1 // SPDX-License-Identifier: GPL-2.0
2 /* Multipath TCP
3 *
4 * Copyright (c) 2017 - 2019, Intel Corporation.
5 */
6
7 #define pr_fmt(fmt) "MPTCP: " fmt
8
9 #include <linux/kernel.h>
10 #include <linux/module.h>
11 #include <linux/netdevice.h>
12 #include <linux/sched/signal.h>
13 #include <linux/atomic.h>
14 #include <net/sock.h>
15 #include <net/inet_common.h>
16 #include <net/inet_hashtables.h>
17 #include <net/protocol.h>
18 #include <net/tcp.h>
19 #include <net/tcp_states.h>
20 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
21 #include <net/transp_v6.h>
22 #endif
23 #include <net/mptcp.h>
24 #include <net/xfrm.h>
25 #include "protocol.h"
26 #include "mib.h"
27
28 #define CREATE_TRACE_POINTS
29 #include <trace/events/mptcp.h>
30
31 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
32 struct mptcp6_sock {
33 struct mptcp_sock msk;
34 struct ipv6_pinfo np;
35 };
36 #endif
37
38 struct mptcp_skb_cb {
39 u64 map_seq;
40 u64 end_seq;
41 u32 offset;
42 u8 has_rxtstamp:1;
43 };
44
45 #define MPTCP_SKB_CB(__skb) ((struct mptcp_skb_cb *)&((__skb)->cb[0]))
46
47 enum {
48 MPTCP_CMSG_TS = BIT(0),
49 };
50
51 static struct percpu_counter mptcp_sockets_allocated;
52
53 static void __mptcp_destroy_sock(struct sock *sk);
54 static void mptcp_check_send_data_fin(struct sock *sk);
55
56 DEFINE_PER_CPU(struct mptcp_delegated_action, mptcp_delegated_actions);
57 static struct net_device mptcp_napi_dev;
58
59 /* If msk has an initial subflow socket, and the MP_CAPABLE handshake has not
60 * completed yet or has failed, return the subflow socket.
61 * Otherwise return NULL.
62 */
__mptcp_nmpc_socket(const struct mptcp_sock * msk)63 struct socket *__mptcp_nmpc_socket(const struct mptcp_sock *msk)
64 {
65 if (!msk->subflow || READ_ONCE(msk->can_ack))
66 return NULL;
67
68 return msk->subflow;
69 }
70
71 /* Returns end sequence number of the receiver's advertised window */
mptcp_wnd_end(const struct mptcp_sock * msk)72 static u64 mptcp_wnd_end(const struct mptcp_sock *msk)
73 {
74 return READ_ONCE(msk->wnd_end);
75 }
76
mptcp_is_tcpsk(struct sock * sk)77 static bool mptcp_is_tcpsk(struct sock *sk)
78 {
79 struct socket *sock = sk->sk_socket;
80
81 if (unlikely(sk->sk_prot == &tcp_prot)) {
82 /* we are being invoked after mptcp_accept() has
83 * accepted a non-mp-capable flow: sk is a tcp_sk,
84 * not an mptcp one.
85 *
86 * Hand the socket over to tcp so all further socket ops
87 * bypass mptcp.
88 */
89 sock->ops = &inet_stream_ops;
90 return true;
91 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
92 } else if (unlikely(sk->sk_prot == &tcpv6_prot)) {
93 sock->ops = &inet6_stream_ops;
94 return true;
95 #endif
96 }
97
98 return false;
99 }
100
__mptcp_socket_create(struct mptcp_sock * msk)101 static int __mptcp_socket_create(struct mptcp_sock *msk)
102 {
103 struct mptcp_subflow_context *subflow;
104 struct sock *sk = (struct sock *)msk;
105 struct socket *ssock;
106 int err;
107
108 err = mptcp_subflow_create_socket(sk, &ssock);
109 if (err)
110 return err;
111
112 msk->first = ssock->sk;
113 msk->subflow = ssock;
114 subflow = mptcp_subflow_ctx(ssock->sk);
115 list_add(&subflow->node, &msk->conn_list);
116 sock_hold(ssock->sk);
117 subflow->request_mptcp = 1;
118 mptcp_sock_graft(msk->first, sk->sk_socket);
119
120 return 0;
121 }
122
mptcp_drop(struct sock * sk,struct sk_buff * skb)123 static void mptcp_drop(struct sock *sk, struct sk_buff *skb)
124 {
125 sk_drops_add(sk, skb);
126 __kfree_skb(skb);
127 }
128
mptcp_try_coalesce(struct sock * sk,struct sk_buff * to,struct sk_buff * from)129 static bool mptcp_try_coalesce(struct sock *sk, struct sk_buff *to,
130 struct sk_buff *from)
131 {
132 bool fragstolen;
133 int delta;
134
135 if (MPTCP_SKB_CB(from)->offset ||
136 !skb_try_coalesce(to, from, &fragstolen, &delta))
137 return false;
138
139 pr_debug("colesced seq %llx into %llx new len %d new end seq %llx",
140 MPTCP_SKB_CB(from)->map_seq, MPTCP_SKB_CB(to)->map_seq,
141 to->len, MPTCP_SKB_CB(from)->end_seq);
142 MPTCP_SKB_CB(to)->end_seq = MPTCP_SKB_CB(from)->end_seq;
143 kfree_skb_partial(from, fragstolen);
144 atomic_add(delta, &sk->sk_rmem_alloc);
145 sk_mem_charge(sk, delta);
146 return true;
147 }
148
mptcp_ooo_try_coalesce(struct mptcp_sock * msk,struct sk_buff * to,struct sk_buff * from)149 static bool mptcp_ooo_try_coalesce(struct mptcp_sock *msk, struct sk_buff *to,
150 struct sk_buff *from)
151 {
152 if (MPTCP_SKB_CB(from)->map_seq != MPTCP_SKB_CB(to)->end_seq)
153 return false;
154
155 return mptcp_try_coalesce((struct sock *)msk, to, from);
156 }
157
158 /* "inspired" by tcp_data_queue_ofo(), main differences:
159 * - use mptcp seqs
160 * - don't cope with sacks
161 */
mptcp_data_queue_ofo(struct mptcp_sock * msk,struct sk_buff * skb)162 static void mptcp_data_queue_ofo(struct mptcp_sock *msk, struct sk_buff *skb)
163 {
164 struct sock *sk = (struct sock *)msk;
165 struct rb_node **p, *parent;
166 u64 seq, end_seq, max_seq;
167 struct sk_buff *skb1;
168
169 seq = MPTCP_SKB_CB(skb)->map_seq;
170 end_seq = MPTCP_SKB_CB(skb)->end_seq;
171 max_seq = READ_ONCE(msk->rcv_wnd_sent);
172
173 pr_debug("msk=%p seq=%llx limit=%llx empty=%d", msk, seq, max_seq,
174 RB_EMPTY_ROOT(&msk->out_of_order_queue));
175 if (after64(end_seq, max_seq)) {
176 /* out of window */
177 mptcp_drop(sk, skb);
178 pr_debug("oow by %lld, rcv_wnd_sent %llu\n",
179 (unsigned long long)end_seq - (unsigned long)max_seq,
180 (unsigned long long)msk->rcv_wnd_sent);
181 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_NODSSWINDOW);
182 return;
183 }
184
185 p = &msk->out_of_order_queue.rb_node;
186 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUE);
187 if (RB_EMPTY_ROOT(&msk->out_of_order_queue)) {
188 rb_link_node(&skb->rbnode, NULL, p);
189 rb_insert_color(&skb->rbnode, &msk->out_of_order_queue);
190 msk->ooo_last_skb = skb;
191 goto end;
192 }
193
194 /* with 2 subflows, adding at end of ooo queue is quite likely
195 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
196 */
197 if (mptcp_ooo_try_coalesce(msk, msk->ooo_last_skb, skb)) {
198 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE);
199 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL);
200 return;
201 }
202
203 /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
204 if (!before64(seq, MPTCP_SKB_CB(msk->ooo_last_skb)->end_seq)) {
205 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL);
206 parent = &msk->ooo_last_skb->rbnode;
207 p = &parent->rb_right;
208 goto insert;
209 }
210
211 /* Find place to insert this segment. Handle overlaps on the way. */
212 parent = NULL;
213 while (*p) {
214 parent = *p;
215 skb1 = rb_to_skb(parent);
216 if (before64(seq, MPTCP_SKB_CB(skb1)->map_seq)) {
217 p = &parent->rb_left;
218 continue;
219 }
220 if (before64(seq, MPTCP_SKB_CB(skb1)->end_seq)) {
221 if (!after64(end_seq, MPTCP_SKB_CB(skb1)->end_seq)) {
222 /* All the bits are present. Drop. */
223 mptcp_drop(sk, skb);
224 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
225 return;
226 }
227 if (after64(seq, MPTCP_SKB_CB(skb1)->map_seq)) {
228 /* partial overlap:
229 * | skb |
230 * | skb1 |
231 * continue traversing
232 */
233 } else {
234 /* skb's seq == skb1's seq and skb covers skb1.
235 * Replace skb1 with skb.
236 */
237 rb_replace_node(&skb1->rbnode, &skb->rbnode,
238 &msk->out_of_order_queue);
239 mptcp_drop(sk, skb1);
240 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
241 goto merge_right;
242 }
243 } else if (mptcp_ooo_try_coalesce(msk, skb1, skb)) {
244 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE);
245 return;
246 }
247 p = &parent->rb_right;
248 }
249
250 insert:
251 /* Insert segment into RB tree. */
252 rb_link_node(&skb->rbnode, parent, p);
253 rb_insert_color(&skb->rbnode, &msk->out_of_order_queue);
254
255 merge_right:
256 /* Remove other segments covered by skb. */
257 while ((skb1 = skb_rb_next(skb)) != NULL) {
258 if (before64(end_seq, MPTCP_SKB_CB(skb1)->end_seq))
259 break;
260 rb_erase(&skb1->rbnode, &msk->out_of_order_queue);
261 mptcp_drop(sk, skb1);
262 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
263 }
264 /* If there is no skb after us, we are the last_skb ! */
265 if (!skb1)
266 msk->ooo_last_skb = skb;
267
268 end:
269 skb_condense(skb);
270 skb_set_owner_r(skb, sk);
271 }
272
__mptcp_move_skb(struct mptcp_sock * msk,struct sock * ssk,struct sk_buff * skb,unsigned int offset,size_t copy_len)273 static bool __mptcp_move_skb(struct mptcp_sock *msk, struct sock *ssk,
274 struct sk_buff *skb, unsigned int offset,
275 size_t copy_len)
276 {
277 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
278 struct sock *sk = (struct sock *)msk;
279 struct sk_buff *tail;
280 bool has_rxtstamp;
281
282 __skb_unlink(skb, &ssk->sk_receive_queue);
283
284 skb_ext_reset(skb);
285 skb_orphan(skb);
286
287 /* try to fetch required memory from subflow */
288 if (!sk_rmem_schedule(sk, skb, skb->truesize)) {
289 int amount = sk_mem_pages(skb->truesize) << SK_MEM_QUANTUM_SHIFT;
290
291 if (ssk->sk_forward_alloc < amount)
292 goto drop;
293
294 ssk->sk_forward_alloc -= amount;
295 sk->sk_forward_alloc += amount;
296 }
297
298 has_rxtstamp = TCP_SKB_CB(skb)->has_rxtstamp;
299
300 /* the skb map_seq accounts for the skb offset:
301 * mptcp_subflow_get_mapped_dsn() is based on the current tp->copied_seq
302 * value
303 */
304 MPTCP_SKB_CB(skb)->map_seq = mptcp_subflow_get_mapped_dsn(subflow);
305 MPTCP_SKB_CB(skb)->end_seq = MPTCP_SKB_CB(skb)->map_seq + copy_len;
306 MPTCP_SKB_CB(skb)->offset = offset;
307 MPTCP_SKB_CB(skb)->has_rxtstamp = has_rxtstamp;
308
309 if (MPTCP_SKB_CB(skb)->map_seq == msk->ack_seq) {
310 /* in sequence */
311 WRITE_ONCE(msk->ack_seq, msk->ack_seq + copy_len);
312 tail = skb_peek_tail(&sk->sk_receive_queue);
313 if (tail && mptcp_try_coalesce(sk, tail, skb))
314 return true;
315
316 skb_set_owner_r(skb, sk);
317 __skb_queue_tail(&sk->sk_receive_queue, skb);
318 return true;
319 } else if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq)) {
320 mptcp_data_queue_ofo(msk, skb);
321 return false;
322 }
323
324 /* old data, keep it simple and drop the whole pkt, sender
325 * will retransmit as needed, if needed.
326 */
327 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
328 drop:
329 mptcp_drop(sk, skb);
330 return false;
331 }
332
mptcp_stop_rtx_timer(struct sock * sk)333 static void mptcp_stop_rtx_timer(struct sock *sk)
334 {
335 struct inet_connection_sock *icsk = inet_csk(sk);
336
337 sk_stop_timer(sk, &icsk->icsk_retransmit_timer);
338 mptcp_sk(sk)->timer_ival = 0;
339 }
340
mptcp_close_wake_up(struct sock * sk)341 static void mptcp_close_wake_up(struct sock *sk)
342 {
343 if (sock_flag(sk, SOCK_DEAD))
344 return;
345
346 sk->sk_state_change(sk);
347 if (sk->sk_shutdown == SHUTDOWN_MASK ||
348 sk->sk_state == TCP_CLOSE)
349 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
350 else
351 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
352 }
353
mptcp_pending_data_fin_ack(struct sock * sk)354 static bool mptcp_pending_data_fin_ack(struct sock *sk)
355 {
356 struct mptcp_sock *msk = mptcp_sk(sk);
357
358 return ((1 << sk->sk_state) &
359 (TCPF_FIN_WAIT1 | TCPF_CLOSING | TCPF_LAST_ACK)) &&
360 msk->write_seq == READ_ONCE(msk->snd_una);
361 }
362
mptcp_check_data_fin_ack(struct sock * sk)363 static void mptcp_check_data_fin_ack(struct sock *sk)
364 {
365 struct mptcp_sock *msk = mptcp_sk(sk);
366
367 /* Look for an acknowledged DATA_FIN */
368 if (mptcp_pending_data_fin_ack(sk)) {
369 WRITE_ONCE(msk->snd_data_fin_enable, 0);
370
371 switch (sk->sk_state) {
372 case TCP_FIN_WAIT1:
373 inet_sk_state_store(sk, TCP_FIN_WAIT2);
374 break;
375 case TCP_CLOSING:
376 case TCP_LAST_ACK:
377 inet_sk_state_store(sk, TCP_CLOSE);
378 break;
379 }
380
381 mptcp_close_wake_up(sk);
382 }
383 }
384
mptcp_pending_data_fin(struct sock * sk,u64 * seq)385 static bool mptcp_pending_data_fin(struct sock *sk, u64 *seq)
386 {
387 struct mptcp_sock *msk = mptcp_sk(sk);
388
389 if (READ_ONCE(msk->rcv_data_fin) &&
390 ((1 << sk->sk_state) &
391 (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_FIN_WAIT2))) {
392 u64 rcv_data_fin_seq = READ_ONCE(msk->rcv_data_fin_seq);
393
394 if (msk->ack_seq == rcv_data_fin_seq) {
395 if (seq)
396 *seq = rcv_data_fin_seq;
397
398 return true;
399 }
400 }
401
402 return false;
403 }
404
mptcp_set_datafin_timeout(const struct sock * sk)405 static void mptcp_set_datafin_timeout(const struct sock *sk)
406 {
407 struct inet_connection_sock *icsk = inet_csk(sk);
408 u32 retransmits;
409
410 retransmits = min_t(u32, icsk->icsk_retransmits,
411 ilog2(TCP_RTO_MAX / TCP_RTO_MIN));
412
413 mptcp_sk(sk)->timer_ival = TCP_RTO_MIN << retransmits;
414 }
415
__mptcp_set_timeout(struct sock * sk,long tout)416 static void __mptcp_set_timeout(struct sock *sk, long tout)
417 {
418 mptcp_sk(sk)->timer_ival = tout > 0 ? tout : TCP_RTO_MIN;
419 }
420
mptcp_timeout_from_subflow(const struct mptcp_subflow_context * subflow)421 static long mptcp_timeout_from_subflow(const struct mptcp_subflow_context *subflow)
422 {
423 const struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
424
425 return inet_csk(ssk)->icsk_pending && !subflow->stale_count ?
426 inet_csk(ssk)->icsk_timeout - jiffies : 0;
427 }
428
mptcp_set_timeout(struct sock * sk)429 static void mptcp_set_timeout(struct sock *sk)
430 {
431 struct mptcp_subflow_context *subflow;
432 long tout = 0;
433
434 mptcp_for_each_subflow(mptcp_sk(sk), subflow)
435 tout = max(tout, mptcp_timeout_from_subflow(subflow));
436 __mptcp_set_timeout(sk, tout);
437 }
438
tcp_can_send_ack(const struct sock * ssk)439 static bool tcp_can_send_ack(const struct sock *ssk)
440 {
441 return !((1 << inet_sk_state_load(ssk)) &
442 (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_TIME_WAIT | TCPF_CLOSE | TCPF_LISTEN));
443 }
444
mptcp_subflow_send_ack(struct sock * ssk)445 void mptcp_subflow_send_ack(struct sock *ssk)
446 {
447 bool slow;
448
449 slow = lock_sock_fast(ssk);
450 if (tcp_can_send_ack(ssk))
451 tcp_send_ack(ssk);
452 unlock_sock_fast(ssk, slow);
453 }
454
mptcp_send_ack(struct mptcp_sock * msk)455 static void mptcp_send_ack(struct mptcp_sock *msk)
456 {
457 struct mptcp_subflow_context *subflow;
458
459 mptcp_for_each_subflow(msk, subflow)
460 mptcp_subflow_send_ack(mptcp_subflow_tcp_sock(subflow));
461 }
462
mptcp_subflow_cleanup_rbuf(struct sock * ssk)463 static void mptcp_subflow_cleanup_rbuf(struct sock *ssk)
464 {
465 bool slow;
466
467 slow = lock_sock_fast(ssk);
468 if (tcp_can_send_ack(ssk))
469 tcp_cleanup_rbuf(ssk, 1);
470 unlock_sock_fast(ssk, slow);
471 }
472
mptcp_subflow_could_cleanup(const struct sock * ssk,bool rx_empty)473 static bool mptcp_subflow_could_cleanup(const struct sock *ssk, bool rx_empty)
474 {
475 const struct inet_connection_sock *icsk = inet_csk(ssk);
476 u8 ack_pending = READ_ONCE(icsk->icsk_ack.pending);
477 const struct tcp_sock *tp = tcp_sk(ssk);
478
479 return (ack_pending & ICSK_ACK_SCHED) &&
480 ((READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->rcv_wup) >
481 READ_ONCE(icsk->icsk_ack.rcv_mss)) ||
482 (rx_empty && ack_pending &
483 (ICSK_ACK_PUSHED2 | ICSK_ACK_PUSHED)));
484 }
485
mptcp_cleanup_rbuf(struct mptcp_sock * msk)486 static void mptcp_cleanup_rbuf(struct mptcp_sock *msk)
487 {
488 int old_space = READ_ONCE(msk->old_wspace);
489 struct mptcp_subflow_context *subflow;
490 struct sock *sk = (struct sock *)msk;
491 int space = __mptcp_space(sk);
492 bool cleanup, rx_empty;
493
494 cleanup = (space > 0) && (space >= (old_space << 1));
495 rx_empty = !__mptcp_rmem(sk);
496
497 mptcp_for_each_subflow(msk, subflow) {
498 struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
499
500 if (cleanup || mptcp_subflow_could_cleanup(ssk, rx_empty))
501 mptcp_subflow_cleanup_rbuf(ssk);
502 }
503 }
504
mptcp_check_data_fin(struct sock * sk)505 static bool mptcp_check_data_fin(struct sock *sk)
506 {
507 struct mptcp_sock *msk = mptcp_sk(sk);
508 u64 rcv_data_fin_seq;
509 bool ret = false;
510
511 /* Need to ack a DATA_FIN received from a peer while this side
512 * of the connection is in ESTABLISHED, FIN_WAIT1, or FIN_WAIT2.
