1 /*
2 * This is the Fusion MPT base driver providing common API layer interface
3 * for access to MPT (Message Passing Technology) firmware.
4 *
5 * This code is based on drivers/scsi/mpt3sas/mpt3sas_base.c
6 * Copyright (C) 2012-2014 LSI Corporation
7 * Copyright (C) 2013-2014 Avago Technologies
8 * (mailto: MPT-FusionLinux.pdl@avagotech.com)
9 *
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License
12 * as published by the Free Software Foundation; either version 2
13 * of the License, or (at your option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
19 *
20 * NO WARRANTY
21 * THE PROGRAM IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR
22 * CONDITIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED INCLUDING, WITHOUT
23 * LIMITATION, ANY WARRANTIES OR CONDITIONS OF TITLE, NON-INFRINGEMENT,
24 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Each Recipient is
25 * solely responsible for determining the appropriateness of using and
26 * distributing the Program and assumes all risks associated with its
27 * exercise of rights under this Agreement, including but not limited to
28 * the risks and costs of program errors, damage to or loss of data,
29 * programs or equipment, and unavailability or interruption of operations.
30
31 * DISCLAIMER OF LIABILITY
32 * NEITHER RECIPIENT NOR ANY CONTRIBUTORS SHALL HAVE ANY LIABILITY FOR ANY
33 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING WITHOUT LIMITATION LOST PROFITS), HOWEVER CAUSED AND
35 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
36 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
37 * USE OR DISTRIBUTION OF THE PROGRAM OR THE EXERCISE OF ANY RIGHTS GRANTED
38 * HEREUNDER, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES
39
40 * You should have received a copy of the GNU General Public License
41 * along with this program; if not, write to the Free Software
42 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301,
43 * USA.
44 */
45
46 #include <linux/kernel.h>
47 #include <linux/module.h>
48 #include <linux/errno.h>
49 #include <linux/init.h>
50 #include <linux/slab.h>
51 #include <linux/types.h>
52 #include <linux/pci.h>
53 #include <linux/kdev_t.h>
54 #include <linux/blkdev.h>
55 #include <linux/delay.h>
56 #include <linux/interrupt.h>
57 #include <linux/dma-mapping.h>
58 #include <linux/io.h>
59 #include <linux/time.h>
60 #include <linux/ktime.h>
61 #include <linux/kthread.h>
62 #include <asm/page.h> /* To get host page size per arch */
63 #include <linux/aer.h>
64
65
66 #include "mpt3sas_base.h"
67
68 static MPT_CALLBACK mpt_callbacks[MPT_MAX_CALLBACKS];
69
70
71 #define FAULT_POLLING_INTERVAL 1000 /* in milliseconds */
72
73 /* maximum controller queue depth */
74 #define MAX_HBA_QUEUE_DEPTH 30000
75 #define MAX_CHAIN_DEPTH 100000
76 static int max_queue_depth = -1;
77 module_param(max_queue_depth, int, 0444);
78 MODULE_PARM_DESC(max_queue_depth, " max controller queue depth ");
79
80 static int max_sgl_entries = -1;
81 module_param(max_sgl_entries, int, 0444);
82 MODULE_PARM_DESC(max_sgl_entries, " max sg entries ");
83
84 static int msix_disable = -1;
85 module_param(msix_disable, int, 0444);
86 MODULE_PARM_DESC(msix_disable, " disable msix routed interrupts (default=0)");
87
88 static int smp_affinity_enable = 1;
89 module_param(smp_affinity_enable, int, 0444);
90 MODULE_PARM_DESC(smp_affinity_enable, "SMP affinity feature enable/disable Default: enable(1)");
91
92 static int max_msix_vectors = -1;
93 module_param(max_msix_vectors, int, 0444);
94 MODULE_PARM_DESC(max_msix_vectors,
95 " max msix vectors");
96
97 static int irqpoll_weight = -1;
98 module_param(irqpoll_weight, int, 0444);
99 MODULE_PARM_DESC(irqpoll_weight,
100 "irq poll weight (default= one fourth of HBA queue depth)");
101
102 static int mpt3sas_fwfault_debug;
103 MODULE_PARM_DESC(mpt3sas_fwfault_debug,
104 " enable detection of firmware fault and halt firmware - (default=0)");
105
106 static int perf_mode = -1;
107 module_param(perf_mode, int, 0444);
108 MODULE_PARM_DESC(perf_mode,
109 "Performance mode (only for Aero/Sea Generation), options:\n\t\t"
110 "0 - balanced: high iops mode is enabled &\n\t\t"
111 "interrupt coalescing is enabled only on high iops queues,\n\t\t"
112 "1 - iops: high iops mode is disabled &\n\t\t"
113 "interrupt coalescing is enabled on all queues,\n\t\t"
114 "2 - latency: high iops mode is disabled &\n\t\t"
115 "interrupt coalescing is enabled on all queues with timeout value 0xA,\n"
116 "\t\tdefault - default perf_mode is 'balanced'"
117 );
118
119 static int poll_queues;
120 module_param(poll_queues, int, 0444);
121 MODULE_PARM_DESC(poll_queues, "Number of queues to be use for io_uring poll mode.\n\t\t"
122 "This parameter is effective only if host_tagset_enable=1. &\n\t\t"
123 "when poll_queues are enabled then &\n\t\t"
124 "perf_mode is set to latency mode. &\n\t\t"
125 );
126
127 enum mpt3sas_perf_mode {
128 MPT_PERF_MODE_DEFAULT = -1,
129 MPT_PERF_MODE_BALANCED = 0,
130 MPT_PERF_MODE_IOPS = 1,
131 MPT_PERF_MODE_LATENCY = 2,
132 };
133
134 static int
135 _base_wait_on_iocstate(struct MPT3SAS_ADAPTER *ioc,
136 u32 ioc_state, int timeout);
137 static int
138 _base_get_ioc_facts(struct MPT3SAS_ADAPTER *ioc);
139 static void
140 _base_clear_outstanding_commands(struct MPT3SAS_ADAPTER *ioc);
141
142 static u32
143 _base_readl_ext_retry(const volatile void __iomem *addr);
144
145 /**
146 * mpt3sas_base_check_cmd_timeout - Function
147 * to check timeout and command termination due
148 * to Host reset.
149 *
150 * @ioc: per adapter object.
151 * @status: Status of issued command.
152 * @mpi_request:mf request pointer.
153 * @sz: size of buffer.
154 *
155 * Return: 1/0 Reset to be done or Not
156 */
157 u8
mpt3sas_base_check_cmd_timeout(struct MPT3SAS_ADAPTER * ioc,u8 status,void * mpi_request,int sz)158 mpt3sas_base_check_cmd_timeout(struct MPT3SAS_ADAPTER *ioc,
159 u8 status, void *mpi_request, int sz)
160 {
161 u8 issue_reset = 0;
162
163 if (!(status & MPT3_CMD_RESET))
164 issue_reset = 1;
165
166 ioc_err(ioc, "Command %s\n",
167 issue_reset == 0 ? "terminated due to Host Reset" : "Timeout");
168 _debug_dump_mf(mpi_request, sz);
169
170 return issue_reset;
171 }
172
173 /**
174 * _scsih_set_fwfault_debug - global setting of ioc->fwfault_debug.
175 * @val: ?
176 * @kp: ?
177 *
178 * Return: ?
179 */
180 static int
_scsih_set_fwfault_debug(const char * val,const struct kernel_param * kp)181 _scsih_set_fwfault_debug(const char *val, const struct kernel_param *kp)
182 {
183 int ret = param_set_int(val, kp);
184 struct MPT3SAS_ADAPTER *ioc;
185
186 if (ret)
187 return ret;
188
189 /* global ioc spinlock to protect controller list on list operations */
190 pr_info("setting fwfault_debug(%d)\n", mpt3sas_fwfault_debug);
191 spin_lock(&gioc_lock);
192 list_for_each_entry(ioc, &mpt3sas_ioc_list, list)
193 ioc->fwfault_debug = mpt3sas_fwfault_debug;
194 spin_unlock(&gioc_lock);
195 return 0;
196 }
197 module_param_call(mpt3sas_fwfault_debug, _scsih_set_fwfault_debug,
198 param_get_int, &mpt3sas_fwfault_debug, 0644);
199
200 /**
201 * _base_readl_aero - retry readl for max three times.
202 * @addr: MPT Fusion system interface register address
203 *
204 * Retry the readl() for max three times if it gets zero value
205 * while reading the system interface register.
206 */
207 static inline u32
_base_readl_aero(const volatile void __iomem * addr)208 _base_readl_aero(const volatile void __iomem *addr)
209 {
210 u32 i = 0, ret_val;
211
212 do {
213 ret_val = readl(addr);
214 i++;
215 } while (ret_val == 0 && i < 3);
216
217 return ret_val;
218 }
219
220 static u32
_base_readl_ext_retry(const volatile void __iomem * addr)221 _base_readl_ext_retry(const volatile void __iomem *addr)
222 {
223 u32 i, ret_val;
224
225 for (i = 0 ; i < 30 ; i++) {
226 ret_val = readl(addr);
227 if (ret_val != 0)
228 break;
229 }
230
231 return ret_val;
232 }
233
234 static inline u32
_base_readl(const volatile void __iomem * addr)235 _base_readl(const volatile void __iomem *addr)
236 {
237 return readl(addr);
238 }
239
240 /**
241 * _base_clone_reply_to_sys_mem - copies reply to reply free iomem
242 * in BAR0 space.
243 *
244 * @ioc: per adapter object
245 * @reply: reply message frame(lower 32bit addr)
246 * @index: System request message index.
247 */
248 static void
_base_clone_reply_to_sys_mem(struct MPT3SAS_ADAPTER * ioc,u32 reply,u32 index)249 _base_clone_reply_to_sys_mem(struct MPT3SAS_ADAPTER *ioc, u32 reply,
250 u32 index)
251 {
252 /*
253 * 256 is offset within sys register.
254 * 256 offset MPI frame starts. Max MPI frame supported is 32.
255 * 32 * 128 = 4K. From here, Clone of reply free for mcpu starts
256 */
257 u16 cmd_credit = ioc->facts.RequestCredit + 1;
258 void __iomem *reply_free_iomem = (void __iomem *)ioc->chip +
259 MPI_FRAME_START_OFFSET +
260 (cmd_credit * ioc->request_sz) + (index * sizeof(u32));
261
262 writel(reply, reply_free_iomem);
263 }
264
265 /**
266 * _base_clone_mpi_to_sys_mem - Writes/copies MPI frames
267 * to system/BAR0 region.
268 *
269 * @dst_iomem: Pointer to the destination location in BAR0 space.
270 * @src: Pointer to the Source data.
271 * @size: Size of data to be copied.
272 */
273 static void
_base_clone_mpi_to_sys_mem(void * dst_iomem,void * src,u32 size)274 _base_clone_mpi_to_sys_mem(void *dst_iomem, void *src, u32 size)
275 {
276 int i;
277 u32 *src_virt_mem = (u32 *)src;
278
279 for (i = 0; i < size/4; i++)
280 writel((u32)src_virt_mem[i],
281 (void __iomem *)dst_iomem + (i * 4));
282 }
283
284 /**
285 * _base_clone_to_sys_mem - Writes/copies data to system/BAR0 region
286 *
287 * @dst_iomem: Pointer to the destination location in BAR0 space.
288 * @src: Pointer to the Source data.
289 * @size: Size of data to be copied.
290 */
291 static void
_base_clone_to_sys_mem(void __iomem * dst_iomem,void * src,u32 size)292 _base_clone_to_sys_mem(void __iomem *dst_iomem, void *src, u32 size)
293 {
294 int i;
295 u32 *src_virt_mem = (u32 *)(src);
296
297 for (i = 0; i < size/4; i++)
298 writel((u32)src_virt_mem[i],
299 (void __iomem *)dst_iomem + (i * 4));
300 }
301
302 /**
303 * _base_get_chain - Calculates and Returns virtual chain address
304 * for the provided smid in BAR0 space.
305 *
306 * @ioc: per adapter object
307 * @smid: system request message index
308 * @sge_chain_count: Scatter gather chain count.
309 *
310 * Return: the chain address.
311 */
312 static inline void __iomem*
_base_get_chain(struct MPT3SAS_ADAPTER * ioc,u16 smid,u8 sge_chain_count)313 _base_get_chain(struct MPT3SAS_ADAPTER *ioc, u16 smid,
314 u8 sge_chain_count)
315 {
316 void __iomem *base_chain, *chain_virt;
317 u16 cmd_credit = ioc->facts.RequestCredit + 1;
318
319 base_chain = (void __iomem *)ioc->chip + MPI_FRAME_START_OFFSET +
320 (cmd_credit * ioc->request_sz) +
321 REPLY_FREE_POOL_SIZE;
322 chain_virt = base_chain + (smid * ioc->facts.MaxChainDepth *
323 ioc->request_sz) + (sge_chain_count * ioc->request_sz);
324 return chain_virt;
325 }
326
327 /**
328 * _base_get_chain_phys - Calculates and Returns physical address
329 * in BAR0 for scatter gather chains, for
330 * the provided smid.
331 *
332 * @ioc: per adapter object
333 * @smid: system request message index
334 * @sge_chain_count: Scatter gather chain count.
335 *
336 * Return: Physical chain address.
337 */
338 static inline phys_addr_t
_base_get_chain_phys(struct MPT3SAS_ADAPTER * ioc,u16 smid,u8 sge_chain_count)339 _base_get_chain_phys(struct MPT3SAS_ADAPTER *ioc, u16 smid,
340 u8 sge_chain_count)
341 {
342 phys_addr_t base_chain_phys, chain_phys;
343 u16 cmd_credit = ioc->facts.RequestCredit + 1;
344
345 base_chain_phys = ioc->chip_phys + MPI_FRAME_START_OFFSET +
346 (cmd_credit * ioc->request_sz) +
347 REPLY_FREE_POOL_SIZE;
348 chain_phys = base_chain_phys + (smid * ioc->facts.MaxChainDepth *
349 ioc->request_sz) + (sge_chain_count * ioc->request_sz);
350 return chain_phys;
351 }
352
353 /**
354 * _base_get_buffer_bar0 - Calculates and Returns BAR0 mapped Host
355 * buffer address for the provided smid.
356 * (Each smid can have 64K starts from 17024)
357 *
358 * @ioc: per adapter object
359 * @smid: system request message index
360 *
361 * Return: Pointer to buffer location in BAR0.
362 */
363
364 static void __iomem *
_base_get_buffer_bar0(struct MPT3SAS_ADAPTER * ioc,u16 smid)365 _base_get_buffer_bar0(struct MPT3SAS_ADAPTER *ioc, u16 smid)
366 {
367 u16 cmd_credit = ioc->facts.RequestCredit + 1;
368 // Added extra 1 to reach end of chain.
369 void __iomem *chain_end = _base_get_chain(ioc,
370 cmd_credit + 1,
371 ioc->facts.MaxChainDepth);
372 return chain_end + (smid * 64 * 1024);
373 }
374
375 /**
376 * _base_get_buffer_phys_bar0 - Calculates and Returns BAR0 mapped
377 * Host buffer Physical address for the provided smid.
378 * (Each smid can have 64K starts from 17024)
379 *
380 * @ioc: per adapter object
381 * @smid: system request message index
382 *
383 * Return: Pointer to buffer location in BAR0.
384 */
385 static phys_addr_t
_base_get_buffer_phys_bar0(struct MPT3SAS_ADAPTER * ioc,u16 smid)386 _base_get_buffer_phys_bar0(struct MPT3SAS_ADAPTER *ioc, u16 smid)
387 {
388 u16 cmd_credit = ioc->facts.RequestCredit + 1;
389 phys_addr_t chain_end_phys = _base_get_chain_phys(ioc,
390 cmd_credit + 1,
391 ioc->facts.MaxChainDepth);
392 return chain_end_phys + (smid * 64 * 1024);
393 }
394
395 /**
396 * _base_get_chain_buffer_dma_to_chain_buffer - Iterates chain
397 * lookup list and Provides chain_buffer
398 * address for the matching dma address.
399 * (Each smid can have 64K starts from 17024)
400 *
401 * @ioc: per adapter object
402 * @chain_buffer_dma: Chain buffer dma address.
403 *
404 * Return: Pointer to chain buffer. Or Null on Failure.
405 */
406 static void *
_base_get_chain_buffer_dma_to_chain_buffer(struct MPT3SAS_ADAPTER * ioc,dma_addr_t chain_buffer_dma)407 _base_get_chain_buffer_dma_to_chain_buffer(struct MPT3SAS_ADAPTER *ioc,
408 dma_addr_t chain_buffer_dma)
409 {
410 u16 index, j;
411 struct chain_tracker *ct;
412
413 for (index = 0; index < ioc->scsiio_depth; index++) {
414 for (j = 0; j < ioc->chains_needed_per_io; j++) {
415 ct = &ioc->chain_lookup[index].chains_per_smid[j];
416 if (ct && ct->chain_buffer_dma == chain_buffer_dma)
417 return ct->chain_buffer;
418 }
419 }
420 ioc_info(ioc, "Provided chain_buffer_dma address is not in the lookup list\n");
421 return NULL;
422 }
423
424 /**
425 * _clone_sg_entries - MPI EP's scsiio and config requests
426 * are handled here. Base function for
427 * double buffering, before submitting
428 * the requests.
429 *
430 * @ioc: per adapter object.
431 * @mpi_request: mf request pointer.
432 * @smid: system request message index.
433 */
_clone_sg_entries(struct MPT3SAS_ADAPTER * ioc,void * mpi_request,u16 smid)434 static void _clone_sg_entries(struct MPT3SAS_ADAPTER *ioc,
435 void *mpi_request, u16 smid)
436 {
437 Mpi2SGESimple32_t *sgel, *sgel_next;
438 u32 sgl_flags, sge_chain_count = 0;
439 bool is_write = false;
440 u16 i = 0;
441 void __iomem *buffer_iomem;
442 phys_addr_t buffer_iomem_phys;
443 void __iomem *buff_ptr;
444 phys_addr_t buff_ptr_phys;
445 void __iomem *dst_chain_addr[MCPU_MAX_CHAINS_PER_IO];
446 void *src_chain_addr[MCPU_MAX_CHAINS_PER_IO];
447 phys_addr_t dst_addr_phys;
448 MPI2RequestHeader_t *request_hdr;
449 struct scsi_cmnd *scmd;
450 struct scatterlist *sg_scmd = NULL;
451 int is_scsiio_req = 0;
452
453 request_hdr = (MPI2RequestHeader_t *) mpi_request;
454
455 if (request_hdr->Function == MPI2_FUNCTION_SCSI_IO_REQUEST) {
456 Mpi25SCSIIORequest_t *scsiio_request =
457 (Mpi25SCSIIORequest_t *)mpi_request;
458 sgel = (Mpi2SGESimple32_t *) &scsiio_request->SGL;
459 is_scsiio_req = 1;
460 } else if (request_hdr->Function == MPI2_FUNCTION_CONFIG) {
461 Mpi2ConfigRequest_t *config_req =
462 (Mpi2ConfigRequest_t *)mpi_request;
463 sgel = (Mpi2SGESimple32_t *) &config_req->PageBufferSGE;
464 } else
465 return;
466
467 /* From smid we can get scsi_cmd, once we have sg_scmd,
468 * we just need to get sg_virt and sg_next to get virtual
469 * address associated with sgel->Address.
470 */
471
472 if (is_scsiio_req) {
473 /* Get scsi_cmd using smid */
474 scmd = mpt3sas_scsih_scsi_lookup_get(ioc, smid);
475 if (scmd == NULL) {
476 ioc_err(ioc, "scmd is NULL\n");
477 return;
478 }
479
480 /* Get sg_scmd from scmd provided */
481 sg_scmd = scsi_sglist(scmd);
482 }
483
484 /*
485 * 0 - 255 System register
486 * 256 - 4352 MPI Frame. (This is based on maxCredit 32)
487 * 4352 - 4864 Reply_free pool (512 byte is reserved
488 * considering maxCredit 32. Reply need extra
489 * room, for mCPU case kept four times of
490 * maxCredit).
491 * 4864 - 17152 SGE chain element. (32cmd * 3 chain of
492 * 128 byte size = 12288)
493 * 17152 - x Host buffer mapped with smid.
494 * (Each smid can have 64K Max IO.)
495 * BAR0+Last 1K MSIX Addr and Data
496 * Total size in use 2113664 bytes of 4MB BAR0
497 */
498
499 buffer_iomem = _base_get_buffer_bar0(ioc, smid);
500 buffer_iomem_phys = _base_get_buffer_phys_bar0(ioc, smid);
501
502 buff_ptr = buffer_iomem;
503 buff_ptr_phys = buffer_iomem_phys;
504 WARN_ON(buff_ptr_phys > U32_MAX);
505
506 if (le32_to_cpu(sgel->FlagsLength) &
507 (MPI2_SGE_FLAGS_HOST_TO_IOC << MPI2_SGE_FLAGS_SHIFT))
508 is_write = true;
509
510 for (i = 0; i < MPT_MIN_PHYS_SEGMENTS + ioc->facts.MaxChainDepth; i++) {
511
512 sgl_flags =
513 (le32_to_cpu(sgel->FlagsLength) >> MPI2_SGE_FLAGS_SHIFT);
514
515 switch (sgl_flags & MPI2_SGE_FLAGS_ELEMENT_MASK) {
516 case MPI2_SGE_FLAGS_CHAIN_ELEMENT:
517 /*
518 * Helper function which on passing
519 * chain_buffer_dma returns chain_buffer. Get
520 * the virtual address for sgel->Address
521 */
522 sgel_next =
523 _base_get_chain_buffer_dma_to_chain_buffer(ioc,
524 le32_to_cpu(sgel->Address));
525 if (sgel_next == NULL)
526 return;
527 /*
528 * This is coping 128 byte chain
529 * frame (not a host buffer)
530 */
531 dst_chain_addr[sge_chain_count] =
532 _base_get_chain(ioc,
533 smid, sge_chain_count);
534 src_chain_addr[sge_chain_count] =
535 (void *) sgel_next;
536 dst_addr_phys = _base_get_chain_phys(ioc,
537 smid, sge_chain_count);
538 WARN_ON(dst_addr_phys > U32_MAX);
539 sgel->Address =
540 cpu_to_le32(lower_32_bits(dst_addr_phys));
541 sgel = sgel_next;
542 sge_chain_count++;
543 break;
544 case MPI2_SGE_FLAGS_SIMPLE_ELEMENT:
545 if (is_write) {
546 if (is_scsiio_req) {
547 _base_clone_to_sys_mem(buff_ptr,
548 sg_virt(sg_scmd),
549 (le32_to_cpu(sgel->FlagsLength) &
550 0x00ffffff));
551 /*
552 * FIXME: this relies on a a zero
553 * PCI mem_offset.
554 */
555 sgel->Address =
556 cpu_to_le32((u32)buff_ptr_phys);
557 } else {
558 _base_clone_to_sys_mem(buff_ptr,
559 ioc->config_vaddr,
560 (le32_to_cpu(sgel->FlagsLength) &
561 0x00ffffff));
562 sgel->Address =
563 cpu_to_le32((u32)buff_ptr_phys);
564 }
565 }
566 buff_ptr += (le32_to_cpu(sgel->FlagsLength) &
567 0x00ffffff);
568 buff_ptr_phys += (le32_to_cpu(sgel->FlagsLength) &
569 0x00ffffff);
570 if ((le32_to_cpu(sgel->FlagsLength) &
571 (MPI2_SGE_FLAGS_END_OF_BUFFER
572 << MPI2_SGE_FLAGS_SHIFT)))
573 goto eob_clone_chain;
574 else {
575 /*
576 * Every single element in MPT will have
577 * associated sg_next. Better to sanity that
578 * sg_next is not NULL, but it will be a bug
579 * if it is null.
580 */
581 if (is_scsiio_req) {
582 sg_scmd = sg_next(sg_scmd);
583 if (sg_scmd)
584 sgel++;
585 else
586 goto eob_clone_chain;
587 }
588 }
589 break;
590 }
591 }
592
593 eob_clone_chain:
594 for (i = 0; i < sge_chain_count; i++) {
595 if (is_scsiio_req)
596 _base_clone_to_sys_mem(dst_chain_addr[i],
597 src_chain_addr[i], ioc->request_sz);
598 }
599 }
600
601 /**
602 * mpt3sas_remove_dead_ioc_func - kthread context to remove dead ioc
603 * @arg: input argument, used to derive ioc
604 *
605 * Return:
606 * 0 if controller is removed from pci subsystem.
607 * -1 for other case.
608 */
mpt3sas_remove_dead_ioc_func(void * arg)609 static int mpt3sas_remove_dead_ioc_func(void *arg)
610 {
611 struct MPT3SAS_ADAPTER *ioc = (struct MPT3SAS_ADAPTER *)arg;
612 struct pci_dev *pdev;
613
614 if (!ioc)
615 return -1;
616
617 pdev = ioc->pdev;
618 if (!pdev)
619 return -1;
620 pci_stop_and_remove_bus_device_locked(pdev);
621 return 0;
622 }
623
624 /**
625 * _base_sync_drv_fw_timestamp - Sync Drive-Fw TimeStamp.
626 * @ioc: Per Adapter Object
627 *
628 * Return: nothing.
629 */
_base_sync_drv_fw_timestamp(struct MPT3SAS_ADAPTER * ioc)630 static void _base_sync_drv_fw_timestamp(struct MPT3SAS_ADAPTER *ioc)
631 {
632 Mpi26IoUnitControlRequest_t *mpi_request;
633 Mpi26IoUnitControlReply_t *mpi_reply;
634 u16 smid;
635 ktime_t current_time;
636 u64 TimeStamp = 0;
637 u8 issue_reset = 0;
638
639 mutex_lock(&ioc->scsih_cmds.mutex);
640 if (ioc->scsih_cmds.status != MPT3_CMD_NOT_USED) {
641 ioc_err(ioc, "scsih_cmd in use %s\n", __func__);
642 goto out;
643 }
644 ioc->scsih_cmds.status = MPT3_CMD_PENDING;
645 smid = mpt3sas_base_get_smid(ioc, ioc->scsih_cb_idx);
646 if (!smid) {
647 ioc_err(ioc, "Failed obtaining a smid %s\n", __func__);
648 ioc->scsih_cmds.status = MPT3_CMD_NOT_USED;
649 goto out;
650 }
651 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
652 ioc->scsih_cmds.smid = smid;
653 memset(mpi_request, 0, sizeof(Mpi26IoUnitControlRequest_t));
654 mpi_request->Function = MPI2_FUNCTION_IO_UNIT_CONTROL;
655 mpi_request->Operation = MPI26_CTRL_OP_SET_IOC_PARAMETER;
656 mpi_request->IOCParameter = MPI26_SET_IOC_PARAMETER_SYNC_TIMESTAMP;
657 current_time = ktime_get_real();
658 TimeStamp = ktime_to_ms(current_time);
659 mpi_request->Reserved7 = cpu_to_le32(TimeStamp >> 32);
660 mpi_request->IOCParameterValue = cpu_to_le32(TimeStamp & 0xFFFFFFFF);
661 init_completion(&ioc->scsih_cmds.done);
662 ioc->put_smid_default(ioc, smid);
663 dinitprintk(ioc, ioc_info(ioc,
664 "Io Unit Control Sync TimeStamp (sending), @time %lld ms\n",
665 TimeStamp));
666 wait_for_completion_timeout(&ioc->scsih_cmds.done,
667 MPT3SAS_TIMESYNC_TIMEOUT_SECONDS*HZ);
668 if (!(ioc->scsih_cmds.status & MPT3_CMD_COMPLETE)) {
669 mpt3sas_check_cmd_timeout(ioc,
670 ioc->scsih_cmds.status, mpi_request,
671 sizeof(Mpi2SasIoUnitControlRequest_t)/4, issue_reset);
672 goto issue_host_reset;
673 }
674 if (ioc->scsih_cmds.status & MPT3_CMD_REPLY_VALID) {
675 mpi_reply = ioc->scsih_cmds.reply;
676 dinitprintk(ioc, ioc_info(ioc,
677 "Io Unit Control sync timestamp (complete): ioc_status(0x%04x), loginfo(0x%08x)\n",
678 le16_to_cpu(mpi_reply->IOCStatus),
679 le32_to_cpu(mpi_reply->IOCLogInfo)));
680 }
681 issue_host_reset:
682 if (issue_reset)
683 mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
684 ioc->scsih_cmds.status = MPT3_CMD_NOT_USED;
685 out:
686 mutex_unlock(&ioc->scsih_cmds.mutex);
687 }
688
689 /**
690 * _base_fault_reset_work - workq handling ioc fault conditions
691 * @work: input argument, used to derive ioc
692 *
693 * Context: sleep.
694 */
695 static void
_base_fault_reset_work(struct work_struct * work)696 _base_fault_reset_work(struct work_struct *work)
697 {
698 struct MPT3SAS_ADAPTER *ioc =
699 container_of(work, struct MPT3SAS_ADAPTER, fault_reset_work.work);
700 unsigned long flags;
701 u32 doorbell;
702 int rc;
703 struct task_struct *p;
704
705
706 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
707 if ((ioc->shost_recovery && (ioc->ioc_coredump_loop == 0)) ||
708 ioc->pci_error_recovery)
709 goto rearm_timer;
710 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
711
712 doorbell = mpt3sas_base_get_iocstate(ioc, 0);
713 if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_MASK) {
714 ioc_err(ioc, "SAS host is non-operational !!!!\n");
715
716 /* It may be possible that EEH recovery can resolve some of
717 * pci bus failure issues rather removing the dead ioc function
718 * by considering controller is in a non-operational state. So
719 * here priority is given to the EEH recovery. If it doesn't
720 * not resolve this issue, mpt3sas driver will consider this
721 * controller to non-operational state and remove the dead ioc
722 * function.
723 */
724 if (ioc->non_operational_loop++ < 5) {
725 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock,
726 flags);
727 goto rearm_timer;
728 }
729
730 /*
731 * Call _scsih_flush_pending_cmds callback so that we flush all
732 * pending commands back to OS. This call is required to avoid
733 * deadlock at block layer. Dead IOC will fail to do diag reset,
734 * and this call is safe since dead ioc will never return any
735 * command back from HW.
736 */
737 mpt3sas_base_pause_mq_polling(ioc);
738 ioc->schedule_dead_ioc_flush_running_cmds(ioc);
739 /*
740 * Set remove_host flag early since kernel thread will
741 * take some time to execute.
742 */
743 ioc->remove_host = 1;
744 /*Remove the Dead Host */
745 p = kthread_run(mpt3sas_remove_dead_ioc_func, ioc,
746 "%s_dead_ioc_%d", ioc->driver_name, ioc->id);
747 if (IS_ERR(p))
748 ioc_err(ioc, "%s: Running mpt3sas_dead_ioc thread failed !!!!\n",
749 __func__);
750 else
751 ioc_err(ioc, "%s: Running mpt3sas_dead_ioc thread success !!!!\n",
752 __func__);
753 return; /* don't rearm timer */
754 }
755
756 if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_COREDUMP) {
757 u8 timeout = (ioc->manu_pg11.CoreDumpTOSec) ?
758 ioc->manu_pg11.CoreDumpTOSec :
759 MPT3SAS_DEFAULT_COREDUMP_TIMEOUT_SECONDS;
760
761 timeout /= (FAULT_POLLING_INTERVAL/1000);
762
763 if (ioc->ioc_coredump_loop == 0) {
764 mpt3sas_print_coredump_info(ioc,
765 doorbell & MPI2_DOORBELL_DATA_MASK);
766 /* do not accept any IOs and disable the interrupts */
767 spin_lock_irqsave(
768 &ioc->ioc_reset_in_progress_lock, flags);
769 ioc->shost_recovery = 1;
770 spin_unlock_irqrestore(
771 &ioc->ioc_reset_in_progress_lock, flags);
772 mpt3sas_base_mask_interrupts(ioc);
773 mpt3sas_base_pause_mq_polling(ioc);
774 _base_clear_outstanding_commands(ioc);
775 }
776
777 ioc_info(ioc, "%s: CoreDump loop %d.",
778 __func__, ioc->ioc_coredump_loop);
779
780 /* Wait until CoreDump completes or times out */
781 if (ioc->ioc_coredump_loop++ < timeout) {
782 spin_lock_irqsave(
783 &ioc->ioc_reset_in_progress_lock, flags);
784 goto rearm_timer;
785 }
786 }
787
788 if (ioc->ioc_coredump_loop) {
789 if ((doorbell & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_COREDUMP)
790 ioc_err(ioc, "%s: CoreDump completed. LoopCount: %d",
791 __func__, ioc->ioc_coredump_loop);
792 else
793 ioc_err(ioc, "%s: CoreDump Timed out. LoopCount: %d",
794 __func__, ioc->ioc_coredump_loop);
795 ioc->ioc_coredump_loop = MPT3SAS_COREDUMP_LOOP_DONE;
796 }
797 ioc->non_operational_loop = 0;
798 if ((doorbell & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_OPERATIONAL) {
799 rc = mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
800 ioc_warn(ioc, "%s: hard reset: %s\n",
801 __func__, rc == 0 ? "success" : "failed");
802 doorbell = mpt3sas_base_get_iocstate(ioc, 0);
803 if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
804 mpt3sas_print_fault_code(ioc, doorbell &
805 MPI2_DOORBELL_DATA_MASK);
806 } else if ((doorbell & MPI2_IOC_STATE_MASK) ==
807 MPI2_IOC_STATE_COREDUMP)
808 mpt3sas_print_coredump_info(ioc, doorbell &
809 MPI2_DOORBELL_DATA_MASK);
810 if (rc && (doorbell & MPI2_IOC_STATE_MASK) !=
811 MPI2_IOC_STATE_OPERATIONAL)
812 return; /* don't rearm timer */
813 }
814 ioc->ioc_coredump_loop = 0;
815 if (ioc->time_sync_interval &&
816 ++ioc->timestamp_update_count >= ioc->time_sync_interval) {
817 ioc->timestamp_update_count = 0;
818 _base_sync_drv_fw_timestamp(ioc);
819 }
820 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
821 rearm_timer:
822 if (ioc->fault_reset_work_q)
823 queue_delayed_work(ioc->fault_reset_work_q,
824 &ioc->fault_reset_work,
825 msecs_to_jiffies(FAULT_POLLING_INTERVAL));
826 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
827 }
828
829 /**
830 * mpt3sas_base_start_watchdog - start the fault_reset_work_q
831 * @ioc: per adapter object
832 *
833 * Context: sleep.
834 */
835 void
mpt3sas_base_start_watchdog(struct MPT3SAS_ADAPTER * ioc)836 mpt3sas_base_start_watchdog(struct MPT3SAS_ADAPTER *ioc)
837 {
838 unsigned long flags;
839
840 if (ioc->fault_reset_work_q)
841 return;
842
843 ioc->timestamp_update_count = 0;
844 /* initialize fault polling */
845
846 INIT_DELAYED_WORK(&ioc->fault_reset_work, _base_fault_reset_work);
847 snprintf(ioc->fault_reset_work_q_name,
848 sizeof(ioc->fault_reset_work_q_name), "poll_%s%d_status",
849 ioc->driver_name, ioc->id);
850 ioc->fault_reset_work_q =
851 create_singlethread_workqueue(ioc->fault_reset_work_q_name);
852 if (!ioc->fault_reset_work_q) {
853 ioc_err(ioc, "%s: failed (line=%d)\n", __func__, __LINE__);
854 return;
855 }
856 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
857 if (ioc->fault_reset_work_q)
858 queue_delayed_work(ioc->fault_reset_work_q,
859 &ioc->fault_reset_work,
860 msecs_to_jiffies(FAULT_POLLING_INTERVAL));
861 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
862 }
863
864 /**
865 * mpt3sas_base_stop_watchdog - stop the fault_reset_work_q
866 * @ioc: per adapter object
867 *
868 * Context: sleep.
869 */
870 void
mpt3sas_base_stop_watchdog(struct MPT3SAS_ADAPTER * ioc)871 mpt3sas_base_stop_watchdog(struct MPT3SAS_ADAPTER *ioc)
872 {
873 unsigned long flags;
874 struct workqueue_struct *wq;
875
876 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
877 wq = ioc->fault_reset_work_q;
878 ioc->fault_reset_work_q = NULL;
879 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
880 if (wq) {
881 if (!cancel_delayed_work_sync(&ioc->fault_reset_work))
882 flush_workqueue(wq);
883 destroy_workqueue(wq);
884 }
885 }
886
887 /**
888 * mpt3sas_base_fault_info - verbose translation of firmware FAULT code
889 * @ioc: per adapter object
890 * @fault_code: fault code
891 */
892 void
mpt3sas_base_fault_info(struct MPT3SAS_ADAPTER * ioc,u16 fault_code)893 mpt3sas_base_fault_info(struct MPT3SAS_ADAPTER *ioc , u16 fault_code)
894 {
895 ioc_err(ioc, "fault_state(0x%04x)!\n", fault_code);
896 }
897
898 /**
899 * mpt3sas_base_coredump_info - verbose translation of firmware CoreDump state
900 * @ioc: per adapter object
901 * @fault_code: fault code
902 *
903 * Return: nothing.
904 */
905 void
mpt3sas_base_coredump_info(struct MPT3SAS_ADAPTER * ioc,u16 fault_code)906 mpt3sas_base_coredump_info(struct MPT3SAS_ADAPTER *ioc, u16 fault_code)
907 {
908 ioc_err(ioc, "coredump_state(0x%04x)!\n", fault_code);
909 }
910
911 /**
912 * mpt3sas_base_wait_for_coredump_completion - Wait until coredump
913 * completes or times out
914 * @ioc: per adapter object
915 * @caller: caller function name
916 *
917 * Return: 0 for success, non-zero for failure.
918 */
919 int
mpt3sas_base_wait_for_coredump_completion(struct MPT3SAS_ADAPTER * ioc,const char * caller)920 mpt3sas_base_wait_for_coredump_completion(struct MPT3SAS_ADAPTER *ioc,
921 const char *caller)
922 {
923 u8 timeout = (ioc->manu_pg11.CoreDumpTOSec) ?
924 ioc->manu_pg11.CoreDumpTOSec :
925 MPT3SAS_DEFAULT_COREDUMP_TIMEOUT_SECONDS;
926
927 int ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_FAULT,
928 timeout);
929
930 if (ioc_state)
931 ioc_err(ioc,
932 "%s: CoreDump timed out. (ioc_state=0x%x)\n",
933 caller, ioc_state);
934 else
935 ioc_info(ioc,
936 "%s: CoreDump completed. (ioc_state=0x%x)\n",
937 caller, ioc_state);
938
939 return ioc_state;
940 }
941
942 /**
943 * mpt3sas_halt_firmware - halt's mpt controller firmware
944 * @ioc: per adapter object
945 *
946 * For debugging timeout related issues. Writing 0xCOFFEE00
947 * to the doorbell register will halt controller firmware. With
948 * the purpose to stop both driver and firmware, the enduser can
949 * obtain a ring buffer from controller UART.
950 */
951 void
mpt3sas_halt_firmware(struct MPT3SAS_ADAPTER * ioc)952 mpt3sas_halt_firmware(struct MPT3SAS_ADAPTER *ioc)
953 {
954 u32 doorbell;
955
956 if (!ioc->fwfault_debug)
957 return;
958
959 dump_stack();
960
961 doorbell = ioc->base_readl_ext_retry(&ioc->chip->Doorbell);
962 if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
963 mpt3sas_print_fault_code(ioc, doorbell &
964 MPI2_DOORBELL_DATA_MASK);
965 } else if ((doorbell & MPI2_IOC_STATE_MASK) ==
966 MPI2_IOC_STATE_COREDUMP) {
967 mpt3sas_print_coredump_info(ioc, doorbell &
968 MPI2_DOORBELL_DATA_MASK);
969 } else {
970 writel(0xC0FFEE00, &ioc->chip->Doorbell);
971 ioc_err(ioc, "Firmware is halted due to command timeout\n");
972 }
973
974 if (ioc->fwfault_debug == 2)
975 for (;;)
976 ;
977 else
978 panic("panic in %s\n", __func__);
979 }
980
981 /**
982 * _base_sas_ioc_info - verbose translation of the ioc status
983 * @ioc: per adapter object
984 * @mpi_reply: reply mf payload returned from firmware
985 * @request_hdr: request mf
986 */
987 static void
_base_sas_ioc_info(struct MPT3SAS_ADAPTER * ioc,MPI2DefaultReply_t * mpi_reply,MPI2RequestHeader_t * request_hdr)988 _base_sas_ioc_info(struct MPT3SAS_ADAPTER *ioc, MPI2DefaultReply_t *mpi_reply,
989 MPI2RequestHeader_t *request_hdr)
990 {
991 u16 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) &
992 MPI2_IOCSTATUS_MASK;
993 char *desc = NULL;
994 u16 frame_sz;
995 char *func_str = NULL;
996
997 /* SCSI_IO, RAID_PASS are handled from _scsih_scsi_ioc_info */
998 if (request_hdr->Function == MPI2_FUNCTION_SCSI_IO_REQUEST ||
999 request_hdr->Function == MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH ||
1000 request_hdr->Function == MPI2_FUNCTION_EVENT_NOTIFICATION)
1001 return;
1002
1003 if (ioc_status == MPI2_IOCSTATUS_CONFIG_INVALID_PAGE)
1004 return;
1005 /*
1006 * Older Firmware version doesn't support driver trigger pages.
1007 * So, skip displaying 'config invalid type' type
1008 * of error message.
1009 */
1010 if (request_hdr->Function == MPI2_FUNCTION_CONFIG) {
1011 Mpi2ConfigRequest_t *rqst = (Mpi2ConfigRequest_t *)request_hdr;
1012
1013 if ((rqst->ExtPageType ==
1014 MPI2_CONFIG_EXTPAGETYPE_DRIVER_PERSISTENT_TRIGGER) &&
1015 !(ioc->logging_level & MPT_DEBUG_CONFIG)) {
1016 return;
1017 }
1018 }
1019
1020 switch (ioc_status) {
1021
1022 /****************************************************************************
1023 * Common IOCStatus values for all replies
1024 ****************************************************************************/
1025
1026 case MPI2_IOCSTATUS_INVALID_FUNCTION:
1027 desc = "invalid function";
1028 break;
1029 case MPI2_IOCSTATUS_BUSY:
1030 desc = "busy";
1031 break;
1032 case MPI2_IOCSTATUS_INVALID_SGL:
1033 desc = "invalid sgl";
1034 break;
1035 case MPI2_IOCSTATUS_INTERNAL_ERROR:
1036 desc = "internal error";
1037 break;
1038 case MPI2_IOCSTATUS_INVALID_VPID:
1039 desc = "invalid vpid";
1040 break;
1041 case MPI2_IOCSTATUS_INSUFFICIENT_RESOURCES:
1042 desc = "insufficient resources";
1043 break;
1044 case MPI2_IOCSTATUS_INSUFFICIENT_POWER:
1045 desc = "insufficient power";
1046 break;
1047 case MPI2_IOCSTATUS_INVALID_FIELD:
1048 desc = "invalid field";
1049 break;
1050 case MPI2_IOCSTATUS_INVALID_STATE:
1051 desc = "invalid state";
1052 break;
1053 case MPI2_IOCSTATUS_OP_STATE_NOT_SUPPORTED:
1054 desc = "op state not supported";
1055 break;
1056
1057 /****************************************************************************
1058 * Config IOCStatus values
1059 ****************************************************************************/
1060
1061 case MPI2_IOCSTATUS_CONFIG_INVALID_ACTION:
1062 desc = "config invalid action";
1063 break;
1064 case MPI2_IOCSTATUS_CONFIG_INVALID_TYPE:
1065 desc = "config invalid type";
1066 break;
1067 case MPI2_IOCSTATUS_CONFIG_INVALID_PAGE:
1068 desc = "config invalid page";
1069 break;
1070 case MPI2_IOCSTATUS_CONFIG_INVALID_DATA:
1071 desc = "config invalid data";
1072 break;
1073 case MPI2_IOCSTATUS_CONFIG_NO_DEFAULTS:
1074 desc = "config no defaults";
1075 break;
1076 case MPI2_IOCSTATUS_CONFIG_CANT_COMMIT:
1077 desc = "config cant commit";
1078 break;
1079
1080 /****************************************************************************
1081 * SCSI IO Reply
1082 ****************************************************************************/
1083
1084 case MPI2_IOCSTATUS_SCSI_RECOVERED_ERROR:
1085 case MPI2_IOCSTATUS_SCSI_INVALID_DEVHANDLE:
1086 case MPI2_IOCSTATUS_SCSI_DEVICE_NOT_THERE:
1087 case MPI2_IOCSTATUS_SCSI_DATA_OVERRUN:
1088 case MPI2_IOCSTATUS_SCSI_DATA_UNDERRUN:
1089 case MPI2_IOCSTATUS_SCSI_IO_DATA_ERROR:
1090 case MPI2_IOCSTATUS_SCSI_PROTOCOL_ERROR:
1091 case MPI2_IOCSTATUS_SCSI_TASK_TERMINATED:
1092 case MPI2_IOCSTATUS_SCSI_RESIDUAL_MISMATCH:
1093 case MPI2_IOCSTATUS_SCSI_TASK_MGMT_FAILED:
1094 case MPI2_IOCSTATUS_SCSI_IOC_TERMINATED:
1095 case MPI2_IOCSTATUS_SCSI_EXT_TERMINATED:
1096 break;
1097
1098 /****************************************************************************
1099 * For use by SCSI Initiator and SCSI Target end-to-end data protection
1100 ****************************************************************************/
1101
1102 case MPI2_IOCSTATUS_EEDP_GUARD_ERROR:
1103 desc = "eedp guard error";
1104 break;
1105 case MPI2_IOCSTATUS_EEDP_REF_TAG_ERROR:
1106 desc = "eedp ref tag error";
1107 break;
1108 case MPI2_IOCSTATUS_EEDP_APP_TAG_ERROR:
1109 desc = "eedp app tag error";
1110 break;
1111
1112 /****************************************************************************
1113 * SCSI Target values
1114 ****************************************************************************/
1115
1116 case MPI2_IOCSTATUS_TARGET_INVALID_IO_INDEX:
1117 desc = "target invalid io index";
1118 break;
1119 case MPI2_IOCSTATUS_TARGET_ABORTED:
1120 desc = "target aborted";
1121 break;
1122 case MPI2_IOCSTATUS_TARGET_NO_CONN_RETRYABLE:
1123 desc = "target no conn retryable";
1124 break;
1125 case MPI2_IOCSTATUS_TARGET_NO_CONNECTION:
1126 desc = "target no connection";
1127 break;
1128 case MPI2_IOCSTATUS_TARGET_XFER_COUNT_MISMATCH:
1129 desc = "target xfer count mismatch";
1130 break;
1131 case MPI2_IOCSTATUS_TARGET_DATA_OFFSET_ERROR:
1132 desc = "target data offset error";
1133 break;
1134 case MPI2_IOCSTATUS_TARGET_TOO_MUCH_WRITE_DATA:
1135 desc = "target too much write data";
1136 break;
1137 case MPI2_IOCSTATUS_TARGET_IU_TOO_SHORT:
1138 desc = "target iu too short";
1139 break;
1140 case MPI2_IOCSTATUS_TARGET_ACK_NAK_TIMEOUT:
1141 desc = "target ack nak timeout";
1142 break;
1143 case MPI2_IOCSTATUS_TARGET_NAK_RECEIVED:
1144 desc = "target nak received";
1145 break;
1146
1147 /****************************************************************************
1148 * Serial Attached SCSI values
1149 ****************************************************************************/
1150
1151 case MPI2_IOCSTATUS_SAS_SMP_REQUEST_FAILED:
1152 desc = "smp request failed";
1153 break;
1154 case MPI2_IOCSTATUS_SAS_SMP_DATA_OVERRUN:
1155 desc = "smp data overrun";
1156 break;
1157
1158 /****************************************************************************
1159 * Diagnostic Buffer Post / Diagnostic Release values
1160 ****************************************************************************/
1161
1162 case MPI2_IOCSTATUS_DIAGNOSTIC_RELEASED:
1163 desc = "diagnostic released";
1164 break;
1165 default:
1166 break;
1167 }
1168
1169 if (!desc)
1170 return;
1171
1172 switch (request_hdr->Function) {
1173 case MPI2_FUNCTION_CONFIG:
1174 frame_sz = sizeof(Mpi2ConfigRequest_t) + ioc->sge_size;
1175 func_str = "config_page";
1176 break;
1177 case MPI2_FUNCTION_SCSI_TASK_MGMT:
1178 frame_sz = sizeof(Mpi2SCSITaskManagementRequest_t);
1179 func_str = "task_mgmt";
1180 break;
1181 case MPI2_FUNCTION_SAS_IO_UNIT_CONTROL:
1182 frame_sz = sizeof(Mpi2SasIoUnitControlRequest_t);
1183 func_str = "sas_iounit_ctl";
1184 break;
1185 case MPI2_FUNCTION_SCSI_ENCLOSURE_PROCESSOR:
1186 frame_sz = sizeof(Mpi2SepRequest_t);
1187 func_str = "enclosure";
1188 break;
1189 case MPI2_FUNCTION_IOC_INIT:
1190 frame_sz = sizeof(Mpi2IOCInitRequest_t);
1191 func_str = "ioc_init";
1192 break;
1193 case MPI2_FUNCTION_PORT_ENABLE:
1194 frame_sz = sizeof(Mpi2PortEnableRequest_t);
1195 func_str = "port_enable";
1196 break;
1197 case MPI2_FUNCTION_SMP_PASSTHROUGH:
1198 frame_sz = sizeof(Mpi2SmpPassthroughRequest_t) + ioc->sge_size;
1199 func_str = "smp_passthru";
1200 break;
1201 case MPI2_FUNCTION_NVME_ENCAPSULATED:
1202 frame_sz = sizeof(Mpi26NVMeEncapsulatedRequest_t) +
1203 ioc->sge_size;
1204 func_str = "nvme_encapsulated";
1205 break;
1206 default:
1207 frame_sz = 32;
1208 func_str = "unknown";
1209 break;
1210 }
1211
1212 ioc_warn(ioc, "ioc_status: %s(0x%04x), request(0x%p),(%s)\n",
1213 desc, ioc_status, request_hdr, func_str);
1214
1215 _debug_dump_mf(request_hdr, frame_sz/4);
1216 }
1217
1218 /**
1219 * _base_display_event_data - verbose translation of firmware asyn events
1220 * @ioc: per adapter object
1221 * @mpi_reply: reply mf payload returned from firmware
1222 */
1223 static void
_base_display_event_data(struct MPT3SAS_ADAPTER * ioc,Mpi2EventNotificationReply_t * mpi_reply)1224 _base_display_event_data(struct MPT3SAS_ADAPTER *ioc,
1225 Mpi2EventNotificationReply_t *mpi_reply)
1226 {
1227 char *desc = NULL;
1228 u16 event;
1229
1230 if (!(ioc->logging_level & MPT_DEBUG_EVENTS))
1231 return;
1232
1233 event = le16_to_cpu(mpi_reply->Event);
1234
1235 switch (event) {
1236 case MPI2_EVENT_LOG_DATA:
1237 desc = "Log Data";
1238 break;
1239 case MPI2_EVENT_STATE_CHANGE:
1240 desc = "Status Change";
1241 break;
1242 case MPI2_EVENT_HARD_RESET_RECEIVED:
1243 desc = "Hard Reset Received";
1244 break;
1245 case MPI2_EVENT_EVENT_CHANGE:
1246 desc = "Event Change";
1247 break;
1248 case MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE:
1249 desc = "Device Status Change";
1250 break;
1251 case MPI2_EVENT_IR_OPERATION_STATUS:
1252 if (!ioc->hide_ir_msg)
1253 desc = "IR Operation Status";
1254 break;
1255 case MPI2_EVENT_SAS_DISCOVERY:
1256 {
1257 Mpi2EventDataSasDiscovery_t *event_data =
1258 (Mpi2EventDataSasDiscovery_t *)mpi_reply->EventData;
1259 ioc_info(ioc, "Discovery: (%s)",
1260 event_data->ReasonCode == MPI2_EVENT_SAS_DISC_RC_STARTED ?
