• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  Overview:
4  *   This is the generic MTD driver for NAND flash devices. It should be
5  *   capable of working with almost all NAND chips currently available.
6  *
7  *	Additional technical information is available on
8  *	http://www.linux-mtd.infradead.org/doc/nand.html
9  *
10  *  Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
11  *		  2002-2006 Thomas Gleixner (tglx@linutronix.de)
12  *
13  *  Credits:
14  *	David Woodhouse for adding multichip support
15  *
16  *	Aleph One Ltd. and Toby Churchill Ltd. for supporting the
17  *	rework for 2K page size chips
18  *
19  *  TODO:
20  *	Enable cached programming for 2k page size chips
21  *	Check, if mtd->ecctype should be set to MTD_ECC_HW
22  *	if we have HW ECC support.
23  *	BBT table is not serialized, has to be fixed
24  */
25 
26 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
27 
28 #include <linux/module.h>
29 #include <linux/delay.h>
30 #include <linux/errno.h>
31 #include <linux/err.h>
32 #include <linux/sched.h>
33 #include <linux/slab.h>
34 #include <linux/mm.h>
35 #include <linux/types.h>
36 #include <linux/mtd/mtd.h>
37 #include <linux/mtd/nand.h>
38 #include <linux/mtd/nand-ecc-sw-hamming.h>
39 #include <linux/mtd/nand-ecc-sw-bch.h>
40 #include <linux/interrupt.h>
41 #include <linux/bitops.h>
42 #include <linux/io.h>
43 #include <linux/mtd/partitions.h>
44 #include <linux/of.h>
45 #include <linux/of_gpio.h>
46 #include <linux/gpio/consumer.h>
47 
48 #include "internals.h"
49 
nand_pairing_dist3_get_info(struct mtd_info * mtd,int page,struct mtd_pairing_info * info)50 static int nand_pairing_dist3_get_info(struct mtd_info *mtd, int page,
51 				       struct mtd_pairing_info *info)
52 {
53 	int lastpage = (mtd->erasesize / mtd->writesize) - 1;
54 	int dist = 3;
55 
56 	if (page == lastpage)
57 		dist = 2;
58 
59 	if (!page || (page & 1)) {
60 		info->group = 0;
61 		info->pair = (page + 1) / 2;
62 	} else {
63 		info->group = 1;
64 		info->pair = (page + 1 - dist) / 2;
65 	}
66 
67 	return 0;
68 }
69 
nand_pairing_dist3_get_wunit(struct mtd_info * mtd,const struct mtd_pairing_info * info)70 static int nand_pairing_dist3_get_wunit(struct mtd_info *mtd,
71 					const struct mtd_pairing_info *info)
72 {
73 	int lastpair = ((mtd->erasesize / mtd->writesize) - 1) / 2;
74 	int page = info->pair * 2;
75 	int dist = 3;
76 
77 	if (!info->group && !info->pair)
78 		return 0;
79 
80 	if (info->pair == lastpair && info->group)
81 		dist = 2;
82 
83 	if (!info->group)
84 		page--;
85 	else if (info->pair)
86 		page += dist - 1;
87 
88 	if (page >= mtd->erasesize / mtd->writesize)
89 		return -EINVAL;
90 
91 	return page;
92 }
93 
94 const struct mtd_pairing_scheme dist3_pairing_scheme = {
95 	.ngroups = 2,
96 	.get_info = nand_pairing_dist3_get_info,
97 	.get_wunit = nand_pairing_dist3_get_wunit,
98 };
99 
check_offs_len(struct nand_chip * chip,loff_t ofs,uint64_t len)100 static int check_offs_len(struct nand_chip *chip, loff_t ofs, uint64_t len)
101 {
102 	int ret = 0;
103 
104 	/* Start address must align on block boundary */
105 	if (ofs & ((1ULL << chip->phys_erase_shift) - 1)) {
106 		pr_debug("%s: unaligned address\n", __func__);
107 		ret = -EINVAL;
108 	}
109 
110 	/* Length must align on block boundary */
111 	if (len & ((1ULL << chip->phys_erase_shift) - 1)) {
112 		pr_debug("%s: length not block aligned\n", __func__);
113 		ret = -EINVAL;
114 	}
115 
116 	return ret;
117 }
118 
119 /**
120  * nand_extract_bits - Copy unaligned bits from one buffer to another one
121  * @dst: destination buffer
122  * @dst_off: bit offset at which the writing starts
123  * @src: source buffer
124  * @src_off: bit offset at which the reading starts
125  * @nbits: number of bits to copy from @src to @dst
126  *
127  * Copy bits from one memory region to another (overlap authorized).
128  */
nand_extract_bits(u8 * dst,unsigned int dst_off,const u8 * src,unsigned int src_off,unsigned int nbits)129 void nand_extract_bits(u8 *dst, unsigned int dst_off, const u8 *src,
130 		       unsigned int src_off, unsigned int nbits)
131 {
132 	unsigned int tmp, n;
133 
134 	dst += dst_off / 8;
135 	dst_off %= 8;
136 	src += src_off / 8;
137 	src_off %= 8;
138 
139 	while (nbits) {
140 		n = min3(8 - dst_off, 8 - src_off, nbits);
141 
142 		tmp = (*src >> src_off) & GENMASK(n - 1, 0);
143 		*dst &= ~GENMASK(n - 1 + dst_off, dst_off);
144 		*dst |= tmp << dst_off;
145 
146 		dst_off += n;
147 		if (dst_off >= 8) {
148 			dst++;
149 			dst_off -= 8;
150 		}
151 
152 		src_off += n;
153 		if (src_off >= 8) {
154 			src++;
155 			src_off -= 8;
156 		}
157 
158 		nbits -= n;
159 	}
160 }
161 EXPORT_SYMBOL_GPL(nand_extract_bits);
162 
163 /**
164  * nand_select_target() - Select a NAND target (A.K.A. die)
165  * @chip: NAND chip object
166  * @cs: the CS line to select. Note that this CS id is always from the chip
167  *	PoV, not the controller one
168  *
169  * Select a NAND target so that further operations executed on @chip go to the
170  * selected NAND target.
171  */
nand_select_target(struct nand_chip * chip,unsigned int cs)172 void nand_select_target(struct nand_chip *chip, unsigned int cs)
173 {
174 	/*
175 	 * cs should always lie between 0 and nanddev_ntargets(), when that's
176 	 * not the case it's a bug and the caller should be fixed.
177 	 */
178 	if (WARN_ON(cs > nanddev_ntargets(&chip->base)))
179 		return;
180 
181 	chip->cur_cs = cs;
182 
183 	if (chip->legacy.select_chip)
184 		chip->legacy.select_chip(chip, cs);
185 }
186 EXPORT_SYMBOL_GPL(nand_select_target);
187 
188 /**
189  * nand_deselect_target() - Deselect the currently selected target
190  * @chip: NAND chip object
191  *
192  * Deselect the currently selected NAND target. The result of operations
193  * executed on @chip after the target has been deselected is undefined.
194  */
nand_deselect_target(struct nand_chip * chip)195 void nand_deselect_target(struct nand_chip *chip)
196 {
197 	if (chip->legacy.select_chip)
198 		chip->legacy.select_chip(chip, -1);
199 
200 	chip->cur_cs = -1;
201 }
202 EXPORT_SYMBOL_GPL(nand_deselect_target);
203 
204 /**
205  * nand_release_device - [GENERIC] release chip
206  * @chip: NAND chip object
207  *
208  * Release chip lock and wake up anyone waiting on the device.
209  */
nand_release_device(struct nand_chip * chip)210 static void nand_release_device(struct nand_chip *chip)
211 {
212 	/* Release the controller and the chip */
213 	mutex_unlock(&chip->controller->lock);
214 	mutex_unlock(&chip->lock);
215 }
216 
217 /**
218  * nand_bbm_get_next_page - Get the next page for bad block markers
219  * @chip: NAND chip object
220  * @page: First page to start checking for bad block marker usage
221  *
222  * Returns an integer that corresponds to the page offset within a block, for
223  * a page that is used to store bad block markers. If no more pages are
224  * available, -EINVAL is returned.
225  */
nand_bbm_get_next_page(struct nand_chip * chip,int page)226 int nand_bbm_get_next_page(struct nand_chip *chip, int page)
227 {
228 	struct mtd_info *mtd = nand_to_mtd(chip);
229 	int last_page = ((mtd->erasesize - mtd->writesize) >>
230 			 chip->page_shift) & chip->pagemask;
231 	unsigned int bbm_flags = NAND_BBM_FIRSTPAGE | NAND_BBM_SECONDPAGE
232 		| NAND_BBM_LASTPAGE;
233 
234 	if (page == 0 && !(chip->options & bbm_flags))
235 		return 0;
236 	if (page == 0 && chip->options & NAND_BBM_FIRSTPAGE)
237 		return 0;
238 	if (page <= 1 && chip->options & NAND_BBM_SECONDPAGE)
239 		return 1;
240 	if (page <= last_page && chip->options & NAND_BBM_LASTPAGE)
241 		return last_page;
242 
243 	return -EINVAL;
244 }
245 
246 /**
247  * nand_block_bad - [DEFAULT] Read bad block marker from the chip
248  * @chip: NAND chip object
249  * @ofs: offset from device start
250  *
251  * Check, if the block is bad.
252  */
nand_block_bad(struct nand_chip * chip,loff_t ofs)253 static int nand_block_bad(struct nand_chip *chip, loff_t ofs)
254 {
255 	int first_page, page_offset;
256 	int res;
257 	u8 bad;
258 
259 	first_page = (int)(ofs >> chip->page_shift) & chip->pagemask;
260 	page_offset = nand_bbm_get_next_page(chip, 0);
261 
262 	while (page_offset >= 0) {
263 		res = chip->ecc.read_oob(chip, first_page + page_offset);
264 		if (res < 0)
265 			return res;
266 
267 		bad = chip->oob_poi[chip->badblockpos];
268 
269 		if (likely(chip->badblockbits == 8))
270 			res = bad != 0xFF;
271 		else
272 			res = hweight8(bad) < chip->badblockbits;
273 		if (res)
274 			return res;
275 
276 		page_offset = nand_bbm_get_next_page(chip, page_offset + 1);
277 	}
278 
279 	return 0;
280 }
281 
282 /**
283  * nand_region_is_secured() - Check if the region is secured
284  * @chip: NAND chip object
285  * @offset: Offset of the region to check
286  * @size: Size of the region to check
287  *
288  * Checks if the region is secured by comparing the offset and size with the
289  * list of secure regions obtained from DT. Returns true if the region is
290  * secured else false.
291  */
nand_region_is_secured(struct nand_chip * chip,loff_t offset,u64 size)292 static bool nand_region_is_secured(struct nand_chip *chip, loff_t offset, u64 size)
293 {
294 	int i;
295 
296 	/* Skip touching the secure regions if present */
297 	for (i = 0; i < chip->nr_secure_regions; i++) {
298 		const struct nand_secure_region *region = &chip->secure_regions[i];
299 
300 		if (offset + size <= region->offset ||
301 		    offset >= region->offset + region->size)
302 			continue;
303 
304 		pr_debug("%s: Region 0x%llx - 0x%llx is secured!",
305 			 __func__, offset, offset + size);
306 
307 		return true;
308 	}
309 
310 	return false;
311 }
312 
nand_isbad_bbm(struct nand_chip * chip,loff_t ofs)313 static int nand_isbad_bbm(struct nand_chip *chip, loff_t ofs)
314 {
315 	struct mtd_info *mtd = nand_to_mtd(chip);
316 
317 	if (chip->options & NAND_NO_BBM_QUIRK)
318 		return 0;
319 
320 	/* Check if the region is secured */
321 	if (nand_region_is_secured(chip, ofs, mtd->erasesize))
322 		return -EIO;
323 
324 	if (chip->legacy.block_bad)
325 		return chip->legacy.block_bad(chip, ofs);
326 
327 	return nand_block_bad(chip, ofs);
328 }
329 
330 /**
331  * nand_get_device - [GENERIC] Get chip for selected access
332  * @chip: NAND chip structure
333  *
334  * Lock the device and its controller for exclusive access
335  *
336  * Return: -EBUSY if the chip has been suspended, 0 otherwise
337  */
nand_get_device(struct nand_chip * chip)338 static void nand_get_device(struct nand_chip *chip)
339 {
340 	/* Wait until the device is resumed. */
341 	while (1) {
342 		mutex_lock(&chip->lock);
343 		if (!chip->suspended) {
344 			mutex_lock(&chip->controller->lock);
345 			return;
346 		}
347 		mutex_unlock(&chip->lock);
348 
349 		wait_event(chip->resume_wq, !chip->suspended);
350 	}
351 }
352 
353 /**
354  * nand_check_wp - [GENERIC] check if the chip is write protected
355  * @chip: NAND chip object
356  *
357  * Check, if the device is write protected. The function expects, that the
358  * device is already selected.
359  */
nand_check_wp(struct nand_chip * chip)360 static int nand_check_wp(struct nand_chip *chip)
361 {
362 	u8 status;
363 	int ret;
364 
365 	/* Broken xD cards report WP despite being writable */
366 	if (chip->options & NAND_BROKEN_XD)
367 		return 0;
368 
369 	/* Check the WP bit */
370 	ret = nand_status_op(chip, &status);
371 	if (ret)
372 		return ret;
373 
374 	return status & NAND_STATUS_WP ? 0 : 1;
375 }
376 
377 /**
378  * nand_fill_oob - [INTERN] Transfer client buffer to oob
379  * @chip: NAND chip object
380  * @oob: oob data buffer
381  * @len: oob data write length
382  * @ops: oob ops structure
383  */
nand_fill_oob(struct nand_chip * chip,uint8_t * oob,size_t len,struct mtd_oob_ops * ops)384 static uint8_t *nand_fill_oob(struct nand_chip *chip, uint8_t *oob, size_t len,
385 			      struct mtd_oob_ops *ops)
386 {
387 	struct mtd_info *mtd = nand_to_mtd(chip);
388 	int ret;
389 
390 	/*
391 	 * Initialise to all 0xFF, to avoid the possibility of left over OOB
392 	 * data from a previous OOB read.
393 	 */
394 	memset(chip->oob_poi, 0xff, mtd->oobsize);
395 
396 	switch (ops->mode) {
397 
398 	case MTD_OPS_PLACE_OOB:
399 	case MTD_OPS_RAW:
400 		memcpy(chip->oob_poi + ops->ooboffs, oob, len);
401 		return oob + len;
402 
403 	case MTD_OPS_AUTO_OOB:
404 		ret = mtd_ooblayout_set_databytes(mtd, oob, chip->oob_poi,
405 						  ops->ooboffs, len);
406 		BUG_ON(ret);
407 		return oob + len;
408 
409 	default:
410 		BUG();
411 	}
412 	return NULL;
413 }
414 
415 /**
416  * nand_do_write_oob - [MTD Interface] NAND write out-of-band
417  * @chip: NAND chip object
418  * @to: offset to write to
419  * @ops: oob operation description structure
420  *
421  * NAND write out-of-band.
422  */
nand_do_write_oob(struct nand_chip * chip,loff_t to,struct mtd_oob_ops * ops)423 static int nand_do_write_oob(struct nand_chip *chip, loff_t to,
424 			     struct mtd_oob_ops *ops)
425 {
426 	struct mtd_info *mtd = nand_to_mtd(chip);
427 	int chipnr, page, status, len, ret;
428 
429 	pr_debug("%s: to = 0x%08x, len = %i\n",
430 			 __func__, (unsigned int)to, (int)ops->ooblen);
431 
432 	len = mtd_oobavail(mtd, ops);
433 
434 	/* Do not allow write past end of page */
435 	if ((ops->ooboffs + ops->ooblen) > len) {
436 		pr_debug("%s: attempt to write past end of page\n",
437 				__func__);
438 		return -EINVAL;
439 	}
440 
441 	/* Check if the region is secured */
442 	if (nand_region_is_secured(chip, to, ops->ooblen))
443 		return -EIO;
444 
445 	chipnr = (int)(to >> chip->chip_shift);
446 
447 	/*
448 	 * Reset the chip. Some chips (like the Toshiba TC5832DC found in one
449 	 * of my DiskOnChip 2000 test units) will clear the whole data page too
450 	 * if we don't do this. I have no clue why, but I seem to have 'fixed'
451 	 * it in the doc2000 driver in August 1999.  dwmw2.
452 	 */
453 	ret = nand_reset(chip, chipnr);
454 	if (ret)
455 		return ret;
456 
457 	nand_select_target(chip, chipnr);
458 
459 	/* Shift to get page */
460 	page = (int)(to >> chip->page_shift);
461 
462 	/* Check, if it is write protected */
463 	if (nand_check_wp(chip)) {
464 		nand_deselect_target(chip);
465 		return -EROFS;
466 	}
467 
468 	/* Invalidate the page cache, if we write to the cached page */
469 	if (page == chip->pagecache.page)
470 		chip->pagecache.page = -1;
471 
472 	nand_fill_oob(chip, ops->oobbuf, ops->ooblen, ops);
473 
474 	if (ops->mode == MTD_OPS_RAW)
475 		status = chip->ecc.write_oob_raw(chip, page & chip->pagemask);
476 	else
477 		status = chip->ecc.write_oob(chip, page & chip->pagemask);
478 
479 	nand_deselect_target(chip);
480 
481 	if (status)
482 		return status;
483 
484 	ops->oobretlen = ops->ooblen;
485 
486 	return 0;
487 }
488 
489 /**
490  * nand_default_block_markbad - [DEFAULT] mark a block bad via bad block marker
491  * @chip: NAND chip object
492  * @ofs: offset from device start
493  *
494  * This is the default implementation, which can be overridden by a hardware
495  * specific driver. It provides the details for writing a bad block marker to a
496  * block.
497  */
nand_default_block_markbad(struct nand_chip * chip,loff_t ofs)498 static int nand_default_block_markbad(struct nand_chip *chip, loff_t ofs)
499 {
500 	struct mtd_info *mtd = nand_to_mtd(chip);
501 	struct mtd_oob_ops ops;
502 	uint8_t buf[2] = { 0, 0 };
503 	int ret = 0, res, page_offset;
504 
505 	memset(&ops, 0, sizeof(ops));
506 	ops.oobbuf = buf;
507 	ops.ooboffs = chip->badblockpos;
508 	if (chip->options & NAND_BUSWIDTH_16) {
509 		ops.ooboffs &= ~0x01;
510 		ops.len = ops.ooblen = 2;
511 	} else {
512 		ops.len = ops.ooblen = 1;
513 	}
514 	ops.mode = MTD_OPS_PLACE_OOB;
515 
516 	page_offset = nand_bbm_get_next_page(chip, 0);
517 
518 	while (page_offset >= 0) {
519 		res = nand_do_write_oob(chip,
520 					ofs + (page_offset * mtd->writesize),
521 					&ops);
522 
523 		if (!ret)
524 			ret = res;
525 
526 		page_offset = nand_bbm_get_next_page(chip, page_offset + 1);
527 	}
528 
529 	return ret;
530 }
531 
532 /**
533  * nand_markbad_bbm - mark a block by updating the BBM
534  * @chip: NAND chip object
535  * @ofs: offset of the block to mark bad
536  */
nand_markbad_bbm(struct nand_chip * chip,loff_t ofs)537 int nand_markbad_bbm(struct nand_chip *chip, loff_t ofs)
538 {
539 	if (chip->legacy.block_markbad)
540 		return chip->legacy.block_markbad(chip, ofs);
541 
542 	return nand_default_block_markbad(chip, ofs);
543 }
544 
545 /**
546  * nand_block_markbad_lowlevel - mark a block bad
547  * @chip: NAND chip object
548  * @ofs: offset from device start
549  *
550  * This function performs the generic NAND bad block marking steps (i.e., bad
551  * block table(s) and/or marker(s)). We only allow the hardware driver to
552  * specify how to write bad block markers to OOB (chip->legacy.block_markbad).
553  *
554  * We try operations in the following order:
555  *
556  *  (1) erase the affected block, to allow OOB marker to be written cleanly
557  *  (2) write bad block marker to OOB area of affected block (unless flag
558  *      NAND_BBT_NO_OOB_BBM is present)
559  *  (3) update the BBT
560  *
561  * Note that we retain the first error encountered in (2) or (3), finish the
562  * procedures, and dump the error in the end.
563 */
nand_block_markbad_lowlevel(struct nand_chip * chip,loff_t ofs)564 static int nand_block_markbad_lowlevel(struct nand_chip *chip, loff_t ofs)
565 {
566 	struct mtd_info *mtd = nand_to_mtd(chip);
567 	int res, ret = 0;
568 
569 	if (!(chip->bbt_options & NAND_BBT_NO_OOB_BBM)) {
570 		struct erase_info einfo;
571 
572 		/* Attempt erase before marking OOB */
573 		memset(&einfo, 0, sizeof(einfo));
574 		einfo.addr = ofs;
575 		einfo.len = 1ULL << chip->phys_erase_shift;
576 		nand_erase_nand(chip, &einfo, 0);
577 
578 		/* Write bad block marker to OOB */
579 		nand_get_device(chip);
580 
581 		ret = nand_markbad_bbm(chip, ofs);
582 		nand_release_device(chip);
583 	}
584 
585 	/* Mark block bad in BBT */
586 	if (chip->bbt) {
587 		res = nand_markbad_bbt(chip, ofs);
588 		if (!ret)
589 			ret = res;
590 	}
591 
592 	if (!ret)
593 		mtd->ecc_stats.badblocks++;
594 
595 	return ret;
596 }
597 
598 /**
599  * nand_block_isreserved - [GENERIC] Check if a block is marked reserved.
600  * @mtd: MTD device structure
601  * @ofs: offset from device start
602  *
603  * Check if the block is marked as reserved.
604  */
nand_block_isreserved(struct mtd_info * mtd,loff_t ofs)605 static int nand_block_isreserved(struct mtd_info *mtd, loff_t ofs)
606 {
607 	struct nand_chip *chip = mtd_to_nand(mtd);
608 
609 	if (!chip->bbt)
610 		return 0;
611 	/* Return info from the table */
612 	return nand_isreserved_bbt(chip, ofs);
613 }
614 
615 /**
616  * nand_block_checkbad - [GENERIC] Check if a block is marked bad
617  * @chip: NAND chip object
618  * @ofs: offset from device start
619  * @allowbbt: 1, if its allowed to access the bbt area
620  *
621  * Check, if the block is bad. Either by reading the bad block table or
622  * calling of the scan function.
623  */
nand_block_checkbad(struct nand_chip * chip,loff_t ofs,int allowbbt)624 static int nand_block_checkbad(struct nand_chip *chip, loff_t ofs, int allowbbt)
625 {
626 	/* Return info from the table */
627 	if (chip->bbt)
628 		return nand_isbad_bbt(chip, ofs, allowbbt);
629 
630 	return nand_isbad_bbm(chip, ofs);
631 }
632 
633 /**
634  * nand_soft_waitrdy - Poll STATUS reg until RDY bit is set to 1
635  * @chip: NAND chip structure
636  * @timeout_ms: Timeout in ms
637  *
638  * Poll the STATUS register using ->exec_op() until the RDY bit becomes 1.
639  * If that does not happen whitin the specified timeout, -ETIMEDOUT is
640  * returned.
641  *
642  * This helper is intended to be used when the controller does not have access
643  * to the NAND R/B pin.
644  *
645  * Be aware that calling this helper from an ->exec_op() implementation means
646  * ->exec_op() must be re-entrant.
647  *
648  * Return 0 if the NAND chip is ready, a negative error otherwise.
649  */
nand_soft_waitrdy(struct nand_chip * chip,unsigned long timeout_ms)650 int nand_soft_waitrdy(struct nand_chip *chip, unsigned long timeout_ms)
651 {
652 	const struct nand_interface_config *conf;
653 	u8 status = 0;
654 	int ret;
655 
656 	if (!nand_has_exec_op(chip))
657 		return -ENOTSUPP;
658 
659 	/* Wait tWB before polling the STATUS reg. */
660 	conf = nand_get_interface_config(chip);
661 	ndelay(NAND_COMMON_TIMING_NS(conf, tWB_max));
662 
663 	ret = nand_status_op(chip, NULL);
664 	if (ret)
665 		return ret;
666 
667 	/*
668 	 * +1 below is necessary because if we are now in the last fraction
669 	 * of jiffy and msecs_to_jiffies is 1 then we will wait only that
670 	 * small jiffy fraction - possibly leading to false timeout
671 	 */
672 	timeout_ms = jiffies + msecs_to_jiffies(timeout_ms) + 1;
673 	do {
674 		ret = nand_read_data_op(chip, &status, sizeof(status), true,
675 					false);
676 		if (ret)
677 			break;
678 
679 		if (status & NAND_STATUS_READY)
680 			break;
681 
682 		/*
683 		 * Typical lowest execution time for a tR on most NANDs is 10us,
684 		 * use this as polling delay before doing something smarter (ie.
685 		 * deriving a delay from the timeout value, timeout_ms/ratio).
686 		 */
687 		udelay(10);
688 	} while	(time_before(jiffies, timeout_ms));
689 
690 	/*
691 	 * We have to exit READ_STATUS mode in order to read real data on the
692 	 * bus in case the WAITRDY instruction is preceding a DATA_IN
693 	 * instruction.
694 	 */
695 	nand_exit_status_op(chip);
696 
697 	if (ret)
698 		return ret;
699 
700 	return status & NAND_STATUS_READY ? 0 : -ETIMEDOUT;
701 };
702 EXPORT_SYMBOL_GPL(nand_soft_waitrdy);
703 
704 /**
705  * nand_gpio_waitrdy - Poll R/B GPIO pin until ready
706  * @chip: NAND chip structure
707  * @gpiod: GPIO descriptor of R/B pin
708  * @timeout_ms: Timeout in ms
709  *
710  * Poll the R/B GPIO pin until it becomes ready. If that does not happen
711  * whitin the specified timeout, -ETIMEDOUT is returned.
712  *
713  * This helper is intended to be used when the controller has access to the
714  * NAND R/B pin over GPIO.
715  *
716  * Return 0 if the R/B pin indicates chip is ready, a negative error otherwise.
717  */
nand_gpio_waitrdy(struct nand_chip * chip,struct gpio_desc * gpiod,unsigned long timeout_ms)718 int nand_gpio_waitrdy(struct nand_chip *chip, struct gpio_desc *gpiod,
719 		      unsigned long timeout_ms)
720 {
721 
722 	/*
723 	 * Wait until R/B pin indicates chip is ready or timeout occurs.
724 	 * +1 below is necessary because if we are now in the last fraction
725 	 * of jiffy and msecs_to_jiffies is 1 then we will wait only that
726 	 * small jiffy fraction - possibly leading to false timeout.
727 	 */
728 	timeout_ms = jiffies + msecs_to_jiffies(timeout_ms) + 1;
729 	do {
730 		if (gpiod_get_value_cansleep(gpiod))
731 			return 0;
732 
733 		cond_resched();
734 	} while	(time_before(jiffies, timeout_ms));
735 
736 	return gpiod_get_value_cansleep(gpiod) ? 0 : -ETIMEDOUT;
737 };
738 EXPORT_SYMBOL_GPL(nand_gpio_waitrdy);
739 
740 /**
741  * panic_nand_wait - [GENERIC] wait until the command is done
742  * @chip: NAND chip structure
743  * @timeo: timeout
744  *
745  * Wait for command done. This is a helper function for nand_wait used when
746  * we are in interrupt context. May happen when in panic and trying to write
747  * an oops through mtdoops.
748  */
panic_nand_wait(struct nand_chip * chip,unsigned long timeo)749 void panic_nand_wait(struct nand_chip *chip, unsigned long timeo)
750 {
751 	int i;
752 	for (i = 0; i < timeo; i++) {
753 		if (chip->legacy.dev_ready) {
754 			if (chip->legacy.dev_ready(chip))
755 				break;
756 		} else {
757 			int ret;
758 			u8 status;
759 
760 			ret = nand_read_data_op(chip, &status, sizeof(status),
761 						true, false);
762 			if (ret)
763 				return;
764 
765 			if (status & NAND_STATUS_READY)
766 				break;
767 		}
768 		mdelay(1);
769 	}
770 }
771 
nand_supports_get_features(struct nand_chip * chip,int addr)772 static bool nand_supports_get_features(struct nand_chip *chip, int addr)
773 {
774 	return (chip->parameters.supports_set_get_features &&
775 		test_bit(addr, chip->parameters.get_feature_list));
776 }
777 
nand_supports_set_features(struct nand_chip * chip,int addr)778 static bool nand_supports_set_features(struct nand_chip *chip, int addr)
779 {
780 	return (chip->parameters.supports_set_get_features &&
781 		test_bit(addr, chip->parameters.set_feature_list));
782 }
783 
784 /**
785  * nand_reset_interface - Reset data interface and timings
786  * @chip: The NAND chip
787  * @chipnr: Internal die id
788  *
789  * Reset the Data interface and timings to ONFI mode 0.
790  *
791  * Returns 0 for success or negative error code otherwise.
792  */
nand_reset_interface(struct nand_chip * chip,int chipnr)793 static int nand_reset_interface(struct nand_chip *chip, int chipnr)
794 {
795 	const struct nand_controller_ops *ops = chip->controller->ops;
796 	int ret;
797 
798 	if (!nand_controller_can_setup_interface(chip))
799 		return 0;
800 
801 	/*
802 	 * The ONFI specification says:
803 	 * "
804 	 * To transition from NV-DDR or NV-DDR2 to the SDR data
805 	 * interface, the host shall use the Reset (FFh) command
806 	 * using SDR timing mode 0. A device in any timing mode is
807 	 * required to recognize Reset (FFh) command issued in SDR
808 	 * timing mode 0.
809 	 * "
810 	 *
811 	 * Configure the data interface in SDR mode and set the
812 	 * timings to timing mode 0.
813 	 */
814 
815 	chip->current_interface_config = nand_get_reset_interface_config();
816 	ret = ops->setup_interface(chip, chipnr,
817 				   chip->current_interface_config);
818 	if (ret)
819 		pr_err("Failed to configure data interface to SDR timing mode 0\n");
820 
821 	return ret;
822 }
823 
824 /**
825  * nand_setup_interface - Setup the best data interface and timings
826  * @chip: The NAND chip
827  * @chipnr: Internal die id
828  *
829  * Configure what has been reported to be the best data interface and NAND
830  * timings supported by the chip and the driver.
831  *
832  * Returns 0 for success or negative error code otherwise.
833  */
nand_setup_interface(struct nand_chip * chip,int chipnr)834 static int nand_setup_interface(struct nand_chip *chip, int chipnr)
835 {
836 	const struct nand_controller_ops *ops = chip->controller->ops;
837 	u8 tmode_param[ONFI_SUBFEATURE_PARAM_LEN] = { }, request;
838 	int ret;
839 
840 	if (!nand_controller_can_setup_interface(chip))
841 		return 0;
842 
843 	/*
844 	 * A nand_reset_interface() put both the NAND chip and the NAND
845 	 * controller in timings mode 0. If the default mode for this chip is
846 	 * also 0, no need to proceed to the change again. Plus, at probe time,
847 	 * nand_setup_interface() uses ->set/get_features() which would
848 	 * fail anyway as the parameter page is not available yet.
849 	 */
850 	if (!chip->best_interface_config)
851 		return 0;
852 
853 	request = chip->best_interface_config->timings.mode;
854 	if (nand_interface_is_sdr(chip->best_interface_config))
855 		request |= ONFI_DATA_INTERFACE_SDR;
856 	else
857 		request |= ONFI_DATA_INTERFACE_NVDDR;
858 	tmode_param[0] = request;
859 
860 	/* Change the mode on the chip side (if supported by the NAND chip) */
861 	if (nand_supports_set_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE)) {
862 		nand_select_target(chip, chipnr);
863 		ret = nand_set_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE,
864 					tmode_param);
865 		nand_deselect_target(chip);
866 		if (ret)
867 			return ret;
868 	}
869 
870 	/* Change the mode on the controller side */
871 	ret = ops->setup_interface(chip, chipnr, chip->best_interface_config);
872 	if (ret)
873 		return ret;
874 
875 	/* Check the mode has been accepted by the chip, if supported */
876 	if (!nand_supports_get_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE))
877 		goto update_interface_config;
878 
879 	memset(tmode_param, 0, ONFI_SUBFEATURE_PARAM_LEN);
880 	nand_select_target(chip, chipnr);
881 	ret = nand_get_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE,
882 				tmode_param);
883 	nand_deselect_target(chip);
884 	if (ret)
885 		goto err_reset_chip;
886 
887 	if (request != tmode_param[0]) {
888 		pr_warn("%s timing mode %d not acknowledged by the NAND chip\n",
889 			nand_interface_is_nvddr(chip->best_interface_config) ? "NV-DDR" : "SDR",
890 			chip->best_interface_config->timings.mode);
891 		pr_debug("NAND chip would work in %s timing mode %d\n",
892 			 tmode_param[0] & ONFI_DATA_INTERFACE_NVDDR ? "NV-DDR" : "SDR",
893 			 (unsigned int)ONFI_TIMING_MODE_PARAM(tmode_param[0]));
894 		goto err_reset_chip;
895 	}
896 
897 update_interface_config:
898 	chip->current_interface_config = chip->best_interface_config;
899 
900 	return 0;
901 
902 err_reset_chip:
903 	/*
904 	 * Fallback to mode 0 if the chip explicitly did not ack the chosen
905 	 * timing mode.
