• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/drivers/mmc/core/core.c
4  *
5  *  Copyright (C) 2003-2004 Russell King, All Rights Reserved.
6  *  SD support Copyright (C) 2004 Ian Molton, All Rights Reserved.
7  *  Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved.
8  *  MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
9  */
10 #include <linux/module.h>
11 #include <linux/init.h>
12 #include <linux/interrupt.h>
13 #include <linux/completion.h>
14 #include <linux/device.h>
15 #include <linux/delay.h>
16 #include <linux/pagemap.h>
17 #include <linux/err.h>
18 #include <linux/leds.h>
19 #include <linux/scatterlist.h>
20 #include <linux/log2.h>
21 #include <linux/pm_runtime.h>
22 #include <linux/pm_wakeup.h>
23 #include <linux/suspend.h>
24 #include <linux/fault-inject.h>
25 #include <linux/random.h>
26 #include <linux/slab.h>
27 #include <linux/of.h>
28 
29 #include <linux/mmc/card.h>
30 #include <linux/mmc/host.h>
31 #include <linux/mmc/mmc.h>
32 #include <linux/mmc/sd.h>
33 #include <linux/mmc/slot-gpio.h>
34 
35 #define CREATE_TRACE_POINTS
36 #include <trace/events/mmc.h>
37 
38 #include "core.h"
39 #include "card.h"
40 #include "crypto.h"
41 #include "bus.h"
42 #include "host.h"
43 #include "sdio_bus.h"
44 #include "pwrseq.h"
45 
46 #include "mmc_ops.h"
47 #include "sd_ops.h"
48 #include "sdio_ops.h"
49 
50 /* The max erase timeout, used when host->max_busy_timeout isn't specified */
51 #define MMC_ERASE_TIMEOUT_MS	(60 * 1000) /* 60 s */
52 #define SD_DISCARD_TIMEOUT_MS	(250)
53 
54 static const unsigned freqs[] = { 400000, 300000, 200000, 100000 };
55 
56 /*
57  * Enabling software CRCs on the data blocks can be a significant (30%)
58  * performance cost, and for other reasons may not always be desired.
59  * So we allow it it to be disabled.
60  */
61 bool use_spi_crc = 1;
62 module_param(use_spi_crc, bool, 0);
63 
mmc_schedule_delayed_work(struct delayed_work * work,unsigned long delay)64 static int mmc_schedule_delayed_work(struct delayed_work *work,
65 				     unsigned long delay)
66 {
67 	/*
68 	 * We use the system_freezable_wq, because of two reasons.
69 	 * First, it allows several works (not the same work item) to be
70 	 * executed simultaneously. Second, the queue becomes frozen when
71 	 * userspace becomes frozen during system PM.
72 	 */
73 	return queue_delayed_work(system_freezable_wq, work, delay);
74 }
75 
76 #ifdef CONFIG_FAIL_MMC_REQUEST
77 
78 /*
79  * Internal function. Inject random data errors.
80  * If mmc_data is NULL no errors are injected.
81  */
mmc_should_fail_request(struct mmc_host * host,struct mmc_request * mrq)82 static void mmc_should_fail_request(struct mmc_host *host,
83 				    struct mmc_request *mrq)
84 {
85 	struct mmc_command *cmd = mrq->cmd;
86 	struct mmc_data *data = mrq->data;
87 	static const int data_errors[] = {
88 		-ETIMEDOUT,
89 		-EILSEQ,
90 		-EIO,
91 	};
92 
93 	if (!data)
94 		return;
95 
96 	if ((cmd && cmd->error) || data->error ||
97 	    !should_fail(&host->fail_mmc_request, data->blksz * data->blocks))
98 		return;
99 
100 	data->error = data_errors[prandom_u32() % ARRAY_SIZE(data_errors)];
101 	data->bytes_xfered = (prandom_u32() % (data->bytes_xfered >> 9)) << 9;
102 }
103 
104 #else /* CONFIG_FAIL_MMC_REQUEST */
105 
mmc_should_fail_request(struct mmc_host * host,struct mmc_request * mrq)106 static inline void mmc_should_fail_request(struct mmc_host *host,
107 					   struct mmc_request *mrq)
108 {
109 }
110 
111 #endif /* CONFIG_FAIL_MMC_REQUEST */
112 
mmc_complete_cmd(struct mmc_request * mrq)113 static inline void mmc_complete_cmd(struct mmc_request *mrq)
114 {
115 	if (mrq->cap_cmd_during_tfr && !completion_done(&mrq->cmd_completion))
116 		complete_all(&mrq->cmd_completion);
117 }
118 
mmc_command_done(struct mmc_host * host,struct mmc_request * mrq)119 void mmc_command_done(struct mmc_host *host, struct mmc_request *mrq)
120 {
121 	if (!mrq->cap_cmd_during_tfr)
122 		return;
123 
124 	mmc_complete_cmd(mrq);
125 
126 	pr_debug("%s: cmd done, tfr ongoing (CMD%u)\n",
127 		 mmc_hostname(host), mrq->cmd->opcode);
128 }
129 EXPORT_SYMBOL(mmc_command_done);
130 
131 /**
132  *	mmc_request_done - finish processing an MMC request
133  *	@host: MMC host which completed request
134  *	@mrq: MMC request which request
135  *
136  *	MMC drivers should call this function when they have completed
137  *	their processing of a request.
138  */
mmc_request_done(struct mmc_host * host,struct mmc_request * mrq)139 void mmc_request_done(struct mmc_host *host, struct mmc_request *mrq)
140 {
141 	struct mmc_command *cmd = mrq->cmd;
142 	int err = cmd->error;
143 
144 	/* Flag re-tuning needed on CRC errors */
145 	if (cmd->opcode != MMC_SEND_TUNING_BLOCK &&
146 	    cmd->opcode != MMC_SEND_TUNING_BLOCK_HS200 &&
147 	    !host->retune_crc_disable &&
148 	    (err == -EILSEQ || (mrq->sbc && mrq->sbc->error == -EILSEQ) ||
149 	    (mrq->data && mrq->data->error == -EILSEQ) ||
150 	    (mrq->stop && mrq->stop->error == -EILSEQ)))
151 		mmc_retune_needed(host);
152 
153 	if (err && cmd->retries && mmc_host_is_spi(host)) {
154 		if (cmd->resp[0] & R1_SPI_ILLEGAL_COMMAND)
155 			cmd->retries = 0;
156 	}
157 
158 	if (host->ongoing_mrq == mrq)
159 		host->ongoing_mrq = NULL;
160 
161 	mmc_complete_cmd(mrq);
162 
163 	trace_mmc_request_done(host, mrq);
164 
165 	/*
166 	 * We list various conditions for the command to be considered
167 	 * properly done:
168 	 *
169 	 * - There was no error, OK fine then
170 	 * - We are not doing some kind of retry
171 	 * - The card was removed (...so just complete everything no matter
172 	 *   if there are errors or retries)
173 	 */
174 	if (!err || !cmd->retries || mmc_card_removed(host->card)) {
175 		mmc_should_fail_request(host, mrq);
176 
177 		if (!host->ongoing_mrq)
178 			led_trigger_event(host->led, LED_OFF);
179 
180 		if (mrq->sbc) {
181 			pr_debug("%s: req done <CMD%u>: %d: %08x %08x %08x %08x\n",
182 				mmc_hostname(host), mrq->sbc->opcode,
183 				mrq->sbc->error,
184 				mrq->sbc->resp[0], mrq->sbc->resp[1],
185 				mrq->sbc->resp[2], mrq->sbc->resp[3]);
186 		}
187 
188 		pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n",
189 			mmc_hostname(host), cmd->opcode, err,
190 			cmd->resp[0], cmd->resp[1],
191 			cmd->resp[2], cmd->resp[3]);
192 
193 		if (mrq->data) {
194 			pr_debug("%s:     %d bytes transferred: %d\n",
195 				mmc_hostname(host),
196 				mrq->data->bytes_xfered, mrq->data->error);
197 		}
198 
199 		if (mrq->stop) {
200 			pr_debug("%s:     (CMD%u): %d: %08x %08x %08x %08x\n",
201 				mmc_hostname(host), mrq->stop->opcode,
202 				mrq->stop->error,
203 				mrq->stop->resp[0], mrq->stop->resp[1],
204 				mrq->stop->resp[2], mrq->stop->resp[3]);
205 		}
206 	}
207 	/*
208 	 * Request starter must handle retries - see
209 	 * mmc_wait_for_req_done().
210 	 */
211 	if (mrq->done)
212 		mrq->done(mrq);
213 }
214 
215 EXPORT_SYMBOL(mmc_request_done);
216 
__mmc_start_request(struct mmc_host * host,struct mmc_request * mrq)217 static void __mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
218 {
219 	int err;
220 
221 	/* Assumes host controller has been runtime resumed by mmc_claim_host */
222 	err = mmc_retune(host);
223 	if (err) {
224 		mrq->cmd->error = err;
225 		mmc_request_done(host, mrq);
226 		return;
227 	}
228 
229 	/*
230 	 * For sdio rw commands we must wait for card busy otherwise some
231 	 * sdio devices won't work properly.
232 	 * And bypass I/O abort, reset and bus suspend operations.
233 	 */
234 	if (sdio_is_io_busy(mrq->cmd->opcode, mrq->cmd->arg) &&
235 	    host->ops->card_busy) {
236 		int tries = 500; /* Wait aprox 500ms at maximum */
237 
238 		while (host->ops->card_busy(host) && --tries)
239 			mmc_delay(1);
240 
241 		if (tries == 0) {
242 			mrq->cmd->error = -EBUSY;
243 			mmc_request_done(host, mrq);
244 			return;
245 		}
246 	}
247 
248 	if (mrq->cap_cmd_during_tfr) {
249 		host->ongoing_mrq = mrq;
250 		/*
251 		 * Retry path could come through here without having waiting on
252 		 * cmd_completion, so ensure it is reinitialised.