1261 "start" : "stop");
1262 if (event_data->DiscoveryStatus)
1263 pr_cont(" discovery_status(0x%08x)",
1264 le32_to_cpu(event_data->DiscoveryStatus));
1265 pr_cont("\n");
1266 return;
1267 }
1268 case MPI2_EVENT_SAS_BROADCAST_PRIMITIVE:
1269 desc = "SAS Broadcast Primitive";
1270 break;
1271 case MPI2_EVENT_SAS_INIT_DEVICE_STATUS_CHANGE:
1272 desc = "SAS Init Device Status Change";
1273 break;
1274 case MPI2_EVENT_SAS_INIT_TABLE_OVERFLOW:
1275 desc = "SAS Init Table Overflow";
1276 break;
1277 case MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST:
1278 desc = "SAS Topology Change List";
1279 break;
1280 case MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE:
1281 desc = "SAS Enclosure Device Status Change";
1282 break;
1283 case MPI2_EVENT_IR_VOLUME:
1284 if (!ioc->hide_ir_msg)
1285 desc = "IR Volume";
1286 break;
1287 case MPI2_EVENT_IR_PHYSICAL_DISK:
1288 if (!ioc->hide_ir_msg)
1289 desc = "IR Physical Disk";
1290 break;
1291 case MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST:
1292 if (!ioc->hide_ir_msg)
1293 desc = "IR Configuration Change List";
1294 break;
1295 case MPI2_EVENT_LOG_ENTRY_ADDED:
1296 if (!ioc->hide_ir_msg)
1297 desc = "Log Entry Added";
1298 break;
1299 case MPI2_EVENT_TEMP_THRESHOLD:
1300 desc = "Temperature Threshold";
1301 break;
1302 case MPI2_EVENT_ACTIVE_CABLE_EXCEPTION:
1303 desc = "Cable Event";
1304 break;
1305 case MPI2_EVENT_SAS_DEVICE_DISCOVERY_ERROR:
1306 desc = "SAS Device Discovery Error";
1307 break;
1308 case MPI2_EVENT_PCIE_DEVICE_STATUS_CHANGE:
1309 desc = "PCIE Device Status Change";
1310 break;
1311 case MPI2_EVENT_PCIE_ENUMERATION:
1312 {
1313 Mpi26EventDataPCIeEnumeration_t *event_data =
1314 (Mpi26EventDataPCIeEnumeration_t *)mpi_reply->EventData;
1315 ioc_info(ioc, "PCIE Enumeration: (%s)",
1316 event_data->ReasonCode == MPI26_EVENT_PCIE_ENUM_RC_STARTED ?
1317 "start" : "stop");
1318 if (event_data->EnumerationStatus)
1319 pr_cont("enumeration_status(0x%08x)",
1320 le32_to_cpu(event_data->EnumerationStatus));
1321 pr_cont("\n");
1322 return;
1323 }
1324 case MPI2_EVENT_PCIE_TOPOLOGY_CHANGE_LIST:
1325 desc = "PCIE Topology Change List";
1326 break;
1327 }
1328
1329 if (!desc)
1330 return;
1331
1332 ioc_info(ioc, "%s\n", desc);
1333 }
1334
1335 /**
1336 * _base_sas_log_info - verbose translation of firmware log info
1337 * @ioc: per adapter object
1338 * @log_info: log info
1339 */
1340 static void
_base_sas_log_info(struct MPT3SAS_ADAPTER * ioc,u32 log_info)1341 _base_sas_log_info(struct MPT3SAS_ADAPTER *ioc , u32 log_info)
1342 {
1343 union loginfo_type {
1344 u32 loginfo;
1345 struct {
1346 u32 subcode:16;
1347 u32 code:8;
1348 u32 originator:4;
1349 u32 bus_type:4;
1350 } dw;
1351 };
1352 union loginfo_type sas_loginfo;
1353 char *originator_str = NULL;
1354
1355 sas_loginfo.loginfo = log_info;
1356 if (sas_loginfo.dw.bus_type != 3 /*SAS*/)
1357 return;
1358
1359 /* each nexus loss loginfo */
1360 if (log_info == 0x31170000)
1361 return;
1362
1363 /* eat the loginfos associated with task aborts */
1364 if (ioc->ignore_loginfos && (log_info == 0x30050000 || log_info ==
1365 0x31140000 || log_info == 0x31130000))
1366 return;
1367
1368 switch (sas_loginfo.dw.originator) {
1369 case 0:
1370 originator_str = "IOP";
1371 break;
1372 case 1:
1373 originator_str = "PL";
1374 break;
1375 case 2:
1376 if (!ioc->hide_ir_msg)
1377 originator_str = "IR";
1378 else
1379 originator_str = "WarpDrive";
1380 break;
1381 }
1382
1383 ioc_warn(ioc, "log_info(0x%08x): originator(%s), code(0x%02x), sub_code(0x%04x)\n",
1384 log_info,
1385 originator_str, sas_loginfo.dw.code, sas_loginfo.dw.subcode);
1386 }
1387
1388 /**
1389 * _base_display_reply_info - handle reply descriptors depending on IOC Status
1390 * @ioc: per adapter object
1391 * @smid: system request message index
1392 * @msix_index: MSIX table index supplied by the OS
1393 * @reply: reply message frame (lower 32bit addr)
1394 */
1395 static void
_base_display_reply_info(struct MPT3SAS_ADAPTER * ioc,u16 smid,u8 msix_index,u32 reply)1396 _base_display_reply_info(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
1397 u32 reply)
1398 {
1399 MPI2DefaultReply_t *mpi_reply;
1400 u16 ioc_status;
1401 u32 loginfo = 0;
1402
1403 mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
1404 if (unlikely(!mpi_reply)) {
1405 ioc_err(ioc, "mpi_reply not valid at %s:%d/%s()!\n",
1406 __FILE__, __LINE__, __func__);
1407 return;
1408 }
1409 ioc_status = le16_to_cpu(mpi_reply->IOCStatus);
1410
1411 if ((ioc_status & MPI2_IOCSTATUS_MASK) &&
1412 (ioc->logging_level & MPT_DEBUG_REPLY)) {
1413 _base_sas_ioc_info(ioc , mpi_reply,
1414 mpt3sas_base_get_msg_frame(ioc, smid));
1415 }
1416
1417 if (ioc_status & MPI2_IOCSTATUS_FLAG_LOG_INFO_AVAILABLE) {
1418 loginfo = le32_to_cpu(mpi_reply->IOCLogInfo);
1419 _base_sas_log_info(ioc, loginfo);
1420 }
1421
1422 if (ioc_status || loginfo) {
1423 ioc_status &= MPI2_IOCSTATUS_MASK;
1424 mpt3sas_trigger_mpi(ioc, ioc_status, loginfo);
1425 }
1426 }
1427
1428 /**
1429 * mpt3sas_base_done - base internal command completion routine
1430 * @ioc: per adapter object
1431 * @smid: system request message index
1432 * @msix_index: MSIX table index supplied by the OS
1433 * @reply: reply message frame(lower 32bit addr)
1434 *
1435 * Return:
1436 * 1 meaning mf should be freed from _base_interrupt
1437 * 0 means the mf is freed from this function.
1438 */
1439 u8
mpt3sas_base_done(struct MPT3SAS_ADAPTER * ioc,u16 smid,u8 msix_index,u32 reply)1440 mpt3sas_base_done(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
1441 u32 reply)
1442 {
1443 MPI2DefaultReply_t *mpi_reply;
1444
1445 mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
1446 if (mpi_reply && mpi_reply->Function == MPI2_FUNCTION_EVENT_ACK)
1447 return mpt3sas_check_for_pending_internal_cmds(ioc, smid);
1448
1449 if (ioc->base_cmds.status == MPT3_CMD_NOT_USED)
1450 return 1;
1451
1452 ioc->base_cmds.status |= MPT3_CMD_COMPLETE;
1453 if (mpi_reply) {
1454 ioc->base_cmds.status |= MPT3_CMD_REPLY_VALID;
1455 memcpy(ioc->base_cmds.reply, mpi_reply, mpi_reply->MsgLength*4);
1456 }
1457 ioc->base_cmds.status &= ~MPT3_CMD_PENDING;
1458
1459 complete(&ioc->base_cmds.done);
1460 return 1;
1461 }
1462
1463 /**
1464 * _base_async_event - main callback handler for firmware asyn events
1465 * @ioc: per adapter object
1466 * @msix_index: MSIX table index supplied by the OS
1467 * @reply: reply message frame(lower 32bit addr)
1468 *
1469 * Return:
1470 * 1 meaning mf should be freed from _base_interrupt
1471 * 0 means the mf is freed from this function.
1472 */
1473 static u8
_base_async_event(struct MPT3SAS_ADAPTER * ioc,u8 msix_index,u32 reply)1474 _base_async_event(struct MPT3SAS_ADAPTER *ioc, u8 msix_index, u32 reply)
1475 {
1476 Mpi2EventNotificationReply_t *mpi_reply;
1477 Mpi2EventAckRequest_t *ack_request;
1478 u16 smid;
1479 struct _event_ack_list *delayed_event_ack;
1480
1481 mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
1482 if (!mpi_reply)
1483 return 1;
1484 if (mpi_reply->Function != MPI2_FUNCTION_EVENT_NOTIFICATION)
1485 return 1;
1486
1487 _base_display_event_data(ioc, mpi_reply);
1488
1489 if (!(mpi_reply->AckRequired & MPI2_EVENT_NOTIFICATION_ACK_REQUIRED))
1490 goto out;
1491 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
1492 if (!smid) {
1493 delayed_event_ack = kzalloc(sizeof(*delayed_event_ack),
1494 GFP_ATOMIC);
1495 if (!delayed_event_ack)
1496 goto out;
1497 INIT_LIST_HEAD(&delayed_event_ack->list);
1498 delayed_event_ack->Event = mpi_reply->Event;
1499 delayed_event_ack->EventContext = mpi_reply->EventContext;
1500 list_add_tail(&delayed_event_ack->list,
1501 &ioc->delayed_event_ack_list);
1502 dewtprintk(ioc,
1503 ioc_info(ioc, "DELAYED: EVENT ACK: event (0x%04x)\n",
1504 le16_to_cpu(mpi_reply->Event)));
1505 goto out;
1506 }
1507
1508 ack_request = mpt3sas_base_get_msg_frame(ioc, smid);
1509 memset(ack_request, 0, sizeof(Mpi2EventAckRequest_t));
1510 ack_request->Function = MPI2_FUNCTION_EVENT_ACK;
1511 ack_request->Event = mpi_reply->Event;
1512 ack_request->EventContext = mpi_reply->EventContext;
1513 ack_request->VF_ID = 0; /* TODO */
1514 ack_request->VP_ID = 0;
1515 ioc->put_smid_default(ioc, smid);
1516
1517 out:
1518
1519 /* scsih callback handler */
1520 mpt3sas_scsih_event_callback(ioc, msix_index, reply);
1521
1522 /* ctl callback handler */
1523 mpt3sas_ctl_event_callback(ioc, msix_index, reply);
1524
1525 return 1;
1526 }
1527
1528 static struct scsiio_tracker *
_get_st_from_smid(struct MPT3SAS_ADAPTER * ioc,u16 smid)1529 _get_st_from_smid(struct MPT3SAS_ADAPTER *ioc, u16 smid)
1530 {
1531 struct scsi_cmnd *cmd;
1532
1533 if (WARN_ON(!smid) ||
1534 WARN_ON(smid >= ioc->hi_priority_smid))
1535 return NULL;
1536
1537 cmd = mpt3sas_scsih_scsi_lookup_get(ioc, smid);
1538 if (cmd)
1539 return scsi_cmd_priv(cmd);
1540
1541 return NULL;
1542 }
1543
1544 /**
1545 * _base_get_cb_idx - obtain the callback index
1546 * @ioc: per adapter object
1547 * @smid: system request message index
1548 *
1549 * Return: callback index.
1550 */
1551 static u8
_base_get_cb_idx(struct MPT3SAS_ADAPTER * ioc,u16 smid)1552 _base_get_cb_idx(struct MPT3SAS_ADAPTER *ioc, u16 smid)
1553 {
1554 int i;
1555 u16 ctl_smid = ioc->scsiio_depth - INTERNAL_SCSIIO_CMDS_COUNT + 1;
1556 u8 cb_idx = 0xFF;
1557
1558 if (smid < ioc->hi_priority_smid) {
1559 struct scsiio_tracker *st;
1560
1561 if (smid < ctl_smid) {
1562 st = _get_st_from_smid(ioc, smid);
1563 if (st)
1564 cb_idx = st->cb_idx;
1565 } else if (smid == ctl_smid)
1566 cb_idx = ioc->ctl_cb_idx;
1567 } else if (smid < ioc->internal_smid) {
1568 i = smid - ioc->hi_priority_smid;
1569 cb_idx = ioc->hpr_lookup[i].cb_idx;
1570 } else if (smid <= ioc->hba_queue_depth) {
1571 i = smid - ioc->internal_smid;
1572 cb_idx = ioc->internal_lookup[i].cb_idx;
1573 }
1574 return cb_idx;
1575 }
1576
1577 /**
1578 * mpt3sas_base_pause_mq_polling - pause polling on the mq poll queues
1579 * when driver is flushing out the IOs.
1580 * @ioc: per adapter object
1581 *
1582 * Pause polling on the mq poll (io uring) queues when driver is flushing
1583 * out the IOs. Otherwise we may see the race condition of completing the same
1584 * IO from two paths.
1585 *
1586 * Returns nothing.
1587 */
1588 void
mpt3sas_base_pause_mq_polling(struct MPT3SAS_ADAPTER * ioc)1589 mpt3sas_base_pause_mq_polling(struct MPT3SAS_ADAPTER *ioc)
1590 {
1591 int iopoll_q_count =
1592 ioc->reply_queue_count - ioc->iopoll_q_start_index;
1593 int qid;
1594
1595 for (qid = 0; qid < iopoll_q_count; qid++)
1596 atomic_set(&ioc->io_uring_poll_queues[qid].pause, 1);
1597
1598 /*
1599 * wait for current poll to complete.
1600 */
1601 for (qid = 0; qid < iopoll_q_count; qid++) {
1602 while (atomic_read(&ioc->io_uring_poll_queues[qid].busy)) {
1603 cpu_relax();
1604 udelay(500);
1605 }
1606 }
1607 }
1608
1609 /**
1610 * mpt3sas_base_resume_mq_polling - Resume polling on mq poll queues.
1611 * @ioc: per adapter object
1612 *
1613 * Returns nothing.
1614 */
1615 void
mpt3sas_base_resume_mq_polling(struct MPT3SAS_ADAPTER * ioc)1616 mpt3sas_base_resume_mq_polling(struct MPT3SAS_ADAPTER *ioc)
1617 {
1618 int iopoll_q_count =
1619 ioc->reply_queue_count - ioc->iopoll_q_start_index;
1620 int qid;
1621
1622 for (qid = 0; qid < iopoll_q_count; qid++)
1623 atomic_set(&ioc->io_uring_poll_queues[qid].pause, 0);
1624 }
1625
1626 /**
1627 * mpt3sas_base_mask_interrupts - disable interrupts
1628 * @ioc: per adapter object
1629 *
1630 * Disabling ResetIRQ, Reply and Doorbell Interrupts
1631 */
1632 void
mpt3sas_base_mask_interrupts(struct MPT3SAS_ADAPTER * ioc)1633 mpt3sas_base_mask_interrupts(struct MPT3SAS_ADAPTER *ioc)
1634 {
1635 u32 him_register;
1636
1637 ioc->mask_interrupts = 1;
1638 him_register = ioc->base_readl(&ioc->chip->HostInterruptMask);
1639 him_register |= MPI2_HIM_DIM + MPI2_HIM_RIM + MPI2_HIM_RESET_IRQ_MASK;
1640 writel(him_register, &ioc->chip->HostInterruptMask);
1641 ioc->base_readl(&ioc->chip->HostInterruptMask);
1642 }
1643
1644 /**
1645 * mpt3sas_base_unmask_interrupts - enable interrupts
1646 * @ioc: per adapter object
1647 *
1648 * Enabling only Reply Interrupts
1649 */
1650 void
mpt3sas_base_unmask_interrupts(struct MPT3SAS_ADAPTER * ioc)1651 mpt3sas_base_unmask_interrupts(struct MPT3SAS_ADAPTER *ioc)
1652 {
1653 u32 him_register;
1654
1655 him_register = ioc->base_readl(&ioc->chip->HostInterruptMask);
1656 him_register &= ~MPI2_HIM_RIM;
1657 writel(him_register, &ioc->chip->HostInterruptMask);
1658 ioc->mask_interrupts = 0;
1659 }
1660
1661 union reply_descriptor {
1662 u64 word;
1663 struct {
1664 u32 low;
1665 u32 high;
1666 } u;
1667 };
1668
base_mod64(u64 dividend,u32 divisor)1669 static u32 base_mod64(u64 dividend, u32 divisor)
1670 {
1671 u32 remainder;
1672
1673 if (!divisor)
1674 pr_err("mpt3sas: DIVISOR is zero, in div fn\n");
1675 remainder = do_div(dividend, divisor);
1676 return remainder;
1677 }
1678
1679 /**
1680 * _base_process_reply_queue - Process reply descriptors from reply
1681 * descriptor post queue.
1682 * @reply_q: per IRQ's reply queue object.
1683 *
1684 * Return: number of reply descriptors processed from reply
1685 * descriptor queue.
1686 */
1687 static int
_base_process_reply_queue(struct adapter_reply_queue * reply_q)1688 _base_process_reply_queue(struct adapter_reply_queue *reply_q)
1689 {
1690 union reply_descriptor rd;
1691 u64 completed_cmds;
1692 u8 request_descript_type;
1693 u16 smid;
1694 u8 cb_idx;
1695 u32 reply;
1696 u8 msix_index = reply_q->msix_index;
1697 struct MPT3SAS_ADAPTER *ioc = reply_q->ioc;
1698 Mpi2ReplyDescriptorsUnion_t *rpf;
1699 u8 rc;
1700
1701 completed_cmds = 0;
1702 if (!atomic_add_unless(&reply_q->busy, 1, 1))
1703 return completed_cmds;
1704
1705 rpf = &reply_q->reply_post_free[reply_q->reply_post_host_index];
1706 request_descript_type = rpf->Default.ReplyFlags
1707 & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK;
1708 if (request_descript_type == MPI2_RPY_DESCRIPT_FLAGS_UNUSED) {
1709 atomic_dec(&reply_q->busy);
1710 return completed_cmds;
1711 }
1712
1713 cb_idx = 0xFF;
1714 do {
1715 rd.word = le64_to_cpu(rpf->Words);
1716 if (rd.u.low == UINT_MAX || rd.u.high == UINT_MAX)
1717 goto out;
1718 reply = 0;
1719 smid = le16_to_cpu(rpf->Default.DescriptorTypeDependent1);
1720 if (request_descript_type ==
1721 MPI25_RPY_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO_SUCCESS ||
1722 request_descript_type ==
1723 MPI2_RPY_DESCRIPT_FLAGS_SCSI_IO_SUCCESS ||
1724 request_descript_type ==
1725 MPI26_RPY_DESCRIPT_FLAGS_PCIE_ENCAPSULATED_SUCCESS) {
1726 cb_idx = _base_get_cb_idx(ioc, smid);
1727 if ((likely(cb_idx < MPT_MAX_CALLBACKS)) &&
1728 (likely(mpt_callbacks[cb_idx] != NULL))) {
1729 rc = mpt_callbacks[cb_idx](ioc, smid,
1730 msix_index, 0);
1731 if (rc)
1732 mpt3sas_base_free_smid(ioc, smid);
1733 }
1734 } else if (request_descript_type ==
1735 MPI2_RPY_DESCRIPT_FLAGS_ADDRESS_REPLY) {
1736 reply = le32_to_cpu(
1737 rpf->AddressReply.ReplyFrameAddress);
1738 if (reply > ioc->reply_dma_max_address ||
1739 reply < ioc->reply_dma_min_address)
1740 reply = 0;
1741 if (smid) {
1742 cb_idx = _base_get_cb_idx(ioc, smid);
1743 if ((likely(cb_idx < MPT_MAX_CALLBACKS)) &&
1744 (likely(mpt_callbacks[cb_idx] != NULL))) {
1745 rc = mpt_callbacks[cb_idx](ioc, smid,
1746 msix_index, reply);
1747 if (reply)
1748 _base_display_reply_info(ioc,
1749 smid, msix_index, reply);
1750 if (rc)
1751 mpt3sas_base_free_smid(ioc,
1752 smid);
1753 }
1754 } else {
1755 _base_async_event(ioc, msix_index, reply);
1756 }
1757
1758 /* reply free queue handling */
1759 if (reply) {
1760 ioc->reply_free_host_index =
1761 (ioc->reply_free_host_index ==
1762 (ioc->reply_free_queue_depth - 1)) ?
1763 0 : ioc->reply_free_host_index + 1;
1764 ioc->reply_free[ioc->reply_free_host_index] =
1765 cpu_to_le32(reply);
1766 if (ioc->is_mcpu_endpoint)
1767 _base_clone_reply_to_sys_mem(ioc,
1768 reply,
1769 ioc->reply_free_host_index);
1770 writel(ioc->reply_free_host_index,
1771 &ioc->chip->ReplyFreeHostIndex);
1772 }
1773 }
1774
1775 rpf->Words = cpu_to_le64(ULLONG_MAX);
1776 reply_q->reply_post_host_index =
1777 (reply_q->reply_post_host_index ==
1778 (ioc->reply_post_queue_depth - 1)) ? 0 :
1779 reply_q->reply_post_host_index + 1;
1780 request_descript_type =
1781 reply_q->reply_post_free[reply_q->reply_post_host_index].
1782 Default.ReplyFlags & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK;
1783 completed_cmds++;
1784 /* Update the reply post host index after continuously
1785 * processing the threshold number of Reply Descriptors.
1786 * So that FW can find enough entries to post the Reply
1787 * Descriptors in the reply descriptor post queue.
1788 */
1789 if (completed_cmds >= ioc->thresh_hold) {
1790 if (ioc->combined_reply_queue) {
1791 writel(reply_q->reply_post_host_index |
1792 ((msix_index & 7) <<
1793 MPI2_RPHI_MSIX_INDEX_SHIFT),
1794 ioc->replyPostRegisterIndex[msix_index/8]);
1795 } else {
1796 writel(reply_q->reply_post_host_index |
1797 (msix_index <<
1798 MPI2_RPHI_MSIX_INDEX_SHIFT),
1799 &ioc->chip->ReplyPostHostIndex);
1800 }
1801 if (!reply_q->is_iouring_poll_q &&
1802 !reply_q->irq_poll_scheduled) {
1803 reply_q->irq_poll_scheduled = true;
1804 irq_poll_sched(&reply_q->irqpoll);
1805 }
1806 atomic_dec(&reply_q->busy);
1807 return completed_cmds;
1808 }
1809 if (request_descript_type == MPI2_RPY_DESCRIPT_FLAGS_UNUSED)
1810 goto out;
1811 if (!reply_q->reply_post_host_index)
1812 rpf = reply_q->reply_post_free;
1813 else
1814 rpf++;
1815 } while (1);
1816
1817 out:
1818
1819 if (!completed_cmds) {
1820 atomic_dec(&reply_q->busy);
1821 return completed_cmds;
1822 }
1823
1824 if (ioc->is_warpdrive) {
1825 writel(reply_q->reply_post_host_index,
1826 ioc->reply_post_host_index[msix_index]);
1827 atomic_dec(&reply_q->busy);
1828 return completed_cmds;
1829 }
1830
1831 /* Update Reply Post Host Index.
1832 * For those HBA's which support combined reply queue feature
1833 * 1. Get the correct Supplemental Reply Post Host Index Register.
1834 * i.e. (msix_index / 8)th entry from Supplemental Reply Post Host
1835 * Index Register address bank i.e replyPostRegisterIndex[],
1836 * 2. Then update this register with new reply host index value
1837 * in ReplyPostIndex field and the MSIxIndex field with
1838 * msix_index value reduced to a value between 0 and 7,
1839 * using a modulo 8 operation. Since each Supplemental Reply Post
1840 * Host Index Register supports 8 MSI-X vectors.
1841 *
1842 * For other HBA's just update the Reply Post Host Index register with
1843 * new reply host index value in ReplyPostIndex Field and msix_index
1844 * value in MSIxIndex field.
1845 */
1846 if (ioc->combined_reply_queue)
1847 writel(reply_q->reply_post_host_index | ((msix_index & 7) <<
1848 MPI2_RPHI_MSIX_INDEX_SHIFT),
1849 ioc->replyPostRegisterIndex[msix_index/8]);
1850 else
1851 writel(reply_q->reply_post_host_index | (msix_index <<
1852 MPI2_RPHI_MSIX_INDEX_SHIFT),
1853 &ioc->chip->ReplyPostHostIndex);
1854 atomic_dec(&reply_q->busy);
1855 return completed_cmds;
1856 }
1857
1858 /**
1859 * mpt3sas_blk_mq_poll - poll the blk mq poll queue
1860 * @shost: Scsi_Host object
1861 * @queue_num: hw ctx queue number
1862 *
1863 * Return number of entries that has been processed from poll queue.
1864 */
mpt3sas_blk_mq_poll(struct Scsi_Host * shost,unsigned int queue_num)1865 int mpt3sas_blk_mq_poll(struct Scsi_Host *shost, unsigned int queue_num)
1866 {
1867 struct MPT3SAS_ADAPTER *ioc =
1868 (struct MPT3SAS_ADAPTER *)shost->hostdata;
1869 struct adapter_reply_queue *reply_q;
1870 int num_entries = 0;
1871 int qid = queue_num - ioc->iopoll_q_start_index;
1872
1873 if (atomic_read(&ioc->io_uring_poll_queues[qid].pause) ||
1874 !atomic_add_unless(&ioc->io_uring_poll_queues[qid].busy, 1, 1))
1875 return 0;
1876
1877 reply_q = ioc->io_uring_poll_queues[qid].reply_q;
1878
1879 num_entries = _base_process_reply_queue(reply_q);
1880 atomic_dec(&ioc->io_uring_poll_queues[qid].busy);
1881
1882 return num_entries;
1883 }
1884
1885 /**
1886 * _base_interrupt - MPT adapter (IOC) specific interrupt handler.
1887 * @irq: irq number (not used)
1888 * @bus_id: bus identifier cookie == pointer to MPT_ADAPTER structure
1889 *
1890 * Return: IRQ_HANDLED if processed, else IRQ_NONE.
1891 */
1892 static irqreturn_t
_base_interrupt(int irq,void * bus_id)1893 _base_interrupt(int irq, void *bus_id)
1894 {
1895 struct adapter_reply_queue *reply_q = bus_id;
1896 struct MPT3SAS_ADAPTER *ioc = reply_q->ioc;
1897
1898 if (ioc->mask_interrupts)
1899 return IRQ_NONE;
1900 if (reply_q->irq_poll_scheduled)
1901 return IRQ_HANDLED;
1902 return ((_base_process_reply_queue(reply_q) > 0) ?
1903 IRQ_HANDLED : IRQ_NONE);
1904 }
1905
1906 /**
1907 * _base_irqpoll - IRQ poll callback handler
1908 * @irqpoll: irq_poll object
1909 * @budget: irq poll weight
1910 *
1911 * Return: number of reply descriptors processed
1912 */
1913 static int
_base_irqpoll(struct irq_poll * irqpoll,int budget)1914 _base_irqpoll(struct irq_poll *irqpoll, int budget)
1915 {
1916 struct adapter_reply_queue *reply_q;
1917 int num_entries = 0;
1918
1919 reply_q = container_of(irqpoll, struct adapter_reply_queue,
1920 irqpoll);
1921 if (reply_q->irq_line_enable) {
1922 disable_irq_nosync(reply_q->os_irq);
1923 reply_q->irq_line_enable = false;
1924 }
1925 num_entries = _base_process_reply_queue(reply_q);
1926 if (num_entries < budget) {
1927 irq_poll_complete(irqpoll);
1928 reply_q->irq_poll_scheduled = false;
1929 reply_q->irq_line_enable = true;
1930 enable_irq(reply_q->os_irq);
1931 /*
1932 * Go for one more round of processing the
1933 * reply descriptor post queue in case the HBA
1934 * Firmware has posted some reply descriptors
1935 * while reenabling the IRQ.
1936 */
1937 _base_process_reply_queue(reply_q);
1938 }
1939
1940 return num_entries;
1941 }
1942
1943 /**
1944 * _base_init_irqpolls - initliaze IRQ polls
1945 * @ioc: per adapter object
1946 *
1947 * Return: nothing
1948 */
1949 static void
_base_init_irqpolls(struct MPT3SAS_ADAPTER * ioc)1950 _base_init_irqpolls(struct MPT3SAS_ADAPTER *ioc)
1951 {
1952 struct adapter_reply_queue *reply_q, *next;
1953
1954 if (list_empty(&ioc->reply_queue_list))
1955 return;
1956
1957 list_for_each_entry_safe(reply_q, next, &ioc->reply_queue_list, list) {
1958 if (reply_q->is_iouring_poll_q)
1959 continue;
1960 irq_poll_init(&reply_q->irqpoll,
1961 ioc->hba_queue_depth/4, _base_irqpoll);
1962 reply_q->irq_poll_scheduled = false;
1963 reply_q->irq_line_enable = true;
1964 reply_q->os_irq = pci_irq_vector(ioc->pdev,
1965 reply_q->msix_index);
1966 }
1967 }
1968
1969 /**
1970 * _base_is_controller_msix_enabled - is controller support muli-reply queues
1971 * @ioc: per adapter object
1972 *
1973 * Return: Whether or not MSI/X is enabled.
1974 */
1975 static inline int
_base_is_controller_msix_enabled(struct MPT3SAS_ADAPTER * ioc)1976 _base_is_controller_msix_enabled(struct MPT3SAS_ADAPTER *ioc)
1977 {
1978 return (ioc->facts.IOCCapabilities &
1979 MPI2_IOCFACTS_CAPABILITY_MSI_X_INDEX) && ioc->msix_enable;
1980 }
1981
1982 /**
1983 * mpt3sas_base_sync_reply_irqs - flush pending MSIX interrupts
1984 * @ioc: per adapter object
1985 * @poll: poll over reply descriptor pools incase interrupt for
1986 * timed-out SCSI command got delayed
1987 * Context: non-ISR context
1988 *
1989 * Called when a Task Management request has completed.
1990 */
1991 void
mpt3sas_base_sync_reply_irqs(struct MPT3SAS_ADAPTER * ioc,u8 poll)1992 mpt3sas_base_sync_reply_irqs(struct MPT3SAS_ADAPTER *ioc, u8 poll)
1993 {
1994 struct adapter_reply_queue *reply_q;
1995
1996 /* If MSIX capability is turned off
1997 * then multi-queues are not enabled
1998 */
1999 if (!_base_is_controller_msix_enabled(ioc))
2000 return;
2001
2002 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
2003 if (ioc->shost_recovery || ioc->remove_host ||
2004 ioc->pci_error_recovery)
2005 return;
2006 /* TMs are on msix_index == 0 */
2007 if (reply_q->msix_index == 0)
2008 continue;
2009
2010 if (reply_q->is_iouring_poll_q) {
2011 _base_process_reply_queue(reply_q);
2012 continue;
2013 }
2014
2015 synchronize_irq(pci_irq_vector(ioc->pdev, reply_q->msix_index));
2016 if (reply_q->irq_poll_scheduled) {
2017 /* Calling irq_poll_disable will wait for any pending
2018 * callbacks to have completed.
2019 */
2020 irq_poll_disable(&reply_q->irqpoll);
2021 irq_poll_enable(&reply_q->irqpoll);
2022 /* check how the scheduled poll has ended,
2023 * clean up only if necessary
2024 */
2025 if (reply_q->irq_poll_scheduled) {
2026 reply_q->irq_poll_scheduled = false;
2027 reply_q->irq_line_enable = true;
2028 enable_irq(reply_q->os_irq);
2029 }
2030 }
2031
2032 if (poll)
2033 _base_process_reply_queue(reply_q);
2034 }
2035 }
2036
2037 /**
2038 * mpt3sas_base_release_callback_handler - clear interrupt callback handler
2039 * @cb_idx: callback index
2040 */
2041 void
mpt3sas_base_release_callback_handler(u8 cb_idx)2042 mpt3sas_base_release_callback_handler(u8 cb_idx)
2043 {
2044 mpt_callbacks[cb_idx] = NULL;
2045 }
2046
2047 /**
2048 * mpt3sas_base_register_callback_handler - obtain index for the interrupt callback handler
2049 * @cb_func: callback function
2050 *
2051 * Return: Index of @cb_func.
2052 */
2053 u8
mpt3sas_base_register_callback_handler(MPT_CALLBACK cb_func)2054 mpt3sas_base_register_callback_handler(MPT_CALLBACK cb_func)
2055 {
2056 u8 cb_idx;
2057
2058 for (cb_idx = MPT_MAX_CALLBACKS-1; cb_idx; cb_idx--)
2059 if (mpt_callbacks[cb_idx] == NULL)
2060 break;
2061
2062 mpt_callbacks[cb_idx] = cb_func;
2063 return cb_idx;
2064 }
2065
2066 /**
2067 * mpt3sas_base_initialize_callback_handler - initialize the interrupt callback handler
2068 */
2069 void
mpt3sas_base_initialize_callback_handler(void)2070 mpt3sas_base_initialize_callback_handler(void)
2071 {
2072 u8 cb_idx;
2073
2074 for (cb_idx = 0; cb_idx < MPT_MAX_CALLBACKS; cb_idx++)
2075 mpt3sas_base_release_callback_handler(cb_idx);
2076 }
2077
2078
2079 /**
2080 * _base_build_zero_len_sge - build zero length sg entry
2081 * @ioc: per adapter object
2082 * @paddr: virtual address for SGE
2083 *
2084 * Create a zero length scatter gather entry to insure the IOCs hardware has
2085 * something to use if the target device goes brain dead and tries
2086 * to send data even when none is asked for.
2087 */
2088 static void
_base_build_zero_len_sge(struct MPT3SAS_ADAPTER * ioc,void * paddr)2089 _base_build_zero_len_sge(struct MPT3SAS_ADAPTER *ioc, void *paddr)
2090 {
2091 u32 flags_length = (u32)((MPI2_SGE_FLAGS_LAST_ELEMENT |
2092 MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_END_OF_LIST |
2093 MPI2_SGE_FLAGS_SIMPLE_ELEMENT) <<
2094 MPI2_SGE_FLAGS_SHIFT);
2095 ioc->base_add_sg_single(paddr, flags_length, -1);
2096 }
2097
2098 /**
2099 * _base_add_sg_single_32 - Place a simple 32 bit SGE at address pAddr.
2100 * @paddr: virtual address for SGE
2101 * @flags_length: SGE flags and data transfer length
2102 * @dma_addr: Physical address
2103 */
2104 static void
_base_add_sg_single_32(void * paddr,u32 flags_length,dma_addr_t dma_addr)2105 _base_add_sg_single_32(void *paddr, u32 flags_length, dma_addr_t dma_addr)
2106 {
2107 Mpi2SGESimple32_t *sgel = paddr;
2108
2109 flags_length |= (MPI2_SGE_FLAGS_32_BIT_ADDRESSING |
2110 MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT;
2111 sgel->FlagsLength = cpu_to_le32(flags_length);
2112 sgel->Address = cpu_to_le32(dma_addr);
2113 }
2114
2115
2116 /**
2117 * _base_add_sg_single_64 - Place a simple 64 bit SGE at address pAddr.
2118 * @paddr: virtual address for SGE
2119 * @flags_length: SGE flags and data transfer length
2120 * @dma_addr: Physical address
2121 */
2122 static void
_base_add_sg_single_64(void * paddr,u32 flags_length,dma_addr_t dma_addr)2123 _base_add_sg_single_64(void *paddr, u32 flags_length, dma_addr_t dma_addr)
2124 {
2125 Mpi2SGESimple64_t *sgel = paddr;
2126
2127 flags_length |= (MPI2_SGE_FLAGS_64_BIT_ADDRESSING |
2128 MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT;
2129 sgel->FlagsLength = cpu_to_le32(flags_length);
2130 sgel->Address = cpu_to_le64(dma_addr);
2131 }
2132
2133 /**
2134 * _base_get_chain_buffer_tracker - obtain chain tracker
2135 * @ioc: per adapter object
2136 * @scmd: SCSI commands of the IO request
2137 *
2138 * Return: chain tracker from chain_lookup table using key as
2139 * smid and smid's chain_offset.
2140 */
2141 static struct chain_tracker *
_base_get_chain_buffer_tracker(struct MPT3SAS_ADAPTER * ioc,struct scsi_cmnd * scmd)2142 _base_get_chain_buffer_tracker(struct MPT3SAS_ADAPTER *ioc,
2143 struct scsi_cmnd *scmd)
2144 {
2145 struct chain_tracker *chain_req;
2146 struct scsiio_tracker *st = scsi_cmd_priv(scmd);
2147 u16 smid = st->smid;
2148 u8 chain_offset =
2149 atomic_read(&ioc->chain_lookup[smid - 1].chain_offset);
2150
2151 if (chain_offset == ioc->chains_needed_per_io)
2152 return NULL;
2153
2154 chain_req = &ioc->chain_lookup[smid - 1].chains_per_smid[chain_offset];
2155 atomic_inc(&ioc->chain_lookup[smid - 1].chain_offset);
2156 return chain_req;
2157 }
2158
2159
2160 /**
2161 * _base_build_sg - build generic sg
2162 * @ioc: per adapter object
2163 * @psge: virtual address for SGE
2164 * @data_out_dma: physical address for WRITES
2165 * @data_out_sz: data xfer size for WRITES
2166 * @data_in_dma: physical address for READS
2167 * @data_in_sz: data xfer size for READS
2168 */
2169 static void
_base_build_sg(struct MPT3SAS_ADAPTER * ioc,void * psge,dma_addr_t data_out_dma,size_t data_out_sz,dma_addr_t data_in_dma,size_t data_in_sz)2170 _base_build_sg(struct MPT3SAS_ADAPTER *ioc, void *psge,
2171 dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma,
2172 size_t data_in_sz)
2173 {
2174 u32 sgl_flags;
2175
2176 if (!data_out_sz && !data_in_sz) {
2177 _base_build_zero_len_sge(ioc, psge);
2178 return;
2179 }
2180
2181 if (data_out_sz && data_in_sz) {
2182 /* WRITE sgel first */
2183 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
2184 MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_HOST_TO_IOC);
2185 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
2186 ioc->base_add_sg_single(psge, sgl_flags |
2187 data_out_sz, data_out_dma);
2188
2189 /* incr sgel */
2190 psge += ioc->sge_size;
2191
2192 /* READ sgel last */
2193 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
2194 MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
2195 MPI2_SGE_FLAGS_END_OF_LIST);
2196 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
2197 ioc->base_add_sg_single(psge, sgl_flags |
2198 data_in_sz, data_in_dma);
2199 } else if (data_out_sz) /* WRITE */ {
2200 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
2201 MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
2202 MPI2_SGE_FLAGS_END_OF_LIST | MPI2_SGE_FLAGS_HOST_TO_IOC);
2203 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
2204 ioc->base_add_sg_single(psge, sgl_flags |
2205 data_out_sz, data_out_dma);
2206 } else if (data_in_sz) /* READ */ {
2207 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
2208 MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
2209 MPI2_SGE_FLAGS_END_OF_LIST);
2210 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
2211 ioc->base_add_sg_single(psge, sgl_flags |
2212 data_in_sz, data_in_dma);
2213 }
2214 }
2215
2216 /* IEEE format sgls */
2217
2218 /**
2219 * _base_build_nvme_prp - This function is called for NVMe end devices to build
2220 * a native SGL (NVMe PRP).
2221 * @ioc: per adapter object
2222 * @smid: system request message index for getting asscociated SGL
2223 * @nvme_encap_request: the NVMe request msg frame pointer
2224 * @data_out_dma: physical address for WRITES
2225 * @data_out_sz: data xfer size for WRITES
2226 * @data_in_dma: physical address for READS
2227 * @data_in_sz: data xfer size for READS
2228 *
2229 * The native SGL is built starting in the first PRP
2230 * entry of the NVMe message (PRP1). If the data buffer is small enough to be
2231 * described entirely using PRP1, then PRP2 is not used. If needed, PRP2 is
2232 * used to describe a larger data buffer. If the data buffer is too large to
2233 * describe using the two PRP entriess inside the NVMe message, then PRP1
2234 * describes the first data memory segment, and PRP2 contains a pointer to a PRP
2235 * list located elsewhere in memory to describe the remaining data memory
2236 * segments. The PRP list will be contiguous.
2237 *
2238 * The native SGL for NVMe devices is a Physical Region Page (PRP). A PRP
2239 * consists of a list of PRP entries to describe a number of noncontigous
2240 * physical memory segments as a single memory buffer, just as a SGL does. Note
2241 * however, that this function is only used by the IOCTL call, so the memory
2242 * given will be guaranteed to be contiguous. There is no need to translate
2243 * non-contiguous SGL into a PRP in this case. All PRPs will describe
2244 * contiguous space that is one page size each.
2245 *
2246 * Each NVMe message contains two PRP entries. The first (PRP1) either contains
2247 * a PRP list pointer or a PRP element, depending upon the command. PRP2
2248 * contains the second PRP element if the memory being described fits within 2
2249 * PRP entries, or a PRP list pointer if the PRP spans more than two entries.
2250 *
2251 * A PRP list pointer contains the address of a PRP list, structured as a linear
2252 * array of PRP entries. Each PRP entry in this list describes a segment of
2253 * physical memory.
2254 *
2255 * Each 64-bit PRP entry comprises an address and an offset field. The address
2256 * always points at the beginning of a 4KB physical memory page, and the offset
2257 * describes where within that 4KB page the memory segment begins. Only the
2258 * first element in a PRP list may contain a non-zero offset, implying that all
2259 * memory segments following the first begin at the start of a 4KB page.
2260 *
2261 * Each PRP element normally describes 4KB of physical memory, with exceptions
2262 * for the first and last elements in the list. If the memory being described
2263 * by the list begins at a non-zero offset within the first 4KB page, then the
2264 * first PRP element will contain a non-zero offset indicating where the region
2265 * begins within the 4KB page. The last memory segment may end before the end
2266 * of the 4KB segment, depending upon the overall size of the memory being
2267 * described by the PRP list.