906 	 */
907 	nand_reset_interface(chip, chipnr);
908 	nand_select_target(chip, chipnr);
909 	nand_reset_op(chip);
910 	nand_deselect_target(chip);
911 
912 	return ret;
913 }
914 
915 /**
916  * nand_choose_best_sdr_timings - Pick up the best SDR timings that both the
917  *                                NAND controller and the NAND chip support
918  * @chip: the NAND chip
919  * @iface: the interface configuration (can eventually be updated)
920  * @spec_timings: specific timings, when not fitting the ONFI specification
921  *
922  * If specific timings are provided, use them. Otherwise, retrieve supported
923  * timing modes from ONFI information.
924  */
nand_choose_best_sdr_timings(struct nand_chip * chip,struct nand_interface_config * iface,struct nand_sdr_timings * spec_timings)925 int nand_choose_best_sdr_timings(struct nand_chip *chip,
926 				 struct nand_interface_config *iface,
927 				 struct nand_sdr_timings *spec_timings)
928 {
929 	const struct nand_controller_ops *ops = chip->controller->ops;
930 	int best_mode = 0, mode, ret = -EOPNOTSUPP;
931 
932 	iface->type = NAND_SDR_IFACE;
933 
934 	if (spec_timings) {
935 		iface->timings.sdr = *spec_timings;
936 		iface->timings.mode = onfi_find_closest_sdr_mode(spec_timings);
937 
938 		/* Verify the controller supports the requested interface */
939 		ret = ops->setup_interface(chip, NAND_DATA_IFACE_CHECK_ONLY,
940 					   iface);
941 		if (!ret) {
942 			chip->best_interface_config = iface;
943 			return ret;
944 		}
945 
946 		/* Fallback to slower modes */
947 		best_mode = iface->timings.mode;
948 	} else if (chip->parameters.onfi) {
949 		best_mode = fls(chip->parameters.onfi->sdr_timing_modes) - 1;
950 	}
951 
952 	for (mode = best_mode; mode >= 0; mode--) {
953 		onfi_fill_interface_config(chip, iface, NAND_SDR_IFACE, mode);
954 
955 		ret = ops->setup_interface(chip, NAND_DATA_IFACE_CHECK_ONLY,
956 					   iface);
957 		if (!ret) {
958 			chip->best_interface_config = iface;
959 			break;
960 		}
961 	}
962 
963 	return ret;
964 }
965 
966 /**
967  * nand_choose_best_nvddr_timings - Pick up the best NVDDR timings that both the
968  *                                  NAND controller and the NAND chip support
969  * @chip: the NAND chip
970  * @iface: the interface configuration (can eventually be updated)
971  * @spec_timings: specific timings, when not fitting the ONFI specification
972  *
973  * If specific timings are provided, use them. Otherwise, retrieve supported
974  * timing modes from ONFI information.
975  */
nand_choose_best_nvddr_timings(struct nand_chip * chip,struct nand_interface_config * iface,struct nand_nvddr_timings * spec_timings)976 int nand_choose_best_nvddr_timings(struct nand_chip *chip,
977 				   struct nand_interface_config *iface,
978 				   struct nand_nvddr_timings *spec_timings)
979 {
980 	const struct nand_controller_ops *ops = chip->controller->ops;
981 	int best_mode = 0, mode, ret = -EOPNOTSUPP;
982 
983 	iface->type = NAND_NVDDR_IFACE;
984 
985 	if (spec_timings) {
986 		iface->timings.nvddr = *spec_timings;
987 		iface->timings.mode = onfi_find_closest_nvddr_mode(spec_timings);
988 
989 		/* Verify the controller supports the requested interface */
990 		ret = ops->setup_interface(chip, NAND_DATA_IFACE_CHECK_ONLY,
991 					   iface);
992 		if (!ret) {
993 			chip->best_interface_config = iface;
994 			return ret;
995 		}
996 
997 		/* Fallback to slower modes */
998 		best_mode = iface->timings.mode;
999 	} else if (chip->parameters.onfi) {
1000 		best_mode = fls(chip->parameters.onfi->nvddr_timing_modes) - 1;
1001 	}
1002 
1003 	for (mode = best_mode; mode >= 0; mode--) {
1004 		onfi_fill_interface_config(chip, iface, NAND_NVDDR_IFACE, mode);
1005 
1006 		ret = ops->setup_interface(chip, NAND_DATA_IFACE_CHECK_ONLY,
1007 					   iface);
1008 		if (!ret) {
1009 			chip->best_interface_config = iface;
1010 			break;
1011 		}
1012 	}
1013 
1014 	return ret;
1015 }
1016 
1017 /**
1018  * nand_choose_best_timings - Pick up the best NVDDR or SDR timings that both
1019  *                            NAND controller and the NAND chip support
1020  * @chip: the NAND chip
1021  * @iface: the interface configuration (can eventually be updated)
1022  *
1023  * If specific timings are provided, use them. Otherwise, retrieve supported
1024  * timing modes from ONFI information.
1025  */
nand_choose_best_timings(struct nand_chip * chip,struct nand_interface_config * iface)1026 static int nand_choose_best_timings(struct nand_chip *chip,
1027 				    struct nand_interface_config *iface)
1028 {
1029 	int ret;
1030 
1031 	/* Try the fastest timings: NV-DDR */
1032 	ret = nand_choose_best_nvddr_timings(chip, iface, NULL);
1033 	if (!ret)
1034 		return 0;
1035 
1036 	/* Fallback to SDR timings otherwise */
1037 	return nand_choose_best_sdr_timings(chip, iface, NULL);
1038 }
1039 
1040 /**
1041  * nand_choose_interface_config - find the best data interface and timings
1042  * @chip: The NAND chip
1043  *
1044  * Find the best data interface and NAND timings supported by the chip
1045  * and the driver. Eventually let the NAND manufacturer driver propose his own
1046  * set of timings.
1047  *
1048  * After this function nand_chip->interface_config is initialized with the best
1049  * timing mode available.
1050  *
1051  * Returns 0 for success or negative error code otherwise.
1052  */
nand_choose_interface_config(struct nand_chip * chip)1053 static int nand_choose_interface_config(struct nand_chip *chip)
1054 {
1055 	struct nand_interface_config *iface;
1056 	int ret;
1057 
1058 	if (!nand_controller_can_setup_interface(chip))
1059 		return 0;
1060 
1061 	iface = kzalloc(sizeof(*iface), GFP_KERNEL);
1062 	if (!iface)
1063 		return -ENOMEM;
1064 
1065 	if (chip->ops.choose_interface_config)
1066 		ret = chip->ops.choose_interface_config(chip, iface);
1067 	else
1068 		ret = nand_choose_best_timings(chip, iface);
1069 
1070 	if (ret)
1071 		kfree(iface);
1072 
1073 	return ret;
1074 }
1075 
1076 /**
1077  * nand_fill_column_cycles - fill the column cycles of an address
1078  * @chip: The NAND chip
1079  * @addrs: Array of address cycles to fill
1080  * @offset_in_page: The offset in the page
1081  *
1082  * Fills the first or the first two bytes of the @addrs field depending
1083  * on the NAND bus width and the page size.
1084  *
1085  * Returns the number of cycles needed to encode the column, or a negative
1086  * error code in case one of the arguments is invalid.
1087  */
nand_fill_column_cycles(struct nand_chip * chip,u8 * addrs,unsigned int offset_in_page)1088 static int nand_fill_column_cycles(struct nand_chip *chip, u8 *addrs,
1089 				   unsigned int offset_in_page)
1090 {
1091 	struct mtd_info *mtd = nand_to_mtd(chip);
1092 
1093 	/* Make sure the offset is less than the actual page size. */
1094 	if (offset_in_page > mtd->writesize + mtd->oobsize)
1095 		return -EINVAL;
1096 
1097 	/*
1098 	 * On small page NANDs, there's a dedicated command to access the OOB
1099 	 * area, and the column address is relative to the start of the OOB
1100 	 * area, not the start of the page. Asjust the address accordingly.
1101 	 */
1102 	if (mtd->writesize <= 512 && offset_in_page >= mtd->writesize)
1103 		offset_in_page -= mtd->writesize;
1104 
1105 	/*
1106 	 * The offset in page is expressed in bytes, if the NAND bus is 16-bit
1107 	 * wide, then it must be divided by 2.
1108 	 */
1109 	if (chip->options & NAND_BUSWIDTH_16) {
1110 		if (WARN_ON(offset_in_page % 2))
1111 			return -EINVAL;
1112 
1113 		offset_in_page /= 2;
1114 	}
1115 
1116 	addrs[0] = offset_in_page;
1117 
1118 	/*
1119 	 * Small page NANDs use 1 cycle for the columns, while large page NANDs
1120 	 * need 2
1121 	 */
1122 	if (mtd->writesize <= 512)
1123 		return 1;
1124 
1125 	addrs[1] = offset_in_page >> 8;
1126 
1127 	return 2;
1128 }
1129 
nand_sp_exec_read_page_op(struct nand_chip * chip,unsigned int page,unsigned int offset_in_page,void * buf,unsigned int len)1130 static int nand_sp_exec_read_page_op(struct nand_chip *chip, unsigned int page,
1131 				     unsigned int offset_in_page, void *buf,
1132 				     unsigned int len)
1133 {
1134 	const struct nand_interface_config *conf =
1135 		nand_get_interface_config(chip);
1136 	struct mtd_info *mtd = nand_to_mtd(chip);
1137 	u8 addrs[4];
1138 	struct nand_op_instr instrs[] = {
1139 		NAND_OP_CMD(NAND_CMD_READ0, 0),
1140 		NAND_OP_ADDR(3, addrs, NAND_COMMON_TIMING_NS(conf, tWB_max)),
1141 		NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tR_max),
1142 				 NAND_COMMON_TIMING_NS(conf, tRR_min)),
1143 		NAND_OP_DATA_IN(len, buf, 0),
1144 	};
1145 	struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1146 	int ret;
1147 
1148 	/* Drop the DATA_IN instruction if len is set to 0. */
1149 	if (!len)
1150 		op.ninstrs--;
1151 
1152 	if (offset_in_page >= mtd->writesize)
1153 		instrs[0].ctx.cmd.opcode = NAND_CMD_READOOB;
1154 	else if (offset_in_page >= 256 &&
1155 		 !(chip->options & NAND_BUSWIDTH_16))
1156 		instrs[0].ctx.cmd.opcode = NAND_CMD_READ1;
1157 
1158 	ret = nand_fill_column_cycles(chip, addrs, offset_in_page);
1159 	if (ret < 0)
1160 		return ret;
1161 
1162 	addrs[1] = page;
1163 	addrs[2] = page >> 8;
1164 
1165 	if (chip->options & NAND_ROW_ADDR_3) {
1166 		addrs[3] = page >> 16;
1167 		instrs[1].ctx.addr.naddrs++;
1168 	}
1169 
1170 	return nand_exec_op(chip, &op);
1171 }
1172 
nand_lp_exec_read_page_op(struct nand_chip * chip,unsigned int page,unsigned int offset_in_page,void * buf,unsigned int len)1173 static int nand_lp_exec_read_page_op(struct nand_chip *chip, unsigned int page,
1174 				     unsigned int offset_in_page, void *buf,
1175 				     unsigned int len)
1176 {
1177 	const struct nand_interface_config *conf =
1178 		nand_get_interface_config(chip);
1179 	u8 addrs[5];
1180 	struct nand_op_instr instrs[] = {
1181 		NAND_OP_CMD(NAND_CMD_READ0, 0),
1182 		NAND_OP_ADDR(4, addrs, 0),
1183 		NAND_OP_CMD(NAND_CMD_READSTART, NAND_COMMON_TIMING_NS(conf, tWB_max)),
1184 		NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tR_max),
1185 				 NAND_COMMON_TIMING_NS(conf, tRR_min)),
1186 		NAND_OP_DATA_IN(len, buf, 0),
1187 	};
1188 	struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1189 	int ret;
1190 
1191 	/* Drop the DATA_IN instruction if len is set to 0. */
1192 	if (!len)
1193 		op.ninstrs--;
1194 
1195 	ret = nand_fill_column_cycles(chip, addrs, offset_in_page);
1196 	if (ret < 0)
1197 		return ret;
1198 
1199 	addrs[2] = page;
1200 	addrs[3] = page >> 8;
1201 
1202 	if (chip->options & NAND_ROW_ADDR_3) {
1203 		addrs[4] = page >> 16;
1204 		instrs[1].ctx.addr.naddrs++;
1205 	}
1206 
1207 	return nand_exec_op(chip, &op);
1208 }
1209 
1210 /**
1211  * nand_read_page_op - Do a READ PAGE operation
1212  * @chip: The NAND chip
1213  * @page: page to read
1214  * @offset_in_page: offset within the page
1215  * @buf: buffer used to store the data
1216  * @len: length of the buffer
1217  *
1218  * This function issues a READ PAGE operation.
1219  * This function does not select/unselect the CS line.
1220  *
1221  * Returns 0 on success, a negative error code otherwise.
1222  */
nand_read_page_op(struct nand_chip * chip,unsigned int page,unsigned int offset_in_page,void * buf,unsigned int len)1223 int nand_read_page_op(struct nand_chip *chip, unsigned int page,
1224 		      unsigned int offset_in_page, void *buf, unsigned int len)
1225 {
1226 	struct mtd_info *mtd = nand_to_mtd(chip);
1227 
1228 	if (len && !buf)
1229 		return -EINVAL;
1230 
1231 	if (offset_in_page + len > mtd->writesize + mtd->oobsize)
1232 		return -EINVAL;
1233 
1234 	if (nand_has_exec_op(chip)) {
1235 		if (mtd->writesize > 512)
1236 			return nand_lp_exec_read_page_op(chip, page,
1237 							 offset_in_page, buf,
1238 							 len);
1239 
1240 		return nand_sp_exec_read_page_op(chip, page, offset_in_page,
1241 						 buf, len);
1242 	}
1243 
1244 	chip->legacy.cmdfunc(chip, NAND_CMD_READ0, offset_in_page, page);
1245 	if (len)
1246 		chip->legacy.read_buf(chip, buf, len);
1247 
1248 	return 0;
1249 }
1250 EXPORT_SYMBOL_GPL(nand_read_page_op);
1251 
1252 /**
1253  * nand_read_param_page_op - Do a READ PARAMETER PAGE operation
1254  * @chip: The NAND chip
1255  * @page: parameter page to read
1256  * @buf: buffer used to store the data
1257  * @len: length of the buffer
1258  *
1259  * This function issues a READ PARAMETER PAGE operation.
1260  * This function does not select/unselect the CS line.
1261  *
1262  * Returns 0 on success, a negative error code otherwise.
1263  */
nand_read_param_page_op(struct nand_chip * chip,u8 page,void * buf,unsigned int len)1264 int nand_read_param_page_op(struct nand_chip *chip, u8 page, void *buf,
1265 			    unsigned int len)
1266 {
1267 	unsigned int i;
1268 	u8 *p = buf;
1269 
1270 	if (len && !buf)
1271 		return -EINVAL;
1272 
1273 	if (nand_has_exec_op(chip)) {
1274 		const struct nand_interface_config *conf =
1275 			nand_get_interface_config(chip);
1276 		struct nand_op_instr instrs[] = {
1277 			NAND_OP_CMD(NAND_CMD_PARAM, 0),
1278 			NAND_OP_ADDR(1, &page,
1279 				     NAND_COMMON_TIMING_NS(conf, tWB_max)),
1280 			NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tR_max),
1281 					 NAND_COMMON_TIMING_NS(conf, tRR_min)),
1282 			NAND_OP_8BIT_DATA_IN(len, buf, 0),
1283 		};
1284 		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1285 
1286 		/* Drop the DATA_IN instruction if len is set to 0. */
1287 		if (!len)
1288 			op.ninstrs--;
1289 
1290 		return nand_exec_op(chip, &op);
1291 	}
1292 
1293 	chip->legacy.cmdfunc(chip, NAND_CMD_PARAM, page, -1);
1294 	for (i = 0; i < len; i++)
1295 		p[i] = chip->legacy.read_byte(chip);
1296 
1297 	return 0;
1298 }
1299 
1300 /**
1301  * nand_change_read_column_op - Do a CHANGE READ COLUMN operation
1302  * @chip: The NAND chip
1303  * @offset_in_page: offset within the page
1304  * @buf: buffer used to store the data
1305  * @len: length of the buffer
1306  * @force_8bit: force 8-bit bus access
1307  *
1308  * This function issues a CHANGE READ COLUMN operation.
1309  * This function does not select/unselect the CS line.
1310  *
1311  * Returns 0 on success, a negative error code otherwise.
1312  */
nand_change_read_column_op(struct nand_chip * chip,unsigned int offset_in_page,void * buf,unsigned int len,bool force_8bit)1313 int nand_change_read_column_op(struct nand_chip *chip,
1314 			       unsigned int offset_in_page, void *buf,
1315 			       unsigned int len, bool force_8bit)
1316 {
1317 	struct mtd_info *mtd = nand_to_mtd(chip);
1318 
1319 	if (len && !buf)
1320 		return -EINVAL;
1321 
1322 	if (offset_in_page + len > mtd->writesize + mtd->oobsize)
1323 		return -EINVAL;
1324 
1325 	/* Small page NANDs do not support column change. */
1326 	if (mtd->writesize <= 512)
1327 		return -ENOTSUPP;
1328 
1329 	if (nand_has_exec_op(chip)) {
1330 		const struct nand_interface_config *conf =
1331 			nand_get_interface_config(chip);
1332 		u8 addrs[2] = {};
1333 		struct nand_op_instr instrs[] = {
1334 			NAND_OP_CMD(NAND_CMD_RNDOUT, 0),
1335 			NAND_OP_ADDR(2, addrs, 0),
1336 			NAND_OP_CMD(NAND_CMD_RNDOUTSTART,
1337 				    NAND_COMMON_TIMING_NS(conf, tCCS_min)),
1338 			NAND_OP_DATA_IN(len, buf, 0),
1339 		};
1340 		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1341 		int ret;
1342 
1343 		ret = nand_fill_column_cycles(chip, addrs, offset_in_page);
1344 		if (ret < 0)
1345 			return ret;
1346 
1347 		/* Drop the DATA_IN instruction if len is set to 0. */
1348 		if (!len)
1349 			op.ninstrs--;
1350 
1351 		instrs[3].ctx.data.force_8bit = force_8bit;
1352 
1353 		return nand_exec_op(chip, &op);
1354 	}
1355 
1356 	chip->legacy.cmdfunc(chip, NAND_CMD_RNDOUT, offset_in_page, -1);
1357 	if (len)
1358 		chip->legacy.read_buf(chip, buf, len);
1359 
1360 	return 0;
1361 }
1362 EXPORT_SYMBOL_GPL(nand_change_read_column_op);
1363 
1364 /**
1365  * nand_read_oob_op - Do a READ OOB operation
1366  * @chip: The NAND chip
1367  * @page: page to read
1368  * @offset_in_oob: offset within the OOB area
1369  * @buf: buffer used to store the data
1370  * @len: length of the buffer
1371  *
1372  * This function issues a READ OOB operation.
1373  * This function does not select/unselect the CS line.
1374  *
1375  * Returns 0 on success, a negative error code otherwise.
1376  */
nand_read_oob_op(struct nand_chip * chip,unsigned int page,unsigned int offset_in_oob,void * buf,unsigned int len)1377 int nand_read_oob_op(struct nand_chip *chip, unsigned int page,
1378 		     unsigned int offset_in_oob, void *buf, unsigned int len)
1379 {
1380 	struct mtd_info *mtd = nand_to_mtd(chip);
1381 
1382 	if (len && !buf)
1383 		return -EINVAL;
1384 
1385 	if (offset_in_oob + len > mtd->oobsize)
1386 		return -EINVAL;
1387 
1388 	if (nand_has_exec_op(chip))
1389 		return nand_read_page_op(chip, page,
1390 					 mtd->writesize + offset_in_oob,
1391 					 buf, len);
1392 
1393 	chip->legacy.cmdfunc(chip, NAND_CMD_READOOB, offset_in_oob, page);
1394 	if (len)
1395 		chip->legacy.read_buf(chip, buf, len);
1396 
1397 	return 0;
1398 }
1399 EXPORT_SYMBOL_GPL(nand_read_oob_op);
1400 
nand_exec_prog_page_op(struct nand_chip * chip,unsigned int page,unsigned int offset_in_page,const void * buf,unsigned int len,bool prog)1401 static int nand_exec_prog_page_op(struct nand_chip *chip, unsigned int page,
1402 				  unsigned int offset_in_page, const void *buf,
1403 				  unsigned int len, bool prog)
1404 {
1405 	const struct nand_interface_config *conf =
1406 		nand_get_interface_config(chip);
1407 	struct mtd_info *mtd = nand_to_mtd(chip);
1408 	u8 addrs[5] = {};
1409 	struct nand_op_instr instrs[] = {
1410 		/*
1411 		 * The first instruction will be dropped if we're dealing
1412 		 * with a large page NAND and adjusted if we're dealing
1413 		 * with a small page NAND and the page offset is > 255.
1414 		 */
1415 		NAND_OP_CMD(NAND_CMD_READ0, 0),
1416 		NAND_OP_CMD(NAND_CMD_SEQIN, 0),
1417 		NAND_OP_ADDR(0, addrs, NAND_COMMON_TIMING_NS(conf, tADL_min)),
1418 		NAND_OP_DATA_OUT(len, buf, 0),
1419 		NAND_OP_CMD(NAND_CMD_PAGEPROG,
1420 			    NAND_COMMON_TIMING_NS(conf, tWB_max)),
1421 		NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tPROG_max), 0),
1422 	};
1423 	struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1424 	int naddrs = nand_fill_column_cycles(chip, addrs, offset_in_page);
1425 
1426 	if (naddrs < 0)
1427 		return naddrs;
1428 
1429 	addrs[naddrs++] = page;
1430 	addrs[naddrs++] = page >> 8;
1431 	if (chip->options & NAND_ROW_ADDR_3)
1432 		addrs[naddrs++] = page >> 16;
1433 
1434 	instrs[2].ctx.addr.naddrs = naddrs;
1435 
1436 	/* Drop the last two instructions if we're not programming the page. */
1437 	if (!prog) {
1438 		op.ninstrs -= 2;
1439 		/* Also drop the DATA_OUT instruction if empty. */
1440 		if (!len)
1441 			op.ninstrs--;
1442 	}
1443 
1444 	if (mtd->writesize <= 512) {
1445 		/*
1446 		 * Small pages need some more tweaking: we have to adjust the
1447 		 * first instruction depending on the page offset we're trying
1448 		 * to access.
1449 		 */
1450 		if (offset_in_page >= mtd->writesize)
1451 			instrs[0].ctx.cmd.opcode = NAND_CMD_READOOB;
1452 		else if (offset_in_page >= 256 &&
1453 			 !(chip->options & NAND_BUSWIDTH_16))
1454 			instrs[0].ctx.cmd.opcode = NAND_CMD_READ1;
1455 	} else {
1456 		/*
1457 		 * Drop the first command if we're dealing with a large page
1458 		 * NAND.
1459 		 */
1460 		op.instrs++;
1461 		op.ninstrs--;
1462 	}
1463 
1464 	return nand_exec_op(chip, &op);
1465 }
1466 
1467 /**
1468  * nand_prog_page_begin_op - starts a PROG PAGE operation
1469  * @chip: The NAND chip
1470  * @page: page to write
1471  * @offset_in_page: offset within the page
1472  * @buf: buffer containing the data to write to the page
1473  * @len: length of the buffer
1474  *
1475  * This function issues the first half of a PROG PAGE operation.
1476  * This function does not select/unselect the CS line.
1477  *
1478  * Returns 0 on success, a negative error code otherwise.
1479  */
nand_prog_page_begin_op(struct nand_chip * chip,unsigned int page,unsigned int offset_in_page,const void * buf,unsigned int len)1480 int nand_prog_page_begin_op(struct nand_chip *chip, unsigned int page,
1481 			    unsigned int offset_in_page, const void *buf,
1482 			    unsigned int len)
1483 {
1484 	struct mtd_info *mtd = nand_to_mtd(chip);
1485 
1486 	if (len && !buf)
1487 		return -EINVAL;
1488 
1489 	if (offset_in_page + len > mtd->writesize + mtd->oobsize)
1490 		return -EINVAL;
1491 
1492 	if (nand_has_exec_op(chip))
1493 		return nand_exec_prog_page_op(chip, page, offset_in_page, buf,
1494 					      len, false);
1495 
1496 	chip->legacy.cmdfunc(chip, NAND_CMD_SEQIN, offset_in_page, page);
1497 
1498 	if (buf)
1499 		chip->legacy.write_buf(chip, buf, len);
1500 
1501 	return 0;
1502 }
1503 EXPORT_SYMBOL_GPL(nand_prog_page_begin_op);
1504 
1505 /**
1506  * nand_prog_page_end_op - ends a PROG PAGE operation
1507  * @chip: The NAND chip
1508  *
1509  * This function issues the second half of a PROG PAGE operation.
1510  * This function does not select/unselect the CS line.
1511  *
1512  * Returns 0 on success, a negative error code otherwise.
1513  */
nand_prog_page_end_op(struct nand_chip * chip)1514 int nand_prog_page_end_op(struct nand_chip *chip)
1515 {
1516 	int ret;
1517 	u8 status;
1518 
1519 	if (nand_has_exec_op(chip)) {
1520 		const struct nand_interface_config *conf =
1521 			nand_get_interface_config(chip);
1522 		struct nand_op_instr instrs[] = {
1523 			NAND_OP_CMD(NAND_CMD_PAGEPROG,
1524 				    NAND_COMMON_TIMING_NS(conf, tWB_max)),
1525 			NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tPROG_max),
1526 					 0),
1527 		};
1528 		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1529 
1530 		ret = nand_exec_op(chip, &op);
1531 		if (ret)
1532 			return ret;
1533 
1534 		ret = nand_status_op(chip, &status);
1535 		if (ret)
1536 			return ret;
1537 	} else {
1538 		chip->legacy.cmdfunc(chip, NAND_CMD_PAGEPROG, -1, -1);
1539 		ret = chip->legacy.waitfunc(chip);
1540 		if (ret < 0)
1541 			return ret;
1542 
1543 		status = ret;
1544 	}
1545 
1546 	if (status & NAND_STATUS_FAIL)
1547 		return -EIO;
1548 
1549 	return 0;
1550 }
1551 EXPORT_SYMBOL_GPL(nand_prog_page_end_op);
1552 
1553 /**
1554  * nand_prog_page_op - Do a full PROG PAGE operation
1555  * @chip: The NAND chip
1556  * @page: page to write
1557  * @offset_in_page: offset within the page
1558  * @buf: buffer containing the data to write to the page
1559  * @len: length of the buffer
1560  *
1561  * This function issues a full PROG PAGE operation.
1562  * This function does not select/unselect the CS line.
1563  *
1564  * Returns 0 on success, a negative error code otherwise.
1565  */
nand_prog_page_op(struct nand_chip * chip,unsigned int page,unsigned int offset_in_page,const void * buf,unsigned int len)1566 int nand_prog_page_op(struct nand_chip *chip, unsigned int page,
1567 		      unsigned int offset_in_page, const void *buf,
1568 		      unsigned int len)
1569 {
1570 	struct mtd_info *mtd = nand_to_mtd(chip);
1571 	u8 status;
1572 	int ret;
1573 
1574 	if (!len || !buf)
1575 		return -EINVAL;
1576 
1577 	if (offset_in_page + len > mtd->writesize + mtd->oobsize)
1578 		return -EINVAL;
1579 
1580 	if (nand_has_exec_op(chip)) {
1581 		ret = nand_exec_prog_page_op(chip, page, offset_in_page, buf,
1582 						len, true);
1583 		if (ret)
1584 			return ret;
1585 
1586 		ret = nand_status_op(chip, &status);
1587 		if (ret)
1588 			return ret;
1589 	} else {
1590 		chip->legacy.cmdfunc(chip, NAND_CMD_SEQIN, offset_in_page,
1591 				     page);
1592 		chip->legacy.write_buf(chip, buf, len);
1593 		chip->legacy.cmdfunc(chip, NAND_CMD_PAGEPROG, -1, -1);
1594 		ret = chip->legacy.waitfunc(chip);
1595 		if (ret < 0)
1596 			return ret;
1597 
1598 		status = ret;
1599 	}
1600 
1601 	if (status & NAND_STATUS_FAIL)
1602 		return -EIO;
1603 
1604 	return 0;
1605 }
1606 EXPORT_SYMBOL_GPL(nand_prog_page_op);
1607 
1608 /**
1609  * nand_change_write_column_op - Do a CHANGE WRITE COLUMN operation
1610  * @chip: The NAND chip
1611  * @offset_in_page: offset within the page
1612  * @buf: buffer containing the data to send to the NAND
1613  * @len: length of the buffer
1614  * @force_8bit: force 8-bit bus access
1615  *
1616  * This function issues a CHANGE WRITE COLUMN operation.
1617  * This function does not select/unselect the CS line.
1618  *
1619  * Returns 0 on success, a negative error code otherwise.
1620  */
nand_change_write_column_op(struct nand_chip * chip,unsigned int offset_in_page,const void * buf,unsigned int len,bool force_8bit)1621 int nand_change_write_column_op(struct nand_chip *chip,
1622 				unsigned int offset_in_page,
1623 				const void *buf, unsigned int len,
1624 				bool force_8bit)
1625 {
1626 	struct mtd_info *mtd = nand_to_mtd(chip);
1627 
1628 	if (len && !buf)
1629 		return -EINVAL;
1630 
1631 	if (offset_in_page + len > mtd->writesize + mtd->oobsize)
1632 		return -EINVAL;
1633 
1634 	/* Small page NANDs do not support column change. */
1635 	if (mtd->writesize <= 512)
1636 		return -ENOTSUPP;
1637 
1638 	if (nand_has_exec_op(chip)) {
1639 		const struct nand_interface_config *conf =
1640 			nand_get_interface_config(chip);
1641 		u8 addrs[2];
1642 		struct nand_op_instr instrs[] = {
1643 			NAND_OP_CMD(NAND_CMD_RNDIN, 0),
1644 			NAND_OP_ADDR(2, addrs, NAND_COMMON_TIMING_NS(conf, tCCS_min)),
1645 			NAND_OP_DATA_OUT(len, buf, 0),
1646 		};
1647 		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1648 		int ret;
1649 
1650 		ret = nand_fill_column_cycles(chip, addrs, offset_in_page);
1651 		if (ret < 0)
1652 			return ret;
1653 
1654 		instrs[2].ctx.data.force_8bit = force_8bit;
1655 
1656 		/* Drop the DATA_OUT instruction if len is set to 0. */
1657 		if (!len)
1658 			op.ninstrs--;
1659 
1660 		return nand_exec_op(chip, &op);
1661 	}
1662 
1663 	chip->legacy.cmdfunc(chip, NAND_CMD_RNDIN, offset_in_page, -1);
1664 	if (len)
1665 		chip->legacy.write_buf(chip, buf, len);
1666 
1667 	return 0;
1668 }
1669 EXPORT_SYMBOL_GPL(nand_change_write_column_op);
1670 
1671 /**
1672  * nand_readid_op - Do a READID operation
1673  * @chip: The NAND chip
1674  * @addr: address cycle to pass after the READID command
1675  * @buf: buffer used to store the ID
1676  * @len: length of the buffer
1677  *
1678  * This function sends a READID command and reads back the ID returned by the
1679  * NAND.
