1 /* Generic MTRR (Memory Type Range Register) driver.
2
3 Copyright (C) 1997-2000 Richard Gooch
4 Copyright (c) 2002 Patrick Mochel
5
6 This library is free software; you can redistribute it and/or
7 modify it under the terms of the GNU Library General Public
8 License as published by the Free Software Foundation; either
9 version 2 of the License, or (at your option) any later version.
10
11 This library is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 Library General Public License for more details.
15
16 You should have received a copy of the GNU Library General Public
17 License along with this library; if not, write to the Free
18 Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19
20 Richard Gooch may be reached by email at rgooch@atnf.csiro.au
21 The postal address is:
22 Richard Gooch, c/o ATNF, P. O. Box 76, Epping, N.S.W., 2121, Australia.
23
24 Source: "Pentium Pro Family Developer's Manual, Volume 3:
25 Operating System Writer's Guide" (Intel document number 242692),
26 section 11.11.7
27
28 This was cleaned and made readable by Patrick Mochel <mochel@osdl.org>
29 on 6-7 March 2002.
30 Source: Intel Architecture Software Developers Manual, Volume 3:
31 System Programming Guide; Section 9.11. (1997 edition - PPro).
32 */
33
34 #include <linux/types.h> /* FIXME: kvm_para.h needs this */
35
36 #include <linux/stop_machine.h>
37 #include <linux/kvm_para.h>
38 #include <linux/uaccess.h>
39 #include <linux/export.h>
40 #include <linux/mutex.h>
41 #include <linux/init.h>
42 #include <linux/sort.h>
43 #include <linux/cpu.h>
44 #include <linux/pci.h>
45 #include <linux/smp.h>
46 #include <linux/syscore_ops.h>
47 #include <linux/rcupdate.h>
48
49 #include <asm/cpufeature.h>
50 #include <asm/e820/api.h>
51 #include <asm/mtrr.h>
52 #include <asm/msr.h>
53 #include <asm/memtype.h>
54
55 #include "mtrr.h"
56
57 /* arch_phys_wc_add returns an MTRR register index plus this offset. */
58 #define MTRR_TO_PHYS_WC_OFFSET 1000
59
60 u32 num_var_ranges;
61 static bool __mtrr_enabled;
62
mtrr_enabled(void)63 static bool mtrr_enabled(void)
64 {
65 return __mtrr_enabled;
66 }
67
68 unsigned int mtrr_usage_table[MTRR_MAX_VAR_RANGES];
69 static DEFINE_MUTEX(mtrr_mutex);
70
71 u64 size_or_mask, size_and_mask;
72 static bool mtrr_aps_delayed_init;
73
74 static const struct mtrr_ops *mtrr_ops[X86_VENDOR_NUM] __ro_after_init;
75
76 const struct mtrr_ops *mtrr_if;
77
78 static void set_mtrr(unsigned int reg, unsigned long base,
79 unsigned long size, mtrr_type type);
80
set_mtrr_ops(const struct mtrr_ops * ops)81 void __init set_mtrr_ops(const struct mtrr_ops *ops)
82 {
83 if (ops->vendor && ops->vendor < X86_VENDOR_NUM)
84 mtrr_ops[ops->vendor] = ops;
85 }
86
87 /* Returns non-zero if we have the write-combining memory type */
have_wrcomb(void)88 static int have_wrcomb(void)
89 {
90 struct pci_dev *dev;
91
92 dev = pci_get_class(PCI_CLASS_BRIDGE_HOST << 8, NULL);
93 if (dev != NULL) {
94 /*
95 * ServerWorks LE chipsets < rev 6 have problems with
96 * write-combining. Don't allow it and leave room for other
97 * chipsets to be tagged
98 */
99 if (dev->vendor == PCI_VENDOR_ID_SERVERWORKS &&
100 dev->device == PCI_DEVICE_ID_SERVERWORKS_LE &&
101 dev->revision <= 5) {
102 pr_info("Serverworks LE rev < 6 detected. Write-combining disabled.\n");
103 pci_dev_put(dev);
104 return 0;
105 }
106 /*
107 * Intel 450NX errata # 23. Non ascending cacheline evictions to