2268 *
2269 * Since PRP entries lack any indication of size, the overall data buffer length
2270 * is used to determine where the end of the data memory buffer is located, and
2271 * how many PRP entries are required to describe it.
2272 */
2273 static void
_base_build_nvme_prp(struct MPT3SAS_ADAPTER * ioc,u16 smid,Mpi26NVMeEncapsulatedRequest_t * nvme_encap_request,dma_addr_t data_out_dma,size_t data_out_sz,dma_addr_t data_in_dma,size_t data_in_sz)2274 _base_build_nvme_prp(struct MPT3SAS_ADAPTER *ioc, u16 smid,
2275 Mpi26NVMeEncapsulatedRequest_t *nvme_encap_request,
2276 dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma,
2277 size_t data_in_sz)
2278 {
2279 int prp_size = NVME_PRP_SIZE;
2280 __le64 *prp_entry, *prp1_entry, *prp2_entry;
2281 __le64 *prp_page;
2282 dma_addr_t prp_entry_dma, prp_page_dma, dma_addr;
2283 u32 offset, entry_len;
2284 u32 page_mask_result, page_mask;
2285 size_t length;
2286 struct mpt3sas_nvme_cmd *nvme_cmd =
2287 (void *)nvme_encap_request->NVMe_Command;
2288
2289 /*
2290 * Not all commands require a data transfer. If no data, just return
2291 * without constructing any PRP.
2292 */
2293 if (!data_in_sz && !data_out_sz)
2294 return;
2295 prp1_entry = &nvme_cmd->prp1;
2296 prp2_entry = &nvme_cmd->prp2;
2297 prp_entry = prp1_entry;
2298 /*
2299 * For the PRP entries, use the specially allocated buffer of
2300 * contiguous memory.
2301 */
2302 prp_page = (__le64 *)mpt3sas_base_get_pcie_sgl(ioc, smid);
2303 prp_page_dma = mpt3sas_base_get_pcie_sgl_dma(ioc, smid);
2304
2305 /*
2306 * Check if we are within 1 entry of a page boundary we don't
2307 * want our first entry to be a PRP List entry.
2308 */
2309 page_mask = ioc->page_size - 1;
2310 page_mask_result = (uintptr_t)((u8 *)prp_page + prp_size) & page_mask;
2311 if (!page_mask_result) {
2312 /* Bump up to next page boundary. */
2313 prp_page = (__le64 *)((u8 *)prp_page + prp_size);
2314 prp_page_dma = prp_page_dma + prp_size;
2315 }
2316
2317 /*
2318 * Set PRP physical pointer, which initially points to the current PRP
2319 * DMA memory page.
2320 */
2321 prp_entry_dma = prp_page_dma;
2322
2323 /* Get physical address and length of the data buffer. */
2324 if (data_in_sz) {
2325 dma_addr = data_in_dma;
2326 length = data_in_sz;
2327 } else {
2328 dma_addr = data_out_dma;
2329 length = data_out_sz;
2330 }
2331
2332 /* Loop while the length is not zero. */
2333 while (length) {
2334 /*
2335 * Check if we need to put a list pointer here if we are at
2336 * page boundary - prp_size (8 bytes).
2337 */
2338 page_mask_result = (prp_entry_dma + prp_size) & page_mask;
2339 if (!page_mask_result) {
2340 /*
2341 * This is the last entry in a PRP List, so we need to
2342 * put a PRP list pointer here. What this does is:
2343 * - bump the current memory pointer to the next
2344 * address, which will be the next full page.
2345 * - set the PRP Entry to point to that page. This
2346 * is now the PRP List pointer.
2347 * - bump the PRP Entry pointer the start of the
2348 * next page. Since all of this PRP memory is
2349 * contiguous, no need to get a new page - it's
2350 * just the next address.
2351 */
2352 prp_entry_dma++;
2353 *prp_entry = cpu_to_le64(prp_entry_dma);
2354 prp_entry++;
2355 }
2356
2357 /* Need to handle if entry will be part of a page. */
2358 offset = dma_addr & page_mask;
2359 entry_len = ioc->page_size - offset;
2360
2361 if (prp_entry == prp1_entry) {
2362 /*
2363 * Must fill in the first PRP pointer (PRP1) before
2364 * moving on.
2365 */
2366 *prp1_entry = cpu_to_le64(dma_addr);
2367
2368 /*
2369 * Now point to the second PRP entry within the
2370 * command (PRP2).
2371 */
2372 prp_entry = prp2_entry;
2373 } else if (prp_entry == prp2_entry) {
2374 /*
2375 * Should the PRP2 entry be a PRP List pointer or just
2376 * a regular PRP pointer? If there is more than one
2377 * more page of data, must use a PRP List pointer.
2378 */
2379 if (length > ioc->page_size) {
2380 /*
2381 * PRP2 will contain a PRP List pointer because
2382 * more PRP's are needed with this command. The
2383 * list will start at the beginning of the
2384 * contiguous buffer.
2385 */
2386 *prp2_entry = cpu_to_le64(prp_entry_dma);
2387
2388 /*
2389 * The next PRP Entry will be the start of the
2390 * first PRP List.
2391 */
2392 prp_entry = prp_page;
2393 } else {
2394 /*
2395 * After this, the PRP Entries are complete.
2396 * This command uses 2 PRP's and no PRP list.
2397 */
2398 *prp2_entry = cpu_to_le64(dma_addr);
2399 }
2400 } else {
2401 /*
2402 * Put entry in list and bump the addresses.
2403 *
2404 * After PRP1 and PRP2 are filled in, this will fill in
2405 * all remaining PRP entries in a PRP List, one per
2406 * each time through the loop.
2407 */
2408 *prp_entry = cpu_to_le64(dma_addr);
2409 prp_entry++;
2410 prp_entry_dma++;
2411 }
2412
2413 /*
2414 * Bump the phys address of the command's data buffer by the
2415 * entry_len.
2416 */
2417 dma_addr += entry_len;
2418
2419 /* Decrement length accounting for last partial page. */
2420 if (entry_len > length)
2421 length = 0;
2422 else
2423 length -= entry_len;
2424 }
2425 }
2426
2427 /**
2428 * base_make_prp_nvme - Prepare PRPs (Physical Region Page) -
2429 * SGLs specific to NVMe drives only
2430 *
2431 * @ioc: per adapter object
2432 * @scmd: SCSI command from the mid-layer
2433 * @mpi_request: mpi request
2434 * @smid: msg Index
2435 * @sge_count: scatter gather element count.
2436 *
2437 * Return: true: PRPs are built
2438 * false: IEEE SGLs needs to be built
2439 */
2440 static void
base_make_prp_nvme(struct MPT3SAS_ADAPTER * ioc,struct scsi_cmnd * scmd,Mpi25SCSIIORequest_t * mpi_request,u16 smid,int sge_count)2441 base_make_prp_nvme(struct MPT3SAS_ADAPTER *ioc,
2442 struct scsi_cmnd *scmd,
2443 Mpi25SCSIIORequest_t *mpi_request,
2444 u16 smid, int sge_count)
2445 {
2446 int sge_len, num_prp_in_chain = 0;
2447 Mpi25IeeeSgeChain64_t *main_chain_element, *ptr_first_sgl;
2448 __le64 *curr_buff;
2449 dma_addr_t msg_dma, sge_addr, offset;
2450 u32 page_mask, page_mask_result;
2451 struct scatterlist *sg_scmd;
2452 u32 first_prp_len;
2453 int data_len = scsi_bufflen(scmd);
2454 u32 nvme_pg_size;
2455
2456 nvme_pg_size = max_t(u32, ioc->page_size, NVME_PRP_PAGE_SIZE);
2457 /*
2458 * Nvme has a very convoluted prp format. One prp is required
2459 * for each page or partial page. Driver need to split up OS sg_list
2460 * entries if it is longer than one page or cross a page
2461 * boundary. Driver also have to insert a PRP list pointer entry as
2462 * the last entry in each physical page of the PRP list.
2463 *
2464 * NOTE: The first PRP "entry" is actually placed in the first
2465 * SGL entry in the main message as IEEE 64 format. The 2nd
2466 * entry in the main message is the chain element, and the rest
2467 * of the PRP entries are built in the contiguous pcie buffer.
2468 */
2469 page_mask = nvme_pg_size - 1;
2470
2471 /*
2472 * Native SGL is needed.
2473 * Put a chain element in main message frame that points to the first
2474 * chain buffer.
2475 *
2476 * NOTE: The ChainOffset field must be 0 when using a chain pointer to
2477 * a native SGL.
2478 */
2479
2480 /* Set main message chain element pointer */
2481 main_chain_element = (pMpi25IeeeSgeChain64_t)&mpi_request->SGL;
2482 /*
2483 * For NVMe the chain element needs to be the 2nd SG entry in the main
2484 * message.
2485 */
2486 main_chain_element = (Mpi25IeeeSgeChain64_t *)
2487 ((u8 *)main_chain_element + sizeof(MPI25_IEEE_SGE_CHAIN64));
2488
2489 /*
2490 * For the PRP entries, use the specially allocated buffer of
2491 * contiguous memory. Normal chain buffers can't be used
2492 * because each chain buffer would need to be the size of an OS
2493 * page (4k).
2494 */
2495 curr_buff = mpt3sas_base_get_pcie_sgl(ioc, smid);
2496 msg_dma = mpt3sas_base_get_pcie_sgl_dma(ioc, smid);
2497
2498 main_chain_element->Address = cpu_to_le64(msg_dma);
2499 main_chain_element->NextChainOffset = 0;
2500 main_chain_element->Flags = MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT |
2501 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR |
2502 MPI26_IEEE_SGE_FLAGS_NSF_NVME_PRP;
2503
2504 /* Build first prp, sge need not to be page aligned*/
2505 ptr_first_sgl = (pMpi25IeeeSgeChain64_t)&mpi_request->SGL;
2506 sg_scmd = scsi_sglist(scmd);
2507 sge_addr = sg_dma_address(sg_scmd);
2508 sge_len = sg_dma_len(sg_scmd);
2509
2510 offset = sge_addr & page_mask;
2511 first_prp_len = nvme_pg_size - offset;
2512
2513 ptr_first_sgl->Address = cpu_to_le64(sge_addr);
2514 ptr_first_sgl->Length = cpu_to_le32(first_prp_len);
2515
2516 data_len -= first_prp_len;
2517
2518 if (sge_len > first_prp_len) {
2519 sge_addr += first_prp_len;
2520 sge_len -= first_prp_len;
2521 } else if (data_len && (sge_len == first_prp_len)) {
2522 sg_scmd = sg_next(sg_scmd);
2523 sge_addr = sg_dma_address(sg_scmd);
2524 sge_len = sg_dma_len(sg_scmd);
2525 }
2526
2527 for (;;) {
2528 offset = sge_addr & page_mask;
2529
2530 /* Put PRP pointer due to page boundary*/
2531 page_mask_result = (uintptr_t)(curr_buff + 1) & page_mask;
2532 if (unlikely(!page_mask_result)) {
2533 scmd_printk(KERN_NOTICE,
2534 scmd, "page boundary curr_buff: 0x%p\n",
2535 curr_buff);
2536 msg_dma += 8;
2537 *curr_buff = cpu_to_le64(msg_dma);
2538 curr_buff++;
2539 num_prp_in_chain++;
2540 }
2541
2542 *curr_buff = cpu_to_le64(sge_addr);
2543 curr_buff++;
2544 msg_dma += 8;
2545 num_prp_in_chain++;
2546
2547 sge_addr += nvme_pg_size;
2548 sge_len -= nvme_pg_size;
2549 data_len -= nvme_pg_size;
2550
2551 if (data_len <= 0)
2552 break;
2553
2554 if (sge_len > 0)
2555 continue;
2556
2557 sg_scmd = sg_next(sg_scmd);
2558 sge_addr = sg_dma_address(sg_scmd);
2559 sge_len = sg_dma_len(sg_scmd);
2560 }
2561
2562 main_chain_element->Length =
2563 cpu_to_le32(num_prp_in_chain * sizeof(u64));
2564 return;
2565 }
2566
2567 static bool
base_is_prp_possible(struct MPT3SAS_ADAPTER * ioc,struct _pcie_device * pcie_device,struct scsi_cmnd * scmd,int sge_count)2568 base_is_prp_possible(struct MPT3SAS_ADAPTER *ioc,
2569 struct _pcie_device *pcie_device, struct scsi_cmnd *scmd, int sge_count)
2570 {
2571 u32 data_length = 0;
2572 bool build_prp = true;
2573
2574 data_length = scsi_bufflen(scmd);
2575 if (pcie_device &&
2576 (mpt3sas_scsih_is_pcie_scsi_device(pcie_device->device_info))) {
2577 build_prp = false;
2578 return build_prp;
2579 }
2580
2581 /* If Datalenth is <= 16K and number of SGE’s entries are <= 2
2582 * we built IEEE SGL
2583 */
2584 if ((data_length <= NVME_PRP_PAGE_SIZE*4) && (sge_count <= 2))
2585 build_prp = false;
2586
2587 return build_prp;
2588 }
2589
2590 /**
2591 * _base_check_pcie_native_sgl - This function is called for PCIe end devices to
2592 * determine if the driver needs to build a native SGL. If so, that native
2593 * SGL is built in the special contiguous buffers allocated especially for
2594 * PCIe SGL creation. If the driver will not build a native SGL, return
2595 * TRUE and a normal IEEE SGL will be built. Currently this routine
2596 * supports NVMe.
2597 * @ioc: per adapter object
2598 * @mpi_request: mf request pointer
2599 * @smid: system request message index
2600 * @scmd: scsi command
2601 * @pcie_device: points to the PCIe device's info
2602 *
2603 * Return: 0 if native SGL was built, 1 if no SGL was built
2604 */
2605 static int
_base_check_pcie_native_sgl(struct MPT3SAS_ADAPTER * ioc,Mpi25SCSIIORequest_t * mpi_request,u16 smid,struct scsi_cmnd * scmd,struct _pcie_device * pcie_device)2606 _base_check_pcie_native_sgl(struct MPT3SAS_ADAPTER *ioc,
2607 Mpi25SCSIIORequest_t *mpi_request, u16 smid, struct scsi_cmnd *scmd,
2608 struct _pcie_device *pcie_device)
2609 {
2610 int sges_left;
2611
2612 /* Get the SG list pointer and info. */
2613 sges_left = scsi_dma_map(scmd);
2614 if (sges_left < 0)
2615 return 1;
2616
2617 /* Check if we need to build a native SG list. */
2618 if (!base_is_prp_possible(ioc, pcie_device,
2619 scmd, sges_left)) {
2620 /* We built a native SG list, just return. */
2621 goto out;
2622 }
2623
2624 /*
2625 * Build native NVMe PRP.
2626 */
2627 base_make_prp_nvme(ioc, scmd, mpi_request,
2628 smid, sges_left);
2629
2630 return 0;
2631 out:
2632 scsi_dma_unmap(scmd);
2633 return 1;
2634 }
2635
2636 /**
2637 * _base_add_sg_single_ieee - add sg element for IEEE format
2638 * @paddr: virtual address for SGE
2639 * @flags: SGE flags
2640 * @chain_offset: number of 128 byte elements from start of segment
2641 * @length: data transfer length
2642 * @dma_addr: Physical address
2643 */
2644 static void
_base_add_sg_single_ieee(void * paddr,u8 flags,u8 chain_offset,u32 length,dma_addr_t dma_addr)2645 _base_add_sg_single_ieee(void *paddr, u8 flags, u8 chain_offset, u32 length,
2646 dma_addr_t dma_addr)
2647 {
2648 Mpi25IeeeSgeChain64_t *sgel = paddr;
2649
2650 sgel->Flags = flags;
2651 sgel->NextChainOffset = chain_offset;
2652 sgel->Length = cpu_to_le32(length);
2653 sgel->Address = cpu_to_le64(dma_addr);
2654 }
2655
2656 /**
2657 * _base_build_zero_len_sge_ieee - build zero length sg entry for IEEE format
2658 * @ioc: per adapter object
2659 * @paddr: virtual address for SGE
2660 *
2661 * Create a zero length scatter gather entry to insure the IOCs hardware has
2662 * something to use if the target device goes brain dead and tries
2663 * to send data even when none is asked for.
2664 */
2665 static void
_base_build_zero_len_sge_ieee(struct MPT3SAS_ADAPTER * ioc,void * paddr)2666 _base_build_zero_len_sge_ieee(struct MPT3SAS_ADAPTER *ioc, void *paddr)
2667 {
2668 u8 sgl_flags = (MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2669 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR |
2670 MPI25_IEEE_SGE_FLAGS_END_OF_LIST);
2671
2672 _base_add_sg_single_ieee(paddr, sgl_flags, 0, 0, -1);
2673 }
2674
2675 /**
2676 * _base_build_sg_scmd - main sg creation routine
2677 * pcie_device is unused here!
2678 * @ioc: per adapter object
2679 * @scmd: scsi command
2680 * @smid: system request message index
2681 * @unused: unused pcie_device pointer
2682 * Context: none.
2683 *
2684 * The main routine that builds scatter gather table from a given
2685 * scsi request sent via the .queuecommand main handler.
2686 *
2687 * Return: 0 success, anything else error
2688 */
2689 static int
_base_build_sg_scmd(struct MPT3SAS_ADAPTER * ioc,struct scsi_cmnd * scmd,u16 smid,struct _pcie_device * unused)2690 _base_build_sg_scmd(struct MPT3SAS_ADAPTER *ioc,
2691 struct scsi_cmnd *scmd, u16 smid, struct _pcie_device *unused)
2692 {
2693 Mpi2SCSIIORequest_t *mpi_request;
2694 dma_addr_t chain_dma;
2695 struct scatterlist *sg_scmd;
2696 void *sg_local, *chain;
2697 u32 chain_offset;
2698 u32 chain_length;
2699 u32 chain_flags;
2700 int sges_left;
2701 u32 sges_in_segment;
2702 u32 sgl_flags;
2703 u32 sgl_flags_last_element;
2704 u32 sgl_flags_end_buffer;
2705 struct chain_tracker *chain_req;
2706
2707 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
2708
2709 /* init scatter gather flags */
2710 sgl_flags = MPI2_SGE_FLAGS_SIMPLE_ELEMENT;
2711 if (scmd->sc_data_direction == DMA_TO_DEVICE)
2712 sgl_flags |= MPI2_SGE_FLAGS_HOST_TO_IOC;
2713 sgl_flags_last_element = (sgl_flags | MPI2_SGE_FLAGS_LAST_ELEMENT)
2714 << MPI2_SGE_FLAGS_SHIFT;
2715 sgl_flags_end_buffer = (sgl_flags | MPI2_SGE_FLAGS_LAST_ELEMENT |
2716 MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_END_OF_LIST)
2717 << MPI2_SGE_FLAGS_SHIFT;
2718 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
2719
2720 sg_scmd = scsi_sglist(scmd);
2721 sges_left = scsi_dma_map(scmd);
2722 if (sges_left < 0)
2723 return -ENOMEM;
2724
2725 sg_local = &mpi_request->SGL;
2726 sges_in_segment = ioc->max_sges_in_main_message;
2727 if (sges_left <= sges_in_segment)
2728 goto fill_in_last_segment;
2729
2730 mpi_request->ChainOffset = (offsetof(Mpi2SCSIIORequest_t, SGL) +
2731 (sges_in_segment * ioc->sge_size))/4;
2732
2733 /* fill in main message segment when there is a chain following */
2734 while (sges_in_segment) {
2735 if (sges_in_segment == 1)
2736 ioc->base_add_sg_single(sg_local,
2737 sgl_flags_last_element | sg_dma_len(sg_scmd),
2738 sg_dma_address(sg_scmd));
2739 else
2740 ioc->base_add_sg_single(sg_local, sgl_flags |
2741 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2742 sg_scmd = sg_next(sg_scmd);
2743 sg_local += ioc->sge_size;
2744 sges_left--;
2745 sges_in_segment--;
2746 }
2747
2748 /* initializing the chain flags and pointers */
2749 chain_flags = MPI2_SGE_FLAGS_CHAIN_ELEMENT << MPI2_SGE_FLAGS_SHIFT;
2750 chain_req = _base_get_chain_buffer_tracker(ioc, scmd);
2751 if (!chain_req)
2752 return -1;
2753 chain = chain_req->chain_buffer;
2754 chain_dma = chain_req->chain_buffer_dma;
2755 do {
2756 sges_in_segment = (sges_left <=
2757 ioc->max_sges_in_chain_message) ? sges_left :
2758 ioc->max_sges_in_chain_message;
2759 chain_offset = (sges_left == sges_in_segment) ?
2760 0 : (sges_in_segment * ioc->sge_size)/4;
2761 chain_length = sges_in_segment * ioc->sge_size;
2762 if (chain_offset) {
2763 chain_offset = chain_offset <<
2764 MPI2_SGE_CHAIN_OFFSET_SHIFT;
2765 chain_length += ioc->sge_size;
2766 }
2767 ioc->base_add_sg_single(sg_local, chain_flags | chain_offset |
2768 chain_length, chain_dma);
2769 sg_local = chain;
2770 if (!chain_offset)
2771 goto fill_in_last_segment;
2772
2773 /* fill in chain segments */
2774 while (sges_in_segment) {
2775 if (sges_in_segment == 1)
2776 ioc->base_add_sg_single(sg_local,
2777 sgl_flags_last_element |
2778 sg_dma_len(sg_scmd),
2779 sg_dma_address(sg_scmd));
2780 else
2781 ioc->base_add_sg_single(sg_local, sgl_flags |
2782 sg_dma_len(sg_scmd),
2783 sg_dma_address(sg_scmd));
2784 sg_scmd = sg_next(sg_scmd);
2785 sg_local += ioc->sge_size;
2786 sges_left--;
2787 sges_in_segment--;
2788 }
2789
2790 chain_req = _base_get_chain_buffer_tracker(ioc, scmd);
2791 if (!chain_req)
2792 return -1;
2793 chain = chain_req->chain_buffer;
2794 chain_dma = chain_req->chain_buffer_dma;
2795 } while (1);
2796
2797
2798 fill_in_last_segment:
2799
2800 /* fill the last segment */
2801 while (sges_left) {
2802 if (sges_left == 1)
2803 ioc->base_add_sg_single(sg_local, sgl_flags_end_buffer |
2804 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2805 else
2806 ioc->base_add_sg_single(sg_local, sgl_flags |
2807 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2808 sg_scmd = sg_next(sg_scmd);
2809 sg_local += ioc->sge_size;
2810 sges_left--;
2811 }
2812
2813 return 0;
2814 }
2815
2816 /**
2817 * _base_build_sg_scmd_ieee - main sg creation routine for IEEE format
2818 * @ioc: per adapter object
2819 * @scmd: scsi command
2820 * @smid: system request message index
2821 * @pcie_device: Pointer to pcie_device. If set, the pcie native sgl will be
2822 * constructed on need.
2823 * Context: none.
2824 *
2825 * The main routine that builds scatter gather table from a given
2826 * scsi request sent via the .queuecommand main handler.
2827 *
2828 * Return: 0 success, anything else error
2829 */
2830 static int
_base_build_sg_scmd_ieee(struct MPT3SAS_ADAPTER * ioc,struct scsi_cmnd * scmd,u16 smid,struct _pcie_device * pcie_device)2831 _base_build_sg_scmd_ieee(struct MPT3SAS_ADAPTER *ioc,
2832 struct scsi_cmnd *scmd, u16 smid, struct _pcie_device *pcie_device)
2833 {
2834 Mpi25SCSIIORequest_t *mpi_request;
2835 dma_addr_t chain_dma;
2836 struct scatterlist *sg_scmd;
2837 void *sg_local, *chain;
2838 u32 chain_offset;
2839 u32 chain_length;
2840 int sges_left;
2841 u32 sges_in_segment;
2842 u8 simple_sgl_flags;
2843 u8 simple_sgl_flags_last;
2844 u8 chain_sgl_flags;
2845 struct chain_tracker *chain_req;
2846
2847 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
2848
2849 /* init scatter gather flags */
2850 simple_sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2851 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2852 simple_sgl_flags_last = simple_sgl_flags |
2853 MPI25_IEEE_SGE_FLAGS_END_OF_LIST;
2854 chain_sgl_flags = MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT |
2855 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2856
2857 /* Check if we need to build a native SG list. */
2858 if ((pcie_device) && (_base_check_pcie_native_sgl(ioc, mpi_request,
2859 smid, scmd, pcie_device) == 0)) {
2860 /* We built a native SG list, just return. */
2861 return 0;
2862 }
2863
2864 sg_scmd = scsi_sglist(scmd);
2865 sges_left = scsi_dma_map(scmd);
2866 if (sges_left < 0)
2867 return -ENOMEM;
2868
2869 sg_local = &mpi_request->SGL;
2870 sges_in_segment = (ioc->request_sz -
2871 offsetof(Mpi25SCSIIORequest_t, SGL))/ioc->sge_size_ieee;
2872 if (sges_left <= sges_in_segment)
2873 goto fill_in_last_segment;
2874
2875 mpi_request->ChainOffset = (sges_in_segment - 1 /* chain element */) +
2876 (offsetof(Mpi25SCSIIORequest_t, SGL)/ioc->sge_size_ieee);
2877
2878 /* fill in main message segment when there is a chain following */
2879 while (sges_in_segment > 1) {
2880 _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
2881 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2882 sg_scmd = sg_next(sg_scmd);
2883 sg_local += ioc->sge_size_ieee;
2884 sges_left--;
2885 sges_in_segment--;
2886 }
2887
2888 /* initializing the pointers */
2889 chain_req = _base_get_chain_buffer_tracker(ioc, scmd);
2890 if (!chain_req)
2891 return -1;
2892 chain = chain_req->chain_buffer;
2893 chain_dma = chain_req->chain_buffer_dma;
2894 do {
2895 sges_in_segment = (sges_left <=
2896 ioc->max_sges_in_chain_message) ? sges_left :
2897 ioc->max_sges_in_chain_message;
2898 chain_offset = (sges_left == sges_in_segment) ?
2899 0 : sges_in_segment;
2900 chain_length = sges_in_segment * ioc->sge_size_ieee;
2901 if (chain_offset)
2902 chain_length += ioc->sge_size_ieee;
2903 _base_add_sg_single_ieee(sg_local, chain_sgl_flags,
2904 chain_offset, chain_length, chain_dma);
2905
2906 sg_local = chain;
2907 if (!chain_offset)
2908 goto fill_in_last_segment;
2909
2910 /* fill in chain segments */
2911 while (sges_in_segment) {
2912 _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
2913 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2914 sg_scmd = sg_next(sg_scmd);
2915 sg_local += ioc->sge_size_ieee;
2916 sges_left--;
2917 sges_in_segment--;
2918 }
2919
2920 chain_req = _base_get_chain_buffer_tracker(ioc, scmd);
2921 if (!chain_req)
2922 return -1;
2923 chain = chain_req->chain_buffer;
2924 chain_dma = chain_req->chain_buffer_dma;
2925 } while (1);
2926
2927
2928 fill_in_last_segment:
2929
2930 /* fill the last segment */
2931 while (sges_left > 0) {
2932 if (sges_left == 1)
2933 _base_add_sg_single_ieee(sg_local,
2934 simple_sgl_flags_last, 0, sg_dma_len(sg_scmd),
2935 sg_dma_address(sg_scmd));
2936 else
2937 _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
2938 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2939 sg_scmd = sg_next(sg_scmd);
2940 sg_local += ioc->sge_size_ieee;
2941 sges_left--;
2942 }
2943
2944 return 0;
2945 }
2946
2947 /**
2948 * _base_build_sg_ieee - build generic sg for IEEE format
2949 * @ioc: per adapter object
2950 * @psge: virtual address for SGE
2951 * @data_out_dma: physical address for WRITES
2952 * @data_out_sz: data xfer size for WRITES
2953 * @data_in_dma: physical address for READS
2954 * @data_in_sz: data xfer size for READS
2955 */
2956 static void
_base_build_sg_ieee(struct MPT3SAS_ADAPTER * ioc,void * psge,dma_addr_t data_out_dma,size_t data_out_sz,dma_addr_t data_in_dma,size_t data_in_sz)2957 _base_build_sg_ieee(struct MPT3SAS_ADAPTER *ioc, void *psge,
2958 dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma,
2959 size_t data_in_sz)
2960 {
2961 u8 sgl_flags;
2962
2963 if (!data_out_sz && !data_in_sz) {
2964 _base_build_zero_len_sge_ieee(ioc, psge);
2965 return;
2966 }
2967
2968 if (data_out_sz && data_in_sz) {
2969 /* WRITE sgel first */
2970 sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2971 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2972 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_out_sz,
2973 data_out_dma);
2974
2975 /* incr sgel */
2976 psge += ioc->sge_size_ieee;
2977
2978 /* READ sgel last */
2979 sgl_flags |= MPI25_IEEE_SGE_FLAGS_END_OF_LIST;
2980 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_in_sz,
2981 data_in_dma);
2982 } else if (data_out_sz) /* WRITE */ {
2983 sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2984 MPI25_IEEE_SGE_FLAGS_END_OF_LIST |
2985 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2986 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_out_sz,
2987 data_out_dma);
2988 } else if (data_in_sz) /* READ */ {
2989 sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2990 MPI25_IEEE_SGE_FLAGS_END_OF_LIST |
2991 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2992 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_in_sz,
2993 data_in_dma);
2994 }
2995 }
2996
2997 #define convert_to_kb(x) ((x) << (PAGE_SHIFT - 10))
2998
2999 /**
3000 * _base_config_dma_addressing - set dma addressing
3001 * @ioc: per adapter object
3002 * @pdev: PCI device struct
3003 *
3004 * Return: 0 for success, non-zero for failure.
3005 */
3006 static int
_base_config_dma_addressing(struct MPT3SAS_ADAPTER * ioc,struct pci_dev * pdev)3007 _base_config_dma_addressing(struct MPT3SAS_ADAPTER *ioc, struct pci_dev *pdev)
3008 {
3009 struct sysinfo s;
3010 u64 coherent_dma_mask, dma_mask;
3011
3012 if (ioc->is_mcpu_endpoint || sizeof(dma_addr_t) == 4) {
3013 ioc->dma_mask = 32;
3014 coherent_dma_mask = dma_mask = DMA_BIT_MASK(32);
3015 /* Set 63 bit DMA mask for all SAS3 and SAS35 controllers */
3016 } else if (ioc->hba_mpi_version_belonged > MPI2_VERSION) {
3017 ioc->dma_mask = 63;
3018 coherent_dma_mask = dma_mask = DMA_BIT_MASK(63);
3019 } else {
3020 ioc->dma_mask = 64;
3021 coherent_dma_mask = dma_mask = DMA_BIT_MASK(64);
3022 }
3023
3024 if (ioc->use_32bit_dma)
3025 coherent_dma_mask = DMA_BIT_MASK(32);
3026
3027 if (dma_set_mask(&pdev->dev, dma_mask) ||
3028 dma_set_coherent_mask(&pdev->dev, coherent_dma_mask))
3029 return -ENODEV;
3030
3031 if (ioc->dma_mask > 32) {
3032 ioc->base_add_sg_single = &_base_add_sg_single_64;
3033 ioc->sge_size = sizeof(Mpi2SGESimple64_t);
3034 } else {
3035 ioc->base_add_sg_single = &_base_add_sg_single_32;
3036 ioc->sge_size = sizeof(Mpi2SGESimple32_t);
3037 }
3038
3039 si_meminfo(&s);
3040 ioc_info(ioc, "%d BIT PCI BUS DMA ADDRESSING SUPPORTED, total mem (%ld kB)\n",
3041 ioc->dma_mask, convert_to_kb(s.totalram));
3042
3043 return 0;
3044 }
3045
3046 /**
3047 * _base_check_enable_msix - checks MSIX capabable.
3048 * @ioc: per adapter object
3049 *
3050 * Check to see if card is capable of MSIX, and set number
3051 * of available msix vectors
3052 */
3053 static int
_base_check_enable_msix(struct MPT3SAS_ADAPTER * ioc)3054 _base_check_enable_msix(struct MPT3SAS_ADAPTER *ioc)
3055 {
3056 int base;
3057 u16 message_control;
3058
3059 /* Check whether controller SAS2008 B0 controller,
3060 * if it is SAS2008 B0 controller use IO-APIC instead of MSIX
3061 */
3062 if (ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2008 &&
3063 ioc->pdev->revision == SAS2_PCI_DEVICE_B0_REVISION) {
3064 return -EINVAL;
3065 }
3066
3067 base = pci_find_capability(ioc->pdev, PCI_CAP_ID_MSIX);
3068 if (!base) {
3069 dfailprintk(ioc, ioc_info(ioc, "msix not supported\n"));
3070 return -EINVAL;
3071 }
3072
3073 /* get msix vector count */
3074 /* NUMA_IO not supported for older controllers */
3075 if (ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2004 ||
3076 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2008 ||
3077 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_1 ||
3078 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_2 ||
3079 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_3 ||
3080 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2116_1 ||
3081 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2116_2)
3082 ioc->msix_vector_count = 1;
3083 else {
3084 pci_read_config_word(ioc->pdev, base + 2, &message_control);
3085 ioc->msix_vector_count = (message_control & 0x3FF) + 1;
3086 }
3087 dinitprintk(ioc, ioc_info(ioc, "msix is supported, vector_count(%d)\n",
3088 ioc->msix_vector_count));
3089 return 0;
3090 }
3091
3092 /**
3093 * mpt3sas_base_free_irq - free irq
3094 * @ioc: per adapter object
3095 *
3096 * Freeing respective reply_queue from the list.
3097 */
3098 void
mpt3sas_base_free_irq(struct MPT3SAS_ADAPTER * ioc)3099 mpt3sas_base_free_irq(struct MPT3SAS_ADAPTER *ioc)
3100 {
3101 struct adapter_reply_queue *reply_q, *next;
3102
3103 if (list_empty(&ioc->reply_queue_list))
3104 return;
3105
3106 list_for_each_entry_safe(reply_q, next, &ioc->reply_queue_list, list) {
3107 list_del(&reply_q->list);
3108 if (reply_q->is_iouring_poll_q) {
3109 kfree(reply_q);
3110 continue;
3111 }
3112
3113 if (ioc->smp_affinity_enable)
3114 irq_set_affinity_hint(pci_irq_vector(ioc->pdev,
3115 reply_q->msix_index), NULL);
3116 free_irq(pci_irq_vector(ioc->pdev, reply_q->msix_index),
3117 reply_q);
3118 kfree(reply_q);
3119 }
3120 }
3121
3122 /**
3123 * _base_request_irq - request irq
3124 * @ioc: per adapter object
3125 * @index: msix index into vector table
3126 *
3127 * Inserting respective reply_queue into the list.
3128 */
3129 static int
_base_request_irq(struct MPT3SAS_ADAPTER * ioc,u8 index)3130 _base_request_irq(struct MPT3SAS_ADAPTER *ioc, u8 index)
3131 {
3132 struct pci_dev *pdev = ioc->pdev;
3133 struct adapter_reply_queue *reply_q;
3134 int r, qid;
3135
3136 reply_q = kzalloc(sizeof(struct adapter_reply_queue), GFP_KERNEL);
3137 if (!reply_q) {
3138 ioc_err(ioc, "unable to allocate memory %zu!\n",
3139 sizeof(struct adapter_reply_queue));
3140 return -ENOMEM;
3141 }
3142 reply_q->ioc = ioc;
3143 reply_q->msix_index = index;
3144
3145 atomic_set(&reply_q->busy, 0);
3146
3147 if (index >= ioc->iopoll_q_start_index) {
3148 qid = index - ioc->iopoll_q_start_index;
3149 snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d-mq-poll%d",
3150 ioc->driver_name, ioc->id, qid);
3151 reply_q->is_iouring_poll_q = 1;
3152 ioc->io_uring_poll_queues[qid].reply_q = reply_q;
3153 goto out;
3154 }
3155
3156
3157 if (ioc->msix_enable)
3158 snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d-msix%d",
3159 ioc->driver_name, ioc->id, index);
3160 else
3161 snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d",
3162 ioc->driver_name, ioc->id);
3163 r = request_irq(pci_irq_vector(pdev, index), _base_interrupt,
3164 IRQF_SHARED, reply_q->name, reply_q);
3165 if (r) {
3166 pr_err("%s: unable to allocate interrupt %d!\n",
3167 reply_q->name, pci_irq_vector(pdev, index));
3168 kfree(reply_q);
3169 return -EBUSY;
3170 }
3171 out:
3172 INIT_LIST_HEAD(&reply_q->list);
3173 list_add_tail(&reply_q->list, &ioc->reply_queue_list);
3174 return 0;
3175 }
3176
3177 /**
3178 * _base_assign_reply_queues - assigning msix index for each cpu
3179 * @ioc: per adapter object
3180 *
3181 * The enduser would need to set the affinity via /proc/irq/#/smp_affinity
3182 *
3183 * It would nice if we could call irq_set_affinity, however it is not
3184 * an exported symbol
3185 */
3186 static void
_base_assign_reply_queues(struct MPT3SAS_ADAPTER * ioc)3187 _base_assign_reply_queues(struct MPT3SAS_ADAPTER *ioc)
3188 {
3189 unsigned int cpu, nr_cpus, nr_msix, index = 0;
3190 struct adapter_reply_queue *reply_q;
3191 int local_numa_node;
3192 int iopoll_q_count = ioc->reply_queue_count -
3193 ioc->iopoll_q_start_index;
3194
3195 if (!_base_is_controller_msix_enabled(ioc))
3196 return;
3197
3198 if (ioc->msix_load_balance)
3199 return;
3200
3201 memset(ioc->cpu_msix_table, 0, ioc->cpu_msix_table_sz);
3202
3203 nr_cpus = num_online_cpus();
3204 nr_msix = ioc->reply_queue_count = min(ioc->reply_queue_count,
3205 ioc->facts.MaxMSIxVectors);
3206 if (!nr_msix)
3207 return;
3208
3209 if (ioc->smp_affinity_enable) {
3210
3211 /*
3212 * set irq affinity to local numa node for those irqs
3213 * corresponding to high iops queues.
3214 */
3215 if (ioc->high_iops_queues) {
3216 local_numa_node = dev_to_node(&ioc->pdev->dev);
3217 for (index = 0; index < ioc->high_iops_queues;
3218 index++) {
3219 irq_set_affinity_hint(pci_irq_vector(ioc->pdev,
3220 index), cpumask_of_node(local_numa_node));
3221 }
3222 }
3223
3224 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
3225 const cpumask_t *mask;
3226
3227 if (reply_q->msix_index < ioc->high_iops_queues ||
3228 reply_q->msix_index >= ioc->iopoll_q_start_index)
3229 continue;
3230
3231 mask = pci_irq_get_affinity(ioc->pdev,
3232 reply_q->msix_index);
3233 if (!mask) {
3234 ioc_warn(ioc, "no affinity for msi %x\n",
3235 reply_q->msix_index);
3236 goto fall_back;
3237 }
3238
3239 for_each_cpu_and(cpu, mask, cpu_online_mask) {
3240 if (cpu >= ioc->cpu_msix_table_sz)
3241 break;
3242 ioc->cpu_msix_table[cpu] = reply_q->msix_index;
3243 }
3244 }
3245 return;
3246 }
3247
3248 fall_back:
3249 cpu = cpumask_first(cpu_online_mask);
3250 nr_msix -= (ioc->high_iops_queues - iopoll_q_count);
3251 index = 0;
3252
3253 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
3254 unsigned int i, group = nr_cpus / nr_msix;
3255
3256 if (reply_q->msix_index < ioc->high_iops_queues ||
3257 reply_q->msix_index >= ioc->iopoll_q_start_index)
3258 continue;
3259
3260 if (cpu >= nr_cpus)
3261 break;
3262
3263 if (index < nr_cpus % nr_msix)
3264 group++;
3265
3266 for (i = 0 ; i < group ; i++) {
3267 ioc->cpu_msix_table[cpu] = reply_q->msix_index;
3268 cpu = cpumask_next(cpu, cpu_online_mask);
3269 }
3270 index++;
3271 }
3272 }
3273
3274 /**
3275 * _base_check_and_enable_high_iops_queues - enable high iops mode
3276 * @ioc: per adapter object
3277 * @hba_msix_vector_count: msix vectors supported by HBA
3278 *
3279 * Enable high iops queues only if
3280 * - HBA is a SEA/AERO controller and
3281 * - MSI-Xs vector supported by the HBA is 128 and
3282 * - total CPU count in the system >=16 and
3283 * - loaded driver with default max_msix_vectors module parameter and
3284 * - system booted in non kdump mode
3285 *
3286 * Return: nothing.
3287 */
3288 static void
_base_check_and_enable_high_iops_queues(struct MPT3SAS_ADAPTER * ioc,int hba_msix_vector_count)3289 _base_check_and_enable_high_iops_queues(struct MPT3SAS_ADAPTER *ioc,
3290 int hba_msix_vector_count)
3291 {
3292 u16 lnksta, speed;
3293
3294 /*
3295 * Disable high iops queues if io uring poll queues are enabled.
3296 */
3297 if (perf_mode == MPT_PERF_MODE_IOPS ||
3298 perf_mode == MPT_PERF_MODE_LATENCY ||
3299 ioc->io_uring_poll_queues) {
3300 ioc->high_iops_queues = 0;
3301 return;
3302 }
3303
3304 if (perf_mode == MPT_PERF_MODE_DEFAULT) {
3305
3306 pcie_capability_read_word(ioc->pdev, PCI_EXP_LNKSTA, &lnksta);
3307 speed = lnksta & PCI_EXP_LNKSTA_CLS;
3308
3309 if (speed < 0x4) {
3310 ioc->high_iops_queues = 0;
3311 return;
3312 }
3313 }
3314
3315 if (!reset_devices && ioc->is_aero_ioc &&
3316 hba_msix_vector_count == MPT3SAS_GEN35_MAX_MSIX_QUEUES &&
3317 num_online_cpus() >= MPT3SAS_HIGH_IOPS_REPLY_QUEUES &&
3318 max_msix_vectors == -1)
3319 ioc->high_iops_queues = MPT3SAS_HIGH_IOPS_REPLY_QUEUES;
3320 else
3321 ioc->high_iops_queues = 0;
3322 }
3323
3324 /**
3325 * mpt3sas_base_disable_msix - disables msix
3326 * @ioc: per adapter object
3327 *
3328 */
3329 void
mpt3sas_base_disable_msix(struct MPT3SAS_ADAPTER * ioc)3330 mpt3sas_base_disable_msix(struct MPT3SAS_ADAPTER *ioc)
3331 {
3332 if (!ioc->msix_enable)
3333 return;
3334 pci_free_irq_vectors(ioc->pdev);
3335 ioc->msix_enable = 0;
3336 kfree(ioc->io_uring_poll_queues);
3337 }
3338
3339 /**
3340 * _base_alloc_irq_vectors - allocate msix vectors
3341 * @ioc: per adapter object
3342 *
3343 */
3344 static int
_base_alloc_irq_vectors(struct MPT3SAS_ADAPTER * ioc)3345 _base_alloc_irq_vectors(struct MPT3SAS_ADAPTER *ioc)
3346 {
3347 int i, irq_flags = PCI_IRQ_MSIX;
3348 struct irq_affinity desc = { .pre_vectors = ioc->high_iops_queues };
3349 struct irq_affinity *descp = &desc;
3350 /*
3351 * Don't allocate msix vectors for poll_queues.
3352 * msix_vectors is always within a range of FW supported reply queue.
3353 */
3354 int nr_msix_vectors = ioc->iopoll_q_start_index;
3355
3356
3357 if (ioc->smp_affinity_enable)
3358 irq_flags |= PCI_IRQ_AFFINITY | PCI_IRQ_ALL_TYPES;
3359 else
3360 descp = NULL;
3361
3362 ioc_info(ioc, " %d %d %d\n", ioc->high_iops_queues,
3363 ioc->reply_queue_count, nr_msix_vectors);
3364
3365 i = pci_alloc_irq_vectors_affinity(ioc->pdev,
3366 ioc->high_iops_queues,
3367 nr_msix_vectors, irq_flags, descp);
3368
3369 return i;
3370 }
3371
3372 /**
3373 * _base_enable_msix - enables msix, failback to io_apic
3374 * @ioc: per adapter object
3375 *
3376 */
3377 static int
_base_enable_msix(struct MPT3SAS_ADAPTER * ioc)3378 _base_enable_msix(struct MPT3SAS_ADAPTER *ioc)
3379 {
3380 int r;
3381 int i, local_max_msix_vectors;
3382 u8 try_msix = 0;
3383 int iopoll_q_count = 0;
3384
3385 ioc->msix_load_balance = false;
3386
3387 if (msix_disable == -1 || msix_disable == 0)
3388 try_msix = 1;
3389
3390 if (!try_msix)
3391 goto try_ioapic;
3392
3393 if (_base_check_enable_msix(ioc) != 0)
3394 goto try_ioapic;
3395
3396 ioc_info(ioc, "MSI-X vectors supported: %d\n", ioc->msix_vector_count);
3397 pr_info("\t no of cores: %d, max_msix_vectors: %d\n",
3398 ioc->cpu_count, max_msix_vectors);
3399
3400 ioc->reply_queue_count =
3401 min_t(int, ioc->cpu_count, ioc->msix_vector_count);
3402
3403 if (!ioc->rdpq_array_enable && max_msix_vectors == -1)
3404 local_max_msix_vectors = (reset_devices) ? 1 : 8;
3405 else
3406 local_max_msix_vectors = max_msix_vectors;
3407
3408 if (local_max_msix_vectors == 0)
3409 goto try_ioapic;
3410
3411 /*
3412 * Enable msix_load_balance only if combined reply queue mode is
3413 * disabled on SAS3 & above generation HBA devices.
3414 */
3415 if (!ioc->combined_reply_queue &&
3416 ioc->hba_mpi_version_belonged != MPI2_VERSION) {
3417 ioc_info(ioc,
3418 "combined ReplyQueue is off, Enabling msix load balance\n");
3419 ioc->msix_load_balance = true;
3420 }
3421
3422 /*
3423 * smp affinity setting is not need when msix load balance
3424 * is enabled.
3425 */
3426 if (ioc->msix_load_balance)
3427 ioc->smp_affinity_enable = 0;
3428
3429 if (!ioc->smp_affinity_enable || ioc->reply_queue_count <= 1)
3430 ioc->shost->host_tagset = 0;
3431
3432 /*
3433 * Enable io uring poll queues only if host_tagset is enabled.
3434 */
3435 if (ioc->shost->host_tagset)
3436 iopoll_q_count = poll_queues;
3437
3438 if (iopoll_q_count) {
3439 ioc->io_uring_poll_queues = kcalloc(iopoll_q_count,
3440 sizeof(struct io_uring_poll_queue), GFP_KERNEL);
3441 if (!ioc->io_uring_poll_queues)
3442 iopoll_q_count = 0;
3443 }
3444
3445 if (ioc->is_aero_ioc)
3446 _base_check_and_enable_high_iops_queues(ioc,
3447 ioc->msix_vector_count);
3448
3449 /*
3450 * Add high iops queues count to reply queue count if high iops queues
3451 * are enabled.
3452 */
3453 ioc->reply_queue_count = min_t(int,
3454 ioc->reply_queue_count + ioc->high_iops_queues,
3455 ioc->msix_vector_count);
3456
3457 /*
3458 * Adjust the reply queue count incase reply queue count
3459 * exceeds the user provided MSIx vectors count.