1680  * This function does not select/unselect the CS line.
1681  *
1682  * Returns 0 on success, a negative error code otherwise.
1683  */
nand_readid_op(struct nand_chip * chip,u8 addr,void * buf,unsigned int len)1684 int nand_readid_op(struct nand_chip *chip, u8 addr, void *buf,
1685 		   unsigned int len)
1686 {
1687 	unsigned int i;
1688 	u8 *id = buf, *ddrbuf = NULL;
1689 
1690 	if (len && !buf)
1691 		return -EINVAL;
1692 
1693 	if (nand_has_exec_op(chip)) {
1694 		const struct nand_interface_config *conf =
1695 			nand_get_interface_config(chip);
1696 		struct nand_op_instr instrs[] = {
1697 			NAND_OP_CMD(NAND_CMD_READID, 0),
1698 			NAND_OP_ADDR(1, &addr,
1699 				     NAND_COMMON_TIMING_NS(conf, tADL_min)),
1700 			NAND_OP_8BIT_DATA_IN(len, buf, 0),
1701 		};
1702 		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1703 		int ret;
1704 
1705 		/* READ_ID data bytes are received twice in NV-DDR mode */
1706 		if (len && nand_interface_is_nvddr(conf)) {
1707 			ddrbuf = kzalloc(len * 2, GFP_KERNEL);
1708 			if (!ddrbuf)
1709 				return -ENOMEM;
1710 
1711 			instrs[2].ctx.data.len *= 2;
1712 			instrs[2].ctx.data.buf.in = ddrbuf;
1713 		}
1714 
1715 		/* Drop the DATA_IN instruction if len is set to 0. */
1716 		if (!len)
1717 			op.ninstrs--;
1718 
1719 		ret = nand_exec_op(chip, &op);
1720 		if (!ret && len && nand_interface_is_nvddr(conf)) {
1721 			for (i = 0; i < len; i++)
1722 				id[i] = ddrbuf[i * 2];
1723 		}
1724 
1725 		kfree(ddrbuf);
1726 
1727 		return ret;
1728 	}
1729 
1730 	chip->legacy.cmdfunc(chip, NAND_CMD_READID, addr, -1);
1731 
1732 	for (i = 0; i < len; i++)
1733 		id[i] = chip->legacy.read_byte(chip);
1734 
1735 	return 0;
1736 }
1737 EXPORT_SYMBOL_GPL(nand_readid_op);
1738 
1739 /**
1740  * nand_status_op - Do a STATUS operation
1741  * @chip: The NAND chip
1742  * @status: out variable to store the NAND status
1743  *
1744  * This function sends a STATUS command and reads back the status returned by
1745  * the NAND.
1746  * This function does not select/unselect the CS line.
1747  *
1748  * Returns 0 on success, a negative error code otherwise.
1749  */
nand_status_op(struct nand_chip * chip,u8 * status)1750 int nand_status_op(struct nand_chip *chip, u8 *status)
1751 {
1752 	if (nand_has_exec_op(chip)) {
1753 		const struct nand_interface_config *conf =
1754 			nand_get_interface_config(chip);
1755 		u8 ddrstatus[2];
1756 		struct nand_op_instr instrs[] = {
1757 			NAND_OP_CMD(NAND_CMD_STATUS,
1758 				    NAND_COMMON_TIMING_NS(conf, tADL_min)),
1759 			NAND_OP_8BIT_DATA_IN(1, status, 0),
1760 		};
1761 		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1762 		int ret;
1763 
1764 		/* The status data byte will be received twice in NV-DDR mode */
1765 		if (status && nand_interface_is_nvddr(conf)) {
1766 			instrs[1].ctx.data.len *= 2;
1767 			instrs[1].ctx.data.buf.in = ddrstatus;
1768 		}
1769 
1770 		if (!status)
1771 			op.ninstrs--;
1772 
1773 		ret = nand_exec_op(chip, &op);
1774 		if (!ret && status && nand_interface_is_nvddr(conf))
1775 			*status = ddrstatus[0];
1776 
1777 		return ret;
1778 	}
1779 
1780 	chip->legacy.cmdfunc(chip, NAND_CMD_STATUS, -1, -1);
1781 	if (status)
1782 		*status = chip->legacy.read_byte(chip);
1783 
1784 	return 0;
1785 }
1786 EXPORT_SYMBOL_GPL(nand_status_op);
1787 
1788 /**
1789  * nand_exit_status_op - Exit a STATUS operation
1790  * @chip: The NAND chip
1791  *
1792  * This function sends a READ0 command to cancel the effect of the STATUS
1793  * command to avoid reading only the status until a new read command is sent.
1794  *
1795  * This function does not select/unselect the CS line.
1796  *
1797  * Returns 0 on success, a negative error code otherwise.
1798  */
nand_exit_status_op(struct nand_chip * chip)1799 int nand_exit_status_op(struct nand_chip *chip)
1800 {
1801 	if (nand_has_exec_op(chip)) {
1802 		struct nand_op_instr instrs[] = {
1803 			NAND_OP_CMD(NAND_CMD_READ0, 0),
1804 		};
1805 		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1806 
1807 		return nand_exec_op(chip, &op);
1808 	}
1809 
1810 	chip->legacy.cmdfunc(chip, NAND_CMD_READ0, -1, -1);
1811 
1812 	return 0;
1813 }
1814 
1815 /**
1816  * nand_erase_op - Do an erase operation
1817  * @chip: The NAND chip
1818  * @eraseblock: block to erase
1819  *
1820  * This function sends an ERASE command and waits for the NAND to be ready
1821  * before returning.
1822  * This function does not select/unselect the CS line.
1823  *
1824  * Returns 0 on success, a negative error code otherwise.
1825  */
nand_erase_op(struct nand_chip * chip,unsigned int eraseblock)1826 int nand_erase_op(struct nand_chip *chip, unsigned int eraseblock)
1827 {
1828 	unsigned int page = eraseblock <<
1829 			    (chip->phys_erase_shift - chip->page_shift);
1830 	int ret;
1831 	u8 status;
1832 
1833 	if (nand_has_exec_op(chip)) {
1834 		const struct nand_interface_config *conf =
1835 			nand_get_interface_config(chip);
1836 		u8 addrs[3] = {	page, page >> 8, page >> 16 };
1837 		struct nand_op_instr instrs[] = {
1838 			NAND_OP_CMD(NAND_CMD_ERASE1, 0),
1839 			NAND_OP_ADDR(2, addrs, 0),
1840 			NAND_OP_CMD(NAND_CMD_ERASE2,
1841 				    NAND_COMMON_TIMING_NS(conf, tWB_max)),
1842 			NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tBERS_max),
1843 					 0),
1844 		};
1845 		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1846 
1847 		if (chip->options & NAND_ROW_ADDR_3)
1848 			instrs[1].ctx.addr.naddrs++;
1849 
1850 		ret = nand_exec_op(chip, &op);
1851 		if (ret)
1852 			return ret;
1853 
1854 		ret = nand_status_op(chip, &status);
1855 		if (ret)
1856 			return ret;
1857 	} else {
1858 		chip->legacy.cmdfunc(chip, NAND_CMD_ERASE1, -1, page);
1859 		chip->legacy.cmdfunc(chip, NAND_CMD_ERASE2, -1, -1);
1860 
1861 		ret = chip->legacy.waitfunc(chip);
1862 		if (ret < 0)
1863 			return ret;
1864 
1865 		status = ret;
1866 	}
1867 
1868 	if (status & NAND_STATUS_FAIL)
1869 		return -EIO;
1870 
1871 	return 0;
1872 }
1873 EXPORT_SYMBOL_GPL(nand_erase_op);
1874 
1875 /**
1876  * nand_set_features_op - Do a SET FEATURES operation
1877  * @chip: The NAND chip
1878  * @feature: feature id
1879  * @data: 4 bytes of data
1880  *
1881  * This function sends a SET FEATURES command and waits for the NAND to be
1882  * ready before returning.
1883  * This function does not select/unselect the CS line.
1884  *
1885  * Returns 0 on success, a negative error code otherwise.
1886  */
nand_set_features_op(struct nand_chip * chip,u8 feature,const void * data)1887 static int nand_set_features_op(struct nand_chip *chip, u8 feature,
1888 				const void *data)
1889 {
1890 	const u8 *params = data;
1891 	int i, ret;
1892 
1893 	if (nand_has_exec_op(chip)) {
1894 		const struct nand_interface_config *conf =
1895 			nand_get_interface_config(chip);
1896 		struct nand_op_instr instrs[] = {
1897 			NAND_OP_CMD(NAND_CMD_SET_FEATURES, 0),
1898 			NAND_OP_ADDR(1, &feature, NAND_COMMON_TIMING_NS(conf,
1899 									tADL_min)),
1900 			NAND_OP_8BIT_DATA_OUT(ONFI_SUBFEATURE_PARAM_LEN, data,
1901 					      NAND_COMMON_TIMING_NS(conf,
1902 								    tWB_max)),
1903 			NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tFEAT_max),
1904 					 0),
1905 		};
1906 		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1907 
1908 		return nand_exec_op(chip, &op);
1909 	}
1910 
1911 	chip->legacy.cmdfunc(chip, NAND_CMD_SET_FEATURES, feature, -1);
1912 	for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
1913 		chip->legacy.write_byte(chip, params[i]);
1914 
1915 	ret = chip->legacy.waitfunc(chip);
1916 	if (ret < 0)
1917 		return ret;
1918 
1919 	if (ret & NAND_STATUS_FAIL)
1920 		return -EIO;
1921 
1922 	return 0;
1923 }
1924 
1925 /**
1926  * nand_get_features_op - Do a GET FEATURES operation
1927  * @chip: The NAND chip
1928  * @feature: feature id
1929  * @data: 4 bytes of data
1930  *
1931  * This function sends a GET FEATURES command and waits for the NAND to be
1932  * ready before returning.
1933  * This function does not select/unselect the CS line.
1934  *
1935  * Returns 0 on success, a negative error code otherwise.
1936  */
nand_get_features_op(struct nand_chip * chip,u8 feature,void * data)1937 static int nand_get_features_op(struct nand_chip *chip, u8 feature,
1938 				void *data)
1939 {
1940 	u8 *params = data, ddrbuf[ONFI_SUBFEATURE_PARAM_LEN * 2];
1941 	int i;
1942 
1943 	if (nand_has_exec_op(chip)) {
1944 		const struct nand_interface_config *conf =
1945 			nand_get_interface_config(chip);
1946 		struct nand_op_instr instrs[] = {
1947 			NAND_OP_CMD(NAND_CMD_GET_FEATURES, 0),
1948 			NAND_OP_ADDR(1, &feature,
1949 				     NAND_COMMON_TIMING_NS(conf, tWB_max)),
1950 			NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tFEAT_max),
1951 					 NAND_COMMON_TIMING_NS(conf, tRR_min)),
1952 			NAND_OP_8BIT_DATA_IN(ONFI_SUBFEATURE_PARAM_LEN,
1953 					     data, 0),
1954 		};
1955 		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1956 		int ret;
1957 
1958 		/* GET_FEATURE data bytes are received twice in NV-DDR mode */
1959 		if (nand_interface_is_nvddr(conf)) {
1960 			instrs[3].ctx.data.len *= 2;
1961 			instrs[3].ctx.data.buf.in = ddrbuf;
1962 		}
1963 
1964 		ret = nand_exec_op(chip, &op);
1965 		if (nand_interface_is_nvddr(conf)) {
1966 			for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; i++)
1967 				params[i] = ddrbuf[i * 2];
1968 		}
1969 
1970 		return ret;
1971 	}
1972 
1973 	chip->legacy.cmdfunc(chip, NAND_CMD_GET_FEATURES, feature, -1);
1974 	for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
1975 		params[i] = chip->legacy.read_byte(chip);
1976 
1977 	return 0;
1978 }
1979 
nand_wait_rdy_op(struct nand_chip * chip,unsigned int timeout_ms,unsigned int delay_ns)1980 static int nand_wait_rdy_op(struct nand_chip *chip, unsigned int timeout_ms,
1981 			    unsigned int delay_ns)
1982 {
1983 	if (nand_has_exec_op(chip)) {
1984 		struct nand_op_instr instrs[] = {
1985 			NAND_OP_WAIT_RDY(PSEC_TO_MSEC(timeout_ms),
1986 					 PSEC_TO_NSEC(delay_ns)),
1987 		};
1988 		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1989 
1990 		return nand_exec_op(chip, &op);
1991 	}
1992 
1993 	/* Apply delay or wait for ready/busy pin */
1994 	if (!chip->legacy.dev_ready)
1995 		udelay(chip->legacy.chip_delay);
1996 	else
1997 		nand_wait_ready(chip);
1998 
1999 	return 0;
2000 }
2001 
2002 /**
2003  * nand_reset_op - Do a reset operation
2004  * @chip: The NAND chip
2005  *
2006  * This function sends a RESET command and waits for the NAND to be ready
2007  * before returning.
2008  * This function does not select/unselect the CS line.
2009  *
2010  * Returns 0 on success, a negative error code otherwise.
2011  */
nand_reset_op(struct nand_chip * chip)2012 int nand_reset_op(struct nand_chip *chip)
2013 {
2014 	if (nand_has_exec_op(chip)) {
2015 		const struct nand_interface_config *conf =
2016 			nand_get_interface_config(chip);
2017 		struct nand_op_instr instrs[] = {
2018 			NAND_OP_CMD(NAND_CMD_RESET,
2019 				    NAND_COMMON_TIMING_NS(conf, tWB_max)),
2020 			NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tRST_max),
2021 					 0),
2022 		};
2023 		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
2024 
2025 		return nand_exec_op(chip, &op);
2026 	}
2027 
2028 	chip->legacy.cmdfunc(chip, NAND_CMD_RESET, -1, -1);
2029 
2030 	return 0;
2031 }
2032 EXPORT_SYMBOL_GPL(nand_reset_op);
2033 
2034 /**
2035  * nand_read_data_op - Read data from the NAND
2036  * @chip: The NAND chip
2037  * @buf: buffer used to store the data
2038  * @len: length of the buffer
2039  * @force_8bit: force 8-bit bus access
2040  * @check_only: do not actually run the command, only checks if the
2041  *              controller driver supports it
2042  *
2043  * This function does a raw data read on the bus. Usually used after launching
2044  * another NAND operation like nand_read_page_op().
2045  * This function does not select/unselect the CS line.
2046  *
2047  * Returns 0 on success, a negative error code otherwise.
2048  */
nand_read_data_op(struct nand_chip * chip,void * buf,unsigned int len,bool force_8bit,bool check_only)2049 int nand_read_data_op(struct nand_chip *chip, void *buf, unsigned int len,
2050 		      bool force_8bit, bool check_only)
2051 {
2052 	if (!len || !buf)
2053 		return -EINVAL;
2054 
2055 	if (nand_has_exec_op(chip)) {
2056 		const struct nand_interface_config *conf =
2057 			nand_get_interface_config(chip);
2058 		struct nand_op_instr instrs[] = {
2059 			NAND_OP_DATA_IN(len, buf, 0),
2060 		};
2061 		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
2062 		u8 *ddrbuf = NULL;
2063 		int ret, i;
2064 
2065 		instrs[0].ctx.data.force_8bit = force_8bit;
2066 
2067 		/*
2068 		 * Parameter payloads (ID, status, features, etc) do not go
2069 		 * through the same pipeline as regular data, hence the
2070 		 * force_8bit flag must be set and this also indicates that in
2071 		 * case NV-DDR timings are being used the data will be received
2072 		 * twice.
2073 		 */
2074 		if (force_8bit && nand_interface_is_nvddr(conf)) {
2075 			ddrbuf = kzalloc(len * 2, GFP_KERNEL);
2076 			if (!ddrbuf)
2077 				return -ENOMEM;
2078 
2079 			instrs[0].ctx.data.len *= 2;
2080 			instrs[0].ctx.data.buf.in = ddrbuf;
2081 		}
2082 
2083 		if (check_only) {
2084 			ret = nand_check_op(chip, &op);
2085 			kfree(ddrbuf);
2086 			return ret;
2087 		}
2088 
2089 		ret = nand_exec_op(chip, &op);
2090 		if (!ret && force_8bit && nand_interface_is_nvddr(conf)) {
2091 			u8 *dst = buf;
2092 
2093 			for (i = 0; i < len; i++)
2094 				dst[i] = ddrbuf[i * 2];
2095 		}
2096 
2097 		kfree(ddrbuf);
2098 
2099 		return ret;
2100 	}
2101 
2102 	if (check_only)
2103 		return 0;
2104 
2105 	if (force_8bit) {
2106 		u8 *p = buf;
2107 		unsigned int i;
2108 
2109 		for (i = 0; i < len; i++)
2110 			p[i] = chip->legacy.read_byte(chip);
2111 	} else {
2112 		chip->legacy.read_buf(chip, buf, len);
2113 	}
2114 
2115 	return 0;
2116 }
2117 EXPORT_SYMBOL_GPL(nand_read_data_op);
2118 
2119 /**
2120  * nand_write_data_op - Write data from the NAND
2121  * @chip: The NAND chip
2122  * @buf: buffer containing the data to send on the bus
2123  * @len: length of the buffer
2124  * @force_8bit: force 8-bit bus access
2125  *
2126  * This function does a raw data write on the bus. Usually used after launching
2127  * another NAND operation like nand_write_page_begin_op().
2128  * This function does not select/unselect the CS line.
2129  *
2130  * Returns 0 on success, a negative error code otherwise.
2131  */
nand_write_data_op(struct nand_chip * chip,const void * buf,unsigned int len,bool force_8bit)2132 int nand_write_data_op(struct nand_chip *chip, const void *buf,
2133 		       unsigned int len, bool force_8bit)
2134 {
2135 	if (!len || !buf)
2136 		return -EINVAL;
2137 
2138 	if (nand_has_exec_op(chip)) {
2139 		struct nand_op_instr instrs[] = {
2140 			NAND_OP_DATA_OUT(len, buf, 0),
2141 		};
2142 		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
2143 
2144 		instrs[0].ctx.data.force_8bit = force_8bit;
2145 
2146 		return nand_exec_op(chip, &op);
2147 	}
2148 
2149 	if (force_8bit) {
2150 		const u8 *p = buf;
2151 		unsigned int i;
2152 
2153 		for (i = 0; i < len; i++)
2154 			chip->legacy.write_byte(chip, p[i]);
2155 	} else {
2156 		chip->legacy.write_buf(chip, buf, len);
2157 	}
2158 
2159 	return 0;
2160 }
2161 EXPORT_SYMBOL_GPL(nand_write_data_op);
2162 
2163 /**
2164  * struct nand_op_parser_ctx - Context used by the parser
2165  * @instrs: array of all the instructions that must be addressed
2166  * @ninstrs: length of the @instrs array
2167  * @subop: Sub-operation to be passed to the NAND controller
2168  *
2169  * This structure is used by the core to split NAND operations into
2170  * sub-operations that can be handled by the NAND controller.
2171  */
2172 struct nand_op_parser_ctx {
2173 	const struct nand_op_instr *instrs;
2174 	unsigned int ninstrs;
2175 	struct nand_subop subop;
2176 };
2177 
2178 /**
2179  * nand_op_parser_must_split_instr - Checks if an instruction must be split
2180  * @pat: the parser pattern element that matches @instr
2181  * @instr: pointer to the instruction to check
2182  * @start_offset: this is an in/out parameter. If @instr has already been
2183  *		  split, then @start_offset is the offset from which to start
2184  *		  (either an address cycle or an offset in the data buffer).
2185  *		  Conversely, if the function returns true (ie. instr must be
2186  *		  split), this parameter is updated to point to the first
2187  *		  data/address cycle that has not been taken care of.
2188  *
2189  * Some NAND controllers are limited and cannot send X address cycles with a
2190  * unique operation, or cannot read/write more than Y bytes at the same time.
2191  * In this case, split the instruction that does not fit in a single
2192  * controller-operation into two or more chunks.
2193  *
2194  * Returns true if the instruction must be split, false otherwise.
2195  * The @start_offset parameter is also updated to the offset at which the next
2196  * bundle of instruction must start (if an address or a data instruction).
2197  */
2198 static bool
nand_op_parser_must_split_instr(const struct nand_op_parser_pattern_elem * pat,const struct nand_op_instr * instr,unsigned int * start_offset)2199 nand_op_parser_must_split_instr(const struct nand_op_parser_pattern_elem *pat,
2200 				const struct nand_op_instr *instr,
2201 				unsigned int *start_offset)
2202 {
2203 	switch (pat->type) {
2204 	case NAND_OP_ADDR_INSTR:
2205 		if (!pat->ctx.addr.maxcycles)
2206 			break;
2207 
2208 		if (instr->ctx.addr.naddrs - *start_offset >
2209 		    pat->ctx.addr.maxcycles) {
2210 			*start_offset += pat->ctx.addr.maxcycles;
2211 			return true;
2212 		}
2213 		break;
2214 
2215 	case NAND_OP_DATA_IN_INSTR:
2216 	case NAND_OP_DATA_OUT_INSTR:
2217 		if (!pat->ctx.data.maxlen)
2218 			break;
2219 
2220 		if (instr->ctx.data.len - *start_offset >
2221 		    pat->ctx.data.maxlen) {
2222 			*start_offset += pat->ctx.data.maxlen;
2223 			return true;
2224 		}
2225 		break;
2226 
2227 	default:
2228 		break;
2229 	}
2230 
2231 	return false;
2232 }
2233 
2234 /**
2235  * nand_op_parser_match_pat - Checks if a pattern matches the instructions
2236  *			      remaining in the parser context
2237  * @pat: the pattern to test
2238  * @ctx: the parser context structure to match with the pattern @pat
2239  *
2240  * Check if @pat matches the set or a sub-set of instructions remaining in @ctx.
2241  * Returns true if this is the case, false ortherwise. When true is returned,
2242  * @ctx->subop is updated with the set of instructions to be passed to the
2243  * controller driver.
2244  */
2245 static bool
nand_op_parser_match_pat(const struct nand_op_parser_pattern * pat,struct nand_op_parser_ctx * ctx)2246 nand_op_parser_match_pat(const struct nand_op_parser_pattern *pat,
2247 			 struct nand_op_parser_ctx *ctx)
2248 {
2249 	unsigned int instr_offset = ctx->subop.first_instr_start_off;
2250 	const struct nand_op_instr *end = ctx->instrs + ctx->ninstrs;
2251 	const struct nand_op_instr *instr = ctx->subop.instrs;
2252 	unsigned int i, ninstrs;
2253 
2254 	for (i = 0, ninstrs = 0; i < pat->nelems && instr < end; i++) {
2255 		/*
2256 		 * The pattern instruction does not match the operation
2257 		 * instruction. If the instruction is marked optional in the
2258 		 * pattern definition, we skip the pattern element and continue
2259 		 * to the next one. If the element is mandatory, there's no
2260 		 * match and we can return false directly.
2261 		 */
2262 		if (instr->type != pat->elems[i].type) {
2263 			if (!pat->elems[i].optional)
2264 				return false;
2265 
2266 			continue;
2267 		}
2268 
2269 		/*
2270 		 * Now check the pattern element constraints. If the pattern is
2271 		 * not able to handle the whole instruction in a single step,
2272 		 * we have to split it.
2273 		 * The last_instr_end_off value comes back updated to point to
2274 		 * the position where we have to split the instruction (the
2275 		 * start of the next subop chunk).
2276 		 */
2277 		if (nand_op_parser_must_split_instr(&pat->elems[i], instr,
2278 						    &instr_offset)) {
2279 			ninstrs++;
2280 			i++;
2281 			break;
2282 		}
2283 
2284 		instr++;
2285 		ninstrs++;
2286 		instr_offset = 0;
2287 	}
2288 
2289 	/*
2290 	 * This can happen if all instructions of a pattern are optional.
2291 	 * Still, if there's not at least one instruction handled by this
2292 	 * pattern, this is not a match, and we should try the next one (if
2293 	 * any).
2294 	 */
2295 	if (!ninstrs)
2296 		return false;
2297 
2298 	/*
2299 	 * We had a match on the pattern head, but the pattern may be longer
2300 	 * than the instructions we're asked to execute. We need to make sure
2301 	 * there's no mandatory elements in the pattern tail.
2302 	 */
2303 	for (; i < pat->nelems; i++) {
2304 		if (!pat->elems[i].optional)
2305 			return false;
2306 	}
2307 
2308 	/*
2309 	 * We have a match: update the subop structure accordingly and return
2310 	 * true.
2311 	 */
2312 	ctx->subop.ninstrs = ninstrs;
2313 	ctx->subop.last_instr_end_off = instr_offset;
2314 
2315 	return true;
2316 }
2317 
2318 #if IS_ENABLED(CONFIG_DYNAMIC_DEBUG) || defined(DEBUG)
nand_op_parser_trace(const struct nand_op_parser_ctx * ctx)2319 static void nand_op_parser_trace(const struct nand_op_parser_ctx *ctx)
2320 {
2321 	const struct nand_op_instr *instr;
2322 	char *prefix = "      ";
2323 	unsigned int i;
2324 
2325 	pr_debug("executing subop (CS%d):\n", ctx->subop.cs);
2326 
2327 	for (i = 0; i < ctx->ninstrs; i++) {
2328 		instr = &ctx->instrs[i];
2329 
2330 		if (instr == &ctx->subop.instrs[0])
2331 			prefix = "    ->";
2332 
2333 		nand_op_trace(prefix, instr);
2334 
2335 		if (instr == &ctx->subop.instrs[ctx->subop.ninstrs - 1])
2336 			prefix = "      ";
2337 	}
2338 }
2339 #else
nand_op_parser_trace(const struct nand_op_parser_ctx * ctx)2340 static void nand_op_parser_trace(const struct nand_op_parser_ctx *ctx)
2341 {
2342 	/* NOP */
2343 }
2344 #endif
2345 
nand_op_parser_cmp_ctx(const struct nand_op_parser_ctx * a,const struct nand_op_parser_ctx * b)2346 static int nand_op_parser_cmp_ctx(const struct nand_op_parser_ctx *a,
2347 				  const struct nand_op_parser_ctx *b)
2348 {
2349 	if (a->subop.ninstrs < b->subop.ninstrs)
2350 		return -1;
2351 	else if (a->subop.ninstrs > b->subop.ninstrs)
2352 		return 1;
2353 
2354 	if (a->subop.last_instr_end_off < b->subop.last_instr_end_off)
2355 		return -1;
2356 	else if (a->subop.last_instr_end_off > b->subop.last_instr_end_off)
2357 		return 1;
2358 
2359 	return 0;
2360 }
2361 
2362 /**
2363  * nand_op_parser_exec_op - exec_op parser
2364  * @chip: the NAND chip
2365  * @parser: patterns description provided by the controller driver
2366  * @op: the NAND operation to address
2367  * @check_only: when true, the function only checks if @op can be handled but
2368  *		does not execute the operation
2369  *
2370  * Helper function designed to ease integration of NAND controller drivers that
2371  * only support a limited set of instruction sequences. The supported sequences
2372  * are described in @parser, and the framework takes care of splitting @op into
2373  * multiple sub-operations (if required) and pass them back to the ->exec()
2374  * callback of the matching pattern if @check_only is set to false.
2375  *
2376  * NAND controller drivers should call this function from their own ->exec_op()
2377  * implementation.
2378  *
2379  * Returns 0 on success, a negative error code otherwise. A failure can be
2380  * caused by an unsupported operation (none of the supported patterns is able
2381  * to handle the requested operation), or an error returned by one of the
2382  * matching pattern->exec() hook.
2383  */
nand_op_parser_exec_op(struct nand_chip * chip,const struct nand_op_parser * parser,const struct nand_operation * op,bool check_only)2384 int nand_op_parser_exec_op(struct nand_chip *chip,
2385 			   const struct nand_op_parser *parser,
2386 			   const struct nand_operation *op, bool check_only)
2387 {
2388 	struct nand_op_parser_ctx ctx = {
2389 		.subop.cs = op->cs,
2390 		.subop.instrs = op->instrs,
2391 		.instrs = op->instrs,
2392 		.ninstrs = op->ninstrs,
2393 	};
2394 	unsigned int i;
2395 
2396 	while (ctx.subop.instrs < op->instrs + op->ninstrs) {
2397 		const struct nand_op_parser_pattern *pattern;
2398 		struct nand_op_parser_ctx best_ctx;
2399 		int ret, best_pattern = -1;
2400 
2401 		for (i = 0; i < parser->npatterns; i++) {
2402 			struct nand_op_parser_ctx test_ctx = ctx;
2403 
2404 			pattern = &parser->patterns[i];
2405 			if (!nand_op_parser_match_pat(pattern, &test_ctx))
2406 				continue;
2407 
2408 			if (best_pattern >= 0 &&
2409 			    nand_op_parser_cmp_ctx(&test_ctx, &best_ctx) <= 0)
2410 				continue;
2411 
2412 			best_pattern = i;
2413 			best_ctx = test_ctx;
2414 		}
2415 
2416 		if (best_pattern < 0) {
2417 			pr_debug("->exec_op() parser: pattern not found!\n");
2418 			return -ENOTSUPP;
2419 		}
2420 
2421 		ctx = best_ctx;
2422 		nand_op_parser_trace(&ctx);
2423 
2424 		if (!check_only) {
2425 			pattern = &parser->patterns[best_pattern];
2426 			ret = pattern->exec(chip, &ctx.subop);
2427 			if (ret)
2428 				return ret;
2429 		}
2430 
2431 		/*
2432 		 * Update the context structure by pointing to the start of the
2433 		 * next subop.
2434 		 */
2435 		ctx.subop.instrs = ctx.subop.instrs + ctx.subop.ninstrs;
2436 		if (ctx.subop.last_instr_end_off)
2437 			ctx.subop.instrs -= 1;
2438 
2439 		ctx.subop.first_instr_start_off = ctx.subop.last_instr_end_off;
2440 	}
2441 
2442 	return 0;
2443 }
2444 EXPORT_SYMBOL_GPL(nand_op_parser_exec_op);
2445 
nand_instr_is_data(const struct nand_op_instr * instr)2446 static bool nand_instr_is_data(const struct nand_op_instr *instr)
2447 {
2448 	return instr && (instr->type == NAND_OP_DATA_IN_INSTR ||
2449 			 instr->type == NAND_OP_DATA_OUT_INSTR);
2450 }
2451 
nand_subop_instr_is_valid(const struct nand_subop * subop,unsigned int instr_idx)2452 static bool nand_subop_instr_is_valid(const struct nand_subop *subop,
2453 				      unsigned int instr_idx)
2454 {
2455 	return subop && instr_idx < subop->ninstrs;
2456 }
2457 
nand_subop_get_start_off(const struct nand_subop * subop,unsigned int instr_idx)2458 static unsigned int nand_subop_get_start_off(const struct nand_subop *subop,
2459 					     unsigned int instr_idx)
2460 {
2461 	if (instr_idx)
2462 		return 0;
2463 
2464 	return subop->first_instr_start_off;
2465 }
2466 
2467 /**
2468  * nand_subop_get_addr_start_off - Get the start offset in an address array
2469  * @subop: The entire sub-operation
2470  * @instr_idx: Index of the instruction inside the sub-operation
2471  *
2472  * During driver development, one could be tempted to directly use the
2473  * ->addr.addrs field of address instructions. This is wrong as address
2474  * instructions might be split.
2475  *
2476  * Given an address instruction, returns the offset of the first cycle to issue.
2477  */
nand_subop_get_addr_start_off(const struct nand_subop * subop,unsigned int instr_idx)2478 unsigned int nand_subop_get_addr_start_off(const struct nand_subop *subop,
2479 					   unsigned int instr_idx)
2480 {
2481 	if (WARN_ON(!nand_subop_instr_is_valid(subop, instr_idx) ||
2482 		    subop->instrs[instr_idx].type != NAND_OP_ADDR_INSTR))
2483 		return 0;
2484 
2485 	return nand_subop_get_start_off(subop, instr_idx);
2486 }
2487 EXPORT_SYMBOL_GPL(nand_subop_get_addr_start_off);
2488 
2489 /**
2490  * nand_subop_get_num_addr_cyc - Get the remaining address cycles to assert
2491  * @subop: The entire sub-operation
2492  * @instr_idx: Index of the instruction inside the sub-operation
2493  *
2494  * During driver development, one could be tempted to directly use the
2495  * ->addr->naddrs field of a data instruction. This is wrong as instructions
2496  * might be split.