513 * msk->rcv_data_fin was set when parsing the incoming options
514 * at the subflow level and the msk lock was not held, so this
515 * is the first opportunity to act on the DATA_FIN and change
516 * the msk state.
517 *
518 * If we are caught up to the sequence number of the incoming
519 * DATA_FIN, send the DATA_ACK now and do state transition. If
520 * not caught up, do nothing and let the recv code send DATA_ACK
521 * when catching up.
522 */
523
524 if (mptcp_pending_data_fin(sk, &rcv_data_fin_seq)) {
525 WRITE_ONCE(msk->ack_seq, msk->ack_seq + 1);
526 WRITE_ONCE(msk->rcv_data_fin, 0);
527
528 sk->sk_shutdown |= RCV_SHUTDOWN;
529 smp_mb__before_atomic(); /* SHUTDOWN must be visible first */
530
531 switch (sk->sk_state) {
532 case TCP_ESTABLISHED:
533 inet_sk_state_store(sk, TCP_CLOSE_WAIT);
534 break;
535 case TCP_FIN_WAIT1:
536 inet_sk_state_store(sk, TCP_CLOSING);
537 break;
538 case TCP_FIN_WAIT2:
539 inet_sk_state_store(sk, TCP_CLOSE);
540 break;
541 default:
542 /* Other states not expected */
543 WARN_ON_ONCE(1);
544 break;
545 }
546
547 ret = true;
548 if (!__mptcp_check_fallback(msk))
549 mptcp_send_ack(msk);
550 mptcp_close_wake_up(sk);
551 }
552 return ret;
553 }
554
__mptcp_move_skbs_from_subflow(struct mptcp_sock * msk,struct sock * ssk,unsigned int * bytes)555 static bool __mptcp_move_skbs_from_subflow(struct mptcp_sock *msk,
556 struct sock *ssk,
557 unsigned int *bytes)
558 {
559 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
560 struct sock *sk = (struct sock *)msk;
561 unsigned int moved = 0;
562 bool more_data_avail;
563 struct tcp_sock *tp;
564 bool done = false;
565 int sk_rbuf;
566
567 sk_rbuf = READ_ONCE(sk->sk_rcvbuf);
568
569 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
570 int ssk_rbuf = READ_ONCE(ssk->sk_rcvbuf);
571
572 if (unlikely(ssk_rbuf > sk_rbuf)) {
573 WRITE_ONCE(sk->sk_rcvbuf, ssk_rbuf);
574 sk_rbuf = ssk_rbuf;
575 }
576 }
577
578 pr_debug("msk=%p ssk=%p", msk, ssk);
579 tp = tcp_sk(ssk);
580 do {
581 u32 map_remaining, offset;
582 u32 seq = tp->copied_seq;
583 struct sk_buff *skb;
584 bool fin;
585
586 /* try to move as much data as available */
587 map_remaining = subflow->map_data_len -
588 mptcp_subflow_get_map_offset(subflow);
589
590 skb = skb_peek(&ssk->sk_receive_queue);
591 if (!skb) {
592 /* if no data is found, a racing workqueue/recvmsg
593 * already processed the new data, stop here or we
594 * can enter an infinite loop
595 */
596 if (!moved)
597 done = true;
598 break;
599 }
600
601 if (__mptcp_check_fallback(msk)) {
602 /* if we are running under the workqueue, TCP could have
603 * collapsed skbs between dummy map creation and now
604 * be sure to adjust the size
605 */
606 map_remaining = skb->len;
607 subflow->map_data_len = skb->len;
608 }
609
610 offset = seq - TCP_SKB_CB(skb)->seq;
611 fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
612 if (fin) {
613 done = true;
614 seq++;
615 }
616
617 if (offset < skb->len) {
618 size_t len = skb->len - offset;
619
620 if (tp->urg_data)
621 done = true;
622
623 if (__mptcp_move_skb(msk, ssk, skb, offset, len))
624 moved += len;
625 seq += len;
626
627 if (WARN_ON_ONCE(map_remaining < len))
628 break;
629 } else {
630 WARN_ON_ONCE(!fin);
631 sk_eat_skb(ssk, skb);
632 done = true;
633 }
634
635 WRITE_ONCE(tp->copied_seq, seq);
636 more_data_avail = mptcp_subflow_data_available(ssk);
637
638 if (atomic_read(&sk->sk_rmem_alloc) > sk_rbuf) {
639 done = true;
640 break;
641 }
642 } while (more_data_avail);
643
644 *bytes += moved;
645 return done;
646 }
647
__mptcp_ofo_queue(struct mptcp_sock * msk)648 static bool __mptcp_ofo_queue(struct mptcp_sock *msk)
649 {
650 struct sock *sk = (struct sock *)msk;
651 struct sk_buff *skb, *tail;
652 bool moved = false;
653 struct rb_node *p;
654 u64 end_seq;
655
656 p = rb_first(&msk->out_of_order_queue);
657 pr_debug("msk=%p empty=%d", msk, RB_EMPTY_ROOT(&msk->out_of_order_queue));
658 while (p) {
659 skb = rb_to_skb(p);
660 if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq))
661 break;
662
663 p = rb_next(p);
664 rb_erase(&skb->rbnode, &msk->out_of_order_queue);
665
666 if (unlikely(!after64(MPTCP_SKB_CB(skb)->end_seq,
667 msk->ack_seq))) {
668 mptcp_drop(sk, skb);
669 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
670 continue;
671 }
672
673 end_seq = MPTCP_SKB_CB(skb)->end_seq;
674 tail = skb_peek_tail(&sk->sk_receive_queue);
675 if (!tail || !mptcp_ooo_try_coalesce(msk, tail, skb)) {
676 int delta = msk->ack_seq - MPTCP_SKB_CB(skb)->map_seq;
677
678 /* skip overlapping data, if any */
679 pr_debug("uncoalesced seq=%llx ack seq=%llx delta=%d",
680 MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq,
681 delta);
682 MPTCP_SKB_CB(skb)->offset += delta;
683 __skb_queue_tail(&sk->sk_receive_queue, skb);
684 }
685 msk->ack_seq = end_seq;
686 moved = true;
687 }
688 return moved;
689 }
690
__mptcp_subflow_error_report(struct sock * sk,struct sock * ssk)691 static bool __mptcp_subflow_error_report(struct sock *sk, struct sock *ssk)
692 {
693 int err = sock_error(ssk);
694 int ssk_state;
695
696 if (!err)
697 return false;
698
699 /* only propagate errors on fallen-back sockets or
700 * on MPC connect
701 */
702 if (sk->sk_state != TCP_SYN_SENT && !__mptcp_check_fallback(mptcp_sk(sk)))
703 return false;
704
705 /* We need to propagate only transition to CLOSE state.
706 * Orphaned socket will see such state change via
707 * subflow_sched_work_if_closed() and that path will properly
708 * destroy the msk as needed.
709 */
710 ssk_state = inet_sk_state_load(ssk);
711 if (ssk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DEAD))
712 inet_sk_state_store(sk, ssk_state);
713 WRITE_ONCE(sk->sk_err, -err);
714
715 /* This barrier is coupled with smp_rmb() in mptcp_poll() */
716 smp_wmb();
717 sk_error_report(sk);
718 return true;
719 }
720
__mptcp_error_report(struct sock * sk)721 void __mptcp_error_report(struct sock *sk)
722 {
723 struct mptcp_subflow_context *subflow;
724 struct mptcp_sock *msk = mptcp_sk(sk);
725
726 mptcp_for_each_subflow(msk, subflow)
727 if (__mptcp_subflow_error_report(sk, mptcp_subflow_tcp_sock(subflow)))
728 break;
729 }
730
731 /* In most cases we will be able to lock the mptcp socket. If its already
732 * owned, we need to defer to the work queue to avoid ABBA deadlock.
733 */
move_skbs_to_msk(struct mptcp_sock * msk,struct sock * ssk)734 static bool move_skbs_to_msk(struct mptcp_sock *msk, struct sock *ssk)
735 {
736 struct sock *sk = (struct sock *)msk;
737 unsigned int moved = 0;
738
739 __mptcp_move_skbs_from_subflow(msk, ssk, &moved);
740 __mptcp_ofo_queue(msk);
741 if (unlikely(ssk->sk_err)) {
742 if (!sock_owned_by_user(sk))
743 __mptcp_error_report(sk);
744 else
745 set_bit(MPTCP_ERROR_REPORT, &msk->flags);
746 }
747
748 /* If the moves have caught up with the DATA_FIN sequence number
749 * it's time to ack the DATA_FIN and change socket state, but
750 * this is not a good place to change state. Let the workqueue
751 * do it.
752 */
753 if (mptcp_pending_data_fin(sk, NULL))
754 mptcp_schedule_work(sk);
755 return moved > 0;
756 }
757
mptcp_data_ready(struct sock * sk,struct sock * ssk)758 void mptcp_data_ready(struct sock *sk, struct sock *ssk)
759 {
760 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
761 struct mptcp_sock *msk = mptcp_sk(sk);
762 int sk_rbuf, ssk_rbuf;
763
764 /* The peer can send data while we are shutting down this
765 * subflow at msk destruction time, but we must avoid enqueuing
766 * more data to the msk receive queue
767 */
768 if (unlikely(subflow->disposable))
769 return;
770
771 ssk_rbuf = READ_ONCE(ssk->sk_rcvbuf);
772 sk_rbuf = READ_ONCE(sk->sk_rcvbuf);
773 if (unlikely(ssk_rbuf > sk_rbuf))
774 sk_rbuf = ssk_rbuf;
775
776 /* over limit? can't append more skbs to msk, Also, no need to wake-up*/
777 if (__mptcp_rmem(sk) > sk_rbuf) {
778 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RCVPRUNED);
779 return;
780 }
781
782 /* Wake-up the reader only for in-sequence data */
783 mptcp_data_lock(sk);
784 if (move_skbs_to_msk(msk, ssk))
785 sk->sk_data_ready(sk);
786
787 mptcp_data_unlock(sk);
788 }
789
mptcp_do_flush_join_list(struct mptcp_sock * msk)790 static bool mptcp_do_flush_join_list(struct mptcp_sock *msk)
791 {
792 struct mptcp_subflow_context *subflow;
793 bool ret = false;
794
795 if (likely(list_empty(&msk->join_list)))
796 return false;
797
798 spin_lock_bh(&msk->join_list_lock);
799 list_for_each_entry(subflow, &msk->join_list, node) {
800 u32 sseq = READ_ONCE(subflow->setsockopt_seq);
801
802 mptcp_propagate_sndbuf((struct sock *)msk, mptcp_subflow_tcp_sock(subflow));
803 if (READ_ONCE(msk->setsockopt_seq) != sseq)
804 ret = true;
805 }
806 list_splice_tail_init(&msk->join_list, &msk->conn_list);
807 spin_unlock_bh(&msk->join_list_lock);
808
809 return ret;
810 }
811
__mptcp_flush_join_list(struct mptcp_sock * msk)812 void __mptcp_flush_join_list(struct mptcp_sock *msk)
813 {
814 if (likely(!mptcp_do_flush_join_list(msk)))
815 return;
816
817 if (!test_and_set_bit(MPTCP_WORK_SYNC_SETSOCKOPT, &msk->flags))
818 mptcp_schedule_work((struct sock *)msk);
819 }
820
mptcp_flush_join_list(struct mptcp_sock * msk)821 static void mptcp_flush_join_list(struct mptcp_sock *msk)
822 {
823 bool sync_needed = test_and_clear_bit(MPTCP_WORK_SYNC_SETSOCKOPT, &msk->flags);
824
825 might_sleep();
826
827 if (!mptcp_do_flush_join_list(msk) && !sync_needed)
828 return;
829
830 mptcp_sockopt_sync_all(msk);
831 }
832
mptcp_rtx_timer_pending(struct sock * sk)833 static bool mptcp_rtx_timer_pending(struct sock *sk)
834 {
835 return timer_pending(&inet_csk(sk)->icsk_retransmit_timer);
836 }
837
mptcp_reset_rtx_timer(struct sock * sk)838 static void mptcp_reset_rtx_timer(struct sock *sk)
839 {
840 struct inet_connection_sock *icsk = inet_csk(sk);
841 unsigned long tout;
842
843 /* prevent rescheduling on close */
844 if (unlikely(inet_sk_state_load(sk) == TCP_CLOSE))
845 return;
846
847 tout = mptcp_sk(sk)->timer_ival;
848 sk_reset_timer(sk, &icsk->icsk_retransmit_timer, jiffies + tout);
849 }
850
mptcp_schedule_work(struct sock * sk)851 bool mptcp_schedule_work(struct sock *sk)
852 {
853 if (inet_sk_state_load(sk) != TCP_CLOSE &&
854 schedule_work(&mptcp_sk(sk)->work)) {
855 /* each subflow already holds a reference to the sk, and the
856 * workqueue is invoked by a subflow, so sk can't go away here.