108 * write combining memory may resulting in data corruption
109 */
110 if (dev->vendor == PCI_VENDOR_ID_INTEL &&
111 dev->device == PCI_DEVICE_ID_INTEL_82451NX) {
112 pr_info("Intel 450NX MMC detected. Write-combining disabled.\n");
113 pci_dev_put(dev);
114 return 0;
115 }
116 pci_dev_put(dev);
117 }
118 return mtrr_if->have_wrcomb ? mtrr_if->have_wrcomb() : 0;
119 }
120
121 /* This function returns the number of variable MTRRs */
set_num_var_ranges(void)122 static void __init set_num_var_ranges(void)
123 {
124 unsigned long config = 0, dummy;
125
126 if (use_intel())
127 rdmsr(MSR_MTRRcap, config, dummy);
128 else if (is_cpu(AMD) || is_cpu(HYGON))
129 config = 2;
130 else if (is_cpu(CYRIX) || is_cpu(CENTAUR))
131 config = 8;
132
133 num_var_ranges = config & 0xff;
134 }
135
init_table(void)136 static void __init init_table(void)
137 {
138 int i, max;
139
140 max = num_var_ranges;
141 for (i = 0; i < max; i++)
142 mtrr_usage_table[i] = 1;
143 }
144
145 struct set_mtrr_data {
146 unsigned long smp_base;
147 unsigned long smp_size;
148 unsigned int smp_reg;
149 mtrr_type smp_type;
150 };
151
152 /**
153 * mtrr_rendezvous_handler - Work done in the synchronization handler. Executed
154 * by all the CPUs.
155 * @info: pointer to mtrr configuration data
156 *
157 * Returns nothing.
158 */
mtrr_rendezvous_handler(void * info)159 static int mtrr_rendezvous_handler(void *info)
160 {
161 struct set_mtrr_data *data = info;
162
163 /*
164 * We use this same function to initialize the mtrrs during boot,
165 * resume, runtime cpu online and on an explicit request to set a
166 * specific MTRR.
167 *
168 * During boot or suspend, the state of the boot cpu's mtrrs has been
169 * saved, and we want to replicate that across all the cpus that come
170 * online (either at the end of boot or resume or during a runtime cpu
171 * online). If we're doing that, @reg is set to something special and on
172 * all the cpu's we do mtrr_if->set_all() (On the logical cpu that
173 * started the boot/resume sequence, this might be a duplicate
174 * set_all()).
175 */
176 if (data->smp_reg != ~0U) {
177 mtrr_if->set(data->smp_reg, data->smp_base,
178 data->smp_size, data->smp_type);
179 } else if (mtrr_aps_delayed_init || !cpu_online(smp_processor_id())) {
180 mtrr_if->set_all();
181 }
182 return 0;
183 }
184
types_compatible(mtrr_type type1,mtrr_type type2)185 static inline int types_compatible(mtrr_type type1, mtrr_type type2)
186 {
187 return type1 == MTRR_TYPE_UNCACHABLE ||
188 type2 == MTRR_TYPE_UNCACHABLE ||
189 (type1 == MTRR_TYPE_WRTHROUGH && type2 == MTRR_TYPE_WRBACK) ||
190 (type1 == MTRR_TYPE_WRBACK && type2 == MTRR_TYPE_WRTHROUGH);
191 }
192
193 /**
194 * set_mtrr - update mtrrs on all processors
195 * @reg: mtrr in question
196 * @base: mtrr base
197 * @size: mtrr size
198 * @type: mtrr type
199 *
200 * This is kinda tricky, but fortunately, Intel spelled it out for us cleanly:
201 *
202 * 1. Queue work to do the following on all processors:
203 * 2. Disable Interrupts
204 * 3. Wait for all procs to do so
205 * 4. Enter no-fill cache mode
206 * 5. Flush caches
207 * 6. Clear PGE bit
208 * 7. Flush all TLBs
209 * 8. Disable all range registers
210 * 9. Update the MTRRs
211 * 10. Enable all range registers
212 * 11. Flush all TLBs and caches again
213 * 12. Enter normal cache mode and reenable caching
214 * 13. Set PGE
215 * 14. Wait for buddies to catch up
216 * 15. Enable interrupts.