2497  *
2498  * Given an address instruction, returns the number of address cycle to issue.
2499  */
nand_subop_get_num_addr_cyc(const struct nand_subop * subop,unsigned int instr_idx)2500 unsigned int nand_subop_get_num_addr_cyc(const struct nand_subop *subop,
2501 					 unsigned int instr_idx)
2502 {
2503 	int start_off, end_off;
2504 
2505 	if (WARN_ON(!nand_subop_instr_is_valid(subop, instr_idx) ||
2506 		    subop->instrs[instr_idx].type != NAND_OP_ADDR_INSTR))
2507 		return 0;
2508 
2509 	start_off = nand_subop_get_addr_start_off(subop, instr_idx);
2510 
2511 	if (instr_idx == subop->ninstrs - 1 &&
2512 	    subop->last_instr_end_off)
2513 		end_off = subop->last_instr_end_off;
2514 	else
2515 		end_off = subop->instrs[instr_idx].ctx.addr.naddrs;
2516 
2517 	return end_off - start_off;
2518 }
2519 EXPORT_SYMBOL_GPL(nand_subop_get_num_addr_cyc);
2520 
2521 /**
2522  * nand_subop_get_data_start_off - Get the start offset in a data array
2523  * @subop: The entire sub-operation
2524  * @instr_idx: Index of the instruction inside the sub-operation
2525  *
2526  * During driver development, one could be tempted to directly use the
2527  * ->data->buf.{in,out} field of data instructions. This is wrong as data
2528  * instructions might be split.
2529  *
2530  * Given a data instruction, returns the offset to start from.
2531  */
nand_subop_get_data_start_off(const struct nand_subop * subop,unsigned int instr_idx)2532 unsigned int nand_subop_get_data_start_off(const struct nand_subop *subop,
2533 					   unsigned int instr_idx)
2534 {
2535 	if (WARN_ON(!nand_subop_instr_is_valid(subop, instr_idx) ||
2536 		    !nand_instr_is_data(&subop->instrs[instr_idx])))
2537 		return 0;
2538 
2539 	return nand_subop_get_start_off(subop, instr_idx);
2540 }
2541 EXPORT_SYMBOL_GPL(nand_subop_get_data_start_off);
2542 
2543 /**
2544  * nand_subop_get_data_len - Get the number of bytes to retrieve
2545  * @subop: The entire sub-operation
2546  * @instr_idx: Index of the instruction inside the sub-operation
2547  *
2548  * During driver development, one could be tempted to directly use the
2549  * ->data->len field of a data instruction. This is wrong as data instructions
2550  * might be split.
2551  *
2552  * Returns the length of the chunk of data to send/receive.
2553  */
nand_subop_get_data_len(const struct nand_subop * subop,unsigned int instr_idx)2554 unsigned int nand_subop_get_data_len(const struct nand_subop *subop,
2555 				     unsigned int instr_idx)
2556 {
2557 	int start_off = 0, end_off;
2558 
2559 	if (WARN_ON(!nand_subop_instr_is_valid(subop, instr_idx) ||
2560 		    !nand_instr_is_data(&subop->instrs[instr_idx])))
2561 		return 0;
2562 
2563 	start_off = nand_subop_get_data_start_off(subop, instr_idx);
2564 
2565 	if (instr_idx == subop->ninstrs - 1 &&
2566 	    subop->last_instr_end_off)
2567 		end_off = subop->last_instr_end_off;
2568 	else
2569 		end_off = subop->instrs[instr_idx].ctx.data.len;
2570 
2571 	return end_off - start_off;
2572 }
2573 EXPORT_SYMBOL_GPL(nand_subop_get_data_len);
2574 
2575 /**
2576  * nand_reset - Reset and initialize a NAND device
2577  * @chip: The NAND chip
2578  * @chipnr: Internal die id
2579  *
2580  * Save the timings data structure, then apply SDR timings mode 0 (see
2581  * nand_reset_interface for details), do the reset operation, and apply
2582  * back the previous timings.
2583  *
2584  * Returns 0 on success, a negative error code otherwise.
2585  */
nand_reset(struct nand_chip * chip,int chipnr)2586 int nand_reset(struct nand_chip *chip, int chipnr)
2587 {
2588 	int ret;
2589 
2590 	ret = nand_reset_interface(chip, chipnr);
2591 	if (ret)
2592 		return ret;
2593 
2594 	/*
2595 	 * The CS line has to be released before we can apply the new NAND
2596 	 * interface settings, hence this weird nand_select_target()
2597 	 * nand_deselect_target() dance.
2598 	 */
2599 	nand_select_target(chip, chipnr);
2600 	ret = nand_reset_op(chip);
2601 	nand_deselect_target(chip);
2602 	if (ret)
2603 		return ret;
2604 
2605 	ret = nand_setup_interface(chip, chipnr);
2606 	if (ret)
2607 		return ret;
2608 
2609 	return 0;
2610 }
2611 EXPORT_SYMBOL_GPL(nand_reset);
2612 
2613 /**
2614  * nand_get_features - wrapper to perform a GET_FEATURE
2615  * @chip: NAND chip info structure
2616  * @addr: feature address
2617  * @subfeature_param: the subfeature parameters, a four bytes array
2618  *
2619  * Returns 0 for success, a negative error otherwise. Returns -ENOTSUPP if the
2620  * operation cannot be handled.
2621  */
nand_get_features(struct nand_chip * chip,int addr,u8 * subfeature_param)2622 int nand_get_features(struct nand_chip *chip, int addr,
2623 		      u8 *subfeature_param)
2624 {
2625 	if (!nand_supports_get_features(chip, addr))
2626 		return -ENOTSUPP;
2627 
2628 	if (chip->legacy.get_features)
2629 		return chip->legacy.get_features(chip, addr, subfeature_param);
2630 
2631 	return nand_get_features_op(chip, addr, subfeature_param);
2632 }
2633 
2634 /**
2635  * nand_set_features - wrapper to perform a SET_FEATURE
2636  * @chip: NAND chip info structure
2637  * @addr: feature address
2638  * @subfeature_param: the subfeature parameters, a four bytes array
2639  *
2640  * Returns 0 for success, a negative error otherwise. Returns -ENOTSUPP if the
2641  * operation cannot be handled.
2642  */
nand_set_features(struct nand_chip * chip,int addr,u8 * subfeature_param)2643 int nand_set_features(struct nand_chip *chip, int addr,
2644 		      u8 *subfeature_param)
2645 {
2646 	if (!nand_supports_set_features(chip, addr))
2647 		return -ENOTSUPP;
2648 
2649 	if (chip->legacy.set_features)
2650 		return chip->legacy.set_features(chip, addr, subfeature_param);
2651 
2652 	return nand_set_features_op(chip, addr, subfeature_param);
2653 }
2654 
2655 /**
2656  * nand_check_erased_buf - check if a buffer contains (almost) only 0xff data
2657  * @buf: buffer to test
2658  * @len: buffer length
2659  * @bitflips_threshold: maximum number of bitflips
2660  *
2661  * Check if a buffer contains only 0xff, which means the underlying region
2662  * has been erased and is ready to be programmed.
2663  * The bitflips_threshold specify the maximum number of bitflips before
2664  * considering the region is not erased.
2665  * Note: The logic of this function has been extracted from the memweight
2666  * implementation, except that nand_check_erased_buf function exit before
2667  * testing the whole buffer if the number of bitflips exceed the
2668  * bitflips_threshold value.
2669  *
2670  * Returns a positive number of bitflips less than or equal to
2671  * bitflips_threshold, or -ERROR_CODE for bitflips in excess of the
2672  * threshold.
2673  */
nand_check_erased_buf(void * buf,int len,int bitflips_threshold)2674 static int nand_check_erased_buf(void *buf, int len, int bitflips_threshold)
2675 {
2676 	const unsigned char *bitmap = buf;
2677 	int bitflips = 0;
2678 	int weight;
2679 
2680 	for (; len && ((uintptr_t)bitmap) % sizeof(long);
2681 	     len--, bitmap++) {
2682 		weight = hweight8(*bitmap);
2683 		bitflips += BITS_PER_BYTE - weight;
2684 		if (unlikely(bitflips > bitflips_threshold))
2685 			return -EBADMSG;
2686 	}
2687 
2688 	for (; len >= sizeof(long);
2689 	     len -= sizeof(long), bitmap += sizeof(long)) {
2690 		unsigned long d = *((unsigned long *)bitmap);
2691 		if (d == ~0UL)
2692 			continue;
2693 		weight = hweight_long(d);
2694 		bitflips += BITS_PER_LONG - weight;
2695 		if (unlikely(bitflips > bitflips_threshold))
2696 			return -EBADMSG;
2697 	}
2698 
2699 	for (; len > 0; len--, bitmap++) {
2700 		weight = hweight8(*bitmap);
2701 		bitflips += BITS_PER_BYTE - weight;
2702 		if (unlikely(bitflips > bitflips_threshold))
2703 			return -EBADMSG;
2704 	}
2705 
2706 	return bitflips;
2707 }
2708 
2709 /**
2710  * nand_check_erased_ecc_chunk - check if an ECC chunk contains (almost) only
2711  *				 0xff data
2712  * @data: data buffer to test
2713  * @datalen: data length
2714  * @ecc: ECC buffer
2715  * @ecclen: ECC length
2716  * @extraoob: extra OOB buffer
2717  * @extraooblen: extra OOB length
2718  * @bitflips_threshold: maximum number of bitflips
2719  *
2720  * Check if a data buffer and its associated ECC and OOB data contains only
2721  * 0xff pattern, which means the underlying region has been erased and is
2722  * ready to be programmed.
2723  * The bitflips_threshold specify the maximum number of bitflips before
2724  * considering the region as not erased.
2725  *
2726  * Note:
2727  * 1/ ECC algorithms are working on pre-defined block sizes which are usually
2728  *    different from the NAND page size. When fixing bitflips, ECC engines will
2729  *    report the number of errors per chunk, and the NAND core infrastructure
2730  *    expect you to return the maximum number of bitflips for the whole page.
2731  *    This is why you should always use this function on a single chunk and
2732  *    not on the whole page. After checking each chunk you should update your
2733  *    max_bitflips value accordingly.
2734  * 2/ When checking for bitflips in erased pages you should not only check
2735  *    the payload data but also their associated ECC data, because a user might
2736  *    have programmed almost all bits to 1 but a few. In this case, we
2737  *    shouldn't consider the chunk as erased, and checking ECC bytes prevent
2738  *    this case.
2739  * 3/ The extraoob argument is optional, and should be used if some of your OOB
2740  *    data are protected by the ECC engine.
2741  *    It could also be used if you support subpages and want to attach some
2742  *    extra OOB data to an ECC chunk.
2743  *
2744  * Returns a positive number of bitflips less than or equal to
2745  * bitflips_threshold, or -ERROR_CODE for bitflips in excess of the
2746  * threshold. In case of success, the passed buffers are filled with 0xff.
2747  */
nand_check_erased_ecc_chunk(void * data,int datalen,void * ecc,int ecclen,void * extraoob,int extraooblen,int bitflips_threshold)2748 int nand_check_erased_ecc_chunk(void *data, int datalen,
2749 				void *ecc, int ecclen,
2750 				void *extraoob, int extraooblen,
2751 				int bitflips_threshold)
2752 {
2753 	int data_bitflips = 0, ecc_bitflips = 0, extraoob_bitflips = 0;
2754 
2755 	data_bitflips = nand_check_erased_buf(data, datalen,
2756 					      bitflips_threshold);
2757 	if (data_bitflips < 0)
2758 		return data_bitflips;
2759 
2760 	bitflips_threshold -= data_bitflips;
2761 
2762 	ecc_bitflips = nand_check_erased_buf(ecc, ecclen, bitflips_threshold);
2763 	if (ecc_bitflips < 0)
2764 		return ecc_bitflips;
2765 
2766 	bitflips_threshold -= ecc_bitflips;
2767 
2768 	extraoob_bitflips = nand_check_erased_buf(extraoob, extraooblen,
2769 						  bitflips_threshold);
2770 	if (extraoob_bitflips < 0)
2771 		return extraoob_bitflips;
2772 
2773 	if (data_bitflips)
2774 		memset(data, 0xff, datalen);
2775 
2776 	if (ecc_bitflips)
2777 		memset(ecc, 0xff, ecclen);
2778 
2779 	if (extraoob_bitflips)
2780 		memset(extraoob, 0xff, extraooblen);
2781 
2782 	return data_bitflips + ecc_bitflips + extraoob_bitflips;
2783 }
2784 EXPORT_SYMBOL(nand_check_erased_ecc_chunk);
2785 
2786 /**
2787  * nand_read_page_raw_notsupp - dummy read raw page function
2788  * @chip: nand chip info structure
2789  * @buf: buffer to store read data
2790  * @oob_required: caller requires OOB data read to chip->oob_poi
2791  * @page: page number to read
2792  *
2793  * Returns -ENOTSUPP unconditionally.
2794  */
nand_read_page_raw_notsupp(struct nand_chip * chip,u8 * buf,int oob_required,int page)2795 int nand_read_page_raw_notsupp(struct nand_chip *chip, u8 *buf,
2796 			       int oob_required, int page)
2797 {
2798 	return -ENOTSUPP;
2799 }
2800 
2801 /**
2802  * nand_read_page_raw - [INTERN] read raw page data without ecc
2803  * @chip: nand chip info structure
2804  * @buf: buffer to store read data
2805  * @oob_required: caller requires OOB data read to chip->oob_poi
2806  * @page: page number to read
2807  *
2808  * Not for syndrome calculating ECC controllers, which use a special oob layout.
2809  */
nand_read_page_raw(struct nand_chip * chip,uint8_t * buf,int oob_required,int page)2810 int nand_read_page_raw(struct nand_chip *chip, uint8_t *buf, int oob_required,
2811 		       int page)
2812 {
2813 	struct mtd_info *mtd = nand_to_mtd(chip);
2814 	int ret;
2815 
2816 	ret = nand_read_page_op(chip, page, 0, buf, mtd->writesize);
2817 	if (ret)
2818 		return ret;
2819 
2820 	if (oob_required) {
2821 		ret = nand_read_data_op(chip, chip->oob_poi, mtd->oobsize,
2822 					false, false);
2823 		if (ret)
2824 			return ret;
2825 	}
2826 
2827 	return 0;
2828 }
2829 EXPORT_SYMBOL(nand_read_page_raw);
2830 
2831 /**
2832  * nand_monolithic_read_page_raw - Monolithic page read in raw mode
2833  * @chip: NAND chip info structure
2834  * @buf: buffer to store read data
2835  * @oob_required: caller requires OOB data read to chip->oob_poi
2836  * @page: page number to read
2837  *
2838  * This is a raw page read, ie. without any error detection/correction.
2839  * Monolithic means we are requesting all the relevant data (main plus
2840  * eventually OOB) to be loaded in the NAND cache and sent over the
2841  * bus (from the NAND chip to the NAND controller) in a single
2842  * operation. This is an alternative to nand_read_page_raw(), which
2843  * first reads the main data, and if the OOB data is requested too,
2844  * then reads more data on the bus.
2845  */
nand_monolithic_read_page_raw(struct nand_chip * chip,u8 * buf,int oob_required,int page)2846 int nand_monolithic_read_page_raw(struct nand_chip *chip, u8 *buf,
2847 				  int oob_required, int page)
2848 {
2849 	struct mtd_info *mtd = nand_to_mtd(chip);
2850 	unsigned int size = mtd->writesize;
2851 	u8 *read_buf = buf;
2852 	int ret;
2853 
2854 	if (oob_required) {
2855 		size += mtd->oobsize;
2856 
2857 		if (buf != chip->data_buf)
2858 			read_buf = nand_get_data_buf(chip);
2859 	}
2860 
2861 	ret = nand_read_page_op(chip, page, 0, read_buf, size);
2862 	if (ret)
2863 		return ret;
2864 
2865 	if (buf != chip->data_buf)
2866 		memcpy(buf, read_buf, mtd->writesize);
2867 
2868 	return 0;
2869 }
2870 EXPORT_SYMBOL(nand_monolithic_read_page_raw);
2871 
2872 /**
2873  * nand_read_page_raw_syndrome - [INTERN] read raw page data without ecc
2874  * @chip: nand chip info structure
2875  * @buf: buffer to store read data
2876  * @oob_required: caller requires OOB data read to chip->oob_poi
2877  * @page: page number to read
2878  *
2879  * We need a special oob layout and handling even when OOB isn't used.
2880  */
nand_read_page_raw_syndrome(struct nand_chip * chip,uint8_t * buf,int oob_required,int page)2881 static int nand_read_page_raw_syndrome(struct nand_chip *chip, uint8_t *buf,
2882 				       int oob_required, int page)
2883 {
2884 	struct mtd_info *mtd = nand_to_mtd(chip);
2885 	int eccsize = chip->ecc.size;
2886 	int eccbytes = chip->ecc.bytes;
2887 	uint8_t *oob = chip->oob_poi;
2888 	int steps, size, ret;
2889 
2890 	ret = nand_read_page_op(chip, page, 0, NULL, 0);
2891 	if (ret)
2892 		return ret;
2893 
2894 	for (steps = chip->ecc.steps; steps > 0; steps--) {
2895 		ret = nand_read_data_op(chip, buf, eccsize, false, false);
2896 		if (ret)
2897 			return ret;
2898 
2899 		buf += eccsize;
2900 
2901 		if (chip->ecc.prepad) {
2902 			ret = nand_read_data_op(chip, oob, chip->ecc.prepad,
2903 						false, false);
2904 			if (ret)
2905 				return ret;
2906 
2907 			oob += chip->ecc.prepad;
2908 		}
2909 
2910 		ret = nand_read_data_op(chip, oob, eccbytes, false, false);
2911 		if (ret)
2912 			return ret;
2913 
2914 		oob += eccbytes;
2915 
2916 		if (chip->ecc.postpad) {
2917 			ret = nand_read_data_op(chip, oob, chip->ecc.postpad,
2918 						false, false);
2919 			if (ret)
2920 				return ret;
2921 
2922 			oob += chip->ecc.postpad;
2923 		}
2924 	}
2925 
2926 	size = mtd->oobsize - (oob - chip->oob_poi);
2927 	if (size) {
2928 		ret = nand_read_data_op(chip, oob, size, false, false);
2929 		if (ret)
2930 			return ret;
2931 	}
2932 
2933 	return 0;
2934 }
2935 
2936 /**
2937  * nand_read_page_swecc - [REPLACEABLE] software ECC based page read function
2938  * @chip: nand chip info structure
2939  * @buf: buffer to store read data
2940  * @oob_required: caller requires OOB data read to chip->oob_poi
2941  * @page: page number to read
2942  */
nand_read_page_swecc(struct nand_chip * chip,uint8_t * buf,int oob_required,int page)2943 static int nand_read_page_swecc(struct nand_chip *chip, uint8_t *buf,
2944 				int oob_required, int page)
2945 {
2946 	struct mtd_info *mtd = nand_to_mtd(chip);
2947 	int i, eccsize = chip->ecc.size, ret;
2948 	int eccbytes = chip->ecc.bytes;
2949 	int eccsteps = chip->ecc.steps;
2950 	uint8_t *p = buf;
2951 	uint8_t *ecc_calc = chip->ecc.calc_buf;
2952 	uint8_t *ecc_code = chip->ecc.code_buf;
2953 	unsigned int max_bitflips = 0;
2954 
2955 	chip->ecc.read_page_raw(chip, buf, 1, page);
2956 
2957 	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
2958 		chip->ecc.calculate(chip, p, &ecc_calc[i]);
2959 
2960 	ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0,
2961 					 chip->ecc.total);
2962 	if (ret)
2963 		return ret;
2964 
2965 	eccsteps = chip->ecc.steps;
2966 	p = buf;
2967 
2968 	for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
2969 		int stat;
2970 
2971 		stat = chip->ecc.correct(chip, p, &ecc_code[i], &ecc_calc[i]);
2972 		if (stat < 0) {
2973 			mtd->ecc_stats.failed++;
2974 		} else {
2975 			mtd->ecc_stats.corrected += stat;
2976 			max_bitflips = max_t(unsigned int, max_bitflips, stat);
2977 		}
2978 	}
2979 	return max_bitflips;
2980 }
2981 
2982 /**
2983  * nand_read_subpage - [REPLACEABLE] ECC based sub-page read function
2984  * @chip: nand chip info structure
2985  * @data_offs: offset of requested data within the page
2986  * @readlen: data length
2987  * @bufpoi: buffer to store read data
2988  * @page: page number to read
2989  */
nand_read_subpage(struct nand_chip * chip,uint32_t data_offs,uint32_t readlen,uint8_t * bufpoi,int page)2990 static int nand_read_subpage(struct nand_chip *chip, uint32_t data_offs,
2991 			     uint32_t readlen, uint8_t *bufpoi, int page)
2992 {
2993 	struct mtd_info *mtd = nand_to_mtd(chip);
2994 	int start_step, end_step, num_steps, ret;
2995 	uint8_t *p;
2996 	int data_col_addr, i, gaps = 0;
2997 	int datafrag_len, eccfrag_len, aligned_len, aligned_pos;
2998 	int busw = (chip->options & NAND_BUSWIDTH_16) ? 2 : 1;
2999 	int index, section = 0;
3000 	unsigned int max_bitflips = 0;
3001 	struct mtd_oob_region oobregion = { };
3002 
3003 	/* Column address within the page aligned to ECC size (256bytes) */
3004 	start_step = data_offs / chip->ecc.size;
3005 	end_step = (data_offs + readlen - 1) / chip->ecc.size;
3006 	num_steps = end_step - start_step + 1;
3007 	index = start_step * chip->ecc.bytes;
3008 
3009 	/* Data size aligned to ECC ecc.size */
3010 	datafrag_len = num_steps * chip->ecc.size;
3011 	eccfrag_len = num_steps * chip->ecc.bytes;
3012 
3013 	data_col_addr = start_step * chip->ecc.size;
3014 	/* If we read not a page aligned data */
3015 	p = bufpoi + data_col_addr;
3016 	ret = nand_read_page_op(chip, page, data_col_addr, p, datafrag_len);
3017 	if (ret)
3018 		return ret;
3019 
3020 	/* Calculate ECC */
3021 	for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size)
3022 		chip->ecc.calculate(chip, p, &chip->ecc.calc_buf[i]);
3023 
3024 	/*
3025 	 * The performance is faster if we position offsets according to
3026 	 * ecc.pos. Let's make sure that there are no gaps in ECC positions.
3027 	 */
3028 	ret = mtd_ooblayout_find_eccregion(mtd, index, &section, &oobregion);
3029 	if (ret)
3030 		return ret;
3031 
3032 	if (oobregion.length < eccfrag_len)
3033 		gaps = 1;
3034 
3035 	if (gaps) {
3036 		ret = nand_change_read_column_op(chip, mtd->writesize,
3037 						 chip->oob_poi, mtd->oobsize,
3038 						 false);
3039 		if (ret)
3040 			return ret;
3041 	} else {
3042 		/*
3043 		 * Send the command to read the particular ECC bytes take care
3044 		 * about buswidth alignment in read_buf.
3045 		 */
3046 		aligned_pos = oobregion.offset & ~(busw - 1);
3047 		aligned_len = eccfrag_len;
3048 		if (oobregion.offset & (busw - 1))
3049 			aligned_len++;
3050 		if ((oobregion.offset + (num_steps * chip->ecc.bytes)) &
3051 		    (busw - 1))
3052 			aligned_len++;
3053 
3054 		ret = nand_change_read_column_op(chip,
3055 						 mtd->writesize + aligned_pos,
3056 						 &chip->oob_poi[aligned_pos],
3057 						 aligned_len, false);
3058 		if (ret)
3059 			return ret;
3060 	}
3061 
3062 	ret = mtd_ooblayout_get_eccbytes(mtd, chip->ecc.code_buf,
3063 					 chip->oob_poi, index, eccfrag_len);
3064 	if (ret)
3065 		return ret;
3066 
3067 	p = bufpoi + data_col_addr;
3068 	for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size) {
3069 		int stat;
3070 
3071 		stat = chip->ecc.correct(chip, p, &chip->ecc.code_buf[i],
3072 					 &chip->ecc.calc_buf[i]);
3073 		if (stat == -EBADMSG &&
3074 		    (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
3075 			/* check for empty pages with bitflips */
3076 			stat = nand_check_erased_ecc_chunk(p, chip->ecc.size,
3077 						&chip->ecc.code_buf[i],
3078 						chip->ecc.bytes,
3079 						NULL, 0,
3080 						chip->ecc.strength);
3081 		}
3082 
3083 		if (stat < 0) {
3084 			mtd->ecc_stats.failed++;
3085 		} else {
3086 			mtd->ecc_stats.corrected += stat;
3087 			max_bitflips = max_t(unsigned int, max_bitflips, stat);
3088 		}
3089 	}
3090 	return max_bitflips;
3091 }
3092 
3093 /**
3094  * nand_read_page_hwecc - [REPLACEABLE] hardware ECC based page read function
3095  * @chip: nand chip info structure
3096  * @buf: buffer to store read data
3097  * @oob_required: caller requires OOB data read to chip->oob_poi
3098  * @page: page number to read
3099  *
3100  * Not for syndrome calculating ECC controllers which need a special oob layout.
3101  */
nand_read_page_hwecc(struct nand_chip * chip,uint8_t * buf,int oob_required,int page)3102 static int nand_read_page_hwecc(struct nand_chip *chip, uint8_t *buf,
3103 				int oob_required, int page)
3104 {
3105 	struct mtd_info *mtd = nand_to_mtd(chip);
3106 	int i, eccsize = chip->ecc.size, ret;
3107 	int eccbytes = chip->ecc.bytes;
3108 	int eccsteps = chip->ecc.steps;
3109 	uint8_t *p = buf;
3110 	uint8_t *ecc_calc = chip->ecc.calc_buf;
3111 	uint8_t *ecc_code = chip->ecc.code_buf;
3112 	unsigned int max_bitflips = 0;
3113 
3114 	ret = nand_read_page_op(chip, page, 0, NULL, 0);
3115 	if (ret)
3116 		return ret;
3117 
3118 	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
3119 		chip->ecc.hwctl(chip, NAND_ECC_READ);
3120 
3121 		ret = nand_read_data_op(chip, p, eccsize, false, false);
3122 		if (ret)
3123 			return ret;
3124 
3125 		chip->ecc.calculate(chip, p, &ecc_calc[i]);
3126 	}
3127 
3128 	ret = nand_read_data_op(chip, chip->oob_poi, mtd->oobsize, false,
3129 				false);
3130 	if (ret)
3131 		return ret;
3132 
3133 	ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0,
3134 					 chip->ecc.total);
3135 	if (ret)
3136 		return ret;
3137 
3138 	eccsteps = chip->ecc.steps;
3139 	p = buf;
3140 
3141 	for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
3142 		int stat;
3143 
3144 		stat = chip->ecc.correct(chip, p, &ecc_code[i], &ecc_calc[i]);
3145 		if (stat == -EBADMSG &&
3146 		    (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
3147 			/* check for empty pages with bitflips */
3148 			stat = nand_check_erased_ecc_chunk(p, eccsize,
3149 						&ecc_code[i], eccbytes,
3150 						NULL, 0,
3151 						chip->ecc.strength);
3152 		}
3153 
3154 		if (stat < 0) {
3155 			mtd->ecc_stats.failed++;
3156 		} else {
3157 			mtd->ecc_stats.corrected += stat;
3158 			max_bitflips = max_t(unsigned int, max_bitflips, stat);
3159 		}
3160 	}
3161 	return max_bitflips;
3162 }
3163 
3164 /**
3165  * nand_read_page_hwecc_oob_first - Hardware ECC page read with ECC
3166  *                                  data read from OOB area
3167  * @chip: nand chip info structure
3168  * @buf: buffer to store read data
3169  * @oob_required: caller requires OOB data read to chip->oob_poi
3170  * @page: page number to read
3171  *
3172  * Hardware ECC for large page chips, which requires the ECC data to be
3173  * extracted from the OOB before the actual data is read.
3174  */
nand_read_page_hwecc_oob_first(struct nand_chip * chip,uint8_t * buf,int oob_required,int page)3175 int nand_read_page_hwecc_oob_first(struct nand_chip *chip, uint8_t *buf,
3176 				   int oob_required, int page)
3177 {
3178 	struct mtd_info *mtd = nand_to_mtd(chip);
3179 	int i, eccsize = chip->ecc.size, ret;
3180 	int eccbytes = chip->ecc.bytes;
3181 	int eccsteps = chip->ecc.steps;
3182 	uint8_t *p = buf;
3183 	uint8_t *ecc_code = chip->ecc.code_buf;
3184 	unsigned int max_bitflips = 0;
3185 
3186 	/* Read the OOB area first */
3187 	ret = nand_read_oob_op(chip, page, 0, chip->oob_poi, mtd->oobsize);
3188 	if (ret)
3189 		return ret;
3190 
3191 	/* Move read cursor to start of page */
3192 	ret = nand_change_read_column_op(chip, 0, NULL, 0, false);
3193 	if (ret)
3194 		return ret;
3195 
3196 	ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0,
3197 					 chip->ecc.total);
3198 	if (ret)
3199 		return ret;
3200 
3201 	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
3202 		int stat;
3203 
3204 		chip->ecc.hwctl(chip, NAND_ECC_READ);
3205 
3206 		ret = nand_read_data_op(chip, p, eccsize, false, false);
3207 		if (ret)
3208 			return ret;
3209 
3210 		stat = chip->ecc.correct(chip, p, &ecc_code[i], NULL);
3211 		if (stat == -EBADMSG &&
3212 		    (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
3213 			/* check for empty pages with bitflips */
3214 			stat = nand_check_erased_ecc_chunk(p, eccsize,
3215 							   &ecc_code[i],
3216 							   eccbytes, NULL, 0,
3217 							   chip->ecc.strength);
3218 		}
3219 
3220 		if (stat < 0) {
3221 			mtd->ecc_stats.failed++;
3222 		} else {
3223 			mtd->ecc_stats.corrected += stat;
3224 			max_bitflips = max_t(unsigned int, max_bitflips, stat);
3225 		}
3226 	}
3227 	return max_bitflips;
3228 }
3229 EXPORT_SYMBOL_GPL(nand_read_page_hwecc_oob_first);
3230 
3231 /**
3232  * nand_read_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page read
3233  * @chip: nand chip info structure
3234  * @buf: buffer to store read data
3235  * @oob_required: caller requires OOB data read to chip->oob_poi
3236  * @page: page number to read
3237  *
3238  * The hw generator calculates the error syndrome automatically. Therefore we
3239  * need a special oob layout and handling.