857 */
858 sock_hold(sk);
859 return true;
860 }
861 return false;
862 }
863
mptcp_subflow_eof(struct sock * sk)864 void mptcp_subflow_eof(struct sock *sk)
865 {
866 if (!test_and_set_bit(MPTCP_WORK_EOF, &mptcp_sk(sk)->flags))
867 mptcp_schedule_work(sk);
868 }
869
mptcp_check_for_eof(struct mptcp_sock * msk)870 static void mptcp_check_for_eof(struct mptcp_sock *msk)
871 {
872 struct mptcp_subflow_context *subflow;
873 struct sock *sk = (struct sock *)msk;
874 int receivers = 0;
875
876 mptcp_for_each_subflow(msk, subflow)
877 receivers += !subflow->rx_eof;
878 if (receivers)
879 return;
880
881 if (!(sk->sk_shutdown & RCV_SHUTDOWN)) {
882 /* hopefully temporary hack: propagate shutdown status
883 * to msk, when all subflows agree on it
884 */
885 sk->sk_shutdown |= RCV_SHUTDOWN;
886
887 smp_mb__before_atomic(); /* SHUTDOWN must be visible first */
888 sk->sk_data_ready(sk);
889 }
890
891 switch (sk->sk_state) {
892 case TCP_ESTABLISHED:
893 inet_sk_state_store(sk, TCP_CLOSE_WAIT);
894 break;
895 case TCP_FIN_WAIT1:
896 inet_sk_state_store(sk, TCP_CLOSING);
897 break;
898 case TCP_FIN_WAIT2:
899 inet_sk_state_store(sk, TCP_CLOSE);
900 break;
901 default:
902 return;
903 }
904 mptcp_close_wake_up(sk);
905 }
906
mptcp_subflow_recv_lookup(const struct mptcp_sock * msk)907 static struct sock *mptcp_subflow_recv_lookup(const struct mptcp_sock *msk)
908 {
909 struct mptcp_subflow_context *subflow;
910 struct sock *sk = (struct sock *)msk;
911
912 sock_owned_by_me(sk);
913
914 mptcp_for_each_subflow(msk, subflow) {
915 if (READ_ONCE(subflow->data_avail))
916 return mptcp_subflow_tcp_sock(subflow);
917 }
918
919 return NULL;
920 }
921
mptcp_skb_can_collapse_to(u64 write_seq,const struct sk_buff * skb,const struct mptcp_ext * mpext)922 static bool mptcp_skb_can_collapse_to(u64 write_seq,
923 const struct sk_buff *skb,
924 const struct mptcp_ext *mpext)
925 {
926 if (!tcp_skb_can_collapse_to(skb))
927 return false;
928
929 /* can collapse only if MPTCP level sequence is in order and this
930 * mapping has not been xmitted yet
931 */
932 return mpext && mpext->data_seq + mpext->data_len == write_seq &&
933 !mpext->frozen;
934 }
935
936 /* we can append data to the given data frag if:
937 * - there is space available in the backing page_frag
938 * - the data frag tail matches the current page_frag free offset
939 * - the data frag end sequence number matches the current write seq
940 */
mptcp_frag_can_collapse_to(const struct mptcp_sock * msk,const struct page_frag * pfrag,const struct mptcp_data_frag * df)941 static bool mptcp_frag_can_collapse_to(const struct mptcp_sock *msk,
942 const struct page_frag *pfrag,
943 const struct mptcp_data_frag *df)
944 {
945 return df && pfrag->page == df->page &&
946 pfrag->size - pfrag->offset > 0 &&
947 pfrag->offset == (df->offset + df->data_len) &&
948 df->data_seq + df->data_len == msk->write_seq;
949 }
950
mptcp_wmem_with_overhead(int size)951 static int mptcp_wmem_with_overhead(int size)
952 {
953 return size + ((sizeof(struct mptcp_data_frag) * size) >> PAGE_SHIFT);
954 }
955
__mptcp_wmem_reserve(struct sock * sk,int size)956 static void __mptcp_wmem_reserve(struct sock *sk, int size)
957 {
958 int amount = mptcp_wmem_with_overhead(size);
959 struct mptcp_sock *msk = mptcp_sk(sk);
960
961 WARN_ON_ONCE(msk->wmem_reserved);
962 if (WARN_ON_ONCE(amount < 0))
963 amount = 0;
964
965 if (amount <= sk->sk_forward_alloc)
966 goto reserve;
967
968 /* under memory pressure try to reserve at most a single page
969 * otherwise try to reserve the full estimate and fallback
970 * to a single page before entering the error path
971 */
972 if ((tcp_under_memory_pressure(sk) && amount > PAGE_SIZE) ||
973 !sk_wmem_schedule(sk, amount)) {
974 if (amount <= PAGE_SIZE)
975 goto nomem;
976
977 amount = PAGE_SIZE;
978 if (!sk_wmem_schedule(sk, amount))
979 goto nomem;
980 }
981
982 reserve:
983 msk->wmem_reserved = amount;
984 sk->sk_forward_alloc -= amount;
985 return;
986
987 nomem:
988 /* we will wait for memory on next allocation */
989 msk->wmem_reserved = -1;
990 }
991
__mptcp_update_wmem(struct sock * sk)992 static void __mptcp_update_wmem(struct sock *sk)
993 {
994 struct mptcp_sock *msk = mptcp_sk(sk);
995
996 #ifdef CONFIG_LOCKDEP
997 WARN_ON_ONCE(!lockdep_is_held(&sk->sk_lock.slock));
998 #endif
999
1000 if (!msk->wmem_reserved)
1001 return;
1002
1003 if (msk->wmem_reserved < 0)
1004 msk->wmem_reserved = 0;
1005 if (msk->wmem_reserved > 0) {
1006 sk->sk_forward_alloc += msk->wmem_reserved;
1007 msk->wmem_reserved = 0;
1008 }
1009 }
1010
mptcp_wmem_alloc(struct sock * sk,int size)1011 static bool mptcp_wmem_alloc(struct sock *sk, int size)
1012 {
1013 struct mptcp_sock *msk = mptcp_sk(sk);
1014
1015 /* check for pre-existing error condition */
1016 if (msk->wmem_reserved < 0)
1017 return false;
1018
1019 if (msk->wmem_reserved >= size)
1020 goto account;
1021
1022 mptcp_data_lock(sk);
1023 if (!sk_wmem_schedule(sk, size)) {
1024 mptcp_data_unlock(sk);
1025 return false;
1026 }
1027
1028 sk->sk_forward_alloc -= size;
1029 msk->wmem_reserved += size;
1030 mptcp_data_unlock(sk);
1031
1032 account:
1033 msk->wmem_reserved -= size;
1034 return true;
1035 }
1036
mptcp_wmem_uncharge(struct sock * sk,int size)1037 static void mptcp_wmem_uncharge(struct sock *sk, int size)
1038 {
1039 struct mptcp_sock *msk = mptcp_sk(sk);
1040
1041 if (msk->wmem_reserved < 0)
1042 msk->wmem_reserved = 0;
1043 msk->wmem_reserved += size;
1044 }
1045
__mptcp_mem_reclaim_partial(struct sock * sk)1046 static void __mptcp_mem_reclaim_partial(struct sock *sk)
1047 {
1048 lockdep_assert_held_once(&sk->sk_lock.slock);
1049 __mptcp_update_wmem(sk);
1050 sk_mem_reclaim_partial(sk);
1051 }
1052
mptcp_mem_reclaim_partial(struct sock * sk)1053 static void mptcp_mem_reclaim_partial(struct sock *sk)
1054 {
1055 struct mptcp_sock *msk = mptcp_sk(sk);
1056
1057 /* if we are experiencing a transint allocation error,
1058 * the forward allocation memory has been already
1059 * released
1060 */
1061 if (msk->wmem_reserved < 0)
1062 return;
1063
1064 mptcp_data_lock(sk);
1065 sk->sk_forward_alloc += msk->wmem_reserved;
1066 sk_mem_reclaim_partial(sk);
1067 msk->wmem_reserved = sk->sk_forward_alloc;
1068 sk->sk_forward_alloc = 0;
1069 mptcp_data_unlock(sk);
1070 }
1071
dfrag_uncharge(struct sock * sk,int len)1072 static void dfrag_uncharge(struct sock *sk, int len)
1073 {
1074 sk_mem_uncharge(sk, len);
1075 sk_wmem_queued_add(sk, -len);
1076 }
1077
dfrag_clear(struct sock * sk,struct mptcp_data_frag * dfrag)1078 static void dfrag_clear(struct sock *sk, struct mptcp_data_frag *dfrag)
1079 {
1080 int len = dfrag->data_len + dfrag->overhead;
1081
1082 list_del(&dfrag->list);
1083 dfrag_uncharge(sk, len);
1084 put_page(dfrag->page);
1085 }
1086
__mptcp_clean_una(struct sock * sk)1087 static void __mptcp_clean_una(struct sock *sk)
1088 {
1089 struct mptcp_sock *msk = mptcp_sk(sk);
1090 struct mptcp_data_frag *dtmp, *dfrag;
1091 bool cleaned = false;
1092 u64 snd_una;
1093
1094 /* on fallback we just need to ignore snd_una, as this is really
1095 * plain TCP
1096 */
1097 if (__mptcp_check_fallback(msk))
1098 msk->snd_una = READ_ONCE(msk->snd_nxt);
1099
1100 snd_una = msk->snd_una;
1101 list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list) {
1102 if (after64(dfrag->data_seq + dfrag->data_len, snd_una))
1103 break;
1104
1105 if (unlikely(dfrag == msk->first_pending)) {
1106 /* in recovery mode can see ack after the current snd head */
1107 if (WARN_ON_ONCE(!msk->recovery))
1108 break;
1109
1110 WRITE_ONCE(msk->first_pending, mptcp_send_next(sk));
1111 }
1112
1113 dfrag_clear(sk, dfrag);
1114 cleaned = true;
1115 }
1116
1117 dfrag = mptcp_rtx_head(sk);
1118 if (dfrag && after64(snd_una, dfrag->data_seq)) {
1119 u64 delta = snd_una - dfrag->data_seq;
1120
1121 /* prevent wrap around in recovery mode */
1122 if (unlikely(delta > dfrag->already_sent)) {
1123 if (WARN_ON_ONCE(!msk->recovery))
1124 goto out;
1125 if (WARN_ON_ONCE(delta > dfrag->data_len))
1126 goto out;
1127 dfrag->already_sent += delta - dfrag->already_sent;
1128 }
1129
1130 dfrag->data_seq += delta;
1131 dfrag->offset += delta;
1132 dfrag->data_len -= delta;
1133 dfrag->already_sent -= delta;
1134
1135 dfrag_uncharge(sk, delta);
1136 cleaned = true;
1137 }
1138
1139 /* all retransmitted data acked, recovery completed */
1140 if (unlikely(msk->recovery) && after64(msk->snd_una, msk->recovery_snd_nxt))
1141 msk->recovery = false;
1142
1143 out:
1144 if (cleaned && tcp_under_memory_pressure(sk))
1145 __mptcp_mem_reclaim_partial(sk);
1146
1147 if (snd_una == READ_ONCE(msk->snd_nxt) && !msk->recovery) {
1148 if (mptcp_rtx_timer_pending(sk) && !mptcp_data_fin_enabled(msk))
1149 mptcp_stop_rtx_timer(sk);
1150 } else {
1151 mptcp_reset_rtx_timer(sk);
1152 }
1153 }
1154
__mptcp_clean_una_wakeup(struct sock * sk)1155 static void __mptcp_clean_una_wakeup(struct sock *sk)
1156 {
1157 #ifdef CONFIG_LOCKDEP
1158 WARN_ON_ONCE(!lockdep_is_held(&sk->sk_lock.slock));
1159 #endif
1160 __mptcp_clean_una(sk);
1161 mptcp_write_space(sk);
1162 }
1163
mptcp_clean_una_wakeup(struct sock * sk)1164 static void mptcp_clean_una_wakeup(struct sock *sk)
1165 {
1166 mptcp_data_lock(sk);
1167 __mptcp_clean_una_wakeup(sk);
1168 mptcp_data_unlock(sk);
1169 }
1170
mptcp_enter_memory_pressure(struct sock * sk)1171 static void mptcp_enter_memory_pressure(struct sock *sk)
1172 {
1173 struct mptcp_subflow_context *subflow;
1174 struct mptcp_sock *msk = mptcp_sk(sk);
1175 bool first = true;
1176
1177 sk_stream_moderate_sndbuf(sk);
1178 mptcp_for_each_subflow(msk, subflow) {
1179 struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
1180
1181 if (first)
1182 tcp_enter_memory_pressure(ssk);
1183 sk_stream_moderate_sndbuf(ssk);
1184 first = false;
1185 }
1186 }
1187
1188 /* ensure we get enough memory for the frag hdr, beyond some minimal amount of
1189 * data
1190 */
mptcp_page_frag_refill(struct sock * sk,struct page_frag * pfrag)1191 static bool mptcp_page_frag_refill(struct sock *sk, struct page_frag *pfrag)
1192 {
1193 if (likely(skb_page_frag_refill(32U + sizeof(struct mptcp_data_frag),
1194 pfrag, sk->sk_allocation)))
1195 return true;
1196
1197 mptcp_enter_memory_pressure(sk);
1198 return false;
1199 }
1200
1201 static struct mptcp_data_frag *
mptcp_carve_data_frag(const struct mptcp_sock * msk,struct page_frag * pfrag,int orig_offset)1202 mptcp_carve_data_frag(const struct mptcp_sock *msk, struct page_frag *pfrag,
1203 int orig_offset)
1204 {
1205 int offset = ALIGN(orig_offset, sizeof(long));
1206 struct mptcp_data_frag *dfrag;
1207
1208 dfrag = (struct mptcp_data_frag *)(page_to_virt(pfrag->page) + offset);
1209 dfrag->data_len = 0;
1210 dfrag->data_seq = msk->write_seq;
1211 dfrag->overhead = offset - orig_offset + sizeof(struct mptcp_data_frag);
1212 dfrag->offset = offset + sizeof(struct mptcp_data_frag);
1213 dfrag->already_sent = 0;
1214 dfrag->page = pfrag->page;
1215
1216 return dfrag;
1217 }
1218
1219 struct mptcp_sendmsg_info {
1220 int mss_now;
1221 int size_goal;
1222 u16 limit;
1223 u16 sent;
1224 unsigned int flags;
1225 bool data_lock_held;
1226 };
1227
mptcp_check_allowed_size(struct mptcp_sock * msk,u64 data_seq,int avail_size)1228 static int mptcp_check_allowed_size(struct mptcp_sock *msk, u64 data_seq,
1229 int avail_size)
1230 {
1231 u64 window_end = mptcp_wnd_end(msk);
1232
1233 if (__mptcp_check_fallback(msk))
1234 return avail_size;
1235
1236 if (!before64(data_seq + avail_size, window_end)) {
1237 u64 allowed_size = window_end - data_seq;
1238
1239 return min_t(unsigned int, allowed_size, avail_size);
1240 }
1241
1242 return avail_size;
1243 }
1244
__mptcp_add_ext(struct sk_buff * skb,gfp_t gfp)1245 static bool __mptcp_add_ext(struct sk_buff *skb, gfp_t gfp)
1246 {
1247 struct skb_ext *mpext = __skb_ext_alloc(gfp);
1248
1249 if (!mpext)
1250 return false;
1251 __skb_ext_set(skb, SKB_EXT_MPTCP, mpext);
1252 return true;
1253 }
1254
__mptcp_do_alloc_tx_skb(struct sock * sk,gfp_t gfp)1255 static struct sk_buff *__mptcp_do_alloc_tx_skb(struct sock *sk, gfp_t gfp)
1256 {
1257 struct sk_buff *skb;
1258
1259 skb = alloc_skb_fclone(MAX_TCP_HEADER, gfp);
1260 if (likely(skb)) {
1261 if (likely(__mptcp_add_ext(skb, gfp))) {
1262 skb_reserve(skb, MAX_TCP_HEADER);
1263 skb->reserved_tailroom = skb->end - skb->tail;
1264 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
1265 return skb;
1266 }
1267 __kfree_skb(skb);
1268 } else {
1269 mptcp_enter_memory_pressure(sk);
1270 }
1271 return NULL;
1272 }
1273
__mptcp_alloc_tx_skb(struct sock * sk,struct sock * ssk,gfp_t gfp)1274 static struct sk_buff *__mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, gfp_t gfp)
1275 {
1276 struct sk_buff *skb;
1277
1278 skb = __mptcp_do_alloc_tx_skb(sk, gfp);
1279 if (!skb)
1280 return NULL;
1281
1282 if (likely(sk_wmem_schedule(ssk, skb->truesize))) {
1283 tcp_skb_entail(ssk, skb);
1284 return skb;
1285 }
1286 tcp_skb_tsorted_anchor_cleanup(skb);
1287 kfree_skb(skb);
1288 return NULL;
1289 }
1290
mptcp_alloc_tx_skb(struct sock * sk,struct sock * ssk,bool data_lock_held)1291 static struct sk_buff *mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, bool data_lock_held)
1292 {
1293 gfp_t gfp = data_lock_held ? GFP_ATOMIC : sk->sk_allocation;
1294
1295 if (unlikely(tcp_under_memory_pressure(sk))) {
1296 if (data_lock_held)
1297 __mptcp_mem_reclaim_partial(sk);
1298 else
1299 mptcp_mem_reclaim_partial(sk);
1300 }
1301 return __mptcp_alloc_tx_skb(sk, ssk, gfp);
1302 }
1303
1304 /* note: this always recompute the csum on the whole skb, even
1305 * if we just appended a single frag. More status info needed
1306 */
mptcp_update_data_checksum(struct sk_buff * skb,int added)1307 static void mptcp_update_data_checksum(struct sk_buff *skb, int added)
1308 {
1309 struct mptcp_ext *mpext = mptcp_get_ext(skb);
1310 __wsum csum = ~csum_unfold(mpext->csum);
1311 int offset = skb->len - added;
1312
1313 mpext->csum = csum_fold(csum_block_add(csum, skb_checksum(skb, offset, added, 0), offset));
1314 }
1315
mptcp_sendmsg_frag(struct sock * sk,struct sock * ssk,struct mptcp_data_frag * dfrag,struct mptcp_sendmsg_info * info)1316 static int mptcp_sendmsg_frag(struct sock *sk, struct sock *ssk,
1317 struct mptcp_data_frag *dfrag,
1318 struct mptcp_sendmsg_info *info)
1319 {
1320 u64 data_seq = dfrag->data_seq + info->sent;
1321 int offset = dfrag->offset + info->sent;
1322 struct mptcp_sock *msk = mptcp_sk(sk);
1323 bool zero_window_probe = false;
1324 struct mptcp_ext *mpext = NULL;
1325 bool can_coalesce = false;
1326 bool reuse_skb = true;
1327 struct sk_buff *skb;
1328 size_t copy;
1329 int i;
1330
1331 pr_debug("msk=%p ssk=%p sending dfrag at seq=%llu len=%u already sent=%u",
1332 msk, ssk, dfrag->data_seq, dfrag->data_len, info->sent);
1333
1334 if (WARN_ON_ONCE(info->sent > info->limit ||
1335 info->limit > dfrag->data_len))
1336 return 0;
1337
1338 /* compute send limit */
1339 info->mss_now = tcp_send_mss(ssk, &info->size_goal, info->flags);
1340 copy = info->size_goal;
1341
1342 skb = tcp_write_queue_tail(ssk);
1343 if (skb && copy > skb->len) {
1344 /* Limit the write to the size available in the
1345 * current skb, if any, so that we create at most a new skb.
