1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Overview:
4 * This is the generic MTD driver for NAND flash devices. It should be
5 * capable of working with almost all NAND chips currently available.
6 *
7 * Additional technical information is available on
8 * http://www.linux-mtd.infradead.org/doc/nand.html
9 *
10 * Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
11 * 2002-2006 Thomas Gleixner (tglx@linutronix.de)
12 *
13 * Credits:
14 * David Woodhouse for adding multichip support
15 *
16 * Aleph One Ltd. and Toby Churchill Ltd. for supporting the
17 * rework for 2K page size chips
18 *
19 * TODO:
20 * Enable cached programming for 2k page size chips
21 * Check, if mtd->ecctype should be set to MTD_ECC_HW
22 * if we have HW ECC support.
23 * BBT table is not serialized, has to be fixed
24 */
25
26 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
27
28 #include <linux/module.h>
29 #include <linux/delay.h>
30 #include <linux/errno.h>
31 #include <linux/err.h>
32 #include <linux/sched.h>
33 #include <linux/slab.h>
34 #include <linux/mm.h>
35 #include <linux/types.h>
36 #include <linux/mtd/mtd.h>
37 #include <linux/mtd/nand.h>
38 #include <linux/mtd/nand-ecc-sw-hamming.h>
39 #include <linux/mtd/nand-ecc-sw-bch.h>
40 #include <linux/interrupt.h>
41 #include <linux/bitops.h>
42 #include <linux/io.h>
43 #include <linux/mtd/partitions.h>
44 #include <linux/of.h>
45 #include <linux/of_gpio.h>
46 #include <linux/gpio/consumer.h>
47
48 #include "internals.h"
49
nand_pairing_dist3_get_info(struct mtd_info * mtd,int page,struct mtd_pairing_info * info)50 static int nand_pairing_dist3_get_info(struct mtd_info *mtd, int page,
51 struct mtd_pairing_info *info)
52 {
53 int lastpage = (mtd->erasesize / mtd->writesize) - 1;
54 int dist = 3;
55
56 if (page == lastpage)
57 dist = 2;
58
59 if (!page || (page & 1)) {
60 info->group = 0;
61 info->pair = (page + 1) / 2;
62 } else {
63 info->group = 1;
64 info->pair = (page + 1 - dist) / 2;
65 }
66
67 return 0;
68 }
69
nand_pairing_dist3_get_wunit(struct mtd_info * mtd,const struct mtd_pairing_info * info)70 static int nand_pairing_dist3_get_wunit(struct mtd_info *mtd,
71 const struct mtd_pairing_info *info)
72 {
73 int lastpair = ((mtd->erasesize / mtd->writesize) - 1) / 2;
74 int page = info->pair * 2;
75 int dist = 3;
76
77 if (!info->group && !info->pair)
78 return 0;
79
80 if (info->pair == lastpair && info->group)
81 dist = 2;
82
83 if (!info->group)
84 page--;
85 else if (info->pair)
86 page += dist - 1;
87
88 if (page >= mtd->erasesize / mtd->writesize)
89 return -EINVAL;
90
91 return page;
92 }
93
94 const struct mtd_pairing_scheme dist3_pairing_scheme = {
95 .ngroups = 2,
96 .get_info = nand_pairing_dist3_get_info,
97 .get_wunit = nand_pairing_dist3_get_wunit,
98 };
99
check_offs_len(struct nand_chip * chip,loff_t ofs,uint64_t len)100 static int check_offs_len(struct nand_chip *chip, loff_t ofs, uint64_t len)
101 {
102 int ret = 0;
103
104 /* Start address must align on block boundary */
105 if (ofs & ((1ULL << chip->phys_erase_shift) - 1)) {
106 pr_debug("%s: unaligned address\n", __func__);
107 ret = -EINVAL;
108 }
109
110 /* Length must align on block boundary */
111 if (len & ((1ULL << chip->phys_erase_shift) - 1)) {
112 pr_debug("%s: length not block aligned\n", __func__);
113 ret = -EINVAL;
114 }
115
116 return ret;
117 }
118
119 /**
120 * nand_extract_bits - Copy unaligned bits from one buffer to another one
121 * @dst: destination buffer
122 * @dst_off: bit offset at which the writing starts
123 * @src: source buffer
124 * @src_off: bit offset at which the reading starts
125 * @nbits: number of bits to copy from @src to @dst
126 *
127 * Copy bits from one memory region to another (overlap authorized).
128 */
nand_extract_bits(u8 * dst,unsigned int dst_off,const u8 * src,unsigned int src_off,unsigned int nbits)129 void nand_extract_bits(u8 *dst, unsigned int dst_off, const u8 *src,
130 unsigned int src_off, unsigned int nbits)
131 {
132 unsigned int tmp, n;
133
134 dst += dst_off / 8;
135 dst_off %= 8;
136 src += src_off / 8;
137 src_off %= 8;
138
139 while (nbits) {
140 n = min3(8 - dst_off, 8 - src_off, nbits);
141
142 tmp = (*src >> src_off) & GENMASK(n - 1, 0);
143 *dst &= ~GENMASK(n - 1 + dst_off, dst_off);
144 *dst |= tmp << dst_off;
145
146 dst_off += n;
147 if (dst_off >= 8) {
148 dst++;
149 dst_off -= 8;
150 }
151
152 src_off += n;
153 if (src_off >= 8) {
154 src++;
155 src_off -= 8;
156 }
157
158 nbits -= n;
159 }
160 }
161 EXPORT_SYMBOL_GPL(nand_extract_bits);
162
163 /**
164 * nand_select_target() - Select a NAND target (A.K.A. die)
165 * @chip: NAND chip object
166 * @cs: the CS line to select. Note that this CS id is always from the chip
167 * PoV, not the controller one
168 *
169 * Select a NAND target so that further operations executed on @chip go to the
170 * selected NAND target.
171 */
nand_select_target(struct nand_chip * chip,unsigned int cs)172 void nand_select_target(struct nand_chip *chip, unsigned int cs)
173 {
174 /*
175 * cs should always lie between 0 and nanddev_ntargets(), when that's
176 * not the case it's a bug and the caller should be fixed.
177 */
178 if (WARN_ON(cs > nanddev_ntargets(&chip->base)))
179 return;
180
181 chip->cur_cs = cs;
182
183 if (chip->legacy.select_chip)
184 chip->legacy.select_chip(chip, cs);
185 }
186 EXPORT_SYMBOL_GPL(nand_select_target);
187
188 /**
189 * nand_deselect_target() - Deselect the currently selected target
190 * @chip: NAND chip object
191 *
192 * Deselect the currently selected NAND target. The result of operations
193 * executed on @chip after the target has been deselected is undefined.
194 */
nand_deselect_target(struct nand_chip * chip)195 void nand_deselect_target(struct nand_chip *chip)
196 {
197 if (chip->legacy.select_chip)
198 chip->legacy.select_chip(chip, -1);
199
200 chip->cur_cs = -1;
201 }
202 EXPORT_SYMBOL_GPL(nand_deselect_target);
203
204 /**
205 * nand_release_device - [GENERIC] release chip
206 * @chip: NAND chip object
207 *
208 * Release chip lock and wake up anyone waiting on the device.