3240  */
nand_read_page_syndrome(struct nand_chip * chip,uint8_t * buf,int oob_required,int page)3241 static int nand_read_page_syndrome(struct nand_chip *chip, uint8_t *buf,
3242 				   int oob_required, int page)
3243 {
3244 	struct mtd_info *mtd = nand_to_mtd(chip);
3245 	int ret, i, eccsize = chip->ecc.size;
3246 	int eccbytes = chip->ecc.bytes;
3247 	int eccsteps = chip->ecc.steps;
3248 	int eccpadbytes = eccbytes + chip->ecc.prepad + chip->ecc.postpad;
3249 	uint8_t *p = buf;
3250 	uint8_t *oob = chip->oob_poi;
3251 	unsigned int max_bitflips = 0;
3252 
3253 	ret = nand_read_page_op(chip, page, 0, NULL, 0);
3254 	if (ret)
3255 		return ret;
3256 
3257 	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
3258 		int stat;
3259 
3260 		chip->ecc.hwctl(chip, NAND_ECC_READ);
3261 
3262 		ret = nand_read_data_op(chip, p, eccsize, false, false);
3263 		if (ret)
3264 			return ret;
3265 
3266 		if (chip->ecc.prepad) {
3267 			ret = nand_read_data_op(chip, oob, chip->ecc.prepad,
3268 						false, false);
3269 			if (ret)
3270 				return ret;
3271 
3272 			oob += chip->ecc.prepad;
3273 		}
3274 
3275 		chip->ecc.hwctl(chip, NAND_ECC_READSYN);
3276 
3277 		ret = nand_read_data_op(chip, oob, eccbytes, false, false);
3278 		if (ret)
3279 			return ret;
3280 
3281 		stat = chip->ecc.correct(chip, p, oob, NULL);
3282 
3283 		oob += eccbytes;
3284 
3285 		if (chip->ecc.postpad) {
3286 			ret = nand_read_data_op(chip, oob, chip->ecc.postpad,
3287 						false, false);
3288 			if (ret)
3289 				return ret;
3290 
3291 			oob += chip->ecc.postpad;
3292 		}
3293 
3294 		if (stat == -EBADMSG &&
3295 		    (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
3296 			/* check for empty pages with bitflips */
3297 			stat = nand_check_erased_ecc_chunk(p, chip->ecc.size,
3298 							   oob - eccpadbytes,
3299 							   eccpadbytes,
3300 							   NULL, 0,
3301 							   chip->ecc.strength);
3302 		}
3303 
3304 		if (stat < 0) {
3305 			mtd->ecc_stats.failed++;
3306 		} else {
3307 			mtd->ecc_stats.corrected += stat;
3308 			max_bitflips = max_t(unsigned int, max_bitflips, stat);
3309 		}
3310 	}
3311 
3312 	/* Calculate remaining oob bytes */
3313 	i = mtd->oobsize - (oob - chip->oob_poi);
3314 	if (i) {
3315 		ret = nand_read_data_op(chip, oob, i, false, false);
3316 		if (ret)
3317 			return ret;
3318 	}
3319 
3320 	return max_bitflips;
3321 }
3322 
3323 /**
3324  * nand_transfer_oob - [INTERN] Transfer oob to client buffer
3325  * @chip: NAND chip object
3326  * @oob: oob destination address
3327  * @ops: oob ops structure
3328  * @len: size of oob to transfer
3329  */
nand_transfer_oob(struct nand_chip * chip,uint8_t * oob,struct mtd_oob_ops * ops,size_t len)3330 static uint8_t *nand_transfer_oob(struct nand_chip *chip, uint8_t *oob,
3331 				  struct mtd_oob_ops *ops, size_t len)
3332 {
3333 	struct mtd_info *mtd = nand_to_mtd(chip);
3334 	int ret;
3335 
3336 	switch (ops->mode) {
3337 
3338 	case MTD_OPS_PLACE_OOB:
3339 	case MTD_OPS_RAW:
3340 		memcpy(oob, chip->oob_poi + ops->ooboffs, len);
3341 		return oob + len;
3342 
3343 	case MTD_OPS_AUTO_OOB:
3344 		ret = mtd_ooblayout_get_databytes(mtd, oob, chip->oob_poi,
3345 						  ops->ooboffs, len);
3346 		BUG_ON(ret);
3347 		return oob + len;
3348 
3349 	default:
3350 		BUG();
3351 	}
3352 	return NULL;
3353 }
3354 
3355 /**
3356  * nand_setup_read_retry - [INTERN] Set the READ RETRY mode
3357  * @chip: NAND chip object
3358  * @retry_mode: the retry mode to use
3359  *
3360  * Some vendors supply a special command to shift the Vt threshold, to be used
3361  * when there are too many bitflips in a page (i.e., ECC error). After setting
3362  * a new threshold, the host should retry reading the page.
3363  */
nand_setup_read_retry(struct nand_chip * chip,int retry_mode)3364 static int nand_setup_read_retry(struct nand_chip *chip, int retry_mode)
3365 {
3366 	pr_debug("setting READ RETRY mode %d\n", retry_mode);
3367 
3368 	if (retry_mode >= chip->read_retries)
3369 		return -EINVAL;
3370 
3371 	if (!chip->ops.setup_read_retry)
3372 		return -EOPNOTSUPP;
3373 
3374 	return chip->ops.setup_read_retry(chip, retry_mode);
3375 }
3376 
nand_wait_readrdy(struct nand_chip * chip)3377 static void nand_wait_readrdy(struct nand_chip *chip)
3378 {
3379 	const struct nand_interface_config *conf;
3380 
3381 	if (!(chip->options & NAND_NEED_READRDY))
3382 		return;
3383 
3384 	conf = nand_get_interface_config(chip);
3385 	WARN_ON(nand_wait_rdy_op(chip, NAND_COMMON_TIMING_MS(conf, tR_max), 0));
3386 }
3387 
3388 /**
3389  * nand_do_read_ops - [INTERN] Read data with ECC
3390  * @chip: NAND chip object
3391  * @from: offset to read from
3392  * @ops: oob ops structure
3393  *
3394  * Internal function. Called with chip held.
3395  */
nand_do_read_ops(struct nand_chip * chip,loff_t from,struct mtd_oob_ops * ops)3396 static int nand_do_read_ops(struct nand_chip *chip, loff_t from,
3397 			    struct mtd_oob_ops *ops)
3398 {
3399 	int chipnr, page, realpage, col, bytes, aligned, oob_required;
3400 	struct mtd_info *mtd = nand_to_mtd(chip);
3401 	int ret = 0;
3402 	uint32_t readlen = ops->len;
3403 	uint32_t oobreadlen = ops->ooblen;
3404 	uint32_t max_oobsize = mtd_oobavail(mtd, ops);
3405 
3406 	uint8_t *bufpoi, *oob, *buf;
3407 	int use_bounce_buf;
3408 	unsigned int max_bitflips = 0;
3409 	int retry_mode = 0;
3410 	bool ecc_fail = false;
3411 
3412 	/* Check if the region is secured */
3413 	if (nand_region_is_secured(chip, from, readlen))
3414 		return -EIO;
3415 
3416 	chipnr = (int)(from >> chip->chip_shift);
3417 	nand_select_target(chip, chipnr);
3418 
3419 	realpage = (int)(from >> chip->page_shift);
3420 	page = realpage & chip->pagemask;
3421 
3422 	col = (int)(from & (mtd->writesize - 1));
3423 
3424 	buf = ops->datbuf;
3425 	oob = ops->oobbuf;
3426 	oob_required = oob ? 1 : 0;
3427 
3428 	while (1) {
3429 		struct mtd_ecc_stats ecc_stats = mtd->ecc_stats;
3430 
3431 		bytes = min(mtd->writesize - col, readlen);
3432 		aligned = (bytes == mtd->writesize);
3433 
3434 		if (!aligned)
3435 			use_bounce_buf = 1;
3436 		else if (chip->options & NAND_USES_DMA)
3437 			use_bounce_buf = !virt_addr_valid(buf) ||
3438 					 !IS_ALIGNED((unsigned long)buf,
3439 						     chip->buf_align);
3440 		else
3441 			use_bounce_buf = 0;
3442 
3443 		/* Is the current page in the buffer? */
3444 		if (realpage != chip->pagecache.page || oob) {
3445 			bufpoi = use_bounce_buf ? chip->data_buf : buf;
3446 
3447 			if (use_bounce_buf && aligned)
3448 				pr_debug("%s: using read bounce buffer for buf@%p\n",
3449 						 __func__, buf);
3450 
3451 read_retry:
3452 			/*
3453 			 * Now read the page into the buffer.  Absent an error,
3454 			 * the read methods return max bitflips per ecc step.
3455 			 */
3456 			if (unlikely(ops->mode == MTD_OPS_RAW))
3457 				ret = chip->ecc.read_page_raw(chip, bufpoi,
3458 							      oob_required,
3459 							      page);
3460 			else if (!aligned && NAND_HAS_SUBPAGE_READ(chip) &&
3461 				 !oob)
3462 				ret = chip->ecc.read_subpage(chip, col, bytes,
3463 							     bufpoi, page);
3464 			else
3465 				ret = chip->ecc.read_page(chip, bufpoi,
3466 							  oob_required, page);
3467 			if (ret < 0) {
3468 				if (use_bounce_buf)
3469 					/* Invalidate page cache */
3470 					chip->pagecache.page = -1;
3471 				break;
3472 			}
3473 
3474 			/*
3475 			 * Copy back the data in the initial buffer when reading
3476 			 * partial pages or when a bounce buffer is required.
3477 			 */
3478 			if (use_bounce_buf) {
3479 				if (!NAND_HAS_SUBPAGE_READ(chip) && !oob &&
3480 				    !(mtd->ecc_stats.failed - ecc_stats.failed) &&
3481 				    (ops->mode != MTD_OPS_RAW)) {
3482 					chip->pagecache.page = realpage;
3483 					chip->pagecache.bitflips = ret;
3484 				} else {
3485 					/* Invalidate page cache */
3486 					chip->pagecache.page = -1;
3487 				}
3488 				memcpy(buf, bufpoi + col, bytes);
3489 			}
3490 
3491 			if (unlikely(oob)) {
3492 				int toread = min(oobreadlen, max_oobsize);
3493 
3494 				if (toread) {
3495 					oob = nand_transfer_oob(chip, oob, ops,
3496 								toread);
3497 					oobreadlen -= toread;
3498 				}
3499 			}
3500 
3501 			nand_wait_readrdy(chip);
3502 
3503 			if (mtd->ecc_stats.failed - ecc_stats.failed) {
3504 				if (retry_mode + 1 < chip->read_retries) {
3505 					retry_mode++;
3506 					ret = nand_setup_read_retry(chip,
3507 							retry_mode);
3508 					if (ret < 0)
3509 						break;
3510 
3511 					/* Reset ecc_stats; retry */
3512 					mtd->ecc_stats = ecc_stats;
3513 					goto read_retry;
3514 				} else {
3515 					/* No more retry modes; real failure */
3516 					ecc_fail = true;
3517 				}
3518 			}
3519 
3520 			buf += bytes;
3521 			max_bitflips = max_t(unsigned int, max_bitflips, ret);
3522 		} else {
3523 			memcpy(buf, chip->data_buf + col, bytes);
3524 			buf += bytes;
3525 			max_bitflips = max_t(unsigned int, max_bitflips,
3526 					     chip->pagecache.bitflips);
3527 		}
3528 
3529 		readlen -= bytes;
3530 
3531 		/* Reset to retry mode 0 */
3532 		if (retry_mode) {
3533 			ret = nand_setup_read_retry(chip, 0);
3534 			if (ret < 0)
3535 				break;
3536 			retry_mode = 0;
3537 		}
3538 
3539 		if (!readlen)
3540 			break;
3541 
3542 		/* For subsequent reads align to page boundary */
3543 		col = 0;
3544 		/* Increment page address */
3545 		realpage++;
3546 
3547 		page = realpage & chip->pagemask;
3548 		/* Check, if we cross a chip boundary */
3549 		if (!page) {
3550 			chipnr++;
3551 			nand_deselect_target(chip);
3552 			nand_select_target(chip, chipnr);
3553 		}
3554 	}
3555 	nand_deselect_target(chip);
3556 
3557 	ops->retlen = ops->len - (size_t) readlen;
3558 	if (oob)
3559 		ops->oobretlen = ops->ooblen - oobreadlen;
3560 
3561 	if (ret < 0)
3562 		return ret;
3563 
3564 	if (ecc_fail)
3565 		return -EBADMSG;
3566 
3567 	return max_bitflips;
3568 }
3569 
3570 /**
3571  * nand_read_oob_std - [REPLACEABLE] the most common OOB data read function
3572  * @chip: nand chip info structure
3573  * @page: page number to read
3574  */
nand_read_oob_std(struct nand_chip * chip,int page)3575 int nand_read_oob_std(struct nand_chip *chip, int page)
3576 {
3577 	struct mtd_info *mtd = nand_to_mtd(chip);
3578 
3579 	return nand_read_oob_op(chip, page, 0, chip->oob_poi, mtd->oobsize);
3580 }
3581 EXPORT_SYMBOL(nand_read_oob_std);
3582 
3583 /**
3584  * nand_read_oob_syndrome - [REPLACEABLE] OOB data read function for HW ECC
3585  *			    with syndromes
3586  * @chip: nand chip info structure
3587  * @page: page number to read
3588  */
nand_read_oob_syndrome(struct nand_chip * chip,int page)3589 static int nand_read_oob_syndrome(struct nand_chip *chip, int page)
3590 {
3591 	struct mtd_info *mtd = nand_to_mtd(chip);
3592 	int length = mtd->oobsize;
3593 	int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
3594 	int eccsize = chip->ecc.size;
3595 	uint8_t *bufpoi = chip->oob_poi;
3596 	int i, toread, sndrnd = 0, pos, ret;
3597 
3598 	ret = nand_read_page_op(chip, page, chip->ecc.size, NULL, 0);
3599 	if (ret)
3600 		return ret;
3601 
3602 	for (i = 0; i < chip->ecc.steps; i++) {
3603 		if (sndrnd) {
3604 			int ret;
3605 
3606 			pos = eccsize + i * (eccsize + chunk);
3607 			if (mtd->writesize > 512)
3608 				ret = nand_change_read_column_op(chip, pos,
3609 								 NULL, 0,
3610 								 false);
3611 			else
3612 				ret = nand_read_page_op(chip, page, pos, NULL,
3613 							0);
3614 
3615 			if (ret)
3616 				return ret;
3617 		} else
3618 			sndrnd = 1;
3619 		toread = min_t(int, length, chunk);
3620 
3621 		ret = nand_read_data_op(chip, bufpoi, toread, false, false);
3622 		if (ret)
3623 			return ret;
3624 
3625 		bufpoi += toread;
3626 		length -= toread;
3627 	}
3628 	if (length > 0) {
3629 		ret = nand_read_data_op(chip, bufpoi, length, false, false);
3630 		if (ret)
3631 			return ret;
3632 	}
3633 
3634 	return 0;
3635 }
3636 
3637 /**
3638  * nand_write_oob_std - [REPLACEABLE] the most common OOB data write function
3639  * @chip: nand chip info structure
3640  * @page: page number to write
3641  */
nand_write_oob_std(struct nand_chip * chip,int page)3642 int nand_write_oob_std(struct nand_chip *chip, int page)
3643 {
3644 	struct mtd_info *mtd = nand_to_mtd(chip);
3645 
3646 	return nand_prog_page_op(chip, page, mtd->writesize, chip->oob_poi,
3647 				 mtd->oobsize);
3648 }
3649 EXPORT_SYMBOL(nand_write_oob_std);
3650 
3651 /**
3652  * nand_write_oob_syndrome - [REPLACEABLE] OOB data write function for HW ECC
3653  *			     with syndrome - only for large page flash
3654  * @chip: nand chip info structure
3655  * @page: page number to write
3656  */
nand_write_oob_syndrome(struct nand_chip * chip,int page)3657 static int nand_write_oob_syndrome(struct nand_chip *chip, int page)
3658 {
3659 	struct mtd_info *mtd = nand_to_mtd(chip);
3660 	int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
3661 	int eccsize = chip->ecc.size, length = mtd->oobsize;
3662 	int ret, i, len, pos, sndcmd = 0, steps = chip->ecc.steps;
3663 	const uint8_t *bufpoi = chip->oob_poi;
3664 
3665 	/*
3666 	 * data-ecc-data-ecc ... ecc-oob
3667 	 * or
3668 	 * data-pad-ecc-pad-data-pad .... ecc-pad-oob
3669 	 */
3670 	if (!chip->ecc.prepad && !chip->ecc.postpad) {
3671 		pos = steps * (eccsize + chunk);
3672 		steps = 0;
3673 	} else
3674 		pos = eccsize;
3675 
3676 	ret = nand_prog_page_begin_op(chip, page, pos, NULL, 0);
3677 	if (ret)
3678 		return ret;
3679 
3680 	for (i = 0; i < steps; i++) {
3681 		if (sndcmd) {
3682 			if (mtd->writesize <= 512) {
3683 				uint32_t fill = 0xFFFFFFFF;
3684 
3685 				len = eccsize;
3686 				while (len > 0) {
3687 					int num = min_t(int, len, 4);
3688 
3689 					ret = nand_write_data_op(chip, &fill,
3690 								 num, false);
3691 					if (ret)
3692 						return ret;
3693 
3694 					len -= num;
3695 				}
3696 			} else {
3697 				pos = eccsize + i * (eccsize + chunk);
3698 				ret = nand_change_write_column_op(chip, pos,
3699 								  NULL, 0,
3700 								  false);
3701 				if (ret)
3702 					return ret;
3703 			}
3704 		} else
3705 			sndcmd = 1;
3706 		len = min_t(int, length, chunk);
3707 
3708 		ret = nand_write_data_op(chip, bufpoi, len, false);
3709 		if (ret)
3710 			return ret;
3711 
3712 		bufpoi += len;
3713 		length -= len;
3714 	}
3715 	if (length > 0) {
3716 		ret = nand_write_data_op(chip, bufpoi, length, false);
3717 		if (ret)
3718 			return ret;
3719 	}
3720 
3721 	return nand_prog_page_end_op(chip);
3722 }
3723 
3724 /**
3725  * nand_do_read_oob - [INTERN] NAND read out-of-band
3726  * @chip: NAND chip object
3727  * @from: offset to read from
3728  * @ops: oob operations description structure
3729  *
3730  * NAND read out-of-band data from the spare area.
3731  */
nand_do_read_oob(struct nand_chip * chip,loff_t from,struct mtd_oob_ops * ops)3732 static int nand_do_read_oob(struct nand_chip *chip, loff_t from,
3733 			    struct mtd_oob_ops *ops)
3734 {
3735 	struct mtd_info *mtd = nand_to_mtd(chip);
3736 	unsigned int max_bitflips = 0;
3737 	int page, realpage, chipnr;
3738 	struct mtd_ecc_stats stats;
3739 	int readlen = ops->ooblen;
3740 	int len;
3741 	uint8_t *buf = ops->oobbuf;
3742 	int ret = 0;
3743 
3744 	pr_debug("%s: from = 0x%08Lx, len = %i\n",
3745 			__func__, (unsigned long long)from, readlen);
3746 
3747 	/* Check if the region is secured */
3748 	if (nand_region_is_secured(chip, from, readlen))
3749 		return -EIO;
3750 
3751 	stats = mtd->ecc_stats;
3752 
3753 	len = mtd_oobavail(mtd, ops);
3754 
3755 	chipnr = (int)(from >> chip->chip_shift);
3756 	nand_select_target(chip, chipnr);
3757 
3758 	/* Shift to get page */
3759 	realpage = (int)(from >> chip->page_shift);
3760 	page = realpage & chip->pagemask;
3761 
3762 	while (1) {
3763 		if (ops->mode == MTD_OPS_RAW)
3764 			ret = chip->ecc.read_oob_raw(chip, page);
3765 		else
3766 			ret = chip->ecc.read_oob(chip, page);
3767 
3768 		if (ret < 0)
3769 			break;
3770 
3771 		len = min(len, readlen);
3772 		buf = nand_transfer_oob(chip, buf, ops, len);
3773 
3774 		nand_wait_readrdy(chip);
3775 
3776 		max_bitflips = max_t(unsigned int, max_bitflips, ret);
3777 
3778 		readlen -= len;
3779 		if (!readlen)
3780 			break;
3781 
3782 		/* Increment page address */
3783 		realpage++;
3784 
3785 		page = realpage & chip->pagemask;
3786 		/* Check, if we cross a chip boundary */
3787 		if (!page) {
3788 			chipnr++;
3789 			nand_deselect_target(chip);
3790 			nand_select_target(chip, chipnr);
3791 		}
3792 	}
3793 	nand_deselect_target(chip);
3794 
3795 	ops->oobretlen = ops->ooblen - readlen;
3796 
3797 	if (ret < 0)
3798 		return ret;
3799 
3800 	if (mtd->ecc_stats.failed - stats.failed)
3801 		return -EBADMSG;
3802 
3803 	return max_bitflips;
3804 }
3805 
3806 /**
3807  * nand_read_oob - [MTD Interface] NAND read data and/or out-of-band
3808  * @mtd: MTD device structure
3809  * @from: offset to read from
3810  * @ops: oob operation description structure
3811  *
3812  * NAND read data and/or out-of-band data.
3813  */
nand_read_oob(struct mtd_info * mtd,loff_t from,struct mtd_oob_ops * ops)3814 static int nand_read_oob(struct mtd_info *mtd, loff_t from,
3815 			 struct mtd_oob_ops *ops)
3816 {
3817 	struct nand_chip *chip = mtd_to_nand(mtd);
3818 	int ret;
3819 
3820 	ops->retlen = 0;
3821 
3822 	if (ops->mode != MTD_OPS_PLACE_OOB &&
3823 	    ops->mode != MTD_OPS_AUTO_OOB &&
3824 	    ops->mode != MTD_OPS_RAW)
3825 		return -ENOTSUPP;
3826 
3827 	nand_get_device(chip);
3828 
3829 	if (!ops->datbuf)
3830 		ret = nand_do_read_oob(chip, from, ops);
3831 	else
3832 		ret = nand_do_read_ops(chip, from, ops);
3833 
3834 	nand_release_device(chip);
3835 	return ret;
3836 }
3837 
3838 /**
3839  * nand_write_page_raw_notsupp - dummy raw page write function
3840  * @chip: nand chip info structure
3841  * @buf: data buffer
3842  * @oob_required: must write chip->oob_poi to OOB
3843  * @page: page number to write
3844  *
3845  * Returns -ENOTSUPP unconditionally.
3846  */
nand_write_page_raw_notsupp(struct nand_chip * chip,const u8 * buf,int oob_required,int page)3847 int nand_write_page_raw_notsupp(struct nand_chip *chip, const u8 *buf,
3848 				int oob_required, int page)
3849 {
3850 	return -ENOTSUPP;
3851 }
3852 
3853 /**
3854  * nand_write_page_raw - [INTERN] raw page write function
3855  * @chip: nand chip info structure
3856  * @buf: data buffer
3857  * @oob_required: must write chip->oob_poi to OOB
3858  * @page: page number to write
3859  *
3860  * Not for syndrome calculating ECC controllers, which use a special oob layout.
3861  */
nand_write_page_raw(struct nand_chip * chip,const uint8_t * buf,int oob_required,int page)3862 int nand_write_page_raw(struct nand_chip *chip, const uint8_t *buf,
3863 			int oob_required, int page)
3864 {
3865 	struct mtd_info *mtd = nand_to_mtd(chip);
3866 	int ret;
3867 
3868 	ret = nand_prog_page_begin_op(chip, page, 0, buf, mtd->writesize);
3869 	if (ret)
3870 		return ret;
3871 
3872 	if (oob_required) {
3873 		ret = nand_write_data_op(chip, chip->oob_poi, mtd->oobsize,
3874 					 false);
3875 		if (ret)
3876 			return ret;
3877 	}
3878 
3879 	return nand_prog_page_end_op(chip);
3880 }
3881 EXPORT_SYMBOL(nand_write_page_raw);
3882 
3883 /**
3884  * nand_monolithic_write_page_raw - Monolithic page write in raw mode
3885  * @chip: NAND chip info structure
3886  * @buf: data buffer to write
3887  * @oob_required: must write chip->oob_poi to OOB
3888  * @page: page number to write
3889  *
3890  * This is a raw page write, ie. without any error detection/correction.
3891  * Monolithic means we are requesting all the relevant data (main plus
3892  * eventually OOB) to be sent over the bus and effectively programmed
3893  * into the NAND chip arrays in a single operation. This is an
3894  * alternative to nand_write_page_raw(), which first sends the main
3895  * data, then eventually send the OOB data by latching more data
3896  * cycles on the NAND bus, and finally sends the program command to
3897  * synchronyze the NAND chip cache.
3898  */
nand_monolithic_write_page_raw(struct nand_chip * chip,const u8 * buf,int oob_required,int page)3899 int nand_monolithic_write_page_raw(struct nand_chip *chip, const u8 *buf,
3900 				   int oob_required, int page)
3901 {
3902 	struct mtd_info *mtd = nand_to_mtd(chip);
3903 	unsigned int size = mtd->writesize;
3904 	u8 *write_buf = (u8 *)buf;
3905 
3906 	if (oob_required) {
3907 		size += mtd->oobsize;
3908 
3909 		if (buf != chip->data_buf) {
3910 			write_buf = nand_get_data_buf(chip);
3911 			memcpy(write_buf, buf, mtd->writesize);
3912 		}
3913 	}
3914 
3915 	return nand_prog_page_op(chip, page, 0, write_buf, size);
3916 }
3917 EXPORT_SYMBOL(nand_monolithic_write_page_raw);
3918 
3919 /**
3920  * nand_write_page_raw_syndrome - [INTERN] raw page write function
3921  * @chip: nand chip info structure
3922  * @buf: data buffer
3923  * @oob_required: must write chip->oob_poi to OOB
3924  * @page: page number to write
3925  *
3926  * We need a special oob layout and handling even when ECC isn't checked.
3927  */
nand_write_page_raw_syndrome(struct nand_chip * chip,const uint8_t * buf,int oob_required,int page)3928 static int nand_write_page_raw_syndrome(struct nand_chip *chip,
3929 					const uint8_t *buf, int oob_required,
3930 					int page)
3931 {
3932 	struct mtd_info *mtd = nand_to_mtd(chip);
3933 	int eccsize = chip->ecc.size;
3934 	int eccbytes = chip->ecc.bytes;
3935 	uint8_t *oob = chip->oob_poi;
3936 	int steps, size, ret;
3937 
3938 	ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0);
3939 	if (ret)
3940 		return ret;
3941 
3942 	for (steps = chip->ecc.steps; steps > 0; steps--) {
3943 		ret = nand_write_data_op(chip, buf, eccsize, false);
3944 		if (ret)
3945 			return ret;
3946 
3947 		buf += eccsize;
3948 
3949 		if (chip->ecc.prepad) {
3950 			ret = nand_write_data_op(chip, oob, chip->ecc.prepad,
3951 						 false);
3952 			if (ret)
3953 				return ret;
3954 
3955 			oob += chip->ecc.prepad;
3956 		}
3957 
3958 		ret = nand_write_data_op(chip, oob, eccbytes, false);
3959 		if (ret)
3960 			return ret;
3961 
3962 		oob += eccbytes;
3963 
3964 		if (chip->ecc.postpad) {
3965 			ret = nand_write_data_op(chip, oob, chip->ecc.postpad,
3966 						 false);
3967 			if (ret)
3968 				return ret;
3969 
3970 			oob += chip->ecc.postpad;
3971 		}
3972 	}
3973 
3974 	size = mtd->oobsize - (oob - chip->oob_poi);
3975 	if (size) {
3976 		ret = nand_write_data_op(chip, oob, size, false);
3977 		if (ret)
3978 			return ret;
3979 	}
3980 
3981 	return nand_prog_page_end_op(chip);
3982 }
3983 /**
3984  * nand_write_page_swecc - [REPLACEABLE] software ECC based page write function
3985  * @chip: nand chip info structure
3986  * @buf: data buffer
3987  * @oob_required: must write chip->oob_poi to OOB
3988  * @page: page number to write
3989  */
nand_write_page_swecc(struct nand_chip * chip,const uint8_t * buf,int oob_required,int page)3990 static int nand_write_page_swecc(struct nand_chip *chip, const uint8_t *buf,
3991 				 int oob_required, int page)
3992 {
3993 	struct mtd_info *mtd = nand_to_mtd(chip);
3994 	int i, eccsize = chip->ecc.size, ret;
3995 	int eccbytes = chip->ecc.bytes;
3996 	int eccsteps = chip->ecc.steps;
3997 	uint8_t *ecc_calc = chip->ecc.calc_buf;
3998 	const uint8_t *p = buf;
3999 
4000 	/* Software ECC calculation */
4001 	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
4002 		chip->ecc.calculate(chip, p, &ecc_calc[i]);
4003 
4004 	ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0,
4005 					 chip->ecc.total);
4006 	if (ret)
4007 		return ret;
4008 
4009 	return chip->ecc.write_page_raw(chip, buf, 1, page);
4010 }
4011 
4012 /**
4013  * nand_write_page_hwecc - [REPLACEABLE] hardware ECC based page write function
4014  * @chip: nand chip info structure
4015  * @buf: data buffer
4016  * @oob_required: must write chip->oob_poi to OOB
4017  * @page: page number to write
4018  */
nand_write_page_hwecc(struct nand_chip * chip,const uint8_t * buf,int oob_required,int page)4019 static int nand_write_page_hwecc(struct nand_chip *chip, const uint8_t *buf,
4020 				 int oob_required, int page)
4021 {
4022 	struct mtd_info *mtd = nand_to_mtd(chip);
4023 	int i, eccsize = chip->ecc.size, ret;
4024 	int eccbytes = chip->ecc.bytes;
4025 	int eccsteps = chip->ecc.steps;
4026 	uint8_t *ecc_calc = chip->ecc.calc_buf;
4027 	const uint8_t *p = buf;
4028 
4029 	ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0);
4030 	if (ret)
4031 		return ret;
4032 
4033 	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
4034 		chip->ecc.hwctl(chip, NAND_ECC_WRITE);
4035 
4036 		ret = nand_write_data_op(chip, p, eccsize, false);
4037 		if (ret)
4038 			return ret;
4039 
4040 		chip->ecc.calculate(chip, p, &ecc_calc[i]);
4041 	}
4042 
4043 	ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0,
4044 					 chip->ecc.total);
4045 	if (ret)
4046 		return ret;
4047 
4048 	ret = nand_write_data_op(chip, chip->oob_poi, mtd->oobsize, false);
4049 	if (ret)
4050 		return ret;
4051 
4052 	return nand_prog_page_end_op(chip);
4053 }
4054 
4055 
4056 /**
4057  * nand_write_subpage_hwecc - [REPLACEABLE] hardware ECC based subpage write
4058  * @chip:	nand chip info structure
4059  * @offset:	column address of subpage within the page
4060  * @data_len:	data length
4061  * @buf:	data buffer
4062  * @oob_required: must write chip->oob_poi to OOB
4063  * @page: page number to write
4064  */
nand_write_subpage_hwecc(struct nand_chip * chip,uint32_t offset,uint32_t data_len,const uint8_t * buf,int oob_required,int page)4065 static int nand_write_subpage_hwecc(struct nand_chip *chip, uint32_t offset,
4066 				    uint32_t data_len, const uint8_t *buf,
4067 				    int oob_required, int page)
4068 {
4069 	struct mtd_info *mtd = nand_to_mtd(chip);
4070 	uint8_t *oob_buf  = chip->oob_poi;
4071 	uint8_t *ecc_calc = chip->ecc.calc_buf;
4072 	int ecc_size      = chip->ecc.size;
4073 	int ecc_bytes     = chip->ecc.bytes;
4074 	int ecc_steps     = chip->ecc.steps;
4075 	uint32_t start_step = offset / ecc_size;
4076 	uint32_t end_step   = (offset + data_len - 1) / ecc_size;
4077 	int oob_bytes       = mtd->oobsize / ecc_steps;
4078 	int step, ret;
4079 
4080 	ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0);
4081 	if (ret)
4082 		return ret;
4083 
4084 	for (step = 0; step < ecc_steps; step++) {
4085 		/* configure controller for WRITE access */
4086 		chip->ecc.hwctl(chip, NAND_ECC_WRITE);
4087 
4088 		/* write data (untouched subpages already masked by 0xFF) */
4089 		ret = nand_write_data_op(chip, buf, ecc_size, false);
4090 		if (ret)
4091 			return ret;
4092 
4093 		/* mask ECC of un-touched subpages by padding 0xFF */
4094 		if ((step < start_step) || (step > end_step))
4095 			memset(ecc_calc, 0xff, ecc_bytes);
4096 		else
4097 			chip->ecc.calculate(chip, buf, ecc_calc);
4098 
4099 		/* mask OOB of un-touched subpages by padding 0xFF */
4100 		/* if oob_required, preserve OOB metadata of written subpage */
4101 		if (!oob_required || (step < start_step) || (step > end_step))
4102 			memset(oob_buf, 0xff, oob_bytes);
4103 
4104 		buf += ecc_size;
4105 		ecc_calc += ecc_bytes;
4106 		oob_buf  += oob_bytes;
4107 	}
4108 
4109 	/* copy calculated ECC for whole page to chip->buffer->oob */
4110 	/* this include masked-value(0xFF) for unwritten subpages */
4111 	ecc_calc = chip->ecc.calc_buf;
4112 	ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0,
4113 					 chip->ecc.total);
4114 	if (ret)
4115 		return ret;
4116 
4117 	/* write OOB buffer to NAND device */
4118 	ret = nand_write_data_op(chip, chip->oob_poi, mtd->oobsize, false);
4119 	if (ret)
4120 		return ret;
4121 
4122 	return nand_prog_page_end_op(chip);
4123 }
4124 
4125 
4126 /**
4127  * nand_write_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page write
4128  * @chip: nand chip info structure
4129  * @buf: data buffer
4130  * @oob_required: must write chip->oob_poi to OOB
4131  * @page: page number to write
4132  *
4133  * The hw generator calculates the error syndrome automatically. Therefore we
4134  * need a special oob layout and handling.