217 *
218 * What does that mean for us? Well, stop_machine() will ensure that
219 * the rendezvous handler is started on each CPU. And in lockstep they
220 * do the state transition of disabling interrupts, updating MTRR's
221 * (the CPU vendors may each do it differently, so we call mtrr_if->set()
222 * callback and let them take care of it.) and enabling interrupts.
223 *
224 * Note that the mechanism is the same for UP systems, too; all the SMP stuff
225 * becomes nops.
226 */
227 static void
set_mtrr(unsigned int reg,unsigned long base,unsigned long size,mtrr_type type)228 set_mtrr(unsigned int reg, unsigned long base, unsigned long size, mtrr_type type)
229 {
230 struct set_mtrr_data data = { .smp_reg = reg,
231 .smp_base = base,
232 .smp_size = size,
233 .smp_type = type
234 };
235
236 stop_machine(mtrr_rendezvous_handler, &data, cpu_online_mask);
237 }
238
set_mtrr_cpuslocked(unsigned int reg,unsigned long base,unsigned long size,mtrr_type type)239 static void set_mtrr_cpuslocked(unsigned int reg, unsigned long base,
240 unsigned long size, mtrr_type type)
241 {
242 struct set_mtrr_data data = { .smp_reg = reg,
243 .smp_base = base,
244 .smp_size = size,
245 .smp_type = type
246 };
247
248 stop_machine_cpuslocked(mtrr_rendezvous_handler, &data, cpu_online_mask);
249 }
250
set_mtrr_from_inactive_cpu(unsigned int reg,unsigned long base,unsigned long size,mtrr_type type)251 static void set_mtrr_from_inactive_cpu(unsigned int reg, unsigned long base,
252 unsigned long size, mtrr_type type)
253 {
254 struct set_mtrr_data data = { .smp_reg = reg,
255 .smp_base = base,
256 .smp_size = size,
257 .smp_type = type
258 };
259
260 stop_machine_from_inactive_cpu(mtrr_rendezvous_handler, &data,
261 cpu_callout_mask);
262 }
263
264 /**
265 * mtrr_add_page - Add a memory type region
266 * @base: Physical base address of region in pages (in units of 4 kB!)
267 * @size: Physical size of region in pages (4 kB)
268 * @type: Type of MTRR desired
269 * @increment: If this is true do usage counting on the region
270 *
271 * Memory type region registers control the caching on newer Intel and
272 * non Intel processors. This function allows drivers to request an
273 * MTRR is added. The details and hardware specifics of each processor's
274 * implementation are hidden from the caller, but nevertheless the
275 * caller should expect to need to provide a power of two size on an
276 * equivalent power of two boundary.
277 *
278 * If the region cannot be added either because all regions are in use
279 * or the CPU cannot support it a negative value is returned. On success
280 * the register number for this entry is returned, but should be treated
281 * as a cookie only.
282 *
283 * On a multiprocessor machine the changes are made to all processors.
284 * This is required on x86 by the Intel processors.
285 *
286 * The available types are
287 *
288 * %MTRR_TYPE_UNCACHABLE - No caching
289 *
290 * %MTRR_TYPE_WRBACK - Write data back in bursts whenever
291 *
292 * %MTRR_TYPE_WRCOMB - Write data back soon but allow bursts
293 *
294 * %MTRR_TYPE_WRTHROUGH - Cache reads but not writes
295 *
296 * BUGS: Needs a quiet flag for the cases where drivers do not mind
297 * failures and do not wish system log messages to be sent.