209 */
nand_release_device(struct nand_chip * chip)210 static void nand_release_device(struct nand_chip *chip)
211 {
212 /* Release the controller and the chip */
213 mutex_unlock(&chip->controller->lock);
214 mutex_unlock(&chip->lock);
215 }
216
217 /**
218 * nand_bbm_get_next_page - Get the next page for bad block markers
219 * @chip: NAND chip object
220 * @page: First page to start checking for bad block marker usage
221 *
222 * Returns an integer that corresponds to the page offset within a block, for
223 * a page that is used to store bad block markers. If no more pages are
224 * available, -EINVAL is returned.
225 */
nand_bbm_get_next_page(struct nand_chip * chip,int page)226 int nand_bbm_get_next_page(struct nand_chip *chip, int page)
227 {
228 struct mtd_info *mtd = nand_to_mtd(chip);
229 int last_page = ((mtd->erasesize - mtd->writesize) >>
230 chip->page_shift) & chip->pagemask;
231 unsigned int bbm_flags = NAND_BBM_FIRSTPAGE | NAND_BBM_SECONDPAGE
232 | NAND_BBM_LASTPAGE;
233
234 if (page == 0 && !(chip->options & bbm_flags))
235 return 0;
236 if (page == 0 && chip->options & NAND_BBM_FIRSTPAGE)
237 return 0;
238 if (page <= 1 && chip->options & NAND_BBM_SECONDPAGE)
239 return 1;
240 if (page <= last_page && chip->options & NAND_BBM_LASTPAGE)
241 return last_page;
242
243 return -EINVAL;
244 }
245
246 /**
247 * nand_block_bad - [DEFAULT] Read bad block marker from the chip
248 * @chip: NAND chip object
249 * @ofs: offset from device start
250 *
251 * Check, if the block is bad.
252 */
nand_block_bad(struct nand_chip * chip,loff_t ofs)253 static int nand_block_bad(struct nand_chip *chip, loff_t ofs)
254 {
255 int first_page, page_offset;
256 int res;
257 u8 bad;
258
259 first_page = (int)(ofs >> chip->page_shift) & chip->pagemask;
260 page_offset = nand_bbm_get_next_page(chip, 0);
261
262 while (page_offset >= 0) {
263 res = chip->ecc.read_oob(chip, first_page + page_offset);
264 if (res < 0)
265 return res;
266
267 bad = chip->oob_poi[chip->badblockpos];
268
269 if (likely(chip->badblockbits == 8))
270 res = bad != 0xFF;
271 else
272 res = hweight8(bad) < chip->badblockbits;
273 if (res)
274 return res;
275
276 page_offset = nand_bbm_get_next_page(chip, page_offset + 1);
277 }
278
279 return 0;
280 }
281
282 /**
283 * nand_region_is_secured() - Check if the region is secured
284 * @chip: NAND chip object
285 * @offset: Offset of the region to check
286 * @size: Size of the region to check
287 *
288 * Checks if the region is secured by comparing the offset and size with the
289 * list of secure regions obtained from DT. Returns true if the region is
290 * secured else false.
291 */
nand_region_is_secured(struct nand_chip * chip,loff_t offset,u64 size)292 static bool nand_region_is_secured(struct nand_chip *chip, loff_t offset, u64 size)
293 {
294 int i;
295
296 /* Skip touching the secure regions if present */
297 for (i = 0; i < chip->nr_secure_regions; i++) {
298 const struct nand_secure_region *region = &chip->secure_regions[i];
299
300 if (offset + size <= region->offset ||
301 offset >= region->offset + region->size)
302 continue;
303
304 pr_debug("%s: Region 0x%llx - 0x%llx is secured!",
305 __func__, offset, offset + size);
306
307 return true;
308 }
309
310 return false;
311 }
312
nand_isbad_bbm(struct nand_chip * chip,loff_t ofs)313 static int nand_isbad_bbm(struct nand_chip *chip, loff_t ofs)
314 {
315 struct mtd_info *mtd = nand_to_mtd(chip);
316
317 if (chip->options & NAND_NO_BBM_QUIRK)
318 return 0;
319
320 /* Check if the region is secured */
321 if (nand_region_is_secured(chip, ofs, mtd->erasesize))
322 return -EIO;
323
324 if (chip->legacy.block_bad)
325 return chip->legacy.block_bad(chip, ofs);
326
327 return nand_block_bad(chip, ofs);
328 }
329
330 /**
331 * nand_get_device - [GENERIC] Get chip for selected access
332 * @chip: NAND chip structure
333 *
334 * Lock the device and its controller for exclusive access
335 *
336 * Return: -EBUSY if the chip has been suspended, 0 otherwise
337 */
nand_get_device(struct nand_chip * chip)338 static void nand_get_device(struct nand_chip *chip)
339 {
340 /* Wait until the device is resumed. */
341 while (1) {
342 mutex_lock(&chip->lock);
343 if (!chip->suspended) {
344 mutex_lock(&chip->controller->lock);
345 return;
346 }
347 mutex_unlock(&chip->lock);
348
349 wait_event(chip->resume_wq, !chip->suspended);
350 }
351 }
352
353 /**
354 * nand_check_wp - [GENERIC] check if the chip is write protected
355 * @chip: NAND chip object
356 *
357 * Check, if the device is write protected. The function expects, that the
358 * device is already selected.
359 */
nand_check_wp(struct nand_chip * chip)360 static int nand_check_wp(struct nand_chip *chip)
361 {
362 u8 status;
363 int ret;
364
365 /* Broken xD cards report WP despite being writable */
366 if (chip->options & NAND_BROKEN_XD)
367 return 0;
368
369 /* Check the WP bit */
370 ret = nand_status_op(chip, &status);
371 if (ret)
372 return ret;
373
374 return status & NAND_STATUS_WP ? 0 : 1;
375 }
376
377 /**
378 * nand_fill_oob - [INTERN] Transfer client buffer to oob
379 * @chip: NAND chip object
380 * @oob: oob data buffer
381 * @len: oob data write length
382 * @ops: oob ops structure
383 */
nand_fill_oob(struct nand_chip * chip,uint8_t * oob,size_t len,struct mtd_oob_ops * ops)384 static uint8_t *nand_fill_oob(struct nand_chip *chip, uint8_t *oob, size_t len,
385 struct mtd_oob_ops *ops)
386 {
387 struct mtd_info *mtd = nand_to_mtd(chip);
388 int ret;
389
390 /*
391 * Initialise to all 0xFF, to avoid the possibility of left over OOB
392 * data from a previous OOB read.
393 */
394 memset(chip->oob_poi, 0xff, mtd->oobsize);
395
396 switch (ops->mode) {
397
398 case MTD_OPS_PLACE_OOB:
399 case MTD_OPS_RAW:
400 memcpy(chip->oob_poi + ops->ooboffs, oob, len);
401 return oob + len;
402
403 case MTD_OPS_AUTO_OOB:
404 ret = mtd_ooblayout_set_databytes(mtd, oob, chip->oob_poi,
405 ops->ooboffs, len);
406 BUG_ON(ret);
407 return oob + len;
408
409 default:
410 BUG();
411 }
412 return NULL;
413 }
414
415 /**
416 * nand_do_write_oob - [MTD Interface] NAND write out-of-band
417 * @chip: NAND chip object
418 * @to: offset to write to
419 * @ops: oob operation description structure
420 *
421 * NAND write out-of-band.