253 		 */
254 		reinit_completion(&mrq->cmd_completion);
255 	}
256 
257 	trace_mmc_request_start(host, mrq);
258 
259 	if (host->cqe_on)
260 		host->cqe_ops->cqe_off(host);
261 
262 	host->ops->request(host, mrq);
263 }
264 
mmc_mrq_pr_debug(struct mmc_host * host,struct mmc_request * mrq,bool cqe)265 static void mmc_mrq_pr_debug(struct mmc_host *host, struct mmc_request *mrq,
266 			     bool cqe)
267 {
268 	if (mrq->sbc) {
269 		pr_debug("<%s: starting CMD%u arg %08x flags %08x>\n",
270 			 mmc_hostname(host), mrq->sbc->opcode,
271 			 mrq->sbc->arg, mrq->sbc->flags);
272 	}
273 
274 	if (mrq->cmd) {
275 		pr_debug("%s: starting %sCMD%u arg %08x flags %08x\n",
276 			 mmc_hostname(host), cqe ? "CQE direct " : "",
277 			 mrq->cmd->opcode, mrq->cmd->arg, mrq->cmd->flags);
278 	} else if (cqe) {
279 		pr_debug("%s: starting CQE transfer for tag %d blkaddr %u\n",
280 			 mmc_hostname(host), mrq->tag, mrq->data->blk_addr);
281 	}
282 
283 	if (mrq->data) {
284 		pr_debug("%s:     blksz %d blocks %d flags %08x "
285 			"tsac %d ms nsac %d\n",
286 			mmc_hostname(host), mrq->data->blksz,
287 			mrq->data->blocks, mrq->data->flags,
288 			mrq->data->timeout_ns / 1000000,
289 			mrq->data->timeout_clks);
290 	}
291 
292 	if (mrq->stop) {
293 		pr_debug("%s:     CMD%u arg %08x flags %08x\n",
294 			 mmc_hostname(host), mrq->stop->opcode,
295 			 mrq->stop->arg, mrq->stop->flags);
296 	}
297 }
298 
mmc_mrq_prep(struct mmc_host * host,struct mmc_request * mrq)299 static int mmc_mrq_prep(struct mmc_host *host, struct mmc_request *mrq)
300 {
301 	unsigned int i, sz = 0;
302 	struct scatterlist *sg;
303 
304 	if (mrq->cmd) {
305 		mrq->cmd->error = 0;
306 		mrq->cmd->mrq = mrq;
307 		mrq->cmd->data = mrq->data;
308 	}
309 	if (mrq->sbc) {
310 		mrq->sbc->error = 0;
311 		mrq->sbc->mrq = mrq;
312 	}
313 	if (mrq->data) {
314 		if (mrq->data->blksz > host->max_blk_size ||
315 		    mrq->data->blocks > host->max_blk_count ||
316 		    mrq->data->blocks * mrq->data->blksz > host->max_req_size)
317 			return -EINVAL;
318 
319 		for_each_sg(mrq->data->sg, sg, mrq->data->sg_len, i)
320 			sz += sg->length;
321 		if (sz != mrq->data->blocks * mrq->data->blksz)
322 			return -EINVAL;
323 
324 		mrq->data->error = 0;
325 		mrq->data->mrq = mrq;
326 		if (mrq->stop) {
327 			mrq->data->stop = mrq->stop;
328 			mrq->stop->error = 0;
329 			mrq->stop->mrq = mrq;
330 		}
331 	}
332 
333 	return 0;
334 }
335 
mmc_start_request(struct mmc_host * host,struct mmc_request * mrq)336 int mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
337 {
338 	int err;
339 
340 	init_completion(&mrq->cmd_completion);
341 
342 	mmc_retune_hold(host);
343 
344 	if (mmc_card_removed(host->card))
345 		return -ENOMEDIUM;
346 
347 	mmc_mrq_pr_debug(host, mrq, false);
348 
349 	WARN_ON(!host->claimed);
350 
351 	err = mmc_mrq_prep(host, mrq);
352 	if (err)
353 		return err;
354 
355 	led_trigger_event(host->led, LED_FULL);
356 	__mmc_start_request(host, mrq);
357 
358 	return 0;
359 }
360 EXPORT_SYMBOL(mmc_start_request);
361 
mmc_wait_done(struct mmc_request * mrq)362 static void mmc_wait_done(struct mmc_request *mrq)
363 {
364 	complete(&mrq->completion);
365 }
366 
mmc_wait_ongoing_tfr_cmd(struct mmc_host * host)367 static inline void mmc_wait_ongoing_tfr_cmd(struct mmc_host *host)
368 {
369 	struct mmc_request *ongoing_mrq = READ_ONCE(host->ongoing_mrq);
370 
371 	/*
372 	 * If there is an ongoing transfer, wait for the command line to become
373 	 * available.
374 	 */
375 	if (ongoing_mrq && !completion_done(&ongoing_mrq->cmd_completion))
376 		wait_for_completion(&ongoing_mrq->cmd_completion);
377 }
378 
__mmc_start_req(struct mmc_host * host,struct mmc_request * mrq)379 static int __mmc_start_req(struct mmc_host *host, struct mmc_request *mrq)
380 {
381 	int err;
382 
383 	mmc_wait_ongoing_tfr_cmd(host);
384 
385 	init_completion(&mrq->completion);
386 	mrq->done = mmc_wait_done;
387 
388 	err = mmc_start_request(host, mrq);
389 	if (err) {
390 		mrq->cmd->error = err;
391 		mmc_complete_cmd(mrq);
392 		complete(&mrq->completion);
393 	}
394 
395 	return err;
396 }
397 
mmc_wait_for_req_done(struct mmc_host * host,struct mmc_request * mrq)398 void mmc_wait_for_req_done(struct mmc_host *host, struct mmc_request *mrq)
399 {
400 	struct mmc_command *cmd;
401 
402 	while (1) {
403 		wait_for_completion(&mrq->completion);
404 
405 		cmd = mrq->cmd;
406 
407 		if (!cmd->error || !cmd->retries ||
408 		    mmc_card_removed(host->card))
409 			break;
410 
411 		mmc_retune_recheck(host);
412 
413 		pr_debug("%s: req failed (CMD%u): %d, retrying...\n",
414 			 mmc_hostname(host), cmd->opcode, cmd->error);
415 		cmd->retries--;
416 		cmd->error = 0;
417 		__mmc_start_request(host, mrq);
418 	}
419 
420 	mmc_retune_release(host);
421 }
422 EXPORT_SYMBOL(mmc_wait_for_req_done);
423 
424 /*
425  * mmc_cqe_start_req - Start a CQE request.
426  * @host: MMC host to start the request
427  * @mrq: request to start
428  *
429  * Start the request, re-tuning if needed and it is possible. Returns an error
430  * code if the request fails to start or -EBUSY if CQE is busy.
431  */
mmc_cqe_start_req(struct mmc_host * host,struct mmc_request * mrq)432 int mmc_cqe_start_req(struct mmc_host *host, struct mmc_request *mrq)
433 {
434 	int err;
435 
436 	/*
437 	 * CQE cannot process re-tuning commands. Caller must hold retuning
438 	 * while CQE is in use.  Re-tuning can happen here only when CQE has no
439 	 * active requests i.e. this is the first.  Note, re-tuning will call
440 	 * ->cqe_off().
441 	 */
442 	err = mmc_retune(host);
443 	if (err)
444 		goto out_err;
445 
446 	mrq->host = host;
447 
448 	mmc_mrq_pr_debug(host, mrq, true);
449 
450 	err = mmc_mrq_prep(host, mrq);
451 	if (err)
452 		goto out_err;
453 
454 	err = host->cqe_ops->cqe_request(host, mrq);
455 	if (err)
456 		goto out_err;
457 
458 	trace_mmc_request_start(host, mrq);
459 
460 	return 0;
461 
462 out_err:
463 	if (mrq->cmd) {
464 		pr_debug("%s: failed to start CQE direct CMD%u, error %d\n",
465 			 mmc_hostname(host), mrq->cmd->opcode, err);
466 	} else {
467 		pr_debug("%s: failed to start CQE transfer for tag %d, error %d\n",
468 			 mmc_hostname(host), mrq->tag, err);
469 	}
470 	return err;
471 }
472 EXPORT_SYMBOL(mmc_cqe_start_req);
473 
474 /**
475  *	mmc_cqe_request_done - CQE has finished processing an MMC request
476  *	@host: MMC host which completed request
477  *	@mrq: MMC request which completed
478  *
479  *	CQE drivers should call this function when they have completed
480  *	their processing of a request.
481  */
mmc_cqe_request_done(struct mmc_host * host,struct mmc_request * mrq)482 void mmc_cqe_request_done(struct mmc_host *host, struct mmc_request *mrq)
483 {
484 	mmc_should_fail_request(host, mrq);
485 
486 	/* Flag re-tuning needed on CRC errors */
487 	if ((mrq->cmd && mrq->cmd->error == -EILSEQ) ||
488 	    (mrq->data && mrq->data->error == -EILSEQ))
489 		mmc_retune_needed(host);
490 
491 	trace_mmc_request_done(host, mrq);
492 
493 	if (mrq->cmd) {
494 		pr_debug("%s: CQE req done (direct CMD%u): %d\n",
495 			 mmc_hostname(host), mrq->cmd->opcode, mrq->cmd->error);
496 	} else {
497 		pr_debug("%s: CQE transfer done tag %d\n",
498 			 mmc_hostname(host), mrq->tag);
499 	}
500 
501 	if (mrq->data) {
502 		pr_debug("%s:     %d bytes transferred: %d\n",
503 			 mmc_hostname(host),
504 			 mrq->data->bytes_xfered, mrq->data->error);
505 	}
506 
507 	mrq->done(mrq);
508 }
509 EXPORT_SYMBOL(mmc_cqe_request_done);
510 
511 /**
512  *	mmc_cqe_post_req - CQE post process of a completed MMC request
513  *	@host: MMC host
514  *	@mrq: MMC request to be processed
515  */
mmc_cqe_post_req(struct mmc_host * host,struct mmc_request * mrq)516 void mmc_cqe_post_req(struct mmc_host *host, struct mmc_request *mrq)
517 {
518 	if (host->cqe_ops->cqe_post_req)
519 		host->cqe_ops->cqe_post_req(host, mrq);
520 }
521 EXPORT_SYMBOL(mmc_cqe_post_req);
522 
523 /* Arbitrary 1 second timeout */
524 #define MMC_CQE_RECOVERY_TIMEOUT	1000
525 
526 /*
527  * mmc_cqe_recovery - Recover from CQE errors.
528  * @host: MMC host to recover
529  *
530  * Recovery consists of stopping CQE, stopping eMMC, discarding the queue in
531  * in eMMC, and discarding the queue in CQE. CQE must call
532  * mmc_cqe_request_done() on all requests. An error is returned if the eMMC
533  * fails to discard its queue.
534  */
mmc_cqe_recovery(struct mmc_host * host)535 int mmc_cqe_recovery(struct mmc_host *host)
536 {
537 	struct mmc_command cmd;
538 	int err;
539 
540 	mmc_retune_hold_now(host);
541 
542 	/*
543 	 * Recovery is expected seldom, if at all, but it reduces performance,
544 	 * so make sure it is not completely silent.
545 	 */
546 	pr_warn("%s: running CQE recovery\n", mmc_hostname(host));
547 
548 	host->cqe_ops->cqe_recovery_start(host);
549 
550 	memset(&cmd, 0, sizeof(cmd));
551 	cmd.opcode       = MMC_STOP_TRANSMISSION;
552 	cmd.flags        = MMC_RSP_R1B | MMC_CMD_AC;
553 	cmd.flags       &= ~MMC_RSP_CRC; /* Ignore CRC */
554 	cmd.busy_timeout = MMC_CQE_RECOVERY_TIMEOUT;
555 	mmc_wait_for_cmd(host, &cmd, MMC_CMD_RETRIES);
556 
557 	mmc_poll_for_busy(host->card, MMC_CQE_RECOVERY_TIMEOUT, true, MMC_BUSY_IO);
558 
559 	memset(&cmd, 0, sizeof(cmd));
560 	cmd.opcode       = MMC_CMDQ_TASK_MGMT;
561 	cmd.arg          = 1; /* Discard entire queue */
562 	cmd.flags        = MMC_RSP_R1B | MMC_CMD_AC;
563 	cmd.flags       &= ~MMC_RSP_CRC; /* Ignore CRC */
564 	cmd.busy_timeout = MMC_CQE_RECOVERY_TIMEOUT;
565 	err = mmc_wait_for_cmd(host, &cmd, MMC_CMD_RETRIES);
566 
567 	host->cqe_ops->cqe_recovery_finish(host);
568 
569 	if (err)
570 		err = mmc_wait_for_cmd(host, &cmd, MMC_CMD_RETRIES);
571 
572 	mmc_retune_release(host);
573 
574 	return err;
575 }
576 EXPORT_SYMBOL(mmc_cqe_recovery);
577 
578 /**
579  *	mmc_is_req_done - Determine if a 'cap_cmd_during_tfr' request is done
580  *	@host: MMC host
581  *	@mrq: MMC request
582  *
583  *	mmc_is_req_done() is used with requests that have
584  *	mrq->cap_cmd_during_tfr = true. mmc_is_req_done() must be called after
585  *	starting a request and before waiting for it to complete. That is,
586  *	either in between calls to mmc_start_req(), or after mmc_wait_for_req()
587  *	and before mmc_wait_for_req_done(). If it is called at other times the
588  *	result is not meaningful.