298 */
mtrr_add_page(unsigned long base,unsigned long size,unsigned int type,bool increment)299 int mtrr_add_page(unsigned long base, unsigned long size,
300 unsigned int type, bool increment)
301 {
302 unsigned long lbase, lsize;
303 int i, replace, error;
304 mtrr_type ltype;
305
306 if (!mtrr_enabled())
307 return -ENXIO;
308
309 error = mtrr_if->validate_add_page(base, size, type);
310 if (error)
311 return error;
312
313 if (type >= MTRR_NUM_TYPES) {
314 pr_warn("type: %u invalid\n", type);
315 return -EINVAL;
316 }
317
318 /* If the type is WC, check that this processor supports it */
319 if ((type == MTRR_TYPE_WRCOMB) && !have_wrcomb()) {
320 pr_warn("your processor doesn't support write-combining\n");
321 return -ENOSYS;
322 }
323
324 if (!size) {
325 pr_warn("zero sized request\n");
326 return -EINVAL;
327 }
328
329 if ((base | (base + size - 1)) >>
330 (boot_cpu_data.x86_phys_bits - PAGE_SHIFT)) {
331 pr_warn("base or size exceeds the MTRR width\n");
332 return -EINVAL;
333 }
334
335 error = -EINVAL;
336 replace = -1;
337
338 /* No CPU hotplug when we change MTRR entries */
339 cpus_read_lock();
340
341 /* Search for existing MTRR */
342 mutex_lock(&mtrr_mutex);
343 for (i = 0; i < num_var_ranges; ++i) {
344 mtrr_if->get(i, &lbase, &lsize, <ype);
345 if (!lsize || base > lbase + lsize - 1 ||
346 base + size - 1 < lbase)
347 continue;
348 /*
349 * At this point we know there is some kind of
350 * overlap/enclosure
351 */
352 if (base < lbase || base + size - 1 > lbase + lsize - 1) {
353 if (base <= lbase &&
354 base + size - 1 >= lbase + lsize - 1) {
355 /* New region encloses an existing region */
356 if (type == ltype) {
357 replace = replace == -1 ? i : -2;
358 continue;
359 } else if (types_compatible(type, ltype))
360 continue;
361 }
362 pr_warn("0x%lx000,0x%lx000 overlaps existing 0x%lx000,0x%lx000\n", base, size, lbase,
363 lsize);
364 goto out;
365 }
366 /* New region is enclosed by an existing region */
367 if (ltype != type) {
368 if (types_compatible(type, ltype))
369 continue;
370 pr_warn("type mismatch for %lx000,%lx000 old: %s new: %s\n",
371 base, size, mtrr_attrib_to_str(ltype),
372 mtrr_attrib_to_str(type));
373 goto out;
374 }
375 if (increment)
376 ++mtrr_usage_table[i];
377 error = i;
378 goto out;
379 }
380 /* Search for an empty MTRR */
381 i = mtrr_if->get_free_region(base, size, replace);
382 if (i >= 0) {
383 set_mtrr_cpuslocked(i, base, size, type);
384 if (likely(replace < 0)) {
385 mtrr_usage_table[i] = 1;
386 } else {
387 mtrr_usage_table[i] = mtrr_usage_table[replace];
388 if (increment)
389 mtrr_usage_table[i]++;
390 if (unlikely(replace != i)) {
391 set_mtrr_cpuslocked(replace, 0, 0, 0);
392 mtrr_usage_table[replace] = 0;
393 }
394 }
395 } else {
396 pr_info("no more MTRRs available\n");
397 }
398 error = i;
399 out:
400 mutex_unlock(&mtrr_mutex);
401 cpus_read_unlock();
402 return error;
403 }
404
mtrr_check(unsigned long base,unsigned long size)405 static int mtrr_check(unsigned long base, unsigned long size)
406 {
407 if ((base & (PAGE_SIZE - 1)) || (size & (PAGE_SIZE - 1))) {
408 pr_warn("size and base must be multiples of 4 kiB\n");
409 pr_debug("size: 0x%lx base: 0x%lx\n", size, base);
410 dump_stack();
411 return -1;
412 }
413 return 0;
414 }
415
416 /**
417 * mtrr_add - Add a memory type region
418 * @base: Physical base address of region
419 * @size: Physical size of region
420 * @type: Type of MTRR desired
421 * @increment: If this is true do usage counting on the region
422 *
423 * Memory type region registers control the caching on newer Intel and
424 * non Intel processors. This function allows drivers to request an
425 * MTRR is added. The details and hardware specifics of each processor's
426 * implementation are hidden from the caller, but nevertheless the
427 * caller should expect to need to provide a power of two size on an
428 * equivalent power of two boundary.