422 */
nand_do_write_oob(struct nand_chip * chip,loff_t to,struct mtd_oob_ops * ops)423 static int nand_do_write_oob(struct nand_chip *chip, loff_t to,
424 struct mtd_oob_ops *ops)
425 {
426 struct mtd_info *mtd = nand_to_mtd(chip);
427 int chipnr, page, status, len, ret;
428
429 pr_debug("%s: to = 0x%08x, len = %i\n",
430 __func__, (unsigned int)to, (int)ops->ooblen);
431
432 len = mtd_oobavail(mtd, ops);
433
434 /* Do not allow write past end of page */
435 if ((ops->ooboffs + ops->ooblen) > len) {
436 pr_debug("%s: attempt to write past end of page\n",
437 __func__);
438 return -EINVAL;
439 }
440
441 /* Check if the region is secured */
442 if (nand_region_is_secured(chip, to, ops->ooblen))
443 return -EIO;
444
445 chipnr = (int)(to >> chip->chip_shift);
446
447 /*
448 * Reset the chip. Some chips (like the Toshiba TC5832DC found in one
449 * of my DiskOnChip 2000 test units) will clear the whole data page too
450 * if we don't do this. I have no clue why, but I seem to have 'fixed'
451 * it in the doc2000 driver in August 1999. dwmw2.
452 */
453 ret = nand_reset(chip, chipnr);
454 if (ret)
455 return ret;
456
457 nand_select_target(chip, chipnr);
458
459 /* Shift to get page */
460 page = (int)(to >> chip->page_shift);
461
462 /* Check, if it is write protected */
463 if (nand_check_wp(chip)) {
464 nand_deselect_target(chip);
465 return -EROFS;
466 }
467
468 /* Invalidate the page cache, if we write to the cached page */
469 if (page == chip->pagecache.page)
470 chip->pagecache.page = -1;
471
472 nand_fill_oob(chip, ops->oobbuf, ops->ooblen, ops);
473
474 if (ops->mode == MTD_OPS_RAW)
475 status = chip->ecc.write_oob_raw(chip, page & chip->pagemask);
476 else
477 status = chip->ecc.write_oob(chip, page & chip->pagemask);
478
479 nand_deselect_target(chip);
480
481 if (status)
482 return status;
483
484 ops->oobretlen = ops->ooblen;
485
486 return 0;
487 }
488
489 /**
490 * nand_default_block_markbad - [DEFAULT] mark a block bad via bad block marker
491 * @chip: NAND chip object
492 * @ofs: offset from device start
493 *
494 * This is the default implementation, which can be overridden by a hardware
495 * specific driver. It provides the details for writing a bad block marker to a
496 * block.
497 */
nand_default_block_markbad(struct nand_chip * chip,loff_t ofs)498 static int nand_default_block_markbad(struct nand_chip *chip, loff_t ofs)
499 {
500 struct mtd_info *mtd = nand_to_mtd(chip);
501 struct mtd_oob_ops ops;
502 uint8_t buf[2] = { 0, 0 };
503 int ret = 0, res, page_offset;
504
505 memset(&ops, 0, sizeof(ops));
506 ops.oobbuf = buf;
507 ops.ooboffs = chip->badblockpos;
508 if (chip->options & NAND_BUSWIDTH_16) {
509 ops.ooboffs &= ~0x01;
510 ops.len = ops.ooblen = 2;
511 } else {
512 ops.len = ops.ooblen = 1;
513 }
514 ops.mode = MTD_OPS_PLACE_OOB;
515
516 page_offset = nand_bbm_get_next_page(chip, 0);
517
518 while (page_offset >= 0) {
519 res = nand_do_write_oob(chip,
520 ofs + (page_offset * mtd->writesize),
521 &ops);
522
523 if (!ret)
524 ret = res;
525
526 page_offset = nand_bbm_get_next_page(chip, page_offset + 1);
527 }
528
529 return ret;
530 }
531
532 /**
533 * nand_markbad_bbm - mark a block by updating the BBM
534 * @chip: NAND chip object
535 * @ofs: offset of the block to mark bad
536 */
nand_markbad_bbm(struct nand_chip * chip,loff_t ofs)537 int nand_markbad_bbm(struct nand_chip *chip, loff_t ofs)
538 {
539 if (chip->legacy.block_markbad)
540 return chip->legacy.block_markbad(chip, ofs);
541
542 return nand_default_block_markbad(chip, ofs);
543 }
544
545 /**
546 * nand_block_markbad_lowlevel - mark a block bad
547 * @chip: NAND chip object
548 * @ofs: offset from device start
549 *
550 * This function performs the generic NAND bad block marking steps (i.e., bad
551 * block table(s) and/or marker(s)). We only allow the hardware driver to
552 * specify how to write bad block markers to OOB (chip->legacy.block_markbad).
553 *
554 * We try operations in the following order:
555 *
556 * (1) erase the affected block, to allow OOB marker to be written cleanly
557 * (2) write bad block marker to OOB area of affected block (unless flag
558 * NAND_BBT_NO_OOB_BBM is present)
559 * (3) update the BBT
560 *
561 * Note that we retain the first error encountered in (2) or (3), finish the
562 * procedures, and dump the error in the end.
563 */
nand_block_markbad_lowlevel(struct nand_chip * chip,loff_t ofs)564 static int nand_block_markbad_lowlevel(struct nand_chip *chip, loff_t ofs)
565 {
566 struct mtd_info *mtd = nand_to_mtd(chip);
567 int res, ret = 0;
568
569 if (!(chip->bbt_options & NAND_BBT_NO_OOB_BBM)) {
570 struct erase_info einfo;
571
572 /* Attempt erase before marking OOB */
573 memset(&einfo, 0, sizeof(einfo));
574 einfo.addr = ofs;
575 einfo.len = 1ULL << chip->phys_erase_shift;
576 nand_erase_nand(chip, &einfo, 0);
577
578 /* Write bad block marker to OOB */
579 nand_get_device(chip);
580
581 ret = nand_markbad_bbm(chip, ofs);
582 nand_release_device(chip);
583 }
584
585 /* Mark block bad in BBT */
586 if (chip->bbt) {
587 res = nand_markbad_bbt(chip, ofs);
588 if (!ret)
589 ret = res;
590 }
591
592 if (!ret)
593 mtd->ecc_stats.badblocks++;
594
595 return ret;
596 }
597
598 /**
599 * nand_block_isreserved - [GENERIC] Check if a block is marked reserved.
600 * @mtd: MTD device structure
601 * @ofs: offset from device start
602 *
603 * Check if the block is marked as reserved.
604 */
nand_block_isreserved(struct mtd_info * mtd,loff_t ofs)605 static int nand_block_isreserved(struct mtd_info *mtd, loff_t ofs)
606 {
607 struct nand_chip *chip = mtd_to_nand(mtd);
608
609 if (!chip->bbt)
610 return 0;
611 /* Return info from the table */
612 return nand_isreserved_bbt(chip, ofs);
613 }
614
615 /**
616 * nand_block_checkbad - [GENERIC] Check if a block is marked bad
617 * @chip: NAND chip object
618 * @ofs: offset from device start
619 * @allowbbt: 1, if its allowed to access the bbt area
620 *
621 * Check, if the block is bad. Either by reading the bad block table or
622 * calling of the scan function.