589  */
mmc_is_req_done(struct mmc_host * host,struct mmc_request * mrq)590 bool mmc_is_req_done(struct mmc_host *host, struct mmc_request *mrq)
591 {
592 	return completion_done(&mrq->completion);
593 }
594 EXPORT_SYMBOL(mmc_is_req_done);
595 
596 /**
597  *	mmc_wait_for_req - start a request and wait for completion
598  *	@host: MMC host to start command
599  *	@mrq: MMC request to start
600  *
601  *	Start a new MMC custom command request for a host, and wait
602  *	for the command to complete. In the case of 'cap_cmd_during_tfr'
603  *	requests, the transfer is ongoing and the caller can issue further
604  *	commands that do not use the data lines, and then wait by calling
605  *	mmc_wait_for_req_done().
606  *	Does not attempt to parse the response.
607  */
mmc_wait_for_req(struct mmc_host * host,struct mmc_request * mrq)608 void mmc_wait_for_req(struct mmc_host *host, struct mmc_request *mrq)
609 {
610 	__mmc_start_req(host, mrq);
611 
612 	if (!mrq->cap_cmd_during_tfr)
613 		mmc_wait_for_req_done(host, mrq);
614 }
615 EXPORT_SYMBOL(mmc_wait_for_req);
616 
617 /**
618  *	mmc_wait_for_cmd - start a command and wait for completion
619  *	@host: MMC host to start command
620  *	@cmd: MMC command to start
621  *	@retries: maximum number of retries
622  *
623  *	Start a new MMC command for a host, and wait for the command
624  *	to complete.  Return any error that occurred while the command
625  *	was executing.  Do not attempt to parse the response.
626  */
mmc_wait_for_cmd(struct mmc_host * host,struct mmc_command * cmd,int retries)627 int mmc_wait_for_cmd(struct mmc_host *host, struct mmc_command *cmd, int retries)
628 {
629 	struct mmc_request mrq = {};
630 
631 	WARN_ON(!host->claimed);
632 
633 	memset(cmd->resp, 0, sizeof(cmd->resp));
634 	cmd->retries = retries;
635 
636 	mrq.cmd = cmd;
637 	cmd->data = NULL;
638 
639 	mmc_wait_for_req(host, &mrq);
640 
641 	return cmd->error;
642 }
643 
644 EXPORT_SYMBOL(mmc_wait_for_cmd);
645 
646 /**
647  *	mmc_set_data_timeout - set the timeout for a data command
648  *	@data: data phase for command
649  *	@card: the MMC card associated with the data transfer
650  *
651  *	Computes the data timeout parameters according to the
652  *	correct algorithm given the card type.
653  */
mmc_set_data_timeout(struct mmc_data * data,const struct mmc_card * card)654 void mmc_set_data_timeout(struct mmc_data *data, const struct mmc_card *card)
655 {
656 	unsigned int mult;
657 
658 	/*
659 	 * SDIO cards only define an upper 1 s limit on access.
660 	 */
661 	if (mmc_card_sdio(card)) {
662 		data->timeout_ns = 1000000000;
663 		data->timeout_clks = 0;
664 		return;
665 	}
666 
667 	/*
668 	 * SD cards use a 100 multiplier rather than 10
669 	 */
670 	mult = mmc_card_sd(card) ? 100 : 10;
671 
672 	/*
673 	 * Scale up the multiplier (and therefore the timeout) by
674 	 * the r2w factor for writes.
675 	 */
676 	if (data->flags & MMC_DATA_WRITE)
677 		mult <<= card->csd.r2w_factor;
678 
679 	data->timeout_ns = card->csd.taac_ns * mult;
680 	data->timeout_clks = card->csd.taac_clks * mult;
681 
682 	/*
683 	 * SD cards also have an upper limit on the timeout.
684 	 */
685 	if (mmc_card_sd(card)) {
686 		unsigned int timeout_us, limit_us;
687 
688 		timeout_us = data->timeout_ns / 1000;
689 		if (card->host->ios.clock)
690 			timeout_us += data->timeout_clks * 1000 /
691 				(card->host->ios.clock / 1000);
692 
693 		if (data->flags & MMC_DATA_WRITE)
694 			/*
695 			 * The MMC spec "It is strongly recommended
696 			 * for hosts to implement more than 500ms
697 			 * timeout value even if the card indicates
698 			 * the 250ms maximum busy length."  Even the
699 			 * previous value of 300ms is known to be
700 			 * insufficient for some cards.
701 			 */
702 			limit_us = 3000000;
703 		else
704 			limit_us = 100000;
705 
706 		/*
707 		 * SDHC cards always use these fixed values.
708 		 */
709 		if (timeout_us > limit_us) {
710 			data->timeout_ns = limit_us * 1000;
711 			data->timeout_clks = 0;
712 		}
713 
714 		/* assign limit value if invalid */
715 		if (timeout_us == 0)
716 			data->timeout_ns = limit_us * 1000;
717 	}
718 
719 	/*
720 	 * Some cards require longer data read timeout than indicated in CSD.
721 	 * Address this by setting the read timeout to a "reasonably high"
722 	 * value. For the cards tested, 600ms has proven enough. If necessary,
723 	 * this value can be increased if other problematic cards require this.
724 	 */
725 	if (mmc_card_long_read_time(card) && data->flags & MMC_DATA_READ) {
726 		data->timeout_ns = 600000000;
727 		data->timeout_clks = 0;
728 	}
729 
730 	/*
731 	 * Some cards need very high timeouts if driven in SPI mode.
732 	 * The worst observed timeout was 900ms after writing a
733 	 * continuous stream of data until the internal logic
734 	 * overflowed.
735 	 */
736 	if (mmc_host_is_spi(card->host)) {
737 		if (data->flags & MMC_DATA_WRITE) {
738 			if (data->timeout_ns < 1000000000)
739 				data->timeout_ns = 1000000000;	/* 1s */
740 		} else {
741 			if (data->timeout_ns < 100000000)
742 				data->timeout_ns =  100000000;	/* 100ms */
743 		}
744 	}
745 }
746 EXPORT_SYMBOL(mmc_set_data_timeout);
747 
748 /*
749  * Allow claiming an already claimed host if the context is the same or there is
750  * no context but the task is the same.
751  */
mmc_ctx_matches(struct mmc_host * host,struct mmc_ctx * ctx,struct task_struct * task)752 static inline bool mmc_ctx_matches(struct mmc_host *host, struct mmc_ctx *ctx,
753 				   struct task_struct *task)
754 {
755 	return host->claimer == ctx ||
756 	       (!ctx && task && host->claimer->task == task);
757 }
758 
mmc_ctx_set_claimer(struct mmc_host * host,struct mmc_ctx * ctx,struct task_struct * task)759 static inline void mmc_ctx_set_claimer(struct mmc_host *host,
760 				       struct mmc_ctx *ctx,
761 				       struct task_struct *task)
762 {
763 	if (!host->claimer) {
764 		if (ctx)
765 			host->claimer = ctx;
766 		else
767 			host->claimer = &host->default_ctx;
768 	}
769 	if (task)
770 		host->claimer->task = task;
771 }
772 
773 /**
774  *	__mmc_claim_host - exclusively claim a host
775  *	@host: mmc host to claim
776  *	@ctx: context that claims the host or NULL in which case the default
777  *	context will be used
778  *	@abort: whether or not the operation should be aborted
779  *
780  *	Claim a host for a set of operations.  If @abort is non null and
781  *	dereference a non-zero value then this will return prematurely with
782  *	that non-zero value without acquiring the lock.  Returns zero
783  *	with the lock held otherwise.
784  */
__mmc_claim_host(struct mmc_host * host,struct mmc_ctx * ctx,atomic_t * abort)785 int __mmc_claim_host(struct mmc_host *host, struct mmc_ctx *ctx,
786 		     atomic_t *abort)
787 {
788 	struct task_struct *task = ctx ? NULL : current;
789 	DECLARE_WAITQUEUE(wait, current);
790 	unsigned long flags;
791 	int stop;
792 	bool pm = false;
793 
794 	might_sleep();
795 
796 	add_wait_queue(&host->wq, &wait);
797 	spin_lock_irqsave(&host->lock, flags);
798 	while (1) {
799 		set_current_state(TASK_UNINTERRUPTIBLE);
800 		stop = abort ? atomic_read(abort) : 0;
801 		if (stop || !host->claimed || mmc_ctx_matches(host, ctx, task))
802 			break;
803 		spin_unlock_irqrestore(&host->lock, flags);
804 		schedule();
805 		spin_lock_irqsave(&host->lock, flags);
806 	}
807 	set_current_state(TASK_RUNNING);
808 	if (!stop) {
809 		host->claimed = 1;
810 		mmc_ctx_set_claimer(host, ctx, task);
811 		host->claim_cnt += 1;
812 		if (host->claim_cnt == 1)
813 			pm = true;
814 	} else
815 		wake_up(&host->wq);
816 	spin_unlock_irqrestore(&host->lock, flags);
817 	remove_wait_queue(&host->wq, &wait);
818 
819 	if (pm)
820 		pm_runtime_get_sync(mmc_dev(host));
821 
822 	return stop;
823 }
824 EXPORT_SYMBOL(__mmc_claim_host);
825 
826 /**
827  *	mmc_release_host - release a host
828  *	@host: mmc host to release
829  *
830  *	Release a MMC host, allowing others to claim the host
831  *	for their operations.
832  */
mmc_release_host(struct mmc_host * host)833 void mmc_release_host(struct mmc_host *host)
834 {
835 	unsigned long flags;
836 
837 	WARN_ON(!host->claimed);
838 
839 	spin_lock_irqsave(&host->lock, flags);
840 	if (--host->claim_cnt) {
841 		/* Release for nested claim */
842 		spin_unlock_irqrestore(&host->lock, flags);
843 	} else {
844 		host->claimed = 0;
845 		host->claimer->task = NULL;
846 		host->claimer = NULL;
847 		spin_unlock_irqrestore(&host->lock, flags);
848 		wake_up(&host->wq);
849 		pm_runtime_mark_last_busy(mmc_dev(host));
850 		if (host->caps & MMC_CAP_SYNC_RUNTIME_PM)
851 			pm_runtime_put_sync_suspend(mmc_dev(host));
852 		else
853 			pm_runtime_put_autosuspend(mmc_dev(host));
854 	}
855 }
856 EXPORT_SYMBOL(mmc_release_host);
857 
858 /*
859  * This is a helper function, which fetches a runtime pm reference for the
860  * card device and also claims the host.
861  */
mmc_get_card(struct mmc_card * card,struct mmc_ctx * ctx)862 void mmc_get_card(struct mmc_card *card, struct mmc_ctx *ctx)
863 {
864 	pm_runtime_get_sync(&card->dev);
865 	__mmc_claim_host(card->host, ctx, NULL);
866 }
867 EXPORT_SYMBOL(mmc_get_card);
868 
869 /*
870  * This is a helper function, which releases the host and drops the runtime
871  * pm reference for the card device.
872  */
mmc_put_card(struct mmc_card * card,struct mmc_ctx * ctx)873 void mmc_put_card(struct mmc_card *card, struct mmc_ctx *ctx)
874 {
875 	struct mmc_host *host = card->host;
876 
877 	WARN_ON(ctx && host->claimer != ctx);
878 
879 	mmc_release_host(host);
880 	pm_runtime_mark_last_busy(&card->dev);
881 	pm_runtime_put_autosuspend(&card->dev);
882 }
883 EXPORT_SYMBOL(mmc_put_card);
884 
885 /*
886  * Internal function that does the actual ios call to the host driver,
887  * optionally printing some debug output.
888  */
mmc_set_ios(struct mmc_host * host)889 static inline void mmc_set_ios(struct mmc_host *host)
890 {
891 	struct mmc_ios *ios = &host->ios;
892 
893 	pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u "
894 		"width %u timing %u\n",
895 		 mmc_hostname(host), ios->clock, ios->bus_mode,
896 		 ios->power_mode, ios->chip_select, ios->vdd,
897 		 1 << ios->bus_width, ios->timing);
898 
899 	host->ops->set_ios(host, ios);
900 }
901 
902 /*
903  * Control chip select pin on a host.