429 *
430 * If the region cannot be added either because all regions are in use
431 * or the CPU cannot support it a negative value is returned. On success
432 * the register number for this entry is returned, but should be treated
433 * as a cookie only.
434 *
435 * On a multiprocessor machine the changes are made to all processors.
436 * This is required on x86 by the Intel processors.
437 *
438 * The available types are
439 *
440 * %MTRR_TYPE_UNCACHABLE - No caching
441 *
442 * %MTRR_TYPE_WRBACK - Write data back in bursts whenever
443 *
444 * %MTRR_TYPE_WRCOMB - Write data back soon but allow bursts
445 *
446 * %MTRR_TYPE_WRTHROUGH - Cache reads but not writes
447 *
448 * BUGS: Needs a quiet flag for the cases where drivers do not mind
449 * failures and do not wish system log messages to be sent.
450 */
mtrr_add(unsigned long base,unsigned long size,unsigned int type,bool increment)451 int mtrr_add(unsigned long base, unsigned long size, unsigned int type,
452 bool increment)
453 {
454 if (!mtrr_enabled())
455 return -ENODEV;
456 if (mtrr_check(base, size))
457 return -EINVAL;
458 return mtrr_add_page(base >> PAGE_SHIFT, size >> PAGE_SHIFT, type,
459 increment);
460 }
461
462 /**
463 * mtrr_del_page - delete a memory type region
464 * @reg: Register returned by mtrr_add
465 * @base: Physical base address
466 * @size: Size of region
467 *
468 * If register is supplied then base and size are ignored. This is
469 * how drivers should call it.
470 *
471 * Releases an MTRR region. If the usage count drops to zero the
472 * register is freed and the region returns to default state.
473 * On success the register is returned, on failure a negative error
474 * code.
475 */
mtrr_del_page(int reg,unsigned long base,unsigned long size)476 int mtrr_del_page(int reg, unsigned long base, unsigned long size)
477 {
478 int i, max;
479 mtrr_type ltype;
480 unsigned long lbase, lsize;
481 int error = -EINVAL;
482
483 if (!mtrr_enabled())
484 return -ENODEV;
485
486 max = num_var_ranges;
487 /* No CPU hotplug when we change MTRR entries */
488 cpus_read_lock();
489 mutex_lock(&mtrr_mutex);
490 if (reg < 0) {
491 /* Search for existing MTRR */
492 for (i = 0; i < max; ++i) {
493 mtrr_if->get(i, &lbase, &lsize, <ype);
494 if (lbase == base && lsize == size) {
495 reg = i;
496 break;
497 }
498 }
499 if (reg < 0) {
500 pr_debug("no MTRR for %lx000,%lx000 found\n",
501 base, size);
502 goto out;
503 }
504 }
505 if (reg >= max) {
506 pr_warn("register: %d too big\n", reg);
507 goto out;
508 }
509 mtrr_if->get(reg, &lbase, &lsize, <ype);
510 if (lsize < 1) {
511 pr_warn("MTRR %d not used\n", reg);
512 goto out;
513 }
514 if (mtrr_usage_table[reg] < 1) {
515 pr_warn("reg: %d has count=0\n", reg);
516 goto out;
517 }
518 if (--mtrr_usage_table[reg] < 1)
519 set_mtrr_cpuslocked(reg, 0, 0, 0);
520 error = reg;
521 out:
522 mutex_unlock(&mtrr_mutex);
523 cpus_read_unlock();
524 return error;
525 }
526
527 /**
528 * mtrr_del - delete a memory type region
529 * @reg: Register returned by mtrr_add
530 * @base: Physical base address
531 * @size: Size of region
532 *
533 * If register is supplied then base and size are ignored. This is
534 * how drivers should call it.
535 *
536 * Releases an MTRR region. If the usage count drops to zero the
537 * register is freed and the region returns to default state.
538 * On success the register is returned, on failure a negative error
539 * code.