1346 * Explicitly tells TCP internals to avoid collapsing on later
1347 * queue management operation, to avoid breaking the ext <->
1348 * SSN association set here
1349 */
1350 mpext = skb_ext_find(skb, SKB_EXT_MPTCP);
1351 if (!mptcp_skb_can_collapse_to(data_seq, skb, mpext)) {
1352 TCP_SKB_CB(skb)->eor = 1;
1353 tcp_mark_push(tcp_sk(ssk), skb);
1354 goto alloc_skb;
1355 }
1356
1357 i = skb_shinfo(skb)->nr_frags;
1358 can_coalesce = skb_can_coalesce(skb, i, dfrag->page, offset);
1359 if (!can_coalesce && i >= READ_ONCE(sysctl_max_skb_frags)) {
1360 tcp_mark_push(tcp_sk(ssk), skb);
1361 goto alloc_skb;
1362 }
1363
1364 copy -= skb->len;
1365 } else {
1366 alloc_skb:
1367 skb = mptcp_alloc_tx_skb(sk, ssk, info->data_lock_held);
1368 if (!skb)
1369 return -ENOMEM;
1370
1371 i = skb_shinfo(skb)->nr_frags;
1372 reuse_skb = false;
1373 mpext = skb_ext_find(skb, SKB_EXT_MPTCP);
1374 }
1375
1376 /* Zero window and all data acked? Probe. */
1377 copy = mptcp_check_allowed_size(msk, data_seq, copy);
1378 if (copy == 0) {
1379 u64 snd_una = READ_ONCE(msk->snd_una);
1380
1381 if (snd_una != msk->snd_nxt || tcp_write_queue_tail(ssk)) {
1382 tcp_remove_empty_skb(ssk);
1383 return 0;
1384 }
1385
1386 zero_window_probe = true;
1387 data_seq = snd_una - 1;
1388 copy = 1;
1389 }
1390
1391 copy = min_t(size_t, copy, info->limit - info->sent);
1392 if (!sk_wmem_schedule(ssk, copy)) {
1393 tcp_remove_empty_skb(ssk);
1394 return -ENOMEM;
1395 }
1396
1397 if (can_coalesce) {
1398 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1399 } else {
1400 get_page(dfrag->page);
1401 skb_fill_page_desc(skb, i, dfrag->page, offset, copy);
1402 }
1403
1404 skb->len += copy;
1405 skb->data_len += copy;
1406 skb->truesize += copy;
1407 sk_wmem_queued_add(ssk, copy);
1408 sk_mem_charge(ssk, copy);
1409 skb->ip_summed = CHECKSUM_PARTIAL;
1410 WRITE_ONCE(tcp_sk(ssk)->write_seq, tcp_sk(ssk)->write_seq + copy);
1411 TCP_SKB_CB(skb)->end_seq += copy;
1412 tcp_skb_pcount_set(skb, 0);
1413
1414 /* on skb reuse we just need to update the DSS len */
1415 if (reuse_skb) {
1416 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1417 mpext->data_len += copy;
1418 goto out;
1419 }
1420
1421 memset(mpext, 0, sizeof(*mpext));
1422 mpext->data_seq = data_seq;
1423 mpext->subflow_seq = mptcp_subflow_ctx(ssk)->rel_write_seq;
1424 mpext->data_len = copy;
1425 mpext->use_map = 1;
1426 mpext->dsn64 = 1;
1427
1428 pr_debug("data_seq=%llu subflow_seq=%u data_len=%u dsn64=%d",
1429 mpext->data_seq, mpext->subflow_seq, mpext->data_len,
1430 mpext->dsn64);
1431
1432 if (zero_window_probe) {
1433 mptcp_subflow_ctx(ssk)->rel_write_seq += copy;
1434 mpext->frozen = 1;
1435 if (READ_ONCE(msk->csum_enabled))
1436 mptcp_update_data_checksum(skb, copy);
1437 tcp_push_pending_frames(ssk);
1438 return 0;
1439 }
1440 out:
1441 if (READ_ONCE(msk->csum_enabled))
1442 mptcp_update_data_checksum(skb, copy);
1443 mptcp_subflow_ctx(ssk)->rel_write_seq += copy;
1444 return copy;
1445 }
1446
1447 #define MPTCP_SEND_BURST_SIZE ((1 << 16) - \
1448 sizeof(struct tcphdr) - \
1449 MAX_TCP_OPTION_SPACE - \
1450 sizeof(struct ipv6hdr) - \
1451 sizeof(struct frag_hdr))
1452
1453 struct subflow_send_info {
1454 struct sock *ssk;
1455 u64 ratio;
1456 };
1457
mptcp_subflow_set_active(struct mptcp_subflow_context * subflow)1458 void mptcp_subflow_set_active(struct mptcp_subflow_context *subflow)
1459 {
1460 if (!subflow->stale)
1461 return;
1462
1463 subflow->stale = 0;
1464 MPTCP_INC_STATS(sock_net(mptcp_subflow_tcp_sock(subflow)), MPTCP_MIB_SUBFLOWRECOVER);
1465 }
1466
mptcp_subflow_active(struct mptcp_subflow_context * subflow)1467 bool mptcp_subflow_active(struct mptcp_subflow_context *subflow)
1468 {
1469 if (unlikely(subflow->stale)) {
1470 u32 rcv_tstamp = READ_ONCE(tcp_sk(mptcp_subflow_tcp_sock(subflow))->rcv_tstamp);
1471
1472 if (subflow->stale_rcv_tstamp == rcv_tstamp)
1473 return false;
1474
1475 mptcp_subflow_set_active(subflow);
1476 }
1477 return __mptcp_subflow_active(subflow);
1478 }
1479
1480 /* implement the mptcp packet scheduler;
1481 * returns the subflow that will transmit the next DSS
1482 * additionally updates the rtx timeout
1483 */
mptcp_subflow_get_send(struct mptcp_sock * msk)1484 static struct sock *mptcp_subflow_get_send(struct mptcp_sock *msk)
1485 {
1486 struct subflow_send_info send_info[2];
1487 struct mptcp_subflow_context *subflow;
1488 struct sock *sk = (struct sock *)msk;
1489 int i, nr_active = 0;
1490 struct sock *ssk;
1491 long tout = 0;
1492 u64 ratio;
1493 u32 pace;
1494
1495 sock_owned_by_me(sk);
1496
1497 if (__mptcp_check_fallback(msk)) {
1498 if (!msk->first)
1499 return NULL;
1500 return sk_stream_memory_free(msk->first) ? msk->first : NULL;
1501 }
1502
1503 /* re-use last subflow, if the burst allow that */
1504 if (msk->last_snd && msk->snd_burst > 0 &&
1505 sk_stream_memory_free(msk->last_snd) &&
1506 mptcp_subflow_active(mptcp_subflow_ctx(msk->last_snd))) {
1507 mptcp_set_timeout(sk);
1508 return msk->last_snd;
1509 }
1510
1511 /* pick the subflow with the lower wmem/wspace ratio */
1512 for (i = 0; i < 2; ++i) {
1513 send_info[i].ssk = NULL;
1514 send_info[i].ratio = -1;
1515 }
1516 mptcp_for_each_subflow(msk, subflow) {
1517 trace_mptcp_subflow_get_send(subflow);
1518 ssk = mptcp_subflow_tcp_sock(subflow);
1519 if (!mptcp_subflow_active(subflow))
1520 continue;
1521
1522 tout = max(tout, mptcp_timeout_from_subflow(subflow));
1523 nr_active += !subflow->backup;
1524 if (!sk_stream_memory_free(subflow->tcp_sock) || !tcp_sk(ssk)->snd_wnd)
1525 continue;
1526
1527 pace = READ_ONCE(ssk->sk_pacing_rate);
1528 if (!pace)
1529 continue;
1530
1531 ratio = div_u64((u64)READ_ONCE(ssk->sk_wmem_queued) << 32,
1532 pace);
1533 if (ratio < send_info[subflow->backup].ratio) {
1534 send_info[subflow->backup].ssk = ssk;
1535 send_info[subflow->backup].ratio = ratio;
1536 }
1537 }
1538 __mptcp_set_timeout(sk, tout);
1539
1540 /* pick the best backup if no other subflow is active */
1541 if (!nr_active)
1542 send_info[0].ssk = send_info[1].ssk;
1543
1544 if (send_info[0].ssk) {
1545 msk->last_snd = send_info[0].ssk;
1546 msk->snd_burst = min_t(int, MPTCP_SEND_BURST_SIZE,
1547 tcp_sk(msk->last_snd)->snd_wnd);
1548 return msk->last_snd;
1549 }
1550
1551 return NULL;
1552 }
1553
mptcp_push_release(struct sock * sk,struct sock * ssk,struct mptcp_sendmsg_info * info)1554 static void mptcp_push_release(struct sock *sk, struct sock *ssk,
1555 struct mptcp_sendmsg_info *info)
1556 {
1557 tcp_push(ssk, 0, info->mss_now, tcp_sk(ssk)->nonagle, info->size_goal);
1558 release_sock(ssk);
1559 }
1560
mptcp_update_post_push(struct mptcp_sock * msk,struct mptcp_data_frag * dfrag,u32 sent)1561 static void mptcp_update_post_push(struct mptcp_sock *msk,
1562 struct mptcp_data_frag *dfrag,
1563 u32 sent)
1564 {
1565 u64 snd_nxt_new = dfrag->data_seq;
1566
1567 dfrag->already_sent += sent;
1568
1569 msk->snd_burst -= sent;
1570 msk->tx_pending_data -= sent;
1571
1572 snd_nxt_new += dfrag->already_sent;
1573
1574 /* snd_nxt_new can be smaller than snd_nxt in case mptcp
1575 * is recovering after a failover. In that event, this re-sends
1576 * old segments.
1577 *
1578 * Thus compute snd_nxt_new candidate based on
1579 * the dfrag->data_seq that was sent and the data
1580 * that has been handed to the subflow for transmission
1581 * and skip update in case it was old dfrag.
1582 */
1583 if (likely(after64(snd_nxt_new, msk->snd_nxt)))
1584 msk->snd_nxt = snd_nxt_new;
1585 }
1586
__mptcp_push_pending(struct sock * sk,unsigned int flags)1587 void __mptcp_push_pending(struct sock *sk, unsigned int flags)
1588 {
1589 struct sock *prev_ssk = NULL, *ssk = NULL;
1590 struct mptcp_sock *msk = mptcp_sk(sk);
1591 struct mptcp_sendmsg_info info = {
1592 .flags = flags,
1593 };
1594 struct mptcp_data_frag *dfrag;
1595 int len, copied = 0;
1596
1597 while ((dfrag = mptcp_send_head(sk))) {
1598 info.sent = dfrag->already_sent;
1599 info.limit = dfrag->data_len;
1600 len = dfrag->data_len - dfrag->already_sent;
1601 while (len > 0) {
1602 int ret = 0;
1603
1604 prev_ssk = ssk;
1605 __mptcp_flush_join_list(msk);
1606 ssk = mptcp_subflow_get_send(msk);
1607
1608 /* First check. If the ssk has changed since
1609 * the last round, release prev_ssk
1610 */
1611 if (ssk != prev_ssk && prev_ssk)
1612 mptcp_push_release(sk, prev_ssk, &info);
1613 if (!ssk)
1614 goto out;
1615
1616 /* Need to lock the new subflow only if different
1617 * from the previous one, otherwise we are still
1618 * helding the relevant lock
1619 */
1620 if (ssk != prev_ssk)
1621 lock_sock(ssk);
1622
1623 ret = mptcp_sendmsg_frag(sk, ssk, dfrag, &info);
1624 if (ret <= 0) {
1625 mptcp_push_release(sk, ssk, &info);
1626 goto out;
1627 }
1628
1629 info.sent += ret;
1630 copied += ret;
1631 len -= ret;
1632
1633 mptcp_update_post_push(msk, dfrag, ret);
1634 }
1635 WRITE_ONCE(msk->first_pending, mptcp_send_next(sk));
1636 }
1637
1638 /* at this point we held the socket lock for the last subflow we used */
1639 if (ssk)
1640 mptcp_push_release(sk, ssk, &info);
1641
1642 out:
1643 /* ensure the rtx timer is running */
1644 if (!mptcp_rtx_timer_pending(sk))
1645 mptcp_reset_rtx_timer(sk);
1646 if (copied)
1647 mptcp_check_send_data_fin(sk);
1648 }
1649
__mptcp_subflow_push_pending(struct sock * sk,struct sock * ssk)1650 static void __mptcp_subflow_push_pending(struct sock *sk, struct sock *ssk)
1651 {
1652 struct mptcp_sock *msk = mptcp_sk(sk);
1653 struct mptcp_sendmsg_info info = {
1654 .data_lock_held = true,
1655 };
1656 struct mptcp_data_frag *dfrag;
1657 struct sock *xmit_ssk;
1658 int len, copied = 0;
1659 bool first = true;
1660
1661 info.flags = 0;
1662 while ((dfrag = mptcp_send_head(sk))) {
1663 info.sent = dfrag->already_sent;
1664 info.limit = dfrag->data_len;
1665 len = dfrag->data_len - dfrag->already_sent;
1666 while (len > 0) {
1667 int ret = 0;
1668
1669 /* the caller already invoked the packet scheduler,
1670 * check for a different subflow usage only after
1671 * spooling the first chunk of data
1672 */
1673 xmit_ssk = first ? ssk : mptcp_subflow_get_send(mptcp_sk(sk));
1674 if (!xmit_ssk)
1675 goto out;
1676 if (xmit_ssk != ssk) {
1677 mptcp_subflow_delegate(mptcp_subflow_ctx(xmit_ssk),
1678 MPTCP_DELEGATE_SEND);
1679 goto out;
1680 }
1681
1682 ret = mptcp_sendmsg_frag(sk, ssk, dfrag, &info);
1683 if (ret <= 0)
1684 goto out;
1685
1686 info.sent += ret;
1687 copied += ret;
1688 len -= ret;
1689 first = false;
1690
1691 mptcp_update_post_push(msk, dfrag, ret);
1692 }
1693 WRITE_ONCE(msk->first_pending, mptcp_send_next(sk));
1694 }
1695
1696 out:
1697 /* __mptcp_alloc_tx_skb could have released some wmem and we are
1698 * not going to flush it via release_sock()
1699 */
1700 __mptcp_update_wmem(sk);
1701 if (copied) {
1702 tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle,
1703 info.size_goal);
1704 if (!mptcp_rtx_timer_pending(sk))
1705 mptcp_reset_rtx_timer(sk);
1706
1707 if (msk->snd_data_fin_enable &&
1708 msk->snd_nxt + 1 == msk->write_seq)
1709 mptcp_schedule_work(sk);
1710 }
1711 }
1712
mptcp_set_nospace(struct sock * sk)1713 static void mptcp_set_nospace(struct sock *sk)
1714 {
1715 /* enable autotune */
1716 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1717
1718 /* will be cleared on avail space */
1719 set_bit(MPTCP_NOSPACE, &mptcp_sk(sk)->flags);
1720 }
1721
mptcp_sendmsg(struct sock * sk,struct msghdr * msg,size_t len)1722 static int mptcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len)
1723 {
1724 struct mptcp_sock *msk = mptcp_sk(sk);
1725 struct page_frag *pfrag;
1726 size_t copied = 0;
1727 int ret = 0;
1728 long timeo;
1729
1730 /* we don't support FASTOPEN yet */
1731 if (msg->msg_flags & MSG_FASTOPEN)
1732 return -EOPNOTSUPP;
1733
1734 /* silently ignore everything else */
1735 msg->msg_flags &= MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL;
1736
1737 mptcp_lock_sock(sk, __mptcp_wmem_reserve(sk, min_t(size_t, 1 << 20, len)));
1738
1739 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1740
1741 if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) {
1742 ret = sk_stream_wait_connect(sk, &timeo);
1743 if (ret)
1744 goto out;
1745 }
1746
1747 pfrag = sk_page_frag(sk);
1748
1749 while (msg_data_left(msg)) {
1750 int total_ts, frag_truesize = 0;
1751 struct mptcp_data_frag *dfrag;
1752 bool dfrag_collapsed;
1753 size_t psize, offset;
1754
1755 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) {
1756 ret = -EPIPE;
1757 goto out;
1758 }
1759
1760 /* reuse tail pfrag, if possible, or carve a new one from the
1761 * page allocator
1762 */
1763 dfrag = mptcp_pending_tail(sk);
1764 dfrag_collapsed = mptcp_frag_can_collapse_to(msk, pfrag, dfrag);
1765 if (!dfrag_collapsed) {
1766 if (!sk_stream_memory_free(sk))
1767 goto wait_for_memory;
1768
1769 if (!mptcp_page_frag_refill(sk, pfrag))
1770 goto wait_for_memory;
1771
1772 dfrag = mptcp_carve_data_frag(msk, pfrag, pfrag->offset);
1773 frag_truesize = dfrag->overhead;
1774 }
1775
1776 /* we do not bound vs wspace, to allow a single packet.
1777 * memory accounting will prevent execessive memory usage
1778 * anyway
1779 */
1780 offset = dfrag->offset + dfrag->data_len;
1781 psize = pfrag->size - offset;
1782 psize = min_t(size_t, psize, msg_data_left(msg));
1783 total_ts = psize + frag_truesize;
1784
1785 if (!mptcp_wmem_alloc(sk, total_ts))
1786 goto wait_for_memory;
1787
1788 if (copy_page_from_iter(dfrag->page, offset, psize,
1789 &msg->msg_iter) != psize) {
1790 mptcp_wmem_uncharge(sk, psize + frag_truesize);
1791 ret = -EFAULT;
1792 goto out;
1793 }
1794
1795 /* data successfully copied into the write queue */
1796 copied += psize;
1797 dfrag->data_len += psize;
1798 frag_truesize += psize;
1799 pfrag->offset += frag_truesize;
1800 WRITE_ONCE(msk->write_seq, msk->write_seq + psize);
1801 msk->tx_pending_data += psize;
1802
1803 /* charge data on mptcp pending queue to the msk socket
1804 * Note: we charge such data both to sk and ssk
1805 */
1806 sk_wmem_queued_add(sk, frag_truesize);
1807 if (!dfrag_collapsed) {
1808 get_page(dfrag->page);
1809 list_add_tail(&dfrag->list, &msk->rtx_queue);
1810 if (!msk->first_pending)
1811 WRITE_ONCE(msk->first_pending, dfrag);
1812 }
1813 pr_debug("msk=%p dfrag at seq=%llu len=%u sent=%u new=%d", msk,
1814 dfrag->data_seq, dfrag->data_len, dfrag->already_sent,
1815 !dfrag_collapsed);
1816
1817 continue;
1818
1819 wait_for_memory:
1820 mptcp_set_nospace(sk);
1821 __mptcp_push_pending(sk, msg->msg_flags);
1822 ret = sk_stream_wait_memory(sk, &timeo);
1823 if (ret)
1824 goto out;
1825 }
1826
1827 if (copied)
1828 __mptcp_push_pending(sk, msg->msg_flags);
1829
1830 out:
1831 release_sock(sk);
1832 return copied ? : ret;
1833 }
1834
__mptcp_recvmsg_mskq(struct mptcp_sock * msk,struct msghdr * msg,size_t len,int flags,struct scm_timestamping_internal * tss,int * cmsg_flags)1835 static int __mptcp_recvmsg_mskq(struct mptcp_sock *msk,
1836 struct msghdr *msg,
1837 size_t len, int flags,
1838 struct scm_timestamping_internal *tss,
1839 int *cmsg_flags)
1840 {
1841 struct sk_buff *skb, *tmp;
1842 int copied = 0;
1843
1844 skb_queue_walk_safe(&msk->receive_queue, skb, tmp) {
1845 u32 offset = MPTCP_SKB_CB(skb)->offset;
1846 u32 data_len = skb->len - offset;
1847 u32 count = min_t(size_t, len - copied, data_len);
1848 int err;
1849
1850 if (!(flags & MSG_TRUNC)) {
1851 err = skb_copy_datagram_msg(skb, offset, msg, count);
1852 if (unlikely(err < 0)) {
1853 if (!copied)
1854 return err;
1855 break;
1856 }
1857 }
1858
1859 if (MPTCP_SKB_CB(skb)->has_rxtstamp) {
1860 tcp_update_recv_tstamps(skb, tss);
1861 *cmsg_flags |= MPTCP_CMSG_TS;
1862 }
1863
1864 copied += count;
1865
1866 if (count < data_len) {
1867 if (!(flags & MSG_PEEK))
1868 MPTCP_SKB_CB(skb)->offset += count;
1869 break;
1870 }
1871
1872 if (!(flags & MSG_PEEK)) {
1873 /* we will bulk release the skb memory later */
1874 skb->destructor = NULL;
1875 WRITE_ONCE(msk->rmem_released, msk->rmem_released + skb->truesize);
1876 __skb_unlink(skb, &msk->receive_queue);
1877 __kfree_skb(skb);
1878 }
1879
1880 if (copied >= len)
1881 break;
1882 }
1883
1884 return copied;
1885 }
1886
1887 /* receive buffer autotuning. See tcp_rcv_space_adjust for more information.
1888 *
1889 * Only difference: Use highest rtt estimate of the subflows in use.