904  */
mmc_set_chip_select(struct mmc_host * host,int mode)905 void mmc_set_chip_select(struct mmc_host *host, int mode)
906 {
907 	host->ios.chip_select = mode;
908 	mmc_set_ios(host);
909 }
910 
911 /*
912  * Sets the host clock to the highest possible frequency that
913  * is below "hz".
914  */
mmc_set_clock(struct mmc_host * host,unsigned int hz)915 void mmc_set_clock(struct mmc_host *host, unsigned int hz)
916 {
917 	WARN_ON(hz && hz < host->f_min);
918 
919 	if (hz > host->f_max)
920 		hz = host->f_max;
921 
922 	host->ios.clock = hz;
923 	mmc_set_ios(host);
924 }
925 EXPORT_SYMBOL_GPL(mmc_set_clock);
926 
mmc_execute_tuning(struct mmc_card * card)927 int mmc_execute_tuning(struct mmc_card *card)
928 {
929 	struct mmc_host *host = card->host;
930 	u32 opcode;
931 	int err;
932 
933 	if (!host->ops->execute_tuning)
934 		return 0;
935 
936 	if (host->cqe_on)
937 		host->cqe_ops->cqe_off(host);
938 
939 	if (mmc_card_mmc(card))
940 		opcode = MMC_SEND_TUNING_BLOCK_HS200;
941 	else
942 		opcode = MMC_SEND_TUNING_BLOCK;
943 
944 	err = host->ops->execute_tuning(host, opcode);
945 	if (!err) {
946 		mmc_retune_clear(host);
947 		mmc_retune_enable(host);
948 		return 0;
949 	}
950 
951 	/* Only print error when we don't check for card removal */
952 	if (!host->detect_change) {
953 		pr_err("%s: tuning execution failed: %d\n",
954 			mmc_hostname(host), err);
955 		mmc_debugfs_err_stats_inc(host, MMC_ERR_TUNING);
956 	}
957 
958 	return err;
959 }
960 EXPORT_SYMBOL_GPL(mmc_execute_tuning);
961 
962 /*
963  * Change the bus mode (open drain/push-pull) of a host.
964  */
mmc_set_bus_mode(struct mmc_host * host,unsigned int mode)965 void mmc_set_bus_mode(struct mmc_host *host, unsigned int mode)
966 {
967 	host->ios.bus_mode = mode;
968 	mmc_set_ios(host);
969 }
970 EXPORT_SYMBOL_GPL(mmc_set_bus_mode);
971 
972 /*
973  * Change data bus width of a host.
974  */
mmc_set_bus_width(struct mmc_host * host,unsigned int width)975 void mmc_set_bus_width(struct mmc_host *host, unsigned int width)
976 {
977 	host->ios.bus_width = width;
978 	mmc_set_ios(host);
979 }
980 EXPORT_SYMBOL_GPL(mmc_set_bus_width);
981 
982 /*
983  * Set initial state after a power cycle or a hw_reset.
984  */
mmc_set_initial_state(struct mmc_host * host)985 void mmc_set_initial_state(struct mmc_host *host)
986 {
987 	if (host->cqe_on)
988 		host->cqe_ops->cqe_off(host);
989 
990 	mmc_retune_disable(host);
991 
992 	if (mmc_host_is_spi(host))
993 		host->ios.chip_select = MMC_CS_HIGH;
994 	else
995 		host->ios.chip_select = MMC_CS_DONTCARE;
996 	host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
997 	host->ios.bus_width = MMC_BUS_WIDTH_1;
998 	host->ios.timing = MMC_TIMING_LEGACY;
999 	host->ios.drv_type = 0;
1000 	host->ios.enhanced_strobe = false;
1001 
1002 	/*
1003 	 * Make sure we are in non-enhanced strobe mode before we
1004 	 * actually enable it in ext_csd.
1005 	 */
1006 	if ((host->caps2 & MMC_CAP2_HS400_ES) &&
1007 	     host->ops->hs400_enhanced_strobe)
1008 		host->ops->hs400_enhanced_strobe(host, &host->ios);
1009 
1010 	mmc_set_ios(host);
1011 
1012 	mmc_crypto_set_initial_state(host);
1013 }
1014 EXPORT_SYMBOL_GPL(mmc_set_initial_state);
1015 
1016 /**
1017  * mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number
1018  * @vdd:	voltage (mV)
1019  * @low_bits:	prefer low bits in boundary cases
1020  *
1021  * This function returns the OCR bit number according to the provided @vdd
1022  * value. If conversion is not possible a negative errno value returned.
1023  *
1024  * Depending on the @low_bits flag the function prefers low or high OCR bits
1025  * on boundary voltages. For example,
1026  * with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33);
1027  * with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34);
1028  *
1029  * Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21).
1030  */
mmc_vdd_to_ocrbitnum(int vdd,bool low_bits)1031 static int mmc_vdd_to_ocrbitnum(int vdd, bool low_bits)
1032 {
1033 	const int max_bit = ilog2(MMC_VDD_35_36);
1034 	int bit;
1035 
1036 	if (vdd < 1650 || vdd > 3600)
1037 		return -EINVAL;
1038 
1039 	if (vdd >= 1650 && vdd <= 1950)
1040 		return ilog2(MMC_VDD_165_195);
1041 
1042 	if (low_bits)
1043 		vdd -= 1;
1044 
1045 	/* Base 2000 mV, step 100 mV, bit's base 8. */
1046 	bit = (vdd - 2000) / 100 + 8;
1047 	if (bit > max_bit)
1048 		return max_bit;
1049 	return bit;
1050 }
1051 
1052 /**
1053  * mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask
1054  * @vdd_min:	minimum voltage value (mV)
1055  * @vdd_max:	maximum voltage value (mV)
1056  *
1057  * This function returns the OCR mask bits according to the provided @vdd_min
1058  * and @vdd_max values. If conversion is not possible the function returns 0.
1059  *
1060  * Notes wrt boundary cases:
1061  * This function sets the OCR bits for all boundary voltages, for example
1062  * [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 |
1063  * MMC_VDD_34_35 mask.
1064  */
mmc_vddrange_to_ocrmask(int vdd_min,int vdd_max)1065 u32 mmc_vddrange_to_ocrmask(int vdd_min, int vdd_max)
1066 {
1067 	u32 mask = 0;
1068 
1069 	if (vdd_max < vdd_min)
1070 		return 0;
1071 
1072 	/* Prefer high bits for the boundary vdd_max values. */
1073 	vdd_max = mmc_vdd_to_ocrbitnum(vdd_max, false);
1074 	if (vdd_max < 0)
1075 		return 0;
1076 
1077 	/* Prefer low bits for the boundary vdd_min values. */
1078 	vdd_min = mmc_vdd_to_ocrbitnum(vdd_min, true);
1079 	if (vdd_min < 0)
1080 		return 0;
1081 
1082 	/* Fill the mask, from max bit to min bit. */
1083 	while (vdd_max >= vdd_min)
1084 		mask |= 1 << vdd_max--;
1085 
1086 	return mask;
1087 }
1088 
mmc_of_get_func_num(struct device_node * node)1089 static int mmc_of_get_func_num(struct device_node *node)
1090 {
1091 	u32 reg;
1092 	int ret;
1093 
1094 	ret = of_property_read_u32(node, "reg", &reg);
1095 	if (ret < 0)
1096 		return ret;
1097 
1098 	return reg;
1099 }
1100 
mmc_of_find_child_device(struct mmc_host * host,unsigned func_num)1101 struct device_node *mmc_of_find_child_device(struct mmc_host *host,
1102 		unsigned func_num)
1103 {
1104 	struct device_node *node;
1105 
1106 	if (!host->parent || !host->parent->of_node)
1107 		return NULL;
1108 
1109 	for_each_child_of_node(host->parent->of_node, node) {
1110 		if (mmc_of_get_func_num(node) == func_num)
1111 			return node;
1112 	}
1113 
1114 	return NULL;
1115 }
1116 
1117 /*
1118  * Mask off any voltages we don't support and select
1119  * the lowest voltage
1120  */
mmc_select_voltage(struct mmc_host * host,u32 ocr)1121 u32 mmc_select_voltage(struct mmc_host *host, u32 ocr)
1122 {
1123 	int bit;
1124 
1125 	/*
1126 	 * Sanity check the voltages that the card claims to
1127 	 * support.
1128 	 */
1129 	if (ocr & 0x7F) {
1130 		dev_warn(mmc_dev(host),
1131 		"card claims to support voltages below defined range\n");
1132 		ocr &= ~0x7F;
1133 	}
1134 
1135 	ocr &= host->ocr_avail;
1136 	if (!ocr) {
1137 		dev_warn(mmc_dev(host), "no support for card's volts\n");
1138 		return 0;
1139 	}
1140 
1141 	if (host->caps2 & MMC_CAP2_FULL_PWR_CYCLE) {
1142 		bit = ffs(ocr) - 1;
1143 		ocr &= 3 << bit;
1144 		mmc_power_cycle(host, ocr);
1145 	} else {
1146 		bit = fls(ocr) - 1;
1147 		/*
1148 		 * The bit variable represents the highest voltage bit set in
1149 		 * the OCR register.
1150 		 * To keep a range of 2 values (e.g. 3.2V/3.3V and 3.3V/3.4V),
1151 		 * we must shift the mask '3' with (bit - 1).