623 */
nand_block_checkbad(struct nand_chip * chip,loff_t ofs,int allowbbt)624 static int nand_block_checkbad(struct nand_chip *chip, loff_t ofs, int allowbbt)
625 {
626 /* Return info from the table */
627 if (chip->bbt)
628 return nand_isbad_bbt(chip, ofs, allowbbt);
629
630 return nand_isbad_bbm(chip, ofs);
631 }
632
633 /**
634 * nand_soft_waitrdy - Poll STATUS reg until RDY bit is set to 1
635 * @chip: NAND chip structure
636 * @timeout_ms: Timeout in ms
637 *
638 * Poll the STATUS register using ->exec_op() until the RDY bit becomes 1.
639 * If that does not happen whitin the specified timeout, -ETIMEDOUT is
640 * returned.
641 *
642 * This helper is intended to be used when the controller does not have access
643 * to the NAND R/B pin.
644 *
645 * Be aware that calling this helper from an ->exec_op() implementation means
646 * ->exec_op() must be re-entrant.
647 *
648 * Return 0 if the NAND chip is ready, a negative error otherwise.
649 */
nand_soft_waitrdy(struct nand_chip * chip,unsigned long timeout_ms)650 int nand_soft_waitrdy(struct nand_chip *chip, unsigned long timeout_ms)
651 {
652 const struct nand_interface_config *conf;
653 u8 status = 0;
654 int ret;
655
656 if (!nand_has_exec_op(chip))
657 return -ENOTSUPP;
658
659 /* Wait tWB before polling the STATUS reg. */
660 conf = nand_get_interface_config(chip);
661 ndelay(NAND_COMMON_TIMING_NS(conf, tWB_max));
662
663 ret = nand_status_op(chip, NULL);
664 if (ret)
665 return ret;
666
667 /*
668 * +1 below is necessary because if we are now in the last fraction
669 * of jiffy and msecs_to_jiffies is 1 then we will wait only that
670 * small jiffy fraction - possibly leading to false timeout
671 */
672 timeout_ms = jiffies + msecs_to_jiffies(timeout_ms) + 1;
673 do {
674 ret = nand_read_data_op(chip, &status, sizeof(status), true,
675 false);
676 if (ret)
677 break;
678
679 if (status & NAND_STATUS_READY)
680 break;
681
682 /*
683 * Typical lowest execution time for a tR on most NANDs is 10us,
684 * use this as polling delay before doing something smarter (ie.
685 * deriving a delay from the timeout value, timeout_ms/ratio).
686 */
687 udelay(10);
688 } while (time_before(jiffies, timeout_ms));
689
690 /*
691 * We have to exit READ_STATUS mode in order to read real data on the
692 * bus in case the WAITRDY instruction is preceding a DATA_IN
693 * instruction.
694 */
695 nand_exit_status_op(chip);
696
697 if (ret)
698 return ret;
699
700 return status & NAND_STATUS_READY ? 0 : -ETIMEDOUT;
701 };
702 EXPORT_SYMBOL_GPL(nand_soft_waitrdy);
703
704 /**
705 * nand_gpio_waitrdy - Poll R/B GPIO pin until ready
706 * @chip: NAND chip structure
707 * @gpiod: GPIO descriptor of R/B pin
708 * @timeout_ms: Timeout in ms
709 *
710 * Poll the R/B GPIO pin until it becomes ready. If that does not happen
711 * whitin the specified timeout, -ETIMEDOUT is returned.
712 *
713 * This helper is intended to be used when the controller has access to the
714 * NAND R/B pin over GPIO.
715 *
716 * Return 0 if the R/B pin indicates chip is ready, a negative error otherwise.
717 */
nand_gpio_waitrdy(struct nand_chip * chip,struct gpio_desc * gpiod,unsigned long timeout_ms)718 int nand_gpio_waitrdy(struct nand_chip *chip, struct gpio_desc *gpiod,
719 unsigned long timeout_ms)
720 {
721
722 /*
723 * Wait until R/B pin indicates chip is ready or timeout occurs.
724 * +1 below is necessary because if we are now in the last fraction
725 * of jiffy and msecs_to_jiffies is 1 then we will wait only that
726 * small jiffy fraction - possibly leading to false timeout.
727 */
728 timeout_ms = jiffies + msecs_to_jiffies(timeout_ms) + 1;
729 do {
730 if (gpiod_get_value_cansleep(gpiod))
731 return 0;
732
733 cond_resched();
734 } while (time_before(jiffies, timeout_ms));
735
736 return gpiod_get_value_cansleep(gpiod) ? 0 : -ETIMEDOUT;
737 };
738 EXPORT_SYMBOL_GPL(nand_gpio_waitrdy);
739
740 /**
741 * panic_nand_wait - [GENERIC] wait until the command is done
742 * @chip: NAND chip structure
743 * @timeo: timeout
744 *
745 * Wait for command done. This is a helper function for nand_wait used when
746 * we are in interrupt context. May happen when in panic and trying to write
747 * an oops through mtdoops.
748 */
panic_nand_wait(struct nand_chip * chip,unsigned long timeo)749 void panic_nand_wait(struct nand_chip *chip, unsigned long timeo)
750 {
751 int i;
752 for (i = 0; i < timeo; i++) {
753 if (chip->legacy.dev_ready) {
754 if (chip->legacy.dev_ready(chip))
755 break;
756 } else {
757 int ret;
758 u8 status;
759
760 ret = nand_read_data_op(chip, &status, sizeof(status),
761 true, false);
762 if (ret)
763 return;
764
765 if (status & NAND_STATUS_READY)
766 break;
767 }
768 mdelay(1);
769 }
770 }
771
nand_supports_get_features(struct nand_chip * chip,int addr)772 static bool nand_supports_get_features(struct nand_chip *chip, int addr)
773 {
774 return (chip->parameters.supports_set_get_features &&
775 test_bit(addr, chip->parameters.get_feature_list));
776 }
777
nand_supports_set_features(struct nand_chip * chip,int addr)778 static bool nand_supports_set_features(struct nand_chip *chip, int addr)
779 {
780 return (chip->parameters.supports_set_get_features &&
781 test_bit(addr, chip->parameters.set_feature_list));
782 }
783
784 /**
785 * nand_reset_interface - Reset data interface and timings
786 * @chip: The NAND chip
787 * @chipnr: Internal die id
788 *
789 * Reset the Data interface and timings to ONFI mode 0.
790 *
791 * Returns 0 for success or negative error code otherwise.
792 */
nand_reset_interface(struct nand_chip * chip,int chipnr)793 static int nand_reset_interface(struct nand_chip *chip, int chipnr)
794 {
795 const struct nand_controller_ops *ops = chip->controller->ops;
796 int ret;
797
798 if (!nand_controller_can_setup_interface(chip))
799 return 0;
800
801 /*
802 * The ONFI specification says:
803 * "
804 * To transition from NV-DDR or NV-DDR2 to the SDR data
805 * interface, the host shall use the Reset (FFh) command
806 * using SDR timing mode 0. A device in any timing mode is
807 * required to recognize Reset (FFh) command issued in SDR
808 * timing mode 0.
809 * "
810 *
811 * Configure the data interface in SDR mode and set the
812 * timings to timing mode 0.