1890 */
mptcp_rcv_space_adjust(struct mptcp_sock * msk,int copied)1891 static void mptcp_rcv_space_adjust(struct mptcp_sock *msk, int copied)
1892 {
1893 struct mptcp_subflow_context *subflow;
1894 struct sock *sk = (struct sock *)msk;
1895 u32 time, advmss = 1;
1896 u64 rtt_us, mstamp;
1897
1898 sock_owned_by_me(sk);
1899
1900 if (copied <= 0)
1901 return;
1902
1903 msk->rcvq_space.copied += copied;
1904
1905 mstamp = div_u64(tcp_clock_ns(), NSEC_PER_USEC);
1906 time = tcp_stamp_us_delta(mstamp, msk->rcvq_space.time);
1907
1908 rtt_us = msk->rcvq_space.rtt_us;
1909 if (rtt_us && time < (rtt_us >> 3))
1910 return;
1911
1912 rtt_us = 0;
1913 mptcp_for_each_subflow(msk, subflow) {
1914 const struct tcp_sock *tp;
1915 u64 sf_rtt_us;
1916 u32 sf_advmss;
1917
1918 tp = tcp_sk(mptcp_subflow_tcp_sock(subflow));
1919
1920 sf_rtt_us = READ_ONCE(tp->rcv_rtt_est.rtt_us);
1921 sf_advmss = READ_ONCE(tp->advmss);
1922
1923 rtt_us = max(sf_rtt_us, rtt_us);
1924 advmss = max(sf_advmss, advmss);
1925 }
1926
1927 msk->rcvq_space.rtt_us = rtt_us;
1928 if (time < (rtt_us >> 3) || rtt_us == 0)
1929 return;
1930
1931 if (msk->rcvq_space.copied <= msk->rcvq_space.space)
1932 goto new_measure;
1933
1934 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf) &&
1935 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
1936 int rcvmem, rcvbuf;
1937 u64 rcvwin, grow;
1938
1939 rcvwin = ((u64)msk->rcvq_space.copied << 1) + 16 * advmss;
1940
1941 grow = rcvwin * (msk->rcvq_space.copied - msk->rcvq_space.space);
1942
1943 do_div(grow, msk->rcvq_space.space);
1944 rcvwin += (grow << 1);
1945
1946 rcvmem = SKB_TRUESIZE(advmss + MAX_TCP_HEADER);
1947 while (tcp_win_from_space(sk, rcvmem) < advmss)
1948 rcvmem += 128;
1949
1950 do_div(rcvwin, advmss);
1951 rcvbuf = min_t(u64, rcvwin * rcvmem,
1952 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]));
1953
1954 if (rcvbuf > sk->sk_rcvbuf) {
1955 u32 window_clamp;
1956
1957 window_clamp = tcp_win_from_space(sk, rcvbuf);
1958 WRITE_ONCE(sk->sk_rcvbuf, rcvbuf);
1959
1960 /* Make subflows follow along. If we do not do this, we
1961 * get drops at subflow level if skbs can't be moved to
1962 * the mptcp rx queue fast enough (announced rcv_win can
1963 * exceed ssk->sk_rcvbuf).
1964 */
1965 mptcp_for_each_subflow(msk, subflow) {
1966 struct sock *ssk;
1967 bool slow;
1968
1969 ssk = mptcp_subflow_tcp_sock(subflow);
1970 slow = lock_sock_fast(ssk);
1971 WRITE_ONCE(ssk->sk_rcvbuf, rcvbuf);
1972 tcp_sk(ssk)->window_clamp = window_clamp;
1973 tcp_cleanup_rbuf(ssk, 1);
1974 unlock_sock_fast(ssk, slow);
1975 }
1976 }
1977 }
1978
1979 msk->rcvq_space.space = msk->rcvq_space.copied;
1980 new_measure:
1981 msk->rcvq_space.copied = 0;
1982 msk->rcvq_space.time = mstamp;
1983 }
1984
__mptcp_update_rmem(struct sock * sk)1985 static void __mptcp_update_rmem(struct sock *sk)
1986 {
1987 struct mptcp_sock *msk = mptcp_sk(sk);
1988
1989 if (!msk->rmem_released)
1990 return;
1991
1992 atomic_sub(msk->rmem_released, &sk->sk_rmem_alloc);
1993 sk_mem_uncharge(sk, msk->rmem_released);
1994 WRITE_ONCE(msk->rmem_released, 0);
1995 }
1996
__mptcp_splice_receive_queue(struct sock * sk)1997 static void __mptcp_splice_receive_queue(struct sock *sk)
1998 {
1999 struct mptcp_sock *msk = mptcp_sk(sk);
2000
2001 skb_queue_splice_tail_init(&sk->sk_receive_queue, &msk->receive_queue);
2002 }
2003
__mptcp_move_skbs(struct mptcp_sock * msk)2004 static bool __mptcp_move_skbs(struct mptcp_sock *msk)
2005 {
2006 struct sock *sk = (struct sock *)msk;
2007 unsigned int moved = 0;
2008 bool ret, done;
2009
2010 mptcp_flush_join_list(msk);
2011 do {
2012 struct sock *ssk = mptcp_subflow_recv_lookup(msk);
2013 bool slowpath;
2014
2015 /* we can have data pending in the subflows only if the msk
2016 * receive buffer was full at subflow_data_ready() time,
2017 * that is an unlikely slow path.
2018 */
2019 if (likely(!ssk))
2020 break;
2021
2022 slowpath = lock_sock_fast(ssk);
2023 mptcp_data_lock(sk);
2024 __mptcp_update_rmem(sk);
2025 done = __mptcp_move_skbs_from_subflow(msk, ssk, &moved);
2026 mptcp_data_unlock(sk);
2027
2028 if (unlikely(ssk->sk_err))
2029 __mptcp_error_report(sk);
2030 unlock_sock_fast(ssk, slowpath);
2031 } while (!done);
2032
2033 /* acquire the data lock only if some input data is pending */
2034 ret = moved > 0;
2035 if (!RB_EMPTY_ROOT(&msk->out_of_order_queue) ||
2036 !skb_queue_empty_lockless(&sk->sk_receive_queue)) {
2037 mptcp_data_lock(sk);
2038 __mptcp_update_rmem(sk);
2039 ret |= __mptcp_ofo_queue(msk);
2040 __mptcp_splice_receive_queue(sk);
2041 mptcp_data_unlock(sk);
2042 }
2043 if (ret)
2044 mptcp_check_data_fin((struct sock *)msk);
2045 return !skb_queue_empty(&msk->receive_queue);
2046 }
2047
mptcp_recvmsg(struct sock * sk,struct msghdr * msg,size_t len,int nonblock,int flags,int * addr_len)2048 static int mptcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
2049 int nonblock, int flags, int *addr_len)
2050 {
2051 struct mptcp_sock *msk = mptcp_sk(sk);
2052 struct scm_timestamping_internal tss;
2053 int copied = 0, cmsg_flags = 0;
2054 int target;
2055 long timeo;
2056
2057 /* MSG_ERRQUEUE is really a no-op till we support IP_RECVERR */
2058 if (unlikely(flags & MSG_ERRQUEUE))
2059 return inet_recv_error(sk, msg, len, addr_len);
2060
2061 mptcp_lock_sock(sk, __mptcp_splice_receive_queue(sk));
2062 if (unlikely(sk->sk_state == TCP_LISTEN)) {
2063 copied = -ENOTCONN;
2064 goto out_err;
2065 }
2066
2067 timeo = sock_rcvtimeo(sk, nonblock);
2068
2069 len = min_t(size_t, len, INT_MAX);
2070 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
2071
2072 while (copied < len) {
2073 int bytes_read;
2074
2075 bytes_read = __mptcp_recvmsg_mskq(msk, msg, len - copied, flags, &tss, &cmsg_flags);
2076 if (unlikely(bytes_read < 0)) {
2077 if (!copied)
2078 copied = bytes_read;
2079 goto out_err;
2080 }
2081
2082 copied += bytes_read;
2083
2084 /* be sure to advertise window change */
2085 mptcp_cleanup_rbuf(msk);
2086
2087 if (skb_queue_empty(&msk->receive_queue) && __mptcp_move_skbs(msk))
2088 continue;
2089
2090 /* only the master socket status is relevant here. The exit
2091 * conditions mirror closely tcp_recvmsg()
2092 */
2093 if (copied >= target)
2094 break;
2095
2096 if (copied) {
2097 if (sk->sk_err ||
2098 sk->sk_state == TCP_CLOSE ||
2099 (sk->sk_shutdown & RCV_SHUTDOWN) ||
2100 !timeo ||
2101 signal_pending(current))
2102 break;
2103 } else {
2104 if (sk->sk_err) {
2105 copied = sock_error(sk);
2106 break;
2107 }
2108
2109 if (test_and_clear_bit(MPTCP_WORK_EOF, &msk->flags))
2110 mptcp_check_for_eof(msk);
2111
2112 if (sk->sk_shutdown & RCV_SHUTDOWN) {
2113 /* race breaker: the shutdown could be after the
2114 * previous receive queue check
2115 */
2116 if (__mptcp_move_skbs(msk))
2117 continue;
2118 break;
2119 }
2120
2121 if (sk->sk_state == TCP_CLOSE) {
2122 copied = -ENOTCONN;
2123 break;
2124 }
2125
2126 if (!timeo) {
2127 copied = -EAGAIN;
2128 break;
2129 }
2130
2131 if (signal_pending(current)) {
2132 copied = sock_intr_errno(timeo);
2133 break;
2134 }
2135 }
2136
2137 pr_debug("block timeout %ld", timeo);
2138 sk_wait_data(sk, &timeo, NULL);
2139 }
2140
2141 out_err:
2142 if (cmsg_flags && copied >= 0) {
2143 if (cmsg_flags & MPTCP_CMSG_TS)
2144 tcp_recv_timestamp(msg, sk, &tss);
2145 }
2146
2147 pr_debug("msk=%p rx queue empty=%d:%d copied=%d",
2148 msk, skb_queue_empty_lockless(&sk->sk_receive_queue),
2149 skb_queue_empty(&msk->receive_queue), copied);
2150 if (!(flags & MSG_PEEK))
2151 mptcp_rcv_space_adjust(msk, copied);
2152
2153 release_sock(sk);
2154 return copied;
2155 }
2156
mptcp_retransmit_timer(struct timer_list * t)2157 static void mptcp_retransmit_timer(struct timer_list *t)
2158 {
2159 struct inet_connection_sock *icsk = from_timer(icsk, t,
2160 icsk_retransmit_timer);
2161 struct sock *sk = &icsk->icsk_inet.sk;
2162 struct mptcp_sock *msk = mptcp_sk(sk);
2163
2164 bh_lock_sock(sk);
2165 if (!sock_owned_by_user(sk)) {
2166 /* we need a process context to retransmit */
2167 if (!test_and_set_bit(MPTCP_WORK_RTX, &msk->flags))
2168 mptcp_schedule_work(sk);
2169 } else {
2170 /* delegate our work to tcp_release_cb() */
2171 set_bit(MPTCP_RETRANSMIT, &msk->flags);
2172 }
2173 bh_unlock_sock(sk);
2174 sock_put(sk);
2175 }
2176
mptcp_tout_timer(struct timer_list * t)2177 static void mptcp_tout_timer(struct timer_list *t)
2178 {
2179 struct sock *sk = from_timer(sk, t, sk_timer);
2180
2181 mptcp_schedule_work(sk);
2182 sock_put(sk);
2183 }
2184
2185 /* Find an idle subflow. Return NULL if there is unacked data at tcp
2186 * level.
2187 *
2188 * A backup subflow is returned only if that is the only kind available.
2189 */
mptcp_subflow_get_retrans(struct mptcp_sock * msk)2190 static struct sock *mptcp_subflow_get_retrans(struct mptcp_sock *msk)
2191 {
2192 struct sock *backup = NULL, *pick = NULL;
2193 struct mptcp_subflow_context *subflow;
2194 int min_stale_count = INT_MAX;
2195
2196 sock_owned_by_me((const struct sock *)msk);
2197
2198 if (__mptcp_check_fallback(msk))
2199 return NULL;
2200
2201 mptcp_for_each_subflow(msk, subflow) {
2202 struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
2203
2204 if (!__mptcp_subflow_active(subflow))
2205 continue;
2206
2207 /* still data outstanding at TCP level? skip this */
2208 if (!tcp_rtx_and_write_queues_empty(ssk)) {
2209 mptcp_pm_subflow_chk_stale(msk, ssk);
2210 min_stale_count = min_t(int, min_stale_count, subflow->stale_count);
2211 continue;
2212 }
2213
2214 if (subflow->backup) {
2215 if (!backup)
2216 backup = ssk;
2217 continue;
2218 }
2219
2220 if (!pick)
2221 pick = ssk;
2222 }
2223
2224 if (pick)
2225 return pick;
2226
2227 /* use backup only if there are no progresses anywhere */
2228 return min_stale_count > 1 ? backup : NULL;
2229 }
2230
mptcp_dispose_initial_subflow(struct mptcp_sock * msk)2231 static void mptcp_dispose_initial_subflow(struct mptcp_sock *msk)
2232 {
2233 if (msk->subflow) {
2234 iput(SOCK_INODE(msk->subflow));
2235 msk->subflow = NULL;
2236 }
2237 }
2238
__mptcp_retransmit_pending_data(struct sock * sk)2239 bool __mptcp_retransmit_pending_data(struct sock *sk)
2240 {
2241 struct mptcp_data_frag *cur, *rtx_head;
2242 struct mptcp_sock *msk = mptcp_sk(sk);
2243
2244 if (__mptcp_check_fallback(mptcp_sk(sk)))
2245 return false;
2246
2247 /* the closing socket has some data untransmitted and/or unacked:
2248 * some data in the mptcp rtx queue has not really xmitted yet.
2249 * keep it simple and re-inject the whole mptcp level rtx queue
2250 */
2251 mptcp_data_lock(sk);
2252 __mptcp_clean_una_wakeup(sk);
2253 rtx_head = mptcp_rtx_head(sk);
2254 if (!rtx_head) {
2255 mptcp_data_unlock(sk);
2256 return false;
2257 }
2258
2259 msk->recovery_snd_nxt = msk->snd_nxt;
2260 msk->recovery = true;
2261 mptcp_data_unlock(sk);
2262
2263 msk->first_pending = rtx_head;
2264 msk->tx_pending_data += msk->snd_nxt - rtx_head->data_seq;
2265 msk->snd_burst = 0;
2266
2267 /* be sure to clear the "sent status" on all re-injected fragments */
2268 list_for_each_entry(cur, &msk->rtx_queue, list) {
2269 if (!cur->already_sent)
2270 break;
2271 cur->already_sent = 0;
2272 }
2273
2274 return true;
2275 }
2276
2277 /* subflow sockets can be either outgoing (connect) or incoming
2278 * (accept).
2279 *
2280 * Outgoing subflows use in-kernel sockets.
2281 * Incoming subflows do not have their own 'struct socket' allocated,
2282 * so we need to use tcp_close() after detaching them from the mptcp
2283 * parent socket.