4135  */
nand_write_page_syndrome(struct nand_chip * chip,const uint8_t * buf,int oob_required,int page)4136 static int nand_write_page_syndrome(struct nand_chip *chip, const uint8_t *buf,
4137 				    int oob_required, int page)
4138 {
4139 	struct mtd_info *mtd = nand_to_mtd(chip);
4140 	int i, eccsize = chip->ecc.size;
4141 	int eccbytes = chip->ecc.bytes;
4142 	int eccsteps = chip->ecc.steps;
4143 	const uint8_t *p = buf;
4144 	uint8_t *oob = chip->oob_poi;
4145 	int ret;
4146 
4147 	ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0);
4148 	if (ret)
4149 		return ret;
4150 
4151 	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
4152 		chip->ecc.hwctl(chip, NAND_ECC_WRITE);
4153 
4154 		ret = nand_write_data_op(chip, p, eccsize, false);
4155 		if (ret)
4156 			return ret;
4157 
4158 		if (chip->ecc.prepad) {
4159 			ret = nand_write_data_op(chip, oob, chip->ecc.prepad,
4160 						 false);
4161 			if (ret)
4162 				return ret;
4163 
4164 			oob += chip->ecc.prepad;
4165 		}
4166 
4167 		chip->ecc.calculate(chip, p, oob);
4168 
4169 		ret = nand_write_data_op(chip, oob, eccbytes, false);
4170 		if (ret)
4171 			return ret;
4172 
4173 		oob += eccbytes;
4174 
4175 		if (chip->ecc.postpad) {
4176 			ret = nand_write_data_op(chip, oob, chip->ecc.postpad,
4177 						 false);
4178 			if (ret)
4179 				return ret;
4180 
4181 			oob += chip->ecc.postpad;
4182 		}
4183 	}
4184 
4185 	/* Calculate remaining oob bytes */
4186 	i = mtd->oobsize - (oob - chip->oob_poi);
4187 	if (i) {
4188 		ret = nand_write_data_op(chip, oob, i, false);
4189 		if (ret)
4190 			return ret;
4191 	}
4192 
4193 	return nand_prog_page_end_op(chip);
4194 }
4195 
4196 /**
4197  * nand_write_page - write one page
4198  * @chip: NAND chip descriptor
4199  * @offset: address offset within the page
4200  * @data_len: length of actual data to be written
4201  * @buf: the data to write
4202  * @oob_required: must write chip->oob_poi to OOB
4203  * @page: page number to write
4204  * @raw: use _raw version of write_page
4205  */
nand_write_page(struct nand_chip * chip,uint32_t offset,int data_len,const uint8_t * buf,int oob_required,int page,int raw)4206 static int nand_write_page(struct nand_chip *chip, uint32_t offset,
4207 			   int data_len, const uint8_t *buf, int oob_required,
4208 			   int page, int raw)
4209 {
4210 	struct mtd_info *mtd = nand_to_mtd(chip);
4211 	int status, subpage;
4212 
4213 	if (!(chip->options & NAND_NO_SUBPAGE_WRITE) &&
4214 		chip->ecc.write_subpage)
4215 		subpage = offset || (data_len < mtd->writesize);
4216 	else
4217 		subpage = 0;
4218 
4219 	if (unlikely(raw))
4220 		status = chip->ecc.write_page_raw(chip, buf, oob_required,
4221 						  page);
4222 	else if (subpage)
4223 		status = chip->ecc.write_subpage(chip, offset, data_len, buf,
4224 						 oob_required, page);
4225 	else
4226 		status = chip->ecc.write_page(chip, buf, oob_required, page);
4227 
4228 	if (status < 0)
4229 		return status;
4230 
4231 	return 0;
4232 }
4233 
4234 #define NOTALIGNED(x)	((x & (chip->subpagesize - 1)) != 0)
4235 
4236 /**
4237  * nand_do_write_ops - [INTERN] NAND write with ECC
4238  * @chip: NAND chip object
4239  * @to: offset to write to
4240  * @ops: oob operations description structure
4241  *
4242  * NAND write with ECC.
4243  */
nand_do_write_ops(struct nand_chip * chip,loff_t to,struct mtd_oob_ops * ops)4244 static int nand_do_write_ops(struct nand_chip *chip, loff_t to,
4245 			     struct mtd_oob_ops *ops)
4246 {
4247 	struct mtd_info *mtd = nand_to_mtd(chip);
4248 	int chipnr, realpage, page, column;
4249 	uint32_t writelen = ops->len;
4250 
4251 	uint32_t oobwritelen = ops->ooblen;
4252 	uint32_t oobmaxlen = mtd_oobavail(mtd, ops);
4253 
4254 	uint8_t *oob = ops->oobbuf;
4255 	uint8_t *buf = ops->datbuf;
4256 	int ret;
4257 	int oob_required = oob ? 1 : 0;
4258 
4259 	ops->retlen = 0;
4260 	if (!writelen)
4261 		return 0;
4262 
4263 	/* Reject writes, which are not page aligned */
4264 	if (NOTALIGNED(to) || NOTALIGNED(ops->len)) {
4265 		pr_notice("%s: attempt to write non page aligned data\n",
4266 			   __func__);
4267 		return -EINVAL;
4268 	}
4269 
4270 	/* Check if the region is secured */
4271 	if (nand_region_is_secured(chip, to, writelen))
4272 		return -EIO;
4273 
4274 	column = to & (mtd->writesize - 1);
4275 
4276 	chipnr = (int)(to >> chip->chip_shift);
4277 	nand_select_target(chip, chipnr);
4278 
4279 	/* Check, if it is write protected */
4280 	if (nand_check_wp(chip)) {
4281 		ret = -EIO;
4282 		goto err_out;
4283 	}
4284 
4285 	realpage = (int)(to >> chip->page_shift);
4286 	page = realpage & chip->pagemask;
4287 
4288 	/* Invalidate the page cache, when we write to the cached page */
4289 	if (to <= ((loff_t)chip->pagecache.page << chip->page_shift) &&
4290 	    ((loff_t)chip->pagecache.page << chip->page_shift) < (to + ops->len))
4291 		chip->pagecache.page = -1;
4292 
4293 	/* Don't allow multipage oob writes with offset */
4294 	if (oob && ops->ooboffs && (ops->ooboffs + ops->ooblen > oobmaxlen)) {
4295 		ret = -EINVAL;
4296 		goto err_out;
4297 	}
4298 
4299 	while (1) {
4300 		int bytes = mtd->writesize;
4301 		uint8_t *wbuf = buf;
4302 		int use_bounce_buf;
4303 		int part_pagewr = (column || writelen < mtd->writesize);
4304 
4305 		if (part_pagewr)
4306 			use_bounce_buf = 1;
4307 		else if (chip->options & NAND_USES_DMA)
4308 			use_bounce_buf = !virt_addr_valid(buf) ||
4309 					 !IS_ALIGNED((unsigned long)buf,
4310 						     chip->buf_align);
4311 		else
4312 			use_bounce_buf = 0;
4313 
4314 		/*
4315 		 * Copy the data from the initial buffer when doing partial page
4316 		 * writes or when a bounce buffer is required.
4317 		 */
4318 		if (use_bounce_buf) {
4319 			pr_debug("%s: using write bounce buffer for buf@%p\n",
4320 					 __func__, buf);
4321 			if (part_pagewr)
4322 				bytes = min_t(int, bytes - column, writelen);
4323 			wbuf = nand_get_data_buf(chip);
4324 			memset(wbuf, 0xff, mtd->writesize);
4325 			memcpy(&wbuf[column], buf, bytes);
4326 		}
4327 
4328 		if (unlikely(oob)) {
4329 			size_t len = min(oobwritelen, oobmaxlen);
4330 			oob = nand_fill_oob(chip, oob, len, ops);
4331 			oobwritelen -= len;
4332 		} else {
4333 			/* We still need to erase leftover OOB data */
4334 			memset(chip->oob_poi, 0xff, mtd->oobsize);
4335 		}
4336 
4337 		ret = nand_write_page(chip, column, bytes, wbuf,
4338 				      oob_required, page,
4339 				      (ops->mode == MTD_OPS_RAW));
4340 		if (ret)
4341 			break;
4342 
4343 		writelen -= bytes;
4344 		if (!writelen)
4345 			break;
4346 
4347 		column = 0;
4348 		buf += bytes;
4349 		realpage++;
4350 
4351 		page = realpage & chip->pagemask;
4352 		/* Check, if we cross a chip boundary */
4353 		if (!page) {
4354 			chipnr++;
4355 			nand_deselect_target(chip);
4356 			nand_select_target(chip, chipnr);
4357 		}
4358 	}
4359 
4360 	ops->retlen = ops->len - writelen;
4361 	if (unlikely(oob))
4362 		ops->oobretlen = ops->ooblen;
4363 
4364 err_out:
4365 	nand_deselect_target(chip);
4366 	return ret;
4367 }
4368 
4369 /**
4370  * panic_nand_write - [MTD Interface] NAND write with ECC
4371  * @mtd: MTD device structure
4372  * @to: offset to write to
4373  * @len: number of bytes to write
4374  * @retlen: pointer to variable to store the number of written bytes
4375  * @buf: the data to write
4376  *
4377  * NAND write with ECC. Used when performing writes in interrupt context, this
4378  * may for example be called by mtdoops when writing an oops while in panic.
4379  */
panic_nand_write(struct mtd_info * mtd,loff_t to,size_t len,size_t * retlen,const uint8_t * buf)4380 static int panic_nand_write(struct mtd_info *mtd, loff_t to, size_t len,
4381 			    size_t *retlen, const uint8_t *buf)
4382 {
4383 	struct nand_chip *chip = mtd_to_nand(mtd);
4384 	int chipnr = (int)(to >> chip->chip_shift);
4385 	struct mtd_oob_ops ops;
4386 	int ret;
4387 
4388 	nand_select_target(chip, chipnr);
4389 
4390 	/* Wait for the device to get ready */
4391 	panic_nand_wait(chip, 400);
4392 
4393 	memset(&ops, 0, sizeof(ops));
4394 	ops.len = len;
4395 	ops.datbuf = (uint8_t *)buf;
4396 	ops.mode = MTD_OPS_PLACE_OOB;
4397 
4398 	ret = nand_do_write_ops(chip, to, &ops);
4399 
4400 	*retlen = ops.retlen;
4401 	return ret;
4402 }
4403 
4404 /**
4405  * nand_write_oob - [MTD Interface] NAND write data and/or out-of-band
4406  * @mtd: MTD device structure
4407  * @to: offset to write to
4408  * @ops: oob operation description structure
4409  */
nand_write_oob(struct mtd_info * mtd,loff_t to,struct mtd_oob_ops * ops)4410 static int nand_write_oob(struct mtd_info *mtd, loff_t to,
4411 			  struct mtd_oob_ops *ops)
4412 {
4413 	struct nand_chip *chip = mtd_to_nand(mtd);
4414 	int ret = 0;
4415 
4416 	ops->retlen = 0;
4417 
4418 	nand_get_device(chip);
4419 
4420 	switch (ops->mode) {
4421 	case MTD_OPS_PLACE_OOB:
4422 	case MTD_OPS_AUTO_OOB:
4423 	case MTD_OPS_RAW:
4424 		break;
4425 
4426 	default:
4427 		goto out;
4428 	}
4429 
4430 	if (!ops->datbuf)
4431 		ret = nand_do_write_oob(chip, to, ops);
4432 	else
4433 		ret = nand_do_write_ops(chip, to, ops);
4434 
4435 out:
4436 	nand_release_device(chip);
4437 	return ret;
4438 }
4439 
4440 /**
4441  * nand_erase - [MTD Interface] erase block(s)
4442  * @mtd: MTD device structure
4443  * @instr: erase instruction
4444  *
4445  * Erase one ore more blocks.
4446  */
nand_erase(struct mtd_info * mtd,struct erase_info * instr)4447 static int nand_erase(struct mtd_info *mtd, struct erase_info *instr)
4448 {
4449 	return nand_erase_nand(mtd_to_nand(mtd), instr, 0);
4450 }
4451 
4452 /**
4453  * nand_erase_nand - [INTERN] erase block(s)
4454  * @chip: NAND chip object
4455  * @instr: erase instruction
4456  * @allowbbt: allow erasing the bbt area
4457  *
4458  * Erase one ore more blocks.
4459  */
nand_erase_nand(struct nand_chip * chip,struct erase_info * instr,int allowbbt)4460 int nand_erase_nand(struct nand_chip *chip, struct erase_info *instr,
4461 		    int allowbbt)
4462 {
4463 	int page, pages_per_block, ret, chipnr;
4464 	loff_t len;
4465 
4466 	pr_debug("%s: start = 0x%012llx, len = %llu\n",
4467 			__func__, (unsigned long long)instr->addr,
4468 			(unsigned long long)instr->len);
4469 
4470 	if (check_offs_len(chip, instr->addr, instr->len))
4471 		return -EINVAL;
4472 
4473 	/* Check if the region is secured */
4474 	if (nand_region_is_secured(chip, instr->addr, instr->len))
4475 		return -EIO;
4476 
4477 	/* Grab the lock and see if the device is available */
4478 	nand_get_device(chip);
4479 
4480 	/* Shift to get first page */
4481 	page = (int)(instr->addr >> chip->page_shift);
4482 	chipnr = (int)(instr->addr >> chip->chip_shift);
4483 
4484 	/* Calculate pages in each block */
4485 	pages_per_block = 1 << (chip->phys_erase_shift - chip->page_shift);
4486 
4487 	/* Select the NAND device */
4488 	nand_select_target(chip, chipnr);
4489 
4490 	/* Check, if it is write protected */
4491 	if (nand_check_wp(chip)) {
4492 		pr_debug("%s: device is write protected!\n",
4493 				__func__);
4494 		ret = -EIO;
4495 		goto erase_exit;
4496 	}
4497 
4498 	/* Loop through the pages */
4499 	len = instr->len;
4500 
4501 	while (len) {
4502 		/* Check if we have a bad block, we do not erase bad blocks! */
4503 		if (nand_block_checkbad(chip, ((loff_t) page) <<
4504 					chip->page_shift, allowbbt)) {
4505 			pr_warn("%s: attempt to erase a bad block at page 0x%08x\n",
4506 				    __func__, page);
4507 			ret = -EIO;
4508 			goto erase_exit;
4509 		}
4510 
4511 		/*
4512 		 * Invalidate the page cache, if we erase the block which
4513 		 * contains the current cached page.
4514 		 */
4515 		if (page <= chip->pagecache.page && chip->pagecache.page <
4516 		    (page + pages_per_block))
4517 			chip->pagecache.page = -1;
4518 
4519 		ret = nand_erase_op(chip, (page & chip->pagemask) >>
4520 				    (chip->phys_erase_shift - chip->page_shift));
4521 		if (ret) {
4522 			pr_debug("%s: failed erase, page 0x%08x\n",
4523 					__func__, page);
4524 			instr->fail_addr =
4525 				((loff_t)page << chip->page_shift);
4526 			goto erase_exit;
4527 		}
4528 
4529 		/* Increment page address and decrement length */
4530 		len -= (1ULL << chip->phys_erase_shift);
4531 		page += pages_per_block;
4532 
4533 		/* Check, if we cross a chip boundary */
4534 		if (len && !(page & chip->pagemask)) {
4535 			chipnr++;
4536 			nand_deselect_target(chip);
4537 			nand_select_target(chip, chipnr);
4538 		}
4539 	}
4540 
4541 	ret = 0;
4542 erase_exit:
4543 
4544 	/* Deselect and wake up anyone waiting on the device */
4545 	nand_deselect_target(chip);
4546 	nand_release_device(chip);
4547 
4548 	/* Return more or less happy */
4549 	return ret;
4550 }
4551 
4552 /**
4553  * nand_sync - [MTD Interface] sync
4554  * @mtd: MTD device structure
4555  *
4556  * Sync is actually a wait for chip ready function.
4557  */
nand_sync(struct mtd_info * mtd)4558 static void nand_sync(struct mtd_info *mtd)
4559 {
4560 	struct nand_chip *chip = mtd_to_nand(mtd);
4561 
4562 	pr_debug("%s: called\n", __func__);
4563 
4564 	/* Grab the lock and see if the device is available */
4565 	nand_get_device(chip);
4566 	/* Release it and go back */
4567 	nand_release_device(chip);
4568 }
4569 
4570 /**
4571  * nand_block_isbad - [MTD Interface] Check if block at offset is bad
4572  * @mtd: MTD device structure
4573  * @offs: offset relative to mtd start
4574  */
nand_block_isbad(struct mtd_info * mtd,loff_t offs)4575 static int nand_block_isbad(struct mtd_info *mtd, loff_t offs)
4576 {
4577 	struct nand_chip *chip = mtd_to_nand(mtd);
4578 	int chipnr = (int)(offs >> chip->chip_shift);
4579 	int ret;
4580 
4581 	/* Select the NAND device */
4582 	nand_get_device(chip);
4583 
4584 	nand_select_target(chip, chipnr);
4585 
4586 	ret = nand_block_checkbad(chip, offs, 0);
4587 
4588 	nand_deselect_target(chip);
4589 	nand_release_device(chip);
4590 
4591 	return ret;
4592 }
4593 
4594 /**
4595  * nand_block_markbad - [MTD Interface] Mark block at the given offset as bad
4596  * @mtd: MTD device structure
4597  * @ofs: offset relative to mtd start
4598  */
nand_block_markbad(struct mtd_info * mtd,loff_t ofs)4599 static int nand_block_markbad(struct mtd_info *mtd, loff_t ofs)
4600 {
4601 	int ret;
4602 
4603 	ret = nand_block_isbad(mtd, ofs);
4604 	if (ret) {
4605 		/* If it was bad already, return success and do nothing */
4606 		if (ret > 0)
4607 			return 0;
4608 		return ret;
4609 	}
4610 
4611 	return nand_block_markbad_lowlevel(mtd_to_nand(mtd), ofs);
4612 }
4613 
4614 /**
4615  * nand_suspend - [MTD Interface] Suspend the NAND flash
4616  * @mtd: MTD device structure
4617  *
4618  * Returns 0 for success or negative error code otherwise.
4619  */
nand_suspend(struct mtd_info * mtd)4620 static int nand_suspend(struct mtd_info *mtd)
4621 {
4622 	struct nand_chip *chip = mtd_to_nand(mtd);
4623 	int ret = 0;
4624 
4625 	mutex_lock(&chip->lock);
4626 	if (chip->ops.suspend)
4627 		ret = chip->ops.suspend(chip);
4628 	if (!ret)
4629 		chip->suspended = 1;
4630 	mutex_unlock(&chip->lock);
4631 
4632 	return ret;
4633 }
4634 
4635 /**
4636  * nand_resume - [MTD Interface] Resume the NAND flash
4637  * @mtd: MTD device structure
4638  */
nand_resume(struct mtd_info * mtd)4639 static void nand_resume(struct mtd_info *mtd)
4640 {
4641 	struct nand_chip *chip = mtd_to_nand(mtd);
4642 
4643 	mutex_lock(&chip->lock);
4644 	if (chip->suspended) {
4645 		if (chip->ops.resume)
4646 			chip->ops.resume(chip);
4647 		chip->suspended = 0;
4648 	} else {
4649 		pr_err("%s called for a chip which is not in suspended state\n",
4650 			__func__);
4651 	}
4652 	mutex_unlock(&chip->lock);
4653 
4654 	wake_up_all(&chip->resume_wq);
4655 }
4656 
4657 /**
4658  * nand_shutdown - [MTD Interface] Finish the current NAND operation and
4659  *                 prevent further operations
4660  * @mtd: MTD device structure
4661  */
nand_shutdown(struct mtd_info * mtd)4662 static void nand_shutdown(struct mtd_info *mtd)
4663 {
4664 	nand_suspend(mtd);
4665 }
4666 
4667 /**
4668  * nand_lock - [MTD Interface] Lock the NAND flash
4669  * @mtd: MTD device structure
4670  * @ofs: offset byte address
4671  * @len: number of bytes to lock (must be a multiple of block/page size)
4672  */
nand_lock(struct mtd_info * mtd,loff_t ofs,uint64_t len)4673 static int nand_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
4674 {
4675 	struct nand_chip *chip = mtd_to_nand(mtd);
4676 
4677 	if (!chip->ops.lock_area)
4678 		return -ENOTSUPP;
4679 
4680 	return chip->ops.lock_area(chip, ofs, len);
4681 }
4682 
4683 /**
4684  * nand_unlock - [MTD Interface] Unlock the NAND flash
4685  * @mtd: MTD device structure
4686  * @ofs: offset byte address
4687  * @len: number of bytes to unlock (must be a multiple of block/page size)
4688  */
nand_unlock(struct mtd_info * mtd,loff_t ofs,uint64_t len)4689 static int nand_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
4690 {
4691 	struct nand_chip *chip = mtd_to_nand(mtd);
4692 
4693 	if (!chip->ops.unlock_area)
4694 		return -ENOTSUPP;
4695 
4696 	return chip->ops.unlock_area(chip, ofs, len);
4697 }
4698 
4699 /* Set default functions */
nand_set_defaults(struct nand_chip * chip)4700 static void nand_set_defaults(struct nand_chip *chip)
4701 {
4702 	/* If no controller is provided, use the dummy, legacy one. */
4703 	if (!chip->controller) {
4704 		chip->controller = &chip->legacy.dummy_controller;
4705 		nand_controller_init(chip->controller);
4706 	}
4707 
4708 	nand_legacy_set_defaults(chip);
4709 
4710 	if (!chip->buf_align)
4711 		chip->buf_align = 1;
4712 }
4713 
4714 /* Sanitize ONFI strings so we can safely print them */
sanitize_string(uint8_t * s,size_t len)4715 void sanitize_string(uint8_t *s, size_t len)
4716 {
4717 	ssize_t i;
4718 
4719 	/* Null terminate */
4720 	s[len - 1] = 0;
4721 
4722 	/* Remove non printable chars */
4723 	for (i = 0; i < len - 1; i++) {
4724 		if (s[i] < ' ' || s[i] > 127)
4725 			s[i] = '?';
4726 	}
4727 
4728 	/* Remove trailing spaces */
4729 	strim(s);
4730 }
4731 
4732 /*
4733  * nand_id_has_period - Check if an ID string has a given wraparound period
4734  * @id_data: the ID string
4735  * @arrlen: the length of the @id_data array
4736  * @period: the period of repitition
4737  *
4738  * Check if an ID string is repeated within a given sequence of bytes at
4739  * specific repetition interval period (e.g., {0x20,0x01,0x7F,0x20} has a
4740  * period of 3). This is a helper function for nand_id_len(). Returns non-zero
4741  * if the repetition has a period of @period; otherwise, returns zero.
4742  */
nand_id_has_period(u8 * id_data,int arrlen,int period)4743 static int nand_id_has_period(u8 *id_data, int arrlen, int period)
4744 {
4745 	int i, j;
4746 	for (i = 0; i < period; i++)
4747 		for (j = i + period; j < arrlen; j += period)
4748 			if (id_data[i] != id_data[j])
4749 				return 0;
4750 	return 1;
4751 }
4752 
4753 /*
4754  * nand_id_len - Get the length of an ID string returned by CMD_READID
4755  * @id_data: the ID string
4756  * @arrlen: the length of the @id_data array
4757 
4758  * Returns the length of the ID string, according to known wraparound/trailing
4759  * zero patterns. If no pattern exists, returns the length of the array.
4760  */
nand_id_len(u8 * id_data,int arrlen)4761 static int nand_id_len(u8 *id_data, int arrlen)
4762 {
4763 	int last_nonzero, period;
4764 
4765 	/* Find last non-zero byte */
4766 	for (last_nonzero = arrlen - 1; last_nonzero >= 0; last_nonzero--)
4767 		if (id_data[last_nonzero])
4768 			break;
4769 
4770 	/* All zeros */
4771 	if (last_nonzero < 0)
4772 		return 0;
4773 
4774 	/* Calculate wraparound period */
4775 	for (period = 1; period < arrlen; period++)
4776 		if (nand_id_has_period(id_data, arrlen, period))
4777 			break;
4778 
4779 	/* There's a repeated pattern */
4780 	if (period < arrlen)
4781 		return period;
4782 
4783 	/* There are trailing zeros */
4784 	if (last_nonzero < arrlen - 1)
4785 		return last_nonzero + 1;
4786 
4787 	/* No pattern detected */
4788 	return arrlen;
4789 }
4790 
4791 /* Extract the bits of per cell from the 3rd byte of the extended ID */
nand_get_bits_per_cell(u8 cellinfo)4792 static int nand_get_bits_per_cell(u8 cellinfo)
4793 {
4794 	int bits;
4795 
4796 	bits = cellinfo & NAND_CI_CELLTYPE_MSK;
4797 	bits >>= NAND_CI_CELLTYPE_SHIFT;
4798 	return bits + 1;
4799 }
4800 
4801 /*
4802  * Many new NAND share similar device ID codes, which represent the size of the
4803  * chip. The rest of the parameters must be decoded according to generic or
4804  * manufacturer-specific "extended ID" decoding patterns.
4805  */
nand_decode_ext_id(struct nand_chip * chip)4806 void nand_decode_ext_id(struct nand_chip *chip)
4807 {
4808 	struct nand_memory_organization *memorg;
4809 	struct mtd_info *mtd = nand_to_mtd(chip);
4810 	int extid;
4811 	u8 *id_data = chip->id.data;
4812 
4813 	memorg = nanddev_get_memorg(&chip->base);
4814 
4815 	/* The 3rd id byte holds MLC / multichip data */
4816 	memorg->bits_per_cell = nand_get_bits_per_cell(id_data[2]);
4817 	/* The 4th id byte is the important one */
4818 	extid = id_data[3];
4819 
4820 	/* Calc pagesize */
4821 	memorg->pagesize = 1024 << (extid & 0x03);
4822 	mtd->writesize = memorg->pagesize;
4823 	extid >>= 2;
4824 	/* Calc oobsize */
4825 	memorg->oobsize = (8 << (extid & 0x01)) * (mtd->writesize >> 9);
4826 	mtd->oobsize = memorg->oobsize;
4827 	extid >>= 2;
4828 	/* Calc blocksize. Blocksize is multiples of 64KiB */
4829 	memorg->pages_per_eraseblock = ((64 * 1024) << (extid & 0x03)) /
4830 				       memorg->pagesize;
4831 	mtd->erasesize = (64 * 1024) << (extid & 0x03);
4832 	extid >>= 2;
4833 	/* Get buswidth information */
4834 	if (extid & 0x1)
4835 		chip->options |= NAND_BUSWIDTH_16;
4836 }
4837 EXPORT_SYMBOL_GPL(nand_decode_ext_id);
4838 
4839 /*
4840  * Old devices have chip data hardcoded in the device ID table. nand_decode_id
4841  * decodes a matching ID table entry and assigns the MTD size parameters for
4842  * the chip.
4843  */
nand_decode_id(struct nand_chip * chip,struct nand_flash_dev * type)4844 static void nand_decode_id(struct nand_chip *chip, struct nand_flash_dev *type)
4845 {
4846 	struct mtd_info *mtd = nand_to_mtd(chip);
4847 	struct nand_memory_organization *memorg;
4848 
4849 	memorg = nanddev_get_memorg(&chip->base);
4850 
4851 	memorg->pages_per_eraseblock = type->erasesize / type->pagesize;
4852 	mtd->erasesize = type->erasesize;
4853 	memorg->pagesize = type->pagesize;
4854 	mtd->writesize = memorg->pagesize;
4855 	memorg->oobsize = memorg->pagesize / 32;
4856 	mtd->oobsize = memorg->oobsize;
4857 
4858 	/* All legacy ID NAND are small-page, SLC */
4859 	memorg->bits_per_cell = 1;
4860 }
4861 
4862 /*
4863  * Set the bad block marker/indicator (BBM/BBI) patterns according to some
4864  * heuristic patterns using various detected parameters (e.g., manufacturer,
4865  * page size, cell-type information).
4866  */
nand_decode_bbm_options(struct nand_chip * chip)4867 static void nand_decode_bbm_options(struct nand_chip *chip)
4868 {
4869 	struct mtd_info *mtd = nand_to_mtd(chip);
4870 
4871 	/* Set the bad block position */
4872 	if (mtd->writesize > 512 || (chip->options & NAND_BUSWIDTH_16))
4873 		chip->badblockpos = NAND_BBM_POS_LARGE;
4874 	else
4875 		chip->badblockpos = NAND_BBM_POS_SMALL;
4876 }
4877 
is_full_id_nand(struct nand_flash_dev * type)4878 static inline bool is_full_id_nand(struct nand_flash_dev *type)
4879 {
4880 	return type->id_len;
4881 }
4882 
find_full_id_nand(struct nand_chip * chip,struct nand_flash_dev * type)4883 static bool find_full_id_nand(struct nand_chip *chip,
4884 			      struct nand_flash_dev *type)
4885 {
4886 	struct nand_device *base = &chip->base;
4887 	struct nand_ecc_props requirements;
4888 	struct mtd_info *mtd = nand_to_mtd(chip);
4889 	struct nand_memory_organization *memorg;
4890 	u8 *id_data = chip->id.data;
4891 
4892 	memorg = nanddev_get_memorg(&chip->base);
4893 
4894 	if (!strncmp(type->id, id_data, type->id_len)) {
4895 		memorg->pagesize = type->pagesize;
4896 		mtd->writesize = memorg->pagesize;
4897 		memorg->pages_per_eraseblock = type->erasesize /
4898 					       type->pagesize;
4899 		mtd->erasesize = type->erasesize;
4900 		memorg->oobsize = type->oobsize;
4901 		mtd->oobsize = memorg->oobsize;
4902 
4903 		memorg->bits_per_cell = nand_get_bits_per_cell(id_data[2]);
4904 		memorg->eraseblocks_per_lun =
4905 			DIV_ROUND_DOWN_ULL((u64)type->chipsize << 20,
4906 					   memorg->pagesize *
4907 					   memorg->pages_per_eraseblock);
4908 		chip->options |= type->options;
4909 		requirements.strength = NAND_ECC_STRENGTH(type);
4910 		requirements.step_size = NAND_ECC_STEP(type);
4911 		nanddev_set_ecc_requirements(base, &requirements);
4912 
4913 		chip->parameters.model = kstrdup(type->name, GFP_KERNEL);
4914 		if (!chip->parameters.model)
4915 			return false;
4916 
4917 		return true;
4918 	}
4919 	return false;
4920 }
4921 
4922 /*
4923  * Manufacturer detection. Only used when the NAND is not ONFI or JEDEC
4924  * compliant and does not have a full-id or legacy-id entry in the nand_ids
4925  * table.
4926  */
nand_manufacturer_detect(struct nand_chip * chip)4927 static void nand_manufacturer_detect(struct nand_chip *chip)
4928 {
4929 	/*
4930 	 * Try manufacturer detection if available and use
4931 	 * nand_decode_ext_id() otherwise.
4932 	 */
4933 	if (chip->manufacturer.desc && chip->manufacturer.desc->ops &&
4934 	    chip->manufacturer.desc->ops->detect) {
4935 		struct nand_memory_organization *memorg;
4936 
4937 		memorg = nanddev_get_memorg(&chip->base);
4938 
4939 		/* The 3rd id byte holds MLC / multichip data */
4940 		memorg->bits_per_cell = nand_get_bits_per_cell(chip->id.data[2]);
4941 		chip->manufacturer.desc->ops->detect(chip);
4942 	} else {
4943 		nand_decode_ext_id(chip);
4944 	}
4945 }
4946 
4947 /*
4948  * Manufacturer initialization. This function is called for all NANDs including
4949  * ONFI and JEDEC compliant ones.
4950  * Manufacturer drivers should put all their specific initialization code in
4951  * their ->init() hook.
4952  */
nand_manufacturer_init(struct nand_chip * chip)4953 static int nand_manufacturer_init(struct nand_chip *chip)
4954 {
4955 	if (!chip->manufacturer.desc || !chip->manufacturer.desc->ops ||
4956 	    !chip->manufacturer.desc->ops->init)
4957 		return 0;
4958 
4959 	return chip->manufacturer.desc->ops->init(chip);
4960 }
4961 
4962 /*
4963  * Manufacturer cleanup. This function is called for all NANDs including
4964  * ONFI and JEDEC compliant ones.
