */
475 		ent->fill_to_high_water = false;
476 		if (ent->pending)
477 			queue_delayed_work(ent->dev->cache.wq, &ent->dwork,
478 					   msecs_to_jiffies(1000));
479 		else
480 			queue_work(ent->dev->cache.wq, &ent->work);
481 	}
482 }
483 
__cache_work_func(struct mlx5_cache_ent * ent)484 static void __cache_work_func(struct mlx5_cache_ent *ent)
485 {
486 	struct mlx5_ib_dev *dev = ent->dev;
487 	struct mlx5_mr_cache *cache = &dev->cache;
488 	int err;
489 
490 	spin_lock_irq(&ent->lock);
491 	if (ent->disabled)
492 		goto out;
493 
494 	if (ent->fill_to_high_water &&
495 	    ent->available_mrs + ent->pending < 2 * ent->limit &&
496 	    !READ_ONCE(dev->fill_delay)) {
497 		spin_unlock_irq(&ent->lock);
498 		err = add_keys(ent, 1);
499 		spin_lock_irq(&ent->lock);
500 		if (ent->disabled)
501 			goto out;
502 		if (err) {
503 			/*
504 			 * EAGAIN only happens if pending is positive, so we
505 			 * will be rescheduled from reg_mr_callback(). The only
506 			 * failure path here is ENOMEM.
507 			 */
508 			if (err != -EAGAIN) {
509 				mlx5_ib_warn(
510 					dev,
511 					"command failed order %d, err %d\n",
512 					ent->order, err);
513 				queue_delayed_work(cache->wq, &ent->dwork,
514 						   msecs_to_jiffies(1000));
515 			}
516 		}
517 	} else if (ent->available_mrs > 2 * ent->limit) {
518 		bool need_delay;
519 
520 		/*
521 		 * The remove_cache_mr() logic is performed as garbage
522 		 * collection task. Such task is intended to be run when no
523 		 * other active processes are running.
524 		 *
525 		 * The need_resched() will return TRUE if there are user tasks
526 		 * to be activated in near future.
527 		 *
528 		 * In such case, we don't execute remove_cache_mr() and postpone
529 		 * the garbage collection work to try to run in next cycle, in
530 		 * order to free CPU resources to other tasks.
531 		 */
532 		spin_unlock_irq(&ent->lock);
533 		need_delay = need_resched() || someone_adding(cache) ||
534 			     !time_after(jiffies,
535 					 READ_ONCE(cache->last_add) + 300 * HZ);
536 		spin_lock_irq(&ent->lock);
537 		if (ent->disabled)
538 			goto out;
539 		if (need_delay) {
540 			queue_delayed_work(cache->wq, &ent->dwork, 300 * HZ);
541 			goto out;
542 		}
543 		remove_cache_mr_locked(ent);
544 		queue_adjust_cache_locked(ent);
545 	}
546 out:
547 	spin_unlock_irq(&ent->lock);
548 }
549 
delayed_cache_work_func(struct work_struct * work)550 static void delayed_cache_work_func(struct work_struct *work)
551 {
552 	struct mlx5_cache_ent *ent;
553 
554 	ent = container_of(work, struct mlx5_cache_ent, dwork.work);
555 	__cache_work_func(ent);
556 }
557 
cache_work_func(struct work_struct * work)558 static void cache_work_func(struct work_struct *work)
559 {
560 	struct mlx5_cache_ent *ent;
561 
562 	ent = container_of(work, struct mlx5_cache_ent, work);
563 	__cache_work_func(ent);
564 }
565 
566 /* Allocate a special entry from the cache */
mlx5_mr_cache_alloc(struct mlx5_ib_dev * dev,unsigned int entry,int access_flags)567 struct mlx5_ib_mr *mlx5_mr_cache_alloc(struct mlx5_ib_dev *dev,
568 				       unsigned int entry, int access_flags)
569 {
570 	struct mlx5_mr_cache *cache = &dev->cache;
571 	struct mlx5_cache_ent *ent;
572 	struct mlx5_ib_mr *mr;
573 
574 	if (WARN_ON(entry <= MR_CACHE_LAST_STD_ENTRY ||
575 		    entry >= ARRAY_SIZE(cache->ent)))
576 		return ERR_PTR(-EINVAL);
577 
578 	/* Matches access in alloc_cache_mr() */
579 	if (!mlx5_ib_can_reconfig_with_umr(dev, 0, access_flags))
580 		return ERR_PTR(-EOPNOTSUPP);
581 
582 	ent = &cache->ent[entry];
583 	spin_lock_irq(&ent->lock);
584 	if (list_empty(&ent->head)) {
585 		queue_adjust_cache_locked(ent);
586 		ent->miss++;
587 		spin_unlock_irq(&ent->lock);
588 		mr = create_cache_mr(ent);
589 		if (IS_ERR(mr))
590 			return mr;
591 	} else {
592 		mr = list_first_entry(&ent->head, struct mlx5_ib_mr, list);
593 		list_del(&mr->list);
594 		ent->available_mrs--;
595 		queue_adjust_cache_locked(ent);
596 		spin_unlock_irq(&ent->lock);
597 
598 		mlx5_clear_mr(mr);
599 	}
600 	mr->access_flags = access_flags;
601 	return mr;
602 }
603 
604 /* Return a MR already available in the cache */
get_cache_mr(struct mlx5_cache_ent * req_ent)605 static struct mlx5_ib_mr *get_cache_mr(struct mlx5_cache_ent *req_ent)
606 {
607 	struct mlx5_ib_dev *dev = req_ent->dev;
608 	struct mlx5_ib_mr *mr = NULL;
609 	struct mlx5_cache_ent *ent = req_ent;
610 
611 	/* Try larger MR pools from the cache to satisfy the allocation */
612 	for (; ent != &dev->cache.ent[MR_CACHE_LAST_STD_ENTRY + 1]; ent++) {
613 		mlx5_ib_dbg(dev, "order %u, cache index %zu\n", ent->order,
614 			    ent - dev->cache.ent);
615 
616 		spin_lock_irq(&ent->lock);
617 		if (!list_empty(&ent->head)) {
618 			mr = list_first_entry(&ent->head, struct mlx5_ib_mr,
619 					      list);
620 			list_del(&mr->list);
621 			ent->available_mrs--;
622 			queue_adjust_cache_locked(ent);
623 			spin_unlock_irq(&ent->lock);
624 			mlx5_clear_mr(mr);
625 			return mr;
626 		}
627 		queue_adjust_cache_locked(ent);
628 		spin_unlock_irq(&ent->lock);
629 	}
630 	req_ent->miss++;
631 	return NULL;
632 }
633 
mlx5_mr_cache_free(struct mlx5_ib_dev * dev,struct mlx5_ib_mr * mr)634 static void mlx5_mr_cache_free(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr)
635 {
636 	struct mlx5_cache_ent *ent = mr->cache_ent;
637 
638 	WRITE_ONCE(dev->cache.last_add, jiffies);
639 	spin_lock_irq(&ent->lock);
640 	list_add_tail(&mr->list, &ent->head);
641 	ent->available_mrs++;
642 	queue_adjust_cache_locked(ent);
643 	spin_unlock_irq(&ent->lock);
644 }
645 
clean_keys(struct mlx5_ib_dev * dev,int c)646 static void clean_keys(struct mlx5_ib_dev *dev, int c)
647 {
648 	struct mlx5_mr_cache *cache = &dev->cache;
649 	struct mlx5_cache_ent *ent = &cache->ent[c];
650 	struct mlx5_ib_mr *tmp_mr;
651 	struct mlx5_ib_mr *mr;
652 	LIST_HEAD(del_list);
653 
654 	cancel_delayed_work(&ent->dwork);
655 	while (1) {
656 		spin_lock_irq(&ent->lock);
657 		if (list_empty(&ent->head)) {
658 			spin_unlock_irq(&ent->lock);
659 			break;
660 		}
661 		mr = list_first_entry(&ent->head, struct mlx5_ib_mr, list);
662 		list_move(&mr->list, &del_list);
663 		ent->available_mrs--;
664 		ent->total_mrs--;
665 		spin_unlock_irq(&ent->lock);
666 		mlx5_core_destroy_mkey(dev->mdev, &mr->mmkey);
667 	}
668 
669 	list_for_each_entry_safe(mr, tmp_mr, &del_list, list) {
670 		list_del(&mr->list);
671 		kfree(mr);
672 	}
673 }
674 
mlx5_mr_cache_debugfs_cleanup(struct mlx5_ib_dev * dev)675 static void mlx5_mr_cache_debugfs_cleanup(struct mlx5_ib_dev *dev)
676 {
677 	if (!mlx5_debugfs_root || dev->is_rep)
678 		return;
679 
680 	debugfs_remove_recursive(dev->cache.root);
681 	dev->cache.root = NULL;
682 }
683 
mlx5_mr_cache_debugfs_init(struct mlx5_ib_dev * dev)684 static void mlx5_mr_cache_debugfs_init(struct mlx5_ib_dev *dev)
685 {
686 	struct mlx5_mr_cache *cache = &dev->cache;
687 	struct mlx5_cache_ent *ent;
688 	struct dentry *dir;
689 	int i;
690 
691 	if (!mlx5_debugfs_root || dev->is_rep)
692 		return;
693 
694 	cache->root = debugfs_create_dir("mr_cache", dev->mdev->priv.dbg_root);
695 
696 	for (i = 0; i < MAX_MR_CACHE_ENTRIES; i++) {
697 		ent = &cache->ent[i];
698 		sprintf(ent->name, "%d", ent->order);
699 		dir = debugfs_create_dir(ent->name, cache->root);
700 		debugfs_create_file("size", 0600, dir, ent, &size_fops);
701 		debugfs_create_file("limit", 0600, dir, ent, &limit_fops);
702 		debugfs_create_u32("cur", 0400, dir, &ent->available_mrs);
703 		debugfs_create_u32("miss", 0600, dir, &ent->miss);
704 	}
705 }
706 
delay_time_func(struct timer_list * t)707 static void delay_time_func(struct timer_list *t)
708 {
709 	struct mlx5_ib_dev *dev = from_timer(dev, t, delay_timer);
710 
711 	WRITE_ONCE(dev->fill_delay, 0);
712 }
713 
mlx5_mr_cache_init(struct mlx5_ib_dev * dev)714 int mlx5_mr_cache_init(struct mlx5_ib_dev *dev)
715 {
716 	struct mlx5_mr_cache *cache = &dev->cache;
717 	struct mlx5_cache_ent *ent;
718 	int i;
719 
720 	mutex_init(&dev->slow_path_mutex);
721 	cache->wq = alloc_ordered_workqueue("mkey_cache", WQ_MEM_RECLAIM);
722 	if (!cache->wq) {
723 		mlx5_ib_warn(dev, "failed to create work queue\n");
724 		return -ENOMEM;
725 	}
726 
727 	mlx5_cmd_init_async_ctx(dev->mdev, &dev->async_ctx);
728 	timer_setup(&dev->delay_timer, delay_time_func, 0);
729 	for (i = 0; i < MAX_MR_CACHE_ENTRIES; i++) {
730 		ent = &cache->ent[i];
731 		INIT_LIST_HEAD(&ent->head);
732 		spin_lock_init(&ent->lock);
733 		ent->order = i + 2;
734 		ent->dev = dev;
735 		ent->limit = 0;
736 
737 		INIT_WORK(&ent->work, cache_work_func);
738 		INIT_DELAYED_WORK(&ent->dwork, delayed_cache_work_func);
739 
740 		if (i > MR_CACHE_LAST_STD_ENTRY) {
741 			mlx5_odp_init_mr_cache_entry(ent);
742 			continue;
743 		}
744 
745 		if (ent->order > mr_cache_max_order(dev))
746 			continue;
747 
748 		ent->page = PAGE_SHIFT;
749 		ent->xlt = (1 << ent->order) * sizeof(struct mlx5_mtt) /
750 			   MLX5_IB_UMR_OCTOWORD;
751 		ent->access_mode = MLX5_MKC_ACCESS_MODE_MTT;
752 		if ((dev->mdev->profile.mask & MLX5_PROF_MASK_MR_CACHE) &&
753 		    !dev->is_rep && mlx5_core_is_pf(dev->mdev) &&
754 		    mlx5_ib_can_load_pas_with_umr(dev, 0))
755 			ent->limit = dev->mdev->profile.mr_cache[i].limit;
756 		else
757 			ent->limit = 0;
758 		spin_lock_irq(&ent->lock);
759 		queue_adjust_cache_locked(ent);
760 		spin_unlock_irq(&ent->lock);