813 */
814
815 chip->current_interface_config = nand_get_reset_interface_config();
816 ret = ops->setup_interface(chip, chipnr,
817 chip->current_interface_config);
818 if (ret)
819 pr_err("Failed to configure data interface to SDR timing mode 0\n");
820
821 return ret;
822 }
823
824 /**
825 * nand_setup_interface - Setup the best data interface and timings
826 * @chip: The NAND chip
827 * @chipnr: Internal die id
828 *
829 * Configure what has been reported to be the best data interface and NAND
830 * timings supported by the chip and the driver.
831 *
832 * Returns 0 for success or negative error code otherwise.
833 */
nand_setup_interface(struct nand_chip * chip,int chipnr)834 static int nand_setup_interface(struct nand_chip *chip, int chipnr)
835 {
836 const struct nand_controller_ops *ops = chip->controller->ops;
837 u8 tmode_param[ONFI_SUBFEATURE_PARAM_LEN] = { }, request;
838 int ret;
839
840 if (!nand_controller_can_setup_interface(chip))
841 return 0;
842
843 /*
844 * A nand_reset_interface() put both the NAND chip and the NAND
845 * controller in timings mode 0. If the default mode for this chip is
846 * also 0, no need to proceed to the change again. Plus, at probe time,
847 * nand_setup_interface() uses ->set/get_features() which would
848 * fail anyway as the parameter page is not available yet.
849 */
850 if (!chip->best_interface_config)
851 return 0;
852
853 request = chip->best_interface_config->timings.mode;
854 if (nand_interface_is_sdr(chip->best_interface_config))
855 request |= ONFI_DATA_INTERFACE_SDR;
856 else
857 request |= ONFI_DATA_INTERFACE_NVDDR;
858 tmode_param[0] = request;
859
860 /* Change the mode on the chip side (if supported by the NAND chip) */
861 if (nand_supports_set_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE)) {
862 nand_select_target(chip, chipnr);
863 ret = nand_set_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE,
864 tmode_param);
865 nand_deselect_target(chip);
866 if (ret)
867 return ret;
868 }
869
870 /* Change the mode on the controller side */
871 ret = ops->setup_interface(chip, chipnr, chip->best_interface_config);
872 if (ret)
873 return ret;
874
875 /* Check the mode has been accepted by the chip, if supported */
876 if (!nand_supports_get_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE))
877 goto update_interface_config;
878
879 memset(tmode_param, 0, ONFI_SUBFEATURE_PARAM_LEN);
880 nand_select_target(chip, chipnr);
881 ret = nand_get_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE,
882 tmode_param);
883 nand_deselect_target(chip);
884 if (ret)
885 goto err_reset_chip;
886
887 if (request != tmode_param[0]) {
888 pr_warn("%s timing mode %d not acknowledged by the NAND chip\n",
889 nand_interface_is_nvddr(chip->best_interface_config) ? "NV-DDR" : "SDR",
890 chip->best_interface_config->timings.mode);
891 pr_debug("NAND chip would work in %s timing mode %d\n",
892 tmode_param[0] & ONFI_DATA_INTERFACE_NVDDR ? "NV-DDR" : "SDR",
893 (unsigned int)ONFI_TIMING_MODE_PARAM(tmode_param[0]));
894 goto err_reset_chip;
895 }
896
897 update_interface_config:
898 chip->current_interface_config = chip->best_interface_config;
899
900 return 0;
901
902 err_reset_chip:
903 /*
904 * Fallback to mode 0 if the chip explicitly did not ack the chosen
905 * timing mode.
906 */
907 nand_reset_interface(chip, chipnr);
908 nand_select_target(chip, chipnr);
909 nand_reset_op(chip);
910 nand_deselect_target(chip);
911
912 return ret;
913 }
914
915 /**
916 * nand_choose_best_sdr_timings - Pick up the best SDR timings that both the
917 * NAND controller and the NAND chip support
918 * @chip: the NAND chip
919 * @iface: the interface configuration (can eventually be updated)
920 * @spec_timings: specific timings, when not fitting the ONFI specification
921 *
922 * If specific timings are provided, use them. Otherwise, retrieve supported
923 * timing modes from ONFI information.
924 */
nand_choose_best_sdr_timings(struct nand_chip * chip,struct nand_interface_config * iface,struct nand_sdr_timings * spec_timings)925 int nand_choose_best_sdr_timings(struct nand_chip *chip,
926 struct nand_interface_config *iface,
927 struct nand_sdr_timings *spec_timings)
928 {
929 const struct nand_controller_ops *ops = chip->controller->ops;
930 int best_mode = 0, mode, ret = -EOPNOTSUPP;
931
932 iface->type = NAND_SDR_IFACE;
933
934 if (spec_timings) {
935 iface->timings.sdr = *spec_timings;
936 iface->timings.mode = onfi_find_closest_sdr_mode(spec_timings);
937
938 /* Verify the controller supports the requested interface */
939 ret = ops->setup_interface(chip, NAND_DATA_IFACE_CHECK_ONLY,
940 iface);
941 if (!ret) {
942 chip->best_interface_config = iface;
943 return ret;
944 }
945
946 /* Fallback to slower modes */
947 best_mode = iface->timings.mode;
948 } else if (chip->parameters.onfi) {
949 best_mode = fls(chip->parameters.onfi->sdr_timing_modes) - 1;
950 }
951
952 for (mode = best_mode; mode >= 0; mode--) {
953 onfi_fill_interface_config(chip, iface, NAND_SDR_IFACE, mode);
954
955 ret = ops->setup_interface(chip, NAND_DATA_IFACE_CHECK_ONLY,
956 iface);
957 if (!ret) {
958 chip->best_interface_config = iface;
959 break;
960 }
961 }
962
963 return ret;
964 }
965
966 /**
967 * nand_choose_best_nvddr_timings - Pick up the best NVDDR timings that both the
968 * NAND controller and the NAND chip support
969 * @chip: the NAND chip
970 * @iface: the interface configuration (can eventually be updated)
971 * @spec_timings: specific timings, when not fitting the ONFI specification
972 *
973 * If specific timings are provided, use them. Otherwise, retrieve supported
974 * timing modes from ONFI information.
975 */
nand_choose_best_nvddr_timings(struct nand_chip * chip,struct nand_interface_config * iface,struct nand_nvddr_timings * spec_timings)976 int nand_choose_best_nvddr_timings(struct nand_chip *chip,
977 struct nand_interface_config *iface,
978 struct nand_nvddr_timings *spec_timings)
979 {
980 const struct nand_controller_ops *ops = chip->controller->ops;
981 int best_mode = 0, mode, ret = -EOPNOTSUPP;
982
983 iface->type = NAND_NVDDR_IFACE;
984
985 if (spec_timings) {
986 iface->timings.nvddr = *spec_timings;
987 iface->timings.mode = onfi_find_closest_nvddr_mode(spec_timings);
988
989 /* Verify the controller supports the requested interface */
990 ret = ops->setup_interface(chip, NAND_DATA_IFACE_CHECK_ONLY,
991 iface);
992 if (!ret) {
993 chip->best_interface_config = iface;
994 return ret;
995 }
996
997 /* Fallback to slower modes */
998 best_mode = iface->timings.mode;
999 } else if (chip->parameters.onfi) {
1000 best_mode = fls(chip->parameters.onfi->nvddr_timing_modes) - 1;
1001 }
1002
1003 for (mode = best_mode; mode >= 0; mode--) {
1004 onfi_fill_interface_config(chip, iface, NAND_NVDDR_IFACE, mode);
1005
1006 ret = ops->setup_interface(chip, NAND_DATA_IFACE_CHECK_ONLY,
1007 iface);
1008 if (!ret) {
1009 chip->best_interface_config = iface;
1010 break;
1011 }
1012 }
1013
1014 return ret;
1015 }
1016
1017 /**
1018 * nand_choose_best_timings - Pick up the best NVDDR or SDR timings that both
1019 * NAND controller and the NAND chip support
1020 * @chip: the NAND chip
1021 * @iface: the interface configuration (can eventually be updated)
1022 *
1023 * If specific timings are provided, use them. Otherwise, retrieve supported
1024 * timing modes from ONFI information.