4965  * Manufacturer drivers should put all their specific cleanup code in their
4966  * ->cleanup() hook.
4967  */
nand_manufacturer_cleanup(struct nand_chip * chip)4968 static void nand_manufacturer_cleanup(struct nand_chip *chip)
4969 {
4970 	/* Release manufacturer private data */
4971 	if (chip->manufacturer.desc && chip->manufacturer.desc->ops &&
4972 	    chip->manufacturer.desc->ops->cleanup)
4973 		chip->manufacturer.desc->ops->cleanup(chip);
4974 }
4975 
4976 static const char *
nand_manufacturer_name(const struct nand_manufacturer_desc * manufacturer_desc)4977 nand_manufacturer_name(const struct nand_manufacturer_desc *manufacturer_desc)
4978 {
4979 	return manufacturer_desc ? manufacturer_desc->name : "Unknown";
4980 }
4981 
4982 /*
4983  * Get the flash and manufacturer id and lookup if the type is supported.
4984  */
nand_detect(struct nand_chip * chip,struct nand_flash_dev * type)4985 static int nand_detect(struct nand_chip *chip, struct nand_flash_dev *type)
4986 {
4987 	const struct nand_manufacturer_desc *manufacturer_desc;
4988 	struct mtd_info *mtd = nand_to_mtd(chip);
4989 	struct nand_memory_organization *memorg;
4990 	int busw, ret;
4991 	u8 *id_data = chip->id.data;
4992 	u8 maf_id, dev_id;
4993 	u64 targetsize;
4994 
4995 	/*
4996 	 * Let's start by initializing memorg fields that might be left
4997 	 * unassigned by the ID-based detection logic.
4998 	 */
4999 	memorg = nanddev_get_memorg(&chip->base);
5000 	memorg->planes_per_lun = 1;
5001 	memorg->luns_per_target = 1;
5002 
5003 	/*
5004 	 * Reset the chip, required by some chips (e.g. Micron MT29FxGxxxxx)
5005 	 * after power-up.
5006 	 */
5007 	ret = nand_reset(chip, 0);
5008 	if (ret)
5009 		return ret;
5010 
5011 	/* Select the device */
5012 	nand_select_target(chip, 0);
5013 
5014 	/* Send the command for reading device ID */
5015 	ret = nand_readid_op(chip, 0, id_data, 2);
5016 	if (ret)
5017 		return ret;
5018 
5019 	/* Read manufacturer and device IDs */
5020 	maf_id = id_data[0];
5021 	dev_id = id_data[1];
5022 
5023 	/*
5024 	 * Try again to make sure, as some systems the bus-hold or other
5025 	 * interface concerns can cause random data which looks like a
5026 	 * possibly credible NAND flash to appear. If the two results do
5027 	 * not match, ignore the device completely.
5028 	 */
5029 
5030 	/* Read entire ID string */
5031 	ret = nand_readid_op(chip, 0, id_data, sizeof(chip->id.data));
5032 	if (ret)
5033 		return ret;
5034 
5035 	if (id_data[0] != maf_id || id_data[1] != dev_id) {
5036 		pr_info("second ID read did not match %02x,%02x against %02x,%02x\n",
5037 			maf_id, dev_id, id_data[0], id_data[1]);
5038 		return -ENODEV;
5039 	}
5040 
5041 	chip->id.len = nand_id_len(id_data, ARRAY_SIZE(chip->id.data));
5042 
5043 	/* Try to identify manufacturer */
5044 	manufacturer_desc = nand_get_manufacturer_desc(maf_id);
5045 	chip->manufacturer.desc = manufacturer_desc;
5046 
5047 	if (!type)
5048 		type = nand_flash_ids;
5049 
5050 	/*
5051 	 * Save the NAND_BUSWIDTH_16 flag before letting auto-detection logic
5052 	 * override it.
5053 	 * This is required to make sure initial NAND bus width set by the
5054 	 * NAND controller driver is coherent with the real NAND bus width
5055 	 * (extracted by auto-detection code).
5056 	 */
5057 	busw = chip->options & NAND_BUSWIDTH_16;
5058 
5059 	/*
5060 	 * The flag is only set (never cleared), reset it to its default value
5061 	 * before starting auto-detection.
5062 	 */
5063 	chip->options &= ~NAND_BUSWIDTH_16;
5064 
5065 	for (; type->name != NULL; type++) {
5066 		if (is_full_id_nand(type)) {
5067 			if (find_full_id_nand(chip, type))
5068 				goto ident_done;
5069 		} else if (dev_id == type->dev_id) {
5070 			break;
5071 		}
5072 	}
5073 
5074 	if (!type->name || !type->pagesize) {
5075 		/* Check if the chip is ONFI compliant */
5076 		ret = nand_onfi_detect(chip);
5077 		if (ret < 0)
5078 			return ret;
5079 		else if (ret)
5080 			goto ident_done;
5081 
5082 		/* Check if the chip is JEDEC compliant */
5083 		ret = nand_jedec_detect(chip);
5084 		if (ret < 0)
5085 			return ret;
5086 		else if (ret)
5087 			goto ident_done;
5088 	}
5089 
5090 	if (!type->name)
5091 		return -ENODEV;
5092 
5093 	chip->parameters.model = kstrdup(type->name, GFP_KERNEL);
5094 	if (!chip->parameters.model)
5095 		return -ENOMEM;
5096 
5097 	if (!type->pagesize)
5098 		nand_manufacturer_detect(chip);
5099 	else
5100 		nand_decode_id(chip, type);
5101 
5102 	/* Get chip options */
5103 	chip->options |= type->options;
5104 
5105 	memorg->eraseblocks_per_lun =
5106 			DIV_ROUND_DOWN_ULL((u64)type->chipsize << 20,
5107 					   memorg->pagesize *
5108 					   memorg->pages_per_eraseblock);
5109 
5110 ident_done:
5111 	if (!mtd->name)
5112 		mtd->name = chip->parameters.model;
5113 
5114 	if (chip->options & NAND_BUSWIDTH_AUTO) {
5115 		WARN_ON(busw & NAND_BUSWIDTH_16);
5116 		nand_set_defaults(chip);
5117 	} else if (busw != (chip->options & NAND_BUSWIDTH_16)) {
5118 		/*
5119 		 * Check, if buswidth is correct. Hardware drivers should set
5120 		 * chip correct!
5121 		 */
5122 		pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n",
5123 			maf_id, dev_id);
5124 		pr_info("%s %s\n", nand_manufacturer_name(manufacturer_desc),
5125 			mtd->name);
5126 		pr_warn("bus width %d instead of %d bits\n", busw ? 16 : 8,
5127 			(chip->options & NAND_BUSWIDTH_16) ? 16 : 8);
5128 		ret = -EINVAL;
5129 
5130 		goto free_detect_allocation;
5131 	}
5132 
5133 	nand_decode_bbm_options(chip);
5134 
5135 	/* Calculate the address shift from the page size */
5136 	chip->page_shift = ffs(mtd->writesize) - 1;
5137 	/* Convert chipsize to number of pages per chip -1 */
5138 	targetsize = nanddev_target_size(&chip->base);
5139 	chip->pagemask = (targetsize >> chip->page_shift) - 1;
5140 
5141 	chip->bbt_erase_shift = chip->phys_erase_shift =
5142 		ffs(mtd->erasesize) - 1;
5143 	if (targetsize & 0xffffffff)
5144 		chip->chip_shift = ffs((unsigned)targetsize) - 1;
5145 	else {
5146 		chip->chip_shift = ffs((unsigned)(targetsize >> 32));
5147 		chip->chip_shift += 32 - 1;
5148 	}
5149 
5150 	if (chip->chip_shift - chip->page_shift > 16)
5151 		chip->options |= NAND_ROW_ADDR_3;
5152 
5153 	chip->badblockbits = 8;
5154 
5155 	nand_legacy_adjust_cmdfunc(chip);
5156 
5157 	pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n",
5158 		maf_id, dev_id);
5159 	pr_info("%s %s\n", nand_manufacturer_name(manufacturer_desc),
5160 		chip->parameters.model);
5161 	pr_info("%d MiB, %s, erase size: %d KiB, page size: %d, OOB size: %d\n",
5162 		(int)(targetsize >> 20), nand_is_slc(chip) ? "SLC" : "MLC",
5163 		mtd->erasesize >> 10, mtd->writesize, mtd->oobsize);
5164 	return 0;
5165 
5166 free_detect_allocation:
5167 	kfree(chip->parameters.model);
5168 
5169 	return ret;
5170 }
5171 
5172 static enum nand_ecc_engine_type
of_get_rawnand_ecc_engine_type_legacy(struct device_node * np)5173 of_get_rawnand_ecc_engine_type_legacy(struct device_node *np)
5174 {
5175 	enum nand_ecc_legacy_mode {
5176 		NAND_ECC_INVALID,
5177 		NAND_ECC_NONE,
5178 		NAND_ECC_SOFT,
5179 		NAND_ECC_SOFT_BCH,
5180 		NAND_ECC_HW,
5181 		NAND_ECC_HW_SYNDROME,
5182 		NAND_ECC_ON_DIE,
5183 	};
5184 	const char * const nand_ecc_legacy_modes[] = {
5185 		[NAND_ECC_NONE]		= "none",
5186 		[NAND_ECC_SOFT]		= "soft",
5187 		[NAND_ECC_SOFT_BCH]	= "soft_bch",
5188 		[NAND_ECC_HW]		= "hw",
5189 		[NAND_ECC_HW_SYNDROME]	= "hw_syndrome",
5190 		[NAND_ECC_ON_DIE]	= "on-die",
5191 	};
5192 	enum nand_ecc_legacy_mode eng_type;
5193 	const char *pm;
5194 	int err;
5195 
5196 	err = of_property_read_string(np, "nand-ecc-mode", &pm);
5197 	if (err)
5198 		return NAND_ECC_ENGINE_TYPE_INVALID;
5199 
5200 	for (eng_type = NAND_ECC_NONE;
5201 	     eng_type < ARRAY_SIZE(nand_ecc_legacy_modes); eng_type++) {
5202 		if (!strcasecmp(pm, nand_ecc_legacy_modes[eng_type])) {
5203 			switch (eng_type) {
5204 			case NAND_ECC_NONE:
5205 				return NAND_ECC_ENGINE_TYPE_NONE;
5206 			case NAND_ECC_SOFT:
5207 			case NAND_ECC_SOFT_BCH:
5208 				return NAND_ECC_ENGINE_TYPE_SOFT;
5209 			case NAND_ECC_HW:
5210 			case NAND_ECC_HW_SYNDROME:
5211 				return NAND_ECC_ENGINE_TYPE_ON_HOST;
5212 			case NAND_ECC_ON_DIE:
5213 				return NAND_ECC_ENGINE_TYPE_ON_DIE;
5214 			default:
5215 				break;
5216 			}
5217 		}
5218 	}
5219 
5220 	return NAND_ECC_ENGINE_TYPE_INVALID;
5221 }
5222 
5223 static enum nand_ecc_placement
of_get_rawnand_ecc_placement_legacy(struct device_node * np)5224 of_get_rawnand_ecc_placement_legacy(struct device_node *np)
5225 {
5226 	const char *pm;
5227 	int err;
5228 
5229 	err = of_property_read_string(np, "nand-ecc-mode", &pm);
5230 	if (!err) {
5231 		if (!strcasecmp(pm, "hw_syndrome"))
5232 			return NAND_ECC_PLACEMENT_INTERLEAVED;
5233 	}
5234 
5235 	return NAND_ECC_PLACEMENT_UNKNOWN;
5236 }
5237 
of_get_rawnand_ecc_algo_legacy(struct device_node * np)5238 static enum nand_ecc_algo of_get_rawnand_ecc_algo_legacy(struct device_node *np)
5239 {
5240 	const char *pm;
5241 	int err;
5242 
5243 	err = of_property_read_string(np, "nand-ecc-mode", &pm);
5244 	if (!err) {
5245 		if (!strcasecmp(pm, "soft"))
5246 			return NAND_ECC_ALGO_HAMMING;
5247 		else if (!strcasecmp(pm, "soft_bch"))
5248 			return NAND_ECC_ALGO_BCH;
5249 	}
5250 
5251 	return NAND_ECC_ALGO_UNKNOWN;
5252 }
5253 
of_get_nand_ecc_legacy_user_config(struct nand_chip * chip)5254 static void of_get_nand_ecc_legacy_user_config(struct nand_chip *chip)
5255 {
5256 	struct device_node *dn = nand_get_flash_node(chip);
5257 	struct nand_ecc_props *user_conf = &chip->base.ecc.user_conf;
5258 
5259 	if (user_conf->engine_type == NAND_ECC_ENGINE_TYPE_INVALID)
5260 		user_conf->engine_type = of_get_rawnand_ecc_engine_type_legacy(dn);
5261 
5262 	if (user_conf->algo == NAND_ECC_ALGO_UNKNOWN)
5263 		user_conf->algo = of_get_rawnand_ecc_algo_legacy(dn);
5264 
5265 	if (user_conf->placement == NAND_ECC_PLACEMENT_UNKNOWN)
5266 		user_conf->placement = of_get_rawnand_ecc_placement_legacy(dn);
5267 }
5268 
of_get_nand_bus_width(struct device_node * np)5269 static int of_get_nand_bus_width(struct device_node *np)
5270 {
5271 	u32 val;
5272 
5273 	if (of_property_read_u32(np, "nand-bus-width", &val))
5274 		return 8;
5275 
5276 	switch (val) {
5277 	case 8:
5278 	case 16:
5279 		return val;
5280 	default:
5281 		return -EIO;
5282 	}
5283 }
5284 
of_get_nand_on_flash_bbt(struct device_node * np)5285 static bool of_get_nand_on_flash_bbt(struct device_node *np)
5286 {
5287 	return of_property_read_bool(np, "nand-on-flash-bbt");
5288 }
5289 
of_get_nand_secure_regions(struct nand_chip * chip)5290 static int of_get_nand_secure_regions(struct nand_chip *chip)
5291 {
5292 	struct device_node *dn = nand_get_flash_node(chip);
5293 	struct property *prop;
5294 	int nr_elem, i, j;
5295 
5296 	/* Only proceed if the "secure-regions" property is present in DT */
5297 	prop = of_find_property(dn, "secure-regions", NULL);
5298 	if (!prop)
5299 		return 0;
5300 
5301 	nr_elem = of_property_count_elems_of_size(dn, "secure-regions", sizeof(u64));
5302 	if (nr_elem <= 0)
5303 		return nr_elem;
5304 
5305 	chip->nr_secure_regions = nr_elem / 2;
5306 	chip->secure_regions = kcalloc(chip->nr_secure_regions, sizeof(*chip->secure_regions),
5307 				       GFP_KERNEL);
5308 	if (!chip->secure_regions)
5309 		return -ENOMEM;
5310 
5311 	for (i = 0, j = 0; i < chip->nr_secure_regions; i++, j += 2) {
5312 		of_property_read_u64_index(dn, "secure-regions", j,
5313 					   &chip->secure_regions[i].offset);
5314 		of_property_read_u64_index(dn, "secure-regions", j + 1,
5315 					   &chip->secure_regions[i].size);
5316 	}
5317 
5318 	return 0;
5319 }
5320 
5321 /**
5322  * rawnand_dt_parse_gpio_cs - Parse the gpio-cs property of a controller
5323  * @dev: Device that will be parsed. Also used for managed allocations.
5324  * @cs_array: Array of GPIO desc pointers allocated on success
5325  * @ncs_array: Number of entries in @cs_array updated on success.
5326  * @return 0 on success, an error otherwise.
5327  */
rawnand_dt_parse_gpio_cs(struct device * dev,struct gpio_desc *** cs_array,unsigned int * ncs_array)5328 int rawnand_dt_parse_gpio_cs(struct device *dev, struct gpio_desc ***cs_array,
5329 			     unsigned int *ncs_array)
5330 {
5331 	struct device_node *np = dev->of_node;
5332 	struct gpio_desc **descs;
5333 	int ndescs, i;
5334 
5335 	ndescs = of_gpio_named_count(np, "cs-gpios");
5336 	if (ndescs < 0) {
5337 		dev_dbg(dev, "No valid cs-gpios property\n");
5338 		return 0;
5339 	}
5340 
5341 	descs = devm_kcalloc(dev, ndescs, sizeof(*descs), GFP_KERNEL);
5342 	if (!descs)
5343 		return -ENOMEM;
5344 
5345 	for (i = 0; i < ndescs; i++) {
5346 		descs[i] = gpiod_get_index_optional(dev, "cs", i,
5347 						    GPIOD_OUT_HIGH);
5348 		if (IS_ERR(descs[i]))
5349 			return PTR_ERR(descs[i]);
5350 	}
5351 
5352 	*ncs_array = ndescs;
5353 	*cs_array = descs;
5354 
5355 	return 0;
5356 }
5357 EXPORT_SYMBOL(rawnand_dt_parse_gpio_cs);
5358 
rawnand_dt_init(struct nand_chip * chip)5359 static int rawnand_dt_init(struct nand_chip *chip)
5360 {
5361 	struct nand_device *nand = mtd_to_nanddev(nand_to_mtd(chip));
5362 	struct device_node *dn = nand_get_flash_node(chip);
5363 
5364 	if (!dn)
5365 		return 0;
5366 
5367 	if (of_get_nand_bus_width(dn) == 16)
5368 		chip->options |= NAND_BUSWIDTH_16;
5369 
5370 	if (of_property_read_bool(dn, "nand-is-boot-medium"))
5371 		chip->options |= NAND_IS_BOOT_MEDIUM;
5372 
5373 	if (of_get_nand_on_flash_bbt(dn))
5374 		chip->bbt_options |= NAND_BBT_USE_FLASH;
5375 
5376 	of_get_nand_ecc_user_config(nand);
5377 	of_get_nand_ecc_legacy_user_config(chip);
5378 
5379 	/*
5380 	 * If neither the user nor the NAND controller have requested a specific
5381 	 * ECC engine type, we will default to NAND_ECC_ENGINE_TYPE_ON_HOST.
5382 	 */
5383 	nand->ecc.defaults.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST;
5384 
5385 	/*
5386 	 * Use the user requested engine type, unless there is none, in this
5387 	 * case default to the NAND controller choice, otherwise fallback to
5388 	 * the raw NAND default one.
5389 	 */
5390 	if (nand->ecc.user_conf.engine_type != NAND_ECC_ENGINE_TYPE_INVALID)
5391 		chip->ecc.engine_type = nand->ecc.user_conf.engine_type;
5392 	if (chip->ecc.engine_type == NAND_ECC_ENGINE_TYPE_INVALID)
5393 		chip->ecc.engine_type = nand->ecc.defaults.engine_type;
5394 
5395 	chip->ecc.placement = nand->ecc.user_conf.placement;
5396 	chip->ecc.algo = nand->ecc.user_conf.algo;
5397 	chip->ecc.strength = nand->ecc.user_conf.strength;
5398 	chip->ecc.size = nand->ecc.user_conf.step_size;
5399 
5400 	return 0;
5401 }
5402 
5403 /**
5404  * nand_scan_ident - Scan for the NAND device
5405  * @chip: NAND chip object
5406  * @maxchips: number of chips to scan for
5407  * @table: alternative NAND ID table
5408  *
5409  * This is the first phase of the normal nand_scan() function. It reads the
5410  * flash ID and sets up MTD fields accordingly.
5411  *
5412  * This helper used to be called directly from controller drivers that needed
5413  * to tweak some ECC-related parameters before nand_scan_tail(). This separation
5414  * prevented dynamic allocations during this phase which was unconvenient and
5415  * as been banned for the benefit of the ->init_ecc()/cleanup_ecc() hooks.
5416  */
nand_scan_ident(struct nand_chip * chip,unsigned int maxchips,struct nand_flash_dev * table)5417 static int nand_scan_ident(struct nand_chip *chip, unsigned int maxchips,
5418 			   struct nand_flash_dev *table)
5419 {
5420 	struct mtd_info *mtd = nand_to_mtd(chip);
5421 	struct nand_memory_organization *memorg;
5422 	int nand_maf_id, nand_dev_id;
5423 	unsigned int i;
5424 	int ret;
5425 
5426 	memorg = nanddev_get_memorg(&chip->base);
5427 
5428 	/* Assume all dies are deselected when we enter nand_scan_ident(). */
5429 	chip->cur_cs = -1;
5430 
5431 	mutex_init(&chip->lock);
5432 	init_waitqueue_head(&chip->resume_wq);
5433 
5434 	/* Enforce the right timings for reset/detection */
5435 	chip->current_interface_config = nand_get_reset_interface_config();
5436 
5437 	ret = rawnand_dt_init(chip);
5438 	if (ret)
5439 		return ret;
5440 
5441 	if (!mtd->name && mtd->dev.parent)
5442 		mtd->name = dev_name(mtd->dev.parent);
5443 
5444 	/* Set the default functions */
5445 	nand_set_defaults(chip);
5446 
5447 	ret = nand_legacy_check_hooks(chip);
5448 	if (ret)
5449 		return ret;
5450 
5451 	memorg->ntargets = maxchips;
5452 
5453 	/* Read the flash type */
5454 	ret = nand_detect(chip, table);
5455 	if (ret) {
5456 		if (!(chip->options & NAND_SCAN_SILENT_NODEV))
5457 			pr_warn("No NAND device found\n");
5458 		nand_deselect_target(chip);
5459 		return ret;
5460 	}
5461 
5462 	nand_maf_id = chip->id.data[0];
5463 	nand_dev_id = chip->id.data[1];
5464 
5465 	nand_deselect_target(chip);
5466 
5467 	/* Check for a chip array */
5468 	for (i = 1; i < maxchips; i++) {
5469 		u8 id[2];
5470 
5471 		/* See comment in nand_get_flash_type for reset */
5472 		ret = nand_reset(chip, i);
5473 		if (ret)
5474 			break;
5475 
5476 		nand_select_target(chip, i);
5477 		/* Send the command for reading device ID */
5478 		ret = nand_readid_op(chip, 0, id, sizeof(id));
5479 		if (ret)
5480 			break;
5481 		/* Read manufacturer and device IDs */
5482 		if (nand_maf_id != id[0] || nand_dev_id != id[1]) {
5483 			nand_deselect_target(chip);
5484 			break;
5485 		}
5486 		nand_deselect_target(chip);
5487 	}
5488 	if (i > 1)
5489 		pr_info("%d chips detected\n", i);
5490 
5491 	/* Store the number of chips and calc total size for mtd */
5492 	memorg->ntargets = i;
5493 	mtd->size = i * nanddev_target_size(&chip->base);
5494 
5495 	return 0;
5496 }
5497 
nand_scan_ident_cleanup(struct nand_chip * chip)5498 static void nand_scan_ident_cleanup(struct nand_chip *chip)
5499 {
5500 	kfree(chip->parameters.model);
5501 	kfree(chip->parameters.onfi);
5502 }
5503 
rawnand_sw_hamming_init(struct nand_chip * chip)5504 int rawnand_sw_hamming_init(struct nand_chip *chip)
5505 {
5506 	struct nand_ecc_sw_hamming_conf *engine_conf;
5507 	struct nand_device *base = &chip->base;
5508 	int ret;
5509 
5510 	base->ecc.user_conf.engine_type = NAND_ECC_ENGINE_TYPE_SOFT;
5511 	base->ecc.user_conf.algo = NAND_ECC_ALGO_HAMMING;
5512 	base->ecc.user_conf.strength = chip->ecc.strength;
5513 	base->ecc.user_conf.step_size = chip->ecc.size;
5514 
5515 	ret = nand_ecc_sw_hamming_init_ctx(base);
5516 	if (ret)
5517 		return ret;
5518 
5519 	engine_conf = base->ecc.ctx.priv;
5520 
5521 	if (chip->ecc.options & NAND_ECC_SOFT_HAMMING_SM_ORDER)
5522 		engine_conf->sm_order = true;
5523 
5524 	chip->ecc.size = base->ecc.ctx.conf.step_size;
5525 	chip->ecc.strength = base->ecc.ctx.conf.strength;
5526 	chip->ecc.total = base->ecc.ctx.total;
5527 	chip->ecc.steps = nanddev_get_ecc_nsteps(base);
5528 	chip->ecc.bytes = base->ecc.ctx.total / nanddev_get_ecc_nsteps(base);
5529 
5530 	return 0;
5531 }
5532 EXPORT_SYMBOL(rawnand_sw_hamming_init);
5533 
rawnand_sw_hamming_calculate(struct nand_chip * chip,const unsigned char * buf,unsigned char * code)5534 int rawnand_sw_hamming_calculate(struct nand_chip *chip,
5535 				 const unsigned char *buf,
5536 				 unsigned char *code)
5537 {
5538 	struct nand_device *base = &chip->base;
5539 
5540 	return nand_ecc_sw_hamming_calculate(base, buf, code);
5541 }
5542 EXPORT_SYMBOL(rawnand_sw_hamming_calculate);
5543 
rawnand_sw_hamming_correct(struct nand_chip * chip,unsigned char * buf,unsigned char * read_ecc,unsigned char * calc_ecc)5544 int rawnand_sw_hamming_correct(struct nand_chip *chip,
5545 			       unsigned char *buf,
5546 			       unsigned char *read_ecc,
5547 			       unsigned char *calc_ecc)
5548 {
5549 	struct nand_device *base = &chip->base;
5550 
5551 	return nand_ecc_sw_hamming_correct(base, buf, read_ecc, calc_ecc);
5552 }
5553 EXPORT_SYMBOL(rawnand_sw_hamming_correct);
5554 
rawnand_sw_hamming_cleanup(struct nand_chip * chip)5555 void rawnand_sw_hamming_cleanup(struct nand_chip *chip)
5556 {
5557 	struct nand_device *base = &chip->base;
5558 
5559 	nand_ecc_sw_hamming_cleanup_ctx(base);
5560 }
5561 EXPORT_SYMBOL(rawnand_sw_hamming_cleanup);
5562 
rawnand_sw_bch_init(struct nand_chip * chip)5563 int rawnand_sw_bch_init(struct nand_chip *chip)
5564 {
5565 	struct nand_device *base = &chip->base;
5566 	const struct nand_ecc_props *ecc_conf = nanddev_get_ecc_conf(base);
5567 	int ret;
5568 
5569 	base->ecc.user_conf.engine_type = NAND_ECC_ENGINE_TYPE_SOFT;
5570 	base->ecc.user_conf.algo = NAND_ECC_ALGO_BCH;
5571 	base->ecc.user_conf.step_size = chip->ecc.size;
5572 	base->ecc.user_conf.strength = chip->ecc.strength;
5573 
5574 	ret = nand_ecc_sw_bch_init_ctx(base);
5575 	if (ret)
5576 		return ret;
5577 
5578 	chip->ecc.size = ecc_conf->step_size;
5579 	chip->ecc.strength = ecc_conf->strength;
5580 	chip->ecc.total = base->ecc.ctx.total;
5581 	chip->ecc.steps = nanddev_get_ecc_nsteps(base);
5582 	chip->ecc.bytes = base->ecc.ctx.total / nanddev_get_ecc_nsteps(base);
5583 
5584 	return 0;
5585 }
5586 EXPORT_SYMBOL(rawnand_sw_bch_init);
5587 
rawnand_sw_bch_calculate(struct nand_chip * chip,const unsigned char * buf,unsigned char * code)5588 static int rawnand_sw_bch_calculate(struct nand_chip *chip,
5589 				    const unsigned char *buf,
5590 				    unsigned char *code)
5591 {
5592 	struct nand_device *base = &chip->base;
5593 
5594 	return nand_ecc_sw_bch_calculate(base, buf, code);
5595 }
5596 
rawnand_sw_bch_correct(struct nand_chip * chip,unsigned char * buf,unsigned char * read_ecc,unsigned char * calc_ecc)5597 int rawnand_sw_bch_correct(struct nand_chip *chip, unsigned char *buf,
5598 			   unsigned char *read_ecc, unsigned char *calc_ecc)
5599 {
5600 	struct nand_device *base = &chip->base;
5601 
5602 	return nand_ecc_sw_bch_correct(base, buf, read_ecc, calc_ecc);
5603 }
5604 EXPORT_SYMBOL(rawnand_sw_bch_correct);
5605 
rawnand_sw_bch_cleanup(struct nand_chip * chip)5606 void rawnand_sw_bch_cleanup(struct nand_chip *chip)
5607 {
5608 	struct nand_device *base = &chip->base;
5609 
5610 	nand_ecc_sw_bch_cleanup_ctx(base);
5611 }
5612 EXPORT_SYMBOL(rawnand_sw_bch_cleanup);
5613 
nand_set_ecc_on_host_ops(struct nand_chip * chip)5614 static int nand_set_ecc_on_host_ops(struct nand_chip *chip)
5615 {
5616 	struct nand_ecc_ctrl *ecc = &chip->ecc;
5617 
5618 	switch (ecc->placement) {
5619 	case NAND_ECC_PLACEMENT_UNKNOWN:
5620 	case NAND_ECC_PLACEMENT_OOB:
5621 		/* Use standard hwecc read page function? */
5622 		if (!ecc->read_page)
5623 			ecc->read_page = nand_read_page_hwecc;
5624 		if (!ecc->write_page)
5625 			ecc->write_page = nand_write_page_hwecc;
5626 		if (!ecc->read_page_raw)
5627 			ecc->read_page_raw = nand_read_page_raw;
5628 		if (!ecc->write_page_raw)
5629 			ecc->write_page_raw = nand_write_page_raw;
5630 		if (!ecc->read_oob)
5631 			ecc->read_oob = nand_read_oob_std;
5632 		if (!ecc->write_oob)
5633 			ecc->write_oob = nand_write_oob_std;
5634 		if (!ecc->read_subpage)
5635 			ecc->read_subpage = nand_read_subpage;
5636 		if (!ecc->write_subpage && ecc->hwctl && ecc->calculate)
5637 			ecc->write_subpage = nand_write_subpage_hwecc;
5638 		fallthrough;
5639 
5640 	case NAND_ECC_PLACEMENT_INTERLEAVED:
5641 		if ((!ecc->calculate || !ecc->correct || !ecc->hwctl) &&
5642 		    (!ecc->read_page ||
5643 		     ecc->read_page == nand_read_page_hwecc ||
5644 		     !ecc->write_page ||
5645 		     ecc->write_page == nand_write_page_hwecc)) {
5646 			WARN(1, "No ECC functions supplied; hardware ECC not possible\n");
5647 			return -EINVAL;
5648 		}
5649 		/* Use standard syndrome read/write page function? */
5650 		if (!ecc->read_page)
5651 			ecc->read_page = nand_read_page_syndrome;
5652 		if (!ecc->write_page)
5653 			ecc->write_page = nand_write_page_syndrome;
5654 		if (!ecc->read_page_raw)
5655 			ecc->read_page_raw = nand_read_page_raw_syndrome;
5656 		if (!ecc->write_page_raw)
5657 			ecc->write_page_raw = nand_write_page_raw_syndrome;
5658 		if (!ecc->read_oob)
5659 			ecc->read_oob = nand_read_oob_syndrome;
5660 		if (!ecc->write_oob)
5661 			ecc->write_oob = nand_write_oob_syndrome;
5662 		break;
5663 
5664 	default:
5665 		pr_warn("Invalid NAND_ECC_PLACEMENT %d\n",
5666 			ecc->placement);
5667 		return -EINVAL;
5668 	}
5669 
5670 	return 0;
5671 }
5672 
nand_set_ecc_soft_ops(struct nand_chip * chip)5673 static int nand_set_ecc_soft_ops(struct nand_chip *chip)
5674 {
5675 	struct mtd_info *mtd = nand_to_mtd(chip);
5676 	struct nand_device *nanddev = mtd_to_nanddev(mtd);
5677 	struct nand_ecc_ctrl *ecc = &chip->ecc;
5678 	int ret;
5679 
5680 	if (WARN_ON(ecc->engine_type != NAND_ECC_ENGINE_TYPE_SOFT))
5681 		return -EINVAL;
5682 
5683 	switch (ecc->algo) {
5684 	case NAND_ECC_ALGO_HAMMING:
5685 		ecc->calculate = rawnand_sw_hamming_calculate;
5686 		ecc->correct = rawnand_sw_hamming_correct;
5687 		ecc->read_page = nand_read_page_swecc;
5688 		ecc->read_subpage = nand_read_subpage;
5689 		ecc->write_page = nand_write_page_swecc;
5690 		if (!ecc->read_page_raw)
5691 			ecc->read_page_raw = nand_read_page_raw;
5692 		if (!ecc->write_page_raw)
5693 			ecc->write_page_raw = nand_write_page_raw;
5694 		ecc->read_oob = nand_read_oob_std;
5695 		ecc->write_oob = nand_write_oob_std;
5696 		if (!ecc->size)
5697 			ecc->size = 256;
5698 		ecc->bytes = 3;
5699 		ecc->strength = 1;
5700 
5701 		if (IS_ENABLED(CONFIG_MTD_NAND_ECC_SW_HAMMING_SMC))
5702 			ecc->options |= NAND_ECC_SOFT_HAMMING_SM_ORDER;
5703 
5704 		ret = rawnand_sw_hamming_init(chip);
5705 		if (ret) {
5706 			WARN(1, "Hamming ECC initialization failed!\n");
5707 			return ret;
5708 		}
5709 
5710 		return 0;
5711 	case NAND_ECC_ALGO_BCH:
5712 		if (!IS_ENABLED(CONFIG_MTD_NAND_ECC_SW_BCH)) {
5713 			WARN(1, "CONFIG_MTD_NAND_ECC_SW_BCH not enabled\n");
5714 			return -EINVAL;
5715 		}
5716 		ecc->calculate = rawnand_sw_bch_calculate;
5717 		ecc->correct = rawnand_sw_bch_correct;
5718 		ecc->read_page = nand_read_page_swecc;
5719 		ecc->read_subpage = nand_read_subpage;
5720 		ecc->write_page = nand_write_page_swecc;
5721 		if (!ecc->read_page_raw)
5722 			ecc->read_page_raw = nand_read_page_raw;
5723 		if (!ecc->write_page_raw)
5724 			ecc->write_page_raw = nand_write_page_raw;
5725 		ecc->read_oob = nand_read_oob_std;
5726 		ecc->write_oob = nand_write_oob_std;
5727 
5728 		/*
5729 		 * We can only maximize ECC config when the default layout is
5730 		 * used, otherwise we don't know how many bytes can really be
5731 		 * used.