3460 */
3461 if (local_max_msix_vectors > 0)
3462 ioc->reply_queue_count = min_t(int, local_max_msix_vectors,
3463 ioc->reply_queue_count);
3464 /*
3465 * Add io uring poll queues count to reply queues count
3466 * if io uring is enabled in driver.
3467 */
3468 if (iopoll_q_count) {
3469 if (ioc->reply_queue_count < (iopoll_q_count + MPT3_MIN_IRQS))
3470 iopoll_q_count = 0;
3471 ioc->reply_queue_count = min_t(int,
3472 ioc->reply_queue_count + iopoll_q_count,
3473 ioc->msix_vector_count);
3474 }
3475
3476 /*
3477 * Starting index of io uring poll queues in reply queue list.
3478 */
3479 ioc->iopoll_q_start_index =
3480 ioc->reply_queue_count - iopoll_q_count;
3481
3482 r = _base_alloc_irq_vectors(ioc);
3483 if (r < 0) {
3484 ioc_info(ioc, "pci_alloc_irq_vectors failed (r=%d) !!!\n", r);
3485 goto try_ioapic;
3486 }
3487
3488 /*
3489 * Adjust the reply queue count if the allocated
3490 * MSIx vectors is less then the requested number
3491 * of MSIx vectors.
3492 */
3493 if (r < ioc->iopoll_q_start_index) {
3494 ioc->reply_queue_count = r + iopoll_q_count;
3495 ioc->iopoll_q_start_index =
3496 ioc->reply_queue_count - iopoll_q_count;
3497 }
3498
3499 ioc->msix_enable = 1;
3500 for (i = 0; i < ioc->reply_queue_count; i++) {
3501 r = _base_request_irq(ioc, i);
3502 if (r) {
3503 mpt3sas_base_free_irq(ioc);
3504 mpt3sas_base_disable_msix(ioc);
3505 goto try_ioapic;
3506 }
3507 }
3508
3509 ioc_info(ioc, "High IOPs queues : %s\n",
3510 ioc->high_iops_queues ? "enabled" : "disabled");
3511
3512 return 0;
3513
3514 /* failback to io_apic interrupt routing */
3515 try_ioapic:
3516 ioc->high_iops_queues = 0;
3517 ioc_info(ioc, "High IOPs queues : disabled\n");
3518 ioc->reply_queue_count = 1;
3519 ioc->iopoll_q_start_index = ioc->reply_queue_count - 0;
3520 r = pci_alloc_irq_vectors(ioc->pdev, 1, 1, PCI_IRQ_LEGACY);
3521 if (r < 0) {
3522 dfailprintk(ioc,
3523 ioc_info(ioc, "pci_alloc_irq_vector(legacy) failed (r=%d) !!!\n",
3524 r));
3525 } else
3526 r = _base_request_irq(ioc, 0);
3527
3528 return r;
3529 }
3530
3531 /**
3532 * mpt3sas_base_unmap_resources - free controller resources
3533 * @ioc: per adapter object
3534 */
3535 static void
mpt3sas_base_unmap_resources(struct MPT3SAS_ADAPTER * ioc)3536 mpt3sas_base_unmap_resources(struct MPT3SAS_ADAPTER *ioc)
3537 {
3538 struct pci_dev *pdev = ioc->pdev;
3539
3540 dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
3541
3542 mpt3sas_base_free_irq(ioc);
3543 mpt3sas_base_disable_msix(ioc);
3544
3545 kfree(ioc->replyPostRegisterIndex);
3546 ioc->replyPostRegisterIndex = NULL;
3547
3548
3549 if (ioc->chip_phys) {
3550 iounmap(ioc->chip);
3551 ioc->chip_phys = 0;
3552 }
3553
3554 if (pci_is_enabled(pdev)) {
3555 pci_release_selected_regions(ioc->pdev, ioc->bars);
3556 pci_disable_pcie_error_reporting(pdev);
3557 pci_disable_device(pdev);
3558 }
3559 }
3560
3561 static int
3562 _base_diag_reset(struct MPT3SAS_ADAPTER *ioc);
3563
3564 /**
3565 * mpt3sas_base_check_for_fault_and_issue_reset - check if IOC is in fault state
3566 * and if it is in fault state then issue diag reset.
3567 * @ioc: per adapter object
3568 *
3569 * Return: 0 for success, non-zero for failure.
3570 */
3571 int
mpt3sas_base_check_for_fault_and_issue_reset(struct MPT3SAS_ADAPTER * ioc)3572 mpt3sas_base_check_for_fault_and_issue_reset(struct MPT3SAS_ADAPTER *ioc)
3573 {
3574 u32 ioc_state;
3575 int rc = -EFAULT;
3576
3577 dinitprintk(ioc, pr_info("%s\n", __func__));
3578 if (ioc->pci_error_recovery)
3579 return 0;
3580 ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
3581 dhsprintk(ioc, pr_info("%s: ioc_state(0x%08x)\n", __func__, ioc_state));
3582
3583 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
3584 mpt3sas_print_fault_code(ioc, ioc_state &
3585 MPI2_DOORBELL_DATA_MASK);
3586 mpt3sas_base_mask_interrupts(ioc);
3587 rc = _base_diag_reset(ioc);
3588 } else if ((ioc_state & MPI2_IOC_STATE_MASK) ==
3589 MPI2_IOC_STATE_COREDUMP) {
3590 mpt3sas_print_coredump_info(ioc, ioc_state &
3591 MPI2_DOORBELL_DATA_MASK);
3592 mpt3sas_base_wait_for_coredump_completion(ioc, __func__);
3593 mpt3sas_base_mask_interrupts(ioc);
3594 rc = _base_diag_reset(ioc);
3595 }
3596
3597 return rc;
3598 }
3599
3600 /**
3601 * mpt3sas_base_map_resources - map in controller resources (io/irq/memap)
3602 * @ioc: per adapter object
3603 *
3604 * Return: 0 for success, non-zero for failure.
3605 */
3606 int
mpt3sas_base_map_resources(struct MPT3SAS_ADAPTER * ioc)3607 mpt3sas_base_map_resources(struct MPT3SAS_ADAPTER *ioc)
3608 {
3609 struct pci_dev *pdev = ioc->pdev;
3610 u32 memap_sz;
3611 u32 pio_sz;
3612 int i, r = 0, rc;
3613 u64 pio_chip = 0;
3614 phys_addr_t chip_phys = 0;
3615 struct adapter_reply_queue *reply_q;
3616 int iopoll_q_count = 0;
3617
3618 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
3619
3620 ioc->bars = pci_select_bars(pdev, IORESOURCE_MEM);
3621 if (pci_enable_device_mem(pdev)) {
3622 ioc_warn(ioc, "pci_enable_device_mem: failed\n");
3623 ioc->bars = 0;
3624 return -ENODEV;
3625 }
3626
3627
3628 if (pci_request_selected_regions(pdev, ioc->bars,
3629 ioc->driver_name)) {
3630 ioc_warn(ioc, "pci_request_selected_regions: failed\n");
3631 ioc->bars = 0;
3632 r = -ENODEV;
3633 goto out_fail;
3634 }
3635
3636 /* AER (Advanced Error Reporting) hooks */
3637 pci_enable_pcie_error_reporting(pdev);
3638
3639 pci_set_master(pdev);
3640
3641
3642 if (_base_config_dma_addressing(ioc, pdev) != 0) {
3643 ioc_warn(ioc, "no suitable DMA mask for %s\n", pci_name(pdev));
3644 r = -ENODEV;
3645 goto out_fail;
3646 }
3647
3648 for (i = 0, memap_sz = 0, pio_sz = 0; (i < DEVICE_COUNT_RESOURCE) &&
3649 (!memap_sz || !pio_sz); i++) {
3650 if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
3651 if (pio_sz)
3652 continue;
3653 pio_chip = (u64)pci_resource_start(pdev, i);
3654 pio_sz = pci_resource_len(pdev, i);
3655 } else if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
3656 if (memap_sz)
3657 continue;
3658 ioc->chip_phys = pci_resource_start(pdev, i);
3659 chip_phys = ioc->chip_phys;
3660 memap_sz = pci_resource_len(pdev, i);
3661 ioc->chip = ioremap(ioc->chip_phys, memap_sz);
3662 }
3663 }
3664
3665 if (ioc->chip == NULL) {
3666 ioc_err(ioc,
3667 "unable to map adapter memory! or resource not found\n");
3668 r = -EINVAL;
3669 goto out_fail;
3670 }
3671
3672 mpt3sas_base_mask_interrupts(ioc);
3673
3674 r = _base_get_ioc_facts(ioc);
3675 if (r) {
3676 rc = mpt3sas_base_check_for_fault_and_issue_reset(ioc);
3677 if (rc || (_base_get_ioc_facts(ioc)))
3678 goto out_fail;
3679 }
3680
3681 if (!ioc->rdpq_array_enable_assigned) {
3682 ioc->rdpq_array_enable = ioc->rdpq_array_capable;
3683 ioc->rdpq_array_enable_assigned = 1;
3684 }
3685
3686 r = _base_enable_msix(ioc);
3687 if (r)
3688 goto out_fail;
3689
3690 iopoll_q_count = ioc->reply_queue_count - ioc->iopoll_q_start_index;
3691 for (i = 0; i < iopoll_q_count; i++) {
3692 atomic_set(&ioc->io_uring_poll_queues[i].busy, 0);
3693 atomic_set(&ioc->io_uring_poll_queues[i].pause, 0);
3694 }
3695
3696 if (!ioc->is_driver_loading)
3697 _base_init_irqpolls(ioc);
3698 /* Use the Combined reply queue feature only for SAS3 C0 & higher
3699 * revision HBAs and also only when reply queue count is greater than 8
3700 */
3701 if (ioc->combined_reply_queue) {
3702 /* Determine the Supplemental Reply Post Host Index Registers
3703 * Addresse. Supplemental Reply Post Host Index Registers
3704 * starts at offset MPI25_SUP_REPLY_POST_HOST_INDEX_OFFSET and
3705 * each register is at offset bytes of
3706 * MPT3_SUP_REPLY_POST_HOST_INDEX_REG_OFFSET from previous one.
3707 */
3708 ioc->replyPostRegisterIndex = kcalloc(
3709 ioc->combined_reply_index_count,
3710 sizeof(resource_size_t *), GFP_KERNEL);
3711 if (!ioc->replyPostRegisterIndex) {
3712 ioc_err(ioc,
3713 "allocation for replyPostRegisterIndex failed!\n");
3714 r = -ENOMEM;
3715 goto out_fail;
3716 }
3717
3718 for (i = 0; i < ioc->combined_reply_index_count; i++) {
3719 ioc->replyPostRegisterIndex[i] = (resource_size_t *)
3720 ((u8 __force *)&ioc->chip->Doorbell +
3721 MPI25_SUP_REPLY_POST_HOST_INDEX_OFFSET +
3722 (i * MPT3_SUP_REPLY_POST_HOST_INDEX_REG_OFFSET));
3723 }
3724 }
3725
3726 if (ioc->is_warpdrive) {
3727 ioc->reply_post_host_index[0] = (resource_size_t __iomem *)
3728 &ioc->chip->ReplyPostHostIndex;
3729
3730 for (i = 1; i < ioc->cpu_msix_table_sz; i++)
3731 ioc->reply_post_host_index[i] =
3732 (resource_size_t __iomem *)
3733 ((u8 __iomem *)&ioc->chip->Doorbell + (0x4000 + ((i - 1)
3734 * 4)));
3735 }
3736
3737 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
3738 if (reply_q->msix_index >= ioc->iopoll_q_start_index) {
3739 pr_info("%s: enabled: index: %d\n",
3740 reply_q->name, reply_q->msix_index);
3741 continue;
3742 }
3743
3744 pr_info("%s: %s enabled: IRQ %d\n",
3745 reply_q->name,
3746 ioc->msix_enable ? "PCI-MSI-X" : "IO-APIC",
3747 pci_irq_vector(ioc->pdev, reply_q->msix_index));
3748 }
3749
3750 ioc_info(ioc, "iomem(%pap), mapped(0x%p), size(%d)\n",
3751 &chip_phys, ioc->chip, memap_sz);
3752 ioc_info(ioc, "ioport(0x%016llx), size(%d)\n",
3753 (unsigned long long)pio_chip, pio_sz);
3754
3755 /* Save PCI configuration state for recovery from PCI AER/EEH errors */
3756 pci_save_state(pdev);
3757 return 0;
3758
3759 out_fail:
3760 mpt3sas_base_unmap_resources(ioc);
3761 return r;
3762 }
3763
3764 /**
3765 * mpt3sas_base_get_msg_frame - obtain request mf pointer
3766 * @ioc: per adapter object
3767 * @smid: system request message index(smid zero is invalid)
3768 *
3769 * Return: virt pointer to message frame.
3770 */
3771 void *
mpt3sas_base_get_msg_frame(struct MPT3SAS_ADAPTER * ioc,u16 smid)3772 mpt3sas_base_get_msg_frame(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3773 {
3774 return (void *)(ioc->request + (smid * ioc->request_sz));
3775 }
3776
3777 /**
3778 * mpt3sas_base_get_sense_buffer - obtain a sense buffer virt addr
3779 * @ioc: per adapter object
3780 * @smid: system request message index
3781 *
3782 * Return: virt pointer to sense buffer.
3783 */
3784 void *
mpt3sas_base_get_sense_buffer(struct MPT3SAS_ADAPTER * ioc,u16 smid)3785 mpt3sas_base_get_sense_buffer(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3786 {
3787 return (void *)(ioc->sense + ((smid - 1) * SCSI_SENSE_BUFFERSIZE));
3788 }
3789
3790 /**
3791 * mpt3sas_base_get_sense_buffer_dma - obtain a sense buffer dma addr
3792 * @ioc: per adapter object
3793 * @smid: system request message index
3794 *
3795 * Return: phys pointer to the low 32bit address of the sense buffer.
3796 */
3797 __le32
mpt3sas_base_get_sense_buffer_dma(struct MPT3SAS_ADAPTER * ioc,u16 smid)3798 mpt3sas_base_get_sense_buffer_dma(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3799 {
3800 return cpu_to_le32(ioc->sense_dma + ((smid - 1) *
3801 SCSI_SENSE_BUFFERSIZE));
3802 }
3803
3804 /**
3805 * mpt3sas_base_get_pcie_sgl - obtain a PCIe SGL virt addr
3806 * @ioc: per adapter object
3807 * @smid: system request message index
3808 *
3809 * Return: virt pointer to a PCIe SGL.
3810 */
3811 void *
mpt3sas_base_get_pcie_sgl(struct MPT3SAS_ADAPTER * ioc,u16 smid)3812 mpt3sas_base_get_pcie_sgl(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3813 {
3814 return (void *)(ioc->pcie_sg_lookup[smid - 1].pcie_sgl);
3815 }
3816
3817 /**
3818 * mpt3sas_base_get_pcie_sgl_dma - obtain a PCIe SGL dma addr
3819 * @ioc: per adapter object
3820 * @smid: system request message index
3821 *
3822 * Return: phys pointer to the address of the PCIe buffer.
3823 */
3824 dma_addr_t
mpt3sas_base_get_pcie_sgl_dma(struct MPT3SAS_ADAPTER * ioc,u16 smid)3825 mpt3sas_base_get_pcie_sgl_dma(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3826 {
3827 return ioc->pcie_sg_lookup[smid - 1].pcie_sgl_dma;
3828 }
3829
3830 /**
3831 * mpt3sas_base_get_reply_virt_addr - obtain reply frames virt address
3832 * @ioc: per adapter object
3833 * @phys_addr: lower 32 physical addr of the reply
3834 *
3835 * Converts 32bit lower physical addr into a virt address.
3836 */
3837 void *
mpt3sas_base_get_reply_virt_addr(struct MPT3SAS_ADAPTER * ioc,u32 phys_addr)3838 mpt3sas_base_get_reply_virt_addr(struct MPT3SAS_ADAPTER *ioc, u32 phys_addr)
3839 {
3840 if (!phys_addr)
3841 return NULL;
3842 return ioc->reply + (phys_addr - (u32)ioc->reply_dma);
3843 }
3844
3845 /**
3846 * _base_get_msix_index - get the msix index
3847 * @ioc: per adapter object
3848 * @scmd: scsi_cmnd object
3849 *
3850 * Return: msix index of general reply queues,
3851 * i.e. reply queue on which IO request's reply
3852 * should be posted by the HBA firmware.
3853 */
3854 static inline u8
_base_get_msix_index(struct MPT3SAS_ADAPTER * ioc,struct scsi_cmnd * scmd)3855 _base_get_msix_index(struct MPT3SAS_ADAPTER *ioc,
3856 struct scsi_cmnd *scmd)
3857 {
3858 /* Enables reply_queue load balancing */
3859 if (ioc->msix_load_balance)
3860 return ioc->reply_queue_count ?
3861 base_mod64(atomic64_add_return(1,
3862 &ioc->total_io_cnt), ioc->reply_queue_count) : 0;
3863
3864 if (scmd && ioc->shost->nr_hw_queues > 1) {
3865 u32 tag = blk_mq_unique_tag(scsi_cmd_to_rq(scmd));
3866
3867 return blk_mq_unique_tag_to_hwq(tag) +
3868 ioc->high_iops_queues;
3869 }
3870
3871 return ioc->cpu_msix_table[raw_smp_processor_id()];
3872 }
3873
3874 /**
3875 * _base_get_high_iops_msix_index - get the msix index of
3876 * high iops queues
3877 * @ioc: per adapter object
3878 * @scmd: scsi_cmnd object
3879 *
3880 * Return: msix index of high iops reply queues.
3881 * i.e. high iops reply queue on which IO request's
3882 * reply should be posted by the HBA firmware.
3883 */
3884 static inline u8
_base_get_high_iops_msix_index(struct MPT3SAS_ADAPTER * ioc,struct scsi_cmnd * scmd)3885 _base_get_high_iops_msix_index(struct MPT3SAS_ADAPTER *ioc,
3886 struct scsi_cmnd *scmd)
3887 {
3888 /**
3889 * Round robin the IO interrupts among the high iops
3890 * reply queues in terms of batch count 16 when outstanding
3891 * IOs on the target device is >=8.
3892 */
3893
3894 if (scsi_device_busy(scmd->device) > MPT3SAS_DEVICE_HIGH_IOPS_DEPTH)
3895 return base_mod64((
3896 atomic64_add_return(1, &ioc->high_iops_outstanding) /
3897 MPT3SAS_HIGH_IOPS_BATCH_COUNT),
3898 MPT3SAS_HIGH_IOPS_REPLY_QUEUES);
3899
3900 return _base_get_msix_index(ioc, scmd);
3901 }
3902
3903 /**
3904 * mpt3sas_base_get_smid - obtain a free smid from internal queue
3905 * @ioc: per adapter object
3906 * @cb_idx: callback index
3907 *
3908 * Return: smid (zero is invalid)
3909 */
3910 u16
mpt3sas_base_get_smid(struct MPT3SAS_ADAPTER * ioc,u8 cb_idx)3911 mpt3sas_base_get_smid(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx)
3912 {
3913 unsigned long flags;
3914 struct request_tracker *request;
3915 u16 smid;
3916
3917 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
3918 if (list_empty(&ioc->internal_free_list)) {
3919 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
3920 ioc_err(ioc, "%s: smid not available\n", __func__);
3921 return 0;
3922 }
3923
3924 request = list_entry(ioc->internal_free_list.next,
3925 struct request_tracker, tracker_list);
3926 request->cb_idx = cb_idx;
3927 smid = request->smid;
3928 list_del(&request->tracker_list);
3929 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
3930 return smid;
3931 }
3932
3933 /**
3934 * mpt3sas_base_get_smid_scsiio - obtain a free smid from scsiio queue
3935 * @ioc: per adapter object
3936 * @cb_idx: callback index
3937 * @scmd: pointer to scsi command object
3938 *
3939 * Return: smid (zero is invalid)
3940 */
3941 u16
mpt3sas_base_get_smid_scsiio(struct MPT3SAS_ADAPTER * ioc,u8 cb_idx,struct scsi_cmnd * scmd)3942 mpt3sas_base_get_smid_scsiio(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx,
3943 struct scsi_cmnd *scmd)
3944 {
3945 struct scsiio_tracker *request = scsi_cmd_priv(scmd);
3946 u16 smid;
3947 u32 tag, unique_tag;
3948
3949 unique_tag = blk_mq_unique_tag(scsi_cmd_to_rq(scmd));
3950 tag = blk_mq_unique_tag_to_tag(unique_tag);
3951
3952 /*
3953 * Store hw queue number corresponding to the tag.
3954 * This hw queue number is used later to determine
3955 * the unique_tag using the logic below. This unique_tag
3956 * is used to retrieve the scmd pointer corresponding
3957 * to tag using scsi_host_find_tag() API.
3958 *
3959 * tag = smid - 1;
3960 * unique_tag = ioc->io_queue_num[tag] << BLK_MQ_UNIQUE_TAG_BITS | tag;
3961 */
3962 ioc->io_queue_num[tag] = blk_mq_unique_tag_to_hwq(unique_tag);
3963
3964 smid = tag + 1;
3965 request->cb_idx = cb_idx;
3966 request->smid = smid;
3967 request->scmd = scmd;
3968 INIT_LIST_HEAD(&request->chain_list);
3969 return smid;
3970 }
3971
3972 /**
3973 * mpt3sas_base_get_smid_hpr - obtain a free smid from hi-priority queue
3974 * @ioc: per adapter object
3975 * @cb_idx: callback index
3976 *
3977 * Return: smid (zero is invalid)
3978 */
3979 u16
mpt3sas_base_get_smid_hpr(struct MPT3SAS_ADAPTER * ioc,u8 cb_idx)3980 mpt3sas_base_get_smid_hpr(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx)
3981 {
3982 unsigned long flags;
3983 struct request_tracker *request;
3984 u16 smid;
3985
3986 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
3987 if (list_empty(&ioc->hpr_free_list)) {
3988 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
3989 return 0;
3990 }
3991
3992 request = list_entry(ioc->hpr_free_list.next,
3993 struct request_tracker, tracker_list);
3994 request->cb_idx = cb_idx;
3995 smid = request->smid;
3996 list_del(&request->tracker_list);
3997 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
3998 return smid;
3999 }
4000
4001 static void
_base_recovery_check(struct MPT3SAS_ADAPTER * ioc)4002 _base_recovery_check(struct MPT3SAS_ADAPTER *ioc)
4003 {
4004 /*
4005 * See _wait_for_commands_to_complete() call with regards to this code.
4006 */
4007 if (ioc->shost_recovery && ioc->pending_io_count) {
4008 ioc->pending_io_count = scsi_host_busy(ioc->shost);
4009 if (ioc->pending_io_count == 0)
4010 wake_up(&ioc->reset_wq);
4011 }
4012 }
4013
mpt3sas_base_clear_st(struct MPT3SAS_ADAPTER * ioc,struct scsiio_tracker * st)4014 void mpt3sas_base_clear_st(struct MPT3SAS_ADAPTER *ioc,
4015 struct scsiio_tracker *st)
4016 {
4017 if (WARN_ON(st->smid == 0))
4018 return;
4019 st->cb_idx = 0xFF;
4020 st->direct_io = 0;
4021 st->scmd = NULL;
4022 atomic_set(&ioc->chain_lookup[st->smid - 1].chain_offset, 0);
4023 st->smid = 0;
4024 }
4025
4026 /**
4027 * mpt3sas_base_free_smid - put smid back on free_list
4028 * @ioc: per adapter object
4029 * @smid: system request message index
4030 */
4031 void
mpt3sas_base_free_smid(struct MPT3SAS_ADAPTER * ioc,u16 smid)4032 mpt3sas_base_free_smid(struct MPT3SAS_ADAPTER *ioc, u16 smid)
4033 {
4034 unsigned long flags;
4035 int i;
4036
4037 if (smid < ioc->hi_priority_smid) {
4038 struct scsiio_tracker *st;
4039 void *request;
4040
4041 st = _get_st_from_smid(ioc, smid);
4042 if (!st) {
4043 _base_recovery_check(ioc);
4044 return;
4045 }
4046
4047 /* Clear MPI request frame */
4048 request = mpt3sas_base_get_msg_frame(ioc, smid);
4049 memset(request, 0, ioc->request_sz);
4050
4051 mpt3sas_base_clear_st(ioc, st);
4052 _base_recovery_check(ioc);
4053 ioc->io_queue_num[smid - 1] = 0;
4054 return;
4055 }
4056
4057 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
4058 if (smid < ioc->internal_smid) {
4059 /* hi-priority */
4060 i = smid - ioc->hi_priority_smid;
4061 ioc->hpr_lookup[i].cb_idx = 0xFF;
4062 list_add(&ioc->hpr_lookup[i].tracker_list, &ioc->hpr_free_list);
4063 } else if (smid <= ioc->hba_queue_depth) {
4064 /* internal queue */
4065 i = smid - ioc->internal_smid;
4066 ioc->internal_lookup[i].cb_idx = 0xFF;
4067 list_add(&ioc->internal_lookup[i].tracker_list,
4068 &ioc->internal_free_list);
4069 }
4070 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
4071 }
4072
4073 /**
4074 * _base_mpi_ep_writeq - 32 bit write to MMIO
4075 * @b: data payload
4076 * @addr: address in MMIO space
4077 * @writeq_lock: spin lock
4078 *
4079 * This special handling for MPI EP to take care of 32 bit
4080 * environment where its not quarenteed to send the entire word
4081 * in one transfer.
4082 */
4083 static inline void
_base_mpi_ep_writeq(__u64 b,volatile void __iomem * addr,spinlock_t * writeq_lock)4084 _base_mpi_ep_writeq(__u64 b, volatile void __iomem *addr,
4085 spinlock_t *writeq_lock)
4086 {
4087 unsigned long flags;
4088
4089 spin_lock_irqsave(writeq_lock, flags);
4090 __raw_writel((u32)(b), addr);
4091 __raw_writel((u32)(b >> 32), (addr + 4));
4092 spin_unlock_irqrestore(writeq_lock, flags);
4093 }
4094
4095 /**
4096 * _base_writeq - 64 bit write to MMIO
4097 * @b: data payload
4098 * @addr: address in MMIO space
4099 * @writeq_lock: spin lock
4100 *
4101 * Glue for handling an atomic 64 bit word to MMIO. This special handling takes
4102 * care of 32 bit environment where its not quarenteed to send the entire word
4103 * in one transfer.
4104 */
4105 #if defined(writeq) && defined(CONFIG_64BIT)
4106 static inline void
_base_writeq(__u64 b,volatile void __iomem * addr,spinlock_t * writeq_lock)4107 _base_writeq(__u64 b, volatile void __iomem *addr, spinlock_t *writeq_lock)
4108 {
4109 wmb();
4110 __raw_writeq(b, addr);
4111 barrier();
4112 }
4113 #else
4114 static inline void
_base_writeq(__u64 b,volatile void __iomem * addr,spinlock_t * writeq_lock)4115 _base_writeq(__u64 b, volatile void __iomem *addr, spinlock_t *writeq_lock)
4116 {
4117 _base_mpi_ep_writeq(b, addr, writeq_lock);
4118 }
4119 #endif
4120
4121 /**
4122 * _base_set_and_get_msix_index - get the msix index and assign to msix_io
4123 * variable of scsi tracker
4124 * @ioc: per adapter object
4125 * @smid: system request message index
4126 *
4127 * Return: msix index.
4128 */
4129 static u8
_base_set_and_get_msix_index(struct MPT3SAS_ADAPTER * ioc,u16 smid)4130 _base_set_and_get_msix_index(struct MPT3SAS_ADAPTER *ioc, u16 smid)
4131 {
4132 struct scsiio_tracker *st = NULL;
4133
4134 if (smid < ioc->hi_priority_smid)
4135 st = _get_st_from_smid(ioc, smid);
4136
4137 if (st == NULL)
4138 return _base_get_msix_index(ioc, NULL);
4139
4140 st->msix_io = ioc->get_msix_index_for_smlio(ioc, st->scmd);
4141 return st->msix_io;
4142 }
4143
4144 /**
4145 * _base_put_smid_mpi_ep_scsi_io - send SCSI_IO request to firmware
4146 * @ioc: per adapter object
4147 * @smid: system request message index
4148 * @handle: device handle
4149 */
4150 static void
_base_put_smid_mpi_ep_scsi_io(struct MPT3SAS_ADAPTER * ioc,u16 smid,u16 handle)4151 _base_put_smid_mpi_ep_scsi_io(struct MPT3SAS_ADAPTER *ioc,
4152 u16 smid, u16 handle)
4153 {
4154 Mpi2RequestDescriptorUnion_t descriptor;
4155 u64 *request = (u64 *)&descriptor;
4156 void *mpi_req_iomem;
4157 __le32 *mfp = (__le32 *)mpt3sas_base_get_msg_frame(ioc, smid);
4158
4159 _clone_sg_entries(ioc, (void *) mfp, smid);
4160 mpi_req_iomem = (void __force *)ioc->chip +
4161 MPI_FRAME_START_OFFSET + (smid * ioc->request_sz);
4162 _base_clone_mpi_to_sys_mem(mpi_req_iomem, (void *)mfp,
4163 ioc->request_sz);
4164 descriptor.SCSIIO.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO;
4165 descriptor.SCSIIO.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
4166 descriptor.SCSIIO.SMID = cpu_to_le16(smid);
4167 descriptor.SCSIIO.DevHandle = cpu_to_le16(handle);
4168 descriptor.SCSIIO.LMID = 0;
4169 _base_mpi_ep_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
4170 &ioc->scsi_lookup_lock);
4171 }
4172
4173 /**
4174 * _base_put_smid_scsi_io - send SCSI_IO request to firmware
4175 * @ioc: per adapter object
4176 * @smid: system request message index
4177 * @handle: device handle
4178 */
4179 static void
_base_put_smid_scsi_io(struct MPT3SAS_ADAPTER * ioc,u16 smid,u16 handle)4180 _base_put_smid_scsi_io(struct MPT3SAS_ADAPTER *ioc, u16 smid, u16 handle)
4181 {
4182 Mpi2RequestDescriptorUnion_t descriptor;
4183 u64 *request = (u64 *)&descriptor;
4184
4185
4186 descriptor.SCSIIO.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO;
4187 descriptor.SCSIIO.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
4188 descriptor.SCSIIO.SMID = cpu_to_le16(smid);
4189 descriptor.SCSIIO.DevHandle = cpu_to_le16(handle);
4190 descriptor.SCSIIO.LMID = 0;
4191 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
4192 &ioc->scsi_lookup_lock);
4193 }
4194
4195 /**
4196 * _base_put_smid_fast_path - send fast path request to firmware
4197 * @ioc: per adapter object
4198 * @smid: system request message index
4199 * @handle: device handle
4200 */
4201 static void
_base_put_smid_fast_path(struct MPT3SAS_ADAPTER * ioc,u16 smid,u16 handle)4202 _base_put_smid_fast_path(struct MPT3SAS_ADAPTER *ioc, u16 smid,
4203 u16 handle)
4204 {
4205 Mpi2RequestDescriptorUnion_t descriptor;
4206 u64 *request = (u64 *)&descriptor;
4207
4208 descriptor.SCSIIO.RequestFlags =
4209 MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO;
4210 descriptor.SCSIIO.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
4211 descriptor.SCSIIO.SMID = cpu_to_le16(smid);
4212 descriptor.SCSIIO.DevHandle = cpu_to_le16(handle);
4213 descriptor.SCSIIO.LMID = 0;
4214 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
4215 &ioc->scsi_lookup_lock);
4216 }
4217
4218 /**
4219 * _base_put_smid_hi_priority - send Task Management request to firmware
4220 * @ioc: per adapter object
4221 * @smid: system request message index
4222 * @msix_task: msix_task will be same as msix of IO in case of task abort else 0
4223 */
4224 static void
_base_put_smid_hi_priority(struct MPT3SAS_ADAPTER * ioc,u16 smid,u16 msix_task)4225 _base_put_smid_hi_priority(struct MPT3SAS_ADAPTER *ioc, u16 smid,
4226 u16 msix_task)
4227 {
4228 Mpi2RequestDescriptorUnion_t descriptor;
4229 void *mpi_req_iomem;
4230 u64 *request;
4231
4232 if (ioc->is_mcpu_endpoint) {
4233 __le32 *mfp = (__le32 *)mpt3sas_base_get_msg_frame(ioc, smid);
4234
4235 /* TBD 256 is offset within sys register. */
4236 mpi_req_iomem = (void __force *)ioc->chip
4237 + MPI_FRAME_START_OFFSET
4238 + (smid * ioc->request_sz);
4239 _base_clone_mpi_to_sys_mem(mpi_req_iomem, (void *)mfp,
4240 ioc->request_sz);
4241 }
4242
4243 request = (u64 *)&descriptor;
4244
4245 descriptor.HighPriority.RequestFlags =
4246 MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY;
4247 descriptor.HighPriority.MSIxIndex = msix_task;
4248 descriptor.HighPriority.SMID = cpu_to_le16(smid);
4249 descriptor.HighPriority.LMID = 0;
4250 descriptor.HighPriority.Reserved1 = 0;
4251 if (ioc->is_mcpu_endpoint)
4252 _base_mpi_ep_writeq(*request,
4253 &ioc->chip->RequestDescriptorPostLow,
4254 &ioc->scsi_lookup_lock);
4255 else
4256 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
4257 &ioc->scsi_lookup_lock);
4258 }
4259
4260 /**
4261 * mpt3sas_base_put_smid_nvme_encap - send NVMe encapsulated request to
4262 * firmware
4263 * @ioc: per adapter object
4264 * @smid: system request message index
4265 */
4266 void
mpt3sas_base_put_smid_nvme_encap(struct MPT3SAS_ADAPTER * ioc,u16 smid)4267 mpt3sas_base_put_smid_nvme_encap(struct MPT3SAS_ADAPTER *ioc, u16 smid)
4268 {
4269 Mpi2RequestDescriptorUnion_t descriptor;
4270 u64 *request = (u64 *)&descriptor;
4271
4272 descriptor.Default.RequestFlags =
4273 MPI26_REQ_DESCRIPT_FLAGS_PCIE_ENCAPSULATED;
4274 descriptor.Default.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
4275 descriptor.Default.SMID = cpu_to_le16(smid);
4276 descriptor.Default.LMID = 0;
4277 descriptor.Default.DescriptorTypeDependent = 0;
4278 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
4279 &ioc->scsi_lookup_lock);
4280 }
4281
4282 /**
4283 * _base_put_smid_default - Default, primarily used for config pages
4284 * @ioc: per adapter object
4285 * @smid: system request message index
4286 */
4287 static void
_base_put_smid_default(struct MPT3SAS_ADAPTER * ioc,u16 smid)4288 _base_put_smid_default(struct MPT3SAS_ADAPTER *ioc, u16 smid)
4289 {
4290 Mpi2RequestDescriptorUnion_t descriptor;
4291 void *mpi_req_iomem;
4292 u64 *request;
4293
4294 if (ioc->is_mcpu_endpoint) {
4295 __le32 *mfp = (__le32 *)mpt3sas_base_get_msg_frame(ioc, smid);
4296
4297 _clone_sg_entries(ioc, (void *) mfp, smid);
4298 /* TBD 256 is offset within sys register */
4299 mpi_req_iomem = (void __force *)ioc->chip +
4300 MPI_FRAME_START_OFFSET + (smid * ioc->request_sz);
4301 _base_clone_mpi_to_sys_mem(mpi_req_iomem, (void *)mfp,
4302 ioc->request_sz);
4303 }
4304 request = (u64 *)&descriptor;
4305 descriptor.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
4306 descriptor.Default.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
4307 descriptor.Default.SMID = cpu_to_le16(smid);
4308 descriptor.Default.LMID = 0;
4309 descriptor.Default.DescriptorTypeDependent = 0;
4310 if (ioc->is_mcpu_endpoint)
4311 _base_mpi_ep_writeq(*request,
4312 &ioc->chip->RequestDescriptorPostLow,
4313 &ioc->scsi_lookup_lock);
4314 else
4315 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
4316 &ioc->scsi_lookup_lock);
4317 }
4318
4319 /**
4320 * _base_put_smid_scsi_io_atomic - send SCSI_IO request to firmware using
4321 * Atomic Request Descriptor
4322 * @ioc: per adapter object
4323 * @smid: system request message index
4324 * @handle: device handle, unused in this function, for function type match
4325 *
4326 * Return: nothing.
4327 */
4328 static void
_base_put_smid_scsi_io_atomic(struct MPT3SAS_ADAPTER * ioc,u16 smid,u16 handle)4329 _base_put_smid_scsi_io_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid,
4330 u16 handle)
4331 {
4332 Mpi26AtomicRequestDescriptor_t descriptor;
4333 u32 *request = (u32 *)&descriptor;
4334
4335 descriptor.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO;
4336 descriptor.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
4337 descriptor.SMID = cpu_to_le16(smid);
4338
4339 writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost);
4340 }
4341
4342 /**
4343 * _base_put_smid_fast_path_atomic - send fast path request to firmware
4344 * using Atomic Request Descriptor
4345 * @ioc: per adapter object
4346 * @smid: system request message index
4347 * @handle: device handle, unused in this function, for function type match
4348 * Return: nothing
4349 */
4350 static void
_base_put_smid_fast_path_atomic(struct MPT3SAS_ADAPTER * ioc,u16 smid,u16 handle)4351 _base_put_smid_fast_path_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid,
4352 u16 handle)
4353 {
4354 Mpi26AtomicRequestDescriptor_t descriptor;
4355 u32 *request = (u32 *)&descriptor;
4356
4357 descriptor.RequestFlags = MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO;
4358 descriptor.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
4359 descriptor.SMID = cpu_to_le16(smid);
4360
4361 writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost);
4362 }
4363
4364 /**
4365 * _base_put_smid_hi_priority_atomic - send Task Management request to
4366 * firmware using Atomic Request Descriptor
4367 * @ioc: per adapter object
4368 * @smid: system request message index
4369 * @msix_task: msix_task will be same as msix of IO in case of task abort else 0
4370 *
4371 * Return: nothing.
4372 */
4373 static void
_base_put_smid_hi_priority_atomic(struct MPT3SAS_ADAPTER * ioc,u16 smid,u16 msix_task)4374 _base_put_smid_hi_priority_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid,
4375 u16 msix_task)
4376 {
4377 Mpi26AtomicRequestDescriptor_t descriptor;
4378 u32 *request = (u32 *)&descriptor;
4379
4380 descriptor.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY;
4381 descriptor.MSIxIndex = msix_task;
4382 descriptor.SMID = cpu_to_le16(smid);
4383
4384 writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost);
4385 }
4386
4387 /**
4388 * _base_put_smid_default_atomic - Default, primarily used for config pages
4389 * use Atomic Request Descriptor
4390 * @ioc: per adapter object
4391 * @smid: system request message index
4392 *
4393 * Return: nothing.
4394 */
4395 static void
_base_put_smid_default_atomic(struct MPT3SAS_ADAPTER * ioc,u16 smid)4396 _base_put_smid_default_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid)
4397 {
4398 Mpi26AtomicRequestDescriptor_t descriptor;
4399 u32 *request = (u32 *)&descriptor;
4400
4401 descriptor.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
4402 descriptor.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
4403 descriptor.SMID = cpu_to_le16(smid);
4404
4405 writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost);
4406 }
4407
4408 /**
4409 * _base_display_OEMs_branding - Display branding string
4410 * @ioc: per adapter object
4411 */
4412 static void
_base_display_OEMs_branding(struct MPT3SAS_ADAPTER * ioc)4413 _base_display_OEMs_branding(struct MPT3SAS_ADAPTER *ioc)
4414 {
4415 if (ioc->pdev->subsystem_vendor != PCI_VENDOR_ID_INTEL)
4416 return;
4417
4418 switch (ioc->pdev->subsystem_vendor) {
4419 case PCI_VENDOR_ID_INTEL:
4420 switch (ioc->pdev->device) {
4421 case MPI2_MFGPAGE_DEVID_SAS2008:
4422 switch (ioc->pdev->subsystem_device) {
4423 case MPT2SAS_INTEL_RMS2LL080_SSDID:
4424 ioc_info(ioc, "%s\n",
4425 MPT2SAS_INTEL_RMS2LL080_BRANDING);
4426 break;
4427 case MPT2SAS_INTEL_RMS2LL040_SSDID:
4428 ioc_info(ioc, "%s\n",
4429 MPT2SAS_INTEL_RMS2LL040_BRANDING);
4430 break;
4431 case MPT2SAS_INTEL_SSD910_SSDID:
4432 ioc_info(ioc, "%s\n",
4433 MPT2SAS_INTEL_SSD910_BRANDING);
4434 break;
4435 default:
4436 ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n",
4437 ioc->pdev->subsystem_device);
4438 break;
4439 }
4440 break;
4441 case MPI2_MFGPAGE_DEVID_SAS2308_2:
4442 switch (ioc->pdev->subsystem_device) {
4443 case MPT2SAS_INTEL_RS25GB008_SSDID:
4444 ioc_info(ioc, "%s\n",
4445 MPT2SAS_INTEL_RS25GB008_BRANDING);
4446 break;
4447 case MPT2SAS_INTEL_RMS25JB080_SSDID:
4448 ioc_info(ioc, "%s\n",
4449 MPT2SAS_INTEL_RMS25JB080_BRANDING);
4450 break;
4451 case MPT2SAS_INTEL_RMS25JB040_SSDID:
4452 ioc_info(ioc, "%s\n",
4453 MPT2SAS_INTEL_RMS25JB040_BRANDING);
4454 break;
4455 case MPT2SAS_INTEL_RMS25KB080_SSDID:
4456 ioc_info(ioc, "%s\n",
4457 MPT2SAS_INTEL_RMS25KB080_BRANDING);
4458 break;
4459 case MPT2SAS_INTEL_RMS25KB040_SSDID:
4460 ioc_info(ioc, "%s\n",
4461 MPT2SAS_INTEL_RMS25KB040_BRANDING);
4462 break;
4463 case MPT2SAS_INTEL_RMS25LB040_SSDID:
4464 ioc_info(ioc, "%s\n",
4465 MPT2SAS_INTEL_RMS25LB040_BRANDING);
4466 break;
4467 case MPT2SAS_INTEL_RMS25LB080_SSDID:
4468 ioc_info(ioc, "%s\n",
4469 MPT2SAS_INTEL_RMS25LB080_BRANDING);
4470 break;
4471 default:
4472 ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n",
4473 ioc->pdev->subsystem_device);
4474 break;
4475 }
4476 break;
4477 case MPI25_MFGPAGE_DEVID_SAS3008:
4478 switch (ioc->pdev->subsystem_device) {
4479 case MPT3SAS_INTEL_RMS3JC080_SSDID:
4480 ioc_info(ioc, "%s\n",
4481 MPT3SAS_INTEL_RMS3JC080_BRANDING);
4482 break;
4483
4484 case MPT3SAS_INTEL_RS3GC008_SSDID:
4485 ioc_info(ioc, "%s\n",
4486 MPT3SAS_INTEL_RS3GC008_BRANDING);
4487 break;
4488 case MPT3SAS_INTEL_RS3FC044_SSDID:
4489 ioc_info(ioc, "%s\n",
4490 MPT3SAS_INTEL_RS3FC044_BRANDING);
4491 break;
4492 case MPT3SAS_INTEL_RS3UC080_SSDID:
4493 ioc_info(ioc, "%s\n",
4494 MPT3SAS_INTEL_RS3UC080_BRANDING);
4495 break;
4496 default:
4497 ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n",
4498 ioc->pdev->subsystem_device);
4499 break;
4500 }
4501 break;
4502 default:
4503 ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n",
4504 ioc->pdev->subsystem_device);
4505 break;
4506 }
4507 break;
4508 case PCI_VENDOR_ID_DELL:
4509 switch (ioc->pdev->device) {
4510 case MPI2_MFGPAGE_DEVID_SAS2008:
4511 switch (ioc->pdev->subsystem_device) {
4512 case MPT2SAS_DELL_6GBPS_SAS_HBA_SSDID:
4513 ioc_info(ioc, "%s\n",
4514 MPT2SAS_DELL_6GBPS_SAS_HBA_BRANDING);
4515 break;
4516 case MPT2SAS_DELL_PERC_H200_ADAPTER_SSDID:
4517 ioc_info(ioc, "%s\n",
4518 MPT2SAS_DELL_PERC_H200_ADAPTER_BRANDING);
4519 break;
4520 case MPT2SAS_DELL_PERC_H200_INTEGRATED_SSDID:
4521 ioc_info(ioc, "%s\n",
4522 MPT2SAS_DELL_PERC_H200_INTEGRATED_BRANDING);
4523 break;
4524 case MPT2SAS_DELL_PERC_H200_MODULAR_SSDID:
4525 ioc_info(ioc, "%s\n",
4526 MPT2SAS_DELL_PERC_H200_MODULAR_BRANDING);
4527 break;
4528 case MPT2SAS_DELL_PERC_H200_EMBEDDED_SSDID:
4529 ioc_info(ioc, "%s\n",
4530 MPT2SAS_DELL_PERC_H200_EMBEDDED_BRANDING);
4531 break;
4532 case MPT2SAS_DELL_PERC_H200_SSDID:
4533 ioc_info(ioc, "%s\n",
4534 MPT2SAS_DELL_PERC_H200_BRANDING);
4535 break;
4536 case MPT2SAS_DELL_6GBPS_SAS_SSDID:
4537 ioc_info(ioc, "%s\n",
4538 MPT2SAS_DELL_6GBPS_SAS_BRANDING);
4539 break;
4540 default:
4541 ioc_info(ioc, "Dell 6Gbps HBA: Subsystem ID: 0x%X\n",
4542 ioc->pdev->subsystem_device);
4543 break;
4544 }
4545 break;
4546 case MPI25_MFGPAGE_DEVID_SAS3008:
4547 switch (ioc->pdev->subsystem_device) {
4548 case MPT3SAS_DELL_12G_HBA_SSDID:
4549 ioc_info(ioc, "%s\n",
4550 MPT3SAS_DELL_12G_HBA_BRANDING);
4551 break;
4552 default:
4553 ioc_info(ioc, "Dell 12Gbps HBA: Subsystem ID: 0x%X\n",
4554 ioc->pdev->subsystem_device);
4555 break;
4556 }
4557 break;
4558 default:
4559 ioc_info(ioc, "Dell HBA: Subsystem ID: 0x%X\n",
4560 ioc->pdev->subsystem_device);
4561 break;
4562 }
4563 break;
4564 case PCI_VENDOR_ID_CISCO:
4565 switch (ioc->pdev->device) {
4566 case MPI25_MFGPAGE_DEVID_SAS3008:
4567 switch (ioc->pdev->subsystem_device) {
4568 case MPT3SAS_CISCO_12G_8E_HBA_SSDID:
4569 ioc_info(ioc, "%s\n",
4570 MPT3SAS_CISCO_12G_8E_HBA_BRANDING);
4571 break;
4572 case MPT3SAS_CISCO_12G_8I_HBA_SSDID:
4573 ioc_info(ioc, "%s\n",
4574 MPT3SAS_CISCO_12G_8I_HBA_BRANDING);
4575 break;
4576 case MPT3SAS_CISCO_12G_AVILA_HBA_SSDID:
4577 ioc_info(ioc, "%s\n",
4578 MPT3SAS_CISCO_12G_AVILA_HBA_BRANDING);
4579 break;
4580 default:
4581 ioc_info(ioc, "Cisco 12Gbps SAS HBA: Subsystem ID: 0x%X\n",
4582 ioc->pdev->subsystem_device);
4583 break;
4584 }
4585 break;
4586 case MPI25_MFGPAGE_DEVID_SAS3108_1:
4587 switch (ioc->pdev->subsystem_device) {
4588 case MPT3SAS_CISCO_12G_AVILA_HBA_SSDID:
4589 ioc_info(ioc, "%s\n",
4590 MPT3SAS_CISCO_12G_AVILA_HBA_BRANDING);
4591 break;
4592 case MPT3SAS_CISCO_12G_COLUSA_MEZZANINE_HBA_SSDID:
4593 ioc_info(ioc, "%s\n",
4594 MPT3SAS_CISCO_12G_COLUSA_MEZZANINE_HBA_BRANDING);
4595 break;
4596 default:
4597 ioc_info(ioc, "Cisco 12Gbps SAS HBA: Subsystem ID: 0x%X\n",
4598 ioc->pdev->subsystem_device);
4599 break;
4600 }
4601 break;
4602 default:
4603 ioc_info(ioc, "Cisco SAS HBA: Subsystem ID: 0x%X\n",
4604 ioc->pdev->subsystem_device);
4605 break;
4606 }
4607 break;
4608 case MPT2SAS_HP_3PAR_SSVID:
4609 switch (ioc->pdev->device) {
4610 case MPI2_MFGPAGE_DEVID_SAS2004:
4611 switch (ioc->pdev->subsystem_device) {
4612 case MPT2SAS_HP_DAUGHTER_2_4_INTERNAL_SSDID:
4613 ioc_info(ioc, "%s\n",
4614 MPT2SAS_HP_DAUGHTER_2_4_INTERNAL_BRANDING);
4615 break;
4616 default:
4617 ioc_info(ioc, "HP 6Gbps SAS HBA: Subsystem ID: 0x%X\n",
4618 ioc->pdev->subsystem_device);
4619 break;
4620 }
4621 break;
4622 case MPI2_MFGPAGE_DEVID_SAS2308_2:
4623 switch (ioc->pdev->subsystem_device) {
4624 case MPT2SAS_HP_2_4_INTERNAL_SSDID:
4625 ioc_info(ioc, "%s\n",
4626 MPT2SAS_HP_2_4_INTERNAL_BRANDING);
4627 break;
4628 case MPT2SAS_HP_2_4_EXTERNAL_SSDID:
4629 ioc_info(ioc, "%s\n",
4630 MPT2SAS_HP_2_4_EXTERNAL_BRANDING);
4631 break;
4632 case MPT2SAS_HP_1_4_INTERNAL_1_4_EXTERNAL_SSDID:
4633 ioc_info(ioc, "%s\n",
4634 MPT2SAS_HP_1_4_INTERNAL_1_4_EXTERNAL_BRANDING);
4635 break;
4636 case MPT2SAS_HP_EMBEDDED_2_4_INTERNAL_SSDID:
4637 ioc_info(ioc, "%s\n",
4638 MPT2SAS_HP_EMBEDDED_2_4_INTERNAL_BRANDING);
4639 break;
4640 default:
4641 ioc_info(ioc, "HP 6Gbps SAS HBA: Subsystem ID: 0x%X\n",
4642 ioc->pdev->subsystem_device);
4643 break;
4644 }
4645 break;
4646 default:
4647 ioc_info(ioc, "HP SAS HBA: Subsystem ID: 0x%X\n",
4648 ioc->pdev->subsystem_device);
4649 break;
4650 }
4651 break;
4652 default:
4653 break;
4654 }
4655 }
4656
4657 /**
4658 * _base_display_fwpkg_version - sends FWUpload request to pull FWPkg
4659 * version from FW Image Header.