1025 */
nand_choose_best_timings(struct nand_chip * chip,struct nand_interface_config * iface)1026 static int nand_choose_best_timings(struct nand_chip *chip,
1027 struct nand_interface_config *iface)
1028 {
1029 int ret;
1030
1031 /* Try the fastest timings: NV-DDR */
1032 ret = nand_choose_best_nvddr_timings(chip, iface, NULL);
1033 if (!ret)
1034 return 0;
1035
1036 /* Fallback to SDR timings otherwise */
1037 return nand_choose_best_sdr_timings(chip, iface, NULL);
1038 }
1039
1040 /**
1041 * nand_choose_interface_config - find the best data interface and timings
1042 * @chip: The NAND chip
1043 *
1044 * Find the best data interface and NAND timings supported by the chip
1045 * and the driver. Eventually let the NAND manufacturer driver propose his own
1046 * set of timings.
1047 *
1048 * After this function nand_chip->interface_config is initialized with the best
1049 * timing mode available.
1050 *
1051 * Returns 0 for success or negative error code otherwise.
1052 */
nand_choose_interface_config(struct nand_chip * chip)1053 static int nand_choose_interface_config(struct nand_chip *chip)
1054 {
1055 struct nand_interface_config *iface;
1056 int ret;
1057
1058 if (!nand_controller_can_setup_interface(chip))
1059 return 0;
1060
1061 iface = kzalloc(sizeof(*iface), GFP_KERNEL);
1062 if (!iface)
1063 return -ENOMEM;
1064
1065 if (chip->ops.choose_interface_config)
1066 ret = chip->ops.choose_interface_config(chip, iface);
1067 else
1068 ret = nand_choose_best_timings(chip, iface);
1069
1070 if (ret)
1071 kfree(iface);
1072
1073 return ret;
1074 }
1075
1076 /**
1077 * nand_fill_column_cycles - fill the column cycles of an address
1078 * @chip: The NAND chip
1079 * @addrs: Array of address cycles to fill
1080 * @offset_in_page: The offset in the page
1081 *
1082 * Fills the first or the first two bytes of the @addrs field depending
1083 * on the NAND bus width and the page size.
1084 *
1085 * Returns the number of cycles needed to encode the column, or a negative
1086 * error code in case one of the arguments is invalid.
1087 */
nand_fill_column_cycles(struct nand_chip * chip,u8 * addrs,unsigned int offset_in_page)1088 static int nand_fill_column_cycles(struct nand_chip *chip, u8 *addrs,
1089 unsigned int offset_in_page)
1090 {
1091 struct mtd_info *mtd = nand_to_mtd(chip);
1092
1093 /* Make sure the offset is less than the actual page size. */
1094 if (offset_in_page > mtd->writesize + mtd->oobsize)
1095 return -EINVAL;
1096
1097 /*
1098 * On small page NANDs, there's a dedicated command to access the OOB
1099 * area, and the column address is relative to the start of the OOB
1100 * area, not the start of the page. Asjust the address accordingly.
1101 */
1102 if (mtd->writesize <= 512 && offset_in_page >= mtd->writesize)
1103 offset_in_page -= mtd->writesize;
1104
1105 /*
1106 * The offset in page is expressed in bytes, if the NAND bus is 16-bit
1107 * wide, then it must be divided by 2.
1108 */
1109 if (chip->options & NAND_BUSWIDTH_16) {
1110 if (WARN_ON(offset_in_page % 2))
1111 return -EINVAL;
1112
1113 offset_in_page /= 2;
1114 }
1115
1116 addrs[0] = offset_in_page;
1117
1118 /*
1119 * Small page NANDs use 1 cycle for the columns, while large page NANDs
1120 * need 2
1121 */
1122 if (mtd->writesize <= 512)
1123 return 1;
1124
1125 addrs[1] = offset_in_page >> 8;
1126
1127 return 2;
1128 }
1129
nand_sp_exec_read_page_op(struct nand_chip * chip,unsigned int page,unsigned int offset_in_page,void * buf,unsigned int len)1130 static int nand_sp_exec_read_page_op(struct nand_chip *chip, unsigned int page,
1131 unsigned int offset_in_page, void *buf,
1132 unsigned int len)
1133 {
1134 const struct nand_interface_config *conf =
1135 nand_get_interface_config(chip);
1136 struct mtd_info *mtd = nand_to_mtd(chip);
1137 u8 addrs[4];
1138 struct nand_op_instr instrs[] = {
1139 NAND_OP_CMD(NAND_CMD_READ0, 0),
1140 NAND_OP_ADDR(3, addrs, NAND_COMMON_TIMING_NS(conf, tWB_max)),
1141 NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tR_max),
1142 NAND_COMMON_TIMING_NS(conf, tRR_min)),
1143 NAND_OP_DATA_IN(len, buf, 0),
1144 };
1145 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1146 int ret;
1147
1148 /* Drop the DATA_IN instruction if len is set to 0. */
1149 if (!len)
1150 op.ninstrs--;
1151
1152 if (offset_in_page >= mtd->writesize)
1153 instrs[0].ctx.cmd.opcode = NAND_CMD_READOOB;
1154 else if (offset_in_page >= 256 &&
1155 !(chip->options & NAND_BUSWIDTH_16))
1156 instrs[0].ctx.cmd.opcode = NAND_CMD_READ1;
1157
1158 ret = nand_fill_column_cycles(chip, addrs, offset_in_page);
1159 if (ret < 0)
1160 return ret;
1161
1162 addrs[1] = page;
1163 addrs[2] = page >> 8;
1164
1165 if (chip->options & NAND_ROW_ADDR_3) {
1166 addrs[3] = page >> 16;
1167 instrs[1].ctx.addr.naddrs++;
1168 }
1169
1170 return nand_exec_op(chip, &op);
1171 }
1172
nand_lp_exec_read_page_op(struct nand_chip * chip,unsigned int page,unsigned int offset_in_page,void * buf,unsigned int len)1173 static int nand_lp_exec_read_page_op(struct nand_chip *chip, unsigned int page,
1174 unsigned int offset_in_page, void *buf,
1175 unsigned int len)
1176 {
1177 const struct nand_interface_config *conf =
1178 nand_get_interface_config(chip);
1179 u8 addrs[5];
1180 struct nand_op_instr instrs[] = {
1181 NAND_OP_CMD(NAND_CMD_READ0, 0),
1182 NAND_OP_ADDR(4, addrs, 0),
1183 NAND_OP_CMD(NAND_CMD_READSTART, NAND_COMMON_TIMING_NS(conf, tWB_max)),
1184 NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tR_max),
1185 NAND_COMMON_TIMING_NS(conf, tRR_min)),
1186 NAND_OP_DATA_IN(len, buf, 0),
1187 };
1188 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1189 int ret;
1190
1191 /* Drop the DATA_IN instruction if len is set to 0. */
1192 if (!len)
1193 op.ninstrs--;
1194
1195 ret = nand_fill_column_cycles(chip, addrs, offset_in_page);
1196 if (ret < 0)
1197 return ret;
1198
1199 addrs[2] = page;
1200 addrs[3] = page >> 8;
1201
1202 if (chip->options & NAND_ROW_ADDR_3) {
1203 addrs[4] = page >> 16;
1204 instrs[1].ctx.addr.naddrs++;
1205 }
1206
1207 return nand_exec_op(chip, &op);
1208 }
1209
1210 /**
1211 * nand_read_page_op - Do a READ PAGE operation
1212 * @chip: The NAND chip
1213 * @page: page to read
1214 * @offset_in_page: offset within the page
1215 * @buf: buffer used to store the data
1216 * @len: length of the buffer
1217 *
1218 * This function issues a READ PAGE operation.