1152 		 */
1153 		ocr &= 3 << (bit - 1);
1154 		if (bit != host->ios.vdd)
1155 			dev_warn(mmc_dev(host), "exceeding card's volts\n");
1156 	}
1157 
1158 	return ocr;
1159 }
1160 
mmc_set_signal_voltage(struct mmc_host * host,int signal_voltage)1161 int mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage)
1162 {
1163 	int err = 0;
1164 	int old_signal_voltage = host->ios.signal_voltage;
1165 
1166 	host->ios.signal_voltage = signal_voltage;
1167 	if (host->ops->start_signal_voltage_switch)
1168 		err = host->ops->start_signal_voltage_switch(host, &host->ios);
1169 
1170 	if (err)
1171 		host->ios.signal_voltage = old_signal_voltage;
1172 
1173 	return err;
1174 
1175 }
1176 
mmc_set_initial_signal_voltage(struct mmc_host * host)1177 void mmc_set_initial_signal_voltage(struct mmc_host *host)
1178 {
1179 	/* Try to set signal voltage to 3.3V but fall back to 1.8v or 1.2v */
1180 	if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330))
1181 		dev_dbg(mmc_dev(host), "Initial signal voltage of 3.3v\n");
1182 	else if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180))
1183 		dev_dbg(mmc_dev(host), "Initial signal voltage of 1.8v\n");
1184 	else if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120))
1185 		dev_dbg(mmc_dev(host), "Initial signal voltage of 1.2v\n");
1186 }
1187 
mmc_host_set_uhs_voltage(struct mmc_host * host)1188 int mmc_host_set_uhs_voltage(struct mmc_host *host)
1189 {
1190 	u32 clock;
1191 
1192 	/*
1193 	 * During a signal voltage level switch, the clock must be gated
1194 	 * for 5 ms according to the SD spec
1195 	 */
1196 	clock = host->ios.clock;
1197 	host->ios.clock = 0;
1198 	mmc_set_ios(host);
1199 
1200 	if (mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180))
1201 		return -EAGAIN;
1202 
1203 	/* Keep clock gated for at least 10 ms, though spec only says 5 ms */
1204 	mmc_delay(10);
1205 	host->ios.clock = clock;
1206 	mmc_set_ios(host);
1207 
1208 	return 0;
1209 }
1210 
mmc_set_uhs_voltage(struct mmc_host * host,u32 ocr)1211 int mmc_set_uhs_voltage(struct mmc_host *host, u32 ocr)
1212 {
1213 	struct mmc_command cmd = {};
1214 	int err = 0;
1215 
1216 	/*
1217 	 * If we cannot switch voltages, return failure so the caller
1218 	 * can continue without UHS mode
1219 	 */
1220 	if (!host->ops->start_signal_voltage_switch)
1221 		return -EPERM;
1222 	if (!host->ops->card_busy)
1223 		pr_warn("%s: cannot verify signal voltage switch\n",
1224 			mmc_hostname(host));
1225 
1226 	cmd.opcode = SD_SWITCH_VOLTAGE;
1227 	cmd.arg = 0;
1228 	cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1229 
1230 	err = mmc_wait_for_cmd(host, &cmd, 0);
1231 	if (err)
1232 		goto power_cycle;
1233 
1234 	if (!mmc_host_is_spi(host) && (cmd.resp[0] & R1_ERROR))
1235 		return -EIO;
1236 
1237 	/*
1238 	 * The card should drive cmd and dat[0:3] low immediately
1239 	 * after the response of cmd11, but wait 1 ms to be sure
1240 	 */
1241 	mmc_delay(1);
1242 	if (host->ops->card_busy && !host->ops->card_busy(host)) {
1243 		err = -EAGAIN;
1244 		goto power_cycle;
1245 	}
1246 
1247 	if (mmc_host_set_uhs_voltage(host)) {
1248 		/*
1249 		 * Voltages may not have been switched, but we've already
1250 		 * sent CMD11, so a power cycle is required anyway
1251 		 */
1252 		err = -EAGAIN;
1253 		goto power_cycle;
1254 	}
1255 
1256 	/* Wait for at least 1 ms according to spec */
1257 	mmc_delay(1);
1258 
1259 	/*
1260 	 * Failure to switch is indicated by the card holding
1261 	 * dat[0:3] low
1262 	 */
1263 	if (host->ops->card_busy && host->ops->card_busy(host))
1264 		err = -EAGAIN;
1265 
1266 power_cycle:
1267 	if (err) {
1268 		pr_debug("%s: Signal voltage switch failed, "
1269 			"power cycling card\n", mmc_hostname(host));
1270 		mmc_power_cycle(host, ocr);
1271 	}
1272 
1273 	return err;
1274 }
1275 
1276 /*
1277  * Select timing parameters for host.
1278  */
mmc_set_timing(struct mmc_host * host,unsigned int timing)1279 void mmc_set_timing(struct mmc_host *host, unsigned int timing)
1280 {
1281 	host->ios.timing = timing;
1282 	mmc_set_ios(host);
1283 }
1284 EXPORT_SYMBOL_GPL(mmc_set_timing);
1285 
1286 /*
1287  * Select appropriate driver type for host.
1288  */
mmc_set_driver_type(struct mmc_host * host,unsigned int drv_type)1289 void mmc_set_driver_type(struct mmc_host *host, unsigned int drv_type)
1290 {
1291 	host->ios.drv_type = drv_type;
1292 	mmc_set_ios(host);
1293 }
1294 
mmc_select_drive_strength(struct mmc_card * card,unsigned int max_dtr,int card_drv_type,int * drv_type)1295 int mmc_select_drive_strength(struct mmc_card *card, unsigned int max_dtr,
1296 			      int card_drv_type, int *drv_type)
1297 {
1298 	struct mmc_host *host = card->host;
1299 	int host_drv_type = SD_DRIVER_TYPE_B;
1300 
1301 	*drv_type = 0;
1302 
1303 	if (!host->ops->select_drive_strength)
1304 		return 0;
1305 
1306 	/* Use SD definition of driver strength for hosts */
1307 	if (host->caps & MMC_CAP_DRIVER_TYPE_A)
1308 		host_drv_type |= SD_DRIVER_TYPE_A;
1309 
1310 	if (host->caps & MMC_CAP_DRIVER_TYPE_C)
1311 		host_drv_type |= SD_DRIVER_TYPE_C;
1312 
1313 	if (host->caps & MMC_CAP_DRIVER_TYPE_D)
1314 		host_drv_type |= SD_DRIVER_TYPE_D;
1315 
1316 	/*
1317 	 * The drive strength that the hardware can support
1318 	 * depends on the board design.  Pass the appropriate
1319 	 * information and let the hardware specific code
1320 	 * return what is possible given the options
1321 	 */
1322 	return host->ops->select_drive_strength(card, max_dtr,
1323 						host_drv_type,
1324 						card_drv_type,
1325 						drv_type);
1326 }
1327 
1328 /*
1329  * Apply power to the MMC stack.  This is a two-stage process.
1330  * First, we enable power to the card without the clock running.
1331  * We then wait a bit for the power to stabilise.  Finally,
1332  * enable the bus drivers and clock to the card.
1333  *
1334  * We must _NOT_ enable the clock prior to power stablising.
1335  *
1336  * If a host does all the power sequencing itself, ignore the
1337  * initial MMC_POWER_UP stage.
1338  */
mmc_power_up(struct mmc_host * host,u32 ocr)1339 void mmc_power_up(struct mmc_host *host, u32 ocr)
1340 {
1341 	if (host->ios.power_mode == MMC_POWER_ON)
1342 		return;
1343 
1344 	mmc_pwrseq_pre_power_on(host);
1345 
1346 	host->ios.vdd = fls(ocr) - 1;
1347 	host->ios.power_mode = MMC_POWER_UP;
1348 	/* Set initial state and call mmc_set_ios */
1349 	mmc_set_initial_state(host);
1350 
1351 	mmc_set_initial_signal_voltage(host);
1352 
1353 	/*
1354 	 * This delay should be sufficient to allow the power supply
1355 	 * to reach the minimum voltage.
1356 	 */
1357 	mmc_delay(host->ios.power_delay_ms);
1358 
1359 	mmc_pwrseq_post_power_on(host);
1360 
1361 	host->ios.clock = host->f_init;
1362 
1363 	host->ios.power_mode = MMC_POWER_ON;
1364 	mmc_set_ios(host);
1365 
1366 	/*
1367 	 * This delay must be at least 74 clock sizes, or 1 ms, or the
1368 	 * time required to reach a stable voltage.
1369 	 */
1370 	mmc_delay(host->ios.power_delay_ms);
1371 }
1372 
mmc_power_off(struct mmc_host * host)1373 void mmc_power_off(struct mmc_host *host)
1374 {
1375 	if (host->ios.power_mode == MMC_POWER_OFF)
1376 		return;
1377 
1378 	mmc_pwrseq_power_off(host);
1379 
1380 	host->ios.clock = 0;
1381 	host->ios.vdd = 0;
1382 
1383 	host->ios.power_mode = MMC_POWER_OFF;
1384 	/* Set initial state and call mmc_set_ios */
1385 	mmc_set_initial_state(host);
1386 
1387 	/*
1388 	 * Some configurations, such as the 802.11 SDIO card in the OLPC
1389 	 * XO-1.5, require a short delay after poweroff before the card
1390 	 * can be successfully turned on again.
1391 	 */
1392 	mmc_delay(1);
1393 }
1394 
mmc_power_cycle(struct mmc_host * host,u32 ocr)1395 void mmc_power_cycle(struct mmc_host *host, u32 ocr)
1396 {
1397 	mmc_power_off(host);
1398 	/* Wait at least 1 ms according to SD spec */
1399 	mmc_delay(1);
1400 	mmc_power_up(host, ocr);
1401 }
1402 
1403 /*
1404  * Assign a mmc bus handler to a host. Only one bus handler may control a
1405  * host at any given time.
1406  */
mmc_attach_bus(struct mmc_host * host,const struct mmc_bus_ops * ops)1407 void mmc_attach_bus(struct mmc_host *host, const struct mmc_bus_ops *ops)
1408 {
1409 	host->bus_ops = ops;
1410 }
1411 
1412 /*
1413  * Remove the current bus handler from a host.
1414  */
mmc_detach_bus(struct mmc_host * host)1415 void mmc_detach_bus(struct mmc_host *host)
1416 {
1417 	host->bus_ops = NULL;
1418 }
1419 
_mmc_detect_change(struct mmc_host * host,unsigned long delay,bool cd_irq)1420 void _mmc_detect_change(struct mmc_host *host, unsigned long delay, bool cd_irq)
1421 {
1422 	/*
1423 	 * Prevent system sleep for 5s to allow user space to consume the
1424 	 * corresponding uevent. This is especially useful, when CD irq is used
1425 	 * as a system wakeup, but doesn't hurt in other cases.
1426 	 */
1427 	if (cd_irq && !(host->caps & MMC_CAP_NEEDS_POLL))
1428 		__pm_wakeup_event(host->ws, 5000);
1429 
1430 	host->detect_change = 1;
1431 	mmc_schedule_delayed_work(&host->detect, delay);
1432 }
1433 
1434 /**
1435  *	mmc_detect_change - process change of state on a MMC socket
1436  *	@host: host which changed state.
1437  *	@delay: optional delay to wait before detection (jiffies)
1438  *
1439  *	MMC drivers should call this when they detect a card has been
1440  *	inserted or removed. The MMC layer will confirm that any
1441  *	present card is still functional, and initialize any newly
1442  *	inserted.
1443  */
mmc_detect_change(struct mmc_host * host,unsigned long delay)1444 void mmc_detect_change(struct mmc_host *host, unsigned long delay)
1445 {
1446 	_mmc_detect_change(host, delay, true);
1447 }
1448 EXPORT_SYMBOL(mmc_detect_change);
1449 
mmc_init_erase(struct mmc_card * card)1450 void mmc_init_erase(struct mmc_card *card)
1451 {
1452 	unsigned int sz;
1453 
1454 	if (is_power_of_2(card->erase_size))
1455 		card->erase_shift = ffs(card->erase_size) - 1;
1456 	else
1457 		card->erase_shift = 0;
1458 
1459 	/*
1460 	 * It is possible to erase an arbitrarily large area of an SD or MMC
1461 	 * card.  That is not desirable because it can take a long time
1462 	 * (minutes) potentially delaying more important I/O, and also the
1463 	 * timeout calculations become increasingly hugely over-estimated.
1464 	 * Consequently, 'pref_erase' is defined as a guide to limit erases
1465 	 * to that size and alignment.
1466 	 *
1467 	 * For SD cards that define Allocation Unit size, limit erases to one
1468 	 * Allocation Unit at a time.
1469 	 * For MMC, have a stab at ai good value and for modern cards it will
1470 	 * end up being 4MiB. Note that if the value is too small, it can end
1471 	 * up taking longer to erase. Also note, erase_size is already set to
1472 	 * High Capacity Erase Size if available when this function is called.