761 	}
762 
763 	mlx5_mr_cache_debugfs_init(dev);
764 
765 	return 0;
766 }
767 
mlx5_mr_cache_cleanup(struct mlx5_ib_dev * dev)768 int mlx5_mr_cache_cleanup(struct mlx5_ib_dev *dev)
769 {
770 	unsigned int i;
771 
772 	if (!dev->cache.wq)
773 		return 0;
774 
775 	for (i = 0; i < MAX_MR_CACHE_ENTRIES; i++) {
776 		struct mlx5_cache_ent *ent = &dev->cache.ent[i];
777 
778 		spin_lock_irq(&ent->lock);
779 		ent->disabled = true;
780 		spin_unlock_irq(&ent->lock);
781 		cancel_work_sync(&ent->work);
782 		cancel_delayed_work_sync(&ent->dwork);
783 	}
784 
785 	mlx5_mr_cache_debugfs_cleanup(dev);
786 	mlx5_cmd_cleanup_async_ctx(&dev->async_ctx);
787 
788 	for (i = 0; i < MAX_MR_CACHE_ENTRIES; i++)
789 		clean_keys(dev, i);
790 
791 	destroy_workqueue(dev->cache.wq);
792 	del_timer_sync(&dev->delay_timer);
793 
794 	return 0;
795 }
796 
mlx5_ib_get_dma_mr(struct ib_pd * pd,int acc)797 struct ib_mr *mlx5_ib_get_dma_mr(struct ib_pd *pd, int acc)
798 {
799 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
800 	int inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
801 	struct mlx5_ib_mr *mr;
802 	void *mkc;
803 	u32 *in;
804 	int err;
805 
806 	mr = kzalloc(sizeof(*mr), GFP_KERNEL);
807 	if (!mr)
808 		return ERR_PTR(-ENOMEM);
809 
810 	in = kzalloc(inlen, GFP_KERNEL);
811 	if (!in) {
812 		err = -ENOMEM;
813 		goto err_free;
814 	}
815 
816 	mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
817 
818 	MLX5_SET(mkc, mkc, access_mode_1_0, MLX5_MKC_ACCESS_MODE_PA);
819 	MLX5_SET(mkc, mkc, length64, 1);
820 	set_mkc_access_pd_addr_fields(mkc, acc | IB_ACCESS_RELAXED_ORDERING, 0,
821 				      pd);
822 
823 	err = mlx5_ib_create_mkey(dev, &mr->mmkey, in, inlen);
824 	if (err)
825 		goto err_in;
826 
827 	kfree(in);
828 	mr->mmkey.type = MLX5_MKEY_MR;
829 	mr->ibmr.lkey = mr->mmkey.key;
830 	mr->ibmr.rkey = mr->mmkey.key;
831 	mr->umem = NULL;
832 
833 	return &mr->ibmr;
834 
835 err_in:
836 	kfree(in);
837 
838 err_free:
839 	kfree(mr);
840 
841 	return ERR_PTR(err);
842 }
843 
get_octo_len(u64 addr,u64 len,int page_shift)844 static int get_octo_len(u64 addr, u64 len, int page_shift)
845 {
846 	u64 page_size = 1ULL << page_shift;
847 	u64 offset;
848 	int npages;
849 
850 	offset = addr & (page_size - 1);
851 	npages = ALIGN(len + offset, page_size) >> page_shift;
852 	return (npages + 1) / 2;
853 }
854 
mr_cache_max_order(struct mlx5_ib_dev * dev)855 static int mr_cache_max_order(struct mlx5_ib_dev *dev)
856 {
857 	if (MLX5_CAP_GEN(dev->mdev, umr_extended_translation_offset))
858 		return MR_CACHE_LAST_STD_ENTRY + 2;
859 	return MLX5_MAX_UMR_SHIFT;
860 }
861 
mlx5_ib_umr_done(struct ib_cq * cq,struct ib_wc * wc)862 static void mlx5_ib_umr_done(struct ib_cq *cq, struct ib_wc *wc)
863 {
864 	struct mlx5_ib_umr_context *context =
865 		container_of(wc->wr_cqe, struct mlx5_ib_umr_context, cqe);
866 
867 	context->status = wc->status;
868 	complete(&context->done);
869 }
870 
mlx5_ib_init_umr_context(struct mlx5_ib_umr_context * context)871 static inline void mlx5_ib_init_umr_context(struct mlx5_ib_umr_context *context)
872 {
873 	context->cqe.done = mlx5_ib_umr_done;
874 	context->status = -1;
875 	init_completion(&context->done);
876 }
877 
mlx5_ib_post_send_wait(struct mlx5_ib_dev * dev,struct mlx5_umr_wr * umrwr)878 static int mlx5_ib_post_send_wait(struct mlx5_ib_dev *dev,
879 				  struct mlx5_umr_wr *umrwr)
880 {
881 	struct umr_common *umrc = &dev->umrc;
882 	const struct ib_send_wr *bad;
883 	int err;
884 	struct mlx5_ib_umr_context umr_context;
885 
886 	mlx5_ib_init_umr_context(&umr_context);
887 	umrwr->wr.wr_cqe = &umr_context.cqe;
888 
889 	down(&umrc->sem);
890 	err = ib_post_send(umrc->qp, &umrwr->wr, &bad);
891 	if (err) {
892 		mlx5_ib_warn(dev, "UMR post send failed, err %d\n", err);
893 	} else {
894 		wait_for_completion(&umr_context.done);
895 		if (umr_context.status != IB_WC_SUCCESS) {
896 			mlx5_ib_warn(dev, "reg umr failed (%u)\n",
897 				     umr_context.status);
898 			err = -EFAULT;
899 		}
900 	}
901 	up(&umrc->sem);
902 	return err;
903 }
904 
mr_cache_ent_from_order(struct mlx5_ib_dev * dev,unsigned int order)905 static struct mlx5_cache_ent *mr_cache_ent_from_order(struct mlx5_ib_dev *dev,
906 						      unsigned int order)
907 {
908 	struct mlx5_mr_cache *cache = &dev->cache;
909 
910 	if (order < cache->ent[0].order)
911 		return &cache->ent[0];
912 	order = order - cache->ent[0].order;
913 	if (order > MR_CACHE_LAST_STD_ENTRY)
914 		return NULL;
915 	return &cache->ent[order];
916 }
917 
set_mr_fields(struct mlx5_ib_dev * dev,struct mlx5_ib_mr * mr,u64 length,int access_flags)918 static void set_mr_fields(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr,
919 			  u64 length, int access_flags)
920 {
921 	mr->ibmr.lkey = mr->mmkey.key;
922 	mr->ibmr.rkey = mr->mmkey.key;
923 	mr->ibmr.length = length;
924 	mr->ibmr.device = &dev->ib_dev;
925 	mr->access_flags = access_flags;
926 }
927 
mlx5_umem_dmabuf_default_pgsz(struct ib_umem * umem,u64 iova)928 static unsigned int mlx5_umem_dmabuf_default_pgsz(struct ib_umem *umem,
929 						  u64 iova)
930 {
931 	/*
932 	 * The alignment of iova has already been checked upon entering
933 	 * UVERBS_METHOD_REG_DMABUF_MR
934 	 */
935 	umem->iova = iova;
936 	return PAGE_SIZE;
937 }
938 
alloc_cacheable_mr(struct ib_pd * pd,struct ib_umem * umem,u64 iova,int access_flags)939 static struct mlx5_ib_mr *alloc_cacheable_mr(struct ib_pd *pd,
940 					     struct ib_umem *umem, u64 iova,
941 					     int access_flags)
942 {
943 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
944 	struct mlx5_cache_ent *ent;
945 	struct mlx5_ib_mr *mr;
946 	unsigned int page_size;
947 
948 	if (umem->is_dmabuf)
949 		page_size = mlx5_umem_dmabuf_default_pgsz(umem, iova);
950 	else
951 		page_size = mlx5_umem_find_best_pgsz(umem, mkc, log_page_size,
952 						     0, iova);
953 	if (WARN_ON(!page_size))
954 		return ERR_PTR(-EINVAL);
955 	ent = mr_cache_ent_from_order(
956 		dev, order_base_2(ib_umem_num_dma_blocks(umem, page_size)));
957 	/*
958 	 * Matches access in alloc_cache_mr(). If the MR can't come from the
959 	 * cache then synchronously create an uncached one.
960 	 */
961 	if (!ent || ent->limit == 0 ||
962 	    !mlx5_ib_can_reconfig_with_umr(dev, 0, access_flags)) {
963 		mutex_lock(&dev->slow_path_mutex);
964 		mr = reg_create(pd, umem, iova, access_flags, page_size, false);
965 		mutex_unlock(&dev->slow_path_mutex);
966 		return mr;
967 	}
968 
969 	mr = get_cache_mr(ent);
970 	if (!mr) {
971 		mr = create_cache_mr(ent);
972 		/*
973 		 * The above already tried to do the same stuff as reg_create(),
974 		 * no reason to try it again.
975 		 */
976 		if (IS_ERR(mr))
977 			return mr;
978 	}
979 
980 	mr->ibmr.pd = pd;
981 	mr->umem = umem;
982 	mr->mmkey.iova = iova;
983 	mr->mmkey.size = umem->length;
984 	mr->mmkey.pd = to_mpd(pd)->pdn;
985 	mr->page_shift = order_base_2(page_size);
986 	set_mr_fields(dev, mr, umem->length, access_flags);
987 
988 	return mr;
989 }
990 
991 #define MLX5_MAX_UMR_CHUNK ((1 << (MLX5_MAX_UMR_SHIFT + 4)) - \
992 			    MLX5_UMR_MTT_ALIGNMENT)
993 #define MLX5_SPARE_UMR_CHUNK 0x10000
994 
995 /*
996  * Allocate a temporary buffer to hold the per-page information to transfer to
997  * HW. For efficiency this should be as large as it can be, but buffer
998  * allocation failure is not allowed, so try smaller sizes.
999  */
mlx5_ib_alloc_xlt(size_t * nents,size_t ent_size,gfp_t gfp_mask)1000 static void *mlx5_ib_alloc_xlt(size_t *nents, size_t ent_size, gfp_t gfp_mask)
1001 {
1002 	const size_t xlt_chunk_align =
1003 		MLX5_UMR_MTT_ALIGNMENT / ent_size;
1004 	size_t size;
1005 	void *res = NULL;
1006 
1007 	static_assert(PAGE_SIZE % MLX5_UMR_MTT_ALIGNMENT == 0);
1008 
1009 	/*
1010 	 * MLX5_IB_UPD_XLT_ATOMIC doesn't signal an atomic context just that the
1011 	 * allocation can't trigger any kind of reclaim.
1012 	 */
1013 	might_sleep();
1014 
1015 	gfp_mask |= __GFP_ZERO | __GFP_NORETRY;
1016 
1017 	/*
1018 	 * If the system already has a suitable high order page then just use
1019 	 * that, but don't try hard to create one. This max is about 1M, so a
1020 	 * free x86 huge page will satisfy it.
1021 	 */
1022 	size = min_t(size_t, ent_size * ALIGN(*nents, xlt_chunk_align),
1023 		     MLX5_MAX_UMR_CHUNK);
1024 	*nents = size / ent_size;
1025 	res = (void *)__get_free_pages(gfp_mask | __GFP_NOWARN,
1026 				       get_order(size));
1027 	if (res)
1028 		return res;
1029 
1030 	if (size > MLX5_SPARE_UMR_CHUNK) {
1031 		size = MLX5_SPARE_UMR_CHUNK;
1032 		*nents = size / ent_size;
1033 		res = (void *)__get_free_pages(gfp_mask | __GFP_NOWARN,
1034 					       get_order(size));
1035 		if (res)
1036 			return res;
1037 	}
1038 
1039 	*nents = PAGE_SIZE / ent_size;
1040 	res = (void *)__get_free_page(gfp_mask);
1041 	if (res)
1042 		return res;
1043 
1044 	mutex_lock(&xlt_emergency_page_mutex);
1045 	memset(xlt_emergency_page, 0, PAGE_SIZE);
1046 	return xlt_emergency_page;
1047 }
1048 
mlx5_ib_free_xlt(void * xlt,size_t length)1049 static void mlx5_ib_free_xlt(void *xlt, size_t length)
1050 {
1051 	if (xlt == xlt_emergency_page) {
1052 		mutex_unlock(&xlt_emergency_page_mutex);
1053 		return;
1054 	}
1055 
1056 	free_pages((unsigned long)xlt, get_order(length));
1057 }
1058 
1059 /*
1060  * Create a MLX5_IB_SEND_UMR_UPDATE_XLT work request and XLT buffer ready for
1061  * submission.