540 */
mtrr_del(int reg,unsigned long base,unsigned long size)541 int mtrr_del(int reg, unsigned long base, unsigned long size)
542 {
543 if (!mtrr_enabled())
544 return -ENODEV;
545 if (mtrr_check(base, size))
546 return -EINVAL;
547 return mtrr_del_page(reg, base >> PAGE_SHIFT, size >> PAGE_SHIFT);
548 }
549
550 /**
551 * arch_phys_wc_add - add a WC MTRR and handle errors if PAT is unavailable
552 * @base: Physical base address
553 * @size: Size of region
554 *
555 * If PAT is available, this does nothing. If PAT is unavailable, it
556 * attempts to add a WC MTRR covering size bytes starting at base and
557 * logs an error if this fails.
558 *
559 * The called should provide a power of two size on an equivalent
560 * power of two boundary.
561 *
562 * Drivers must store the return value to pass to mtrr_del_wc_if_needed,
563 * but drivers should not try to interpret that return value.
564 */
arch_phys_wc_add(unsigned long base,unsigned long size)565 int arch_phys_wc_add(unsigned long base, unsigned long size)
566 {
567 int ret;
568
569 if (pat_enabled() || !mtrr_enabled())
570 return 0; /* Success! (We don't need to do anything.) */
571
572 ret = mtrr_add(base, size, MTRR_TYPE_WRCOMB, true);
573 if (ret < 0) {
574 pr_warn("Failed to add WC MTRR for [%p-%p]; performance may suffer.",
575 (void *)base, (void *)(base + size - 1));
576 return ret;
577 }
578 return ret + MTRR_TO_PHYS_WC_OFFSET;
579 }
580 EXPORT_SYMBOL(arch_phys_wc_add);
581
582 /*
583 * arch_phys_wc_del - undoes arch_phys_wc_add
584 * @handle: Return value from arch_phys_wc_add
585 *
586 * This cleans up after mtrr_add_wc_if_needed.
587 *
588 * The API guarantees that mtrr_del_wc_if_needed(error code) and
589 * mtrr_del_wc_if_needed(0) do nothing.
590 */
arch_phys_wc_del(int handle)591 void arch_phys_wc_del(int handle)
592 {
593 if (handle >= 1) {
594 WARN_ON(handle < MTRR_TO_PHYS_WC_OFFSET);
595 mtrr_del(handle - MTRR_TO_PHYS_WC_OFFSET, 0, 0);
596 }
597 }
598 EXPORT_SYMBOL(arch_phys_wc_del);
599
600 /*
601 * arch_phys_wc_index - translates arch_phys_wc_add's return value
602 * @handle: Return value from arch_phys_wc_add
603 *
604 * This will turn the return value from arch_phys_wc_add into an mtrr
605 * index suitable for debugging.
606 *
607 * Note: There is no legitimate use for this function, except possibly
608 * in printk line. Alas there is an illegitimate use in some ancient
609 * drm ioctls.
610 */
arch_phys_wc_index(int handle)611 int arch_phys_wc_index(int handle)
612 {
613 if (handle < MTRR_TO_PHYS_WC_OFFSET)
614 return -1;
615 else
616 return handle - MTRR_TO_PHYS_WC_OFFSET;
617 }
618 EXPORT_SYMBOL_GPL(arch_phys_wc_index);
619
620 /*
621 * HACK ALERT!
622 * These should be called implicitly, but we can't yet until all the initcall
623 * stuff is done...