4660 * @ioc: per adapter object
4661 *
4662 * Return: 0 for success, non-zero for failure.
4663 */
4664 static int
_base_display_fwpkg_version(struct MPT3SAS_ADAPTER * ioc)4665 _base_display_fwpkg_version(struct MPT3SAS_ADAPTER *ioc)
4666 {
4667 Mpi2FWImageHeader_t *fw_img_hdr;
4668 Mpi26ComponentImageHeader_t *cmp_img_hdr;
4669 Mpi25FWUploadRequest_t *mpi_request;
4670 Mpi2FWUploadReply_t mpi_reply;
4671 int r = 0, issue_diag_reset = 0;
4672 u32 package_version = 0;
4673 void *fwpkg_data = NULL;
4674 dma_addr_t fwpkg_data_dma;
4675 u16 smid, ioc_status;
4676 size_t data_length;
4677
4678 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
4679
4680 if (ioc->base_cmds.status & MPT3_CMD_PENDING) {
4681 ioc_err(ioc, "%s: internal command already in use\n", __func__);
4682 return -EAGAIN;
4683 }
4684
4685 data_length = sizeof(Mpi2FWImageHeader_t);
4686 fwpkg_data = dma_alloc_coherent(&ioc->pdev->dev, data_length,
4687 &fwpkg_data_dma, GFP_KERNEL);
4688 if (!fwpkg_data) {
4689 ioc_err(ioc,
4690 "Memory allocation for fwpkg data failed at %s:%d/%s()!\n",
4691 __FILE__, __LINE__, __func__);
4692 return -ENOMEM;
4693 }
4694
4695 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
4696 if (!smid) {
4697 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
4698 r = -EAGAIN;
4699 goto out;
4700 }
4701
4702 ioc->base_cmds.status = MPT3_CMD_PENDING;
4703 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
4704 ioc->base_cmds.smid = smid;
4705 memset(mpi_request, 0, sizeof(Mpi25FWUploadRequest_t));
4706 mpi_request->Function = MPI2_FUNCTION_FW_UPLOAD;
4707 mpi_request->ImageType = MPI2_FW_UPLOAD_ITYPE_FW_FLASH;
4708 mpi_request->ImageSize = cpu_to_le32(data_length);
4709 ioc->build_sg(ioc, &mpi_request->SGL, 0, 0, fwpkg_data_dma,
4710 data_length);
4711 init_completion(&ioc->base_cmds.done);
4712 ioc->put_smid_default(ioc, smid);
4713 /* Wait for 15 seconds */
4714 wait_for_completion_timeout(&ioc->base_cmds.done,
4715 FW_IMG_HDR_READ_TIMEOUT*HZ);
4716 ioc_info(ioc, "%s: complete\n", __func__);
4717 if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
4718 ioc_err(ioc, "%s: timeout\n", __func__);
4719 _debug_dump_mf(mpi_request,
4720 sizeof(Mpi25FWUploadRequest_t)/4);
4721 issue_diag_reset = 1;
4722 } else {
4723 memset(&mpi_reply, 0, sizeof(Mpi2FWUploadReply_t));
4724 if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID) {
4725 memcpy(&mpi_reply, ioc->base_cmds.reply,
4726 sizeof(Mpi2FWUploadReply_t));
4727 ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
4728 MPI2_IOCSTATUS_MASK;
4729 if (ioc_status == MPI2_IOCSTATUS_SUCCESS) {
4730 fw_img_hdr = (Mpi2FWImageHeader_t *)fwpkg_data;
4731 if (le32_to_cpu(fw_img_hdr->Signature) ==
4732 MPI26_IMAGE_HEADER_SIGNATURE0_MPI26) {
4733 cmp_img_hdr =
4734 (Mpi26ComponentImageHeader_t *)
4735 (fwpkg_data);
4736 package_version =
4737 le32_to_cpu(
4738 cmp_img_hdr->ApplicationSpecific);
4739 } else
4740 package_version =
4741 le32_to_cpu(
4742 fw_img_hdr->PackageVersion.Word);
4743 if (package_version)
4744 ioc_info(ioc,
4745 "FW Package Ver(%02d.%02d.%02d.%02d)\n",
4746 ((package_version) & 0xFF000000) >> 24,
4747 ((package_version) & 0x00FF0000) >> 16,
4748 ((package_version) & 0x0000FF00) >> 8,
4749 (package_version) & 0x000000FF);
4750 } else {
4751 _debug_dump_mf(&mpi_reply,
4752 sizeof(Mpi2FWUploadReply_t)/4);
4753 }
4754 }
4755 }
4756 ioc->base_cmds.status = MPT3_CMD_NOT_USED;
4757 out:
4758 if (fwpkg_data)
4759 dma_free_coherent(&ioc->pdev->dev, data_length, fwpkg_data,
4760 fwpkg_data_dma);
4761 if (issue_diag_reset) {
4762 if (ioc->drv_internal_flags & MPT_DRV_INTERNAL_FIRST_PE_ISSUED)
4763 return -EFAULT;
4764 if (mpt3sas_base_check_for_fault_and_issue_reset(ioc))
4765 return -EFAULT;
4766 r = -EAGAIN;
4767 }
4768 return r;
4769 }
4770
4771 /**
4772 * _base_display_ioc_capabilities - Display IOC's capabilities.
4773 * @ioc: per adapter object
4774 */
4775 static void
_base_display_ioc_capabilities(struct MPT3SAS_ADAPTER * ioc)4776 _base_display_ioc_capabilities(struct MPT3SAS_ADAPTER *ioc)
4777 {
4778 int i = 0;
4779 char desc[16];
4780 u32 iounit_pg1_flags;
4781 u32 bios_version;
4782
4783 bios_version = le32_to_cpu(ioc->bios_pg3.BiosVersion);
4784 strncpy(desc, ioc->manu_pg0.ChipName, 16);
4785 ioc_info(ioc, "%s: FWVersion(%02d.%02d.%02d.%02d), ChipRevision(0x%02x), BiosVersion(%02d.%02d.%02d.%02d)\n",
4786 desc,
4787 (ioc->facts.FWVersion.Word & 0xFF000000) >> 24,
4788 (ioc->facts.FWVersion.Word & 0x00FF0000) >> 16,
4789 (ioc->facts.FWVersion.Word & 0x0000FF00) >> 8,
4790 ioc->facts.FWVersion.Word & 0x000000FF,
4791 ioc->pdev->revision,
4792 (bios_version & 0xFF000000) >> 24,
4793 (bios_version & 0x00FF0000) >> 16,
4794 (bios_version & 0x0000FF00) >> 8,
4795 bios_version & 0x000000FF);
4796
4797 _base_display_OEMs_branding(ioc);
4798
4799 if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_NVME_DEVICES) {
4800 pr_info("%sNVMe", i ? "," : "");
4801 i++;
4802 }
4803
4804 ioc_info(ioc, "Protocol=(");
4805
4806 if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_SCSI_INITIATOR) {
4807 pr_cont("Initiator");
4808 i++;
4809 }
4810
4811 if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_SCSI_TARGET) {
4812 pr_cont("%sTarget", i ? "," : "");
4813 i++;
4814 }
4815
4816 i = 0;
4817 pr_cont("), Capabilities=(");
4818
4819 if (!ioc->hide_ir_msg) {
4820 if (ioc->facts.IOCCapabilities &
4821 MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID) {
4822 pr_cont("Raid");
4823 i++;
4824 }
4825 }
4826
4827 if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_TLR) {
4828 pr_cont("%sTLR", i ? "," : "");
4829 i++;
4830 }
4831
4832 if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_MULTICAST) {
4833 pr_cont("%sMulticast", i ? "," : "");
4834 i++;
4835 }
4836
4837 if (ioc->facts.IOCCapabilities &
4838 MPI2_IOCFACTS_CAPABILITY_BIDIRECTIONAL_TARGET) {
4839 pr_cont("%sBIDI Target", i ? "," : "");
4840 i++;
4841 }
4842
4843 if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_EEDP) {
4844 pr_cont("%sEEDP", i ? "," : "");
4845 i++;
4846 }
4847
4848 if (ioc->facts.IOCCapabilities &
4849 MPI2_IOCFACTS_CAPABILITY_SNAPSHOT_BUFFER) {
4850 pr_cont("%sSnapshot Buffer", i ? "," : "");
4851 i++;
4852 }
4853
4854 if (ioc->facts.IOCCapabilities &
4855 MPI2_IOCFACTS_CAPABILITY_DIAG_TRACE_BUFFER) {
4856 pr_cont("%sDiag Trace Buffer", i ? "," : "");
4857 i++;
4858 }
4859
4860 if (ioc->facts.IOCCapabilities &
4861 MPI2_IOCFACTS_CAPABILITY_EXTENDED_BUFFER) {
4862 pr_cont("%sDiag Extended Buffer", i ? "," : "");
4863 i++;
4864 }
4865
4866 if (ioc->facts.IOCCapabilities &
4867 MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING) {
4868 pr_cont("%sTask Set Full", i ? "," : "");
4869 i++;
4870 }
4871
4872 iounit_pg1_flags = le32_to_cpu(ioc->iounit_pg1.Flags);
4873 if (!(iounit_pg1_flags & MPI2_IOUNITPAGE1_NATIVE_COMMAND_Q_DISABLE)) {
4874 pr_cont("%sNCQ", i ? "," : "");
4875 i++;
4876 }
4877
4878 pr_cont(")\n");
4879 }
4880
4881 /**
4882 * mpt3sas_base_update_missing_delay - change the missing delay timers
4883 * @ioc: per adapter object
4884 * @device_missing_delay: amount of time till device is reported missing
4885 * @io_missing_delay: interval IO is returned when there is a missing device
4886 *
4887 * Passed on the command line, this function will modify the device missing
4888 * delay, as well as the io missing delay. This should be called at driver
4889 * load time.
4890 */
4891 void
mpt3sas_base_update_missing_delay(struct MPT3SAS_ADAPTER * ioc,u16 device_missing_delay,u8 io_missing_delay)4892 mpt3sas_base_update_missing_delay(struct MPT3SAS_ADAPTER *ioc,
4893 u16 device_missing_delay, u8 io_missing_delay)
4894 {
4895 u16 dmd, dmd_new, dmd_orignal;
4896 u8 io_missing_delay_original;
4897 u16 sz;
4898 Mpi2SasIOUnitPage1_t *sas_iounit_pg1 = NULL;
4899 Mpi2ConfigReply_t mpi_reply;
4900 u8 num_phys = 0;
4901 u16 ioc_status;
4902
4903 mpt3sas_config_get_number_hba_phys(ioc, &num_phys);
4904 if (!num_phys)
4905 return;
4906
4907 sz = offsetof(Mpi2SasIOUnitPage1_t, PhyData) + (num_phys *
4908 sizeof(Mpi2SasIOUnit1PhyData_t));
4909 sas_iounit_pg1 = kzalloc(sz, GFP_KERNEL);
4910 if (!sas_iounit_pg1) {
4911 ioc_err(ioc, "failure at %s:%d/%s()!\n",
4912 __FILE__, __LINE__, __func__);
4913 goto out;
4914 }
4915 if ((mpt3sas_config_get_sas_iounit_pg1(ioc, &mpi_reply,
4916 sas_iounit_pg1, sz))) {
4917 ioc_err(ioc, "failure at %s:%d/%s()!\n",
4918 __FILE__, __LINE__, __func__);
4919 goto out;
4920 }
4921 ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
4922 MPI2_IOCSTATUS_MASK;
4923 if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
4924 ioc_err(ioc, "failure at %s:%d/%s()!\n",
4925 __FILE__, __LINE__, __func__);
4926 goto out;
4927 }
4928
4929 /* device missing delay */
4930 dmd = sas_iounit_pg1->ReportDeviceMissingDelay;
4931 if (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16)
4932 dmd = (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK) * 16;
4933 else
4934 dmd = dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK;
4935 dmd_orignal = dmd;
4936 if (device_missing_delay > 0x7F) {
4937 dmd = (device_missing_delay > 0x7F0) ? 0x7F0 :
4938 device_missing_delay;
4939 dmd = dmd / 16;
4940 dmd |= MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16;
4941 } else
4942 dmd = device_missing_delay;
4943 sas_iounit_pg1->ReportDeviceMissingDelay = dmd;
4944
4945 /* io missing delay */
4946 io_missing_delay_original = sas_iounit_pg1->IODeviceMissingDelay;
4947 sas_iounit_pg1->IODeviceMissingDelay = io_missing_delay;
4948
4949 if (!mpt3sas_config_set_sas_iounit_pg1(ioc, &mpi_reply, sas_iounit_pg1,
4950 sz)) {
4951 if (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16)
4952 dmd_new = (dmd &
4953 MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK) * 16;
4954 else
4955 dmd_new =
4956 dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK;
4957 ioc_info(ioc, "device_missing_delay: old(%d), new(%d)\n",
4958 dmd_orignal, dmd_new);
4959 ioc_info(ioc, "ioc_missing_delay: old(%d), new(%d)\n",
4960 io_missing_delay_original,
4961 io_missing_delay);
4962 ioc->device_missing_delay = dmd_new;
4963 ioc->io_missing_delay = io_missing_delay;
4964 }
4965
4966 out:
4967 kfree(sas_iounit_pg1);
4968 }
4969
4970 /**
4971 * _base_update_ioc_page1_inlinewith_perf_mode - Update IOC Page1 fields
4972 * according to performance mode.
4973 * @ioc : per adapter object
4974 *
4975 * Return: zero on success; otherwise return EAGAIN error code asking the
4976 * caller to retry.
4977 */
4978 static int
_base_update_ioc_page1_inlinewith_perf_mode(struct MPT3SAS_ADAPTER * ioc)4979 _base_update_ioc_page1_inlinewith_perf_mode(struct MPT3SAS_ADAPTER *ioc)
4980 {
4981 Mpi2IOCPage1_t ioc_pg1;
4982 Mpi2ConfigReply_t mpi_reply;
4983 int rc;
4984
4985 rc = mpt3sas_config_get_ioc_pg1(ioc, &mpi_reply, &ioc->ioc_pg1_copy);
4986 if (rc)
4987 return rc;
4988 memcpy(&ioc_pg1, &ioc->ioc_pg1_copy, sizeof(Mpi2IOCPage1_t));
4989
4990 switch (perf_mode) {
4991 case MPT_PERF_MODE_DEFAULT:
4992 case MPT_PERF_MODE_BALANCED:
4993 if (ioc->high_iops_queues) {
4994 ioc_info(ioc,
4995 "Enable interrupt coalescing only for first\t"
4996 "%d reply queues\n",
4997 MPT3SAS_HIGH_IOPS_REPLY_QUEUES);
4998 /*
4999 * If 31st bit is zero then interrupt coalescing is
5000 * enabled for all reply descriptor post queues.
5001 * If 31st bit is set to one then user can
5002 * enable/disable interrupt coalescing on per reply
5003 * descriptor post queue group(8) basis. So to enable
5004 * interrupt coalescing only on first reply descriptor
5005 * post queue group 31st bit and zero th bit is enabled.
5006 */
5007 ioc_pg1.ProductSpecific = cpu_to_le32(0x80000000 |
5008 ((1 << MPT3SAS_HIGH_IOPS_REPLY_QUEUES/8) - 1));
5009 rc = mpt3sas_config_set_ioc_pg1(ioc, &mpi_reply, &ioc_pg1);
5010 if (rc)
5011 return rc;
5012 ioc_info(ioc, "performance mode: balanced\n");
5013 return 0;
5014 }
5015 fallthrough;
5016 case MPT_PERF_MODE_LATENCY:
5017 /*
5018 * Enable interrupt coalescing on all reply queues
5019 * with timeout value 0xA
5020 */
5021 ioc_pg1.CoalescingTimeout = cpu_to_le32(0xa);
5022 ioc_pg1.Flags |= cpu_to_le32(MPI2_IOCPAGE1_REPLY_COALESCING);
5023 ioc_pg1.ProductSpecific = 0;
5024 rc = mpt3sas_config_set_ioc_pg1(ioc, &mpi_reply, &ioc_pg1);
5025 if (rc)
5026 return rc;
5027 ioc_info(ioc, "performance mode: latency\n");
5028 break;
5029 case MPT_PERF_MODE_IOPS:
5030 /*
5031 * Enable interrupt coalescing on all reply queues.
5032 */
5033 ioc_info(ioc,
5034 "performance mode: iops with coalescing timeout: 0x%x\n",
5035 le32_to_cpu(ioc_pg1.CoalescingTimeout));
5036 ioc_pg1.Flags |= cpu_to_le32(MPI2_IOCPAGE1_REPLY_COALESCING);
5037 ioc_pg1.ProductSpecific = 0;
5038 rc = mpt3sas_config_set_ioc_pg1(ioc, &mpi_reply, &ioc_pg1);
5039 if (rc)
5040 return rc;
5041 break;
5042 }
5043 return 0;
5044 }
5045
5046 /**
5047 * _base_get_event_diag_triggers - get event diag trigger values from
5048 * persistent pages
5049 * @ioc : per adapter object
5050 *
5051 * Return: nothing.
5052 */
5053 static int
_base_get_event_diag_triggers(struct MPT3SAS_ADAPTER * ioc)5054 _base_get_event_diag_triggers(struct MPT3SAS_ADAPTER *ioc)
5055 {
5056 Mpi26DriverTriggerPage2_t trigger_pg2;
5057 struct SL_WH_EVENT_TRIGGER_T *event_tg;
5058 MPI26_DRIVER_MPI_EVENT_TIGGER_ENTRY *mpi_event_tg;
5059 Mpi2ConfigReply_t mpi_reply;
5060 int r = 0, i = 0;
5061 u16 count = 0;
5062 u16 ioc_status;
5063
5064 r = mpt3sas_config_get_driver_trigger_pg2(ioc, &mpi_reply,
5065 &trigger_pg2);
5066 if (r)
5067 return r;
5068
5069 ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
5070 MPI2_IOCSTATUS_MASK;
5071 if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
5072 dinitprintk(ioc,
5073 ioc_err(ioc,
5074 "%s: Failed to get trigger pg2, ioc_status(0x%04x)\n",
5075 __func__, ioc_status));
5076 return 0;
5077 }
5078
5079 if (le16_to_cpu(trigger_pg2.NumMPIEventTrigger)) {
5080 count = le16_to_cpu(trigger_pg2.NumMPIEventTrigger);
5081 count = min_t(u16, NUM_VALID_ENTRIES, count);
5082 ioc->diag_trigger_event.ValidEntries = count;
5083
5084 event_tg = &ioc->diag_trigger_event.EventTriggerEntry[0];
5085 mpi_event_tg = &trigger_pg2.MPIEventTriggers[0];
5086 for (i = 0; i < count; i++) {
5087 event_tg->EventValue = le16_to_cpu(
5088 mpi_event_tg->MPIEventCode);
5089 event_tg->LogEntryQualifier = le16_to_cpu(
5090 mpi_event_tg->MPIEventCodeSpecific);
5091 event_tg++;
5092 mpi_event_tg++;
5093 }
5094 }
5095 return 0;
5096 }
5097
5098 /**
5099 * _base_get_scsi_diag_triggers - get scsi diag trigger values from
5100 * persistent pages
5101 * @ioc : per adapter object
5102 *
5103 * Return: 0 on success; otherwise return failure status.
5104 */
5105 static int
_base_get_scsi_diag_triggers(struct MPT3SAS_ADAPTER * ioc)5106 _base_get_scsi_diag_triggers(struct MPT3SAS_ADAPTER *ioc)
5107 {
5108 Mpi26DriverTriggerPage3_t trigger_pg3;
5109 struct SL_WH_SCSI_TRIGGER_T *scsi_tg;
5110 MPI26_DRIVER_SCSI_SENSE_TIGGER_ENTRY *mpi_scsi_tg;
5111 Mpi2ConfigReply_t mpi_reply;
5112 int r = 0, i = 0;
5113 u16 count = 0;
5114 u16 ioc_status;
5115
5116 r = mpt3sas_config_get_driver_trigger_pg3(ioc, &mpi_reply,
5117 &trigger_pg3);
5118 if (r)
5119 return r;
5120
5121 ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
5122 MPI2_IOCSTATUS_MASK;
5123 if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
5124 dinitprintk(ioc,
5125 ioc_err(ioc,
5126 "%s: Failed to get trigger pg3, ioc_status(0x%04x)\n",
5127 __func__, ioc_status));
5128 return 0;
5129 }
5130
5131 if (le16_to_cpu(trigger_pg3.NumSCSISenseTrigger)) {
5132 count = le16_to_cpu(trigger_pg3.NumSCSISenseTrigger);
5133 count = min_t(u16, NUM_VALID_ENTRIES, count);
5134 ioc->diag_trigger_scsi.ValidEntries = count;
5135
5136 scsi_tg = &ioc->diag_trigger_scsi.SCSITriggerEntry[0];
5137 mpi_scsi_tg = &trigger_pg3.SCSISenseTriggers[0];
5138 for (i = 0; i < count; i++) {
5139 scsi_tg->ASCQ = mpi_scsi_tg->ASCQ;
5140 scsi_tg->ASC = mpi_scsi_tg->ASC;
5141 scsi_tg->SenseKey = mpi_scsi_tg->SenseKey;
5142
5143 scsi_tg++;
5144 mpi_scsi_tg++;
5145 }
5146 }
5147 return 0;
5148 }
5149
5150 /**
5151 * _base_get_mpi_diag_triggers - get mpi diag trigger values from
5152 * persistent pages
5153 * @ioc : per adapter object
5154 *
5155 * Return: 0 on success; otherwise return failure status.
5156 */
5157 static int
_base_get_mpi_diag_triggers(struct MPT3SAS_ADAPTER * ioc)5158 _base_get_mpi_diag_triggers(struct MPT3SAS_ADAPTER *ioc)
5159 {
5160 Mpi26DriverTriggerPage4_t trigger_pg4;
5161 struct SL_WH_MPI_TRIGGER_T *status_tg;
5162 MPI26_DRIVER_IOCSTATUS_LOGINFO_TIGGER_ENTRY *mpi_status_tg;
5163 Mpi2ConfigReply_t mpi_reply;
5164 int r = 0, i = 0;
5165 u16 count = 0;
5166 u16 ioc_status;
5167
5168 r = mpt3sas_config_get_driver_trigger_pg4(ioc, &mpi_reply,
5169 &trigger_pg4);
5170 if (r)
5171 return r;
5172
5173 ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
5174 MPI2_IOCSTATUS_MASK;
5175 if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
5176 dinitprintk(ioc,
5177 ioc_err(ioc,
5178 "%s: Failed to get trigger pg4, ioc_status(0x%04x)\n",
5179 __func__, ioc_status));
5180 return 0;
5181 }
5182
5183 if (le16_to_cpu(trigger_pg4.NumIOCStatusLogInfoTrigger)) {
5184 count = le16_to_cpu(trigger_pg4.NumIOCStatusLogInfoTrigger);
5185 count = min_t(u16, NUM_VALID_ENTRIES, count);
5186 ioc->diag_trigger_mpi.ValidEntries = count;
5187
5188 status_tg = &ioc->diag_trigger_mpi.MPITriggerEntry[0];
5189 mpi_status_tg = &trigger_pg4.IOCStatusLoginfoTriggers[0];
5190
5191 for (i = 0; i < count; i++) {
5192 status_tg->IOCStatus = le16_to_cpu(
5193 mpi_status_tg->IOCStatus);
5194 status_tg->IocLogInfo = le32_to_cpu(
5195 mpi_status_tg->LogInfo);
5196
5197 status_tg++;
5198 mpi_status_tg++;
5199 }
5200 }
5201 return 0;
5202 }
5203
5204 /**
5205 * _base_get_master_diag_triggers - get master diag trigger values from
5206 * persistent pages
5207 * @ioc : per adapter object
5208 *
5209 * Return: nothing.
5210 */
5211 static int
_base_get_master_diag_triggers(struct MPT3SAS_ADAPTER * ioc)5212 _base_get_master_diag_triggers(struct MPT3SAS_ADAPTER *ioc)
5213 {
5214 Mpi26DriverTriggerPage1_t trigger_pg1;
5215 Mpi2ConfigReply_t mpi_reply;
5216 int r;
5217 u16 ioc_status;
5218
5219 r = mpt3sas_config_get_driver_trigger_pg1(ioc, &mpi_reply,
5220 &trigger_pg1);
5221 if (r)
5222 return r;
5223
5224 ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
5225 MPI2_IOCSTATUS_MASK;
5226 if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
5227 dinitprintk(ioc,
5228 ioc_err(ioc,
5229 "%s: Failed to get trigger pg1, ioc_status(0x%04x)\n",
5230 __func__, ioc_status));
5231 return 0;
5232 }
5233
5234 if (le16_to_cpu(trigger_pg1.NumMasterTrigger))
5235 ioc->diag_trigger_master.MasterData |=
5236 le32_to_cpu(
5237 trigger_pg1.MasterTriggers[0].MasterTriggerFlags);
5238 return 0;
5239 }
5240
5241 /**
5242 * _base_check_for_trigger_pages_support - checks whether HBA FW supports
5243 * driver trigger pages or not
5244 * @ioc : per adapter object
5245 * @trigger_flags : address where trigger page0's TriggerFlags value is copied
5246 *
5247 * Return: trigger flags mask if HBA FW supports driver trigger pages;
5248 * otherwise returns %-EFAULT if driver trigger pages are not supported by FW or
5249 * return EAGAIN if diag reset occurred due to FW fault and asking the
5250 * caller to retry the command.
5251 *
5252 */
5253 static int
_base_check_for_trigger_pages_support(struct MPT3SAS_ADAPTER * ioc,u32 * trigger_flags)5254 _base_check_for_trigger_pages_support(struct MPT3SAS_ADAPTER *ioc, u32 *trigger_flags)
5255 {
5256 Mpi26DriverTriggerPage0_t trigger_pg0;
5257 int r = 0;
5258 Mpi2ConfigReply_t mpi_reply;
5259 u16 ioc_status;
5260
5261 r = mpt3sas_config_get_driver_trigger_pg0(ioc, &mpi_reply,
5262 &trigger_pg0);
5263 if (r)
5264 return r;
5265
5266 ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
5267 MPI2_IOCSTATUS_MASK;
5268 if (ioc_status != MPI2_IOCSTATUS_SUCCESS)
5269 return -EFAULT;
5270
5271 *trigger_flags = le16_to_cpu(trigger_pg0.TriggerFlags);
5272 return 0;
5273 }
5274
5275 /**
5276 * _base_get_diag_triggers - Retrieve diag trigger values from
5277 * persistent pages.
5278 * @ioc : per adapter object
5279 *
5280 * Return: zero on success; otherwise return EAGAIN error codes
5281 * asking the caller to retry.
5282 */
5283 static int
_base_get_diag_triggers(struct MPT3SAS_ADAPTER * ioc)5284 _base_get_diag_triggers(struct MPT3SAS_ADAPTER *ioc)
5285 {
5286 int trigger_flags;
5287 int r;
5288
5289 /*
5290 * Default setting of master trigger.
5291 */
5292 ioc->diag_trigger_master.MasterData =
5293 (MASTER_TRIGGER_FW_FAULT + MASTER_TRIGGER_ADAPTER_RESET);
5294
5295 r = _base_check_for_trigger_pages_support(ioc, &trigger_flags);
5296 if (r) {
5297 if (r == -EAGAIN)
5298 return r;
5299 /*
5300 * Don't go for error handling when FW doesn't support
5301 * driver trigger pages.
5302 */
5303 return 0;
5304 }
5305
5306 ioc->supports_trigger_pages = 1;
5307
5308 /*
5309 * Retrieve master diag trigger values from driver trigger pg1
5310 * if master trigger bit enabled in TriggerFlags.
5311 */
5312 if ((u16)trigger_flags &
5313 MPI26_DRIVER_TRIGGER0_FLAG_MASTER_TRIGGER_VALID) {
5314 r = _base_get_master_diag_triggers(ioc);
5315 if (r)
5316 return r;
5317 }
5318
5319 /*
5320 * Retrieve event diag trigger values from driver trigger pg2
5321 * if event trigger bit enabled in TriggerFlags.
5322 */
5323 if ((u16)trigger_flags &
5324 MPI26_DRIVER_TRIGGER0_FLAG_MPI_EVENT_TRIGGER_VALID) {
5325 r = _base_get_event_diag_triggers(ioc);
5326 if (r)
5327 return r;
5328 }
5329
5330 /*
5331 * Retrieve scsi diag trigger values from driver trigger pg3
5332 * if scsi trigger bit enabled in TriggerFlags.
5333 */
5334 if ((u16)trigger_flags &
5335 MPI26_DRIVER_TRIGGER0_FLAG_SCSI_SENSE_TRIGGER_VALID) {
5336 r = _base_get_scsi_diag_triggers(ioc);
5337 if (r)
5338 return r;
5339 }
5340 /*
5341 * Retrieve mpi error diag trigger values from driver trigger pg4
5342 * if loginfo trigger bit enabled in TriggerFlags.
5343 */
5344 if ((u16)trigger_flags &
5345 MPI26_DRIVER_TRIGGER0_FLAG_LOGINFO_TRIGGER_VALID) {
5346 r = _base_get_mpi_diag_triggers(ioc);
5347 if (r)
5348 return r;
5349 }
5350 return 0;
5351 }
5352
5353 /**
5354 * _base_update_diag_trigger_pages - Update the driver trigger pages after
5355 * online FW update, in case updated FW supports driver
5356 * trigger pages.
5357 * @ioc : per adapter object
5358 *
5359 * Return: nothing.
5360 */
5361 static void
_base_update_diag_trigger_pages(struct MPT3SAS_ADAPTER * ioc)5362 _base_update_diag_trigger_pages(struct MPT3SAS_ADAPTER *ioc)
5363 {
5364
5365 if (ioc->diag_trigger_master.MasterData)
5366 mpt3sas_config_update_driver_trigger_pg1(ioc,
5367 &ioc->diag_trigger_master, 1);
5368
5369 if (ioc->diag_trigger_event.ValidEntries)
5370 mpt3sas_config_update_driver_trigger_pg2(ioc,
5371 &ioc->diag_trigger_event, 1);
5372
5373 if (ioc->diag_trigger_scsi.ValidEntries)
5374 mpt3sas_config_update_driver_trigger_pg3(ioc,
5375 &ioc->diag_trigger_scsi, 1);
5376
5377 if (ioc->diag_trigger_mpi.ValidEntries)
5378 mpt3sas_config_update_driver_trigger_pg4(ioc,
5379 &ioc->diag_trigger_mpi, 1);
5380 }
5381
5382 /**
5383 * _base_assign_fw_reported_qd - Get FW reported QD for SAS/SATA devices.
5384 * - On failure set default QD values.
5385 * @ioc : per adapter object
5386 *
5387 * Returns 0 for success, non-zero for failure.
5388 *
5389 */
_base_assign_fw_reported_qd(struct MPT3SAS_ADAPTER * ioc)5390 static int _base_assign_fw_reported_qd(struct MPT3SAS_ADAPTER *ioc)
5391 {
5392 Mpi2ConfigReply_t mpi_reply;
5393 Mpi2SasIOUnitPage1_t *sas_iounit_pg1 = NULL;
5394 Mpi26PCIeIOUnitPage1_t pcie_iounit_pg1;
5395 u16 depth;
5396 int sz;
5397 int rc = 0;
5398
5399 ioc->max_wideport_qd = MPT3SAS_SAS_QUEUE_DEPTH;
5400 ioc->max_narrowport_qd = MPT3SAS_SAS_QUEUE_DEPTH;
5401 ioc->max_sata_qd = MPT3SAS_SATA_QUEUE_DEPTH;
5402 ioc->max_nvme_qd = MPT3SAS_NVME_QUEUE_DEPTH;
5403 if (!ioc->is_gen35_ioc)
5404 goto out;
5405 /* sas iounit page 1 */
5406 sz = offsetof(Mpi2SasIOUnitPage1_t, PhyData);
5407 sas_iounit_pg1 = kzalloc(sizeof(Mpi2SasIOUnitPage1_t), GFP_KERNEL);
5408 if (!sas_iounit_pg1) {
5409 pr_err("%s: failure at %s:%d/%s()!\n",
5410 ioc->name, __FILE__, __LINE__, __func__);
5411 return rc;
5412 }
5413 rc = mpt3sas_config_get_sas_iounit_pg1(ioc, &mpi_reply,
5414 sas_iounit_pg1, sz);
5415 if (rc) {
5416 pr_err("%s: failure at %s:%d/%s()!\n",
5417 ioc->name, __FILE__, __LINE__, __func__);
5418 goto out;
5419 }
5420
5421 depth = le16_to_cpu(sas_iounit_pg1->SASWideMaxQueueDepth);
5422 ioc->max_wideport_qd = (depth ? depth : MPT3SAS_SAS_QUEUE_DEPTH);
5423
5424 depth = le16_to_cpu(sas_iounit_pg1->SASNarrowMaxQueueDepth);
5425 ioc->max_narrowport_qd = (depth ? depth : MPT3SAS_SAS_QUEUE_DEPTH);
5426
5427 depth = sas_iounit_pg1->SATAMaxQDepth;
5428 ioc->max_sata_qd = (depth ? depth : MPT3SAS_SATA_QUEUE_DEPTH);
5429
5430 /* pcie iounit page 1 */
5431 rc = mpt3sas_config_get_pcie_iounit_pg1(ioc, &mpi_reply,
5432 &pcie_iounit_pg1, sizeof(Mpi26PCIeIOUnitPage1_t));
5433 if (rc) {
5434 pr_err("%s: failure at %s:%d/%s()!\n",
5435 ioc->name, __FILE__, __LINE__, __func__);
5436 goto out;
5437 }
5438 ioc->max_nvme_qd = (le16_to_cpu(pcie_iounit_pg1.NVMeMaxQueueDepth)) ?
5439 (le16_to_cpu(pcie_iounit_pg1.NVMeMaxQueueDepth)) :
5440 MPT3SAS_NVME_QUEUE_DEPTH;
5441 out:
5442 dinitprintk(ioc, pr_err(
5443 "MaxWidePortQD: 0x%x MaxNarrowPortQD: 0x%x MaxSataQD: 0x%x MaxNvmeQD: 0x%x\n",
5444 ioc->max_wideport_qd, ioc->max_narrowport_qd,
5445 ioc->max_sata_qd, ioc->max_nvme_qd));
5446 kfree(sas_iounit_pg1);
5447 return rc;
5448 }
5449
5450 /**
5451 * _base_static_config_pages - static start of day config pages
5452 * @ioc: per adapter object
5453 */
5454 static int
_base_static_config_pages(struct MPT3SAS_ADAPTER * ioc)5455 _base_static_config_pages(struct MPT3SAS_ADAPTER *ioc)
5456 {
5457 Mpi2ConfigReply_t mpi_reply;
5458 u32 iounit_pg1_flags;
5459 int tg_flags = 0;
5460 int rc;
5461 ioc->nvme_abort_timeout = 30;
5462
5463 rc = mpt3sas_config_get_manufacturing_pg0(ioc, &mpi_reply,
5464 &ioc->manu_pg0);
5465 if (rc)
5466 return rc;
5467 if (ioc->ir_firmware) {
5468 rc = mpt3sas_config_get_manufacturing_pg10(ioc, &mpi_reply,
5469 &ioc->manu_pg10);
5470 if (rc)
5471 return rc;
5472 }
5473 /*
5474 * Ensure correct T10 PI operation if vendor left EEDPTagMode
5475 * flag unset in NVDATA.
5476 */
5477 rc = mpt3sas_config_get_manufacturing_pg11(ioc, &mpi_reply,
5478 &ioc->manu_pg11);
5479 if (rc)
5480 return rc;
5481 if (!ioc->is_gen35_ioc && ioc->manu_pg11.EEDPTagMode == 0) {
5482 pr_err("%s: overriding NVDATA EEDPTagMode setting\n",
5483 ioc->name);
5484 ioc->manu_pg11.EEDPTagMode &= ~0x3;
5485 ioc->manu_pg11.EEDPTagMode |= 0x1;
5486 mpt3sas_config_set_manufacturing_pg11(ioc, &mpi_reply,
5487 &ioc->manu_pg11);
5488 }
5489 if (ioc->manu_pg11.AddlFlags2 & NVME_TASK_MNGT_CUSTOM_MASK)
5490 ioc->tm_custom_handling = 1;
5491 else {
5492 ioc->tm_custom_handling = 0;
5493 if (ioc->manu_pg11.NVMeAbortTO < NVME_TASK_ABORT_MIN_TIMEOUT)
5494 ioc->nvme_abort_timeout = NVME_TASK_ABORT_MIN_TIMEOUT;
5495 else if (ioc->manu_pg11.NVMeAbortTO >
5496 NVME_TASK_ABORT_MAX_TIMEOUT)
5497 ioc->nvme_abort_timeout = NVME_TASK_ABORT_MAX_TIMEOUT;
5498 else
5499 ioc->nvme_abort_timeout = ioc->manu_pg11.NVMeAbortTO;
5500 }
5501 ioc->time_sync_interval =
5502 ioc->manu_pg11.TimeSyncInterval & MPT3SAS_TIMESYNC_MASK;
5503 if (ioc->time_sync_interval) {
5504 if (ioc->manu_pg11.TimeSyncInterval & MPT3SAS_TIMESYNC_UNIT_MASK)
5505 ioc->time_sync_interval =
5506 ioc->time_sync_interval * SECONDS_PER_HOUR;
5507 else
5508 ioc->time_sync_interval =
5509 ioc->time_sync_interval * SECONDS_PER_MIN;
5510 dinitprintk(ioc, ioc_info(ioc,
5511 "Driver-FW TimeSync interval is %d seconds. ManuPg11 TimeSync Unit is in %s\n",
5512 ioc->time_sync_interval, (ioc->manu_pg11.TimeSyncInterval &
5513 MPT3SAS_TIMESYNC_UNIT_MASK) ? "Hour" : "Minute"));
5514 } else {
5515 if (ioc->is_gen35_ioc)
5516 ioc_warn(ioc,
5517 "TimeSync Interval in Manuf page-11 is not enabled. Periodic Time-Sync will be disabled\n");
5518 }
5519 rc = _base_assign_fw_reported_qd(ioc);
5520 if (rc)
5521 return rc;
5522 rc = mpt3sas_config_get_bios_pg2(ioc, &mpi_reply, &ioc->bios_pg2);
5523 if (rc)
5524 return rc;
5525 rc = mpt3sas_config_get_bios_pg3(ioc, &mpi_reply, &ioc->bios_pg3);
5526 if (rc)
5527 return rc;
5528 rc = mpt3sas_config_get_ioc_pg8(ioc, &mpi_reply, &ioc->ioc_pg8);
5529 if (rc)
5530 return rc;
5531 rc = mpt3sas_config_get_iounit_pg0(ioc, &mpi_reply, &ioc->iounit_pg0);
5532 if (rc)
5533 return rc;
5534 rc = mpt3sas_config_get_iounit_pg1(ioc, &mpi_reply, &ioc->iounit_pg1);
5535 if (rc)
5536 return rc;
5537 rc = mpt3sas_config_get_iounit_pg8(ioc, &mpi_reply, &ioc->iounit_pg8);
5538 if (rc)
5539 return rc;
5540 _base_display_ioc_capabilities(ioc);
5541
5542 /*
5543 * Enable task_set_full handling in iounit_pg1 when the
5544 * facts capabilities indicate that its supported.
5545 */
5546 iounit_pg1_flags = le32_to_cpu(ioc->iounit_pg1.Flags);
5547 if ((ioc->facts.IOCCapabilities &
5548 MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING))
5549 iounit_pg1_flags &=
5550 ~MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING;
5551 else
5552 iounit_pg1_flags |=
5553 MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING;
5554 ioc->iounit_pg1.Flags = cpu_to_le32(iounit_pg1_flags);
5555 rc = mpt3sas_config_set_iounit_pg1(ioc, &mpi_reply, &ioc->iounit_pg1);
5556 if (rc)
5557 return rc;
5558
5559 if (ioc->iounit_pg8.NumSensors)
5560 ioc->temp_sensors_count = ioc->iounit_pg8.NumSensors;
5561 if (ioc->is_aero_ioc) {
5562 rc = _base_update_ioc_page1_inlinewith_perf_mode(ioc);
5563 if (rc)
5564 return rc;
5565 }
5566 if (ioc->is_gen35_ioc) {
5567 if (ioc->is_driver_loading) {
5568 rc = _base_get_diag_triggers(ioc);
5569 if (rc)
5570 return rc;
5571 } else {
5572 /*
5573 * In case of online HBA FW update operation,
5574 * check whether updated FW supports the driver trigger
5575 * pages or not.
5576 * - If previous FW has not supported driver trigger
5577 * pages and newer FW supports them then update these
5578 * pages with current diag trigger values.
5579 * - If previous FW has supported driver trigger pages
5580 * and new FW doesn't support them then disable
5581 * support_trigger_pages flag.
5582 */
5583 _base_check_for_trigger_pages_support(ioc, &tg_flags);
5584 if (!ioc->supports_trigger_pages && tg_flags != -EFAULT)
5585 _base_update_diag_trigger_pages(ioc);
5586 else if (ioc->supports_trigger_pages &&
5587 tg_flags == -EFAULT)
5588 ioc->supports_trigger_pages = 0;
5589 }
5590 }
5591 return 0;
5592 }
5593
5594 /**
5595 * mpt3sas_free_enclosure_list - release memory
5596 * @ioc: per adapter object
5597 *
5598 * Free memory allocated during enclosure add.
5599 */
5600 void
mpt3sas_free_enclosure_list(struct MPT3SAS_ADAPTER * ioc)5601 mpt3sas_free_enclosure_list(struct MPT3SAS_ADAPTER *ioc)
5602 {
5603 struct _enclosure_node *enclosure_dev, *enclosure_dev_next;
5604
5605 /* Free enclosure list */
5606 list_for_each_entry_safe(enclosure_dev,
5607 enclosure_dev_next, &ioc->enclosure_list, list) {
5608 list_del(&enclosure_dev->list);
5609 kfree(enclosure_dev);
5610 }
5611 }
5612
5613 /**
5614 * _base_release_memory_pools - release memory
5615 * @ioc: per adapter object
5616 *
5617 * Free memory allocated from _base_allocate_memory_pools.