1062  */
mlx5_ib_create_xlt_wr(struct mlx5_ib_mr * mr,struct mlx5_umr_wr * wr,struct ib_sge * sg,size_t nents,size_t ent_size,unsigned int flags)1063 static void *mlx5_ib_create_xlt_wr(struct mlx5_ib_mr *mr,
1064 				   struct mlx5_umr_wr *wr, struct ib_sge *sg,
1065 				   size_t nents, size_t ent_size,
1066 				   unsigned int flags)
1067 {
1068 	struct mlx5_ib_dev *dev = mr_to_mdev(mr);
1069 	struct device *ddev = &dev->mdev->pdev->dev;
1070 	dma_addr_t dma;
1071 	void *xlt;
1072 
1073 	xlt = mlx5_ib_alloc_xlt(&nents, ent_size,
1074 				flags & MLX5_IB_UPD_XLT_ATOMIC ? GFP_ATOMIC :
1075 								 GFP_KERNEL);
1076 	sg->length = nents * ent_size;
1077 	dma = dma_map_single(ddev, xlt, sg->length, DMA_TO_DEVICE);
1078 	if (dma_mapping_error(ddev, dma)) {
1079 		mlx5_ib_err(dev, "unable to map DMA during XLT update.\n");
1080 		mlx5_ib_free_xlt(xlt, sg->length);
1081 		return NULL;
1082 	}
1083 	sg->addr = dma;
1084 	sg->lkey = dev->umrc.pd->local_dma_lkey;
1085 
1086 	memset(wr, 0, sizeof(*wr));
1087 	wr->wr.send_flags = MLX5_IB_SEND_UMR_UPDATE_XLT;
1088 	if (!(flags & MLX5_IB_UPD_XLT_ENABLE))
1089 		wr->wr.send_flags |= MLX5_IB_SEND_UMR_FAIL_IF_FREE;
1090 	wr->wr.sg_list = sg;
1091 	wr->wr.num_sge = 1;
1092 	wr->wr.opcode = MLX5_IB_WR_UMR;
1093 	wr->pd = mr->ibmr.pd;
1094 	wr->mkey = mr->mmkey.key;
1095 	wr->length = mr->mmkey.size;
1096 	wr->virt_addr = mr->mmkey.iova;
1097 	wr->access_flags = mr->access_flags;
1098 	wr->page_shift = mr->page_shift;
1099 	wr->xlt_size = sg->length;
1100 	return xlt;
1101 }
1102 
mlx5_ib_unmap_free_xlt(struct mlx5_ib_dev * dev,void * xlt,struct ib_sge * sg)1103 static void mlx5_ib_unmap_free_xlt(struct mlx5_ib_dev *dev, void *xlt,
1104 				   struct ib_sge *sg)
1105 {
1106 	struct device *ddev = &dev->mdev->pdev->dev;
1107 
1108 	dma_unmap_single(ddev, sg->addr, sg->length, DMA_TO_DEVICE);
1109 	mlx5_ib_free_xlt(xlt, sg->length);
1110 }
1111 
xlt_wr_final_send_flags(unsigned int flags)1112 static unsigned int xlt_wr_final_send_flags(unsigned int flags)
1113 {
1114 	unsigned int res = 0;
1115 
1116 	if (flags & MLX5_IB_UPD_XLT_ENABLE)
1117 		res |= MLX5_IB_SEND_UMR_ENABLE_MR |
1118 		       MLX5_IB_SEND_UMR_UPDATE_PD_ACCESS |
1119 		       MLX5_IB_SEND_UMR_UPDATE_TRANSLATION;
1120 	if (flags & MLX5_IB_UPD_XLT_PD || flags & MLX5_IB_UPD_XLT_ACCESS)
1121 		res |= MLX5_IB_SEND_UMR_UPDATE_PD_ACCESS;
1122 	if (flags & MLX5_IB_UPD_XLT_ADDR)
1123 		res |= MLX5_IB_SEND_UMR_UPDATE_TRANSLATION;
1124 	return res;
1125 }
1126 
mlx5_ib_update_xlt(struct mlx5_ib_mr * mr,u64 idx,int npages,int page_shift,int flags)1127 int mlx5_ib_update_xlt(struct mlx5_ib_mr *mr, u64 idx, int npages,
1128 		       int page_shift, int flags)
1129 {
1130 	struct mlx5_ib_dev *dev = mr_to_mdev(mr);
1131 	struct device *ddev = &dev->mdev->pdev->dev;
1132 	void *xlt;
1133 	struct mlx5_umr_wr wr;
1134 	struct ib_sge sg;
1135 	int err = 0;
1136 	int desc_size = (flags & MLX5_IB_UPD_XLT_INDIRECT)
1137 			       ? sizeof(struct mlx5_klm)
1138 			       : sizeof(struct mlx5_mtt);
1139 	const int page_align = MLX5_UMR_MTT_ALIGNMENT / desc_size;
1140 	const int page_mask = page_align - 1;
1141 	size_t pages_mapped = 0;
1142 	size_t pages_to_map = 0;
1143 	size_t pages_iter;
1144 	size_t size_to_map = 0;
1145 	size_t orig_sg_length;
1146 
1147 	if ((flags & MLX5_IB_UPD_XLT_INDIRECT) &&
1148 	    !umr_can_use_indirect_mkey(dev))
1149 		return -EPERM;
1150 
1151 	if (WARN_ON(!mr->umem->is_odp))
1152 		return -EINVAL;
1153 
1154 	/* UMR copies MTTs in units of MLX5_UMR_MTT_ALIGNMENT bytes,
1155 	 * so we need to align the offset and length accordingly
1156 	 */
1157 	if (idx & page_mask) {
1158 		npages += idx & page_mask;
1159 		idx &= ~page_mask;
1160 	}
1161 	pages_to_map = ALIGN(npages, page_align);
1162 
1163 	xlt = mlx5_ib_create_xlt_wr(mr, &wr, &sg, npages, desc_size, flags);
1164 	if (!xlt)
1165 		return -ENOMEM;
1166 	pages_iter = sg.length / desc_size;
1167 	orig_sg_length = sg.length;
1168 
1169 	if (!(flags & MLX5_IB_UPD_XLT_INDIRECT)) {
1170 		struct ib_umem_odp *odp = to_ib_umem_odp(mr->umem);
1171 		size_t max_pages = ib_umem_odp_num_pages(odp) - idx;
1172 
1173 		pages_to_map = min_t(size_t, pages_to_map, max_pages);
1174 	}
1175 
1176 	wr.page_shift = page_shift;
1177 
1178 	for (pages_mapped = 0;
1179 	     pages_mapped < pages_to_map && !err;
1180 	     pages_mapped += pages_iter, idx += pages_iter) {
1181 		npages = min_t(int, pages_iter, pages_to_map - pages_mapped);
1182 		size_to_map = npages * desc_size;
1183 		dma_sync_single_for_cpu(ddev, sg.addr, sg.length,
1184 					DMA_TO_DEVICE);
1185 		mlx5_odp_populate_xlt(xlt, idx, npages, mr, flags);
1186 		dma_sync_single_for_device(ddev, sg.addr, sg.length,
1187 					   DMA_TO_DEVICE);
1188 
1189 		sg.length = ALIGN(size_to_map, MLX5_UMR_MTT_ALIGNMENT);
1190 
1191 		if (pages_mapped + pages_iter >= pages_to_map)
1192 			wr.wr.send_flags |= xlt_wr_final_send_flags(flags);
1193 
1194 		wr.offset = idx * desc_size;
1195 		wr.xlt_size = sg.length;
1196 
1197 		err = mlx5_ib_post_send_wait(dev, &wr);
1198 	}
1199 	sg.length = orig_sg_length;
1200 	mlx5_ib_unmap_free_xlt(dev, xlt, &sg);
1201 	return err;
1202 }
1203 
1204 /*
1205  * Send the DMA list to the HW for a normal MR using UMR.
1206  * Dmabuf MR is handled in a similar way, except that the MLX5_IB_UPD_XLT_ZAP
1207  * flag may be used.
1208  */
mlx5_ib_update_mr_pas(struct mlx5_ib_mr * mr,unsigned int flags)1209 int mlx5_ib_update_mr_pas(struct mlx5_ib_mr *mr, unsigned int flags)
1210 {
1211 	struct mlx5_ib_dev *dev = mr_to_mdev(mr);
1212 	struct device *ddev = &dev->mdev->pdev->dev;
1213 	struct ib_block_iter biter;
1214 	struct mlx5_mtt *cur_mtt;
1215 	struct mlx5_umr_wr wr;
1216 	size_t orig_sg_length;
1217 	struct mlx5_mtt *mtt;
1218 	size_t final_size;
1219 	struct ib_sge sg;
1220 	int err = 0;
1221 
1222 	if (WARN_ON(mr->umem->is_odp))
1223 		return -EINVAL;
1224 
1225 	mtt = mlx5_ib_create_xlt_wr(mr, &wr, &sg,
1226 				    ib_umem_num_dma_blocks(mr->umem,
1227 							   1 << mr->page_shift),
1228 				    sizeof(*mtt), flags);
1229 	if (!mtt)
1230 		return -ENOMEM;
1231 	orig_sg_length = sg.length;
1232 
1233 	cur_mtt = mtt;
1234 	rdma_for_each_block (mr->umem->sgt_append.sgt.sgl, &biter,
1235 			     mr->umem->sgt_append.sgt.nents,
1236 			     BIT(mr->page_shift)) {
1237 		if (cur_mtt == (void *)mtt + sg.length) {
1238 			dma_sync_single_for_device(ddev, sg.addr, sg.length,
1239 						   DMA_TO_DEVICE);
1240 			err = mlx5_ib_post_send_wait(dev, &wr);
1241 			if (err)
1242 				goto err;
1243 			dma_sync_single_for_cpu(ddev, sg.addr, sg.length,
1244 						DMA_TO_DEVICE);
1245 			wr.offset += sg.length;
1246 			cur_mtt = mtt;
1247 		}
1248 
1249 		cur_mtt->ptag =
1250 			cpu_to_be64(rdma_block_iter_dma_address(&biter) |
1251 				    MLX5_IB_MTT_PRESENT);
1252 
1253 		if (mr->umem->is_dmabuf && (flags & MLX5_IB_UPD_XLT_ZAP))
1254 			cur_mtt->ptag = 0;
1255 
1256 		cur_mtt++;
1257 	}
1258 
1259 	final_size = (void *)cur_mtt - (void *)mtt;
1260 	sg.length = ALIGN(final_size, MLX5_UMR_MTT_ALIGNMENT);
1261 	memset(cur_mtt, 0, sg.length - final_size);
1262 	wr.wr.send_flags |= xlt_wr_final_send_flags(flags);
1263 	wr.xlt_size = sg.length;
1264 
1265 	dma_sync_single_for_device(ddev, sg.addr, sg.length, DMA_TO_DEVICE);
1266 	err = mlx5_ib_post_send_wait(dev, &wr);
1267 
1268 err:
1269 	sg.length = orig_sg_length;
1270 	mlx5_ib_unmap_free_xlt(dev, mtt, &sg);
1271 	return err;
1272 }
1273 
1274 /*
1275  * If ibmr is NULL it will be allocated by reg_create.
1276  * Else, the given ibmr will be used.