2284 */
__mptcp_close_ssk(struct sock * sk,struct sock * ssk,struct mptcp_subflow_context * subflow)2285 static void __mptcp_close_ssk(struct sock *sk, struct sock *ssk,
2286 struct mptcp_subflow_context *subflow)
2287 {
2288 struct mptcp_sock *msk = mptcp_sk(sk);
2289 bool need_push;
2290
2291 list_del(&subflow->node);
2292
2293 lock_sock_nested(ssk, SINGLE_DEPTH_NESTING);
2294
2295 /* if we are invoked by the msk cleanup code, the subflow is
2296 * already orphaned
2297 */
2298 if (ssk->sk_socket)
2299 sock_orphan(ssk);
2300
2301 need_push = __mptcp_retransmit_pending_data(sk);
2302 subflow->disposable = 1;
2303
2304 /* if ssk hit tcp_done(), tcp_cleanup_ulp() cleared the related ops
2305 * the ssk has been already destroyed, we just need to release the
2306 * reference owned by msk;
2307 */
2308 if (!inet_csk(ssk)->icsk_ulp_ops) {
2309 kfree_rcu(subflow, rcu);
2310 } else {
2311 /* otherwise tcp will dispose of the ssk and subflow ctx */
2312 __tcp_close(ssk, 0);
2313
2314 /* close acquired an extra ref */
2315 __sock_put(ssk);
2316 }
2317 __mptcp_subflow_error_report(sk, ssk);
2318 release_sock(ssk);
2319
2320 sock_put(ssk);
2321
2322 if (ssk == msk->last_snd)
2323 msk->last_snd = NULL;
2324
2325 if (ssk == msk->first)
2326 msk->first = NULL;
2327
2328 if (msk->subflow && ssk == msk->subflow->sk)
2329 mptcp_dispose_initial_subflow(msk);
2330
2331 if (need_push)
2332 __mptcp_push_pending(sk, 0);
2333 }
2334
mptcp_close_ssk(struct sock * sk,struct sock * ssk,struct mptcp_subflow_context * subflow)2335 void mptcp_close_ssk(struct sock *sk, struct sock *ssk,
2336 struct mptcp_subflow_context *subflow)
2337 {
2338 if (sk->sk_state == TCP_ESTABLISHED)
2339 mptcp_event(MPTCP_EVENT_SUB_CLOSED, mptcp_sk(sk), ssk, GFP_KERNEL);
2340 __mptcp_close_ssk(sk, ssk, subflow);
2341 }
2342
mptcp_sync_mss(struct sock * sk,u32 pmtu)2343 static unsigned int mptcp_sync_mss(struct sock *sk, u32 pmtu)
2344 {
2345 return 0;
2346 }
2347
__mptcp_close_subflow(struct mptcp_sock * msk)2348 static void __mptcp_close_subflow(struct mptcp_sock *msk)
2349 {
2350 struct mptcp_subflow_context *subflow, *tmp;
2351
2352 might_sleep();
2353
2354 list_for_each_entry_safe(subflow, tmp, &msk->conn_list, node) {
2355 struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
2356
2357 if (inet_sk_state_load(ssk) != TCP_CLOSE)
2358 continue;
2359
2360 /* 'subflow_data_ready' will re-sched once rx queue is empty */
2361 if (!skb_queue_empty_lockless(&ssk->sk_receive_queue))
2362 continue;
2363
2364 mptcp_close_ssk((struct sock *)msk, ssk, subflow);
2365 }
2366 }
2367
mptcp_check_close_timeout(const struct sock * sk)2368 static bool mptcp_check_close_timeout(const struct sock *sk)
2369 {
2370 s32 delta = tcp_jiffies32 - inet_csk(sk)->icsk_mtup.probe_timestamp;
2371 struct mptcp_subflow_context *subflow;
2372
2373 if (delta >= TCP_TIMEWAIT_LEN)
2374 return true;
2375
2376 /* if all subflows are in closed status don't bother with additional
2377 * timeout
2378 */
2379 mptcp_for_each_subflow(mptcp_sk(sk), subflow) {
2380 if (inet_sk_state_load(mptcp_subflow_tcp_sock(subflow)) !=
2381 TCP_CLOSE)
2382 return false;
2383 }
2384 return true;
2385 }
2386
mptcp_check_fastclose(struct mptcp_sock * msk)2387 static void mptcp_check_fastclose(struct mptcp_sock *msk)
2388 {
2389 struct mptcp_subflow_context *subflow, *tmp;
2390 struct sock *sk = &msk->sk.icsk_inet.sk;
2391
2392 if (likely(!READ_ONCE(msk->rcv_fastclose)))
2393 return;
2394
2395 mptcp_token_destroy(msk);
2396
2397 list_for_each_entry_safe(subflow, tmp, &msk->conn_list, node) {
2398 struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow);
2399 bool slow;
2400
2401 slow = lock_sock_fast(tcp_sk);
2402 if (tcp_sk->sk_state != TCP_CLOSE) {
2403 tcp_send_active_reset(tcp_sk, GFP_ATOMIC);
2404 tcp_set_state(tcp_sk, TCP_CLOSE);
2405 }
2406 unlock_sock_fast(tcp_sk, slow);
2407 }
2408
2409 inet_sk_state_store(sk, TCP_CLOSE);
2410 sk->sk_shutdown = SHUTDOWN_MASK;
2411 smp_mb__before_atomic(); /* SHUTDOWN must be visible first */
2412 set_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags);
2413
2414 mptcp_close_wake_up(sk);
2415 }
2416
__mptcp_retrans(struct sock * sk)2417 static void __mptcp_retrans(struct sock *sk)
2418 {
2419 struct mptcp_sock *msk = mptcp_sk(sk);
2420 struct mptcp_sendmsg_info info = {};
2421 struct mptcp_data_frag *dfrag;
2422 size_t copied = 0;
2423 struct sock *ssk;
2424 int ret;
2425
2426 mptcp_clean_una_wakeup(sk);
2427 dfrag = mptcp_rtx_head(sk);
2428 if (!dfrag) {
2429 if (mptcp_data_fin_enabled(msk)) {
2430 struct inet_connection_sock *icsk = inet_csk(sk);
2431
2432 icsk->icsk_retransmits++;
2433 mptcp_set_datafin_timeout(sk);
2434 mptcp_send_ack(msk);
2435
2436 goto reset_timer;
2437 }
2438
2439 return;
2440 }
2441
2442 ssk = mptcp_subflow_get_retrans(msk);
2443 if (!ssk)
2444 goto reset_timer;
2445
2446 lock_sock(ssk);
2447
2448 /* limit retransmission to the bytes already sent on some subflows */
2449 info.sent = 0;
2450 info.limit = READ_ONCE(msk->csum_enabled) ? dfrag->data_len : dfrag->already_sent;
2451 while (info.sent < info.limit) {
2452 ret = mptcp_sendmsg_frag(sk, ssk, dfrag, &info);
2453 if (ret <= 0)
2454 break;
2455
2456 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RETRANSSEGS);
2457 copied += ret;
2458 info.sent += ret;
2459 }
2460 if (copied) {
2461 dfrag->already_sent = max(dfrag->already_sent, info.sent);
2462 tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle,
2463 info.size_goal);
2464 }
2465
2466 release_sock(ssk);
2467
2468 reset_timer:
2469 if (!mptcp_rtx_timer_pending(sk))
2470 mptcp_reset_rtx_timer(sk);
2471 }
2472
mptcp_worker(struct work_struct * work)2473 static void mptcp_worker(struct work_struct *work)
2474 {
2475 struct mptcp_sock *msk = container_of(work, struct mptcp_sock, work);
2476 struct sock *sk = &msk->sk.icsk_inet.sk;
2477 int state;
2478
2479 lock_sock(sk);
2480 state = sk->sk_state;
2481 if (unlikely((1 << state) & (TCPF_CLOSE | TCPF_LISTEN)))
2482 goto unlock;
2483
2484 mptcp_flush_join_list(msk);
2485
2486 mptcp_check_fastclose(msk);
2487
2488 if (msk->pm.status)
2489 mptcp_pm_nl_work(msk);
2490
2491 if (test_and_clear_bit(MPTCP_WORK_EOF, &msk->flags))
2492 mptcp_check_for_eof(msk);
2493
2494 mptcp_check_send_data_fin(sk);
2495 mptcp_check_data_fin_ack(sk);
2496 mptcp_check_data_fin(sk);
2497
2498 /* There is no point in keeping around an orphaned sk timedout or
2499 * closed, but we need the msk around to reply to incoming DATA_FIN,
2500 * even if it is orphaned and in FIN_WAIT2 state
2501 */
2502 if (sock_flag(sk, SOCK_DEAD) &&
2503 (mptcp_check_close_timeout(sk) || sk->sk_state == TCP_CLOSE)) {
2504 inet_sk_state_store(sk, TCP_CLOSE);
2505 __mptcp_destroy_sock(sk);
2506 goto unlock;
2507 }
2508
2509 if (test_and_clear_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags))
2510 __mptcp_close_subflow(msk);
2511
2512 if (test_and_clear_bit(MPTCP_WORK_RTX, &msk->flags))
2513 __mptcp_retrans(sk);
2514
2515 unlock:
2516 release_sock(sk);
2517 sock_put(sk);
2518 }
2519
__mptcp_init_sock(struct sock * sk)2520 static int __mptcp_init_sock(struct sock *sk)
2521 {
2522 struct mptcp_sock *msk = mptcp_sk(sk);
2523
2524 spin_lock_init(&msk->join_list_lock);
2525
2526 INIT_LIST_HEAD(&msk->conn_list);
2527 INIT_LIST_HEAD(&msk->join_list);
2528 INIT_LIST_HEAD(&msk->rtx_queue);
2529 INIT_WORK(&msk->work, mptcp_worker);
2530 __skb_queue_head_init(&msk->receive_queue);
2531 msk->out_of_order_queue = RB_ROOT;
2532 msk->first_pending = NULL;
2533 msk->wmem_reserved = 0;
2534 WRITE_ONCE(msk->rmem_released, 0);
2535 msk->tx_pending_data = 0;
2536 msk->timer_ival = TCP_RTO_MIN;
2537
2538 msk->first = NULL;
2539 inet_csk(sk)->icsk_sync_mss = mptcp_sync_mss;
2540 WRITE_ONCE(msk->csum_enabled, mptcp_is_checksum_enabled(sock_net(sk)));
2541 msk->recovery = false;
2542
2543 mptcp_pm_data_init(msk);
2544
2545 /* re-use the csk retrans timer for MPTCP-level retrans */
2546 timer_setup(&msk->sk.icsk_retransmit_timer, mptcp_retransmit_timer, 0);
2547 timer_setup(&sk->sk_timer, mptcp_tout_timer, 0);
2548
2549 return 0;
2550 }
2551
mptcp_init_sock(struct sock * sk)2552 static int mptcp_init_sock(struct sock *sk)
2553 {
2554 struct inet_connection_sock *icsk = inet_csk(sk);
2555 struct net *net = sock_net(sk);
2556 int ret;
2557
2558 ret = __mptcp_init_sock(sk);
2559 if (ret)
2560 return ret;
2561
2562 if (!mptcp_is_enabled(net))
2563 return -ENOPROTOOPT;
2564
2565 if (unlikely(!net->mib.mptcp_statistics) && !mptcp_mib_alloc(net))
2566 return -ENOMEM;
2567
2568 ret = __mptcp_socket_create(mptcp_sk(sk));
2569 if (ret)
2570 return ret;
2571
2572 /* fetch the ca name; do it outside __mptcp_init_sock(), so that clone will
2573 * propagate the correct value
2574 */
2575 tcp_assign_congestion_control(sk);
2576 strcpy(mptcp_sk(sk)->ca_name, icsk->icsk_ca_ops->name);
2577
2578 /* no need to keep a reference to the ops, the name will suffice */
2579 tcp_cleanup_congestion_control(sk);
2580 icsk->icsk_ca_ops = NULL;
2581
2582 sk_sockets_allocated_inc(sk);
2583 sk->sk_rcvbuf = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[1]);
2584 sk->sk_sndbuf = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[1]);
2585
2586 return 0;
2587 }
2588
__mptcp_clear_xmit(struct sock * sk)2589 static void __mptcp_clear_xmit(struct sock *sk)
2590 {
2591 struct mptcp_sock *msk = mptcp_sk(sk);
2592 struct mptcp_data_frag *dtmp, *dfrag;
2593
2594 WRITE_ONCE(msk->first_pending, NULL);
2595 list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list)
2596 dfrag_clear(sk, dfrag);
2597 }
2598
mptcp_cancel_work(struct sock * sk)2599 static void mptcp_cancel_work(struct sock *sk)
2600 {
2601 struct mptcp_sock *msk = mptcp_sk(sk);
2602
2603 if (cancel_work_sync(&msk->work))
2604 __sock_put(sk);
2605 }
2606
mptcp_subflow_shutdown(struct sock * sk,struct sock * ssk,int how)2607 void mptcp_subflow_shutdown(struct sock *sk, struct sock *ssk, int how)
2608 {
2609 lock_sock(ssk);
2610
2611 switch (ssk->sk_state) {
2612 case TCP_LISTEN:
2613 if (!(how & RCV_SHUTDOWN))
2614 break;
2615 fallthrough;
2616 case TCP_SYN_SENT:
2617 tcp_disconnect(ssk, O_NONBLOCK);
2618 break;
2619 default:
2620 if (__mptcp_check_fallback(mptcp_sk(sk))) {
2621 pr_debug("Fallback");
2622 ssk->sk_shutdown |= how;
2623 tcp_shutdown(ssk, how);
2624
2625 /* simulate the data_fin ack reception to let the state
2626 * machine move forward
2627 */
2628 WRITE_ONCE(mptcp_sk(sk)->snd_una, mptcp_sk(sk)->snd_nxt);
2629 mptcp_schedule_work(sk);
2630 } else {
2631 pr_debug("Sending DATA_FIN on subflow %p", ssk);
2632 tcp_send_ack(ssk);
2633 if (!mptcp_rtx_timer_pending(sk))
2634 mptcp_reset_rtx_timer(sk);
2635 }
2636 break;
2637 }
2638
2639 release_sock(ssk);
2640 }
2641
2642 static const unsigned char new_state[16] = {
2643 /* current state: new state: action: */
2644 [0 /* (Invalid) */] = TCP_CLOSE,
2645 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2646 [TCP_SYN_SENT] = TCP_CLOSE,
2647 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2648 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1,
2649 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2,
2650 [TCP_TIME_WAIT] = TCP_CLOSE, /* should not happen ! */
2651 [TCP_CLOSE] = TCP_CLOSE,
2652 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN,
2653 [TCP_LAST_ACK] = TCP_LAST_ACK,
2654 [TCP_LISTEN] = TCP_CLOSE,
2655 [TCP_CLOSING] = TCP_CLOSING,
2656 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */
2657 };
2658
mptcp_close_state(struct sock * sk)2659 static int mptcp_close_state(struct sock *sk)
2660 {
2661 int next = (int)new_state[sk->sk_state];
2662 int ns = next & TCP_STATE_MASK;
2663
2664 inet_sk_state_store(sk, ns);
2665
2666 return next & TCP_ACTION_FIN;
2667 }
2668
mptcp_check_send_data_fin(struct sock * sk)2669 static void mptcp_check_send_data_fin(struct sock *sk)
2670 {
2671 struct mptcp_subflow_context *subflow;
2672 struct mptcp_sock *msk = mptcp_sk(sk);
2673
2674 pr_debug("msk=%p snd_data_fin_enable=%d pending=%d snd_nxt=%llu write_seq=%llu",
2675 msk, msk->snd_data_fin_enable, !!mptcp_send_head(sk),
2676 msk->snd_nxt, msk->write_seq);
2677
2678 /* we still need to enqueue subflows or not really shutting down,
2679 * skip this
2680 */
2681 if (!msk->snd_data_fin_enable || msk->snd_nxt + 1 != msk->write_seq ||
2682 mptcp_send_head(sk))
2683 return;
2684
2685 WRITE_ONCE(msk->snd_nxt, msk->write_seq);
2686
2687 mptcp_flush_join_list(msk);
2688 mptcp_for_each_subflow(msk, subflow) {
2689 struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow);
2690
2691 mptcp_subflow_shutdown(sk, tcp_sk, SEND_SHUTDOWN);
2692 }
2693 }
2694
__mptcp_wr_shutdown(struct sock * sk)2695 static void __mptcp_wr_shutdown(struct sock *sk)
2696 {
2697 struct mptcp_sock *msk = mptcp_sk(sk);
2698
2699 pr_debug("msk=%p snd_data_fin_enable=%d shutdown=%x state=%d pending=%d",
2700 msk, msk->snd_data_fin_enable, sk->sk_shutdown, sk->sk_state,
2701 !!mptcp_send_head(sk));
2702
2703 /* will be ignored by fallback sockets */
2704 WRITE_ONCE(msk->write_seq, msk->write_seq + 1);
2705 WRITE_ONCE(msk->snd_data_fin_enable, 1);
2706
2707 mptcp_check_send_data_fin(sk);
2708 }
2709
__mptcp_destroy_sock(struct sock * sk)2710 static void __mptcp_destroy_sock(struct sock *sk)
2711 {
2712 struct mptcp_subflow_context *subflow, *tmp;
2713 struct mptcp_sock *msk = mptcp_sk(sk);
2714 LIST_HEAD(conn_list);
2715
2716 pr_debug("msk=%p", msk);
2717
2718 might_sleep();
2719
2720 /* be sure to always acquire the join list lock, to sync vs
2721 * mptcp_finish_join().
2722 */
2723 spin_lock_bh(&msk->join_list_lock);
2724 list_splice_tail_init(&msk->join_list, &msk->conn_list);
2725 spin_unlock_bh(&msk->join_list_lock);
2726 list_splice_init(&msk->conn_list, &conn_list);
2727
2728 sk_stop_timer(sk, &msk->sk.icsk_retransmit_timer);
2729 sk_stop_timer(sk, &sk->sk_timer);
2730 msk->pm.status = 0;
2731
2732 list_for_each_entry_safe(subflow, tmp, &conn_list, node) {
2733 struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
2734 __mptcp_close_ssk(sk, ssk, subflow);
2735 }
2736
2737 sk->sk_prot->destroy(sk);
2738
2739 WARN_ON_ONCE(msk->wmem_reserved);
2740 WARN_ON_ONCE(msk->rmem_released);
2741 sk_stream_kill_queues(sk);
2742 xfrm_sk_free_policy(sk);
2743
2744 sk_refcnt_debug_release(sk);
2745 mptcp_dispose_initial_subflow(msk);
2746 sock_put(sk);
2747 }
2748
mptcp_close(struct sock * sk,long timeout)2749 static void mptcp_close(struct sock *sk, long timeout)
2750 {
2751 struct mptcp_subflow_context *subflow;
2752 bool do_cancel_work = false;
2753 int subflows_alive = 0;
2754
2755 lock_sock(sk);
2756 sk->sk_shutdown = SHUTDOWN_MASK;
2757
2758 if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE)) {
2759 inet_sk_state_store(sk, TCP_CLOSE);
2760 goto cleanup;
2761 }
2762
2763 if (mptcp_close_state(sk))
2764 __mptcp_wr_shutdown(sk);
2765
2766 sk_stream_wait_close(sk, timeout);
2767
2768 cleanup:
2769 /* orphan all the subflows */
2770 inet_csk(sk)->icsk_mtup.probe_timestamp = tcp_jiffies32;
2771 mptcp_for_each_subflow(mptcp_sk(sk), subflow) {
2772 struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
2773 bool slow = lock_sock_fast_nested(ssk);
2774
2775 subflows_alive += ssk->sk_state != TCP_CLOSE;
2776
2777 sock_orphan(ssk);
2778 unlock_sock_fast(ssk, slow);
2779 }
2780 sock_orphan(sk);
2781
2782 /* all the subflows are closed, only timeout can change the msk
2783 * state, let's not keep resources busy for no reasons
2784 */
2785 if (subflows_alive == 0)
2786 inet_sk_state_store(sk, TCP_CLOSE);
2787
2788 sock_hold(sk);
2789 pr_debug("msk=%p state=%d", sk, sk->sk_state);
2790 if (sk->sk_state == TCP_CLOSE) {
2791 __mptcp_destroy_sock(sk);
2792 do_cancel_work = true;
2793 } else {
2794 sk_reset_timer(sk, &sk->sk_timer, jiffies + TCP_TIMEWAIT_LEN);
2795 }
2796 release_sock(sk);
2797 if (do_cancel_work)
2798 mptcp_cancel_work(sk);
2799
2800 if (mptcp_sk(sk)->token)
2801 mptcp_event(MPTCP_EVENT_CLOSED, mptcp_sk(sk), NULL, GFP_KERNEL);
2802
2803 sock_put(sk);
2804 }
2805
mptcp_copy_inaddrs(struct sock * msk,const struct sock * ssk)2806 static void mptcp_copy_inaddrs(struct sock *msk, const struct sock *ssk)
2807 {
2808 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
2809 const struct ipv6_pinfo *ssk6 = inet6_sk(ssk);
2810 struct ipv6_pinfo *msk6 = inet6_sk(msk);
2811
2812 msk->sk_v6_daddr = ssk->sk_v6_daddr;
2813 msk->sk_v6_rcv_saddr = ssk->sk_v6_rcv_saddr;
2814
2815 if (msk6 && ssk6) {
2816 msk6->saddr = ssk6->saddr;
2817 msk6->flow_label = ssk6->flow_label;
2818 }
2819 #endif
2820
2821 inet_sk(msk)->inet_num = inet_sk(ssk)->inet_num;
2822 inet_sk(msk)->inet_dport = inet_sk(ssk)->inet_dport;
2823 inet_sk(msk)->inet_sport = inet_sk(ssk)->inet_sport;
2824 inet_sk(msk)->inet_daddr = inet_sk(ssk)->inet_daddr;
2825 inet_sk(msk)->inet_saddr = inet_sk(ssk)->inet_saddr;
2826 inet_sk(msk)->inet_rcv_saddr = inet_sk(ssk)->inet_rcv_saddr;
2827 }
2828
mptcp_disconnect(struct sock * sk,int flags)2829 static int mptcp_disconnect(struct sock *sk, int flags)
2830 {
2831 struct mptcp_subflow_context *subflow;
2832 struct mptcp_sock *msk = mptcp_sk(sk);
2833
2834 /* Deny disconnect if other threads are blocked in sk_wait_event()
2835 * or inet_wait_for_connect().