5618 */
5619 static void
_base_release_memory_pools(struct MPT3SAS_ADAPTER * ioc)5620 _base_release_memory_pools(struct MPT3SAS_ADAPTER *ioc)
5621 {
5622 int i = 0;
5623 int j = 0;
5624 int dma_alloc_count = 0;
5625 struct chain_tracker *ct;
5626 int count = ioc->rdpq_array_enable ? ioc->reply_queue_count : 1;
5627
5628 dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
5629
5630 if (ioc->request) {
5631 dma_free_coherent(&ioc->pdev->dev, ioc->request_dma_sz,
5632 ioc->request, ioc->request_dma);
5633 dexitprintk(ioc,
5634 ioc_info(ioc, "request_pool(0x%p): free\n",
5635 ioc->request));
5636 ioc->request = NULL;
5637 }
5638
5639 if (ioc->sense) {
5640 dma_pool_free(ioc->sense_dma_pool, ioc->sense, ioc->sense_dma);
5641 dma_pool_destroy(ioc->sense_dma_pool);
5642 dexitprintk(ioc,
5643 ioc_info(ioc, "sense_pool(0x%p): free\n",
5644 ioc->sense));
5645 ioc->sense = NULL;
5646 }
5647
5648 if (ioc->reply) {
5649 dma_pool_free(ioc->reply_dma_pool, ioc->reply, ioc->reply_dma);
5650 dma_pool_destroy(ioc->reply_dma_pool);
5651 dexitprintk(ioc,
5652 ioc_info(ioc, "reply_pool(0x%p): free\n",
5653 ioc->reply));
5654 ioc->reply = NULL;
5655 }
5656
5657 if (ioc->reply_free) {
5658 dma_pool_free(ioc->reply_free_dma_pool, ioc->reply_free,
5659 ioc->reply_free_dma);
5660 dma_pool_destroy(ioc->reply_free_dma_pool);
5661 dexitprintk(ioc,
5662 ioc_info(ioc, "reply_free_pool(0x%p): free\n",
5663 ioc->reply_free));
5664 ioc->reply_free = NULL;
5665 }
5666
5667 if (ioc->reply_post) {
5668 dma_alloc_count = DIV_ROUND_UP(count,
5669 RDPQ_MAX_INDEX_IN_ONE_CHUNK);
5670 for (i = 0; i < count; i++) {
5671 if (i % RDPQ_MAX_INDEX_IN_ONE_CHUNK == 0
5672 && dma_alloc_count) {
5673 if (ioc->reply_post[i].reply_post_free) {
5674 dma_pool_free(
5675 ioc->reply_post_free_dma_pool,
5676 ioc->reply_post[i].reply_post_free,
5677 ioc->reply_post[i].reply_post_free_dma);
5678 dexitprintk(ioc, ioc_info(ioc,
5679 "reply_post_free_pool(0x%p): free\n",
5680 ioc->reply_post[i].reply_post_free));
5681 ioc->reply_post[i].reply_post_free =
5682 NULL;
5683 }
5684 --dma_alloc_count;
5685 }
5686 }
5687 dma_pool_destroy(ioc->reply_post_free_dma_pool);
5688 if (ioc->reply_post_free_array &&
5689 ioc->rdpq_array_enable) {
5690 dma_pool_free(ioc->reply_post_free_array_dma_pool,
5691 ioc->reply_post_free_array,
5692 ioc->reply_post_free_array_dma);
5693 ioc->reply_post_free_array = NULL;
5694 }
5695 dma_pool_destroy(ioc->reply_post_free_array_dma_pool);
5696 kfree(ioc->reply_post);
5697 }
5698
5699 if (ioc->pcie_sgl_dma_pool) {
5700 for (i = 0; i < ioc->scsiio_depth; i++) {
5701 dma_pool_free(ioc->pcie_sgl_dma_pool,
5702 ioc->pcie_sg_lookup[i].pcie_sgl,
5703 ioc->pcie_sg_lookup[i].pcie_sgl_dma);
5704 ioc->pcie_sg_lookup[i].pcie_sgl = NULL;
5705 }
5706 dma_pool_destroy(ioc->pcie_sgl_dma_pool);
5707 }
5708 kfree(ioc->pcie_sg_lookup);
5709 ioc->pcie_sg_lookup = NULL;
5710
5711 if (ioc->config_page) {
5712 dexitprintk(ioc,
5713 ioc_info(ioc, "config_page(0x%p): free\n",
5714 ioc->config_page));
5715 dma_free_coherent(&ioc->pdev->dev, ioc->config_page_sz,
5716 ioc->config_page, ioc->config_page_dma);
5717 }
5718
5719 kfree(ioc->hpr_lookup);
5720 ioc->hpr_lookup = NULL;
5721 kfree(ioc->internal_lookup);
5722 ioc->internal_lookup = NULL;
5723 if (ioc->chain_lookup) {
5724 for (i = 0; i < ioc->scsiio_depth; i++) {
5725 for (j = ioc->chains_per_prp_buffer;
5726 j < ioc->chains_needed_per_io; j++) {
5727 ct = &ioc->chain_lookup[i].chains_per_smid[j];
5728 if (ct && ct->chain_buffer)
5729 dma_pool_free(ioc->chain_dma_pool,
5730 ct->chain_buffer,
5731 ct->chain_buffer_dma);
5732 }
5733 kfree(ioc->chain_lookup[i].chains_per_smid);
5734 }
5735 dma_pool_destroy(ioc->chain_dma_pool);
5736 kfree(ioc->chain_lookup);
5737 ioc->chain_lookup = NULL;
5738 }
5739
5740 kfree(ioc->io_queue_num);
5741 ioc->io_queue_num = NULL;
5742 }
5743
5744 /**
5745 * mpt3sas_check_same_4gb_region - checks whether all reply queues in a set are
5746 * having same upper 32bits in their base memory address.
5747 * @reply_pool_start_address: Base address of a reply queue set
5748 * @pool_sz: Size of single Reply Descriptor Post Queues pool size
5749 *
5750 * Return: 1 if reply queues in a set have a same upper 32bits in their base
5751 * memory address, else 0.
5752 */
5753
5754 static int
mpt3sas_check_same_4gb_region(dma_addr_t start_address,u32 pool_sz)5755 mpt3sas_check_same_4gb_region(dma_addr_t start_address, u32 pool_sz)
5756 {
5757 dma_addr_t end_address;
5758
5759 end_address = start_address + pool_sz - 1;
5760
5761 if (upper_32_bits(start_address) == upper_32_bits(end_address))
5762 return 1;
5763 else
5764 return 0;
5765 }
5766
5767 /**
5768 * _base_reduce_hba_queue_depth- Retry with reduced queue depth
5769 * @ioc: Adapter object
5770 *
5771 * Return: 0 for success, non-zero for failure.
5772 **/
5773 static inline int
_base_reduce_hba_queue_depth(struct MPT3SAS_ADAPTER * ioc)5774 _base_reduce_hba_queue_depth(struct MPT3SAS_ADAPTER *ioc)
5775 {
5776 int reduce_sz = 64;
5777
5778 if ((ioc->hba_queue_depth - reduce_sz) >
5779 (ioc->internal_depth + INTERNAL_SCSIIO_CMDS_COUNT)) {
5780 ioc->hba_queue_depth -= reduce_sz;
5781 return 0;
5782 } else
5783 return -ENOMEM;
5784 }
5785
5786 /**
5787 * _base_allocate_pcie_sgl_pool - Allocating DMA'able memory
5788 * for pcie sgl pools.
5789 * @ioc: Adapter object
5790 * @sz: DMA Pool size
5791 *
5792 * Return: 0 for success, non-zero for failure.
5793 */
5794
5795 static int
_base_allocate_pcie_sgl_pool(struct MPT3SAS_ADAPTER * ioc,u32 sz)5796 _base_allocate_pcie_sgl_pool(struct MPT3SAS_ADAPTER *ioc, u32 sz)
5797 {
5798 int i = 0, j = 0;
5799 struct chain_tracker *ct;
5800
5801 ioc->pcie_sgl_dma_pool =
5802 dma_pool_create("PCIe SGL pool", &ioc->pdev->dev, sz,
5803 ioc->page_size, 0);
5804 if (!ioc->pcie_sgl_dma_pool) {
5805 ioc_err(ioc, "PCIe SGL pool: dma_pool_create failed\n");
5806 return -ENOMEM;
5807 }
5808
5809 ioc->chains_per_prp_buffer = sz/ioc->chain_segment_sz;
5810 ioc->chains_per_prp_buffer =
5811 min(ioc->chains_per_prp_buffer, ioc->chains_needed_per_io);
5812 for (i = 0; i < ioc->scsiio_depth; i++) {
5813 ioc->pcie_sg_lookup[i].pcie_sgl =
5814 dma_pool_alloc(ioc->pcie_sgl_dma_pool, GFP_KERNEL,
5815 &ioc->pcie_sg_lookup[i].pcie_sgl_dma);
5816 if (!ioc->pcie_sg_lookup[i].pcie_sgl) {
5817 ioc_err(ioc, "PCIe SGL pool: dma_pool_alloc failed\n");
5818 return -EAGAIN;
5819 }
5820
5821 if (!mpt3sas_check_same_4gb_region(
5822 ioc->pcie_sg_lookup[i].pcie_sgl_dma, sz)) {
5823 ioc_err(ioc, "PCIE SGLs are not in same 4G !! pcie sgl (0x%p) dma = (0x%llx)\n",
5824 ioc->pcie_sg_lookup[i].pcie_sgl,
5825 (unsigned long long)
5826 ioc->pcie_sg_lookup[i].pcie_sgl_dma);
5827 ioc->use_32bit_dma = true;
5828 return -EAGAIN;
5829 }
5830
5831 for (j = 0; j < ioc->chains_per_prp_buffer; j++) {
5832 ct = &ioc->chain_lookup[i].chains_per_smid[j];
5833 ct->chain_buffer =
5834 ioc->pcie_sg_lookup[i].pcie_sgl +
5835 (j * ioc->chain_segment_sz);
5836 ct->chain_buffer_dma =
5837 ioc->pcie_sg_lookup[i].pcie_sgl_dma +
5838 (j * ioc->chain_segment_sz);
5839 }
5840 }
5841 dinitprintk(ioc, ioc_info(ioc,
5842 "PCIe sgl pool depth(%d), element_size(%d), pool_size(%d kB)\n",
5843 ioc->scsiio_depth, sz, (sz * ioc->scsiio_depth)/1024));
5844 dinitprintk(ioc, ioc_info(ioc,
5845 "Number of chains can fit in a PRP page(%d)\n",
5846 ioc->chains_per_prp_buffer));
5847 return 0;
5848 }
5849
5850 /**
5851 * _base_allocate_chain_dma_pool - Allocating DMA'able memory
5852 * for chain dma pool.
5853 * @ioc: Adapter object
5854 * @sz: DMA Pool size
5855 *
5856 * Return: 0 for success, non-zero for failure.
5857 */
5858 static int
_base_allocate_chain_dma_pool(struct MPT3SAS_ADAPTER * ioc,u32 sz)5859 _base_allocate_chain_dma_pool(struct MPT3SAS_ADAPTER *ioc, u32 sz)
5860 {
5861 int i = 0, j = 0;
5862 struct chain_tracker *ctr;
5863
5864 ioc->chain_dma_pool = dma_pool_create("chain pool", &ioc->pdev->dev,
5865 ioc->chain_segment_sz, 16, 0);
5866 if (!ioc->chain_dma_pool)
5867 return -ENOMEM;
5868
5869 for (i = 0; i < ioc->scsiio_depth; i++) {
5870 for (j = ioc->chains_per_prp_buffer;
5871 j < ioc->chains_needed_per_io; j++) {
5872 ctr = &ioc->chain_lookup[i].chains_per_smid[j];
5873 ctr->chain_buffer = dma_pool_alloc(ioc->chain_dma_pool,
5874 GFP_KERNEL, &ctr->chain_buffer_dma);
5875 if (!ctr->chain_buffer)
5876 return -EAGAIN;
5877 if (!mpt3sas_check_same_4gb_region(
5878 ctr->chain_buffer_dma, ioc->chain_segment_sz)) {
5879 ioc_err(ioc,
5880 "Chain buffers are not in same 4G !!! Chain buff (0x%p) dma = (0x%llx)\n",
5881 ctr->chain_buffer,
5882 (unsigned long long)ctr->chain_buffer_dma);
5883 ioc->use_32bit_dma = true;
5884 return -EAGAIN;
5885 }
5886 }
5887 }
5888 dinitprintk(ioc, ioc_info(ioc,
5889 "chain_lookup depth (%d), frame_size(%d), pool_size(%d kB)\n",
5890 ioc->scsiio_depth, ioc->chain_segment_sz, ((ioc->scsiio_depth *
5891 (ioc->chains_needed_per_io - ioc->chains_per_prp_buffer) *
5892 ioc->chain_segment_sz))/1024));
5893 return 0;
5894 }
5895
5896 /**
5897 * _base_allocate_sense_dma_pool - Allocating DMA'able memory
5898 * for sense dma pool.
5899 * @ioc: Adapter object
5900 * @sz: DMA Pool size
5901 * Return: 0 for success, non-zero for failure.
5902 */
5903 static int
_base_allocate_sense_dma_pool(struct MPT3SAS_ADAPTER * ioc,u32 sz)5904 _base_allocate_sense_dma_pool(struct MPT3SAS_ADAPTER *ioc, u32 sz)
5905 {
5906 ioc->sense_dma_pool =
5907 dma_pool_create("sense pool", &ioc->pdev->dev, sz, 4, 0);
5908 if (!ioc->sense_dma_pool)
5909 return -ENOMEM;
5910 ioc->sense = dma_pool_alloc(ioc->sense_dma_pool,
5911 GFP_KERNEL, &ioc->sense_dma);
5912 if (!ioc->sense)
5913 return -EAGAIN;
5914 if (!mpt3sas_check_same_4gb_region(ioc->sense_dma, sz)) {
5915 dinitprintk(ioc, pr_err(
5916 "Bad Sense Pool! sense (0x%p) sense_dma = (0x%llx)\n",
5917 ioc->sense, (unsigned long long) ioc->sense_dma));
5918 ioc->use_32bit_dma = true;
5919 return -EAGAIN;
5920 }
5921 ioc_info(ioc,
5922 "sense pool(0x%p) - dma(0x%llx): depth(%d), element_size(%d), pool_size (%d kB)\n",
5923 ioc->sense, (unsigned long long)ioc->sense_dma,
5924 ioc->scsiio_depth, SCSI_SENSE_BUFFERSIZE, sz/1024);
5925 return 0;
5926 }
5927
5928 /**
5929 * _base_allocate_reply_pool - Allocating DMA'able memory
5930 * for reply pool.
5931 * @ioc: Adapter object
5932 * @sz: DMA Pool size
5933 * Return: 0 for success, non-zero for failure.
5934 */
5935 static int
_base_allocate_reply_pool(struct MPT3SAS_ADAPTER * ioc,u32 sz)5936 _base_allocate_reply_pool(struct MPT3SAS_ADAPTER *ioc, u32 sz)
5937 {
5938 /* reply pool, 4 byte align */
5939 ioc->reply_dma_pool = dma_pool_create("reply pool",
5940 &ioc->pdev->dev, sz, 4, 0);
5941 if (!ioc->reply_dma_pool)
5942 return -ENOMEM;
5943 ioc->reply = dma_pool_alloc(ioc->reply_dma_pool, GFP_KERNEL,
5944 &ioc->reply_dma);
5945 if (!ioc->reply)
5946 return -EAGAIN;
5947 if (!mpt3sas_check_same_4gb_region(ioc->reply_dma, sz)) {
5948 dinitprintk(ioc, pr_err(
5949 "Bad Reply Pool! Reply (0x%p) Reply dma = (0x%llx)\n",
5950 ioc->reply, (unsigned long long) ioc->reply_dma));
5951 ioc->use_32bit_dma = true;
5952 return -EAGAIN;
5953 }
5954 ioc->reply_dma_min_address = (u32)(ioc->reply_dma);
5955 ioc->reply_dma_max_address = (u32)(ioc->reply_dma) + sz;
5956 ioc_info(ioc,
5957 "reply pool(0x%p) - dma(0x%llx): depth(%d), frame_size(%d), pool_size(%d kB)\n",
5958 ioc->reply, (unsigned long long)ioc->reply_dma,
5959 ioc->reply_free_queue_depth, ioc->reply_sz, sz/1024);
5960 return 0;
5961 }
5962
5963 /**
5964 * _base_allocate_reply_free_dma_pool - Allocating DMA'able memory
5965 * for reply free dma pool.
5966 * @ioc: Adapter object
5967 * @sz: DMA Pool size
5968 * Return: 0 for success, non-zero for failure.
5969 */
5970 static int
_base_allocate_reply_free_dma_pool(struct MPT3SAS_ADAPTER * ioc,u32 sz)5971 _base_allocate_reply_free_dma_pool(struct MPT3SAS_ADAPTER *ioc, u32 sz)
5972 {
5973 /* reply free queue, 16 byte align */
5974 ioc->reply_free_dma_pool = dma_pool_create(
5975 "reply_free pool", &ioc->pdev->dev, sz, 16, 0);
5976 if (!ioc->reply_free_dma_pool)
5977 return -ENOMEM;
5978 ioc->reply_free = dma_pool_alloc(ioc->reply_free_dma_pool,
5979 GFP_KERNEL, &ioc->reply_free_dma);
5980 if (!ioc->reply_free)
5981 return -EAGAIN;
5982 if (!mpt3sas_check_same_4gb_region(ioc->reply_free_dma, sz)) {
5983 dinitprintk(ioc,
5984 pr_err("Bad Reply Free Pool! Reply Free (0x%p) Reply Free dma = (0x%llx)\n",
5985 ioc->reply_free, (unsigned long long) ioc->reply_free_dma));
5986 ioc->use_32bit_dma = true;
5987 return -EAGAIN;
5988 }
5989 memset(ioc->reply_free, 0, sz);
5990 dinitprintk(ioc, ioc_info(ioc,
5991 "reply_free pool(0x%p): depth(%d), element_size(%d), pool_size(%d kB)\n",
5992 ioc->reply_free, ioc->reply_free_queue_depth, 4, sz/1024));
5993 dinitprintk(ioc, ioc_info(ioc,
5994 "reply_free_dma (0x%llx)\n",
5995 (unsigned long long)ioc->reply_free_dma));
5996 return 0;
5997 }
5998
5999 /**
6000 * _base_allocate_reply_post_free_array - Allocating DMA'able memory
6001 * for reply post free array.
6002 * @ioc: Adapter object
6003 * @reply_post_free_array_sz: DMA Pool size
6004 * Return: 0 for success, non-zero for failure.
6005 */
6006
6007 static int
_base_allocate_reply_post_free_array(struct MPT3SAS_ADAPTER * ioc,u32 reply_post_free_array_sz)6008 _base_allocate_reply_post_free_array(struct MPT3SAS_ADAPTER *ioc,
6009 u32 reply_post_free_array_sz)
6010 {
6011 ioc->reply_post_free_array_dma_pool =
6012 dma_pool_create("reply_post_free_array pool",
6013 &ioc->pdev->dev, reply_post_free_array_sz, 16, 0);
6014 if (!ioc->reply_post_free_array_dma_pool)
6015 return -ENOMEM;
6016 ioc->reply_post_free_array =
6017 dma_pool_alloc(ioc->reply_post_free_array_dma_pool,
6018 GFP_KERNEL, &ioc->reply_post_free_array_dma);
6019 if (!ioc->reply_post_free_array)
6020 return -EAGAIN;
6021 if (!mpt3sas_check_same_4gb_region(ioc->reply_post_free_array_dma,
6022 reply_post_free_array_sz)) {
6023 dinitprintk(ioc, pr_err(
6024 "Bad Reply Free Pool! Reply Free (0x%p) Reply Free dma = (0x%llx)\n",
6025 ioc->reply_free,
6026 (unsigned long long) ioc->reply_free_dma));
6027 ioc->use_32bit_dma = true;
6028 return -EAGAIN;
6029 }
6030 return 0;
6031 }
6032 /**
6033 * base_alloc_rdpq_dma_pool - Allocating DMA'able memory
6034 * for reply queues.
6035 * @ioc: per adapter object
6036 * @sz: DMA Pool size
6037 * Return: 0 for success, non-zero for failure.
6038 */
6039 static int
base_alloc_rdpq_dma_pool(struct MPT3SAS_ADAPTER * ioc,int sz)6040 base_alloc_rdpq_dma_pool(struct MPT3SAS_ADAPTER *ioc, int sz)
6041 {
6042 int i = 0;
6043 u32 dma_alloc_count = 0;
6044 int reply_post_free_sz = ioc->reply_post_queue_depth *
6045 sizeof(Mpi2DefaultReplyDescriptor_t);
6046 int count = ioc->rdpq_array_enable ? ioc->reply_queue_count : 1;
6047
6048 ioc->reply_post = kcalloc(count, sizeof(struct reply_post_struct),
6049 GFP_KERNEL);
6050 if (!ioc->reply_post)
6051 return -ENOMEM;
6052 /*
6053 * For INVADER_SERIES each set of 8 reply queues(0-7, 8-15, ..) and
6054 * VENTURA_SERIES each set of 16 reply queues(0-15, 16-31, ..) should
6055 * be within 4GB boundary i.e reply queues in a set must have same
6056 * upper 32-bits in their memory address. so here driver is allocating
6057 * the DMA'able memory for reply queues according.
6058 * Driver uses limitation of
6059 * VENTURA_SERIES to manage INVADER_SERIES as well.
6060 */
6061 dma_alloc_count = DIV_ROUND_UP(count,
6062 RDPQ_MAX_INDEX_IN_ONE_CHUNK);
6063 ioc->reply_post_free_dma_pool =
6064 dma_pool_create("reply_post_free pool",
6065 &ioc->pdev->dev, sz, 16, 0);
6066 if (!ioc->reply_post_free_dma_pool)
6067 return -ENOMEM;
6068 for (i = 0; i < count; i++) {
6069 if ((i % RDPQ_MAX_INDEX_IN_ONE_CHUNK == 0) && dma_alloc_count) {
6070 ioc->reply_post[i].reply_post_free =
6071 dma_pool_zalloc(ioc->reply_post_free_dma_pool,
6072 GFP_KERNEL,
6073 &ioc->reply_post[i].reply_post_free_dma);
6074 if (!ioc->reply_post[i].reply_post_free)
6075 return -ENOMEM;
6076 /*
6077 * Each set of RDPQ pool must satisfy 4gb boundary
6078 * restriction.
6079 * 1) Check if allocated resources for RDPQ pool are in
6080 * the same 4GB range.
6081 * 2) If #1 is true, continue with 64 bit DMA.
6082 * 3) If #1 is false, return 1. which means free all the
6083 * resources and set DMA mask to 32 and allocate.
6084 */
6085 if (!mpt3sas_check_same_4gb_region(
6086 ioc->reply_post[i].reply_post_free_dma, sz)) {
6087 dinitprintk(ioc,
6088 ioc_err(ioc, "bad Replypost free pool(0x%p)"
6089 "reply_post_free_dma = (0x%llx)\n",
6090 ioc->reply_post[i].reply_post_free,
6091 (unsigned long long)
6092 ioc->reply_post[i].reply_post_free_dma));
6093 return -EAGAIN;
6094 }
6095 dma_alloc_count--;
6096
6097 } else {
6098 ioc->reply_post[i].reply_post_free =
6099 (Mpi2ReplyDescriptorsUnion_t *)
6100 ((long)ioc->reply_post[i-1].reply_post_free
6101 + reply_post_free_sz);
6102 ioc->reply_post[i].reply_post_free_dma =
6103 (dma_addr_t)
6104 (ioc->reply_post[i-1].reply_post_free_dma +
6105 reply_post_free_sz);
6106 }
6107 }
6108 return 0;
6109 }
6110
6111 /**
6112 * _base_allocate_memory_pools - allocate start of day memory pools
6113 * @ioc: per adapter object
6114 *
6115 * Return: 0 success, anything else error.
6116 */
6117 static int
_base_allocate_memory_pools(struct MPT3SAS_ADAPTER * ioc)6118 _base_allocate_memory_pools(struct MPT3SAS_ADAPTER *ioc)
6119 {
6120 struct mpt3sas_facts *facts;
6121 u16 max_sge_elements;
6122 u16 chains_needed_per_io;
6123 u32 sz, total_sz, reply_post_free_sz, reply_post_free_array_sz;
6124 u32 retry_sz;
6125 u32 rdpq_sz = 0, sense_sz = 0;
6126 u16 max_request_credit, nvme_blocks_needed;
6127 unsigned short sg_tablesize;
6128 u16 sge_size;
6129 int i;
6130 int ret = 0, rc = 0;
6131
6132 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
6133
6134
6135 retry_sz = 0;
6136 facts = &ioc->facts;
6137
6138 /* command line tunables for max sgl entries */
6139 if (max_sgl_entries != -1)
6140 sg_tablesize = max_sgl_entries;
6141 else {
6142 if (ioc->hba_mpi_version_belonged == MPI2_VERSION)
6143 sg_tablesize = MPT2SAS_SG_DEPTH;
6144 else
6145 sg_tablesize = MPT3SAS_SG_DEPTH;
6146 }
6147
6148 /* max sgl entries <= MPT_KDUMP_MIN_PHYS_SEGMENTS in KDUMP mode */
6149 if (reset_devices)
6150 sg_tablesize = min_t(unsigned short, sg_tablesize,
6151 MPT_KDUMP_MIN_PHYS_SEGMENTS);
6152
6153 if (ioc->is_mcpu_endpoint)
6154 ioc->shost->sg_tablesize = MPT_MIN_PHYS_SEGMENTS;
6155 else {
6156 if (sg_tablesize < MPT_MIN_PHYS_SEGMENTS)
6157 sg_tablesize = MPT_MIN_PHYS_SEGMENTS;
6158 else if (sg_tablesize > MPT_MAX_PHYS_SEGMENTS) {
6159 sg_tablesize = min_t(unsigned short, sg_tablesize,
6160 SG_MAX_SEGMENTS);
6161 ioc_warn(ioc, "sg_tablesize(%u) is bigger than kernel defined SG_CHUNK_SIZE(%u)\n",
6162 sg_tablesize, MPT_MAX_PHYS_SEGMENTS);
6163 }
6164 ioc->shost->sg_tablesize = sg_tablesize;
6165 }
6166
6167 ioc->internal_depth = min_t(int, (facts->HighPriorityCredit + (5)),
6168 (facts->RequestCredit / 4));
6169 if (ioc->internal_depth < INTERNAL_CMDS_COUNT) {
6170 if (facts->RequestCredit <= (INTERNAL_CMDS_COUNT +
6171 INTERNAL_SCSIIO_CMDS_COUNT)) {
6172 ioc_err(ioc, "IOC doesn't have enough Request Credits, it has just %d number of credits\n",
6173 facts->RequestCredit);
6174 return -ENOMEM;
6175 }
6176 ioc->internal_depth = 10;
6177 }
6178
6179 ioc->hi_priority_depth = ioc->internal_depth - (5);
6180 /* command line tunables for max controller queue depth */
6181 if (max_queue_depth != -1 && max_queue_depth != 0) {
6182 max_request_credit = min_t(u16, max_queue_depth +
6183 ioc->internal_depth, facts->RequestCredit);
6184 if (max_request_credit > MAX_HBA_QUEUE_DEPTH)
6185 max_request_credit = MAX_HBA_QUEUE_DEPTH;
6186 } else if (reset_devices)
6187 max_request_credit = min_t(u16, facts->RequestCredit,
6188 (MPT3SAS_KDUMP_SCSI_IO_DEPTH + ioc->internal_depth));
6189 else
6190 max_request_credit = min_t(u16, facts->RequestCredit,
6191 MAX_HBA_QUEUE_DEPTH);
6192
6193 /* Firmware maintains additional facts->HighPriorityCredit number of
6194 * credits for HiPriprity Request messages, so hba queue depth will be
6195 * sum of max_request_credit and high priority queue depth.
6196 */
6197 ioc->hba_queue_depth = max_request_credit + ioc->hi_priority_depth;
6198
6199 /* request frame size */
6200 ioc->request_sz = facts->IOCRequestFrameSize * 4;
6201
6202 /* reply frame size */
6203 ioc->reply_sz = facts->ReplyFrameSize * 4;
6204
6205 /* chain segment size */
6206 if (ioc->hba_mpi_version_belonged != MPI2_VERSION) {
6207 if (facts->IOCMaxChainSegmentSize)
6208 ioc->chain_segment_sz =
6209 facts->IOCMaxChainSegmentSize *
6210 MAX_CHAIN_ELEMT_SZ;
6211 else
6212 /* set to 128 bytes size if IOCMaxChainSegmentSize is zero */
6213 ioc->chain_segment_sz = DEFAULT_NUM_FWCHAIN_ELEMTS *
6214 MAX_CHAIN_ELEMT_SZ;
6215 } else
6216 ioc->chain_segment_sz = ioc->request_sz;
6217
6218 /* calculate the max scatter element size */
6219 sge_size = max_t(u16, ioc->sge_size, ioc->sge_size_ieee);
6220
6221 retry_allocation:
6222 total_sz = 0;
6223 /* calculate number of sg elements left over in the 1st frame */
6224 max_sge_elements = ioc->request_sz - ((sizeof(Mpi2SCSIIORequest_t) -
6225 sizeof(Mpi2SGEIOUnion_t)) + sge_size);
6226 ioc->max_sges_in_main_message = max_sge_elements/sge_size;
6227
6228 /* now do the same for a chain buffer */
6229 max_sge_elements = ioc->chain_segment_sz - sge_size;
6230 ioc->max_sges_in_chain_message = max_sge_elements/sge_size;
6231
6232 /*
6233 * MPT3SAS_SG_DEPTH = CONFIG_FUSION_MAX_SGE
6234 */
6235 chains_needed_per_io = ((ioc->shost->sg_tablesize -
6236 ioc->max_sges_in_main_message)/ioc->max_sges_in_chain_message)
6237 + 1;
6238 if (chains_needed_per_io > facts->MaxChainDepth) {
6239 chains_needed_per_io = facts->MaxChainDepth;
6240 ioc->shost->sg_tablesize = min_t(u16,
6241 ioc->max_sges_in_main_message + (ioc->max_sges_in_chain_message
6242 * chains_needed_per_io), ioc->shost->sg_tablesize);
6243 }
6244 ioc->chains_needed_per_io = chains_needed_per_io;
6245
6246 /* reply free queue sizing - taking into account for 64 FW events */
6247 ioc->reply_free_queue_depth = ioc->hba_queue_depth + 64;
6248
6249 /* mCPU manage single counters for simplicity */
6250 if (ioc->is_mcpu_endpoint)
6251 ioc->reply_post_queue_depth = ioc->reply_free_queue_depth;
6252 else {
6253 /* calculate reply descriptor post queue depth */
6254 ioc->reply_post_queue_depth = ioc->hba_queue_depth +
6255 ioc->reply_free_queue_depth + 1;
6256 /* align the reply post queue on the next 16 count boundary */
6257 if (ioc->reply_post_queue_depth % 16)
6258 ioc->reply_post_queue_depth += 16 -
6259 (ioc->reply_post_queue_depth % 16);
6260 }
6261
6262 if (ioc->reply_post_queue_depth >
6263 facts->MaxReplyDescriptorPostQueueDepth) {
6264 ioc->reply_post_queue_depth =
6265 facts->MaxReplyDescriptorPostQueueDepth -
6266 (facts->MaxReplyDescriptorPostQueueDepth % 16);
6267 ioc->hba_queue_depth =
6268 ((ioc->reply_post_queue_depth - 64) / 2) - 1;
6269 ioc->reply_free_queue_depth = ioc->hba_queue_depth + 64;
6270 }
6271
6272 ioc_info(ioc,
6273 "scatter gather: sge_in_main_msg(%d), sge_per_chain(%d), "
6274 "sge_per_io(%d), chains_per_io(%d)\n",
6275 ioc->max_sges_in_main_message,
6276 ioc->max_sges_in_chain_message,
6277 ioc->shost->sg_tablesize,
6278 ioc->chains_needed_per_io);
6279
6280 /* reply post queue, 16 byte align */
6281 reply_post_free_sz = ioc->reply_post_queue_depth *
6282 sizeof(Mpi2DefaultReplyDescriptor_t);
6283 rdpq_sz = reply_post_free_sz * RDPQ_MAX_INDEX_IN_ONE_CHUNK;
6284 if ((_base_is_controller_msix_enabled(ioc) && !ioc->rdpq_array_enable)
6285 || (ioc->reply_queue_count < RDPQ_MAX_INDEX_IN_ONE_CHUNK))
6286 rdpq_sz = reply_post_free_sz * ioc->reply_queue_count;
6287 ret = base_alloc_rdpq_dma_pool(ioc, rdpq_sz);
6288 if (ret == -EAGAIN) {
6289 /*
6290 * Free allocated bad RDPQ memory pools.
6291 * Change dma coherent mask to 32 bit and reallocate RDPQ
6292 */
6293 _base_release_memory_pools(ioc);
6294 ioc->use_32bit_dma = true;
6295 if (_base_config_dma_addressing(ioc, ioc->pdev) != 0) {
6296 ioc_err(ioc,
6297 "32 DMA mask failed %s\n", pci_name(ioc->pdev));
6298 return -ENODEV;
6299 }
6300 if (base_alloc_rdpq_dma_pool(ioc, rdpq_sz))
6301 return -ENOMEM;
6302 } else if (ret == -ENOMEM)
6303 return -ENOMEM;
6304 total_sz = rdpq_sz * (!ioc->rdpq_array_enable ? 1 :
6305 DIV_ROUND_UP(ioc->reply_queue_count, RDPQ_MAX_INDEX_IN_ONE_CHUNK));
6306 ioc->scsiio_depth = ioc->hba_queue_depth -
6307 ioc->hi_priority_depth - ioc->internal_depth;
6308
6309 /* set the scsi host can_queue depth
6310 * with some internal commands that could be outstanding
6311 */
6312 ioc->shost->can_queue = ioc->scsiio_depth - INTERNAL_SCSIIO_CMDS_COUNT;
6313 dinitprintk(ioc,
6314 ioc_info(ioc, "scsi host: can_queue depth (%d)\n",
6315 ioc->shost->can_queue));
6316
6317 /* contiguous pool for request and chains, 16 byte align, one extra "
6318 * "frame for smid=0
6319 */
6320 ioc->chain_depth = ioc->chains_needed_per_io * ioc->scsiio_depth;
6321 sz = ((ioc->scsiio_depth + 1) * ioc->request_sz);
6322
6323 /* hi-priority queue */
6324 sz += (ioc->hi_priority_depth * ioc->request_sz);
6325
6326 /* internal queue */
6327 sz += (ioc->internal_depth * ioc->request_sz);
6328
6329 ioc->request_dma_sz = sz;
6330 ioc->request = dma_alloc_coherent(&ioc->pdev->dev, sz,
6331 &ioc->request_dma, GFP_KERNEL);
6332 if (!ioc->request) {
6333 ioc_err(ioc, "request pool: dma_alloc_coherent failed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), total(%d kB)\n",
6334 ioc->hba_queue_depth, ioc->chains_needed_per_io,
6335 ioc->request_sz, sz / 1024);
6336 if (ioc->scsiio_depth < MPT3SAS_SAS_QUEUE_DEPTH)
6337 goto out;
6338 retry_sz = 64;
6339 ioc->hba_queue_depth -= retry_sz;
6340 _base_release_memory_pools(ioc);
6341 goto retry_allocation;
6342 }
6343
6344 if (retry_sz)
6345 ioc_err(ioc, "request pool: dma_alloc_coherent succeed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), total(%d kb)\n",
6346 ioc->hba_queue_depth, ioc->chains_needed_per_io,
6347 ioc->request_sz, sz / 1024);
6348
6349 /* hi-priority queue */
6350 ioc->hi_priority = ioc->request + ((ioc->scsiio_depth + 1) *
6351 ioc->request_sz);
6352 ioc->hi_priority_dma = ioc->request_dma + ((ioc->scsiio_depth + 1) *
6353 ioc->request_sz);
6354
6355 /* internal queue */
6356 ioc->internal = ioc->hi_priority + (ioc->hi_priority_depth *
6357 ioc->request_sz);
6358 ioc->internal_dma = ioc->hi_priority_dma + (ioc->hi_priority_depth *
6359 ioc->request_sz);
6360
6361 ioc_info(ioc,
6362 "request pool(0x%p) - dma(0x%llx): "
6363 "depth(%d), frame_size(%d), pool_size(%d kB)\n",
6364 ioc->request, (unsigned long long) ioc->request_dma,
6365 ioc->hba_queue_depth, ioc->request_sz,
6366 (ioc->hba_queue_depth * ioc->request_sz) / 1024);
6367
6368 total_sz += sz;
6369
6370 dinitprintk(ioc,
6371 ioc_info(ioc, "scsiio(0x%p): depth(%d)\n",
6372 ioc->request, ioc->scsiio_depth));
6373
6374 ioc->chain_depth = min_t(u32, ioc->chain_depth, MAX_CHAIN_DEPTH);
6375 sz = ioc->scsiio_depth * sizeof(struct chain_lookup);
6376 ioc->chain_lookup = kzalloc(sz, GFP_KERNEL);
6377 if (!ioc->chain_lookup) {
6378 ioc_err(ioc, "chain_lookup: __get_free_pages failed\n");
6379 goto out;
6380 }
6381
6382 sz = ioc->chains_needed_per_io * sizeof(struct chain_tracker);
6383 for (i = 0; i < ioc->scsiio_depth; i++) {
6384 ioc->chain_lookup[i].chains_per_smid = kzalloc(sz, GFP_KERNEL);
6385 if (!ioc->chain_lookup[i].chains_per_smid) {
6386 ioc_err(ioc, "chain_lookup: kzalloc failed\n");
6387 goto out;
6388 }
6389 }
6390
6391 /* initialize hi-priority queue smid's */
6392 ioc->hpr_lookup = kcalloc(ioc->hi_priority_depth,
6393 sizeof(struct request_tracker), GFP_KERNEL);
6394 if (!ioc->hpr_lookup) {
6395 ioc_err(ioc, "hpr_lookup: kcalloc failed\n");
6396 goto out;
6397 }
6398 ioc->hi_priority_smid = ioc->scsiio_depth + 1;
6399 dinitprintk(ioc,
6400 ioc_info(ioc, "hi_priority(0x%p): depth(%d), start smid(%d)\n",
6401 ioc->hi_priority,
6402 ioc->hi_priority_depth, ioc->hi_priority_smid));
6403
6404 /* initialize internal queue smid's */
6405 ioc->internal_lookup = kcalloc(ioc->internal_depth,
6406 sizeof(struct request_tracker), GFP_KERNEL);
6407 if (!ioc->internal_lookup) {
6408 ioc_err(ioc, "internal_lookup: kcalloc failed\n");
6409 goto out;
6410 }
6411 ioc->internal_smid = ioc->hi_priority_smid + ioc->hi_priority_depth;
6412 dinitprintk(ioc,
6413 ioc_info(ioc, "internal(0x%p): depth(%d), start smid(%d)\n",
6414 ioc->internal,
6415 ioc->internal_depth, ioc->internal_smid));
6416
6417 ioc->io_queue_num = kcalloc(ioc->scsiio_depth,
6418 sizeof(u16), GFP_KERNEL);
6419 if (!ioc->io_queue_num)
6420 goto out;
6421 /*
6422 * The number of NVMe page sized blocks needed is:
6423 * (((sg_tablesize * 8) - 1) / (page_size - 8)) + 1
6424 * ((sg_tablesize * 8) - 1) is the max PRP's minus the first PRP entry
6425 * that is placed in the main message frame. 8 is the size of each PRP
6426 * entry or PRP list pointer entry. 8 is subtracted from page_size
6427 * because of the PRP list pointer entry at the end of a page, so this
6428 * is not counted as a PRP entry. The 1 added page is a round up.
6429 *
6430 * To avoid allocation failures due to the amount of memory that could
6431 * be required for NVMe PRP's, only each set of NVMe blocks will be
6432 * contiguous, so a new set is allocated for each possible I/O.
6433 */
6434
6435 ioc->chains_per_prp_buffer = 0;
6436 if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_NVME_DEVICES) {
6437 nvme_blocks_needed =
6438 (ioc->shost->sg_tablesize * NVME_PRP_SIZE) - 1;
6439 nvme_blocks_needed /= (ioc->page_size - NVME_PRP_SIZE);
6440 nvme_blocks_needed++;
6441
6442 sz = sizeof(struct pcie_sg_list) * ioc->scsiio_depth;
6443 ioc->pcie_sg_lookup = kzalloc(sz, GFP_KERNEL);
6444 if (!ioc->pcie_sg_lookup) {
6445 ioc_info(ioc, "PCIe SGL lookup: kzalloc failed\n");
6446 goto out;
6447 }
6448 sz = nvme_blocks_needed * ioc->page_size;
6449 rc = _base_allocate_pcie_sgl_pool(ioc, sz);
6450 if (rc == -ENOMEM)
6451 return -ENOMEM;
6452 else if (rc == -EAGAIN)
6453 goto try_32bit_dma;
6454 total_sz += sz * ioc->scsiio_depth;
6455 }
6456
6457 rc = _base_allocate_chain_dma_pool(ioc, ioc->chain_segment_sz);
6458 if (rc == -ENOMEM)
6459 return -ENOMEM;
6460 else if (rc == -EAGAIN)
6461 goto try_32bit_dma;
6462 total_sz += ioc->chain_segment_sz * ((ioc->chains_needed_per_io -
6463 ioc->chains_per_prp_buffer) * ioc->scsiio_depth);
6464 dinitprintk(ioc,
6465 ioc_info(ioc, "chain pool depth(%d), frame_size(%d), pool_size(%d kB)\n",
6466 ioc->chain_depth, ioc->chain_segment_sz,
6467 (ioc->chain_depth * ioc->chain_segment_sz) / 1024));
6468 /* sense buffers, 4 byte align */
6469 sense_sz = ioc->scsiio_depth * SCSI_SENSE_BUFFERSIZE;
6470 rc = _base_allocate_sense_dma_pool(ioc, sense_sz);
6471 if (rc == -ENOMEM)
6472 return -ENOMEM;
6473 else if (rc == -EAGAIN)
6474 goto try_32bit_dma;
6475 total_sz += sense_sz;
6476 /* reply pool, 4 byte align */
6477 sz = ioc->reply_free_queue_depth * ioc->reply_sz;
6478 rc = _base_allocate_reply_pool(ioc, sz);
6479 if (rc == -ENOMEM)
6480 return -ENOMEM;
6481 else if (rc == -EAGAIN)
6482 goto try_32bit_dma;
6483 total_sz += sz;
6484
6485 /* reply free queue, 16 byte align */
6486 sz = ioc->reply_free_queue_depth * 4;
6487 rc = _base_allocate_reply_free_dma_pool(ioc, sz);
6488 if (rc == -ENOMEM)
6489 return -ENOMEM;
6490 else if (rc == -EAGAIN)
6491 goto try_32bit_dma;
6492 dinitprintk(ioc,
6493 ioc_info(ioc, "reply_free_dma (0x%llx)\n",
6494 (unsigned long long)ioc->reply_free_dma));
6495 total_sz += sz;
6496 if (ioc->rdpq_array_enable) {
6497 reply_post_free_array_sz = ioc->reply_queue_count *
6498 sizeof(Mpi2IOCInitRDPQArrayEntry);
6499 rc = _base_allocate_reply_post_free_array(ioc,
6500 reply_post_free_array_sz);
6501 if (rc == -ENOMEM)
6502 return -ENOMEM;
6503 else if (rc == -EAGAIN)
6504 goto try_32bit_dma;
6505 }
6506 ioc->config_page_sz = 512;
6507 ioc->config_page = dma_alloc_coherent(&ioc->pdev->dev,
6508 ioc->config_page_sz, &ioc->config_page_dma, GFP_KERNEL);
6509 if (!ioc->config_page) {
6510 ioc_err(ioc, "config page: dma_pool_alloc failed\n");
6511 goto out;
6512 }
6513
6514 ioc_info(ioc, "config page(0x%p) - dma(0x%llx): size(%d)\n",
6515 ioc->config_page, (unsigned long long)ioc->config_page_dma,
6516 ioc->config_page_sz);
6517 total_sz += ioc->config_page_sz;
6518
6519 ioc_info(ioc, "Allocated physical memory: size(%d kB)\n",
6520 total_sz / 1024);
6521 ioc_info(ioc, "Current Controller Queue Depth(%d),Max Controller Queue Depth(%d)\n",
6522 ioc->shost->can_queue, facts->RequestCredit);
6523 ioc_info(ioc, "Scatter Gather Elements per IO(%d)\n",
6524 ioc->shost->sg_tablesize);
6525 return 0;
6526
6527 try_32bit_dma:
6528 _base_release_memory_pools(ioc);
6529 if (ioc->use_32bit_dma && (ioc->dma_mask > 32)) {
6530 /* Change dma coherent mask to 32 bit and reallocate */
6531 if (_base_config_dma_addressing(ioc, ioc->pdev) != 0) {
6532 pr_err("Setting 32 bit coherent DMA mask Failed %s\n",
6533 pci_name(ioc->pdev));
6534 return -ENODEV;
6535 }
6536 } else if (_base_reduce_hba_queue_depth(ioc) != 0)
6537 return -ENOMEM;
6538 goto retry_allocation;
6539
6540 out:
6541 return -ENOMEM;
6542 }
6543
6544 /**
6545 * mpt3sas_base_get_iocstate - Get the current state of a MPT adapter.
6546 * @ioc: Pointer to MPT_ADAPTER structure
6547 * @cooked: Request raw or cooked IOC state
6548 *
6549 * Return: all IOC Doorbell register bits if cooked==0, else just the
6550 * Doorbell bits in MPI_IOC_STATE_MASK.
6551 */
6552 u32
mpt3sas_base_get_iocstate(struct MPT3SAS_ADAPTER * ioc,int cooked)6553 mpt3sas_base_get_iocstate(struct MPT3SAS_ADAPTER *ioc, int cooked)
6554 {
6555 u32 s, sc;
6556
6557 s = ioc->base_readl_ext_retry(&ioc->chip->Doorbell);
6558 sc = s & MPI2_IOC_STATE_MASK;
6559 return cooked ? sc : s;
6560 }
6561
6562 /**
6563 * _base_wait_on_iocstate - waiting on a particular ioc state
6564 * @ioc: ?
6565 * @ioc_state: controller state { READY, OPERATIONAL, or RESET }
6566 * @timeout: timeout in second
6567 *
6568 * Return: 0 for success, non-zero for failure.
6569 */
6570 static int
_base_wait_on_iocstate(struct MPT3SAS_ADAPTER * ioc,u32 ioc_state,int timeout)6571 _base_wait_on_iocstate(struct MPT3SAS_ADAPTER *ioc, u32 ioc_state, int timeout)
6572 {
6573 u32 count, cntdn;
6574 u32 current_state;
6575
6576 count = 0;
6577 cntdn = 1000 * timeout;
6578 do {
6579 current_state = mpt3sas_base_get_iocstate(ioc, 1);
6580 if (current_state == ioc_state)
6581 return 0;
6582 if (count && current_state == MPI2_IOC_STATE_FAULT)
6583 break;
6584 if (count && current_state == MPI2_IOC_STATE_COREDUMP)
6585 break;
6586
6587 usleep_range(1000, 1500);
6588 count++;
6589 } while (--cntdn);
6590
6591 return current_state;
6592 }
6593
6594 /**
6595 * _base_dump_reg_set - This function will print hexdump of register set.
6596 * @ioc: per adapter object
6597 *
6598 * Return: nothing.
6599 */
6600 static inline void
_base_dump_reg_set(struct MPT3SAS_ADAPTER * ioc)6601 _base_dump_reg_set(struct MPT3SAS_ADAPTER *ioc)
6602 {
6603 unsigned int i, sz = 256;
6604 u32 __iomem *reg = (u32 __iomem *)ioc->chip;
6605
6606 ioc_info(ioc, "System Register set:\n");
6607 for (i = 0; i < (sz / sizeof(u32)); i++)
6608 pr_info("%08x: %08x\n", (i * 4), readl(®[i]));
6609 }
6610
6611 /**
6612 * _base_wait_for_doorbell_int - waiting for controller interrupt(generated by
6613 * a write to the doorbell)
6614 * @ioc: per adapter object
6615 * @timeout: timeout in seconds
6616 *
6617 * Return: 0 for success, non-zero for failure.