624 */
init_ifs(void)625 static void __init init_ifs(void)
626 {
627 #ifndef CONFIG_X86_64
628 amd_init_mtrr();
629 cyrix_init_mtrr();
630 centaur_init_mtrr();
631 #endif
632 }
633
634 /* The suspend/resume methods are only for CPU without MTRR. CPU using generic
635 * MTRR driver doesn't require this
636 */
637 struct mtrr_value {
638 mtrr_type ltype;
639 unsigned long lbase;
640 unsigned long lsize;
641 };
642
643 static struct mtrr_value mtrr_value[MTRR_MAX_VAR_RANGES];
644
mtrr_save(void)645 static int mtrr_save(void)
646 {
647 int i;
648
649 for (i = 0; i < num_var_ranges; i++) {
650 mtrr_if->get(i, &mtrr_value[i].lbase,
651 &mtrr_value[i].lsize,
652 &mtrr_value[i].ltype);
653 }
654 return 0;
655 }
656
mtrr_restore(void)657 static void mtrr_restore(void)
658 {
659 int i;
660
661 for (i = 0; i < num_var_ranges; i++) {
662 if (mtrr_value[i].lsize) {
663 set_mtrr(i, mtrr_value[i].lbase,
664 mtrr_value[i].lsize,
665 mtrr_value[i].ltype);
666 }
667 }
668 }
669
670
671
672 static struct syscore_ops mtrr_syscore_ops = {
673 .suspend = mtrr_save,
674 .resume = mtrr_restore,
675 };
676
677 int __initdata changed_by_mtrr_cleanup;
678
679 #define SIZE_OR_MASK_BITS(n) (~((1ULL << ((n) - PAGE_SHIFT)) - 1))
680 /**
681 * mtrr_bp_init - initialize mtrrs on the boot CPU
682 *
683 * This needs to be called early; before any of the other CPUs are
684 * initialized (i.e. before smp_init()).
685 *
686 */
mtrr_bp_init(void)687 void __init mtrr_bp_init(void)
688 {
689 u32 phys_addr;
690
691 init_ifs();
692
693 phys_addr = 32;
694
695 if (boot_cpu_has(X86_FEATURE_MTRR)) {
696 mtrr_if = &generic_mtrr_ops;
697 size_or_mask = SIZE_OR_MASK_BITS(36);
698 size_and_mask = 0x00f00000;
699 phys_addr = 36;
700
701 /*
702 * This is an AMD specific MSR, but we assume(hope?) that
703 * Intel will implement it too when they extend the address
704 * bus of the Xeon.
705 */
706 if (cpuid_eax(0x80000000) >= 0x80000008) {
707 phys_addr = cpuid_eax(0x80000008) & 0xff;
708 /* CPUID workaround for Intel 0F33/0F34 CPU */
709 if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL &&
710 boot_cpu_data.x86 == 0xF &&
711 boot_cpu_data.x86_model == 0x3 &&
712 (boot_cpu_data.x86_stepping == 0x3 ||
713 boot_cpu_data.x86_stepping == 0x4))
714 phys_addr = 36;
715
716 size_or_mask = SIZE_OR_MASK_BITS(phys_addr);
717 size_and_mask = ~size_or_mask & 0xfffff00000ULL;
718 } else if (boot_cpu_data.x86_vendor == X86_VENDOR_CENTAUR &&
719 boot_cpu_data.x86 == 6) {
720 /*
721 * VIA C* family have Intel style MTRRs,
722 * but don't support PAE
723 */
724 size_or_mask = SIZE_OR_MASK_BITS(32);
725 size_and_mask = 0;
726 phys_addr = 32;
727 }
728 } else {
729 switch (boot_cpu_data.x86_vendor) {
730 case X86_VENDOR_AMD:
731 if (cpu_feature_enabled(X86_FEATURE_K6_MTRR)) {
732 /* Pre-Athlon (K6) AMD CPU MTRRs */
733 mtrr_if = mtrr_ops[X86_VENDOR_AMD];
734 size_or_mask = SIZE_OR_MASK_BITS(32);
735 size_and_mask = 0;
736 }
737 break;
738 case X86_VENDOR_CENTAUR:
739 if (cpu_feature_enabled(X86_FEATURE_CENTAUR_MCR)) {
740 mtrr_if = mtrr_ops[X86_VENDOR_CENTAUR];
741 size_or_mask = SIZE_OR_MASK_BITS(32);
742 size_and_mask = 0;
743 }
744 break;
745 case X86_VENDOR_CYRIX:
746 if (cpu_feature_enabled(X86_FEATURE_CYRIX_ARR)) {
747 mtrr_if = mtrr_ops[X86_VENDOR_CYRIX];
748 size_or_mask = SIZE_OR_MASK_BITS(32);
749 size_and_mask = 0;
750 }
751 break;
752 default:
753 break;
754 }
755 }
756
757 if (mtrr_if) {
758 __mtrr_enabled = true;
759 set_num_var_ranges();
760 init_table();
761 if (use_intel()) {
762 /* BIOS may override */
763 __mtrr_enabled = get_mtrr_state();
764
765 if (mtrr_enabled())
766 mtrr_bp_pat_init();
767
768 if (mtrr_cleanup(phys_addr)) {
769 changed_by_mtrr_cleanup = 1;
770 mtrr_if->set_all();
771 }
772 }
773 }
774
775 if (!mtrr_enabled()) {
776 pr_info("Disabled\n");
777
778 /*
779 * PAT initialization relies on MTRR's rendezvous handler.