1219 * This function does not select/unselect the CS line.
1220 *
1221 * Returns 0 on success, a negative error code otherwise.
1222 */
nand_read_page_op(struct nand_chip * chip,unsigned int page,unsigned int offset_in_page,void * buf,unsigned int len)1223 int nand_read_page_op(struct nand_chip *chip, unsigned int page,
1224 unsigned int offset_in_page, void *buf, unsigned int len)
1225 {
1226 struct mtd_info *mtd = nand_to_mtd(chip);
1227
1228 if (len && !buf)
1229 return -EINVAL;
1230
1231 if (offset_in_page + len > mtd->writesize + mtd->oobsize)
1232 return -EINVAL;
1233
1234 if (nand_has_exec_op(chip)) {
1235 if (mtd->writesize > 512)
1236 return nand_lp_exec_read_page_op(chip, page,
1237 offset_in_page, buf,
1238 len);
1239
1240 return nand_sp_exec_read_page_op(chip, page, offset_in_page,
1241 buf, len);
1242 }
1243
1244 chip->legacy.cmdfunc(chip, NAND_CMD_READ0, offset_in_page, page);
1245 if (len)
1246 chip->legacy.read_buf(chip, buf, len);
1247
1248 return 0;
1249 }
1250 EXPORT_SYMBOL_GPL(nand_read_page_op);
1251
1252 /**
1253 * nand_read_param_page_op - Do a READ PARAMETER PAGE operation
1254 * @chip: The NAND chip
1255 * @page: parameter page to read
1256 * @buf: buffer used to store the data
1257 * @len: length of the buffer
1258 *
1259 * This function issues a READ PARAMETER PAGE operation.
1260 * This function does not select/unselect the CS line.
1261 *
1262 * Returns 0 on success, a negative error code otherwise.
1263 */
nand_read_param_page_op(struct nand_chip * chip,u8 page,void * buf,unsigned int len)1264 int nand_read_param_page_op(struct nand_chip *chip, u8 page, void *buf,
1265 unsigned int len)
1266 {
1267 unsigned int i;
1268 u8 *p = buf;
1269
1270 if (len && !buf)
1271 return -EINVAL;
1272
1273 if (nand_has_exec_op(chip)) {
1274 const struct nand_interface_config *conf =
1275 nand_get_interface_config(chip);
1276 struct nand_op_instr instrs[] = {
1277 NAND_OP_CMD(NAND_CMD_PARAM, 0),
1278 NAND_OP_ADDR(1, &page,
1279 NAND_COMMON_TIMING_NS(conf, tWB_max)),
1280 NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tR_max),
1281 NAND_COMMON_TIMING_NS(conf, tRR_min)),
1282 NAND_OP_8BIT_DATA_IN(len, buf, 0),
1283 };
1284 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1285
1286 /* Drop the DATA_IN instruction if len is set to 0. */
1287 if (!len)
1288 op.ninstrs--;
1289
1290 return nand_exec_op(chip, &op);
1291 }
1292
1293 chip->legacy.cmdfunc(chip, NAND_CMD_PARAM, page, -1);
1294 for (i = 0; i < len; i++)
1295 p[i] = chip->legacy.read_byte(chip);
1296
1297 return 0;
1298 }
1299
1300 /**
1301 * nand_change_read_column_op - Do a CHANGE READ COLUMN operation
1302 * @chip: The NAND chip
1303 * @offset_in_page: offset within the page
1304 * @buf: buffer used to store the data
1305 * @len: length of the buffer
1306 * @force_8bit: force 8-bit bus access
1307 *
1308 * This function issues a CHANGE READ COLUMN operation.
1309 * This function does not select/unselect the CS line.
1310 *
1311 * Returns 0 on success, a negative error code otherwise.
1312 */
nand_change_read_column_op(struct nand_chip * chip,unsigned int offset_in_page,void * buf,unsigned int len,bool force_8bit)1313 int nand_change_read_column_op(struct nand_chip *chip,
1314 unsigned int offset_in_page, void *buf,
1315 unsigned int len, bool force_8bit)
1316 {
1317 struct mtd_info *mtd = nand_to_mtd(chip);
1318
1319 if (len && !buf)
1320 return -EINVAL;
1321
1322 if (offset_in_page + len > mtd->writesize + mtd->oobsize)
1323 return -EINVAL;
1324
1325 /* Small page NANDs do not support column change. */
1326 if (mtd->writesize <= 512)
1327 return -ENOTSUPP;
1328
1329 if (nand_has_exec_op(chip)) {
1330 const struct nand_interface_config *conf =
1331 nand_get_interface_config(chip);
1332 u8 addrs[2] = {};
1333 struct nand_op_instr instrs[] = {
1334 NAND_OP_CMD(NAND_CMD_RNDOUT, 0),
1335 NAND_OP_ADDR(2, addrs, 0),
1336 NAND_OP_CMD(NAND_CMD_RNDOUTSTART,
1337 NAND_COMMON_TIMING_NS(conf, tCCS_min)),
1338 NAND_OP_DATA_IN(len, buf, 0),
1339 };
1340 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1341 int ret;
1342
1343 ret = nand_fill_column_cycles(chip, addrs, offset_in_page);
1344 if (ret < 0)
1345 return ret;
1346
1347 /* Drop the DATA_IN instruction if len is set to 0. */
1348 if (!len)
1349 op.ninstrs--;
1350
1351 instrs[3].ctx.data.force_8bit = force_8bit;
1352
1353 return nand_exec_op(chip, &op);
1354 }
1355
1356 chip->legacy.cmdfunc(chip, NAND_CMD_RNDOUT, offset_in_page, -1);
1357 if (len)
1358 chip->legacy.read_buf(chip, buf, len);
1359
1360 return 0;
1361 }
1362 EXPORT_SYMBOL_GPL(nand_change_read_column_op);
1363
1364 /**
1365 * nand_read_oob_op - Do a READ OOB operation
1366 * @chip: The NAND chip
1367 * @page: page to read
1368 * @offset_in_oob: offset within the OOB area
1369 * @buf: buffer used to store the data
1370 * @len: length of the buffer
1371 *
1372 * This function issues a READ OOB operation.
1373 * This function does not select/unselect the CS line.
1374 *
1375 * Returns 0 on success, a negative error code otherwise.