6618 *
6619 * Notes: MPI2_HIS_IOC2SYS_DB_STATUS - set to one when IOC writes to doorbell.
6620 */
6621
6622 static int
_base_wait_for_doorbell_int(struct MPT3SAS_ADAPTER * ioc,int timeout)6623 _base_wait_for_doorbell_int(struct MPT3SAS_ADAPTER *ioc, int timeout)
6624 {
6625 u32 cntdn, count;
6626 u32 int_status;
6627
6628 count = 0;
6629 cntdn = 1000 * timeout;
6630 do {
6631 int_status = ioc->base_readl(&ioc->chip->HostInterruptStatus);
6632 if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
6633 dhsprintk(ioc,
6634 ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n",
6635 __func__, count, timeout));
6636 return 0;
6637 }
6638
6639 usleep_range(1000, 1500);
6640 count++;
6641 } while (--cntdn);
6642
6643 ioc_err(ioc, "%s: failed due to timeout count(%d), int_status(%x)!\n",
6644 __func__, count, int_status);
6645 return -EFAULT;
6646 }
6647
6648 static int
_base_spin_on_doorbell_int(struct MPT3SAS_ADAPTER * ioc,int timeout)6649 _base_spin_on_doorbell_int(struct MPT3SAS_ADAPTER *ioc, int timeout)
6650 {
6651 u32 cntdn, count;
6652 u32 int_status;
6653
6654 count = 0;
6655 cntdn = 2000 * timeout;
6656 do {
6657 int_status = ioc->base_readl(&ioc->chip->HostInterruptStatus);
6658 if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
6659 dhsprintk(ioc,
6660 ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n",
6661 __func__, count, timeout));
6662 return 0;
6663 }
6664
6665 udelay(500);
6666 count++;
6667 } while (--cntdn);
6668
6669 ioc_err(ioc, "%s: failed due to timeout count(%d), int_status(%x)!\n",
6670 __func__, count, int_status);
6671 return -EFAULT;
6672
6673 }
6674
6675 /**
6676 * _base_wait_for_doorbell_ack - waiting for controller to read the doorbell.
6677 * @ioc: per adapter object
6678 * @timeout: timeout in second
6679 *
6680 * Return: 0 for success, non-zero for failure.
6681 *
6682 * Notes: MPI2_HIS_SYS2IOC_DB_STATUS - set to one when host writes to
6683 * doorbell.
6684 */
6685 static int
_base_wait_for_doorbell_ack(struct MPT3SAS_ADAPTER * ioc,int timeout)6686 _base_wait_for_doorbell_ack(struct MPT3SAS_ADAPTER *ioc, int timeout)
6687 {
6688 u32 cntdn, count;
6689 u32 int_status;
6690 u32 doorbell;
6691
6692 count = 0;
6693 cntdn = 1000 * timeout;
6694 do {
6695 int_status = ioc->base_readl(&ioc->chip->HostInterruptStatus);
6696 if (!(int_status & MPI2_HIS_SYS2IOC_DB_STATUS)) {
6697 dhsprintk(ioc,
6698 ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n",
6699 __func__, count, timeout));
6700 return 0;
6701 } else if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
6702 doorbell = ioc->base_readl_ext_retry(&ioc->chip->Doorbell);
6703 if ((doorbell & MPI2_IOC_STATE_MASK) ==
6704 MPI2_IOC_STATE_FAULT) {
6705 mpt3sas_print_fault_code(ioc, doorbell);
6706 return -EFAULT;
6707 }
6708 if ((doorbell & MPI2_IOC_STATE_MASK) ==
6709 MPI2_IOC_STATE_COREDUMP) {
6710 mpt3sas_print_coredump_info(ioc, doorbell);
6711 return -EFAULT;
6712 }
6713 } else if (int_status == 0xFFFFFFFF)
6714 goto out;
6715
6716 usleep_range(1000, 1500);
6717 count++;
6718 } while (--cntdn);
6719
6720 out:
6721 ioc_err(ioc, "%s: failed due to timeout count(%d), int_status(%x)!\n",
6722 __func__, count, int_status);
6723 return -EFAULT;
6724 }
6725
6726 /**
6727 * _base_wait_for_doorbell_not_used - waiting for doorbell to not be in use
6728 * @ioc: per adapter object
6729 * @timeout: timeout in second
6730 *
6731 * Return: 0 for success, non-zero for failure.
6732 */
6733 static int
_base_wait_for_doorbell_not_used(struct MPT3SAS_ADAPTER * ioc,int timeout)6734 _base_wait_for_doorbell_not_used(struct MPT3SAS_ADAPTER *ioc, int timeout)
6735 {
6736 u32 cntdn, count;
6737 u32 doorbell_reg;
6738
6739 count = 0;
6740 cntdn = 1000 * timeout;
6741 do {
6742 doorbell_reg = ioc->base_readl_ext_retry(&ioc->chip->Doorbell);
6743 if (!(doorbell_reg & MPI2_DOORBELL_USED)) {
6744 dhsprintk(ioc,
6745 ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n",
6746 __func__, count, timeout));
6747 return 0;
6748 }
6749
6750 usleep_range(1000, 1500);
6751 count++;
6752 } while (--cntdn);
6753
6754 ioc_err(ioc, "%s: failed due to timeout count(%d), doorbell_reg(%x)!\n",
6755 __func__, count, doorbell_reg);
6756 return -EFAULT;
6757 }
6758
6759 /**
6760 * _base_send_ioc_reset - send doorbell reset
6761 * @ioc: per adapter object
6762 * @reset_type: currently only supports: MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET
6763 * @timeout: timeout in second
6764 *
6765 * Return: 0 for success, non-zero for failure.
6766 */
6767 static int
_base_send_ioc_reset(struct MPT3SAS_ADAPTER * ioc,u8 reset_type,int timeout)6768 _base_send_ioc_reset(struct MPT3SAS_ADAPTER *ioc, u8 reset_type, int timeout)
6769 {
6770 u32 ioc_state;
6771 int r = 0;
6772 unsigned long flags;
6773
6774 if (reset_type != MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET) {
6775 ioc_err(ioc, "%s: unknown reset_type\n", __func__);
6776 return -EFAULT;
6777 }
6778
6779 if (!(ioc->facts.IOCCapabilities &
6780 MPI2_IOCFACTS_CAPABILITY_EVENT_REPLAY))
6781 return -EFAULT;
6782
6783 ioc_info(ioc, "sending message unit reset !!\n");
6784
6785 writel(reset_type << MPI2_DOORBELL_FUNCTION_SHIFT,
6786 &ioc->chip->Doorbell);
6787 if ((_base_wait_for_doorbell_ack(ioc, 15))) {
6788 r = -EFAULT;
6789 goto out;
6790 }
6791
6792 ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, timeout);
6793 if (ioc_state) {
6794 ioc_err(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n",
6795 __func__, ioc_state);
6796 r = -EFAULT;
6797 goto out;
6798 }
6799 out:
6800 if (r != 0) {
6801 ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
6802 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
6803 /*
6804 * Wait for IOC state CoreDump to clear only during
6805 * HBA initialization & release time.
6806 */
6807 if ((ioc_state & MPI2_IOC_STATE_MASK) ==
6808 MPI2_IOC_STATE_COREDUMP && (ioc->is_driver_loading == 1 ||
6809 ioc->fault_reset_work_q == NULL)) {
6810 spin_unlock_irqrestore(
6811 &ioc->ioc_reset_in_progress_lock, flags);
6812 mpt3sas_print_coredump_info(ioc, ioc_state);
6813 mpt3sas_base_wait_for_coredump_completion(ioc,
6814 __func__);
6815 spin_lock_irqsave(
6816 &ioc->ioc_reset_in_progress_lock, flags);
6817 }
6818 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
6819 }
6820 ioc_info(ioc, "message unit reset: %s\n",
6821 r == 0 ? "SUCCESS" : "FAILED");
6822 return r;
6823 }
6824
6825 /**
6826 * mpt3sas_wait_for_ioc - IOC's operational state is checked here.
6827 * @ioc: per adapter object
6828 * @timeout: timeout in seconds
6829 *
6830 * Return: Waits up to timeout seconds for the IOC to
6831 * become operational. Returns 0 if IOC is present
6832 * and operational; otherwise returns %-EFAULT.
6833 */
6834
6835 int
mpt3sas_wait_for_ioc(struct MPT3SAS_ADAPTER * ioc,int timeout)6836 mpt3sas_wait_for_ioc(struct MPT3SAS_ADAPTER *ioc, int timeout)
6837 {
6838 int wait_state_count = 0;
6839 u32 ioc_state;
6840
6841 do {
6842 ioc_state = mpt3sas_base_get_iocstate(ioc, 1);
6843 if (ioc_state == MPI2_IOC_STATE_OPERATIONAL)
6844 break;
6845
6846 /*
6847 * Watchdog thread will be started after IOC Initialization, so
6848 * no need to wait here for IOC state to become operational
6849 * when IOC Initialization is on. Instead the driver will
6850 * return ETIME status, so that calling function can issue
6851 * diag reset operation and retry the command.
6852 */
6853 if (ioc->is_driver_loading)
6854 return -ETIME;
6855
6856 ssleep(1);
6857 ioc_info(ioc, "%s: waiting for operational state(count=%d)\n",
6858 __func__, ++wait_state_count);
6859 } while (--timeout);
6860 if (!timeout) {
6861 ioc_err(ioc, "%s: failed due to ioc not operational\n", __func__);
6862 return -EFAULT;
6863 }
6864 if (wait_state_count)
6865 ioc_info(ioc, "ioc is operational\n");
6866 return 0;
6867 }
6868
6869 /**
6870 * _base_handshake_req_reply_wait - send request thru doorbell interface
6871 * @ioc: per adapter object
6872 * @request_bytes: request length
6873 * @request: pointer having request payload
6874 * @reply_bytes: reply length
6875 * @reply: pointer to reply payload
6876 * @timeout: timeout in second
6877 *
6878 * Return: 0 for success, non-zero for failure.
6879 */
6880 static int
_base_handshake_req_reply_wait(struct MPT3SAS_ADAPTER * ioc,int request_bytes,u32 * request,int reply_bytes,u16 * reply,int timeout)6881 _base_handshake_req_reply_wait(struct MPT3SAS_ADAPTER *ioc, int request_bytes,
6882 u32 *request, int reply_bytes, u16 *reply, int timeout)
6883 {
6884 MPI2DefaultReply_t *default_reply = (MPI2DefaultReply_t *)reply;
6885 int i;
6886 u8 failed;
6887 __le32 *mfp;
6888
6889 /* make sure doorbell is not in use */
6890 if ((ioc->base_readl_ext_retry(&ioc->chip->Doorbell) & MPI2_DOORBELL_USED)) {
6891 ioc_err(ioc, "doorbell is in use (line=%d)\n", __LINE__);
6892 return -EFAULT;
6893 }
6894
6895 /* clear pending doorbell interrupts from previous state changes */
6896 if (ioc->base_readl(&ioc->chip->HostInterruptStatus) &
6897 MPI2_HIS_IOC2SYS_DB_STATUS)
6898 writel(0, &ioc->chip->HostInterruptStatus);
6899
6900 /* send message to ioc */
6901 writel(((MPI2_FUNCTION_HANDSHAKE<<MPI2_DOORBELL_FUNCTION_SHIFT) |
6902 ((request_bytes/4)<<MPI2_DOORBELL_ADD_DWORDS_SHIFT)),
6903 &ioc->chip->Doorbell);
6904
6905 if ((_base_spin_on_doorbell_int(ioc, 5))) {
6906 ioc_err(ioc, "doorbell handshake int failed (line=%d)\n",
6907 __LINE__);
6908 return -EFAULT;
6909 }
6910 writel(0, &ioc->chip->HostInterruptStatus);
6911
6912 if ((_base_wait_for_doorbell_ack(ioc, 5))) {
6913 ioc_err(ioc, "doorbell handshake ack failed (line=%d)\n",
6914 __LINE__);
6915 return -EFAULT;
6916 }
6917
6918 /* send message 32-bits at a time */
6919 for (i = 0, failed = 0; i < request_bytes/4 && !failed; i++) {
6920 writel(cpu_to_le32(request[i]), &ioc->chip->Doorbell);
6921 if ((_base_wait_for_doorbell_ack(ioc, 5)))
6922 failed = 1;
6923 }
6924
6925 if (failed) {
6926 ioc_err(ioc, "doorbell handshake sending request failed (line=%d)\n",
6927 __LINE__);
6928 return -EFAULT;
6929 }
6930
6931 /* now wait for the reply */
6932 if ((_base_wait_for_doorbell_int(ioc, timeout))) {
6933 ioc_err(ioc, "doorbell handshake int failed (line=%d)\n",
6934 __LINE__);
6935 return -EFAULT;
6936 }
6937
6938 /* read the first two 16-bits, it gives the total length of the reply */
6939 reply[0] = le16_to_cpu(ioc->base_readl_ext_retry(&ioc->chip->Doorbell)
6940 & MPI2_DOORBELL_DATA_MASK);
6941 writel(0, &ioc->chip->HostInterruptStatus);
6942 if ((_base_wait_for_doorbell_int(ioc, 5))) {
6943 ioc_err(ioc, "doorbell handshake int failed (line=%d)\n",
6944 __LINE__);
6945 return -EFAULT;
6946 }
6947 reply[1] = le16_to_cpu(ioc->base_readl_ext_retry(&ioc->chip->Doorbell)
6948 & MPI2_DOORBELL_DATA_MASK);
6949 writel(0, &ioc->chip->HostInterruptStatus);
6950
6951 for (i = 2; i < default_reply->MsgLength * 2; i++) {
6952 if ((_base_wait_for_doorbell_int(ioc, 5))) {
6953 ioc_err(ioc, "doorbell handshake int failed (line=%d)\n",
6954 __LINE__);
6955 return -EFAULT;
6956 }
6957 if (i >= reply_bytes/2) /* overflow case */
6958 ioc->base_readl_ext_retry(&ioc->chip->Doorbell);
6959 else
6960 reply[i] = le16_to_cpu(
6961 ioc->base_readl_ext_retry(&ioc->chip->Doorbell)
6962 & MPI2_DOORBELL_DATA_MASK);
6963 writel(0, &ioc->chip->HostInterruptStatus);
6964 }
6965
6966 _base_wait_for_doorbell_int(ioc, 5);
6967 if (_base_wait_for_doorbell_not_used(ioc, 5) != 0) {
6968 dhsprintk(ioc,
6969 ioc_info(ioc, "doorbell is in use (line=%d)\n",
6970 __LINE__));
6971 }
6972 writel(0, &ioc->chip->HostInterruptStatus);
6973
6974 if (ioc->logging_level & MPT_DEBUG_INIT) {
6975 mfp = (__le32 *)reply;
6976 pr_info("\toffset:data\n");
6977 for (i = 0; i < reply_bytes/4; i++)
6978 ioc_info(ioc, "\t[0x%02x]:%08x\n", i*4,
6979 le32_to_cpu(mfp[i]));
6980 }
6981 return 0;
6982 }
6983
6984 /**
6985 * mpt3sas_base_sas_iounit_control - send sas iounit control to FW
6986 * @ioc: per adapter object
6987 * @mpi_reply: the reply payload from FW
6988 * @mpi_request: the request payload sent to FW
6989 *
6990 * The SAS IO Unit Control Request message allows the host to perform low-level
6991 * operations, such as resets on the PHYs of the IO Unit, also allows the host
6992 * to obtain the IOC assigned device handles for a device if it has other
6993 * identifying information about the device, in addition allows the host to
6994 * remove IOC resources associated with the device.
6995 *
6996 * Return: 0 for success, non-zero for failure.
6997 */
6998 int
mpt3sas_base_sas_iounit_control(struct MPT3SAS_ADAPTER * ioc,Mpi2SasIoUnitControlReply_t * mpi_reply,Mpi2SasIoUnitControlRequest_t * mpi_request)6999 mpt3sas_base_sas_iounit_control(struct MPT3SAS_ADAPTER *ioc,
7000 Mpi2SasIoUnitControlReply_t *mpi_reply,
7001 Mpi2SasIoUnitControlRequest_t *mpi_request)
7002 {
7003 u16 smid;
7004 u8 issue_reset = 0;
7005 int rc;
7006 void *request;
7007
7008 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
7009
7010 mutex_lock(&ioc->base_cmds.mutex);
7011
7012 if (ioc->base_cmds.status != MPT3_CMD_NOT_USED) {
7013 ioc_err(ioc, "%s: base_cmd in use\n", __func__);
7014 rc = -EAGAIN;
7015 goto out;
7016 }
7017
7018 rc = mpt3sas_wait_for_ioc(ioc, IOC_OPERATIONAL_WAIT_COUNT);
7019 if (rc)
7020 goto out;
7021
7022 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
7023 if (!smid) {
7024 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
7025 rc = -EAGAIN;
7026 goto out;
7027 }
7028
7029 rc = 0;
7030 ioc->base_cmds.status = MPT3_CMD_PENDING;
7031 request = mpt3sas_base_get_msg_frame(ioc, smid);
7032 ioc->base_cmds.smid = smid;
7033 memcpy(request, mpi_request, sizeof(Mpi2SasIoUnitControlRequest_t));
7034 if (mpi_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET ||
7035 mpi_request->Operation == MPI2_SAS_OP_PHY_LINK_RESET)
7036 ioc->ioc_link_reset_in_progress = 1;
7037 init_completion(&ioc->base_cmds.done);
7038 ioc->put_smid_default(ioc, smid);
7039 wait_for_completion_timeout(&ioc->base_cmds.done,
7040 msecs_to_jiffies(10000));
7041 if ((mpi_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET ||
7042 mpi_request->Operation == MPI2_SAS_OP_PHY_LINK_RESET) &&
7043 ioc->ioc_link_reset_in_progress)
7044 ioc->ioc_link_reset_in_progress = 0;
7045 if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
7046 mpt3sas_check_cmd_timeout(ioc, ioc->base_cmds.status,
7047 mpi_request, sizeof(Mpi2SasIoUnitControlRequest_t)/4,
7048 issue_reset);
7049 goto issue_host_reset;
7050 }
7051 if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID)
7052 memcpy(mpi_reply, ioc->base_cmds.reply,
7053 sizeof(Mpi2SasIoUnitControlReply_t));
7054 else
7055 memset(mpi_reply, 0, sizeof(Mpi2SasIoUnitControlReply_t));
7056 ioc->base_cmds.status = MPT3_CMD_NOT_USED;
7057 goto out;
7058
7059 issue_host_reset:
7060 if (issue_reset)
7061 mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
7062 ioc->base_cmds.status = MPT3_CMD_NOT_USED;
7063 rc = -EFAULT;
7064 out:
7065 mutex_unlock(&ioc->base_cmds.mutex);
7066 return rc;
7067 }
7068
7069 /**
7070 * mpt3sas_base_scsi_enclosure_processor - sending request to sep device
7071 * @ioc: per adapter object
7072 * @mpi_reply: the reply payload from FW
7073 * @mpi_request: the request payload sent to FW
7074 *
7075 * The SCSI Enclosure Processor request message causes the IOC to
7076 * communicate with SES devices to control LED status signals.
7077 *
7078 * Return: 0 for success, non-zero for failure.
7079 */
7080 int
mpt3sas_base_scsi_enclosure_processor(struct MPT3SAS_ADAPTER * ioc,Mpi2SepReply_t * mpi_reply,Mpi2SepRequest_t * mpi_request)7081 mpt3sas_base_scsi_enclosure_processor(struct MPT3SAS_ADAPTER *ioc,
7082 Mpi2SepReply_t *mpi_reply, Mpi2SepRequest_t *mpi_request)
7083 {
7084 u16 smid;
7085 u8 issue_reset = 0;
7086 int rc;
7087 void *request;
7088
7089 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
7090
7091 mutex_lock(&ioc->base_cmds.mutex);
7092
7093 if (ioc->base_cmds.status != MPT3_CMD_NOT_USED) {
7094 ioc_err(ioc, "%s: base_cmd in use\n", __func__);
7095 rc = -EAGAIN;
7096 goto out;
7097 }
7098
7099 rc = mpt3sas_wait_for_ioc(ioc, IOC_OPERATIONAL_WAIT_COUNT);
7100 if (rc)
7101 goto out;
7102
7103 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
7104 if (!smid) {
7105 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
7106 rc = -EAGAIN;
7107 goto out;
7108 }
7109
7110 rc = 0;
7111 ioc->base_cmds.status = MPT3_CMD_PENDING;
7112 request = mpt3sas_base_get_msg_frame(ioc, smid);
7113 ioc->base_cmds.smid = smid;
7114 memset(request, 0, ioc->request_sz);
7115 memcpy(request, mpi_request, sizeof(Mpi2SepReply_t));
7116 init_completion(&ioc->base_cmds.done);
7117 ioc->put_smid_default(ioc, smid);
7118 wait_for_completion_timeout(&ioc->base_cmds.done,
7119 msecs_to_jiffies(10000));
7120 if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
7121 mpt3sas_check_cmd_timeout(ioc,
7122 ioc->base_cmds.status, mpi_request,
7123 sizeof(Mpi2SepRequest_t)/4, issue_reset);
7124 goto issue_host_reset;
7125 }
7126 if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID)
7127 memcpy(mpi_reply, ioc->base_cmds.reply,
7128 sizeof(Mpi2SepReply_t));
7129 else
7130 memset(mpi_reply, 0, sizeof(Mpi2SepReply_t));
7131 ioc->base_cmds.status = MPT3_CMD_NOT_USED;
7132 goto out;
7133
7134 issue_host_reset:
7135 if (issue_reset)
7136 mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
7137 ioc->base_cmds.status = MPT3_CMD_NOT_USED;
7138 rc = -EFAULT;
7139 out:
7140 mutex_unlock(&ioc->base_cmds.mutex);
7141 return rc;
7142 }
7143
7144 /**
7145 * _base_get_port_facts - obtain port facts reply and save in ioc
7146 * @ioc: per adapter object
7147 * @port: ?
7148 *
7149 * Return: 0 for success, non-zero for failure.
7150 */
7151 static int
_base_get_port_facts(struct MPT3SAS_ADAPTER * ioc,int port)7152 _base_get_port_facts(struct MPT3SAS_ADAPTER *ioc, int port)
7153 {
7154 Mpi2PortFactsRequest_t mpi_request;
7155 Mpi2PortFactsReply_t mpi_reply;
7156 struct mpt3sas_port_facts *pfacts;
7157 int mpi_reply_sz, mpi_request_sz, r;
7158
7159 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
7160
7161 mpi_reply_sz = sizeof(Mpi2PortFactsReply_t);
7162 mpi_request_sz = sizeof(Mpi2PortFactsRequest_t);
7163 memset(&mpi_request, 0, mpi_request_sz);
7164 mpi_request.Function = MPI2_FUNCTION_PORT_FACTS;
7165 mpi_request.PortNumber = port;
7166 r = _base_handshake_req_reply_wait(ioc, mpi_request_sz,
7167 (u32 *)&mpi_request, mpi_reply_sz, (u16 *)&mpi_reply, 5);
7168
7169 if (r != 0) {
7170 ioc_err(ioc, "%s: handshake failed (r=%d)\n", __func__, r);
7171 return r;
7172 }
7173
7174 pfacts = &ioc->pfacts[port];
7175 memset(pfacts, 0, sizeof(struct mpt3sas_port_facts));
7176 pfacts->PortNumber = mpi_reply.PortNumber;
7177 pfacts->VP_ID = mpi_reply.VP_ID;
7178 pfacts->VF_ID = mpi_reply.VF_ID;
7179 pfacts->MaxPostedCmdBuffers =
7180 le16_to_cpu(mpi_reply.MaxPostedCmdBuffers);
7181
7182 return 0;
7183 }
7184
7185 /**
7186 * _base_wait_for_iocstate - Wait until the card is in READY or OPERATIONAL
7187 * @ioc: per adapter object
7188 * @timeout:
7189 *
7190 * Return: 0 for success, non-zero for failure.
7191 */
7192 static int
_base_wait_for_iocstate(struct MPT3SAS_ADAPTER * ioc,int timeout)7193 _base_wait_for_iocstate(struct MPT3SAS_ADAPTER *ioc, int timeout)
7194 {
7195 u32 ioc_state;
7196 int rc;
7197
7198 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
7199
7200 if (ioc->pci_error_recovery) {
7201 dfailprintk(ioc,
7202 ioc_info(ioc, "%s: host in pci error recovery\n",
7203 __func__));
7204 return -EFAULT;
7205 }
7206
7207 ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
7208 dhsprintk(ioc,
7209 ioc_info(ioc, "%s: ioc_state(0x%08x)\n",
7210 __func__, ioc_state));
7211
7212 if (((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_READY) ||
7213 (ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_OPERATIONAL)
7214 return 0;
7215
7216 if (ioc_state & MPI2_DOORBELL_USED) {
7217 dhsprintk(ioc, ioc_info(ioc, "unexpected doorbell active!\n"));
7218 goto issue_diag_reset;
7219 }
7220
7221 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
7222 mpt3sas_print_fault_code(ioc, ioc_state &
7223 MPI2_DOORBELL_DATA_MASK);
7224 goto issue_diag_reset;
7225 } else if ((ioc_state & MPI2_IOC_STATE_MASK) ==
7226 MPI2_IOC_STATE_COREDUMP) {
7227 ioc_info(ioc,
7228 "%s: Skipping the diag reset here. (ioc_state=0x%x)\n",
7229 __func__, ioc_state);
7230 return -EFAULT;
7231 }
7232
7233 ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, timeout);
7234 if (ioc_state) {
7235 dfailprintk(ioc,
7236 ioc_info(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n",
7237 __func__, ioc_state));
7238 return -EFAULT;
7239 }
7240
7241 issue_diag_reset:
7242 rc = _base_diag_reset(ioc);
7243 return rc;
7244 }
7245
7246 /**
7247 * _base_get_ioc_facts - obtain ioc facts reply and save in ioc
7248 * @ioc: per adapter object
7249 *
7250 * Return: 0 for success, non-zero for failure.
7251 */
7252 static int
_base_get_ioc_facts(struct MPT3SAS_ADAPTER * ioc)7253 _base_get_ioc_facts(struct MPT3SAS_ADAPTER *ioc)
7254 {
7255 Mpi2IOCFactsRequest_t mpi_request;
7256 Mpi2IOCFactsReply_t mpi_reply;
7257 struct mpt3sas_facts *facts;
7258 int mpi_reply_sz, mpi_request_sz, r;
7259
7260 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
7261
7262 r = _base_wait_for_iocstate(ioc, 10);
7263 if (r) {
7264 dfailprintk(ioc,
7265 ioc_info(ioc, "%s: failed getting to correct state\n",
7266 __func__));
7267 return r;
7268 }
7269 mpi_reply_sz = sizeof(Mpi2IOCFactsReply_t);
7270 mpi_request_sz = sizeof(Mpi2IOCFactsRequest_t);
7271 memset(&mpi_request, 0, mpi_request_sz);
7272 mpi_request.Function = MPI2_FUNCTION_IOC_FACTS;
7273 r = _base_handshake_req_reply_wait(ioc, mpi_request_sz,
7274 (u32 *)&mpi_request, mpi_reply_sz, (u16 *)&mpi_reply, 5);
7275
7276 if (r != 0) {
7277 ioc_err(ioc, "%s: handshake failed (r=%d)\n", __func__, r);
7278 return r;
7279 }
7280
7281 facts = &ioc->facts;
7282 memset(facts, 0, sizeof(struct mpt3sas_facts));
7283 facts->MsgVersion = le16_to_cpu(mpi_reply.MsgVersion);
7284 facts->HeaderVersion = le16_to_cpu(mpi_reply.HeaderVersion);
7285 facts->VP_ID = mpi_reply.VP_ID;
7286 facts->VF_ID = mpi_reply.VF_ID;
7287 facts->IOCExceptions = le16_to_cpu(mpi_reply.IOCExceptions);
7288 facts->MaxChainDepth = mpi_reply.MaxChainDepth;
7289 facts->WhoInit = mpi_reply.WhoInit;
7290 facts->NumberOfPorts = mpi_reply.NumberOfPorts;
7291 facts->MaxMSIxVectors = mpi_reply.MaxMSIxVectors;
7292 if (ioc->msix_enable && (facts->MaxMSIxVectors <=
7293 MAX_COMBINED_MSIX_VECTORS(ioc->is_gen35_ioc)))
7294 ioc->combined_reply_queue = 0;
7295 facts->RequestCredit = le16_to_cpu(mpi_reply.RequestCredit);
7296 facts->MaxReplyDescriptorPostQueueDepth =
7297 le16_to_cpu(mpi_reply.MaxReplyDescriptorPostQueueDepth);
7298 facts->ProductID = le16_to_cpu(mpi_reply.ProductID);
7299 facts->IOCCapabilities = le32_to_cpu(mpi_reply.IOCCapabilities);
7300 if ((facts->IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID))
7301 ioc->ir_firmware = 1;
7302 if ((facts->IOCCapabilities &
7303 MPI2_IOCFACTS_CAPABILITY_RDPQ_ARRAY_CAPABLE) && (!reset_devices))
7304 ioc->rdpq_array_capable = 1;
7305 if ((facts->IOCCapabilities & MPI26_IOCFACTS_CAPABILITY_ATOMIC_REQ)
7306 && ioc->is_aero_ioc)
7307 ioc->atomic_desc_capable = 1;
7308 facts->FWVersion.Word = le32_to_cpu(mpi_reply.FWVersion.Word);
7309 facts->IOCRequestFrameSize =
7310 le16_to_cpu(mpi_reply.IOCRequestFrameSize);
7311 if (ioc->hba_mpi_version_belonged != MPI2_VERSION) {
7312 facts->IOCMaxChainSegmentSize =
7313 le16_to_cpu(mpi_reply.IOCMaxChainSegmentSize);
7314 }
7315 facts->MaxInitiators = le16_to_cpu(mpi_reply.MaxInitiators);
7316 facts->MaxTargets = le16_to_cpu(mpi_reply.MaxTargets);
7317 ioc->shost->max_id = -1;
7318 facts->MaxSasExpanders = le16_to_cpu(mpi_reply.MaxSasExpanders);
7319 facts->MaxEnclosures = le16_to_cpu(mpi_reply.MaxEnclosures);
7320 facts->ProtocolFlags = le16_to_cpu(mpi_reply.ProtocolFlags);
7321 facts->HighPriorityCredit =
7322 le16_to_cpu(mpi_reply.HighPriorityCredit);
7323 facts->ReplyFrameSize = mpi_reply.ReplyFrameSize;
7324 facts->MaxDevHandle = le16_to_cpu(mpi_reply.MaxDevHandle);
7325 facts->CurrentHostPageSize = mpi_reply.CurrentHostPageSize;
7326
7327 /*
7328 * Get the Page Size from IOC Facts. If it's 0, default to 4k.
7329 */
7330 ioc->page_size = 1 << facts->CurrentHostPageSize;
7331 if (ioc->page_size == 1) {
7332 ioc_info(ioc, "CurrentHostPageSize is 0: Setting default host page size to 4k\n");
7333 ioc->page_size = 1 << MPT3SAS_HOST_PAGE_SIZE_4K;
7334 }
7335 dinitprintk(ioc,
7336 ioc_info(ioc, "CurrentHostPageSize(%d)\n",
7337 facts->CurrentHostPageSize));
7338
7339 dinitprintk(ioc,
7340 ioc_info(ioc, "hba queue depth(%d), max chains per io(%d)\n",
7341 facts->RequestCredit, facts->MaxChainDepth));
7342 dinitprintk(ioc,
7343 ioc_info(ioc, "request frame size(%d), reply frame size(%d)\n",
7344 facts->IOCRequestFrameSize * 4,
7345 facts->ReplyFrameSize * 4));
7346 return 0;
7347 }
7348
7349 /**
7350 * _base_send_ioc_init - send ioc_init to firmware
7351 * @ioc: per adapter object
7352 *
7353 * Return: 0 for success, non-zero for failure.
7354 */
7355 static int
_base_send_ioc_init(struct MPT3SAS_ADAPTER * ioc)7356 _base_send_ioc_init(struct MPT3SAS_ADAPTER *ioc)
7357 {
7358 Mpi2IOCInitRequest_t mpi_request;
7359 Mpi2IOCInitReply_t mpi_reply;
7360 int i, r = 0;
7361 ktime_t current_time;
7362 u16 ioc_status;
7363 u32 reply_post_free_array_sz = 0;
7364
7365 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
7366
7367 memset(&mpi_request, 0, sizeof(Mpi2IOCInitRequest_t));
7368 mpi_request.Function = MPI2_FUNCTION_IOC_INIT;
7369 mpi_request.WhoInit = MPI2_WHOINIT_HOST_DRIVER;
7370 mpi_request.VF_ID = 0; /* TODO */
7371 mpi_request.VP_ID = 0;
7372 mpi_request.MsgVersion = cpu_to_le16(ioc->hba_mpi_version_belonged);
7373 mpi_request.HeaderVersion = cpu_to_le16(MPI2_HEADER_VERSION);
7374 mpi_request.HostPageSize = MPT3SAS_HOST_PAGE_SIZE_4K;
7375
7376 if (_base_is_controller_msix_enabled(ioc))
7377 mpi_request.HostMSIxVectors = ioc->reply_queue_count;
7378 mpi_request.SystemRequestFrameSize = cpu_to_le16(ioc->request_sz/4);
7379 mpi_request.ReplyDescriptorPostQueueDepth =
7380 cpu_to_le16(ioc->reply_post_queue_depth);
7381 mpi_request.ReplyFreeQueueDepth =
7382 cpu_to_le16(ioc->reply_free_queue_depth);
7383
7384 mpi_request.SenseBufferAddressHigh =
7385 cpu_to_le32((u64)ioc->sense_dma >> 32);
7386 mpi_request.SystemReplyAddressHigh =
7387 cpu_to_le32((u64)ioc->reply_dma >> 32);
7388 mpi_request.SystemRequestFrameBaseAddress =
7389 cpu_to_le64((u64)ioc->request_dma);
7390 mpi_request.ReplyFreeQueueAddress =
7391 cpu_to_le64((u64)ioc->reply_free_dma);
7392
7393 if (ioc->rdpq_array_enable) {
7394 reply_post_free_array_sz = ioc->reply_queue_count *
7395 sizeof(Mpi2IOCInitRDPQArrayEntry);
7396 memset(ioc->reply_post_free_array, 0, reply_post_free_array_sz);
7397 for (i = 0; i < ioc->reply_queue_count; i++)
7398 ioc->reply_post_free_array[i].RDPQBaseAddress =
7399 cpu_to_le64(
7400 (u64)ioc->reply_post[i].reply_post_free_dma);
7401 mpi_request.MsgFlags = MPI2_IOCINIT_MSGFLAG_RDPQ_ARRAY_MODE;
7402 mpi_request.ReplyDescriptorPostQueueAddress =
7403 cpu_to_le64((u64)ioc->reply_post_free_array_dma);
7404 } else {
7405 mpi_request.ReplyDescriptorPostQueueAddress =
7406 cpu_to_le64((u64)ioc->reply_post[0].reply_post_free_dma);
7407 }
7408
7409 /*
7410 * Set the flag to enable CoreDump state feature in IOC firmware.
7411 */
7412 mpi_request.ConfigurationFlags |=
7413 cpu_to_le16(MPI26_IOCINIT_CFGFLAGS_COREDUMP_ENABLE);
7414
7415 /* This time stamp specifies number of milliseconds
7416 * since epoch ~ midnight January 1, 1970.
7417 */
7418 current_time = ktime_get_real();
7419 mpi_request.TimeStamp = cpu_to_le64(ktime_to_ms(current_time));
7420
7421 if (ioc->logging_level & MPT_DEBUG_INIT) {
7422 __le32 *mfp;
7423 int i;
7424
7425 mfp = (__le32 *)&mpi_request;
7426 ioc_info(ioc, "\toffset:data\n");
7427 for (i = 0; i < sizeof(Mpi2IOCInitRequest_t)/4; i++)
7428 ioc_info(ioc, "\t[0x%02x]:%08x\n", i*4,
7429 le32_to_cpu(mfp[i]));
7430 }
7431
7432 r = _base_handshake_req_reply_wait(ioc,
7433 sizeof(Mpi2IOCInitRequest_t), (u32 *)&mpi_request,
7434 sizeof(Mpi2IOCInitReply_t), (u16 *)&mpi_reply, 30);
7435
7436 if (r != 0) {
7437 ioc_err(ioc, "%s: handshake failed (r=%d)\n", __func__, r);
7438 return r;
7439 }
7440
7441 ioc_status = le16_to_cpu(mpi_reply.IOCStatus) & MPI2_IOCSTATUS_MASK;
7442 if (ioc_status != MPI2_IOCSTATUS_SUCCESS ||
7443 mpi_reply.IOCLogInfo) {
7444 ioc_err(ioc, "%s: failed\n", __func__);
7445 r = -EIO;
7446 }
7447
7448 /* Reset TimeSync Counter*/
7449 ioc->timestamp_update_count = 0;
7450 return r;
7451 }
7452
7453 /**
7454 * mpt3sas_port_enable_done - command completion routine for port enable
7455 * @ioc: per adapter object
7456 * @smid: system request message index
7457 * @msix_index: MSIX table index supplied by the OS
7458 * @reply: reply message frame(lower 32bit addr)
7459 *
7460 * Return: 1 meaning mf should be freed from _base_interrupt
7461 * 0 means the mf is freed from this function.
7462 */
7463 u8
mpt3sas_port_enable_done(struct MPT3SAS_ADAPTER * ioc,u16 smid,u8 msix_index,u32 reply)7464 mpt3sas_port_enable_done(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
7465 u32 reply)
7466 {
7467 MPI2DefaultReply_t *mpi_reply;
7468 u16 ioc_status;
7469
7470 if (ioc->port_enable_cmds.status == MPT3_CMD_NOT_USED)
7471 return 1;
7472
7473 mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
7474 if (!mpi_reply)
7475 return 1;
7476
7477 if (mpi_reply->Function != MPI2_FUNCTION_PORT_ENABLE)
7478 return 1;
7479
7480 ioc->port_enable_cmds.status &= ~MPT3_CMD_PENDING;
7481 ioc->port_enable_cmds.status |= MPT3_CMD_COMPLETE;
7482 ioc->port_enable_cmds.status |= MPT3_CMD_REPLY_VALID;
7483 memcpy(ioc->port_enable_cmds.reply, mpi_reply, mpi_reply->MsgLength*4);
7484 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK;
7485 if (ioc_status != MPI2_IOCSTATUS_SUCCESS)
7486 ioc->port_enable_failed = 1;
7487
7488 if (ioc->port_enable_cmds.status & MPT3_CMD_COMPLETE_ASYNC) {
7489 ioc->port_enable_cmds.status &= ~MPT3_CMD_COMPLETE_ASYNC;
7490 if (ioc_status == MPI2_IOCSTATUS_SUCCESS) {
7491 mpt3sas_port_enable_complete(ioc);
7492 return 1;
7493 } else {
7494 ioc->start_scan_failed = ioc_status;
7495 ioc->start_scan = 0;
7496 return 1;
7497 }
7498 }
7499 complete(&ioc->port_enable_cmds.done);
7500 return 1;
7501 }
7502
7503 /**
7504 * _base_send_port_enable - send port_enable(discovery stuff) to firmware
7505 * @ioc: per adapter object
7506 *
7507 * Return: 0 for success, non-zero for failure.
7508 */
7509 static int
_base_send_port_enable(struct MPT3SAS_ADAPTER * ioc)7510 _base_send_port_enable(struct MPT3SAS_ADAPTER *ioc)
7511 {
7512 Mpi2PortEnableRequest_t *mpi_request;
7513 Mpi2PortEnableReply_t *mpi_reply;
7514 int r = 0;
7515 u16 smid;
7516 u16 ioc_status;
7517
7518 ioc_info(ioc, "sending port enable !!\n");
7519
7520 if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
7521 ioc_err(ioc, "%s: internal command already in use\n", __func__);
7522 return -EAGAIN;
7523 }
7524
7525 smid = mpt3sas_base_get_smid(ioc, ioc->port_enable_cb_idx);
7526 if (!smid) {
7527 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
7528 return -EAGAIN;
7529 }
7530
7531 ioc->port_enable_cmds.status = MPT3_CMD_PENDING;
7532 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
7533 ioc->port_enable_cmds.smid = smid;
7534 memset(mpi_request, 0, sizeof(Mpi2PortEnableRequest_t));
7535 mpi_request->Function = MPI2_FUNCTION_PORT_ENABLE;
7536
7537 init_completion(&ioc->port_enable_cmds.done);
7538 ioc->put_smid_default(ioc, smid);
7539 wait_for_completion_timeout(&ioc->port_enable_cmds.done, 300*HZ);
7540 if (!(ioc->port_enable_cmds.status & MPT3_CMD_COMPLETE)) {
7541 ioc_err(ioc, "%s: timeout\n", __func__);
7542 _debug_dump_mf(mpi_request,
7543 sizeof(Mpi2PortEnableRequest_t)/4);
7544 if (ioc->port_enable_cmds.status & MPT3_CMD_RESET)
7545 r = -EFAULT;
7546 else
7547 r = -ETIME;
7548 goto out;
7549 }
7550
7551 mpi_reply = ioc->port_enable_cmds.reply;
7552 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK;
7553 if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
7554 ioc_err(ioc, "%s: failed with (ioc_status=0x%08x)\n",
7555 __func__, ioc_status);
7556 r = -EFAULT;
7557 goto out;
7558 }
7559
7560 out:
7561 ioc->port_enable_cmds.status = MPT3_CMD_NOT_USED;
7562 ioc_info(ioc, "port enable: %s\n", r == 0 ? "SUCCESS" : "FAILED");
7563 return r;
7564 }
7565
7566 /**
7567 * mpt3sas_port_enable - initiate firmware discovery (don't wait for reply)
7568 * @ioc: per adapter object
7569 *
7570 * Return: 0 for success, non-zero for failure.
7571 */
7572 int
mpt3sas_port_enable(struct MPT3SAS_ADAPTER * ioc)7573 mpt3sas_port_enable(struct MPT3SAS_ADAPTER *ioc)
7574 {
7575 Mpi2PortEnableRequest_t *mpi_request;
7576 u16 smid;
7577
7578 ioc_info(ioc, "sending port enable !!\n");
7579
7580 if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
7581 ioc_err(ioc, "%s: internal command already in use\n", __func__);
7582 return -EAGAIN;
7583 }
7584
7585 smid = mpt3sas_base_get_smid(ioc, ioc->port_enable_cb_idx);
7586 if (!smid) {
7587 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
7588 return -EAGAIN;
7589 }
7590 ioc->drv_internal_flags |= MPT_DRV_INTERNAL_FIRST_PE_ISSUED;
7591 ioc->port_enable_cmds.status = MPT3_CMD_PENDING;
7592 ioc->port_enable_cmds.status |= MPT3_CMD_COMPLETE_ASYNC;
7593 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
7594 ioc->port_enable_cmds.smid = smid;
7595 memset(mpi_request, 0, sizeof(Mpi2PortEnableRequest_t));
7596 mpi_request->Function = MPI2_FUNCTION_PORT_ENABLE;
7597
7598 ioc->put_smid_default(ioc, smid);
7599 return 0;
7600 }
7601
7602 /**
7603 * _base_determine_wait_on_discovery - desposition
7604 * @ioc: per adapter object
7605 *
7606 * Decide whether to wait on discovery to complete. Used to either
7607 * locate boot device, or report volumes ahead of physical devices.
7608 *
7609 * Return: 1 for wait, 0 for don't wait.
7610 */
7611 static int
_base_determine_wait_on_discovery(struct MPT3SAS_ADAPTER * ioc)7612 _base_determine_wait_on_discovery(struct MPT3SAS_ADAPTER *ioc)
7613 {
7614 /* We wait for discovery to complete if IR firmware is loaded.
7615 * The sas topology events arrive before PD events, so we need time to
7616 * turn on the bit in ioc->pd_handles to indicate PD
7617 * Also, it maybe required to report Volumes ahead of physical
7618 * devices when MPI2_IOCPAGE8_IRFLAGS_LOW_VOLUME_MAPPING is set.
7619 */
7620 if (ioc->ir_firmware)
7621 return 1;
7622
7623 /* if no Bios, then we don't need to wait */
7624 if (!ioc->bios_pg3.BiosVersion)
7625 return 0;
7626
7627 /* Bios is present, then we drop down here.
7628 *
7629 * If there any entries in the Bios Page 2, then we wait
7630 * for discovery to complete.
7631 */
7632
7633 /* Current Boot Device */
7634 if ((ioc->bios_pg2.CurrentBootDeviceForm &
7635 MPI2_BIOSPAGE2_FORM_MASK) ==
7636 MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED &&
7637 /* Request Boot Device */
7638 (ioc->bios_pg2.ReqBootDeviceForm &
7639 MPI2_BIOSPAGE2_FORM_MASK) ==
7640 MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED &&
7641 /* Alternate Request Boot Device */
7642 (ioc->bios_pg2.ReqAltBootDeviceForm &
7643 MPI2_BIOSPAGE2_FORM_MASK) ==
7644 MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED)
7645 return 0;
7646
7647 return 1;
7648 }
7649
7650 /**
7651 * _base_unmask_events - turn on notification for this event
7652 * @ioc: per adapter object
7653 * @event: firmware event
7654 *
7655 * The mask is stored in ioc->event_masks.
7656 */
7657 static void
_base_unmask_events(struct MPT3SAS_ADAPTER * ioc,u16 event)7658 _base_unmask_events(struct MPT3SAS_ADAPTER *ioc, u16 event)
7659 {
7660 u32 desired_event;
7661
7662 if (event >= 128)
7663 return;
7664
7665 desired_event = (1 << (event % 32));
7666
7667 if (event < 32)
7668 ioc->event_masks[0] &= ~desired_event;
7669 else if (event < 64)
7670 ioc->event_masks[1] &= ~desired_event;
7671 else if (event < 96)
7672 ioc->event_masks[2] &= ~desired_event;
7673 else if (event < 128)
7674 ioc->event_masks[3] &= ~desired_event;
7675 }
7676
7677 /**
7678 * _base_event_notification - send event notification
7679 * @ioc: per adapter object
7680 *
7681 * Return: 0 for success, non-zero for failure.