1473 	 */
1474 	if (mmc_card_sd(card) && card->ssr.au) {
1475 		card->pref_erase = card->ssr.au;
1476 		card->erase_shift = ffs(card->ssr.au) - 1;
1477 	} else if (card->erase_size) {
1478 		sz = (card->csd.capacity << (card->csd.read_blkbits - 9)) >> 11;
1479 		if (sz < 128)
1480 			card->pref_erase = 512 * 1024 / 512;
1481 		else if (sz < 512)
1482 			card->pref_erase = 1024 * 1024 / 512;
1483 		else if (sz < 1024)
1484 			card->pref_erase = 2 * 1024 * 1024 / 512;
1485 		else
1486 			card->pref_erase = 4 * 1024 * 1024 / 512;
1487 		if (card->pref_erase < card->erase_size)
1488 			card->pref_erase = card->erase_size;
1489 		else {
1490 			sz = card->pref_erase % card->erase_size;
1491 			if (sz)
1492 				card->pref_erase += card->erase_size - sz;
1493 		}
1494 	} else
1495 		card->pref_erase = 0;
1496 }
1497 
is_trim_arg(unsigned int arg)1498 static bool is_trim_arg(unsigned int arg)
1499 {
1500 	return (arg & MMC_TRIM_OR_DISCARD_ARGS) && arg != MMC_DISCARD_ARG;
1501 }
1502 
mmc_mmc_erase_timeout(struct mmc_card * card,unsigned int arg,unsigned int qty)1503 static unsigned int mmc_mmc_erase_timeout(struct mmc_card *card,
1504 				          unsigned int arg, unsigned int qty)
1505 {
1506 	unsigned int erase_timeout;
1507 
1508 	if (arg == MMC_DISCARD_ARG ||
1509 	    (arg == MMC_TRIM_ARG && card->ext_csd.rev >= 6)) {
1510 		erase_timeout = card->ext_csd.trim_timeout;
1511 	} else if (card->ext_csd.erase_group_def & 1) {
1512 		/* High Capacity Erase Group Size uses HC timeouts */
1513 		if (arg == MMC_TRIM_ARG)
1514 			erase_timeout = card->ext_csd.trim_timeout;
1515 		else
1516 			erase_timeout = card->ext_csd.hc_erase_timeout;
1517 	} else {
1518 		/* CSD Erase Group Size uses write timeout */
1519 		unsigned int mult = (10 << card->csd.r2w_factor);
1520 		unsigned int timeout_clks = card->csd.taac_clks * mult;
1521 		unsigned int timeout_us;
1522 
1523 		/* Avoid overflow: e.g. taac_ns=80000000 mult=1280 */
1524 		if (card->csd.taac_ns < 1000000)
1525 			timeout_us = (card->csd.taac_ns * mult) / 1000;
1526 		else
1527 			timeout_us = (card->csd.taac_ns / 1000) * mult;
1528 
1529 		/*
1530 		 * ios.clock is only a target.  The real clock rate might be
1531 		 * less but not that much less, so fudge it by multiplying by 2.
1532 		 */
1533 		timeout_clks <<= 1;
1534 		timeout_us += (timeout_clks * 1000) /
1535 			      (card->host->ios.clock / 1000);
1536 
1537 		erase_timeout = timeout_us / 1000;
1538 
1539 		/*
1540 		 * Theoretically, the calculation could underflow so round up
1541 		 * to 1ms in that case.
1542 		 */
1543 		if (!erase_timeout)
1544 			erase_timeout = 1;
1545 	}
1546 
1547 	/* Multiplier for secure operations */
1548 	if (arg & MMC_SECURE_ARGS) {
1549 		if (arg == MMC_SECURE_ERASE_ARG)
1550 			erase_timeout *= card->ext_csd.sec_erase_mult;
1551 		else
1552 			erase_timeout *= card->ext_csd.sec_trim_mult;
1553 	}
1554 
1555 	erase_timeout *= qty;
1556 
1557 	/*
1558 	 * Ensure at least a 1 second timeout for SPI as per
1559 	 * 'mmc_set_data_timeout()'
1560 	 */
1561 	if (mmc_host_is_spi(card->host) && erase_timeout < 1000)
1562 		erase_timeout = 1000;
1563 
1564 	return erase_timeout;
1565 }
1566 
mmc_sd_erase_timeout(struct mmc_card * card,unsigned int arg,unsigned int qty)1567 static unsigned int mmc_sd_erase_timeout(struct mmc_card *card,
1568 					 unsigned int arg,
1569 					 unsigned int qty)
1570 {
1571 	unsigned int erase_timeout;
1572 
1573 	/* for DISCARD none of the below calculation applies.
1574 	 * the busy timeout is 250msec per discard command.
1575 	 */
1576 	if (arg == SD_DISCARD_ARG)
1577 		return SD_DISCARD_TIMEOUT_MS;
1578 
1579 	if (card->ssr.erase_timeout) {
1580 		/* Erase timeout specified in SD Status Register (SSR) */
1581 		erase_timeout = card->ssr.erase_timeout * qty +
1582 				card->ssr.erase_offset;
1583 	} else {
1584 		/*
1585 		 * Erase timeout not specified in SD Status Register (SSR) so
1586 		 * use 250ms per write block.
1587 		 */
1588 		erase_timeout = 250 * qty;
1589 	}
1590 
1591 	/* Must not be less than 1 second */
1592 	if (erase_timeout < 1000)
1593 		erase_timeout = 1000;
1594 
1595 	return erase_timeout;
1596 }
1597 
mmc_erase_timeout(struct mmc_card * card,unsigned int arg,unsigned int qty)1598 static unsigned int mmc_erase_timeout(struct mmc_card *card,
1599 				      unsigned int arg,
1600 				      unsigned int qty)
1601 {
1602 	if (mmc_card_sd(card))
1603 		return mmc_sd_erase_timeout(card, arg, qty);
1604 	else
1605 		return mmc_mmc_erase_timeout(card, arg, qty);
1606 }
1607 
mmc_do_erase(struct mmc_card * card,unsigned int from,unsigned int to,unsigned int arg)1608 static int mmc_do_erase(struct mmc_card *card, unsigned int from,
1609 			unsigned int to, unsigned int arg)
1610 {
1611 	struct mmc_command cmd = {};
1612 	unsigned int qty = 0, busy_timeout = 0;
1613 	bool use_r1b_resp;
1614 	int err;
1615 
1616 	mmc_retune_hold(card->host);
1617 
1618 	/*
1619 	 * qty is used to calculate the erase timeout which depends on how many
1620 	 * erase groups (or allocation units in SD terminology) are affected.
1621 	 * We count erasing part of an erase group as one erase group.
1622 	 * For SD, the allocation units are always a power of 2.  For MMC, the
1623 	 * erase group size is almost certainly also power of 2, but it does not
1624 	 * seem to insist on that in the JEDEC standard, so we fall back to
1625 	 * division in that case.  SD may not specify an allocation unit size,
1626 	 * in which case the timeout is based on the number of write blocks.
1627 	 *
1628 	 * Note that the timeout for secure trim 2 will only be correct if the
1629 	 * number of erase groups specified is the same as the total of all
1630 	 * preceding secure trim 1 commands.  Since the power may have been
1631 	 * lost since the secure trim 1 commands occurred, it is generally
1632 	 * impossible to calculate the secure trim 2 timeout correctly.
1633 	 */
1634 	if (card->erase_shift)
1635 		qty += ((to >> card->erase_shift) -
1636 			(from >> card->erase_shift)) + 1;
1637 	else if (mmc_card_sd(card))
1638 		qty += to - from + 1;
1639 	else
1640 		qty += ((to / card->erase_size) -
1641 			(from / card->erase_size)) + 1;
1642 
1643 	if (!mmc_card_blockaddr(card)) {
1644 		from <<= 9;
1645 		to <<= 9;
1646 	}
1647 
1648 	if (mmc_card_sd(card))
1649 		cmd.opcode = SD_ERASE_WR_BLK_START;
1650 	else
1651 		cmd.opcode = MMC_ERASE_GROUP_START;
1652 	cmd.arg = from;
1653 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1654 	err = mmc_wait_for_cmd(card->host, &cmd, 0);
1655 	if (err) {
1656 		pr_err("mmc_erase: group start error %d, "
1657 		       "status %#x\n", err, cmd.resp[0]);
1658 		err = -EIO;
1659 		goto out;
1660 	}
1661 
1662 	memset(&cmd, 0, sizeof(struct mmc_command));
1663 	if (mmc_card_sd(card))
1664 		cmd.opcode = SD_ERASE_WR_BLK_END;
1665 	else
1666 		cmd.opcode = MMC_ERASE_GROUP_END;
1667 	cmd.arg = to;
1668 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1669 	err = mmc_wait_for_cmd(card->host, &cmd, 0);
1670 	if (err) {
1671 		pr_err("mmc_erase: group end error %d, status %#x\n",
1672 		       err, cmd.resp[0]);
1673 		err = -EIO;
1674 		goto out;
1675 	}
1676 
1677 	memset(&cmd, 0, sizeof(struct mmc_command));
1678 	cmd.opcode = MMC_ERASE;
1679 	cmd.arg = arg;
1680 	busy_timeout = mmc_erase_timeout(card, arg, qty);
1681 	use_r1b_resp = mmc_prepare_busy_cmd(card->host, &cmd, busy_timeout);
1682 
1683 	err = mmc_wait_for_cmd(card->host, &cmd, 0);
1684 	if (err) {
1685 		pr_err("mmc_erase: erase error %d, status %#x\n",
1686 		       err, cmd.resp[0]);
1687 		err = -EIO;
1688 		goto out;
1689 	}
1690 
1691 	if (mmc_host_is_spi(card->host))
1692 		goto out;
1693 
1694 	/*
1695 	 * In case of when R1B + MMC_CAP_WAIT_WHILE_BUSY is used, the polling
1696 	 * shall be avoided.
1697 	 */
1698 	if ((card->host->caps & MMC_CAP_WAIT_WHILE_BUSY) && use_r1b_resp)
1699 		goto out;
1700 
1701 	/* Let's poll to find out when the erase operation completes. */
1702 	err = mmc_poll_for_busy(card, busy_timeout, false, MMC_BUSY_ERASE);
1703 
1704 out:
1705 	mmc_retune_release(card->host);
1706 	return err;
1707 }
1708 
mmc_align_erase_size(struct mmc_card * card,unsigned int * from,unsigned int * to,unsigned int nr)1709 static unsigned int mmc_align_erase_size(struct mmc_card *card,
1710 					 unsigned int *from,
1711 					 unsigned int *to,
1712 					 unsigned int nr)
1713 {
1714 	unsigned int from_new = *from, nr_new = nr, rem;
1715 
1716 	/*
1717 	 * When the 'card->erase_size' is power of 2, we can use round_up/down()
1718 	 * to align the erase size efficiently.
1719 	 */
1720 	if (is_power_of_2(card->erase_size)) {
1721 		unsigned int temp = from_new;
1722 
1723 		from_new = round_up(temp, card->erase_size);
1724 		rem = from_new - temp;
1725 
1726 		if (nr_new > rem)
1727 			nr_new -= rem;
1728 		else
1729 			return 0;
1730 
1731 		nr_new = round_down(nr_new, card->erase_size);
1732 	} else {
1733 		rem = from_new % card->erase_size;
1734 		if (rem) {
1735 			rem = card->erase_size - rem;
1736 			from_new += rem;
1737 			if (nr_new > rem)
1738 				nr_new -= rem;
1739 			else
1740 				return 0;
1741 		}
1742 
1743 		rem = nr_new % card->erase_size;
1744 		if (rem)
1745 			nr_new -= rem;
1746 	}
1747 
1748 	if (nr_new == 0)
1749 		return 0;
1750 
1751 	*to = from_new + nr_new;
1752 	*from = from_new;
1753 
1754 	return nr_new;
1755 }
1756 
1757 /**
1758  * mmc_erase - erase sectors.
1759  * @card: card to erase
1760  * @from: first sector to erase
1761  * @nr: number of sectors to erase
1762  * @arg: erase command argument
1763  *
1764  * Caller must claim host before calling this function.