2836 */
2837 if (sk->sk_wait_pending)
2838 return -EBUSY;
2839
2840 mptcp_do_flush_join_list(msk);
2841
2842 mptcp_for_each_subflow(msk, subflow) {
2843 struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
2844
2845 lock_sock(ssk);
2846 tcp_disconnect(ssk, flags);
2847 release_sock(ssk);
2848 }
2849 return 0;
2850 }
2851
2852 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
mptcp_inet6_sk(const struct sock * sk)2853 static struct ipv6_pinfo *mptcp_inet6_sk(const struct sock *sk)
2854 {
2855 unsigned int offset = sizeof(struct mptcp6_sock) - sizeof(struct ipv6_pinfo);
2856
2857 return (struct ipv6_pinfo *)(((u8 *)sk) + offset);
2858 }
2859
mptcp_copy_ip6_options(struct sock * newsk,const struct sock * sk)2860 static void mptcp_copy_ip6_options(struct sock *newsk, const struct sock *sk)
2861 {
2862 const struct ipv6_pinfo *np = inet6_sk(sk);
2863 struct ipv6_txoptions *opt;
2864 struct ipv6_pinfo *newnp;
2865
2866 newnp = inet6_sk(newsk);
2867
2868 rcu_read_lock();
2869 opt = rcu_dereference(np->opt);
2870 if (opt) {
2871 opt = ipv6_dup_options(newsk, opt);
2872 if (!opt)
2873 net_warn_ratelimited("%s: Failed to copy ip6 options\n", __func__);
2874 }
2875 RCU_INIT_POINTER(newnp->opt, opt);
2876 rcu_read_unlock();
2877 }
2878 #endif
2879
mptcp_copy_ip_options(struct sock * newsk,const struct sock * sk)2880 static void mptcp_copy_ip_options(struct sock *newsk, const struct sock *sk)
2881 {
2882 struct ip_options_rcu *inet_opt, *newopt = NULL;
2883 const struct inet_sock *inet = inet_sk(sk);
2884 struct inet_sock *newinet;
2885
2886 newinet = inet_sk(newsk);
2887
2888 rcu_read_lock();
2889 inet_opt = rcu_dereference(inet->inet_opt);
2890 if (inet_opt) {
2891 newopt = sock_kmalloc(newsk, sizeof(*inet_opt) +
2892 inet_opt->opt.optlen, GFP_ATOMIC);
2893 if (newopt)
2894 memcpy(newopt, inet_opt, sizeof(*inet_opt) +
2895 inet_opt->opt.optlen);
2896 else
2897 net_warn_ratelimited("%s: Failed to copy ip options\n", __func__);
2898 }
2899 RCU_INIT_POINTER(newinet->inet_opt, newopt);
2900 rcu_read_unlock();
2901 }
2902
mptcp_sk_clone(const struct sock * sk,const struct mptcp_options_received * mp_opt,struct request_sock * req)2903 struct sock *mptcp_sk_clone(const struct sock *sk,
2904 const struct mptcp_options_received *mp_opt,
2905 struct request_sock *req)
2906 {
2907 struct mptcp_subflow_request_sock *subflow_req = mptcp_subflow_rsk(req);
2908 struct sock *nsk = sk_clone_lock(sk, GFP_ATOMIC);
2909 struct mptcp_sock *msk;
2910 u64 ack_seq;
2911
2912 if (!nsk)
2913 return NULL;
2914
2915 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
2916 if (nsk->sk_family == AF_INET6)
2917 inet_sk(nsk)->pinet6 = mptcp_inet6_sk(nsk);
2918 #endif
2919
2920 nsk->sk_wait_pending = 0;
2921 __mptcp_init_sock(nsk);
2922
2923 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
2924 if (nsk->sk_family == AF_INET6)
2925 mptcp_copy_ip6_options(nsk, sk);
2926 else
2927 #endif
2928 mptcp_copy_ip_options(nsk, sk);
2929
2930 msk = mptcp_sk(nsk);
2931 msk->local_key = subflow_req->local_key;
2932 msk->token = subflow_req->token;
2933 msk->subflow = NULL;
2934 WRITE_ONCE(msk->fully_established, false);
2935 if (mp_opt->suboptions & OPTION_MPTCP_CSUMREQD)
2936 WRITE_ONCE(msk->csum_enabled, true);
2937
2938 msk->write_seq = subflow_req->idsn + 1;
2939 msk->snd_nxt = msk->write_seq;
2940 msk->snd_una = msk->write_seq;
2941 msk->wnd_end = msk->snd_nxt + req->rsk_rcv_wnd;
2942 msk->setsockopt_seq = mptcp_sk(sk)->setsockopt_seq;
2943
2944 if (mp_opt->suboptions & OPTIONS_MPTCP_MPC) {
2945 msk->can_ack = true;
2946 msk->remote_key = mp_opt->sndr_key;
2947 mptcp_crypto_key_sha(msk->remote_key, NULL, &ack_seq);
2948 ack_seq++;
2949 WRITE_ONCE(msk->ack_seq, ack_seq);
2950 WRITE_ONCE(msk->rcv_wnd_sent, ack_seq);
2951 }
2952
2953 sock_reset_flag(nsk, SOCK_RCU_FREE);
2954 /* will be fully established after successful MPC subflow creation */
2955 inet_sk_state_store(nsk, TCP_SYN_RECV);
2956
2957 security_inet_csk_clone(nsk, req);
2958 bh_unlock_sock(nsk);
2959
2960 /* keep a single reference */
2961 __sock_put(nsk);
2962 return nsk;
2963 }
2964
mptcp_rcv_space_init(struct mptcp_sock * msk,const struct sock * ssk)2965 void mptcp_rcv_space_init(struct mptcp_sock *msk, const struct sock *ssk)
2966 {
2967 const struct tcp_sock *tp = tcp_sk(ssk);
2968
2969 msk->rcvq_space.copied = 0;
2970 msk->rcvq_space.rtt_us = 0;
2971
2972 msk->rcvq_space.time = tp->tcp_mstamp;
2973
2974 /* initial rcv_space offering made to peer */
2975 msk->rcvq_space.space = min_t(u32, tp->rcv_wnd,
2976 TCP_INIT_CWND * tp->advmss);
2977 if (msk->rcvq_space.space == 0)
2978 msk->rcvq_space.space = TCP_INIT_CWND * TCP_MSS_DEFAULT;
2979
2980 WRITE_ONCE(msk->wnd_end, msk->snd_nxt + tcp_sk(ssk)->snd_wnd);
2981 }
2982
mptcp_accept(struct sock * sk,int flags,int * err,bool kern)2983 static struct sock *mptcp_accept(struct sock *sk, int flags, int *err,
2984 bool kern)
2985 {
2986 struct mptcp_sock *msk = mptcp_sk(sk);
2987 struct socket *listener;
2988 struct sock *newsk;
2989
2990 listener = __mptcp_nmpc_socket(msk);
2991 if (WARN_ON_ONCE(!listener)) {
2992 *err = -EINVAL;
2993 return NULL;
2994 }
2995
2996 pr_debug("msk=%p, listener=%p", msk, mptcp_subflow_ctx(listener->sk));
2997 newsk = inet_csk_accept(listener->sk, flags, err, kern);
2998 if (!newsk)
2999 return NULL;
3000
3001 pr_debug("msk=%p, subflow is mptcp=%d", msk, sk_is_mptcp(newsk));
3002 if (sk_is_mptcp(newsk)) {
3003 struct mptcp_subflow_context *subflow;
3004 struct sock *new_mptcp_sock;
3005
3006 subflow = mptcp_subflow_ctx(newsk);
3007 new_mptcp_sock = subflow->conn;
3008
3009 /* is_mptcp should be false if subflow->conn is missing, see
3010 * subflow_syn_recv_sock()
3011 */
3012 if (WARN_ON_ONCE(!new_mptcp_sock)) {
3013 tcp_sk(newsk)->is_mptcp = 0;
3014 goto out;
3015 }
3016
3017 /* acquire the 2nd reference for the owning socket */
3018 sock_hold(new_mptcp_sock);
3019 newsk = new_mptcp_sock;
3020 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_MPCAPABLEPASSIVEACK);
3021 } else {
3022 MPTCP_INC_STATS(sock_net(sk),
3023 MPTCP_MIB_MPCAPABLEPASSIVEFALLBACK);
3024 }
3025
3026 out:
3027 newsk->sk_kern_sock = kern;
3028 return newsk;
3029 }
3030
mptcp_destroy_common(struct mptcp_sock * msk)3031 void mptcp_destroy_common(struct mptcp_sock *msk)
3032 {
3033 struct sock *sk = (struct sock *)msk;
3034
3035 __mptcp_clear_xmit(sk);
3036
3037 /* move to sk_receive_queue, sk_stream_kill_queues will purge it */
3038 skb_queue_splice_tail_init(&msk->receive_queue, &sk->sk_receive_queue);
3039
3040 skb_rbtree_purge(&msk->out_of_order_queue);
3041 mptcp_token_destroy(msk);
3042 mptcp_pm_free_anno_list(msk);
3043 }
3044
mptcp_destroy(struct sock * sk)3045 static void mptcp_destroy(struct sock *sk)
3046 {
3047 struct mptcp_sock *msk = mptcp_sk(sk);
3048
3049 mptcp_destroy_common(msk);
3050 sk_sockets_allocated_dec(sk);
3051 }
3052
__mptcp_data_acked(struct sock * sk)3053 void __mptcp_data_acked(struct sock *sk)
3054 {
3055 if (!sock_owned_by_user(sk))
3056 __mptcp_clean_una(sk);
3057 else
3058 set_bit(MPTCP_CLEAN_UNA, &mptcp_sk(sk)->flags);
3059
3060 if (mptcp_pending_data_fin_ack(sk))
3061 mptcp_schedule_work(sk);
3062 }
3063
__mptcp_check_push(struct sock * sk,struct sock * ssk)3064 void __mptcp_check_push(struct sock *sk, struct sock *ssk)
3065 {
3066 if (!mptcp_send_head(sk))
3067 return;
3068
3069 if (!sock_owned_by_user(sk)) {
3070 struct sock *xmit_ssk = mptcp_subflow_get_send(mptcp_sk(sk));
3071
3072 if (xmit_ssk == ssk)
3073 __mptcp_subflow_push_pending(sk, ssk);
3074 else if (xmit_ssk)
3075 mptcp_subflow_delegate(mptcp_subflow_ctx(xmit_ssk), MPTCP_DELEGATE_SEND);
3076 } else {
3077 set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->flags);
3078 }
3079 }
3080
3081 /* processes deferred events and flush wmem */
mptcp_release_cb(struct sock * sk)3082 static void mptcp_release_cb(struct sock *sk)
3083 {
3084 for (;;) {
3085 unsigned long flags = 0;
3086
3087 if (test_and_clear_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->flags))
3088 flags |= BIT(MPTCP_PUSH_PENDING);
3089 if (test_and_clear_bit(MPTCP_RETRANSMIT, &mptcp_sk(sk)->flags))
3090 flags |= BIT(MPTCP_RETRANSMIT);
3091 if (!flags)
3092 break;
3093
3094 /* the following actions acquire the subflow socket lock
3095 *
3096 * 1) can't be invoked in atomic scope
3097 * 2) must avoid ABBA deadlock with msk socket spinlock: the RX
3098 * datapath acquires the msk socket spinlock while helding
3099 * the subflow socket lock
3100 */
3101
3102 spin_unlock_bh(&sk->sk_lock.slock);
3103 if (flags & BIT(MPTCP_PUSH_PENDING))
3104 __mptcp_push_pending(sk, 0);
3105 if (flags & BIT(MPTCP_RETRANSMIT))
3106 __mptcp_retrans(sk);
3107
3108 cond_resched();
3109 spin_lock_bh(&sk->sk_lock.slock);
3110 }
3111
3112 /* be sure to set the current sk state before tacking actions
3113 * depending on sk_state
3114 */
3115 if (test_and_clear_bit(MPTCP_CONNECTED, &mptcp_sk(sk)->flags))
3116 __mptcp_set_connected(sk);
3117 if (test_and_clear_bit(MPTCP_CLEAN_UNA, &mptcp_sk(sk)->flags))
3118 __mptcp_clean_una_wakeup(sk);
3119 if (test_and_clear_bit(MPTCP_ERROR_REPORT, &mptcp_sk(sk)->flags))
3120 __mptcp_error_report(sk);
3121
3122 /* push_pending may touch wmem_reserved, ensure we do the cleanup
3123 * later
3124 */
3125 __mptcp_update_wmem(sk);
3126 __mptcp_update_rmem(sk);
3127 }
3128
3129 /* MP_JOIN client subflow must wait for 4th ack before sending any data:
3130 * TCP can't schedule delack timer before the subflow is fully established.
3131 * MPTCP uses the delack timer to do 3rd ack retransmissions
3132 */
schedule_3rdack_retransmission(struct sock * ssk)3133 static void schedule_3rdack_retransmission(struct sock *ssk)
3134 {
3135 struct inet_connection_sock *icsk = inet_csk(ssk);
3136 struct tcp_sock *tp = tcp_sk(ssk);
3137 unsigned long timeout;
3138
3139 if (mptcp_subflow_ctx(ssk)->fully_established)
3140 return;
3141
3142 /* reschedule with a timeout above RTT, as we must look only for drop */
3143 if (tp->srtt_us)
3144 timeout = usecs_to_jiffies(tp->srtt_us >> (3 - 1));
3145 else
3146 timeout = TCP_TIMEOUT_INIT;
3147 timeout += jiffies;
3148
3149 WARN_ON_ONCE(icsk->icsk_ack.pending & ICSK_ACK_TIMER);
3150 icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
3151 icsk->icsk_ack.timeout = timeout;
3152 sk_reset_timer(ssk, &icsk->icsk_delack_timer, timeout);
3153 }
3154
mptcp_subflow_process_delegated(struct sock * ssk)3155 void mptcp_subflow_process_delegated(struct sock *ssk)
3156 {
3157 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
3158 struct sock *sk = subflow->conn;
3159
3160 if (test_bit(MPTCP_DELEGATE_SEND, &subflow->delegated_status)) {
3161 mptcp_data_lock(sk);
3162 if (!sock_owned_by_user(sk))
3163 __mptcp_subflow_push_pending(sk, ssk);
3164 else
3165 set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->flags);
3166 mptcp_data_unlock(sk);
3167 mptcp_subflow_delegated_done(subflow, MPTCP_DELEGATE_SEND);
3168 }
3169 if (test_bit(MPTCP_DELEGATE_ACK, &subflow->delegated_status)) {
3170 schedule_3rdack_retransmission(ssk);
3171 mptcp_subflow_delegated_done(subflow, MPTCP_DELEGATE_ACK);
3172 }
3173 }
3174
mptcp_hash(struct sock * sk)3175 static int mptcp_hash(struct sock *sk)
3176 {
3177 /* should never be called,
3178 * we hash the TCP subflows not the master socket
3179 */
3180 WARN_ON_ONCE(1);
3181 return 0;
3182 }
3183
mptcp_unhash(struct sock * sk)3184 static void mptcp_unhash(struct sock *sk)
3185 {
3186 /* called from sk_common_release(), but nothing to do here */
3187 }
3188
mptcp_get_port(struct sock * sk,unsigned short snum)3189 static int mptcp_get_port(struct sock *sk, unsigned short snum)
3190 {
3191 struct mptcp_sock *msk = mptcp_sk(sk);
3192 struct socket *ssock;
3193
3194 ssock = __mptcp_nmpc_socket(msk);
3195 pr_debug("msk=%p, subflow=%p", msk, ssock);
3196 if (WARN_ON_ONCE(!ssock))
3197 return -EINVAL;
3198
3199 return inet_csk_get_port(ssock->sk, snum);
3200 }
3201
mptcp_finish_connect(struct sock * ssk)3202 void mptcp_finish_connect(struct sock *ssk)
3203 {
3204 struct mptcp_subflow_context *subflow;
3205 struct mptcp_sock *msk;
3206 struct sock *sk;
3207 u64 ack_seq;
3208
3209 subflow = mptcp_subflow_ctx(ssk);
3210 sk = subflow->conn;
3211 msk = mptcp_sk(sk);
3212
3213 pr_debug("msk=%p, token=%u", sk, subflow->token);
3214
3215 mptcp_crypto_key_sha(subflow->remote_key, NULL, &ack_seq);
3216 ack_seq++;
3217 subflow->map_seq = ack_seq;
3218 subflow->map_subflow_seq = 1;
3219
3220 /* the socket is not connected yet, no msk/subflow ops can access/race
3221 * accessing the field below
3222 */
3223 WRITE_ONCE(msk->remote_key, subflow->remote_key);
3224 WRITE_ONCE(msk->local_key, subflow->local_key);
3225 WRITE_ONCE(msk->write_seq, subflow->idsn + 1);
3226 WRITE_ONCE(msk->snd_nxt, msk->write_seq);
3227 WRITE_ONCE(msk->ack_seq, ack_seq);
3228 WRITE_ONCE(msk->rcv_wnd_sent, ack_seq);
3229 WRITE_ONCE(msk->can_ack, 1);
3230 WRITE_ONCE(msk->snd_una, msk->write_seq);
3231
3232 mptcp_pm_new_connection(msk, ssk, 0);
3233
3234 mptcp_rcv_space_init(msk, ssk);
3235 }
3236
mptcp_sock_graft(struct sock * sk,struct socket * parent)3237 void mptcp_sock_graft(struct sock *sk, struct socket *parent)
3238 {
3239 write_lock_bh(&sk->sk_callback_lock);
3240 rcu_assign_pointer(sk->sk_wq, &parent->wq);
3241 sk_set_socket(sk, parent);
3242 sk->sk_uid = SOCK_INODE(parent)->i_uid;
3243 write_unlock_bh(&sk->sk_callback_lock);
3244 }
3245
mptcp_finish_join(struct sock * ssk)3246 bool mptcp_finish_join(struct sock *ssk)
3247 {
3248 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
3249 struct mptcp_sock *msk = mptcp_sk(subflow->conn);
3250 struct sock *parent = (void *)msk;
3251 struct socket *parent_sock;
3252 bool ret;
3253
3254 pr_debug("msk=%p, subflow=%p", msk, subflow);
3255
3256 /* mptcp socket already closing? */
3257 if (!mptcp_is_fully_established(parent)) {
3258 subflow->reset_reason = MPTCP_RST_EMPTCP;
3259 return false;
3260 }
3261
3262 if (!msk->pm.server_side)
3263 goto out;
3264
3265 if (!mptcp_pm_allow_new_subflow(msk)) {
3266 subflow->reset_reason = MPTCP_RST_EPROHIBIT;
3267 return false;
3268 }
3269
3270 /* active connections are already on conn_list, and we can't acquire
3271 * msk lock here.