1277  */
reg_create(struct ib_pd * pd,struct ib_umem * umem,u64 iova,int access_flags,unsigned int page_size,bool populate)1278 static struct mlx5_ib_mr *reg_create(struct ib_pd *pd, struct ib_umem *umem,
1279 				     u64 iova, int access_flags,
1280 				     unsigned int page_size, bool populate)
1281 {
1282 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1283 	struct mlx5_ib_mr *mr;
1284 	__be64 *pas;
1285 	void *mkc;
1286 	int inlen;
1287 	u32 *in;
1288 	int err;
1289 	bool pg_cap = !!(MLX5_CAP_GEN(dev->mdev, pg));
1290 
1291 	if (!page_size)
1292 		return ERR_PTR(-EINVAL);
1293 	mr = kzalloc(sizeof(*mr), GFP_KERNEL);
1294 	if (!mr)
1295 		return ERR_PTR(-ENOMEM);
1296 
1297 	mr->ibmr.pd = pd;
1298 	mr->access_flags = access_flags;
1299 	mr->page_shift = order_base_2(page_size);
1300 
1301 	inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
1302 	if (populate)
1303 		inlen += sizeof(*pas) *
1304 			 roundup(ib_umem_num_dma_blocks(umem, page_size), 2);
1305 	in = kvzalloc(inlen, GFP_KERNEL);
1306 	if (!in) {
1307 		err = -ENOMEM;
1308 		goto err_1;
1309 	}
1310 	pas = (__be64 *)MLX5_ADDR_OF(create_mkey_in, in, klm_pas_mtt);
1311 	if (populate) {
1312 		if (WARN_ON(access_flags & IB_ACCESS_ON_DEMAND)) {
1313 			err = -EINVAL;
1314 			goto err_2;
1315 		}
1316 		mlx5_ib_populate_pas(umem, 1UL << mr->page_shift, pas,
1317 				     pg_cap ? MLX5_IB_MTT_PRESENT : 0);
1318 	}
1319 
1320 	/* The pg_access bit allows setting the access flags
1321 	 * in the page list submitted with the command. */
1322 	MLX5_SET(create_mkey_in, in, pg_access, !!(pg_cap));
1323 
1324 	mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
1325 	set_mkc_access_pd_addr_fields(mkc, access_flags, iova,
1326 				      populate ? pd : dev->umrc.pd);
1327 	MLX5_SET(mkc, mkc, free, !populate);
1328 	MLX5_SET(mkc, mkc, access_mode_1_0, MLX5_MKC_ACCESS_MODE_MTT);
1329 	MLX5_SET(mkc, mkc, umr_en, 1);
1330 
1331 	MLX5_SET64(mkc, mkc, len, umem->length);
1332 	MLX5_SET(mkc, mkc, bsf_octword_size, 0);
1333 	MLX5_SET(mkc, mkc, translations_octword_size,
1334 		 get_octo_len(iova, umem->length, mr->page_shift));
1335 	MLX5_SET(mkc, mkc, log_page_size, mr->page_shift);
1336 	if (populate) {
1337 		MLX5_SET(create_mkey_in, in, translations_octword_actual_size,
1338 			 get_octo_len(iova, umem->length, mr->page_shift));
1339 	}
1340 
1341 	err = mlx5_ib_create_mkey(dev, &mr->mmkey, in, inlen);
1342 	if (err) {
1343 		mlx5_ib_warn(dev, "create mkey failed\n");
1344 		goto err_2;
1345 	}
1346 	mr->mmkey.type = MLX5_MKEY_MR;
1347 	mr->umem = umem;
1348 	set_mr_fields(dev, mr, umem->length, access_flags);
1349 	kvfree(in);
1350 
1351 	mlx5_ib_dbg(dev, "mkey = 0x%x\n", mr->mmkey.key);
1352 
1353 	return mr;
1354 
1355 err_2:
1356 	kvfree(in);
1357 err_1:
1358 	kfree(mr);
1359 	return ERR_PTR(err);
1360 }
1361 
mlx5_ib_get_dm_mr(struct ib_pd * pd,u64 start_addr,u64 length,int acc,int mode)1362 static struct ib_mr *mlx5_ib_get_dm_mr(struct ib_pd *pd, u64 start_addr,
1363 				       u64 length, int acc, int mode)
1364 {
1365 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1366 	int inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
1367 	struct mlx5_ib_mr *mr;
1368 	void *mkc;
1369 	u32 *in;
1370 	int err;
1371 
1372 	mr = kzalloc(sizeof(*mr), GFP_KERNEL);
1373 	if (!mr)
1374 		return ERR_PTR(-ENOMEM);
1375 
1376 	in = kzalloc(inlen, GFP_KERNEL);
1377 	if (!in) {
1378 		err = -ENOMEM;
1379 		goto err_free;
1380 	}
1381 
1382 	mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
1383 
1384 	MLX5_SET(mkc, mkc, access_mode_1_0, mode & 0x3);
1385 	MLX5_SET(mkc, mkc, access_mode_4_2, (mode >> 2) & 0x7);
1386 	MLX5_SET64(mkc, mkc, len, length);
1387 	set_mkc_access_pd_addr_fields(mkc, acc, start_addr, pd);
1388 
1389 	err = mlx5_ib_create_mkey(dev, &mr->mmkey, in, inlen);
1390 	if (err)
1391 		goto err_in;
1392 
1393 	kfree(in);
1394 
1395 	set_mr_fields(dev, mr, length, acc);
1396 
1397 	return &mr->ibmr;
1398 
1399 err_in:
1400 	kfree(in);
1401 
1402 err_free:
1403 	kfree(mr);
1404 
1405 	return ERR_PTR(err);
1406 }
1407 
mlx5_ib_advise_mr(struct ib_pd * pd,enum ib_uverbs_advise_mr_advice advice,u32 flags,struct ib_sge * sg_list,u32 num_sge,struct uverbs_attr_bundle * attrs)1408 int mlx5_ib_advise_mr(struct ib_pd *pd,
1409 		      enum ib_uverbs_advise_mr_advice advice,
1410 		      u32 flags,
1411 		      struct ib_sge *sg_list,
1412 		      u32 num_sge,
1413 		      struct uverbs_attr_bundle *attrs)
1414 {
1415 	if (advice != IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH &&
1416 	    advice != IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH_WRITE &&
1417 	    advice != IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH_NO_FAULT)
1418 		return -EOPNOTSUPP;
1419 
1420 	return mlx5_ib_advise_mr_prefetch(pd, advice, flags,
1421 					 sg_list, num_sge);
1422 }
1423 
mlx5_ib_reg_dm_mr(struct ib_pd * pd,struct ib_dm * dm,struct ib_dm_mr_attr * attr,struct uverbs_attr_bundle * attrs)1424 struct ib_mr *mlx5_ib_reg_dm_mr(struct ib_pd *pd, struct ib_dm *dm,
1425 				struct ib_dm_mr_attr *attr,
1426 				struct uverbs_attr_bundle *attrs)
1427 {
1428 	struct mlx5_ib_dm *mdm = to_mdm(dm);
1429 	struct mlx5_core_dev *dev = to_mdev(dm->device)->mdev;
1430 	u64 start_addr = mdm->dev_addr + attr->offset;
1431 	int mode;
1432 
1433 	switch (mdm->type) {
1434 	case MLX5_IB_UAPI_DM_TYPE_MEMIC:
1435 		if (attr->access_flags & ~MLX5_IB_DM_MEMIC_ALLOWED_ACCESS)
1436 			return ERR_PTR(-EINVAL);
1437 
1438 		mode = MLX5_MKC_ACCESS_MODE_MEMIC;
1439 		start_addr -= pci_resource_start(dev->pdev, 0);
1440 		break;
1441 	case MLX5_IB_UAPI_DM_TYPE_STEERING_SW_ICM:
1442 	case MLX5_IB_UAPI_DM_TYPE_HEADER_MODIFY_SW_ICM:
1443 		if (attr->access_flags & ~MLX5_IB_DM_SW_ICM_ALLOWED_ACCESS)
1444 			return ERR_PTR(-EINVAL);
1445 
1446 		mode = MLX5_MKC_ACCESS_MODE_SW_ICM;
1447 		break;
1448 	default:
1449 		return ERR_PTR(-EINVAL);
1450 	}
1451 
1452 	return mlx5_ib_get_dm_mr(pd, start_addr, attr->length,
1453 				 attr->access_flags, mode);
1454 }
1455 
create_real_mr(struct ib_pd * pd,struct ib_umem * umem,u64 iova,int access_flags)1456 static struct ib_mr *create_real_mr(struct ib_pd *pd, struct ib_umem *umem,
1457 				    u64 iova, int access_flags)
1458 {
1459 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1460 	struct mlx5_ib_mr *mr = NULL;
1461 	bool xlt_with_umr;
1462 	int err;
1463 
1464 	xlt_with_umr = mlx5_ib_can_load_pas_with_umr(dev, umem->length);
1465 	if (xlt_with_umr) {
1466 		mr = alloc_cacheable_mr(pd, umem, iova, access_flags);
1467 	} else {
1468 		unsigned int page_size = mlx5_umem_find_best_pgsz(
1469 			umem, mkc, log_page_size, 0, iova);
1470 
1471 		mutex_lock(&dev->slow_path_mutex);
1472 		mr = reg_create(pd, umem, iova, access_flags, page_size, true);
1473 		mutex_unlock(&dev->slow_path_mutex);
1474 	}
1475 	if (IS_ERR(mr)) {
1476 		ib_umem_release(umem);
1477 		return ERR_CAST(mr);
1478 	}
1479 
1480 	mlx5_ib_dbg(dev, "mkey 0x%x\n", mr->mmkey.key);
1481 
1482 	atomic_add(ib_umem_num_pages(umem), &dev->mdev->priv.reg_pages);
1483 
1484 	if (xlt_with_umr) {
1485 		/*
1486 		 * If the MR was created with reg_create then it will be
1487 		 * configured properly but left disabled. It is safe to go ahead
1488 		 * and configure it again via UMR while enabling it.
1489 		 */
1490 		err = mlx5_ib_update_mr_pas(mr, MLX5_IB_UPD_XLT_ENABLE);
1491 		if (err) {
1492 			mlx5_ib_dereg_mr(&mr->ibmr, NULL);
1493 			return ERR_PTR(err);
1494 		}
1495 	}
1496 	return &mr->ibmr;
1497 }
1498 
create_user_odp_mr(struct ib_pd * pd,u64 start,u64 length,u64 iova,int access_flags,struct ib_udata * udata)1499 static struct ib_mr *create_user_odp_mr(struct ib_pd *pd, u64 start, u64 length,
1500 					u64 iova, int access_flags,
1501 					struct ib_udata *udata)
1502 {
1503 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1504 	struct ib_umem_odp *odp;
1505 	struct mlx5_ib_mr *mr;
1506 	int err;
1507 
1508 	if (!IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING))
1509 		return ERR_PTR(-EOPNOTSUPP);
1510 
1511 	err = mlx5r_odp_create_eq(dev, &dev->odp_pf_eq);
1512 	if (err)
1513 		return ERR_PTR(err);
1514 	if (!start && length == U64_MAX) {
1515 		if (iova != 0)
1516 			return ERR_PTR(-EINVAL);
1517 		if (!(dev->odp_caps.general_caps & IB_ODP_SUPPORT_IMPLICIT))
1518 			return ERR_PTR(-EINVAL);
1519 
1520 		mr = mlx5_ib_alloc_implicit_mr(to_mpd(pd), access_flags);
1521 		if (IS_ERR(mr))
1522 			return ERR_CAST(mr);
1523 		return &mr->ibmr;
1524 	}
1525 
1526 	/* ODP requires xlt update via umr to work. */
1527 	if (!mlx5_ib_can_load_pas_with_umr(dev, length))
1528 		return ERR_PTR(-EINVAL);
1529 
1530 	odp = ib_umem_odp_get(&dev->ib_dev, start, length, access_flags,
1531 			      &mlx5_mn_ops);
1532 	if (IS_ERR(odp))
1533 		return ERR_CAST(odp);
1534 
1535 	mr = alloc_cacheable_mr(pd, &odp->umem, iova, access_flags);
1536 	if (IS_ERR(mr)) {
1537 		ib_umem_release(&odp->umem);
1538 		return ERR_CAST(mr);
1539 	}
1540 	xa_init(&mr->implicit_children);
1541 
1542 	odp->private = mr;
1543 	err = mlx5r_store_odp_mkey(dev, &mr->mmkey);
1544 	if (err)
1545 		goto err_dereg_mr;
1546 
1547 	err = mlx5_ib_init_odp_mr(mr);
1548 	if (err)
1549 		goto err_dereg_mr;
1550 	return &mr->ibmr;
1551 
1552 err_dereg_mr:
1553 	mlx5_ib_dereg_mr(&mr->ibmr, NULL);
1554 	return ERR_PTR(err);
1555 }
1556 
mlx5_ib_reg_user_mr(struct ib_pd * pd,u64 start,u64 length,u64 iova,int access_flags,struct ib_udata * udata)1557 struct ib_mr *mlx5_ib_reg_user_mr(struct ib_pd *pd, u64 start, u64 length,
1558 				  u64 iova, int access_flags,
1559 				  struct ib_udata *udata)
1560 {
1561 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1562 	struct ib_umem *umem;
1563 
1564 	if (!IS_ENABLED(CONFIG_INFINIBAND_USER_MEM))
1565 		return ERR_PTR(-EOPNOTSUPP);
1566 
1567 	mlx5_ib_dbg(dev, "start 0x%llx, iova 0x%llx, length 0x%llx, access_flags 0x%x\n",
1568 		    start, iova, length, access_flags);
1569 
1570 	if (access_flags & IB_ACCESS_ON_DEMAND)
1571 		return create_user_odp_mr(pd, start, length, iova, access_flags,
1572 					  udata);
1573 	umem = ib_umem_get(&dev->ib_dev, start, length, access_flags);
1574 	if (IS_ERR(umem))
1575 		return ERR_CAST(umem);
1576 	return create_real_mr(pd, umem, iova, access_flags);
1577 }
1578 
mlx5_ib_dmabuf_invalidate_cb(struct dma_buf_attachment * attach)1579 static void mlx5_ib_dmabuf_invalidate_cb(struct dma_buf_attachment *attach)
1580 {
1581 	struct ib_umem_dmabuf *umem_dmabuf = attach->importer_priv;
1582 	struct mlx5_ib_mr *mr = umem_dmabuf->private;
1583 
1584 	dma_resv_assert_held(umem_dmabuf->attach->dmabuf->resv);
1585 
1586 	if (!umem_dmabuf->sgt)
1587 		return;
1588 
1589 	mlx5_ib_update_mr_pas(mr, MLX5_IB_UPD_XLT_ZAP);
1590 	ib_umem_dmabuf_unmap_pages(umem_dmabuf);
1591 }
1592 
1593 static struct dma_buf_attach_ops mlx5_ib_dmabuf_attach_ops = {
1594 	.allow_peer2peer = 1,
1595 	.move_notify = mlx5_ib_dmabuf_invalidate_cb,
1596 };
1597 
mlx5_ib_reg_user_mr_dmabuf(struct ib_pd * pd,u64 offset,u64 length,u64 virt_addr,int fd,int access_flags,struct ib_udata * udata)1598 struct ib_mr *mlx5_ib_reg_user_mr_dmabuf(struct ib_pd *pd, u64 offset,
1599 					 u64 length, u64 virt_addr,
1600 					 int fd, int access_flags,
1601 					 struct ib_udata *udata)
1602 {
1603 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1604 	struct mlx5_ib_mr *mr = NULL;
1605 	struct ib_umem_dmabuf *umem_dmabuf;
1606 	int err;
1607 
1608 	if (!IS_ENABLED(CONFIG_INFINIBAND_USER_MEM) ||
1609 	    !IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING))
1610 		return ERR_PTR(-EOPNOTSUPP);
1611 
1612 	mlx5_ib_dbg(dev,
1613 		    "offset 0x%llx, virt_addr 0x%llx, length 0x%llx, fd %d, access_flags 0x%x\n",
1614 		    offset, virt_addr, length, fd, access_flags);
1615 
1616 	/* dmabuf requires xlt update via umr to work. */
1617 	if (!mlx5_ib_can_load_pas_with_umr(dev, length))
1618 		return ERR_PTR(-EINVAL);
1619 
1620 	umem_dmabuf = ib_umem_dmabuf_get(&dev->ib_dev, offset, length, fd,
1621 					 access_flags,
1622 					 &mlx5_ib_dmabuf_attach_ops);
1623 	if (IS_ERR(umem_dmabuf)) {
1624 		mlx5_ib_dbg(dev, "umem_dmabuf get failed (%ld)\n",
1625 			    PTR_ERR(umem_dmabuf));
1626 		return ERR_CAST(umem_dmabuf);
1627 	}
1628 
1629 	mr = alloc_cacheable_mr(pd, &umem_dmabuf->umem, virt_addr,
1630 				access_flags);
1631 	if (IS_ERR(mr)) {
1632 		ib_umem_release(&umem_dmabuf->umem);
1633 		return ERR_CAST(mr);
1634 	}
1635 
1636 	mlx5_ib_dbg(dev, "mkey 0x%x\n", mr->mmkey.key);
1637 
1638 	atomic_add(ib_umem_num_pages(mr->umem), &dev->mdev->priv.reg_pages);
1639 	umem_dmabuf->private = mr;
1640 	err = mlx5r_store_odp_mkey(dev, &mr->mmkey);
1641 	if (err)
1642 		goto err_dereg_mr;
1643 
1644 	err = mlx5_ib_init_dmabuf_mr(mr);
1645 	if (err)
1646 		goto err_dereg_mr;
1647 	return &mr->ibmr;
1648 
1649 err_dereg_mr:
1650 	mlx5_ib_dereg_mr(&mr->ibmr, NULL);
1651 	return ERR_PTR(err);
1652 }
1653 
1654 /**
1655  * revoke_mr - Fence all DMA on the MR
1656  * @mr: The MR to fence
1657  *
1658  * Upon return the NIC will not be doing any DMA to the pages under the MR,
1659  * and any DMA in progress will be completed. Failure of this function
1660  * indicates the HW has failed catastrophically.