1765  */
mmc_erase(struct mmc_card * card,unsigned int from,unsigned int nr,unsigned int arg)1766 int mmc_erase(struct mmc_card *card, unsigned int from, unsigned int nr,
1767 	      unsigned int arg)
1768 {
1769 	unsigned int rem, to = from + nr;
1770 	int err;
1771 
1772 	if (!(card->csd.cmdclass & CCC_ERASE))
1773 		return -EOPNOTSUPP;
1774 
1775 	if (!card->erase_size)
1776 		return -EOPNOTSUPP;
1777 
1778 	if (mmc_card_sd(card) && arg != SD_ERASE_ARG && arg != SD_DISCARD_ARG)
1779 		return -EOPNOTSUPP;
1780 
1781 	if (mmc_card_mmc(card) && (arg & MMC_SECURE_ARGS) &&
1782 	    !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN))
1783 		return -EOPNOTSUPP;
1784 
1785 	if (mmc_card_mmc(card) && is_trim_arg(arg) &&
1786 	    !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN))
1787 		return -EOPNOTSUPP;
1788 
1789 	if (arg == MMC_SECURE_ERASE_ARG) {
1790 		if (from % card->erase_size || nr % card->erase_size)
1791 			return -EINVAL;
1792 	}
1793 
1794 	if (arg == MMC_ERASE_ARG)
1795 		nr = mmc_align_erase_size(card, &from, &to, nr);
1796 
1797 	if (nr == 0)
1798 		return 0;
1799 
1800 	if (to <= from)
1801 		return -EINVAL;
1802 
1803 	/* 'from' and 'to' are inclusive */
1804 	to -= 1;
1805 
1806 	/*
1807 	 * Special case where only one erase-group fits in the timeout budget:
1808 	 * If the region crosses an erase-group boundary on this particular
1809 	 * case, we will be trimming more than one erase-group which, does not
1810 	 * fit in the timeout budget of the controller, so we need to split it
1811 	 * and call mmc_do_erase() twice if necessary. This special case is
1812 	 * identified by the card->eg_boundary flag.
1813 	 */
1814 	rem = card->erase_size - (from % card->erase_size);
1815 	if ((arg & MMC_TRIM_OR_DISCARD_ARGS) && card->eg_boundary && nr > rem) {
1816 		err = mmc_do_erase(card, from, from + rem - 1, arg);
1817 		from += rem;
1818 		if ((err) || (to <= from))
1819 			return err;
1820 	}
1821 
1822 	return mmc_do_erase(card, from, to, arg);
1823 }
1824 EXPORT_SYMBOL(mmc_erase);
1825 
mmc_can_erase(struct mmc_card * card)1826 int mmc_can_erase(struct mmc_card *card)
1827 {
1828 	if (card->csd.cmdclass & CCC_ERASE && card->erase_size)
1829 		return 1;
1830 	return 0;
1831 }
1832 EXPORT_SYMBOL(mmc_can_erase);
1833 
mmc_can_trim(struct mmc_card * card)1834 int mmc_can_trim(struct mmc_card *card)
1835 {
1836 	if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN) &&
1837 	    (!(card->quirks & MMC_QUIRK_TRIM_BROKEN)))
1838 		return 1;
1839 	return 0;
1840 }
1841 EXPORT_SYMBOL(mmc_can_trim);
1842 
mmc_can_discard(struct mmc_card * card)1843 int mmc_can_discard(struct mmc_card *card)
1844 {
1845 	/*
1846 	 * As there's no way to detect the discard support bit at v4.5
1847 	 * use the s/w feature support filed.
1848 	 */
1849 	if (card->ext_csd.feature_support & MMC_DISCARD_FEATURE)
1850 		return 1;
1851 	return 0;
1852 }
1853 EXPORT_SYMBOL(mmc_can_discard);
1854 
mmc_can_sanitize(struct mmc_card * card)1855 int mmc_can_sanitize(struct mmc_card *card)
1856 {
1857 	if (!mmc_can_trim(card) && !mmc_can_erase(card))
1858 		return 0;
1859 	if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_SANITIZE)
1860 		return 1;
1861 	return 0;
1862 }
1863 
mmc_can_secure_erase_trim(struct mmc_card * card)1864 int mmc_can_secure_erase_trim(struct mmc_card *card)
1865 {
1866 	if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN) &&
1867 	    !(card->quirks & MMC_QUIRK_SEC_ERASE_TRIM_BROKEN))
1868 		return 1;
1869 	return 0;
1870 }
1871 EXPORT_SYMBOL(mmc_can_secure_erase_trim);
1872 
mmc_erase_group_aligned(struct mmc_card * card,unsigned int from,unsigned int nr)1873 int mmc_erase_group_aligned(struct mmc_card *card, unsigned int from,
1874 			    unsigned int nr)
1875 {
1876 	if (!card->erase_size)
1877 		return 0;
1878 	if (from % card->erase_size || nr % card->erase_size)
1879 		return 0;
1880 	return 1;
1881 }
1882 EXPORT_SYMBOL(mmc_erase_group_aligned);
1883 
mmc_do_calc_max_discard(struct mmc_card * card,unsigned int arg)1884 static unsigned int mmc_do_calc_max_discard(struct mmc_card *card,
1885 					    unsigned int arg)
1886 {
1887 	struct mmc_host *host = card->host;
1888 	unsigned int max_discard, x, y, qty = 0, max_qty, min_qty, timeout;
1889 	unsigned int last_timeout = 0;
1890 	unsigned int max_busy_timeout = host->max_busy_timeout ?
1891 			host->max_busy_timeout : MMC_ERASE_TIMEOUT_MS;
1892 
1893 	if (card->erase_shift) {
1894 		max_qty = UINT_MAX >> card->erase_shift;
1895 		min_qty = card->pref_erase >> card->erase_shift;
1896 	} else if (mmc_card_sd(card)) {
1897 		max_qty = UINT_MAX;
1898 		min_qty = card->pref_erase;
1899 	} else {
1900 		max_qty = UINT_MAX / card->erase_size;
1901 		min_qty = card->pref_erase / card->erase_size;
1902 	}
1903 
1904 	/*
1905 	 * We should not only use 'host->max_busy_timeout' as the limitation
1906 	 * when deciding the max discard sectors. We should set a balance value
1907 	 * to improve the erase speed, and it can not get too long timeout at
1908 	 * the same time.
1909 	 *
1910 	 * Here we set 'card->pref_erase' as the minimal discard sectors no
1911 	 * matter what size of 'host->max_busy_timeout', but if the
1912 	 * 'host->max_busy_timeout' is large enough for more discard sectors,
1913 	 * then we can continue to increase the max discard sectors until we
1914 	 * get a balance value. In cases when the 'host->max_busy_timeout'
1915 	 * isn't specified, use the default max erase timeout.
1916 	 */
1917 	do {
1918 		y = 0;
1919 		for (x = 1; x && x <= max_qty && max_qty - x >= qty; x <<= 1) {
1920 			timeout = mmc_erase_timeout(card, arg, qty + x);
1921 
1922 			if (qty + x > min_qty && timeout > max_busy_timeout)
1923 				break;
1924 
1925 			if (timeout < last_timeout)
1926 				break;
1927 			last_timeout = timeout;
1928 			y = x;
1929 		}
1930 		qty += y;
1931 	} while (y);
1932 
1933 	if (!qty)
1934 		return 0;
1935 
1936 	/*
1937 	 * When specifying a sector range to trim, chances are we might cross
1938 	 * an erase-group boundary even if the amount of sectors is less than
1939 	 * one erase-group.
1940 	 * If we can only fit one erase-group in the controller timeout budget,
1941 	 * we have to care that erase-group boundaries are not crossed by a
1942 	 * single trim operation. We flag that special case with "eg_boundary".
1943 	 * In all other cases we can just decrement qty and pretend that we
1944 	 * always touch (qty + 1) erase-groups as a simple optimization.
1945 	 */
1946 	if (qty == 1)
1947 		card->eg_boundary = 1;
1948 	else
1949 		qty--;
1950 
1951 	/* Convert qty to sectors */
1952 	if (card->erase_shift)
1953 		max_discard = qty << card->erase_shift;
1954 	else if (mmc_card_sd(card))
1955 		max_discard = qty + 1;
1956 	else
1957 		max_discard = qty * card->erase_size;
1958 
1959 	return max_discard;
1960 }
1961 
mmc_calc_max_discard(struct mmc_card * card)1962 unsigned int mmc_calc_max_discard(struct mmc_card *card)
1963 {
1964 	struct mmc_host *host = card->host;
1965 	unsigned int max_discard, max_trim;
1966 
1967 	/*
1968 	 * Without erase_group_def set, MMC erase timeout depends on clock
1969 	 * frequence which can change.  In that case, the best choice is
1970 	 * just the preferred erase size.
1971 	 */
1972 	if (mmc_card_mmc(card) && !(card->ext_csd.erase_group_def & 1))
1973 		return card->pref_erase;
1974 
1975 	max_discard = mmc_do_calc_max_discard(card, MMC_ERASE_ARG);
1976 	if (mmc_can_trim(card)) {
1977 		max_trim = mmc_do_calc_max_discard(card, MMC_TRIM_ARG);
1978 		if (max_trim < max_discard || max_discard == 0)
1979 			max_discard = max_trim;
1980 	} else if (max_discard < card->erase_size) {
1981 		max_discard = 0;
1982 	}
1983 	pr_debug("%s: calculated max. discard sectors %u for timeout %u ms\n",
1984 		mmc_hostname(host), max_discard, host->max_busy_timeout ?
1985 		host->max_busy_timeout : MMC_ERASE_TIMEOUT_MS);
1986 	return max_discard;
1987 }
1988 EXPORT_SYMBOL(mmc_calc_max_discard);
1989 
mmc_card_is_blockaddr(struct mmc_card * card)1990 bool mmc_card_is_blockaddr(struct mmc_card *card)
1991 {
1992 	return card ? mmc_card_blockaddr(card) : false;
1993 }
1994 EXPORT_SYMBOL(mmc_card_is_blockaddr);
1995 
mmc_set_blocklen(struct mmc_card * card,unsigned int blocklen)1996 int mmc_set_blocklen(struct mmc_card *card, unsigned int blocklen)
1997 {
1998 	struct mmc_command cmd = {};
1999 
2000 	if (mmc_card_blockaddr(card) || mmc_card_ddr52(card) ||
2001 	    mmc_card_hs400(card) || mmc_card_hs400es(card))
2002 		return 0;
2003 
2004 	cmd.opcode = MMC_SET_BLOCKLEN;
2005 	cmd.arg = blocklen;
2006 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2007 	return mmc_wait_for_cmd(card->host, &cmd, 5);
2008 }
2009 EXPORT_SYMBOL(mmc_set_blocklen);
2010 
mmc_hw_reset_for_init(struct mmc_host * host)2011 static void mmc_hw_reset_for_init(struct mmc_host *host)
2012 {
2013 	mmc_pwrseq_reset(host);
2014 
2015 	if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->hw_reset)
2016 		return;
2017 	host->ops->hw_reset(host);
2018 }
2019 
2020 /**
2021  * mmc_hw_reset - reset the card in hardware
2022  * @host: MMC host to which the card is attached
2023  *
2024  * Hard reset the card. This function is only for upper layers, like the
2025  * block layer or card drivers. You cannot use it in host drivers (struct
2026  * mmc_card might be gone then).
2027  *
2028  * Return: 0 on success, -errno on failure
2029  */
mmc_hw_reset(struct mmc_host * host)2030 int mmc_hw_reset(struct mmc_host *host)
2031 {
2032 	int ret;
2033 
2034 	ret = host->bus_ops->hw_reset(host);
2035 	if (ret < 0)
2036 		pr_warn("%s: tried to HW reset card, got error %d\n",
2037 			mmc_hostname(host), ret);
2038 
2039 	return ret;
2040 }
2041 EXPORT_SYMBOL(mmc_hw_reset);
2042 
mmc_sw_reset(struct mmc_host * host)2043 int mmc_sw_reset(struct mmc_host *host)
2044 {
2045 	int ret;
2046 
2047 	if (!host->bus_ops->sw_reset)
2048 		return -EOPNOTSUPP;
2049 
2050 	ret = host->bus_ops->sw_reset(host);
2051 	if (ret)
2052 		pr_warn("%s: tried to SW reset card, got error %d\n",
2053 			mmc_hostname(host), ret);
2054 
2055 	return ret;
2056 }
2057 EXPORT_SYMBOL(mmc_sw_reset);
2058 
mmc_rescan_try_freq(struct mmc_host * host,unsigned freq)2059 static int mmc_rescan_try_freq(struct mmc_host *host, unsigned freq)
2060 {
2061 	host->f_init = freq;
2062 
2063 	pr_debug("%s: %s: trying to init card at %u Hz\n",
2064 		mmc_hostname(host), __func__, host->f_init);
2065 
2066 	mmc_power_up(host, host->ocr_avail);
2067 
2068 	/*
2069 	 * Some eMMCs (with VCCQ always on) may not be reset after power up, so
2070 	 * do a hardware reset if possible.