780 * Skip PAT init until the handler can initialize both
781 * features independently.
782 */
783 pat_disable("MTRRs disabled, skipping PAT initialization too.");
784 }
785 }
786
mtrr_ap_init(void)787 void mtrr_ap_init(void)
788 {
789 if (!mtrr_enabled())
790 return;
791
792 if (!use_intel() || mtrr_aps_delayed_init)
793 return;
794
795 /*
796 * Ideally we should hold mtrr_mutex here to avoid mtrr entries
797 * changed, but this routine will be called in cpu boot time,
798 * holding the lock breaks it.
799 *
800 * This routine is called in two cases:
801 *
802 * 1. very early time of software resume, when there absolutely
803 * isn't mtrr entry changes;
804 *
805 * 2. cpu hotadd time. We let mtrr_add/del_page hold cpuhotplug
806 * lock to prevent mtrr entry changes
807 */
808 set_mtrr_from_inactive_cpu(~0U, 0, 0, 0);
809 }
810
811 /**
812 * mtrr_save_state - Save current fixed-range MTRR state of the first
813 * cpu in cpu_online_mask.
814 */
mtrr_save_state(void)815 void mtrr_save_state(void)
816 {
817 int first_cpu;
818
819 if (!mtrr_enabled())
820 return;
821
822 first_cpu = cpumask_first(cpu_online_mask);
823 smp_call_function_single(first_cpu, mtrr_save_fixed_ranges, NULL, 1);
824 }
825
set_mtrr_aps_delayed_init(void)826 void set_mtrr_aps_delayed_init(void)
827 {
828 if (!mtrr_enabled())
829 return;
830 if (!use_intel())
831 return;
832
833 mtrr_aps_delayed_init = true;
834 }
835
836 /*
837 * Delayed MTRR initialization for all AP's
838 */
mtrr_aps_init(void)839 void mtrr_aps_init(void)
840 {
841 if (!use_intel() || !mtrr_enabled())
842 return;
843
844 /*
845 * Check if someone has requested the delay of AP MTRR initialization,
846 * by doing set_mtrr_aps_delayed_init(), prior to this point. If not,
847 * then we are done.
848 */
849 if (!mtrr_aps_delayed_init)
850 return;
851
852 set_mtrr(~0U, 0, 0, 0);
853 mtrr_aps_delayed_init = false;
854 }
855
mtrr_bp_restore(void)856 void mtrr_bp_restore(void)
857 {
858 if (!use_intel() || !mtrr_enabled())
859 return;
860
861 mtrr_if->set_all();
862 }
863
mtrr_init_finialize(void)864 static int __init mtrr_init_finialize(void)
865 {
866 if (!mtrr_enabled())
867 return 0;
868
869 if (use_intel()) {
870 if (!changed_by_mtrr_cleanup)
871 mtrr_state_warn();
872 return 0;
873 }
874
875 /*
876 * The CPU has no MTRR and seems to not support SMP. They have
877 * specific drivers, we use a tricky method to support
878 * suspend/resume for them.
879 *
880 * TBD: is there any system with such CPU which supports
881 * suspend/resume? If no, we should remove the code.
882 */
883 register_syscore_ops(&mtrr_syscore_ops);
884
885 return 0;
886 }
887 subsys_initcall(mtrr_init_finialize);
888