1661  */
revoke_mr(struct mlx5_ib_mr * mr)1662 static int revoke_mr(struct mlx5_ib_mr *mr)
1663 {
1664 	struct mlx5_umr_wr umrwr = {};
1665 
1666 	if (mr_to_mdev(mr)->mdev->state == MLX5_DEVICE_STATE_INTERNAL_ERROR)
1667 		return 0;
1668 
1669 	umrwr.wr.send_flags = MLX5_IB_SEND_UMR_DISABLE_MR |
1670 			      MLX5_IB_SEND_UMR_UPDATE_PD_ACCESS;
1671 	umrwr.wr.opcode = MLX5_IB_WR_UMR;
1672 	umrwr.pd = mr_to_mdev(mr)->umrc.pd;
1673 	umrwr.mkey = mr->mmkey.key;
1674 	umrwr.ignore_free_state = 1;
1675 
1676 	return mlx5_ib_post_send_wait(mr_to_mdev(mr), &umrwr);
1677 }
1678 
1679 /*
1680  * True if the change in access flags can be done via UMR, only some access
1681  * flags can be updated.
1682  */
can_use_umr_rereg_access(struct mlx5_ib_dev * dev,unsigned int current_access_flags,unsigned int target_access_flags)1683 static bool can_use_umr_rereg_access(struct mlx5_ib_dev *dev,
1684 				     unsigned int current_access_flags,
1685 				     unsigned int target_access_flags)
1686 {
1687 	unsigned int diffs = current_access_flags ^ target_access_flags;
1688 
1689 	if (diffs & ~(IB_ACCESS_LOCAL_WRITE | IB_ACCESS_REMOTE_WRITE |
1690 		      IB_ACCESS_REMOTE_READ | IB_ACCESS_RELAXED_ORDERING))
1691 		return false;
1692 	return mlx5_ib_can_reconfig_with_umr(dev, current_access_flags,
1693 					     target_access_flags);
1694 }
1695 
umr_rereg_pd_access(struct mlx5_ib_mr * mr,struct ib_pd * pd,int access_flags)1696 static int umr_rereg_pd_access(struct mlx5_ib_mr *mr, struct ib_pd *pd,
1697 			       int access_flags)
1698 {
1699 	struct mlx5_ib_dev *dev = to_mdev(mr->ibmr.device);
1700 	struct mlx5_umr_wr umrwr = {
1701 		.wr = {
1702 			.send_flags = MLX5_IB_SEND_UMR_FAIL_IF_FREE |
1703 				      MLX5_IB_SEND_UMR_UPDATE_PD_ACCESS,
1704 			.opcode = MLX5_IB_WR_UMR,
1705 		},
1706 		.mkey = mr->mmkey.key,
1707 		.pd = pd,
1708 		.access_flags = access_flags,
1709 	};
1710 	int err;
1711 
1712 	err = mlx5_ib_post_send_wait(dev, &umrwr);
1713 	if (err)
1714 		return err;
1715 
1716 	mr->access_flags = access_flags;
1717 	mr->mmkey.pd = to_mpd(pd)->pdn;
1718 	return 0;
1719 }
1720 
can_use_umr_rereg_pas(struct mlx5_ib_mr * mr,struct ib_umem * new_umem,int new_access_flags,u64 iova,unsigned long * page_size)1721 static bool can_use_umr_rereg_pas(struct mlx5_ib_mr *mr,
1722 				  struct ib_umem *new_umem,
1723 				  int new_access_flags, u64 iova,
1724 				  unsigned long *page_size)
1725 {
1726 	struct mlx5_ib_dev *dev = to_mdev(mr->ibmr.device);
1727 
1728 	/* We only track the allocated sizes of MRs from the cache */
1729 	if (!mr->cache_ent)
1730 		return false;
1731 	if (!mlx5_ib_can_load_pas_with_umr(dev, new_umem->length))
1732 		return false;
1733 
1734 	*page_size =
1735 		mlx5_umem_find_best_pgsz(new_umem, mkc, log_page_size, 0, iova);
1736 	if (WARN_ON(!*page_size))
1737 		return false;
1738 	return (1ULL << mr->cache_ent->order) >=
1739 	       ib_umem_num_dma_blocks(new_umem, *page_size);
1740 }
1741 
umr_rereg_pas(struct mlx5_ib_mr * mr,struct ib_pd * pd,int access_flags,int flags,struct ib_umem * new_umem,u64 iova,unsigned long page_size)1742 static int umr_rereg_pas(struct mlx5_ib_mr *mr, struct ib_pd *pd,
1743 			 int access_flags, int flags, struct ib_umem *new_umem,
1744 			 u64 iova, unsigned long page_size)
1745 {
1746 	struct mlx5_ib_dev *dev = to_mdev(mr->ibmr.device);
1747 	int upd_flags = MLX5_IB_UPD_XLT_ADDR | MLX5_IB_UPD_XLT_ENABLE;
1748 	struct ib_umem *old_umem = mr->umem;
1749 	int err;
1750 
1751 	/*
1752 	 * To keep everything simple the MR is revoked before we start to mess
1753 	 * with it. This ensure the change is atomic relative to any use of the
1754 	 * MR.
1755 	 */
1756 	err = revoke_mr(mr);
1757 	if (err)
1758 		return err;
1759 
1760 	if (flags & IB_MR_REREG_PD) {
1761 		mr->ibmr.pd = pd;
1762 		mr->mmkey.pd = to_mpd(pd)->pdn;
1763 		upd_flags |= MLX5_IB_UPD_XLT_PD;
1764 	}
1765 	if (flags & IB_MR_REREG_ACCESS) {
1766 		mr->access_flags = access_flags;
1767 		upd_flags |= MLX5_IB_UPD_XLT_ACCESS;
1768 	}
1769 
1770 	mr->ibmr.length = new_umem->length;
1771 	mr->mmkey.iova = iova;
1772 	mr->mmkey.size = new_umem->length;
1773 	mr->page_shift = order_base_2(page_size);
1774 	mr->umem = new_umem;
1775 	err = mlx5_ib_update_mr_pas(mr, upd_flags);
1776 	if (err) {
1777 		/*
1778 		 * The MR is revoked at this point so there is no issue to free
1779 		 * new_umem.
1780 		 */
1781 		mr->umem = old_umem;
1782 		return err;
1783 	}
1784 
1785 	atomic_sub(ib_umem_num_pages(old_umem), &dev->mdev->priv.reg_pages);
1786 	ib_umem_release(old_umem);
1787 	atomic_add(ib_umem_num_pages(new_umem), &dev->mdev->priv.reg_pages);
1788 	return 0;
1789 }
1790 
mlx5_ib_rereg_user_mr(struct ib_mr * ib_mr,int flags,u64 start,u64 length,u64 iova,int new_access_flags,struct ib_pd * new_pd,struct ib_udata * udata)1791 struct ib_mr *mlx5_ib_rereg_user_mr(struct ib_mr *ib_mr, int flags, u64 start,
1792 				    u64 length, u64 iova, int new_access_flags,
1793 				    struct ib_pd *new_pd,
1794 				    struct ib_udata *udata)
1795 {
1796 	struct mlx5_ib_dev *dev = to_mdev(ib_mr->device);
1797 	struct mlx5_ib_mr *mr = to_mmr(ib_mr);
1798 	int err;
1799 
1800 	if (!IS_ENABLED(CONFIG_INFINIBAND_USER_MEM))
1801 		return ERR_PTR(-EOPNOTSUPP);
1802 
1803 	mlx5_ib_dbg(
1804 		dev,
1805 		"start 0x%llx, iova 0x%llx, length 0x%llx, access_flags 0x%x\n",
1806 		start, iova, length, new_access_flags);
1807 
1808 	if (flags & ~(IB_MR_REREG_TRANS | IB_MR_REREG_PD | IB_MR_REREG_ACCESS))
1809 		return ERR_PTR(-EOPNOTSUPP);
1810 
1811 	if (!(flags & IB_MR_REREG_ACCESS))
1812 		new_access_flags = mr->access_flags;
1813 	if (!(flags & IB_MR_REREG_PD))
1814 		new_pd = ib_mr->pd;
1815 
1816 	if (!(flags & IB_MR_REREG_TRANS)) {
1817 		struct ib_umem *umem;
1818 
1819 		/* Fast path for PD/access change */
1820 		if (can_use_umr_rereg_access(dev, mr->access_flags,
1821 					     new_access_flags)) {
1822 			err = umr_rereg_pd_access(mr, new_pd, new_access_flags);
1823 			if (err)
1824 				return ERR_PTR(err);
1825 			return NULL;
1826 		}
1827 		/* DM or ODP MR's don't have a normal umem so we can't re-use it */
1828 		if (!mr->umem || is_odp_mr(mr) || is_dmabuf_mr(mr))
1829 			goto recreate;
1830 
1831 		/*
1832 		 * Only one active MR can refer to a umem at one time, revoke
1833 		 * the old MR before assigning the umem to the new one.
1834 		 */
1835 		err = revoke_mr(mr);
1836 		if (err)
1837 			return ERR_PTR(err);
1838 		umem = mr->umem;
1839 		mr->umem = NULL;
1840 		atomic_sub(ib_umem_num_pages(umem), &dev->mdev->priv.reg_pages);
1841 
1842 		return create_real_mr(new_pd, umem, mr->mmkey.iova,
1843 				      new_access_flags);
1844 	}
1845 
1846 	/*
1847 	 * DM doesn't have a PAS list so we can't re-use it, odp/dmabuf does
1848 	 * but the logic around releasing the umem is different
1849 	 */
1850 	if (!mr->umem || is_odp_mr(mr) || is_dmabuf_mr(mr))
1851 		goto recreate;
1852 
1853 	if (!(new_access_flags & IB_ACCESS_ON_DEMAND) &&
1854 	    can_use_umr_rereg_access(dev, mr->access_flags, new_access_flags)) {
1855 		struct ib_umem *new_umem;
1856 		unsigned long page_size;
1857 
1858 		new_umem = ib_umem_get(&dev->ib_dev, start, length,
1859 				       new_access_flags);
1860 		if (IS_ERR(new_umem))
1861 			return ERR_CAST(new_umem);
1862 
1863 		/* Fast path for PAS change */
1864 		if (can_use_umr_rereg_pas(mr, new_umem, new_access_flags, iova,
1865 					  &page_size)) {
1866 			err = umr_rereg_pas(mr, new_pd, new_access_flags, flags,
1867 					    new_umem, iova, page_size);
1868 			if (err) {
1869 				ib_umem_release(new_umem);
1870 				return ERR_PTR(err);
1871 			}
1872 			return NULL;
1873 		}
1874 		return create_real_mr(new_pd, new_umem, iova, new_access_flags);
1875 	}
1876 
1877 	/*
1878 	 * Everything else has no state we can preserve, just create a new MR
1879 	 * from scratch
1880 	 */
1881 recreate:
1882 	return mlx5_ib_reg_user_mr(new_pd, start, length, iova,
1883 				   new_access_flags, udata);
1884 }
1885 
1886 static int
mlx5_alloc_priv_descs(struct ib_device * device,struct mlx5_ib_mr * mr,int ndescs,int desc_size)1887 mlx5_alloc_priv_descs(struct ib_device *device,
1888 		      struct mlx5_ib_mr *mr,
1889 		      int ndescs,
1890 		      int desc_size)
1891 {
1892 	struct mlx5_ib_dev *dev = to_mdev(device);
1893 	struct device *ddev = &dev->mdev->pdev->dev;
1894 	int size = ndescs * desc_size;
1895 	int add_size;
1896 	int ret;
1897 
1898 	add_size = max_t(int, MLX5_UMR_ALIGN - ARCH_KMALLOC_MINALIGN, 0);
1899 
1900 	mr->descs_alloc = kzalloc(size + add_size, GFP_KERNEL);
1901 	if (!mr->descs_alloc)
1902 		return -ENOMEM;
1903 
1904 	mr->descs = PTR_ALIGN(mr->descs_alloc, MLX5_UMR_ALIGN);
1905 
1906 	mr->desc_map = dma_map_single(ddev, mr->descs, size, DMA_TO_DEVICE);
1907 	if (dma_mapping_error(ddev, mr->desc_map)) {
1908 		ret = -ENOMEM;
1909 		goto err;
1910 	}
1911 
1912 	return 0;
1913 err:
1914 	kfree(mr->descs_alloc);
1915 
1916 	return ret;
1917 }
1918 
1919 static void
mlx5_free_priv_descs(struct mlx5_ib_mr * mr)1920 mlx5_free_priv_descs(struct mlx5_ib_mr *mr)
1921 {
1922 	if (!mr->umem && mr->descs) {
1923 		struct ib_device *device = mr->ibmr.device;
1924 		int size = mr->max_descs * mr->desc_size;
1925 		struct mlx5_ib_dev *dev = to_mdev(device);
1926 
1927 		dma_unmap_single(&dev->mdev->pdev->dev, mr->desc_map, size,
1928 				 DMA_TO_DEVICE);
1929 		kfree(mr->descs_alloc);
1930 		mr->descs = NULL;
1931 	}
1932 }
1933 
mlx5_ib_dereg_mr(struct ib_mr * ibmr,struct ib_udata * udata)1934 int mlx5_ib_dereg_mr(struct ib_mr *ibmr, struct ib_udata *udata)
1935 {
1936 	struct mlx5_ib_mr *mr = to_mmr(ibmr);
1937 	struct mlx5_ib_dev *dev = to_mdev(ibmr->device);
1938 	int rc;
1939 
1940 	/*
1941 	 * Any async use of the mr must hold the refcount, once the refcount
1942 	 * goes to zero no other thread, such as ODP page faults, prefetch, any
1943 	 * UMR activity, etc can touch the mkey. Thus it is safe to destroy it.