2071 	 */
2072 	mmc_hw_reset_for_init(host);
2073 
2074 	/*
2075 	 * sdio_reset sends CMD52 to reset card.  Since we do not know
2076 	 * if the card is being re-initialized, just send it.  CMD52
2077 	 * should be ignored by SD/eMMC cards.
2078 	 * Skip it if we already know that we do not support SDIO commands
2079 	 */
2080 	if (!(host->caps2 & MMC_CAP2_NO_SDIO))
2081 		sdio_reset(host);
2082 
2083 	mmc_go_idle(host);
2084 
2085 	if (!(host->caps2 & MMC_CAP2_NO_SD)) {
2086 		if (mmc_send_if_cond_pcie(host, host->ocr_avail))
2087 			goto out;
2088 		if (mmc_card_sd_express(host))
2089 			return 0;
2090 	}
2091 
2092 	/* Order's important: probe SDIO, then SD, then MMC */
2093 	if (!(host->caps2 & MMC_CAP2_NO_SDIO))
2094 		if (!mmc_attach_sdio(host))
2095 			return 0;
2096 
2097 	if (!(host->caps2 & MMC_CAP2_NO_SD))
2098 		if (!mmc_attach_sd(host))
2099 			return 0;
2100 
2101 	if (!(host->caps2 & MMC_CAP2_NO_MMC))
2102 		if (!mmc_attach_mmc(host))
2103 			return 0;
2104 
2105 out:
2106 	mmc_power_off(host);
2107 	return -EIO;
2108 }
2109 
_mmc_detect_card_removed(struct mmc_host * host)2110 int _mmc_detect_card_removed(struct mmc_host *host)
2111 {
2112 	int ret;
2113 
2114 	if (!host->card || mmc_card_removed(host->card))
2115 		return 1;
2116 
2117 	ret = host->bus_ops->alive(host);
2118 
2119 	/*
2120 	 * Card detect status and alive check may be out of sync if card is
2121 	 * removed slowly, when card detect switch changes while card/slot
2122 	 * pads are still contacted in hardware (refer to "SD Card Mechanical
2123 	 * Addendum, Appendix C: Card Detection Switch"). So reschedule a
2124 	 * detect work 200ms later for this case.
2125 	 */
2126 	if (!ret && host->ops->get_cd && !host->ops->get_cd(host)) {
2127 		mmc_detect_change(host, msecs_to_jiffies(200));
2128 		pr_debug("%s: card removed too slowly\n", mmc_hostname(host));
2129 	}
2130 
2131 	if (ret) {
2132 		mmc_card_set_removed(host->card);
2133 		pr_debug("%s: card remove detected\n", mmc_hostname(host));
2134 	}
2135 
2136 	return ret;
2137 }
2138 
mmc_detect_card_removed(struct mmc_host * host)2139 int mmc_detect_card_removed(struct mmc_host *host)
2140 {
2141 	struct mmc_card *card = host->card;
2142 	int ret;
2143 
2144 	WARN_ON(!host->claimed);
2145 
2146 	if (!card)
2147 		return 1;
2148 
2149 	if (!mmc_card_is_removable(host))
2150 		return 0;
2151 
2152 	ret = mmc_card_removed(card);
2153 	/*
2154 	 * The card will be considered unchanged unless we have been asked to
2155 	 * detect a change or host requires polling to provide card detection.
2156 	 */
2157 	if (!host->detect_change && !(host->caps & MMC_CAP_NEEDS_POLL))
2158 		return ret;
2159 
2160 	host->detect_change = 0;
2161 	if (!ret) {
2162 		ret = _mmc_detect_card_removed(host);
2163 		if (ret && (host->caps & MMC_CAP_NEEDS_POLL)) {
2164 			/*
2165 			 * Schedule a detect work as soon as possible to let a
2166 			 * rescan handle the card removal.
2167 			 */
2168 			cancel_delayed_work(&host->detect);
2169 			_mmc_detect_change(host, 0, false);
2170 		}
2171 	}
2172 
2173 	return ret;
2174 }
2175 EXPORT_SYMBOL(mmc_detect_card_removed);
2176 
mmc_card_alternative_gpt_sector(struct mmc_card * card,sector_t * gpt_sector)2177 int mmc_card_alternative_gpt_sector(struct mmc_card *card, sector_t *gpt_sector)
2178 {
2179 	unsigned int boot_sectors_num;
2180 
2181 	if ((!(card->host->caps2 & MMC_CAP2_ALT_GPT_TEGRA)))
2182 		return -EOPNOTSUPP;
2183 
2184 	/* filter out unrelated cards */
2185 	if (card->ext_csd.rev < 3 ||
2186 	    !mmc_card_mmc(card) ||
2187 	    !mmc_card_is_blockaddr(card) ||
2188 	     mmc_card_is_removable(card->host))
2189 		return -ENOENT;
2190 
2191 	/*
2192 	 * eMMC storage has two special boot partitions in addition to the
2193 	 * main one.  NVIDIA's bootloader linearizes eMMC boot0->boot1->main
2194 	 * accesses, this means that the partition table addresses are shifted
2195 	 * by the size of boot partitions.  In accordance with the eMMC
2196 	 * specification, the boot partition size is calculated as follows:
2197 	 *
2198 	 *	boot partition size = 128K byte x BOOT_SIZE_MULT
2199 	 *
2200 	 * Calculate number of sectors occupied by the both boot partitions.
2201 	 */
2202 	boot_sectors_num = card->ext_csd.raw_boot_mult * SZ_128K /
2203 			   SZ_512 * MMC_NUM_BOOT_PARTITION;
2204 
2205 	/* Defined by NVIDIA and used by Android devices. */
2206 	*gpt_sector = card->ext_csd.sectors - boot_sectors_num - 1;
2207 
2208 	return 0;
2209 }
2210 EXPORT_SYMBOL(mmc_card_alternative_gpt_sector);
2211 
mmc_rescan(struct work_struct * work)2212 void mmc_rescan(struct work_struct *work)
2213 {
2214 	struct mmc_host *host =
2215 		container_of(work, struct mmc_host, detect.work);
2216 	int i;
2217 
2218 	if (host->rescan_disable)
2219 		return;
2220 
2221 	/* If there is a non-removable card registered, only scan once */
2222 	if (!mmc_card_is_removable(host) && host->rescan_entered)
2223 		return;
2224 	host->rescan_entered = 1;
2225 
2226 	if (host->trigger_card_event && host->ops->card_event) {
2227 		mmc_claim_host(host);
2228 		host->ops->card_event(host);
2229 		mmc_release_host(host);
2230 		host->trigger_card_event = false;
2231 	}
2232 
2233 	/* Verify a registered card to be functional, else remove it. */
2234 	if (host->bus_ops)
2235 		host->bus_ops->detect(host);
2236 
2237 	host->detect_change = 0;
2238 
2239 	/* if there still is a card present, stop here */
2240 	if (host->bus_ops != NULL)
2241 		goto out;
2242 
2243 	mmc_claim_host(host);
2244 	if (mmc_card_is_removable(host) && host->ops->get_cd &&
2245 			host->ops->get_cd(host) == 0) {
2246 		mmc_power_off(host);
2247 		mmc_release_host(host);
2248 		goto out;
2249 	}
2250 
2251 	/* If an SD express card is present, then leave it as is. */
2252 	if (mmc_card_sd_express(host)) {
2253 		mmc_release_host(host);
2254 		goto out;
2255 	}
2256 
2257 	for (i = 0; i < ARRAY_SIZE(freqs); i++) {
2258 		unsigned int freq = freqs[i];
2259 		if (freq > host->f_max) {
2260 			if (i + 1 < ARRAY_SIZE(freqs))
2261 				continue;
2262 			freq = host->f_max;
2263 		}
2264 		if (!mmc_rescan_try_freq(host, max(freq, host->f_min)))
2265 			break;
2266 		if (freqs[i] <= host->f_min)
2267 			break;
2268 	}
2269 
2270 	/*
2271 	 * Ignore the command timeout errors observed during
2272 	 * the card init as those are excepted.
2273 	 */
2274 	host->err_stats[MMC_ERR_CMD_TIMEOUT] = 0;
2275 	mmc_release_host(host);
2276 
2277  out:
2278 	if (host->caps & MMC_CAP_NEEDS_POLL)
2279 		mmc_schedule_delayed_work(&host->detect, HZ);
2280 }
2281 
mmc_start_host(struct mmc_host * host)2282 void mmc_start_host(struct mmc_host *host)
2283 {
2284 	host->f_init = max(min(freqs[0], host->f_max), host->f_min);
2285 	host->rescan_disable = 0;
2286 
2287 	if (!(host->caps2 & MMC_CAP2_NO_PRESCAN_POWERUP)) {
2288 		mmc_claim_host(host);
2289 		mmc_power_up(host, host->ocr_avail);
2290 		mmc_release_host(host);
2291 	}
2292 
2293 	mmc_gpiod_request_cd_irq(host);
2294 	_mmc_detect_change(host, 0, false);
2295 }
2296 
__mmc_stop_host(struct mmc_host * host)2297 void __mmc_stop_host(struct mmc_host *host)
2298 {
2299 	if (host->slot.cd_irq >= 0) {
2300 		mmc_gpio_set_cd_wake(host, false);
2301 		disable_irq(host->slot.cd_irq);
2302 	}
2303 
2304 	host->rescan_disable = 1;
2305 	cancel_delayed_work_sync(&host->detect);
2306 }
2307 
mmc_stop_host(struct mmc_host * host)2308 void mmc_stop_host(struct mmc_host *host)
2309 {
2310 	__mmc_stop_host(host);
2311 
2312 	/* clear pm flags now and let card drivers set them as needed */
2313 	host->pm_flags = 0;
2314 
2315 	if (host->bus_ops) {
2316 		/* Calling bus_ops->remove() with a claimed host can deadlock */
2317 		host->bus_ops->remove(host);
2318 		mmc_claim_host(host);
2319 		mmc_detach_bus(host);
2320 		mmc_power_off(host);
2321 		mmc_release_host(host);
2322 		return;
2323 	}
2324 
2325 	mmc_claim_host(host);
2326 	mmc_power_off(host);
2327 	mmc_release_host(host);
2328 }
2329 
mmc_init(void)2330 static int __init mmc_init(void)
2331 {
2332 	int ret;
2333 
2334 	ret = mmc_register_bus();
2335 	if (ret)
2336 		return ret;
2337 
2338 	ret = mmc_register_host_class();
2339 	if (ret)
2340 		goto unregister_bus;
2341 
2342 	ret = sdio_register_bus();
2343 	if (ret)
2344 		goto unregister_host_class;
2345 
2346 	return 0;
2347 
2348 unregister_host_class:
2349 	mmc_unregister_host_class();
2350 unregister_bus:
2351 	mmc_unregister_bus();
2352 	return ret;
2353 }
2354 
mmc_exit(void)2355 static void __exit mmc_exit(void)
2356 {
2357 	sdio_unregister_bus();
2358 	mmc_unregister_host_class();
2359 	mmc_unregister_bus();
2360 }
2361 
2362 subsys_initcall(mmc_init);
2363 module_exit(mmc_exit);
2364 
2365 MODULE_LICENSE("GPL");
2366