7682 */
7683 static int
_base_event_notification(struct MPT3SAS_ADAPTER * ioc)7684 _base_event_notification(struct MPT3SAS_ADAPTER *ioc)
7685 {
7686 Mpi2EventNotificationRequest_t *mpi_request;
7687 u16 smid;
7688 int r = 0;
7689 int i, issue_diag_reset = 0;
7690
7691 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
7692
7693 if (ioc->base_cmds.status & MPT3_CMD_PENDING) {
7694 ioc_err(ioc, "%s: internal command already in use\n", __func__);
7695 return -EAGAIN;
7696 }
7697
7698 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
7699 if (!smid) {
7700 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
7701 return -EAGAIN;
7702 }
7703 ioc->base_cmds.status = MPT3_CMD_PENDING;
7704 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
7705 ioc->base_cmds.smid = smid;
7706 memset(mpi_request, 0, sizeof(Mpi2EventNotificationRequest_t));
7707 mpi_request->Function = MPI2_FUNCTION_EVENT_NOTIFICATION;
7708 mpi_request->VF_ID = 0; /* TODO */
7709 mpi_request->VP_ID = 0;
7710 for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++)
7711 mpi_request->EventMasks[i] =
7712 cpu_to_le32(ioc->event_masks[i]);
7713 init_completion(&ioc->base_cmds.done);
7714 ioc->put_smid_default(ioc, smid);
7715 wait_for_completion_timeout(&ioc->base_cmds.done, 30*HZ);
7716 if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
7717 ioc_err(ioc, "%s: timeout\n", __func__);
7718 _debug_dump_mf(mpi_request,
7719 sizeof(Mpi2EventNotificationRequest_t)/4);
7720 if (ioc->base_cmds.status & MPT3_CMD_RESET)
7721 r = -EFAULT;
7722 else
7723 issue_diag_reset = 1;
7724
7725 } else
7726 dinitprintk(ioc, ioc_info(ioc, "%s: complete\n", __func__));
7727 ioc->base_cmds.status = MPT3_CMD_NOT_USED;
7728
7729 if (issue_diag_reset) {
7730 if (ioc->drv_internal_flags & MPT_DRV_INTERNAL_FIRST_PE_ISSUED)
7731 return -EFAULT;
7732 if (mpt3sas_base_check_for_fault_and_issue_reset(ioc))
7733 return -EFAULT;
7734 r = -EAGAIN;
7735 }
7736 return r;
7737 }
7738
7739 /**
7740 * mpt3sas_base_validate_event_type - validating event types
7741 * @ioc: per adapter object
7742 * @event_type: firmware event
7743 *
7744 * This will turn on firmware event notification when application
7745 * ask for that event. We don't mask events that are already enabled.
7746 */
7747 void
mpt3sas_base_validate_event_type(struct MPT3SAS_ADAPTER * ioc,u32 * event_type)7748 mpt3sas_base_validate_event_type(struct MPT3SAS_ADAPTER *ioc, u32 *event_type)
7749 {
7750 int i, j;
7751 u32 event_mask, desired_event;
7752 u8 send_update_to_fw;
7753
7754 for (i = 0, send_update_to_fw = 0; i <
7755 MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++) {
7756 event_mask = ~event_type[i];
7757 desired_event = 1;
7758 for (j = 0; j < 32; j++) {
7759 if (!(event_mask & desired_event) &&
7760 (ioc->event_masks[i] & desired_event)) {
7761 ioc->event_masks[i] &= ~desired_event;
7762 send_update_to_fw = 1;
7763 }
7764 desired_event = (desired_event << 1);
7765 }
7766 }
7767
7768 if (!send_update_to_fw)
7769 return;
7770
7771 mutex_lock(&ioc->base_cmds.mutex);
7772 _base_event_notification(ioc);
7773 mutex_unlock(&ioc->base_cmds.mutex);
7774 }
7775
7776 /**
7777 * _base_diag_reset - the "big hammer" start of day reset
7778 * @ioc: per adapter object
7779 *
7780 * Return: 0 for success, non-zero for failure.
7781 */
7782 static int
_base_diag_reset(struct MPT3SAS_ADAPTER * ioc)7783 _base_diag_reset(struct MPT3SAS_ADAPTER *ioc)
7784 {
7785 u32 host_diagnostic;
7786 u32 ioc_state;
7787 u32 count;
7788 u32 hcb_size;
7789
7790 ioc_info(ioc, "sending diag reset !!\n");
7791
7792 pci_cfg_access_lock(ioc->pdev);
7793
7794 drsprintk(ioc, ioc_info(ioc, "clear interrupts\n"));
7795
7796 count = 0;
7797 do {
7798 /* Write magic sequence to WriteSequence register
7799 * Loop until in diagnostic mode
7800 */
7801 drsprintk(ioc, ioc_info(ioc, "write magic sequence\n"));
7802 writel(MPI2_WRSEQ_FLUSH_KEY_VALUE, &ioc->chip->WriteSequence);
7803 writel(MPI2_WRSEQ_1ST_KEY_VALUE, &ioc->chip->WriteSequence);
7804 writel(MPI2_WRSEQ_2ND_KEY_VALUE, &ioc->chip->WriteSequence);
7805 writel(MPI2_WRSEQ_3RD_KEY_VALUE, &ioc->chip->WriteSequence);
7806 writel(MPI2_WRSEQ_4TH_KEY_VALUE, &ioc->chip->WriteSequence);
7807 writel(MPI2_WRSEQ_5TH_KEY_VALUE, &ioc->chip->WriteSequence);
7808 writel(MPI2_WRSEQ_6TH_KEY_VALUE, &ioc->chip->WriteSequence);
7809
7810 /* wait 100 msec */
7811 msleep(100);
7812
7813 if (count++ > 20) {
7814 ioc_info(ioc,
7815 "Stop writing magic sequence after 20 retries\n");
7816 _base_dump_reg_set(ioc);
7817 goto out;
7818 }
7819
7820 host_diagnostic = ioc->base_readl_ext_retry(&ioc->chip->HostDiagnostic);
7821 drsprintk(ioc,
7822 ioc_info(ioc, "wrote magic sequence: count(%d), host_diagnostic(0x%08x)\n",
7823 count, host_diagnostic));
7824
7825 } while ((host_diagnostic & MPI2_DIAG_DIAG_WRITE_ENABLE) == 0);
7826
7827 hcb_size = ioc->base_readl(&ioc->chip->HCBSize);
7828
7829 drsprintk(ioc, ioc_info(ioc, "diag reset: issued\n"));
7830 writel(host_diagnostic | MPI2_DIAG_RESET_ADAPTER,
7831 &ioc->chip->HostDiagnostic);
7832
7833 /*This delay allows the chip PCIe hardware time to finish reset tasks*/
7834 msleep(MPI2_HARD_RESET_PCIE_FIRST_READ_DELAY_MICRO_SEC/1000);
7835
7836 /* Approximately 300 second max wait */
7837 for (count = 0; count < (300000000 /
7838 MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC); count++) {
7839
7840 host_diagnostic = ioc->base_readl_ext_retry(&ioc->chip->HostDiagnostic);
7841
7842 if (host_diagnostic == 0xFFFFFFFF) {
7843 ioc_info(ioc,
7844 "Invalid host diagnostic register value\n");
7845 _base_dump_reg_set(ioc);
7846 goto out;
7847 }
7848 if (!(host_diagnostic & MPI2_DIAG_RESET_ADAPTER))
7849 break;
7850
7851 msleep(MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC / 1000);
7852 }
7853
7854 if (host_diagnostic & MPI2_DIAG_HCB_MODE) {
7855
7856 drsprintk(ioc,
7857 ioc_info(ioc, "restart the adapter assuming the HCB Address points to good F/W\n"));
7858 host_diagnostic &= ~MPI2_DIAG_BOOT_DEVICE_SELECT_MASK;
7859 host_diagnostic |= MPI2_DIAG_BOOT_DEVICE_SELECT_HCDW;
7860 writel(host_diagnostic, &ioc->chip->HostDiagnostic);
7861
7862 drsprintk(ioc, ioc_info(ioc, "re-enable the HCDW\n"));
7863 writel(hcb_size | MPI2_HCB_SIZE_HCB_ENABLE,
7864 &ioc->chip->HCBSize);
7865 }
7866
7867 drsprintk(ioc, ioc_info(ioc, "restart the adapter\n"));
7868 writel(host_diagnostic & ~MPI2_DIAG_HOLD_IOC_RESET,
7869 &ioc->chip->HostDiagnostic);
7870
7871 drsprintk(ioc,
7872 ioc_info(ioc, "disable writes to the diagnostic register\n"));
7873 writel(MPI2_WRSEQ_FLUSH_KEY_VALUE, &ioc->chip->WriteSequence);
7874
7875 drsprintk(ioc, ioc_info(ioc, "Wait for FW to go to the READY state\n"));
7876 ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, 20);
7877 if (ioc_state) {
7878 ioc_err(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n",
7879 __func__, ioc_state);
7880 _base_dump_reg_set(ioc);
7881 goto out;
7882 }
7883
7884 pci_cfg_access_unlock(ioc->pdev);
7885 ioc_info(ioc, "diag reset: SUCCESS\n");
7886 return 0;
7887
7888 out:
7889 pci_cfg_access_unlock(ioc->pdev);
7890 ioc_err(ioc, "diag reset: FAILED\n");
7891 return -EFAULT;
7892 }
7893
7894 /**
7895 * mpt3sas_base_make_ioc_ready - put controller in READY state
7896 * @ioc: per adapter object
7897 * @type: FORCE_BIG_HAMMER or SOFT_RESET
7898 *
7899 * Return: 0 for success, non-zero for failure.
7900 */
7901 int
mpt3sas_base_make_ioc_ready(struct MPT3SAS_ADAPTER * ioc,enum reset_type type)7902 mpt3sas_base_make_ioc_ready(struct MPT3SAS_ADAPTER *ioc, enum reset_type type)
7903 {
7904 u32 ioc_state;
7905 int rc;
7906 int count;
7907
7908 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
7909
7910 if (ioc->pci_error_recovery)
7911 return 0;
7912
7913 ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
7914 dhsprintk(ioc,
7915 ioc_info(ioc, "%s: ioc_state(0x%08x)\n",
7916 __func__, ioc_state));
7917
7918 /* if in RESET state, it should move to READY state shortly */
7919 count = 0;
7920 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_RESET) {
7921 while ((ioc_state & MPI2_IOC_STATE_MASK) !=
7922 MPI2_IOC_STATE_READY) {
7923 if (count++ == 10) {
7924 ioc_err(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n",
7925 __func__, ioc_state);
7926 return -EFAULT;
7927 }
7928 ssleep(1);
7929 ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
7930 }
7931 }
7932
7933 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_READY)
7934 return 0;
7935
7936 if (ioc_state & MPI2_DOORBELL_USED) {
7937 ioc_info(ioc, "unexpected doorbell active!\n");
7938 goto issue_diag_reset;
7939 }
7940
7941 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
7942 mpt3sas_print_fault_code(ioc, ioc_state &
7943 MPI2_DOORBELL_DATA_MASK);
7944 goto issue_diag_reset;
7945 }
7946
7947 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_COREDUMP) {
7948 /*
7949 * if host reset is invoked while watch dog thread is waiting
7950 * for IOC state to be changed to Fault state then driver has
7951 * to wait here for CoreDump state to clear otherwise reset
7952 * will be issued to the FW and FW move the IOC state to
7953 * reset state without copying the FW logs to coredump region.
7954 */
7955 if (ioc->ioc_coredump_loop != MPT3SAS_COREDUMP_LOOP_DONE) {
7956 mpt3sas_print_coredump_info(ioc, ioc_state &
7957 MPI2_DOORBELL_DATA_MASK);
7958 mpt3sas_base_wait_for_coredump_completion(ioc,
7959 __func__);
7960 }
7961 goto issue_diag_reset;
7962 }
7963
7964 if (type == FORCE_BIG_HAMMER)
7965 goto issue_diag_reset;
7966
7967 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_OPERATIONAL)
7968 if (!(_base_send_ioc_reset(ioc,
7969 MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET, 15))) {
7970 return 0;
7971 }
7972
7973 issue_diag_reset:
7974 rc = _base_diag_reset(ioc);
7975 return rc;
7976 }
7977
7978 /**
7979 * _base_make_ioc_operational - put controller in OPERATIONAL state
7980 * @ioc: per adapter object
7981 *
7982 * Return: 0 for success, non-zero for failure.
7983 */
7984 static int
_base_make_ioc_operational(struct MPT3SAS_ADAPTER * ioc)7985 _base_make_ioc_operational(struct MPT3SAS_ADAPTER *ioc)
7986 {
7987 int r, i, index, rc;
7988 unsigned long flags;
7989 u32 reply_address;
7990 u16 smid;
7991 struct _tr_list *delayed_tr, *delayed_tr_next;
7992 struct _sc_list *delayed_sc, *delayed_sc_next;
7993 struct _event_ack_list *delayed_event_ack, *delayed_event_ack_next;
7994 u8 hide_flag;
7995 struct adapter_reply_queue *reply_q;
7996 Mpi2ReplyDescriptorsUnion_t *reply_post_free_contig;
7997
7998 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
7999
8000 /* clean the delayed target reset list */
8001 list_for_each_entry_safe(delayed_tr, delayed_tr_next,
8002 &ioc->delayed_tr_list, list) {
8003 list_del(&delayed_tr->list);
8004 kfree(delayed_tr);
8005 }
8006
8007
8008 list_for_each_entry_safe(delayed_tr, delayed_tr_next,
8009 &ioc->delayed_tr_volume_list, list) {
8010 list_del(&delayed_tr->list);
8011 kfree(delayed_tr);
8012 }
8013
8014 list_for_each_entry_safe(delayed_sc, delayed_sc_next,
8015 &ioc->delayed_sc_list, list) {
8016 list_del(&delayed_sc->list);
8017 kfree(delayed_sc);
8018 }
8019
8020 list_for_each_entry_safe(delayed_event_ack, delayed_event_ack_next,
8021 &ioc->delayed_event_ack_list, list) {
8022 list_del(&delayed_event_ack->list);
8023 kfree(delayed_event_ack);
8024 }
8025
8026 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
8027
8028 /* hi-priority queue */
8029 INIT_LIST_HEAD(&ioc->hpr_free_list);
8030 smid = ioc->hi_priority_smid;
8031 for (i = 0; i < ioc->hi_priority_depth; i++, smid++) {
8032 ioc->hpr_lookup[i].cb_idx = 0xFF;
8033 ioc->hpr_lookup[i].smid = smid;
8034 list_add_tail(&ioc->hpr_lookup[i].tracker_list,
8035 &ioc->hpr_free_list);
8036 }
8037
8038 /* internal queue */
8039 INIT_LIST_HEAD(&ioc->internal_free_list);
8040 smid = ioc->internal_smid;
8041 for (i = 0; i < ioc->internal_depth; i++, smid++) {
8042 ioc->internal_lookup[i].cb_idx = 0xFF;
8043 ioc->internal_lookup[i].smid = smid;
8044 list_add_tail(&ioc->internal_lookup[i].tracker_list,
8045 &ioc->internal_free_list);
8046 }
8047
8048 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
8049
8050 /* initialize Reply Free Queue */
8051 for (i = 0, reply_address = (u32)ioc->reply_dma ;
8052 i < ioc->reply_free_queue_depth ; i++, reply_address +=
8053 ioc->reply_sz) {
8054 ioc->reply_free[i] = cpu_to_le32(reply_address);
8055 if (ioc->is_mcpu_endpoint)
8056 _base_clone_reply_to_sys_mem(ioc,
8057 reply_address, i);
8058 }
8059
8060 /* initialize reply queues */
8061 if (ioc->is_driver_loading)
8062 _base_assign_reply_queues(ioc);
8063
8064 /* initialize Reply Post Free Queue */
8065 index = 0;
8066 reply_post_free_contig = ioc->reply_post[0].reply_post_free;
8067 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
8068 /*
8069 * If RDPQ is enabled, switch to the next allocation.
8070 * Otherwise advance within the contiguous region.
8071 */
8072 if (ioc->rdpq_array_enable) {
8073 reply_q->reply_post_free =
8074 ioc->reply_post[index++].reply_post_free;
8075 } else {
8076 reply_q->reply_post_free = reply_post_free_contig;
8077 reply_post_free_contig += ioc->reply_post_queue_depth;
8078 }
8079
8080 reply_q->reply_post_host_index = 0;
8081 for (i = 0; i < ioc->reply_post_queue_depth; i++)
8082 reply_q->reply_post_free[i].Words =
8083 cpu_to_le64(ULLONG_MAX);
8084 if (!_base_is_controller_msix_enabled(ioc))
8085 goto skip_init_reply_post_free_queue;
8086 }
8087 skip_init_reply_post_free_queue:
8088
8089 r = _base_send_ioc_init(ioc);
8090 if (r) {
8091 /*
8092 * No need to check IOC state for fault state & issue
8093 * diag reset during host reset. This check is need
8094 * only during driver load time.
8095 */
8096 if (!ioc->is_driver_loading)
8097 return r;
8098
8099 rc = mpt3sas_base_check_for_fault_and_issue_reset(ioc);
8100 if (rc || (_base_send_ioc_init(ioc)))
8101 return r;
8102 }
8103
8104 /* initialize reply free host index */
8105 ioc->reply_free_host_index = ioc->reply_free_queue_depth - 1;
8106 writel(ioc->reply_free_host_index, &ioc->chip->ReplyFreeHostIndex);
8107
8108 /* initialize reply post host index */
8109 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
8110 if (ioc->combined_reply_queue)
8111 writel((reply_q->msix_index & 7)<<
8112 MPI2_RPHI_MSIX_INDEX_SHIFT,
8113 ioc->replyPostRegisterIndex[reply_q->msix_index/8]);
8114 else
8115 writel(reply_q->msix_index <<
8116 MPI2_RPHI_MSIX_INDEX_SHIFT,
8117 &ioc->chip->ReplyPostHostIndex);
8118
8119 if (!_base_is_controller_msix_enabled(ioc))
8120 goto skip_init_reply_post_host_index;
8121 }
8122
8123 skip_init_reply_post_host_index:
8124
8125 mpt3sas_base_unmask_interrupts(ioc);
8126
8127 if (ioc->hba_mpi_version_belonged != MPI2_VERSION) {
8128 r = _base_display_fwpkg_version(ioc);
8129 if (r)
8130 return r;
8131 }
8132
8133 r = _base_static_config_pages(ioc);
8134 if (r)
8135 return r;
8136
8137 r = _base_event_notification(ioc);
8138 if (r)
8139 return r;
8140
8141 if (!ioc->shost_recovery) {
8142
8143 if (ioc->is_warpdrive && ioc->manu_pg10.OEMIdentifier
8144 == 0x80) {
8145 hide_flag = (u8) (
8146 le32_to_cpu(ioc->manu_pg10.OEMSpecificFlags0) &
8147 MFG_PAGE10_HIDE_SSDS_MASK);
8148 if (hide_flag != MFG_PAGE10_HIDE_SSDS_MASK)
8149 ioc->mfg_pg10_hide_flag = hide_flag;
8150 }
8151
8152 ioc->wait_for_discovery_to_complete =
8153 _base_determine_wait_on_discovery(ioc);
8154
8155 return r; /* scan_start and scan_finished support */
8156 }
8157
8158 r = _base_send_port_enable(ioc);
8159 if (r)
8160 return r;
8161
8162 return r;
8163 }
8164
8165 /**
8166 * mpt3sas_base_free_resources - free resources controller resources
8167 * @ioc: per adapter object
8168 */
8169 void
mpt3sas_base_free_resources(struct MPT3SAS_ADAPTER * ioc)8170 mpt3sas_base_free_resources(struct MPT3SAS_ADAPTER *ioc)
8171 {
8172 dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
8173
8174 /* synchronizing freeing resource with pci_access_mutex lock */
8175 mutex_lock(&ioc->pci_access_mutex);
8176 if (ioc->chip_phys && ioc->chip) {
8177 mpt3sas_base_mask_interrupts(ioc);
8178 ioc->shost_recovery = 1;
8179 mpt3sas_base_make_ioc_ready(ioc, SOFT_RESET);
8180 ioc->shost_recovery = 0;
8181 }
8182
8183 mpt3sas_base_unmap_resources(ioc);
8184 mutex_unlock(&ioc->pci_access_mutex);
8185 return;
8186 }
8187
8188 /**
8189 * mpt3sas_base_attach - attach controller instance
8190 * @ioc: per adapter object
8191 *
8192 * Return: 0 for success, non-zero for failure.
8193 */
8194 int
mpt3sas_base_attach(struct MPT3SAS_ADAPTER * ioc)8195 mpt3sas_base_attach(struct MPT3SAS_ADAPTER *ioc)
8196 {
8197 int r, i, rc;
8198 int cpu_id, last_cpu_id = 0;
8199
8200 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
8201
8202 /* setup cpu_msix_table */
8203 ioc->cpu_count = num_online_cpus();
8204 for_each_online_cpu(cpu_id)
8205 last_cpu_id = cpu_id;
8206 ioc->cpu_msix_table_sz = last_cpu_id + 1;
8207 ioc->cpu_msix_table = kzalloc(ioc->cpu_msix_table_sz, GFP_KERNEL);
8208 ioc->reply_queue_count = 1;
8209 if (!ioc->cpu_msix_table) {
8210 ioc_info(ioc, "Allocation for cpu_msix_table failed!!!\n");
8211 r = -ENOMEM;
8212 goto out_free_resources;
8213 }
8214
8215 if (ioc->is_warpdrive) {
8216 ioc->reply_post_host_index = kcalloc(ioc->cpu_msix_table_sz,
8217 sizeof(resource_size_t *), GFP_KERNEL);
8218 if (!ioc->reply_post_host_index) {
8219 ioc_info(ioc, "Allocation for reply_post_host_index failed!!!\n");
8220 r = -ENOMEM;
8221 goto out_free_resources;
8222 }
8223 }
8224
8225 ioc->smp_affinity_enable = smp_affinity_enable;
8226
8227 ioc->rdpq_array_enable_assigned = 0;
8228 ioc->use_32bit_dma = false;
8229 ioc->dma_mask = 64;
8230 if (ioc->is_aero_ioc) {
8231 ioc->base_readl = &_base_readl_aero;
8232 ioc->base_readl_ext_retry = &_base_readl_ext_retry;
8233 } else {
8234 ioc->base_readl = &_base_readl;
8235 ioc->base_readl_ext_retry = &_base_readl;
8236 }
8237 r = mpt3sas_base_map_resources(ioc);
8238 if (r)
8239 goto out_free_resources;
8240
8241 pci_set_drvdata(ioc->pdev, ioc->shost);
8242 r = _base_get_ioc_facts(ioc);
8243 if (r) {
8244 rc = mpt3sas_base_check_for_fault_and_issue_reset(ioc);
8245 if (rc || (_base_get_ioc_facts(ioc)))
8246 goto out_free_resources;
8247 }
8248
8249 switch (ioc->hba_mpi_version_belonged) {
8250 case MPI2_VERSION:
8251 ioc->build_sg_scmd = &_base_build_sg_scmd;
8252 ioc->build_sg = &_base_build_sg;
8253 ioc->build_zero_len_sge = &_base_build_zero_len_sge;
8254 ioc->get_msix_index_for_smlio = &_base_get_msix_index;
8255 break;
8256 case MPI25_VERSION:
8257 case MPI26_VERSION:
8258 /*
8259 * In SAS3.0,
8260 * SCSI_IO, SMP_PASSTHRU, SATA_PASSTHRU, Target Assist, and
8261 * Target Status - all require the IEEE formatted scatter gather
8262 * elements.
8263 */
8264 ioc->build_sg_scmd = &_base_build_sg_scmd_ieee;
8265 ioc->build_sg = &_base_build_sg_ieee;
8266 ioc->build_nvme_prp = &_base_build_nvme_prp;
8267 ioc->build_zero_len_sge = &_base_build_zero_len_sge_ieee;
8268 ioc->sge_size_ieee = sizeof(Mpi2IeeeSgeSimple64_t);
8269 if (ioc->high_iops_queues)
8270 ioc->get_msix_index_for_smlio =
8271 &_base_get_high_iops_msix_index;
8272 else
8273 ioc->get_msix_index_for_smlio = &_base_get_msix_index;
8274 break;
8275 }
8276 if (ioc->atomic_desc_capable) {
8277 ioc->put_smid_default = &_base_put_smid_default_atomic;
8278 ioc->put_smid_scsi_io = &_base_put_smid_scsi_io_atomic;
8279 ioc->put_smid_fast_path =
8280 &_base_put_smid_fast_path_atomic;
8281 ioc->put_smid_hi_priority =
8282 &_base_put_smid_hi_priority_atomic;
8283 } else {
8284 ioc->put_smid_default = &_base_put_smid_default;
8285 ioc->put_smid_fast_path = &_base_put_smid_fast_path;
8286 ioc->put_smid_hi_priority = &_base_put_smid_hi_priority;
8287 if (ioc->is_mcpu_endpoint)
8288 ioc->put_smid_scsi_io =
8289 &_base_put_smid_mpi_ep_scsi_io;
8290 else
8291 ioc->put_smid_scsi_io = &_base_put_smid_scsi_io;
8292 }
8293 /*
8294 * These function pointers for other requests that don't
8295 * the require IEEE scatter gather elements.
8296 *
8297 * For example Configuration Pages and SAS IOUNIT Control don't.
8298 */
8299 ioc->build_sg_mpi = &_base_build_sg;
8300 ioc->build_zero_len_sge_mpi = &_base_build_zero_len_sge;
8301
8302 r = mpt3sas_base_make_ioc_ready(ioc, SOFT_RESET);
8303 if (r)
8304 goto out_free_resources;
8305
8306 ioc->pfacts = kcalloc(ioc->facts.NumberOfPorts,
8307 sizeof(struct mpt3sas_port_facts), GFP_KERNEL);
8308 if (!ioc->pfacts) {
8309 r = -ENOMEM;
8310 goto out_free_resources;
8311 }
8312
8313 for (i = 0 ; i < ioc->facts.NumberOfPorts; i++) {
8314 r = _base_get_port_facts(ioc, i);
8315 if (r) {
8316 rc = mpt3sas_base_check_for_fault_and_issue_reset(ioc);
8317 if (rc || (_base_get_port_facts(ioc, i)))
8318 goto out_free_resources;
8319 }
8320 }
8321
8322 r = _base_allocate_memory_pools(ioc);
8323 if (r)
8324 goto out_free_resources;
8325
8326 if (irqpoll_weight > 0)
8327 ioc->thresh_hold = irqpoll_weight;
8328 else
8329 ioc->thresh_hold = ioc->hba_queue_depth/4;
8330
8331 _base_init_irqpolls(ioc);
8332 init_waitqueue_head(&ioc->reset_wq);
8333
8334 /* allocate memory pd handle bitmask list */
8335 ioc->pd_handles_sz = (ioc->facts.MaxDevHandle / 8);
8336 if (ioc->facts.MaxDevHandle % 8)
8337 ioc->pd_handles_sz++;
8338 ioc->pd_handles = kzalloc(ioc->pd_handles_sz,
8339 GFP_KERNEL);
8340 if (!ioc->pd_handles) {
8341 r = -ENOMEM;
8342 goto out_free_resources;
8343 }
8344 ioc->blocking_handles = kzalloc(ioc->pd_handles_sz,
8345 GFP_KERNEL);
8346 if (!ioc->blocking_handles) {
8347 r = -ENOMEM;
8348 goto out_free_resources;
8349 }
8350
8351 /* allocate memory for pending OS device add list */
8352 ioc->pend_os_device_add_sz = (ioc->facts.MaxDevHandle / 8);
8353 if (ioc->facts.MaxDevHandle % 8)
8354 ioc->pend_os_device_add_sz++;
8355 ioc->pend_os_device_add = kzalloc(ioc->pend_os_device_add_sz,
8356 GFP_KERNEL);
8357 if (!ioc->pend_os_device_add) {
8358 r = -ENOMEM;
8359 goto out_free_resources;
8360 }
8361
8362 ioc->device_remove_in_progress_sz = ioc->pend_os_device_add_sz;
8363 ioc->device_remove_in_progress =
8364 kzalloc(ioc->device_remove_in_progress_sz, GFP_KERNEL);
8365 if (!ioc->device_remove_in_progress) {
8366 r = -ENOMEM;
8367 goto out_free_resources;
8368 }
8369
8370 ioc->fwfault_debug = mpt3sas_fwfault_debug;
8371
8372 /* base internal command bits */
8373 mutex_init(&ioc->base_cmds.mutex);
8374 ioc->base_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
8375 ioc->base_cmds.status = MPT3_CMD_NOT_USED;
8376
8377 /* port_enable command bits */
8378 ioc->port_enable_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
8379 ioc->port_enable_cmds.status = MPT3_CMD_NOT_USED;
8380
8381 /* transport internal command bits */
8382 ioc->transport_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
8383 ioc->transport_cmds.status = MPT3_CMD_NOT_USED;
8384 mutex_init(&ioc->transport_cmds.mutex);
8385
8386 /* scsih internal command bits */
8387 ioc->scsih_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
8388 ioc->scsih_cmds.status = MPT3_CMD_NOT_USED;
8389 mutex_init(&ioc->scsih_cmds.mutex);
8390
8391 /* task management internal command bits */
8392 ioc->tm_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
8393 ioc->tm_cmds.status = MPT3_CMD_NOT_USED;
8394 mutex_init(&ioc->tm_cmds.mutex);
8395
8396 /* config page internal command bits */
8397 ioc->config_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
8398 ioc->config_cmds.status = MPT3_CMD_NOT_USED;
8399 mutex_init(&ioc->config_cmds.mutex);
8400
8401 /* ctl module internal command bits */
8402 ioc->ctl_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
8403 ioc->ctl_cmds.sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_KERNEL);
8404 ioc->ctl_cmds.status = MPT3_CMD_NOT_USED;
8405 mutex_init(&ioc->ctl_cmds.mutex);
8406
8407 if (!ioc->base_cmds.reply || !ioc->port_enable_cmds.reply ||
8408 !ioc->transport_cmds.reply || !ioc->scsih_cmds.reply ||
8409 !ioc->tm_cmds.reply || !ioc->config_cmds.reply ||
8410 !ioc->ctl_cmds.reply || !ioc->ctl_cmds.sense) {
8411 r = -ENOMEM;
8412 goto out_free_resources;
8413 }
8414
8415 for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++)
8416 ioc->event_masks[i] = -1;
8417
8418 /* here we enable the events we care about */
8419 _base_unmask_events(ioc, MPI2_EVENT_SAS_DISCOVERY);
8420 _base_unmask_events(ioc, MPI2_EVENT_SAS_BROADCAST_PRIMITIVE);
8421 _base_unmask_events(ioc, MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST);
8422 _base_unmask_events(ioc, MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE);
8423 _base_unmask_events(ioc, MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE);
8424 _base_unmask_events(ioc, MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST);
8425 _base_unmask_events(ioc, MPI2_EVENT_IR_VOLUME);
8426 _base_unmask_events(ioc, MPI2_EVENT_IR_PHYSICAL_DISK);
8427 _base_unmask_events(ioc, MPI2_EVENT_IR_OPERATION_STATUS);
8428 _base_unmask_events(ioc, MPI2_EVENT_LOG_ENTRY_ADDED);
8429 _base_unmask_events(ioc, MPI2_EVENT_TEMP_THRESHOLD);
8430 _base_unmask_events(ioc, MPI2_EVENT_ACTIVE_CABLE_EXCEPTION);
8431 _base_unmask_events(ioc, MPI2_EVENT_SAS_DEVICE_DISCOVERY_ERROR);
8432 if (ioc->hba_mpi_version_belonged == MPI26_VERSION) {
8433 if (ioc->is_gen35_ioc) {
8434 _base_unmask_events(ioc,
8435 MPI2_EVENT_PCIE_DEVICE_STATUS_CHANGE);
8436 _base_unmask_events(ioc, MPI2_EVENT_PCIE_ENUMERATION);
8437 _base_unmask_events(ioc,
8438 MPI2_EVENT_PCIE_TOPOLOGY_CHANGE_LIST);
8439 }
8440 }
8441 r = _base_make_ioc_operational(ioc);
8442 if (r == -EAGAIN) {
8443 r = _base_make_ioc_operational(ioc);
8444 if (r)
8445 goto out_free_resources;
8446 }
8447
8448 /*
8449 * Copy current copy of IOCFacts in prev_fw_facts
8450 * and it will be used during online firmware upgrade.
8451 */
8452 memcpy(&ioc->prev_fw_facts, &ioc->facts,
8453 sizeof(struct mpt3sas_facts));
8454
8455 ioc->non_operational_loop = 0;
8456 ioc->ioc_coredump_loop = 0;
8457 ioc->got_task_abort_from_ioctl = 0;
8458 return 0;
8459
8460 out_free_resources:
8461
8462 ioc->remove_host = 1;
8463
8464 mpt3sas_base_free_resources(ioc);
8465 _base_release_memory_pools(ioc);
8466 pci_set_drvdata(ioc->pdev, NULL);
8467 kfree(ioc->cpu_msix_table);
8468 if (ioc->is_warpdrive)
8469 kfree(ioc->reply_post_host_index);
8470 kfree(ioc->pd_handles);
8471 kfree(ioc->blocking_handles);
8472 kfree(ioc->device_remove_in_progress);
8473 kfree(ioc->pend_os_device_add);
8474 kfree(ioc->tm_cmds.reply);
8475 kfree(ioc->transport_cmds.reply);
8476 kfree(ioc->scsih_cmds.reply);
8477 kfree(ioc->config_cmds.reply);
8478 kfree(ioc->base_cmds.reply);
8479 kfree(ioc->port_enable_cmds.reply);
8480 kfree(ioc->ctl_cmds.reply);
8481 kfree(ioc->ctl_cmds.sense);
8482 kfree(ioc->pfacts);
8483 ioc->ctl_cmds.reply = NULL;
8484 ioc->base_cmds.reply = NULL;
8485 ioc->tm_cmds.reply = NULL;
8486 ioc->scsih_cmds.reply = NULL;
8487 ioc->transport_cmds.reply = NULL;
8488 ioc->config_cmds.reply = NULL;
8489 ioc->pfacts = NULL;
8490 return r;
8491 }
8492
8493
8494 /**
8495 * mpt3sas_base_detach - remove controller instance
8496 * @ioc: per adapter object
8497 */
8498 void
mpt3sas_base_detach(struct MPT3SAS_ADAPTER * ioc)8499 mpt3sas_base_detach(struct MPT3SAS_ADAPTER *ioc)
8500 {
8501 dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
8502
8503 mpt3sas_base_stop_watchdog(ioc);
8504 mpt3sas_base_free_resources(ioc);
8505 _base_release_memory_pools(ioc);
8506 mpt3sas_free_enclosure_list(ioc);
8507 pci_set_drvdata(ioc->pdev, NULL);
8508 kfree(ioc->cpu_msix_table);
8509 if (ioc->is_warpdrive)
8510 kfree(ioc->reply_post_host_index);
8511 kfree(ioc->pd_handles);
8512 kfree(ioc->blocking_handles);
8513 kfree(ioc->device_remove_in_progress);
8514 kfree(ioc->pend_os_device_add);
8515 kfree(ioc->pfacts);
8516 kfree(ioc->ctl_cmds.reply);
8517 kfree(ioc->ctl_cmds.sense);
8518 kfree(ioc->base_cmds.reply);
8519 kfree(ioc->port_enable_cmds.reply);
8520 kfree(ioc->tm_cmds.reply);
8521 kfree(ioc->transport_cmds.reply);
8522 kfree(ioc->scsih_cmds.reply);
8523 kfree(ioc->config_cmds.reply);
8524 }
8525
8526 /**
8527 * _base_pre_reset_handler - pre reset handler
8528 * @ioc: per adapter object
8529 */
_base_pre_reset_handler(struct MPT3SAS_ADAPTER * ioc)8530 static void _base_pre_reset_handler(struct MPT3SAS_ADAPTER *ioc)
8531 {
8532 mpt3sas_scsih_pre_reset_handler(ioc);
8533 mpt3sas_ctl_pre_reset_handler(ioc);
8534 dtmprintk(ioc, ioc_info(ioc, "%s: MPT3_IOC_PRE_RESET\n", __func__));
8535 }
8536
8537 /**
8538 * _base_clear_outstanding_mpt_commands - clears outstanding mpt commands
8539 * @ioc: per adapter object
8540 */
8541 static void
_base_clear_outstanding_mpt_commands(struct MPT3SAS_ADAPTER * ioc)8542 _base_clear_outstanding_mpt_commands(struct MPT3SAS_ADAPTER *ioc)
8543 {
8544 dtmprintk(ioc,
8545 ioc_info(ioc, "%s: clear outstanding mpt cmds\n", __func__));
8546 if (ioc->transport_cmds.status & MPT3_CMD_PENDING) {
8547 ioc->transport_cmds.status |= MPT3_CMD_RESET;
8548 mpt3sas_base_free_smid(ioc, ioc->transport_cmds.smid);
8549 complete(&ioc->transport_cmds.done);
8550 }
8551 if (ioc->base_cmds.status & MPT3_CMD_PENDING) {
8552 ioc->base_cmds.status |= MPT3_CMD_RESET;
8553 mpt3sas_base_free_smid(ioc, ioc->base_cmds.smid);
8554 complete(&ioc->base_cmds.done);
8555 }
8556 if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
8557 ioc->port_enable_failed = 1;
8558 ioc->port_enable_cmds.status |= MPT3_CMD_RESET;
8559 mpt3sas_base_free_smid(ioc, ioc->port_enable_cmds.smid);
8560 if (ioc->is_driver_loading) {
8561 ioc->start_scan_failed =
8562 MPI2_IOCSTATUS_INTERNAL_ERROR;
8563 ioc->start_scan = 0;
8564 } else {
8565 complete(&ioc->port_enable_cmds.done);
8566 }
8567 }
8568 if (ioc->config_cmds.status & MPT3_CMD_PENDING) {
8569 ioc->config_cmds.status |= MPT3_CMD_RESET;
8570 mpt3sas_base_free_smid(ioc, ioc->config_cmds.smid);
8571 ioc->config_cmds.smid = USHRT_MAX;
8572 complete(&ioc->config_cmds.done);
8573 }
8574 }
8575
8576 /**
8577 * _base_clear_outstanding_commands - clear all outstanding commands
8578 * @ioc: per adapter object
8579 */
_base_clear_outstanding_commands(struct MPT3SAS_ADAPTER * ioc)8580 static void _base_clear_outstanding_commands(struct MPT3SAS_ADAPTER *ioc)
8581 {
8582 mpt3sas_scsih_clear_outstanding_scsi_tm_commands(ioc);
8583 mpt3sas_ctl_clear_outstanding_ioctls(ioc);
8584 _base_clear_outstanding_mpt_commands(ioc);
8585 }
8586
8587 /**
8588 * _base_reset_done_handler - reset done handler
8589 * @ioc: per adapter object
8590 */
_base_reset_done_handler(struct MPT3SAS_ADAPTER * ioc)8591 static void _base_reset_done_handler(struct MPT3SAS_ADAPTER *ioc)
8592 {
8593 mpt3sas_scsih_reset_done_handler(ioc);
8594 mpt3sas_ctl_reset_done_handler(ioc);
8595 dtmprintk(ioc, ioc_info(ioc, "%s: MPT3_IOC_DONE_RESET\n", __func__));
8596 }
8597
8598 /**
8599 * mpt3sas_wait_for_commands_to_complete - reset controller
8600 * @ioc: Pointer to MPT_ADAPTER structure
8601 *
8602 * This function is waiting 10s for all pending commands to complete
8603 * prior to putting controller in reset.
8604 */
8605 void
mpt3sas_wait_for_commands_to_complete(struct MPT3SAS_ADAPTER * ioc)8606 mpt3sas_wait_for_commands_to_complete(struct MPT3SAS_ADAPTER *ioc)
8607 {
8608 u32 ioc_state;
8609
8610 ioc->pending_io_count = 0;
8611
8612 ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
8613 if ((ioc_state & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_OPERATIONAL)
8614 return;
8615
8616 /* pending command count */
8617 ioc->pending_io_count = scsi_host_busy(ioc->shost);
8618
8619 if (!ioc->pending_io_count)
8620 return;
8621
8622 /* wait for pending commands to complete */
8623 wait_event_timeout(ioc->reset_wq, ioc->pending_io_count == 0, 10 * HZ);
8624 }
8625
8626 /**
8627 * _base_check_ioc_facts_changes - Look for increase/decrease of IOCFacts
8628 * attributes during online firmware upgrade and update the corresponding
8629 * IOC variables accordingly.
8630 *
8631 * @ioc: Pointer to MPT_ADAPTER structure
8632 */
8633 static int
_base_check_ioc_facts_changes(struct MPT3SAS_ADAPTER * ioc)8634 _base_check_ioc_facts_changes(struct MPT3SAS_ADAPTER *ioc)
8635 {
8636 u16 pd_handles_sz;
8637 void *pd_handles = NULL, *blocking_handles = NULL;
8638 void *pend_os_device_add = NULL, *device_remove_in_progress = NULL;
8639 struct mpt3sas_facts *old_facts = &ioc->prev_fw_facts;
8640
8641 if (ioc->facts.MaxDevHandle > old_facts->MaxDevHandle) {
8642 pd_handles_sz = (ioc->facts.MaxDevHandle / 8);
8643 if (ioc->facts.MaxDevHandle % 8)
8644 pd_handles_sz++;
8645
8646 pd_handles = krealloc(ioc->pd_handles, pd_handles_sz,
8647 GFP_KERNEL);
8648 if (!pd_handles) {
8649 ioc_info(ioc,
8650 "Unable to allocate the memory for pd_handles of sz: %d\n",
8651 pd_handles_sz);
8652 return -ENOMEM;
8653 }
8654 memset(pd_handles + ioc->pd_handles_sz, 0,
8655 (pd_handles_sz - ioc->pd_handles_sz));
8656 ioc->pd_handles = pd_handles;
8657
8658 blocking_handles = krealloc(ioc->blocking_handles,
8659 pd_handles_sz, GFP_KERNEL);
8660 if (!blocking_handles) {
8661 ioc_info(ioc,
8662 "Unable to allocate the memory for "
8663 "blocking_handles of sz: %d\n",
8664 pd_handles_sz);
8665 return -ENOMEM;
8666 }
8667 memset(blocking_handles + ioc->pd_handles_sz, 0,
8668 (pd_handles_sz - ioc->pd_handles_sz));
8669 ioc->blocking_handles = blocking_handles;
8670 ioc->pd_handles_sz = pd_handles_sz;
8671
8672 pend_os_device_add = krealloc(ioc->pend_os_device_add,
8673 pd_handles_sz, GFP_KERNEL);
8674 if (!pend_os_device_add) {
8675 ioc_info(ioc,
8676 "Unable to allocate the memory for pend_os_device_add of sz: %d\n",
8677 pd_handles_sz);
8678 return -ENOMEM;
8679 }
8680 memset(pend_os_device_add + ioc->pend_os_device_add_sz, 0,
8681 (pd_handles_sz - ioc->pend_os_device_add_sz));
8682 ioc->pend_os_device_add = pend_os_device_add;
8683 ioc->pend_os_device_add_sz = pd_handles_sz;
8684
8685 device_remove_in_progress = krealloc(
8686 ioc->device_remove_in_progress, pd_handles_sz, GFP_KERNEL);
8687 if (!device_remove_in_progress) {
8688 ioc_info(ioc,
8689 "Unable to allocate the memory for "
8690 "device_remove_in_progress of sz: %d\n "
8691 , pd_handles_sz);
8692 return -ENOMEM;
8693 }
8694 memset(device_remove_in_progress +
8695 ioc->device_remove_in_progress_sz, 0,
8696 (pd_handles_sz - ioc->device_remove_in_progress_sz));
8697 ioc->device_remove_in_progress = device_remove_in_progress;
8698 ioc->device_remove_in_progress_sz = pd_handles_sz;
8699 }
8700
8701 memcpy(&ioc->prev_fw_facts, &ioc->facts, sizeof(struct mpt3sas_facts));
8702 return 0;
8703 }
8704
8705 /**
8706 * mpt3sas_base_hard_reset_handler - reset controller
8707 * @ioc: Pointer to MPT_ADAPTER structure
8708 * @type: FORCE_BIG_HAMMER or SOFT_RESET
8709 *
8710 * Return: 0 for success, non-zero for failure.
8711 */
8712 int
mpt3sas_base_hard_reset_handler(struct MPT3SAS_ADAPTER * ioc,enum reset_type type)8713 mpt3sas_base_hard_reset_handler(struct MPT3SAS_ADAPTER *ioc,
8714 enum reset_type type)
8715 {
8716 int r;
8717 unsigned long flags;
8718 u32 ioc_state;
8719 u8 is_fault = 0, is_trigger = 0;
8720
8721 dtmprintk(ioc, ioc_info(ioc, "%s: enter\n", __func__));
8722
8723 if (ioc->pci_error_recovery) {
8724 ioc_err(ioc, "%s: pci error recovery reset\n", __func__);
8725 r = 0;
8726 goto out_unlocked;
8727 }
8728
8729 if (mpt3sas_fwfault_debug)
8730 mpt3sas_halt_firmware(ioc);
8731
8732 /* wait for an active reset in progress to complete */
8733 mutex_lock(&ioc->reset_in_progress_mutex);
8734
8735 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
8736 ioc->shost_recovery = 1;
8737 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
8738
8739 if ((ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] &
8740 MPT3_DIAG_BUFFER_IS_REGISTERED) &&
8741 (!(ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] &
8742 MPT3_DIAG_BUFFER_IS_RELEASED))) {
8743 is_trigger = 1;
8744 ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
8745 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT ||
8746 (ioc_state & MPI2_IOC_STATE_MASK) ==
8747 MPI2_IOC_STATE_COREDUMP) {
8748 is_fault = 1;
8749 ioc->htb_rel.trigger_info_dwords[1] =
8750 (ioc_state & MPI2_DOORBELL_DATA_MASK);
8751 }
8752 }
8753 _base_pre_reset_handler(ioc);
8754 mpt3sas_wait_for_commands_to_complete(ioc);
8755 mpt3sas_base_mask_interrupts(ioc);
8756 mpt3sas_base_pause_mq_polling(ioc);
8757 r = mpt3sas_base_make_ioc_ready(ioc, type);
8758 if (r)
8759 goto out;
8760 _base_clear_outstanding_commands(ioc);
8761
8762 /* If this hard reset is called while port enable is active, then
8763 * there is no reason to call make_ioc_operational
8764 */
8765 if (ioc->is_driver_loading && ioc->port_enable_failed) {
8766 ioc->remove_host = 1;
8767 r = -EFAULT;
8768 goto out;
8769 }
8770 r = _base_get_ioc_facts(ioc);
8771 if (r)
8772 goto out;
8773
8774 r = _base_check_ioc_facts_changes(ioc);
8775 if (r) {
8776 ioc_info(ioc,
8777 "Some of the parameters got changed in this new firmware"
8778 " image and it requires system reboot\n");
8779 goto out;
8780 }
8781 if (ioc->rdpq_array_enable && !ioc->rdpq_array_capable)
8782 panic("%s: Issue occurred with flashing controller firmware."
8783 "Please reboot the system and ensure that the correct"
8784 " firmware version is running\n", ioc->name);
8785
8786 r = _base_make_ioc_operational(ioc);
8787 if (!r)
8788 _base_reset_done_handler(ioc);
8789
8790 out:
8791 ioc_info(ioc, "%s: %s\n", __func__, r == 0 ? "SUCCESS" : "FAILED");
8792
8793 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
8794 ioc->shost_recovery = 0;
8795 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
8796 ioc->ioc_reset_count++;
8797 mutex_unlock(&ioc->reset_in_progress_mutex);
8798 mpt3sas_base_resume_mq_polling(ioc);
8799
8800 out_unlocked:
8801 if ((r == 0) && is_trigger) {
8802 if (is_fault)
8803 mpt3sas_trigger_master(ioc, MASTER_TRIGGER_FW_FAULT);
8804 else
8805 mpt3sas_trigger_master(ioc,
8806 MASTER_TRIGGER_ADAPTER_RESET);
8807 }
8808 dtmprintk(ioc, ioc_info(ioc, "%s: exit\n", __func__));
8809 return r;
8810 }
8811