1944 	 */
1945 	if (IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING) &&
1946 	    refcount_read(&mr->mmkey.usecount) != 0 &&
1947 	    xa_erase(&mr_to_mdev(mr)->odp_mkeys, mlx5_base_mkey(mr->mmkey.key)))
1948 		mlx5r_deref_wait_odp_mkey(&mr->mmkey);
1949 
1950 	if (ibmr->type == IB_MR_TYPE_INTEGRITY) {
1951 		xa_cmpxchg(&dev->sig_mrs, mlx5_base_mkey(mr->mmkey.key),
1952 			   mr->sig, NULL, GFP_KERNEL);
1953 
1954 		if (mr->mtt_mr) {
1955 			rc = mlx5_ib_dereg_mr(&mr->mtt_mr->ibmr, NULL);
1956 			if (rc)
1957 				return rc;
1958 			mr->mtt_mr = NULL;
1959 		}
1960 		if (mr->klm_mr) {
1961 			rc = mlx5_ib_dereg_mr(&mr->klm_mr->ibmr, NULL);
1962 			if (rc)
1963 				return rc;
1964 			mr->klm_mr = NULL;
1965 		}
1966 
1967 		if (mlx5_core_destroy_psv(dev->mdev,
1968 					  mr->sig->psv_memory.psv_idx))
1969 			mlx5_ib_warn(dev, "failed to destroy mem psv %d\n",
1970 				     mr->sig->psv_memory.psv_idx);
1971 		if (mlx5_core_destroy_psv(dev->mdev, mr->sig->psv_wire.psv_idx))
1972 			mlx5_ib_warn(dev, "failed to destroy wire psv %d\n",
1973 				     mr->sig->psv_wire.psv_idx);
1974 		kfree(mr->sig);
1975 		mr->sig = NULL;
1976 	}
1977 
1978 	/* Stop DMA */
1979 	if (mr->cache_ent) {
1980 		if (revoke_mr(mr)) {
1981 			spin_lock_irq(&mr->cache_ent->lock);
1982 			mr->cache_ent->total_mrs--;
1983 			spin_unlock_irq(&mr->cache_ent->lock);
1984 			mr->cache_ent = NULL;
1985 		}
1986 	}
1987 	if (!mr->cache_ent) {
1988 		rc = destroy_mkey(to_mdev(mr->ibmr.device), mr);
1989 		if (rc)
1990 			return rc;
1991 	}
1992 
1993 	if (mr->umem) {
1994 		bool is_odp = is_odp_mr(mr);
1995 
1996 		if (!is_odp)
1997 			atomic_sub(ib_umem_num_pages(mr->umem),
1998 				   &dev->mdev->priv.reg_pages);
1999 		ib_umem_release(mr->umem);
2000 		if (is_odp)
2001 			mlx5_ib_free_odp_mr(mr);
2002 	}
2003 
2004 	if (mr->cache_ent) {
2005 		mlx5_mr_cache_free(dev, mr);
2006 	} else {
2007 		mlx5_free_priv_descs(mr);
2008 		kfree(mr);
2009 	}
2010 	return 0;
2011 }
2012 
mlx5_set_umr_free_mkey(struct ib_pd * pd,u32 * in,int ndescs,int access_mode,int page_shift)2013 static void mlx5_set_umr_free_mkey(struct ib_pd *pd, u32 *in, int ndescs,
2014 				   int access_mode, int page_shift)
2015 {
2016 	void *mkc;
2017 
2018 	mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
2019 
2020 	/* This is only used from the kernel, so setting the PD is OK. */
2021 	set_mkc_access_pd_addr_fields(mkc, IB_ACCESS_RELAXED_ORDERING, 0, pd);
2022 	MLX5_SET(mkc, mkc, free, 1);
2023 	MLX5_SET(mkc, mkc, translations_octword_size, ndescs);
2024 	MLX5_SET(mkc, mkc, access_mode_1_0, access_mode & 0x3);
2025 	MLX5_SET(mkc, mkc, access_mode_4_2, (access_mode >> 2) & 0x7);
2026 	MLX5_SET(mkc, mkc, umr_en, 1);
2027 	MLX5_SET(mkc, mkc, log_page_size, page_shift);
2028 }
2029 
_mlx5_alloc_mkey_descs(struct ib_pd * pd,struct mlx5_ib_mr * mr,int ndescs,int desc_size,int page_shift,int access_mode,u32 * in,int inlen)2030 static int _mlx5_alloc_mkey_descs(struct ib_pd *pd, struct mlx5_ib_mr *mr,
2031 				  int ndescs, int desc_size, int page_shift,
2032 				  int access_mode, u32 *in, int inlen)
2033 {
2034 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
2035 	int err;
2036 
2037 	mr->access_mode = access_mode;
2038 	mr->desc_size = desc_size;
2039 	mr->max_descs = ndescs;
2040 
2041 	err = mlx5_alloc_priv_descs(pd->device, mr, ndescs, desc_size);
2042 	if (err)
2043 		return err;
2044 
2045 	mlx5_set_umr_free_mkey(pd, in, ndescs, access_mode, page_shift);
2046 
2047 	err = mlx5_ib_create_mkey(dev, &mr->mmkey, in, inlen);
2048 	if (err)
2049 		goto err_free_descs;
2050 
2051 	mr->mmkey.type = MLX5_MKEY_MR;
2052 	mr->ibmr.lkey = mr->mmkey.key;
2053 	mr->ibmr.rkey = mr->mmkey.key;
2054 
2055 	return 0;
2056 
2057 err_free_descs:
2058 	mlx5_free_priv_descs(mr);
2059 	return err;
2060 }
2061 
mlx5_ib_alloc_pi_mr(struct ib_pd * pd,u32 max_num_sg,u32 max_num_meta_sg,int desc_size,int access_mode)2062 static struct mlx5_ib_mr *mlx5_ib_alloc_pi_mr(struct ib_pd *pd,
2063 				u32 max_num_sg, u32 max_num_meta_sg,
2064 				int desc_size, int access_mode)
2065 {
2066 	int inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
2067 	int ndescs = ALIGN(max_num_sg + max_num_meta_sg, 4);
2068 	int page_shift = 0;
2069 	struct mlx5_ib_mr *mr;
2070 	u32 *in;
2071 	int err;
2072 
2073 	mr = kzalloc(sizeof(*mr), GFP_KERNEL);
2074 	if (!mr)
2075 		return ERR_PTR(-ENOMEM);
2076 
2077 	mr->ibmr.pd = pd;
2078 	mr->ibmr.device = pd->device;
2079 
2080 	in = kzalloc(inlen, GFP_KERNEL);
2081 	if (!in) {
2082 		err = -ENOMEM;
2083 		goto err_free;
2084 	}
2085 
2086 	if (access_mode == MLX5_MKC_ACCESS_MODE_MTT)
2087 		page_shift = PAGE_SHIFT;
2088 
2089 	err = _mlx5_alloc_mkey_descs(pd, mr, ndescs, desc_size, page_shift,
2090 				     access_mode, in, inlen);
2091 	if (err)
2092 		goto err_free_in;
2093 
2094 	mr->umem = NULL;
2095 	kfree(in);
2096 
2097 	return mr;
2098 
2099 err_free_in:
2100 	kfree(in);
2101 err_free:
2102 	kfree(mr);
2103 	return ERR_PTR(err);
2104 }
2105 
mlx5_alloc_mem_reg_descs(struct ib_pd * pd,struct mlx5_ib_mr * mr,int ndescs,u32 * in,int inlen)2106 static int mlx5_alloc_mem_reg_descs(struct ib_pd *pd, struct mlx5_ib_mr *mr,
2107 				    int ndescs, u32 *in, int inlen)
2108 {
2109 	return _mlx5_alloc_mkey_descs(pd, mr, ndescs, sizeof(struct mlx5_mtt),
2110 				      PAGE_SHIFT, MLX5_MKC_ACCESS_MODE_MTT, in,
2111 				      inlen);
2112 }
2113 
mlx5_alloc_sg_gaps_descs(struct ib_pd * pd,struct mlx5_ib_mr * mr,int ndescs,u32 * in,int inlen)2114 static int mlx5_alloc_sg_gaps_descs(struct ib_pd *pd, struct mlx5_ib_mr *mr,
2115 				    int ndescs, u32 *in, int inlen)
2116 {
2117 	return _mlx5_alloc_mkey_descs(pd, mr, ndescs, sizeof(struct mlx5_klm),
2118 				      0, MLX5_MKC_ACCESS_MODE_KLMS, in, inlen);
2119 }
2120 
mlx5_alloc_integrity_descs(struct ib_pd * pd,struct mlx5_ib_mr * mr,int max_num_sg,int max_num_meta_sg,u32 * in,int inlen)2121 static int mlx5_alloc_integrity_descs(struct ib_pd *pd, struct mlx5_ib_mr *mr,
2122 				      int max_num_sg, int max_num_meta_sg,
2123 				      u32 *in, int inlen)
2124 {
2125 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
2126 	u32 psv_index[2];
2127 	void *mkc;
2128 	int err;
2129 
2130 	mr->sig = kzalloc(sizeof(*mr->sig), GFP_KERNEL);
2131 	if (!mr->sig)
2132 		return -ENOMEM;
2133 
2134 	/* create mem & wire PSVs */
2135 	err = mlx5_core_create_psv(dev->mdev, to_mpd(pd)->pdn, 2, psv_index);
2136 	if (err)
2137 		goto err_free_sig;
2138 
2139 	mr->sig->psv_memory.psv_idx = psv_index[0];
2140 	mr->sig->psv_wire.psv_idx = psv_index[1];
2141 
2142 	mr->sig->sig_status_checked = true;
2143 	mr->sig->sig_err_exists = false;
2144 	/* Next UMR, Arm SIGERR */
2145 	++mr->sig->sigerr_count;
2146 	mr->klm_mr = mlx5_ib_alloc_pi_mr(pd, max_num_sg, max_num_meta_sg,
2147 					 sizeof(struct mlx5_klm),
2148 					 MLX5_MKC_ACCESS_MODE_KLMS);
2149 	if (IS_ERR(mr->klm_mr)) {
2150 		err = PTR_ERR(mr->klm_mr);
2151 		goto err_destroy_psv;
2152 	}
2153 	mr->mtt_mr = mlx5_ib_alloc_pi_mr(pd, max_num_sg, max_num_meta_sg,
2154 					 sizeof(struct mlx5_mtt),
2155 					 MLX5_MKC_ACCESS_MODE_MTT);
2156 	if (IS_ERR(mr->mtt_mr)) {
2157 		err = PTR_ERR(mr->mtt_mr);
2158 		goto err_free_klm_mr;
2159 	}
2160 
2161 	/* Set bsf descriptors for mkey */
2162 	mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
2163 	MLX5_SET(mkc, mkc, bsf_en, 1);
2164 	MLX5_SET(mkc, mkc, bsf_octword_size, MLX5_MKEY_BSF_OCTO_SIZE);
2165 
2166 	err = _mlx5_alloc_mkey_descs(pd, mr, 4, sizeof(struct mlx5_klm), 0,
2167 				     MLX5_MKC_ACCESS_MODE_KLMS, in, inlen);
2168 	if (err)
2169 		goto err_free_mtt_mr;
2170 
2171 	err = xa_err(xa_store(&dev->sig_mrs, mlx5_base_mkey(mr->mmkey.key),
2172 			      mr->sig, GFP_KERNEL));
2173 	if (err)
2174 		goto err_free_descs;
2175 	return 0;
2176 
2177 err_free_descs:
2178 	destroy_mkey(dev, mr);
2179 	mlx5_free_priv_descs(mr);
2180 err_free_mtt_mr:
2181 	mlx5_ib_dereg_mr(&mr->mtt_mr->ibmr, NULL);
2182 	mr->mtt_mr = NULL;
2183 err_free_klm_mr:
2184 	mlx5_ib_dereg_mr(&mr->klm_mr->ibmr, NULL);
2185 	mr->klm_mr = NULL;
2186 err_destroy_psv:
2187 	if (mlx5_core_destroy_psv(dev->mdev, mr->sig->psv_memory.psv_idx))
2188 		mlx5_ib_warn(dev, "failed to destroy mem psv %d\n",
2189 			     mr->sig->psv_memory.psv_idx);
2190 	if (mlx5_core_destroy_psv(dev->mdev, mr->sig->psv_wire.psv_idx))
2191 		mlx5_ib_warn(dev, "failed to destroy wire psv %d\n",
2192 			     mr->sig->psv_wire.psv_idx);
2193 err_free_sig:
2194 	kfree(mr->sig);
2195 
2196 	return err;
2197 }
2198 
__mlx5_ib_alloc_mr(struct ib_pd * pd,enum ib_mr_type mr_type,u32 max_num_sg,u32 max_num_meta_sg)2199 static struct ib_mr *__mlx5_ib_alloc_mr(struct ib_pd *pd,
2200 					enum ib_mr_type mr_type, u32 max_num_sg,