3272 * use the join list lock as synchronization point and double-check
3273 * msk status to avoid racing with __mptcp_destroy_sock()
3274 */
3275 spin_lock_bh(&msk->join_list_lock);
3276 ret = inet_sk_state_load(parent) == TCP_ESTABLISHED;
3277 if (ret && !WARN_ON_ONCE(!list_empty(&subflow->node))) {
3278 list_add_tail(&subflow->node, &msk->join_list);
3279 sock_hold(ssk);
3280 }
3281 spin_unlock_bh(&msk->join_list_lock);
3282 if (!ret) {
3283 subflow->reset_reason = MPTCP_RST_EPROHIBIT;
3284 return false;
3285 }
3286
3287 /* attach to msk socket only after we are sure he will deal with us
3288 * at close time
3289 */
3290 parent_sock = READ_ONCE(parent->sk_socket);
3291 if (parent_sock && !ssk->sk_socket)
3292 mptcp_sock_graft(ssk, parent_sock);
3293 subflow->map_seq = READ_ONCE(msk->ack_seq);
3294 out:
3295 mptcp_event(MPTCP_EVENT_SUB_ESTABLISHED, msk, ssk, GFP_ATOMIC);
3296 return true;
3297 }
3298
mptcp_shutdown(struct sock * sk,int how)3299 static void mptcp_shutdown(struct sock *sk, int how)
3300 {
3301 pr_debug("sk=%p, how=%d", sk, how);
3302
3303 if ((how & SEND_SHUTDOWN) && mptcp_close_state(sk))
3304 __mptcp_wr_shutdown(sk);
3305 }
3306
3307 static struct proto mptcp_prot = {
3308 .name = "MPTCP",
3309 .owner = THIS_MODULE,
3310 .init = mptcp_init_sock,
3311 .disconnect = mptcp_disconnect,
3312 .close = mptcp_close,
3313 .accept = mptcp_accept,
3314 .setsockopt = mptcp_setsockopt,
3315 .getsockopt = mptcp_getsockopt,
3316 .shutdown = mptcp_shutdown,
3317 .destroy = mptcp_destroy,
3318 .sendmsg = mptcp_sendmsg,
3319 .recvmsg = mptcp_recvmsg,
3320 .release_cb = mptcp_release_cb,
3321 .hash = mptcp_hash,
3322 .unhash = mptcp_unhash,
3323 .get_port = mptcp_get_port,
3324 .sockets_allocated = &mptcp_sockets_allocated,
3325 .memory_allocated = &tcp_memory_allocated,
3326 .memory_pressure = &tcp_memory_pressure,
3327 .sysctl_wmem_offset = offsetof(struct net, ipv4.sysctl_tcp_wmem),
3328 .sysctl_rmem_offset = offsetof(struct net, ipv4.sysctl_tcp_rmem),
3329 .sysctl_mem = sysctl_tcp_mem,
3330 .obj_size = sizeof(struct mptcp_sock),
3331 .slab_flags = SLAB_TYPESAFE_BY_RCU,
3332 .no_autobind = true,
3333 };
3334
mptcp_bind(struct socket * sock,struct sockaddr * uaddr,int addr_len)3335 static int mptcp_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len)
3336 {
3337 struct mptcp_sock *msk = mptcp_sk(sock->sk);
3338 struct socket *ssock;
3339 int err;
3340
3341 lock_sock(sock->sk);
3342 ssock = __mptcp_nmpc_socket(msk);
3343 if (!ssock) {
3344 err = -EINVAL;
3345 goto unlock;
3346 }
3347
3348 err = ssock->ops->bind(ssock, uaddr, addr_len);
3349 if (!err)
3350 mptcp_copy_inaddrs(sock->sk, ssock->sk);
3351
3352 unlock:
3353 release_sock(sock->sk);
3354 return err;
3355 }
3356
mptcp_subflow_early_fallback(struct mptcp_sock * msk,struct mptcp_subflow_context * subflow)3357 static void mptcp_subflow_early_fallback(struct mptcp_sock *msk,
3358 struct mptcp_subflow_context *subflow)
3359 {
3360 subflow->request_mptcp = 0;
3361 __mptcp_do_fallback(msk);
3362 }
3363
mptcp_stream_connect(struct socket * sock,struct sockaddr * uaddr,int addr_len,int flags)3364 static int mptcp_stream_connect(struct socket *sock, struct sockaddr *uaddr,
3365 int addr_len, int flags)
3366 {
3367 struct mptcp_sock *msk = mptcp_sk(sock->sk);
3368 struct mptcp_subflow_context *subflow;
3369 struct socket *ssock;
3370 int err;
3371
3372 lock_sock(sock->sk);
3373 if (sock->state != SS_UNCONNECTED && msk->subflow) {
3374 /* pending connection or invalid state, let existing subflow
3375 * cope with that
3376 */
3377 ssock = msk->subflow;
3378 goto do_connect;
3379 }
3380
3381 ssock = __mptcp_nmpc_socket(msk);
3382 if (!ssock) {
3383 err = -EINVAL;
3384 goto unlock;
3385 }
3386
3387 mptcp_token_destroy(msk);
3388 inet_sk_state_store(sock->sk, TCP_SYN_SENT);
3389 subflow = mptcp_subflow_ctx(ssock->sk);
3390 #ifdef CONFIG_TCP_MD5SIG
3391 /* no MPTCP if MD5SIG is enabled on this socket or we may run out of
3392 * TCP option space.
3393 */
3394 if (rcu_access_pointer(tcp_sk(ssock->sk)->md5sig_info))
3395 mptcp_subflow_early_fallback(msk, subflow);
3396 #endif
3397 if (subflow->request_mptcp && mptcp_token_new_connect(ssock->sk)) {
3398 MPTCP_INC_STATS(sock_net(ssock->sk), MPTCP_MIB_TOKENFALLBACKINIT);
3399 mptcp_subflow_early_fallback(msk, subflow);
3400 }
3401 if (likely(!__mptcp_check_fallback(msk)))
3402 MPTCP_INC_STATS(sock_net(sock->sk), MPTCP_MIB_MPCAPABLEACTIVE);
3403
3404 do_connect:
3405 err = ssock->ops->connect(ssock, uaddr, addr_len, flags);
3406 sock->state = ssock->state;
3407
3408 /* on successful connect, the msk state will be moved to established by
3409 * subflow_finish_connect()
3410 */
3411 if (!err || err == -EINPROGRESS)
3412 mptcp_copy_inaddrs(sock->sk, ssock->sk);
3413 else
3414 inet_sk_state_store(sock->sk, inet_sk_state_load(ssock->sk));
3415
3416 unlock:
3417 release_sock(sock->sk);
3418 return err;
3419 }
3420
mptcp_listen(struct socket * sock,int backlog)3421 static int mptcp_listen(struct socket *sock, int backlog)
3422 {
3423 struct mptcp_sock *msk = mptcp_sk(sock->sk);
3424 struct socket *ssock;
3425 int err;
3426
3427 pr_debug("msk=%p", msk);
3428
3429 lock_sock(sock->sk);
3430 ssock = __mptcp_nmpc_socket(msk);
3431 if (!ssock) {
3432 err = -EINVAL;
3433 goto unlock;
3434 }
3435
3436 mptcp_token_destroy(msk);
3437 inet_sk_state_store(sock->sk, TCP_LISTEN);
3438 sock_set_flag(sock->sk, SOCK_RCU_FREE);
3439
3440 err = ssock->ops->listen(ssock, backlog);
3441 inet_sk_state_store(sock->sk, inet_sk_state_load(ssock->sk));
3442 if (!err)
3443 mptcp_copy_inaddrs(sock->sk, ssock->sk);
3444
3445 unlock:
3446 release_sock(sock->sk);
3447 return err;
3448 }
3449
mptcp_stream_accept(struct socket * sock,struct socket * newsock,int flags,bool kern)3450 static int mptcp_stream_accept(struct socket *sock, struct socket *newsock,
3451 int flags, bool kern)
3452 {
3453 struct mptcp_sock *msk = mptcp_sk(sock->sk);
3454 struct socket *ssock;
3455 int err;
3456
3457 pr_debug("msk=%p", msk);
3458
3459 lock_sock(sock->sk);
3460 if (sock->sk->sk_state != TCP_LISTEN)
3461 goto unlock_fail;
3462
3463 ssock = __mptcp_nmpc_socket(msk);
3464 if (!ssock)
3465 goto unlock_fail;
3466
3467 clear_bit(MPTCP_DATA_READY, &msk->flags);
3468 sock_hold(ssock->sk);
3469 release_sock(sock->sk);
3470
3471 err = ssock->ops->accept(sock, newsock, flags, kern);
3472 if (err == 0 && !mptcp_is_tcpsk(newsock->sk)) {
3473 struct mptcp_sock *msk = mptcp_sk(newsock->sk);
3474 struct mptcp_subflow_context *subflow;
3475 struct sock *newsk = newsock->sk;
3476
3477 lock_sock(newsk);
3478
3479 /* PM/worker can now acquire the first subflow socket
3480 * lock without racing with listener queue cleanup,
3481 * we can notify it, if needed.
3482 *
3483 * Even if remote has reset the initial subflow by now
3484 * the refcnt is still at least one.
3485 */
3486 subflow = mptcp_subflow_ctx(msk->first);
3487 list_add(&subflow->node, &msk->conn_list);
3488 sock_hold(msk->first);
3489 if (mptcp_is_fully_established(newsk))
3490 mptcp_pm_fully_established(msk, msk->first, GFP_KERNEL);
3491
3492 mptcp_copy_inaddrs(newsk, msk->first);
3493 mptcp_rcv_space_init(msk, msk->first);
3494 mptcp_propagate_sndbuf(newsk, msk->first);
3495
3496 /* set ssk->sk_socket of accept()ed flows to mptcp socket.
3497 * This is needed so NOSPACE flag can be set from tcp stack.
3498 */
3499 mptcp_flush_join_list(msk);
3500 mptcp_for_each_subflow(msk, subflow) {
3501 struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
3502
3503 if (!ssk->sk_socket)
3504 mptcp_sock_graft(ssk, newsock);
3505 }
3506 release_sock(newsk);
3507 }
3508
3509 if (inet_csk_listen_poll(ssock->sk))
3510 set_bit(MPTCP_DATA_READY, &msk->flags);
3511 sock_put(ssock->sk);
3512 return err;
3513
3514 unlock_fail:
3515 release_sock(sock->sk);
3516 return -EINVAL;
3517 }
3518
mptcp_check_readable(struct mptcp_sock * msk)3519 static __poll_t mptcp_check_readable(struct mptcp_sock *msk)
3520 {
3521 /* Concurrent splices from sk_receive_queue into receive_queue will
3522 * always show at least one non-empty queue when checked in this order.
3523 */
3524 if (skb_queue_empty_lockless(&((struct sock *)msk)->sk_receive_queue) &&
3525 skb_queue_empty_lockless(&msk->receive_queue))
3526 return 0;
3527
3528 return EPOLLIN | EPOLLRDNORM;
3529 }
3530
mptcp_check_writeable(struct mptcp_sock * msk)3531 static __poll_t mptcp_check_writeable(struct mptcp_sock *msk)
3532 {
3533 struct sock *sk = (struct sock *)msk;
3534
3535 if (unlikely(sk->sk_shutdown & SEND_SHUTDOWN))
3536 return EPOLLOUT | EPOLLWRNORM;
3537
3538 if (sk_stream_is_writeable(sk))
3539 return EPOLLOUT | EPOLLWRNORM;
3540
3541 mptcp_set_nospace(sk);
3542 smp_mb__after_atomic(); /* msk->flags is changed by write_space cb */
3543 if (sk_stream_is_writeable(sk))
3544 return EPOLLOUT | EPOLLWRNORM;
3545
3546 return 0;
3547 }
3548
mptcp_poll(struct file * file,struct socket * sock,struct poll_table_struct * wait)3549 static __poll_t mptcp_poll(struct file *file, struct socket *sock,
3550 struct poll_table_struct *wait)
3551 {
3552 struct sock *sk = sock->sk;
3553 struct mptcp_sock *msk;
3554 __poll_t mask = 0;
3555 int state;
3556
3557 msk = mptcp_sk(sk);
3558 sock_poll_wait(file, sock, wait);
3559
3560 state = inet_sk_state_load(sk);
3561 pr_debug("msk=%p state=%d flags=%lx", msk, state, msk->flags);
3562 if (state == TCP_LISTEN)
3563 return test_bit(MPTCP_DATA_READY, &msk->flags) ? EPOLLIN | EPOLLRDNORM : 0;
3564
3565 if (state != TCP_SYN_SENT && state != TCP_SYN_RECV) {
3566 mask |= mptcp_check_readable(msk);
3567 mask |= mptcp_check_writeable(msk);
3568 }
3569 if (sk->sk_shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
3570 mask |= EPOLLHUP;
3571 if (sk->sk_shutdown & RCV_SHUTDOWN)
3572 mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP;
3573
3574 /* This barrier is coupled with smp_wmb() in tcp_reset() */
3575 smp_rmb();
3576 if (sk->sk_err)
3577 mask |= EPOLLERR;
3578
3579 return mask;
3580 }
3581
3582 static const struct proto_ops mptcp_stream_ops = {
3583 .family = PF_INET,
3584 .owner = THIS_MODULE,
3585 .release = inet_release,
3586 .bind = mptcp_bind,
3587 .connect = mptcp_stream_connect,
3588 .socketpair = sock_no_socketpair,
3589 .accept = mptcp_stream_accept,
3590 .getname = inet_getname,
3591 .poll = mptcp_poll,
3592 .ioctl = inet_ioctl,
3593 .gettstamp = sock_gettstamp,
3594 .listen = mptcp_listen,
3595 .shutdown = inet_shutdown,
3596 .setsockopt = sock_common_setsockopt,
3597 .getsockopt = sock_common_getsockopt,
3598 .sendmsg = inet_sendmsg,
3599 .recvmsg = inet_recvmsg,
3600 .mmap = sock_no_mmap,
3601 .sendpage = inet_sendpage,
3602 };
3603
3604 static struct inet_protosw mptcp_protosw = {
3605 .type = SOCK_STREAM,
3606 .protocol = IPPROTO_MPTCP,
3607 .prot = &mptcp_prot,
3608 .ops = &mptcp_stream_ops,
3609 .flags = INET_PROTOSW_ICSK,
3610 };
3611
mptcp_napi_poll(struct napi_struct * napi,int budget)3612 static int mptcp_napi_poll(struct napi_struct *napi, int budget)
3613 {
3614 struct mptcp_delegated_action *delegated;
3615 struct mptcp_subflow_context *subflow;
3616 int work_done = 0;
3617
3618 delegated = container_of(napi, struct mptcp_delegated_action, napi);
3619 while ((subflow = mptcp_subflow_delegated_next(delegated)) != NULL) {
3620 struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
3621
3622 bh_lock_sock_nested(ssk);
3623 if (!sock_owned_by_user(ssk) &&
3624 mptcp_subflow_has_delegated_action(subflow))
3625 mptcp_subflow_process_delegated(ssk);
3626 /* ... elsewhere tcp_release_cb_override already processed
3627 * the action or will do at next release_sock().
3628 * In both case must dequeue the subflow here - on the same
3629 * CPU that scheduled it.
3630 */
3631 bh_unlock_sock(ssk);
3632 sock_put(ssk);
3633
3634 if (++work_done == budget)
3635 return budget;
3636 }
3637
3638 /* always provide a 0 'work_done' argument, so that napi_complete_done
3639 * will not try accessing the NULL napi->dev ptr
3640 */
3641 napi_complete_done(napi, 0);
3642 return work_done;
3643 }
3644
mptcp_proto_init(void)3645 void __init mptcp_proto_init(void)
3646 {
3647 struct mptcp_delegated_action *delegated;
3648 int cpu;
3649
3650 mptcp_prot.h.hashinfo = tcp_prot.h.hashinfo;
3651
3652 if (percpu_counter_init(&mptcp_sockets_allocated, 0, GFP_KERNEL))
3653 panic("Failed to allocate MPTCP pcpu counter\n");
3654
3655 init_dummy_netdev(&mptcp_napi_dev);
3656 for_each_possible_cpu(cpu) {
3657 delegated = per_cpu_ptr(&mptcp_delegated_actions, cpu);
3658 INIT_LIST_HEAD(&delegated->head);
3659 netif_tx_napi_add(&mptcp_napi_dev, &delegated->napi, mptcp_napi_poll,
3660 NAPI_POLL_WEIGHT);
3661 napi_enable(&delegated->napi);
3662 }
3663
3664 mptcp_subflow_init();
3665 mptcp_pm_init();
3666 mptcp_token_init();
3667
3668 if (proto_register(&mptcp_prot, 1) != 0)
3669 panic("Failed to register MPTCP proto.\n");
3670
3671 inet_register_protosw(&mptcp_protosw);
3672
3673 BUILD_BUG_ON(sizeof(struct mptcp_skb_cb) > sizeof_field(struct sk_buff, cb));
3674 }
3675
3676 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
3677 static const struct proto_ops mptcp_v6_stream_ops = {
3678 .family = PF_INET6,
3679 .owner = THIS_MODULE,
3680 .release = inet6_release,
3681 .bind = mptcp_bind,
3682 .connect = mptcp_stream_connect,
3683 .socketpair = sock_no_socketpair,
3684 .accept = mptcp_stream_accept,
3685 .getname = inet6_getname,
3686 .poll = mptcp_poll,
3687 .ioctl = inet6_ioctl,
3688 .gettstamp = sock_gettstamp,
3689 .listen = mptcp_listen,
3690 .shutdown = inet_shutdown,
3691 .setsockopt = sock_common_setsockopt,
3692 .getsockopt = sock_common_getsockopt,
3693 .sendmsg = inet6_sendmsg,
3694 .recvmsg = inet6_recvmsg,
3695 .mmap = sock_no_mmap,
3696 .sendpage = inet_sendpage,
3697 #ifdef CONFIG_COMPAT
3698 .compat_ioctl = inet6_compat_ioctl,
3699 #endif
3700 };
3701
3702 static struct proto mptcp_v6_prot;
3703
3704 static struct inet_protosw mptcp_v6_protosw = {
3705 .type = SOCK_STREAM,
3706 .protocol = IPPROTO_MPTCP,
3707 .prot = &mptcp_v6_prot,
3708 .ops = &mptcp_v6_stream_ops,
3709 .flags = INET_PROTOSW_ICSK,
3710 };
3711
mptcp_proto_v6_init(void)3712 int __init mptcp_proto_v6_init(void)
3713 {
3714 int err;
3715
3716 mptcp_v6_prot = mptcp_prot;
3717 strcpy(mptcp_v6_prot.name, "MPTCPv6");
3718 mptcp_v6_prot.slab = NULL;
3719 mptcp_v6_prot.obj_size = sizeof(struct mptcp6_sock);
3720
3721 err = proto_register(&mptcp_v6_prot, 1);
3722 if (err)
3723 return err;
3724
3725 err = inet6_register_protosw(&mptcp_v6_protosw);
3726 if (err)
3727 proto_unregister(&mptcp_v6_prot);
3728
3729 return err;
3730 }
3731 #endif
3732