5732 		 */
5733 		if (nanddev->ecc.user_conf.flags & NAND_ECC_MAXIMIZE_STRENGTH &&
5734 		    mtd->ooblayout != nand_get_large_page_ooblayout())
5735 			nanddev->ecc.user_conf.flags &= ~NAND_ECC_MAXIMIZE_STRENGTH;
5736 
5737 		ret = rawnand_sw_bch_init(chip);
5738 		if (ret) {
5739 			WARN(1, "BCH ECC initialization failed!\n");
5740 			return ret;
5741 		}
5742 
5743 		return 0;
5744 	default:
5745 		WARN(1, "Unsupported ECC algorithm!\n");
5746 		return -EINVAL;
5747 	}
5748 }
5749 
5750 /**
5751  * nand_check_ecc_caps - check the sanity of preset ECC settings
5752  * @chip: nand chip info structure
5753  * @caps: ECC caps info structure
5754  * @oobavail: OOB size that the ECC engine can use
5755  *
5756  * When ECC step size and strength are already set, check if they are supported
5757  * by the controller and the calculated ECC bytes fit within the chip's OOB.
5758  * On success, the calculated ECC bytes is set.
5759  */
5760 static int
nand_check_ecc_caps(struct nand_chip * chip,const struct nand_ecc_caps * caps,int oobavail)5761 nand_check_ecc_caps(struct nand_chip *chip,
5762 		    const struct nand_ecc_caps *caps, int oobavail)
5763 {
5764 	struct mtd_info *mtd = nand_to_mtd(chip);
5765 	const struct nand_ecc_step_info *stepinfo;
5766 	int preset_step = chip->ecc.size;
5767 	int preset_strength = chip->ecc.strength;
5768 	int ecc_bytes, nsteps = mtd->writesize / preset_step;
5769 	int i, j;
5770 
5771 	for (i = 0; i < caps->nstepinfos; i++) {
5772 		stepinfo = &caps->stepinfos[i];
5773 
5774 		if (stepinfo->stepsize != preset_step)
5775 			continue;
5776 
5777 		for (j = 0; j < stepinfo->nstrengths; j++) {
5778 			if (stepinfo->strengths[j] != preset_strength)
5779 				continue;
5780 
5781 			ecc_bytes = caps->calc_ecc_bytes(preset_step,
5782 							 preset_strength);
5783 			if (WARN_ON_ONCE(ecc_bytes < 0))
5784 				return ecc_bytes;
5785 
5786 			if (ecc_bytes * nsteps > oobavail) {
5787 				pr_err("ECC (step, strength) = (%d, %d) does not fit in OOB",
5788 				       preset_step, preset_strength);
5789 				return -ENOSPC;
5790 			}
5791 
5792 			chip->ecc.bytes = ecc_bytes;
5793 
5794 			return 0;
5795 		}
5796 	}
5797 
5798 	pr_err("ECC (step, strength) = (%d, %d) not supported on this controller",
5799 	       preset_step, preset_strength);
5800 
5801 	return -ENOTSUPP;
5802 }
5803 
5804 /**
5805  * nand_match_ecc_req - meet the chip's requirement with least ECC bytes
5806  * @chip: nand chip info structure
5807  * @caps: ECC engine caps info structure
5808  * @oobavail: OOB size that the ECC engine can use
5809  *
5810  * If a chip's ECC requirement is provided, try to meet it with the least
5811  * number of ECC bytes (i.e. with the largest number of OOB-free bytes).
5812  * On success, the chosen ECC settings are set.
5813  */
5814 static int
nand_match_ecc_req(struct nand_chip * chip,const struct nand_ecc_caps * caps,int oobavail)5815 nand_match_ecc_req(struct nand_chip *chip,
5816 		   const struct nand_ecc_caps *caps, int oobavail)
5817 {
5818 	const struct nand_ecc_props *requirements =
5819 		nanddev_get_ecc_requirements(&chip->base);
5820 	struct mtd_info *mtd = nand_to_mtd(chip);
5821 	const struct nand_ecc_step_info *stepinfo;
5822 	int req_step = requirements->step_size;
5823 	int req_strength = requirements->strength;
5824 	int req_corr, step_size, strength, nsteps, ecc_bytes, ecc_bytes_total;
5825 	int best_step, best_strength, best_ecc_bytes;
5826 	int best_ecc_bytes_total = INT_MAX;
5827 	int i, j;
5828 
5829 	/* No information provided by the NAND chip */
5830 	if (!req_step || !req_strength)
5831 		return -ENOTSUPP;
5832 
5833 	/* number of correctable bits the chip requires in a page */
5834 	req_corr = mtd->writesize / req_step * req_strength;
5835 
5836 	for (i = 0; i < caps->nstepinfos; i++) {
5837 		stepinfo = &caps->stepinfos[i];
5838 		step_size = stepinfo->stepsize;
5839 
5840 		for (j = 0; j < stepinfo->nstrengths; j++) {
5841 			strength = stepinfo->strengths[j];
5842 
5843 			/*
5844 			 * If both step size and strength are smaller than the
5845 			 * chip's requirement, it is not easy to compare the
5846 			 * resulted reliability.
5847 			 */
5848 			if (step_size < req_step && strength < req_strength)
5849 				continue;
5850 
5851 			if (mtd->writesize % step_size)
5852 				continue;
5853 
5854 			nsteps = mtd->writesize / step_size;
5855 
5856 			ecc_bytes = caps->calc_ecc_bytes(step_size, strength);
5857 			if (WARN_ON_ONCE(ecc_bytes < 0))
5858 				continue;
5859 			ecc_bytes_total = ecc_bytes * nsteps;
5860 
5861 			if (ecc_bytes_total > oobavail ||
5862 			    strength * nsteps < req_corr)
5863 				continue;
5864 
5865 			/*
5866 			 * We assume the best is to meet the chip's requrement
5867 			 * with the least number of ECC bytes.
5868 			 */
5869 			if (ecc_bytes_total < best_ecc_bytes_total) {
5870 				best_ecc_bytes_total = ecc_bytes_total;
5871 				best_step = step_size;
5872 				best_strength = strength;
5873 				best_ecc_bytes = ecc_bytes;
5874 			}
5875 		}
5876 	}
5877 
5878 	if (best_ecc_bytes_total == INT_MAX)
5879 		return -ENOTSUPP;
5880 
5881 	chip->ecc.size = best_step;
5882 	chip->ecc.strength = best_strength;
5883 	chip->ecc.bytes = best_ecc_bytes;
5884 
5885 	return 0;
5886 }
5887 
5888 /**
5889  * nand_maximize_ecc - choose the max ECC strength available
5890  * @chip: nand chip info structure
5891  * @caps: ECC engine caps info structure
5892  * @oobavail: OOB size that the ECC engine can use
5893  *
5894  * Choose the max ECC strength that is supported on the controller, and can fit
5895  * within the chip's OOB.  On success, the chosen ECC settings are set.
5896  */
5897 static int
nand_maximize_ecc(struct nand_chip * chip,const struct nand_ecc_caps * caps,int oobavail)5898 nand_maximize_ecc(struct nand_chip *chip,
5899 		  const struct nand_ecc_caps *caps, int oobavail)
5900 {
5901 	struct mtd_info *mtd = nand_to_mtd(chip);
5902 	const struct nand_ecc_step_info *stepinfo;
5903 	int step_size, strength, nsteps, ecc_bytes, corr;
5904 	int best_corr = 0;
5905 	int best_step = 0;
5906 	int best_strength, best_ecc_bytes;
5907 	int i, j;
5908 
5909 	for (i = 0; i < caps->nstepinfos; i++) {
5910 		stepinfo = &caps->stepinfos[i];
5911 		step_size = stepinfo->stepsize;
5912 
5913 		/* If chip->ecc.size is already set, respect it */
5914 		if (chip->ecc.size && step_size != chip->ecc.size)
5915 			continue;
5916 
5917 		for (j = 0; j < stepinfo->nstrengths; j++) {
5918 			strength = stepinfo->strengths[j];
5919 
5920 			if (mtd->writesize % step_size)
5921 				continue;
5922 
5923 			nsteps = mtd->writesize / step_size;
5924 
5925 			ecc_bytes = caps->calc_ecc_bytes(step_size, strength);
5926 			if (WARN_ON_ONCE(ecc_bytes < 0))
5927 				continue;
5928 
5929 			if (ecc_bytes * nsteps > oobavail)
5930 				continue;
5931 
5932 			corr = strength * nsteps;
5933 
5934 			/*
5935 			 * If the number of correctable bits is the same,
5936 			 * bigger step_size has more reliability.
5937 			 */
5938 			if (corr > best_corr ||
5939 			    (corr == best_corr && step_size > best_step)) {
5940 				best_corr = corr;
5941 				best_step = step_size;
5942 				best_strength = strength;
5943 				best_ecc_bytes = ecc_bytes;
5944 			}
5945 		}
5946 	}
5947 
5948 	if (!best_corr)
5949 		return -ENOTSUPP;
5950 
5951 	chip->ecc.size = best_step;
5952 	chip->ecc.strength = best_strength;
5953 	chip->ecc.bytes = best_ecc_bytes;
5954 
5955 	return 0;
5956 }
5957 
5958 /**
5959  * nand_ecc_choose_conf - Set the ECC strength and ECC step size
5960  * @chip: nand chip info structure
5961  * @caps: ECC engine caps info structure
5962  * @oobavail: OOB size that the ECC engine can use
5963  *
5964  * Choose the ECC configuration according to following logic.
5965  *
5966  * 1. If both ECC step size and ECC strength are already set (usually by DT)
5967  *    then check if it is supported by this controller.
5968  * 2. If the user provided the nand-ecc-maximize property, then select maximum
5969  *    ECC strength.
5970  * 3. Otherwise, try to match the ECC step size and ECC strength closest
5971  *    to the chip's requirement. If available OOB size can't fit the chip
5972  *    requirement then fallback to the maximum ECC step size and ECC strength.
5973  *
5974  * On success, the chosen ECC settings are set.
5975  */
nand_ecc_choose_conf(struct nand_chip * chip,const struct nand_ecc_caps * caps,int oobavail)5976 int nand_ecc_choose_conf(struct nand_chip *chip,
5977 			 const struct nand_ecc_caps *caps, int oobavail)
5978 {
5979 	struct mtd_info *mtd = nand_to_mtd(chip);
5980 	struct nand_device *nanddev = mtd_to_nanddev(mtd);
5981 
5982 	if (WARN_ON(oobavail < 0 || oobavail > mtd->oobsize))
5983 		return -EINVAL;
5984 
5985 	if (chip->ecc.size && chip->ecc.strength)
5986 		return nand_check_ecc_caps(chip, caps, oobavail);
5987 
5988 	if (nanddev->ecc.user_conf.flags & NAND_ECC_MAXIMIZE_STRENGTH)
5989 		return nand_maximize_ecc(chip, caps, oobavail);
5990 
5991 	if (!nand_match_ecc_req(chip, caps, oobavail))
5992 		return 0;
5993 
5994 	return nand_maximize_ecc(chip, caps, oobavail);
5995 }
5996 EXPORT_SYMBOL_GPL(nand_ecc_choose_conf);
5997 
rawnand_erase(struct nand_device * nand,const struct nand_pos * pos)5998 static int rawnand_erase(struct nand_device *nand, const struct nand_pos *pos)
5999 {
6000 	struct nand_chip *chip = container_of(nand, struct nand_chip,
6001 					      base);
6002 	unsigned int eb = nanddev_pos_to_row(nand, pos);
6003 	int ret;
6004 
6005 	eb >>= nand->rowconv.eraseblock_addr_shift;
6006 
6007 	nand_select_target(chip, pos->target);
6008 	ret = nand_erase_op(chip, eb);
6009 	nand_deselect_target(chip);
6010 
6011 	return ret;
6012 }
6013 
rawnand_markbad(struct nand_device * nand,const struct nand_pos * pos)6014 static int rawnand_markbad(struct nand_device *nand,
6015 			   const struct nand_pos *pos)
6016 {
6017 	struct nand_chip *chip = container_of(nand, struct nand_chip,
6018 					      base);
6019 
6020 	return nand_markbad_bbm(chip, nanddev_pos_to_offs(nand, pos));
6021 }
6022 
rawnand_isbad(struct nand_device * nand,const struct nand_pos * pos)6023 static bool rawnand_isbad(struct nand_device *nand, const struct nand_pos *pos)
6024 {
6025 	struct nand_chip *chip = container_of(nand, struct nand_chip,
6026 					      base);
6027 	int ret;
6028 
6029 	nand_select_target(chip, pos->target);
6030 	ret = nand_isbad_bbm(chip, nanddev_pos_to_offs(nand, pos));
6031 	nand_deselect_target(chip);
6032 
6033 	return ret;
6034 }
6035 
6036 static const struct nand_ops rawnand_ops = {
6037 	.erase = rawnand_erase,
6038 	.markbad = rawnand_markbad,
6039 	.isbad = rawnand_isbad,
6040 };
6041 
6042 /**
6043  * nand_scan_tail - Scan for the NAND device
6044  * @chip: NAND chip object
6045  *
6046  * This is the second phase of the normal nand_scan() function. It fills out
6047  * all the uninitialized function pointers with the defaults and scans for a
6048  * bad block table if appropriate.
6049  */
nand_scan_tail(struct nand_chip * chip)6050 static int nand_scan_tail(struct nand_chip *chip)
6051 {
6052 	struct mtd_info *mtd = nand_to_mtd(chip);
6053 	struct nand_ecc_ctrl *ecc = &chip->ecc;
6054 	int ret, i;
6055 
6056 	/* New bad blocks should be marked in OOB, flash-based BBT, or both */
6057 	if (WARN_ON((chip->bbt_options & NAND_BBT_NO_OOB_BBM) &&
6058 		   !(chip->bbt_options & NAND_BBT_USE_FLASH))) {
6059 		return -EINVAL;
6060 	}
6061 
6062 	chip->data_buf = kmalloc(mtd->writesize + mtd->oobsize, GFP_KERNEL);
6063 	if (!chip->data_buf)
6064 		return -ENOMEM;
6065 
6066 	/*
6067 	 * FIXME: some NAND manufacturer drivers expect the first die to be
6068 	 * selected when manufacturer->init() is called. They should be fixed
6069 	 * to explictly select the relevant die when interacting with the NAND
6070 	 * chip.
6071 	 */
6072 	nand_select_target(chip, 0);
6073 	ret = nand_manufacturer_init(chip);
6074 	nand_deselect_target(chip);
6075 	if (ret)
6076 		goto err_free_buf;
6077 
6078 	/* Set the internal oob buffer location, just after the page data */
6079 	chip->oob_poi = chip->data_buf + mtd->writesize;
6080 
6081 	/*
6082 	 * If no default placement scheme is given, select an appropriate one.
6083 	 */
6084 	if (!mtd->ooblayout &&
6085 	    !(ecc->engine_type == NAND_ECC_ENGINE_TYPE_SOFT &&
6086 	      ecc->algo == NAND_ECC_ALGO_BCH) &&
6087 	    !(ecc->engine_type == NAND_ECC_ENGINE_TYPE_SOFT &&
6088 	      ecc->algo == NAND_ECC_ALGO_HAMMING)) {
6089 		switch (mtd->oobsize) {
6090 		case 8:
6091 		case 16:
6092 			mtd_set_ooblayout(mtd, nand_get_small_page_ooblayout());
6093 			break;
6094 		case 64:
6095 		case 128:
6096 			mtd_set_ooblayout(mtd,
6097 					  nand_get_large_page_hamming_ooblayout());
6098 			break;
6099 		default:
6100 			/*
6101 			 * Expose the whole OOB area to users if ECC_NONE
6102 			 * is passed. We could do that for all kind of
6103 			 * ->oobsize, but we must keep the old large/small
6104 			 * page with ECC layout when ->oobsize <= 128 for
6105 			 * compatibility reasons.
6106 			 */
6107 			if (ecc->engine_type == NAND_ECC_ENGINE_TYPE_NONE) {
6108 				mtd_set_ooblayout(mtd,
6109 						  nand_get_large_page_ooblayout());
6110 				break;
6111 			}
6112 
6113 			WARN(1, "No oob scheme defined for oobsize %d\n",
6114 				mtd->oobsize);
6115 			ret = -EINVAL;
6116 			goto err_nand_manuf_cleanup;
6117 		}
6118 	}
6119 
6120 	/*
6121 	 * Check ECC mode, default to software if 3byte/512byte hardware ECC is
6122 	 * selected and we have 256 byte pagesize fallback to software ECC
6123 	 */
6124 
6125 	switch (ecc->engine_type) {
6126 	case NAND_ECC_ENGINE_TYPE_ON_HOST:
6127 		ret = nand_set_ecc_on_host_ops(chip);
6128 		if (ret)
6129 			goto err_nand_manuf_cleanup;
6130 
6131 		if (mtd->writesize >= ecc->size) {
6132 			if (!ecc->strength) {
6133 				WARN(1, "Driver must set ecc.strength when using hardware ECC\n");
6134 				ret = -EINVAL;
6135 				goto err_nand_manuf_cleanup;
6136 			}
6137 			break;
6138 		}
6139 		pr_warn("%d byte HW ECC not possible on %d byte page size, fallback to SW ECC\n",
6140 			ecc->size, mtd->writesize);
6141 		ecc->engine_type = NAND_ECC_ENGINE_TYPE_SOFT;
6142 		ecc->algo = NAND_ECC_ALGO_HAMMING;
6143 		fallthrough;
6144 
6145 	case NAND_ECC_ENGINE_TYPE_SOFT:
6146 		ret = nand_set_ecc_soft_ops(chip);
6147 		if (ret)
6148 			goto err_nand_manuf_cleanup;
6149 		break;
6150 
6151 	case NAND_ECC_ENGINE_TYPE_ON_DIE:
6152 		if (!ecc->read_page || !ecc->write_page) {
6153 			WARN(1, "No ECC functions supplied; on-die ECC not possible\n");
6154 			ret = -EINVAL;
6155 			goto err_nand_manuf_cleanup;
6156 		}
6157 		if (!ecc->read_oob)
6158 			ecc->read_oob = nand_read_oob_std;
6159 		if (!ecc->write_oob)
6160 			ecc->write_oob = nand_write_oob_std;
6161 		break;
6162 
6163 	case NAND_ECC_ENGINE_TYPE_NONE:
6164 		pr_warn("NAND_ECC_ENGINE_TYPE_NONE selected by board driver. This is not recommended!\n");
6165 		ecc->read_page = nand_read_page_raw;
6166 		ecc->write_page = nand_write_page_raw;
6167 		ecc->read_oob = nand_read_oob_std;
6168 		ecc->read_page_raw = nand_read_page_raw;
6169 		ecc->write_page_raw = nand_write_page_raw;
6170 		ecc->write_oob = nand_write_oob_std;
6171 		ecc->size = mtd->writesize;
6172 		ecc->bytes = 0;
6173 		ecc->strength = 0;
6174 		break;
6175 
6176 	default:
6177 		WARN(1, "Invalid NAND_ECC_MODE %d\n", ecc->engine_type);
6178 		ret = -EINVAL;
6179 		goto err_nand_manuf_cleanup;
6180 	}
6181 
6182 	if (ecc->correct || ecc->calculate) {
6183 		ecc->calc_buf = kmalloc(mtd->oobsize, GFP_KERNEL);
6184 		ecc->code_buf = kmalloc(mtd->oobsize, GFP_KERNEL);
6185 		if (!ecc->calc_buf || !ecc->code_buf) {
6186 			ret = -ENOMEM;
6187 			goto err_nand_manuf_cleanup;
6188 		}
6189 	}
6190 
6191 	/* For many systems, the standard OOB write also works for raw */
6192 	if (!ecc->read_oob_raw)
6193 		ecc->read_oob_raw = ecc->read_oob;
6194 	if (!ecc->write_oob_raw)
6195 		ecc->write_oob_raw = ecc->write_oob;
6196 
6197 	/* propagate ecc info to mtd_info */
6198 	mtd->ecc_strength = ecc->strength;
6199 	mtd->ecc_step_size = ecc->size;
6200 
6201 	/*
6202 	 * Set the number of read / write steps for one page depending on ECC
6203 	 * mode.
6204 	 */
6205 	if (!ecc->steps)
6206 		ecc->steps = mtd->writesize / ecc->size;
6207 	if (ecc->steps * ecc->size != mtd->writesize) {
6208 		WARN(1, "Invalid ECC parameters\n");
6209 		ret = -EINVAL;
6210 		goto err_nand_manuf_cleanup;
6211 	}
6212 
6213 	if (!ecc->total) {
6214 		ecc->total = ecc->steps * ecc->bytes;
6215 		chip->base.ecc.ctx.total = ecc->total;
6216 	}
6217 
6218 	if (ecc->total > mtd->oobsize) {
6219 		WARN(1, "Total number of ECC bytes exceeded oobsize\n");
6220 		ret = -EINVAL;
6221 		goto err_nand_manuf_cleanup;
6222 	}
6223 
6224 	/*
6225 	 * The number of bytes available for a client to place data into
6226 	 * the out of band area.
6227 	 */
6228 	ret = mtd_ooblayout_count_freebytes(mtd);
6229 	if (ret < 0)
6230 		ret = 0;
6231 
6232 	mtd->oobavail = ret;
6233 
6234 	/* ECC sanity check: warn if it's too weak */
6235 	if (!nand_ecc_is_strong_enough(&chip->base))
6236 		pr_warn("WARNING: %s: the ECC used on your system (%db/%dB) is too weak compared to the one required by the NAND chip (%db/%dB)\n",
6237 			mtd->name, chip->ecc.strength, chip->ecc.size,
6238 			nanddev_get_ecc_requirements(&chip->base)->strength,
6239 			nanddev_get_ecc_requirements(&chip->base)->step_size);
6240 
6241 	/* Allow subpage writes up to ecc.steps. Not possible for MLC flash */
6242 	if (!(chip->options & NAND_NO_SUBPAGE_WRITE) && nand_is_slc(chip)) {
6243 		switch (ecc->steps) {
6244 		case 2:
6245 			mtd->subpage_sft = 1;
6246 			break;
6247 		case 4:
6248 		case 8:
6249 		case 16:
6250 			mtd->subpage_sft = 2;
6251 			break;
6252 		}
6253 	}
6254 	chip->subpagesize = mtd->writesize >> mtd->subpage_sft;
6255 
6256 	/* Invalidate the pagebuffer reference */
6257 	chip->pagecache.page = -1;
6258 
6259 	/* Large page NAND with SOFT_ECC should support subpage reads */
6260 	switch (ecc->engine_type) {
6261 	case NAND_ECC_ENGINE_TYPE_SOFT:
6262 		if (chip->page_shift > 9)
6263 			chip->options |= NAND_SUBPAGE_READ;
6264 		break;
6265 
6266 	default:
6267 		break;
6268 	}
6269 
6270 	ret = nanddev_init(&chip->base, &rawnand_ops, mtd->owner);
6271 	if (ret)
6272 		goto err_nand_manuf_cleanup;
6273 
6274 	/* Adjust the MTD_CAP_ flags when NAND_ROM is set. */
6275 	if (chip->options & NAND_ROM)
6276 		mtd->flags = MTD_CAP_ROM;
6277 
6278 	/* Fill in remaining MTD driver data */
6279 	mtd->_erase = nand_erase;
6280 	mtd->_point = NULL;
6281 	mtd->_unpoint = NULL;
6282 	mtd->_panic_write = panic_nand_write;
6283 	mtd->_read_oob = nand_read_oob;
6284 	mtd->_write_oob = nand_write_oob;
6285 	mtd->_sync = nand_sync;
6286 	mtd->_lock = nand_lock;
6287 	mtd->_unlock = nand_unlock;
6288 	mtd->_suspend = nand_suspend;
6289 	mtd->_resume = nand_resume;
6290 	mtd->_reboot = nand_shutdown;
6291 	mtd->_block_isreserved = nand_block_isreserved;
6292 	mtd->_block_isbad = nand_block_isbad;
6293 	mtd->_block_markbad = nand_block_markbad;
6294 	mtd->_max_bad_blocks = nanddev_mtd_max_bad_blocks;
6295 
6296 	/*
6297 	 * Initialize bitflip_threshold to its default prior scan_bbt() call.
6298 	 * scan_bbt() might invoke mtd_read(), thus bitflip_threshold must be
6299 	 * properly set.
6300 	 */
6301 	if (!mtd->bitflip_threshold)
6302 		mtd->bitflip_threshold = DIV_ROUND_UP(mtd->ecc_strength * 3, 4);
6303 
6304 	/* Find the fastest data interface for this chip */
6305 	ret = nand_choose_interface_config(chip);
6306 	if (ret)
6307 		goto err_nanddev_cleanup;
6308 
6309 	/* Enter fastest possible mode on all dies. */
6310 	for (i = 0; i < nanddev_ntargets(&chip->base); i++) {
6311 		ret = nand_setup_interface(chip, i);
6312 		if (ret)
6313 			goto err_free_interface_config;
6314 	}
6315 
6316 	/*
6317 	 * Look for secure regions in the NAND chip. These regions are supposed
6318 	 * to be protected by a secure element like Trustzone. So the read/write
6319 	 * accesses to these regions will be blocked in the runtime by this
6320 	 * driver.
6321 	 */
6322 	ret = of_get_nand_secure_regions(chip);
6323 	if (ret)
6324 		goto err_free_interface_config;
6325 
6326 	/* Check, if we should skip the bad block table scan */
6327 	if (chip->options & NAND_SKIP_BBTSCAN)
6328 		return 0;
6329 
6330 	/* Build bad block table */
6331 	ret = nand_create_bbt(chip);
6332 	if (ret)
6333 		goto err_free_secure_regions;
6334 
6335 	return 0;
6336 
6337 err_free_secure_regions:
6338 	kfree(chip->secure_regions);
6339 
6340 err_free_interface_config:
6341 	kfree(chip->best_interface_config);
6342 
6343 err_nanddev_cleanup:
6344 	nanddev_cleanup(&chip->base);
6345 
6346 err_nand_manuf_cleanup:
6347 	nand_manufacturer_cleanup(chip);
6348 
6349 err_free_buf:
6350 	kfree(chip->data_buf);
6351 	kfree(ecc->code_buf);
6352 	kfree(ecc->calc_buf);
6353 
6354 	return ret;
6355 }
6356 
nand_attach(struct nand_chip * chip)6357 static int nand_attach(struct nand_chip *chip)
6358 {
6359 	if (chip->controller->ops && chip->controller->ops->attach_chip)
6360 		return chip->controller->ops->attach_chip(chip);
6361 
6362 	return 0;
6363 }
6364 
nand_detach(struct nand_chip * chip)6365 static void nand_detach(struct nand_chip *chip)
6366 {
6367 	if (chip->controller->ops && chip->controller->ops->detach_chip)
6368 		chip->controller->ops->detach_chip(chip);
6369 }
6370 
6371 /**
6372  * nand_scan_with_ids - [NAND Interface] Scan for the NAND device
6373  * @chip: NAND chip object
6374  * @maxchips: number of chips to scan for.
6375  * @ids: optional flash IDs table
6376  *
6377  * This fills out all the uninitialized function pointers with the defaults.
6378  * The flash ID is read and the mtd/chip structures are filled with the
6379  * appropriate values.
6380  */
nand_scan_with_ids(struct nand_chip * chip,unsigned int maxchips,struct nand_flash_dev * ids)6381 int nand_scan_with_ids(struct nand_chip *chip, unsigned int maxchips,
6382 		       struct nand_flash_dev *ids)
6383 {
6384 	int ret;
6385 
6386 	if (!maxchips)
6387 		return -EINVAL;
6388 
6389 	ret = nand_scan_ident(chip, maxchips, ids);
6390 	if (ret)
6391 		return ret;
6392 
6393 	ret = nand_attach(chip);
6394 	if (ret)
6395 		goto cleanup_ident;
6396 
6397 	ret = nand_scan_tail(chip);
6398 	if (ret)
6399 		goto detach_chip;
6400 
6401 	return 0;
6402 
6403 detach_chip:
6404 	nand_detach(chip);
6405 cleanup_ident:
6406 	nand_scan_ident_cleanup(chip);
6407 
6408 	return ret;
6409 }
6410 EXPORT_SYMBOL(nand_scan_with_ids);
6411 
6412 /**
6413  * nand_cleanup - [NAND Interface] Free resources held by the NAND device
6414  * @chip: NAND chip object
6415  */
nand_cleanup(struct nand_chip * chip)6416 void nand_cleanup(struct nand_chip *chip)
6417 {
6418 	if (chip->ecc.engine_type == NAND_ECC_ENGINE_TYPE_SOFT) {
6419 		if (chip->ecc.algo == NAND_ECC_ALGO_HAMMING)
6420 			rawnand_sw_hamming_cleanup(chip);
6421 		else if (chip->ecc.algo == NAND_ECC_ALGO_BCH)
6422 			rawnand_sw_bch_cleanup(chip);
6423 	}
6424 
6425 	nanddev_cleanup(&chip->base);
6426 
6427 	/* Free secure regions data */
6428 	kfree(chip->secure_regions);
6429 
6430 	/* Free bad block table memory */
6431 	kfree(chip->bbt);
6432 	kfree(chip->data_buf);
6433 	kfree(chip->ecc.code_buf);
6434 	kfree(chip->ecc.calc_buf);
6435 
6436 	/* Free bad block descriptor memory */
6437 	if (chip->badblock_pattern && chip->badblock_pattern->options
6438 			& NAND_BBT_DYNAMICSTRUCT)
6439 		kfree(chip->badblock_pattern);
6440 
6441 	/* Free the data interface */
6442 	kfree(chip->best_interface_config);
6443 
6444 	/* Free manufacturer priv data. */
6445 	nand_manufacturer_cleanup(chip);
6446 
6447 	/* Free controller specific allocations after chip identification */
6448 	nand_detach(chip);
6449 
6450 	/* Free identification phase allocations */
6451 	nand_scan_ident_cleanup(chip);
6452 }
6453 
6454 EXPORT_SYMBOL_GPL(nand_cleanup);
6455 
6456 MODULE_LICENSE("GPL");
6457 MODULE_AUTHOR("Steven J. Hill <sjhill@realitydiluted.com>");
6458 MODULE_AUTHOR("Thomas Gleixner <tglx@linutronix.de>");
6459 MODULE_DESCRIPTION("Generic NAND flash driver code");
6460