2201 					u32 max_num_meta_sg)
2202 {
2203 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
2204 	int inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
2205 	int ndescs = ALIGN(max_num_sg, 4);
2206 	struct mlx5_ib_mr *mr;
2207 	u32 *in;
2208 	int err;
2209 
2210 	mr = kzalloc(sizeof(*mr), GFP_KERNEL);
2211 	if (!mr)
2212 		return ERR_PTR(-ENOMEM);
2213 
2214 	in = kzalloc(inlen, GFP_KERNEL);
2215 	if (!in) {
2216 		err = -ENOMEM;
2217 		goto err_free;
2218 	}
2219 
2220 	mr->ibmr.device = pd->device;
2221 	mr->umem = NULL;
2222 
2223 	switch (mr_type) {
2224 	case IB_MR_TYPE_MEM_REG:
2225 		err = mlx5_alloc_mem_reg_descs(pd, mr, ndescs, in, inlen);
2226 		break;
2227 	case IB_MR_TYPE_SG_GAPS:
2228 		err = mlx5_alloc_sg_gaps_descs(pd, mr, ndescs, in, inlen);
2229 		break;
2230 	case IB_MR_TYPE_INTEGRITY:
2231 		err = mlx5_alloc_integrity_descs(pd, mr, max_num_sg,
2232 						 max_num_meta_sg, in, inlen);
2233 		break;
2234 	default:
2235 		mlx5_ib_warn(dev, "Invalid mr type %d\n", mr_type);
2236 		err = -EINVAL;
2237 	}
2238 
2239 	if (err)
2240 		goto err_free_in;
2241 
2242 	kfree(in);
2243 
2244 	return &mr->ibmr;
2245 
2246 err_free_in:
2247 	kfree(in);
2248 err_free:
2249 	kfree(mr);
2250 	return ERR_PTR(err);
2251 }
2252 
mlx5_ib_alloc_mr(struct ib_pd * pd,enum ib_mr_type mr_type,u32 max_num_sg)2253 struct ib_mr *mlx5_ib_alloc_mr(struct ib_pd *pd, enum ib_mr_type mr_type,
2254 			       u32 max_num_sg)
2255 {
2256 	return __mlx5_ib_alloc_mr(pd, mr_type, max_num_sg, 0);
2257 }
2258 
mlx5_ib_alloc_mr_integrity(struct ib_pd * pd,u32 max_num_sg,u32 max_num_meta_sg)2259 struct ib_mr *mlx5_ib_alloc_mr_integrity(struct ib_pd *pd,
2260 					 u32 max_num_sg, u32 max_num_meta_sg)
2261 {
2262 	return __mlx5_ib_alloc_mr(pd, IB_MR_TYPE_INTEGRITY, max_num_sg,
2263 				  max_num_meta_sg);
2264 }
2265 
mlx5_ib_alloc_mw(struct ib_mw * ibmw,struct ib_udata * udata)2266 int mlx5_ib_alloc_mw(struct ib_mw *ibmw, struct ib_udata *udata)
2267 {
2268 	struct mlx5_ib_dev *dev = to_mdev(ibmw->device);
2269 	int inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
2270 	struct mlx5_ib_mw *mw = to_mmw(ibmw);
2271 	u32 *in = NULL;
2272 	void *mkc;
2273 	int ndescs;
2274 	int err;
2275 	struct mlx5_ib_alloc_mw req = {};
2276 	struct {
2277 		__u32	comp_mask;
2278 		__u32	response_length;
2279 	} resp = {};
2280 
2281 	err = ib_copy_from_udata(&req, udata, min(udata->inlen, sizeof(req)));
2282 	if (err)
2283 		return err;
2284 
2285 	if (req.comp_mask || req.reserved1 || req.reserved2)
2286 		return -EOPNOTSUPP;
2287 
2288 	if (udata->inlen > sizeof(req) &&
2289 	    !ib_is_udata_cleared(udata, sizeof(req),
2290 				 udata->inlen - sizeof(req)))
2291 		return -EOPNOTSUPP;
2292 
2293 	ndescs = req.num_klms ? roundup(req.num_klms, 4) : roundup(1, 4);
2294 
2295 	in = kzalloc(inlen, GFP_KERNEL);
2296 	if (!in) {
2297 		err = -ENOMEM;
2298 		goto free;
2299 	}
2300 
2301 	mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
2302 
2303 	MLX5_SET(mkc, mkc, free, 1);
2304 	MLX5_SET(mkc, mkc, translations_octword_size, ndescs);
2305 	MLX5_SET(mkc, mkc, pd, to_mpd(ibmw->pd)->pdn);
2306 	MLX5_SET(mkc, mkc, umr_en, 1);
2307 	MLX5_SET(mkc, mkc, lr, 1);
2308 	MLX5_SET(mkc, mkc, access_mode_1_0, MLX5_MKC_ACCESS_MODE_KLMS);
2309 	MLX5_SET(mkc, mkc, en_rinval, !!((ibmw->type == IB_MW_TYPE_2)));
2310 	MLX5_SET(mkc, mkc, qpn, 0xffffff);
2311 
2312 	err = mlx5_ib_create_mkey(dev, &mw->mmkey, in, inlen);
2313 	if (err)
2314 		goto free;
2315 
2316 	mw->mmkey.type = MLX5_MKEY_MW;
2317 	ibmw->rkey = mw->mmkey.key;
2318 	mw->ndescs = ndescs;
2319 
2320 	resp.response_length =
2321 		min(offsetofend(typeof(resp), response_length), udata->outlen);
2322 	if (resp.response_length) {
2323 		err = ib_copy_to_udata(udata, &resp, resp.response_length);
2324 		if (err)
2325 			goto free_mkey;
2326 	}
2327 
2328 	if (IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING)) {
2329 		err = mlx5r_store_odp_mkey(dev, &mw->mmkey);
2330 		if (err)
2331 			goto free_mkey;
2332 	}
2333 
2334 	kfree(in);
2335 	return 0;
2336 
2337 free_mkey:
2338 	mlx5_core_destroy_mkey(dev->mdev, &mw->mmkey);
2339 free:
2340 	kfree(in);
2341 	return err;
2342 }
2343 
mlx5_ib_dealloc_mw(struct ib_mw * mw)2344 int mlx5_ib_dealloc_mw(struct ib_mw *mw)
2345 {
2346 	struct mlx5_ib_dev *dev = to_mdev(mw->device);
2347 	struct mlx5_ib_mw *mmw = to_mmw(mw);
2348 
2349 	if (IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING) &&
2350 	    xa_erase(&dev->odp_mkeys, mlx5_base_mkey(mmw->mmkey.key)))
2351 		/*
2352 		 * pagefault_single_data_segment() may be accessing mmw
2353 		 * if the user bound an ODP MR to this MW.
2354 		 */
2355 		mlx5r_deref_wait_odp_mkey(&mmw->mmkey);
2356 
2357 	return mlx5_core_destroy_mkey(dev->mdev, &mmw->mmkey);
2358 }
2359 
mlx5_ib_check_mr_status(struct ib_mr * ibmr,u32 check_mask,struct ib_mr_status * mr_status)2360 int mlx5_ib_check_mr_status(struct ib_mr *ibmr, u32 check_mask,
2361 			    struct ib_mr_status *mr_status)
2362 {
2363 	struct mlx5_ib_mr *mmr = to_mmr(ibmr);
2364 	int ret = 0;
2365 
2366 	if (check_mask & ~IB_MR_CHECK_SIG_STATUS) {
2367 		pr_err("Invalid status check mask\n");
2368 		ret = -EINVAL;
2369 		goto done;
2370 	}
2371 
2372 	mr_status->fail_status = 0;
2373 	if (check_mask & IB_MR_CHECK_SIG_STATUS) {
2374 		if (!mmr->sig) {
2375 			ret = -EINVAL;
2376 			pr_err("signature status check requested on a non-signature enabled MR\n");
2377 			goto done;
2378 		}
2379 
2380 		mmr->sig->sig_status_checked = true;
2381 		if (!mmr->sig->sig_err_exists)
2382 			goto done;
2383 
2384 		if (ibmr->lkey == mmr->sig->err_item.key)
2385 			memcpy(&mr_status->sig_err, &mmr->sig->err_item,
2386 			       sizeof(mr_status->sig_err));
2387 		else {
2388 			mr_status->sig_err.err_type = IB_SIG_BAD_GUARD;
2389 			mr_status->sig_err.sig_err_offset = 0;
2390 			mr_status->sig_err.key = mmr->sig->err_item.key;
2391 		}
2392 
2393 		mmr->sig->sig_err_exists = false;
2394 		mr_status->fail_status |= IB_MR_CHECK_SIG_STATUS;
2395 	}
2396 
2397 done:
2398 	return ret;
2399 }
2400 
2401 static int
mlx5_ib_map_pa_mr_sg_pi(struct ib_mr * ibmr,struct scatterlist * data_sg,int data_sg_nents,unsigned int * data_sg_offset,struct scatterlist * meta_sg,int meta_sg_nents,unsigned int * meta_sg_offset)2402 mlx5_ib_map_pa_mr_sg_pi(struct ib_mr *ibmr, struct scatterlist *data_sg,
2403 			int data_sg_nents, unsigned int *data_sg_offset,
2404 			struct scatterlist *meta_sg, int meta_sg_nents,
2405 			unsigned int *meta_sg_offset)
2406 {
2407 	struct mlx5_ib_mr *mr = to_mmr(ibmr);
2408 	unsigned int sg_offset = 0;
2409 	int n = 0;
2410 
2411 	mr->meta_length = 0;
2412 	if (data_sg_nents == 1) {
2413 		n++;
2414 		mr->ndescs = 1;
2415 		if (data_sg_offset)
2416 			sg_offset = *data_sg_offset;
2417 		mr->data_length = sg_dma_len(data_sg) - sg_offset;
2418 		mr->data_iova = sg_dma_address(data_sg) + sg_offset;
2419 		if (meta_sg_nents == 1) {
2420 			n++;
2421 			mr->meta_ndescs = 1;
2422 			if (meta_sg_offset)
2423 				sg_offset = *meta_sg_offset;
2424 			else
2425 				sg_offset = 0;
2426 			mr->meta_length = sg_dma_len(meta_sg) - sg_offset;
2427 			mr->pi_iova = sg_dma_address(meta_sg) + sg_offset;
2428 		}
2429 		ibmr->length = mr->data_length + mr->meta_length;
2430 	}
2431 
2432 	return n;
2433 }
2434 
2435 static int
mlx5_ib_sg_to_klms(struct mlx5_ib_mr * mr,struct scatterlist * sgl,unsigned short sg_nents,unsigned int * sg_offset_p,struct scatterlist * meta_sgl,unsigned short meta_sg_nents,unsigned int * meta_sg_offset_p)2436 mlx5_ib_sg_to_klms(struct mlx5_ib_mr *mr,
2437 		   struct scatterlist *sgl,
2438 		   unsigned short sg_nents,
2439 		   unsigned int *sg_offset_p,
2440 		   struct scatterlist *meta_sgl,
2441 		   unsigned short meta_sg_nents,
2442 		   unsigned int *meta_sg_offset_p)
2443 {
2444 	struct scatterlist *sg = sgl;
2445 	struct mlx5_klm *klms = mr->descs;
2446 	unsigned int sg_offset = sg_offset_p ? *sg_offset_p : 0;
2447 	u32 lkey = mr->ibmr.pd->local_dma_lkey;
2448 	int i, j = 0;
2449 
2450 	mr->ibmr.iova = sg_dma_address(sg) + sg_offset;
2451 	mr->ibmr.length = 0;
2452 
2453 	for_each_sg(sgl, sg, sg_nents, i) {
2454 		if (unlikely(i >= mr->max_descs))
2455 			break;
2456 		klms[i].va = cpu_to_be64(sg_dma_address(sg) + sg_offset);
2457 		klms[i].bcount = cpu_to_be32(sg_dma_len(sg) - sg_offset);
2458 		klms[i].key = cpu_to_be32(lkey);
2459 		mr->ibmr.length += sg_dma_len(sg) - sg_offset;
2460 
2461 		sg_offset = 0;
2462 	}
2463 
2464 	if (sg_offset_p)
2465 		*sg_offset_p = sg_offset;
2466 
2467 	mr->ndescs = i;
2468 	mr->data_length = mr->ibmr.length;
2469 
2470 	if (meta_sg_nents) {
2471 		sg = meta_sgl;
2472 		sg_offset = meta_sg_offset_p ? *meta_sg_offset_p : 0;
2473 		for_each_sg(meta_sgl, sg, meta_sg_nents, j) {
2474 			if (unlikely(i + j >= mr->max_descs))
2475 				break;
2476 			klms[i + j].va = cpu_to_be64(sg_dma_address(sg) +
2477 						     sg_offset);
2478 			klms[i + j].bcount = cpu_to_be32(sg_dma_len(sg) -
2479 							 sg_offset);
2480 			klms[i + j].key = cpu_to_be32(lkey);
2481 			mr->ibmr.length += sg_dma_len(sg) - sg_offset;
2482 
2483 			sg_offset = 0;
2484 		}
2485 		if (meta_sg_offset_p)
2486 			*meta_sg_offset_p = sg_offset;
2487 
2488 		mr->meta_ndescs = j;
2489 		mr->meta_length = mr->ibmr.length - mr->data_length;
2490 	}
2491 
2492 	return i + j;
2493 }
2494 
mlx5_set_page(struct ib_mr * ibmr,u64 addr)2495 static int mlx5_set_page(struct ib_mr *ibmr, u64 addr)
2496 {
2497 	struct mlx5_ib_mr *mr = to_mmr(ibmr);
2498 	__be64 *descs;
2499 
2500 	if (unlikely(mr->ndescs == mr->max_descs))
2501 		return -ENOMEM;
2502 
2503 	descs = mr->descs;
2504 	descs[mr->ndescs++] = cpu_to_be64(addr | MLX5_EN_RD | MLX5_EN_WR);
2505 
2506 	return 0;
2507 }
2508 
mlx5_set_page_pi(struct ib_mr * ibmr,u64 addr)2509 static int mlx5_set_page_pi(struct ib_mr *ibmr, u64 addr)
2510 {
2511 	struct mlx5_ib_mr *mr = to_mmr(ibmr);
2512 	__be64 *descs;
2513 
2514 	if (unlikely(mr->ndescs + mr->meta_ndescs == mr->max_descs))
2515 		return -ENOMEM;
2516 
2517 	descs = mr->descs;
2518 	descs[mr->ndescs + mr->meta_ndescs++] =
2519 		cpu_to_be64(addr | MLX5_EN_RD | MLX5_EN_WR);
2520 
2521 	return 0;
2522 }
2523 
2524 static int
mlx5_ib_map_mtt_mr_sg_pi(struct ib_mr * ibmr,struct scatterlist * data_sg,int data_sg_nents,unsigned int * data_sg_offset,struct scatterlist * meta_sg,int meta_sg_nents,unsigned int * meta_sg_offset)2525 mlx5_ib_map_mtt_mr_sg_pi(struct ib_mr *ibmr, struct scatterlist *data_sg,
2526 			 int data_sg_nents, unsigned int *data_sg_offset,
2527 			 struct scatterlist *meta_sg, int meta_sg_nents,
2528 			 unsigned int *meta_sg_offset)
2529 {
2530 	struct mlx5_ib_mr *mr = to_mmr(ibmr);
2531 	struct mlx5_ib_mr *pi_mr = mr->mtt_mr;
2532 	int n;
2533 
2534 	pi_mr->ndescs = 0;
2535 	pi_mr->meta_ndescs = 0;
2536 	pi_mr->meta_length = 0;
2537 
2538 	ib_dma_sync_single_for_cpu(ibmr->device, pi_mr->desc_map,
2539 				   pi_mr->desc_size * pi_mr->max_descs,
2540 				   DMA_TO_DEVICE);
2541 
2542 	pi_mr->ibmr.page_size = ibmr->page_size;
2543 	n = ib_sg_to_pages(&pi_mr->ibmr, data_sg, data_sg_nents, data_sg_offset,
2544 			   mlx5_set_page);
2545 	if (n != data_sg_nents)
2546 		return n;
2547 
2548 	pi_mr->data_iova = pi_mr->ibmr.iova;
2549 	pi_mr->data_length = pi_mr->ibmr.length;
2550 	pi_mr->ibmr.length = pi_mr->data_length;
2551 	ibmr->length = pi_mr->data_length;
2552 
2553 	if (meta_sg_nents) {
2554 		u64 page_mask = ~((u64)ibmr->page_size - 1);
2555 		u64 iova = pi_mr->data_iova;
2556 
2557 		n += ib_sg_to_pages(&pi_mr->ibmr, meta_sg, meta_sg_nents,
2558 				    meta_sg_offset, mlx5_set_page_pi);
2559 
2560 		pi_mr->meta_length = pi_mr->ibmr.length;
2561 		/*
2562 		 * PI address for the HW is the offset of the metadata address
2563 		 * relative to the first data page address.
2564 		 * It equals to first data page address + size of data pages +
2565 		 * metadata offset at the first metadata page
2566 		 */
2567 		pi_mr->pi_iova = (iova & page_mask) +
2568 				 pi_mr->ndescs * ibmr->page_size +
2569 				 (pi_mr->ibmr.iova & ~page_mask);
2570 		/*
2571 		 * In order to use one MTT MR for data and metadata, we register
2572 		 * also the gaps between the end of the data and the start of
2573 		 * the metadata (the sig MR will verify that the HW will access
2574 		 * to right addresses). This mapping is safe because we use
2575 		 * internal mkey for the registration.
2576 		 */
2577 		pi_mr->ibmr.length = pi_mr->pi_iova + pi_mr->meta_length - iova;
2578 		pi_mr->ibmr.iova = iova;
2579 		ibmr->length += pi_mr->meta_length;
2580 	}
2581 
2582 	ib_dma_sync_single_for_device(ibmr->device, pi_mr->desc_map,
2583 				      pi_mr->desc_size * pi_mr->max_descs,
2584 				      DMA_TO_DEVICE);
2585 
2586 	return n;
2587 }
2588 
2589 static int
mlx5_ib_map_klm_mr_sg_pi(struct ib_mr * ibmr,struct scatterlist * data_sg,int data_sg_nents,unsigned int * data_sg_offset,struct scatterlist * meta_sg,int meta_sg_nents,unsigned int * meta_sg_offset)2590 mlx5_ib_map_klm_mr_sg_pi(struct ib_mr *ibmr, struct scatterlist *data_sg,
2591 			 int data_sg_nents, unsigned int *data_sg_offset,
2592 			 struct scatterlist *meta_sg, int meta_sg_nents,
2593 			 unsigned int *meta_sg_offset)
2594 {
2595 	struct mlx5_ib_mr *mr = to_mmr(ibmr);
2596 	struct mlx5_ib_mr *pi_mr = mr->klm_mr;
2597 	int n;
2598 
2599 	pi_mr->ndescs = 0;
2600 	pi_mr->meta_ndescs = 0;
2601 	pi_mr->meta_length = 0;
2602 
2603 	ib_dma_sync_single_for_cpu(ibmr->device, pi_mr->desc_map,
2604 				   pi_mr->desc_size * pi_mr->max_descs,
2605 				   DMA_TO_DEVICE);
2606 
2607 	n = mlx5_ib_sg_to_klms(pi_mr, data_sg, data_sg_nents, data_sg_offset,
2608 			       meta_sg, meta_sg_nents, meta_sg_offset);
2609 
2610 	ib_dma_sync_single_for_device(ibmr->device, pi_mr->desc_map,
2611 				      pi_mr->desc_size * pi_mr->max_descs,
2612 				      DMA_TO_DEVICE);
2613 
2614 	/* This is zero-based memory region */
2615 	pi_mr->data_iova = 0;
2616 	pi_mr->ibmr.iova = 0;
2617 	pi_mr->pi_iova = pi_mr->data_length;
2618 	ibmr->length = pi_mr->ibmr.length;
2619 
2620 	return n;
2621 }
2622 
mlx5_ib_map_mr_sg_pi(struct ib_mr * ibmr,struct scatterlist * data_sg,int data_sg_nents,unsigned int * data_sg_offset,struct scatterlist * meta_sg,int meta_sg_nents,unsigned int * meta_sg_offset)2623 int mlx5_ib_map_mr_sg_pi(struct ib_mr *ibmr, struct scatterlist *data_sg,
2624 			 int data_sg_nents, unsigned int *data_sg_offset,
2625 			 struct scatterlist *meta_sg, int meta_sg_nents,
2626 			 unsigned int *meta_sg_offset)
2627 {
2628 	struct mlx5_ib_mr *mr = to_mmr(ibmr);
2629 	struct mlx5_ib_mr *pi_mr = NULL;
2630 	int n;
2631 
2632 	WARN_ON(ibmr->type != IB_MR_TYPE_INTEGRITY);
2633 
2634 	mr->ndescs = 0;
2635 	mr->data_length = 0;
2636 	mr->data_iova = 0;
2637 	mr->meta_ndescs = 0;
2638 	mr->pi_iova = 0;
2639 	/*
2640 	 * As a performance optimization, if possible, there is no need to
2641 	 * perform UMR operation to register the data/metadata buffers.
2642 	 * First try to map the sg lists to PA descriptors with local_dma_lkey.
2643 	 * Fallback to UMR only in case of a failure.
2644 	 */
2645 	n = mlx5_ib_map_pa_mr_sg_pi(ibmr, data_sg, data_sg_nents,
2646 				    data_sg_offset, meta_sg, meta_sg_nents,
2647 				    meta_sg_offset);
2648 	if (n == data_sg_nents + meta_sg_nents)
2649 		goto out;
2650 	/*
2651 	 * As a performance optimization, if possible, there is no need to map
2652 	 * the sg lists to KLM descriptors. First try to map the sg lists to MTT
2653 	 * descriptors and fallback to KLM only in case of a failure.
2654 	 * It's more efficient for the HW to work with MTT descriptors
2655 	 * (especially in high load).
2656 	 * Use KLM (indirect access) only if it's mandatory.
2657 	 */
2658 	pi_mr = mr->mtt_mr;
2659 	n = mlx5_ib_map_mtt_mr_sg_pi(ibmr, data_sg, data_sg_nents,
2660 				     data_sg_offset, meta_sg, meta_sg_nents,
2661 				     meta_sg_offset);
2662 	if (n == data_sg_nents + meta_sg_nents)
2663 		goto out;
2664 
2665 	pi_mr = mr->klm_mr;
2666 	n = mlx5_ib_map_klm_mr_sg_pi(ibmr, data_sg, data_sg_nents,
2667 				     data_sg_offset, meta_sg, meta_sg_nents,
2668 				     meta_sg_offset);
2669 	if (unlikely(n != data_sg_nents + meta_sg_nents))
2670 		return -ENOMEM;
2671 
2672 out:
2673 	/* This is zero-based memory region */
2674 	ibmr->iova = 0;
2675 	mr->pi_mr = pi_mr;
2676 	if (pi_mr)
2677 		ibmr->sig_attrs->meta_length = pi_mr->meta_length;
2678 	else
2679 		ibmr->sig_attrs->meta_length = mr->meta_length;
2680 
2681 	return 0;
2682 }
2683 
mlx5_ib_map_mr_sg(struct ib_mr * ibmr,struct scatterlist * sg,int sg_nents,unsigned int * sg_offset)2684 int mlx5_ib_map_mr_sg(struct ib_mr *ibmr, struct scatterlist *sg, int sg_nents,
2685 		      unsigned int *sg_offset)
2686 {
2687 	struct mlx5_ib_mr *mr = to_mmr(ibmr);
2688 	int n;
2689 
2690 	mr->ndescs = 0;
2691 
2692 	ib_dma_sync_single_for_cpu(ibmr->device, mr->desc_map,
2693 				   mr->desc_size * mr->max_descs,
2694 				   DMA_TO_DEVICE);
2695 
2696 	if (mr->access_mode == MLX5_MKC_ACCESS_MODE_KLMS)
2697 		n = mlx5_ib_sg_to_klms(mr, sg, sg_nents, sg_offset, NULL, 0,
2698 				       NULL);
2699 	else
2700 		n = ib_sg_to_pages(ibmr, sg, sg_nents, sg_offset,
2701 				mlx5_set_page);
2702 
2703 	ib_dma_sync_single_for_device(ibmr->device, mr->desc_map,
2704 				      mr->desc_size * mr->max_descs,
2705 				      DMA_TO_DEVICE);
2706 
2707 	return n;
2708 }
2709