1376 */
nand_read_oob_op(struct nand_chip * chip,unsigned int page,unsigned int offset_in_oob,void * buf,unsigned int len)1377 int nand_read_oob_op(struct nand_chip *chip, unsigned int page,
1378 unsigned int offset_in_oob, void *buf, unsigned int len)
1379 {
1380 struct mtd_info *mtd = nand_to_mtd(chip);
1381
1382 if (len && !buf)
1383 return -EINVAL;
1384
1385 if (offset_in_oob + len > mtd->oobsize)
1386 return -EINVAL;
1387
1388 if (nand_has_exec_op(chip))
1389 return nand_read_page_op(chip, page,
1390 mtd->writesize + offset_in_oob,
1391 buf, len);
1392
1393 chip->legacy.cmdfunc(chip, NAND_CMD_READOOB, offset_in_oob, page);
1394 if (len)
1395 chip->legacy.read_buf(chip, buf, len);
1396
1397 return 0;
1398 }
1399 EXPORT_SYMBOL_GPL(nand_read_oob_op);
1400
nand_exec_prog_page_op(struct nand_chip * chip,unsigned int page,unsigned int offset_in_page,const void * buf,unsigned int len,bool prog)1401 static int nand_exec_prog_page_op(struct nand_chip *chip, unsigned int page,
1402 unsigned int offset_in_page, const void *buf,
1403 unsigned int len, bool prog)
1404 {
1405 const struct nand_interface_config *conf =
1406 nand_get_interface_config(chip);
1407 struct mtd_info *mtd = nand_to_mtd(chip);
1408 u8 addrs[5] = {};
1409 struct nand_op_instr instrs[] = {
1410 /*
1411 * The first instruction will be dropped if we're dealing
1412 * with a large page NAND and adjusted if we're dealing
1413 * with a small page NAND and the page offset is > 255.
1414 */
1415 NAND_OP_CMD(NAND_CMD_READ0, 0),
1416 NAND_OP_CMD(NAND_CMD_SEQIN, 0),
1417 NAND_OP_ADDR(0, addrs, NAND_COMMON_TIMING_NS(conf, tADL_min)),
1418 NAND_OP_DATA_OUT(len, buf, 0),
1419 NAND_OP_CMD(NAND_CMD_PAGEPROG,
1420 NAND_COMMON_TIMING_NS(conf, tWB_max)),
1421 NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tPROG_max), 0),
1422 };
1423 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1424 int naddrs = nand_fill_column_cycles(chip, addrs, offset_in_page);
1425
1426 if (naddrs < 0)
1427 return naddrs;
1428
1429 addrs[naddrs++] = page;
1430 addrs[naddrs++] = page >> 8;
1431 if (chip->options & NAND_ROW_ADDR_3)
1432 addrs[naddrs++] = page >> 16;
1433
1434 instrs[2].ctx.addr.naddrs = naddrs;
1435
1436 /* Drop the last two instructions if we're not programming the page. */
1437 if (!prog) {
1438 op.ninstrs -= 2;
1439 /* Also drop the DATA_OUT instruction if empty. */
1440 if (!len)
1441 op.ninstrs--;
1442 }
1443
1444 if (mtd->writesize <= 512) {
1445 /*
1446 * Small pages need some more tweaking: we have to adjust the
1447 * first instruction depending on the page offset we're trying
1448 * to access.
1449 */
1450 if (offset_in_page >= mtd->writesize)
1451 instrs[0].ctx.cmd.opcode = NAND_CMD_READOOB;
1452 else if (offset_in_page >= 256 &&
1453 !(chip->options & NAND_BUSWIDTH_16))
1454 instrs[0].ctx.cmd.opcode = NAND_CMD_READ1;
1455 } else {
1456 /*
1457 * Drop the first command if we're dealing with a large page
1458 * NAND.
1459 */
1460 op.instrs++;
1461 op.ninstrs--;
1462 }
1463
1464 return nand_exec_op(chip, &op);
1465 }
1466
1467 /**
1468 * nand_prog_page_begin_op - starts a PROG PAGE operation
1469 * @chip: The NAND chip
1470 * @page: page to write
1471 * @offset_in_page: offset within the page
1472 * @buf: buffer containing the data to write to the page
1473 * @len: length of the buffer
1474 *
1475 * This function issues the first half of a PROG PAGE operation.
1476 * This function does not select/unselect the CS line.
1477 *
1478 * Returns 0 on success, a negative error code otherwise.
1479 */
nand_prog_page_begin_op(struct nand_chip * chip,unsigned int page,unsigned int offset_in_page,const void * buf,unsigned int len)1480 int nand_prog_page_begin_op(struct nand_chip *chip, unsigned int page,
1481 unsigned int offset_in_page, const void *buf,
1482 unsigned int len)
1483 {
1484 struct mtd_info *mtd = nand_to_mtd(chip);
1485
1486 if (len && !buf)
1487 return -EINVAL;
1488
1489 if (offset_in_page + len > mtd->writesize + mtd->oobsize)
1490 return -EINVAL;
1491
1492 if (nand_has_exec_op(chip))
1493 return nand_exec_prog_page_op(chip, page, offset_in_page, buf,
1494 len, false);
1495
1496 chip->legacy.cmdfunc(chip, NAND_CMD_SEQIN, offset_in_page, page);
1497
1498 if (buf)
1499 chip->legacy.write_buf(chip, buf, len);
1500
1501 return 0;
1502 }
1503 EXPORT_SYMBOL_GPL(nand_prog_page_begin_op);
1504
1505 /**
1506 * nand_prog_page_end_op - ends a PROG PAGE operation
1507 * @chip: The NAND chip
1508 *
1509 * This function issues the second half of a PROG PAGE operation.
1510 * This function does not select/unselect the CS line.
1511 *
1512 * Returns 0 on success, a negative error code otherwise.
1513 */
nand_prog_page_end_op(struct nand_chip * chip)1514 int nand_prog_page_end_op(struct nand_chip *chip)
1515 {
1516 int ret;
1517 u8 status;
1518
1519 if (nand_has_exec_op(chip)) {
1520 const struct nand_interface_config *conf =
1521 nand_get_interface_config(chip);
1522 struct nand_op_instr instrs[] = {
1523 NAND_OP_CMD(NAND_CMD_PAGEPROG,
1524 NAND_COMMON_TIMING_NS(conf, tWB_max)),
1525 NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tPROG_max),
1526 0),
1527 };
1528 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1529
1530 ret = nand_exec_op(chip, &op);
1531 if (ret)
1532 return ret;
1533
1534 ret = nand_status_op(chip, &status);
1535 if (ret)
1536 return ret;
1537 } else {
1538 chip->legacy.cmdfunc(chip, NAND_CMD_PAGEPROG, -1, -1);
1539 ret = chip->legacy.waitfunc(chip);
1540 if (ret < 0)
1541 return ret;
1542
1543 status = ret;
1544 }
1545
1546 if (status & NAND_STATUS_FAIL)
1547 return -EIO;
1548
1549 return 0;
1550 }
1551 EXPORT_SYMBOL_GPL(nand_prog_page_end_op);
1552
1553 /**
1554 * nand_prog_page_op - Do a full PROG PAGE operation
1555 * @chip: The NAND chip
1556 * @page: page to write
1557 * @offset_in_page: offset within the page
1558 * @buf: buffer containing the data to write to the page
1559 * @len: length of the buffer
1560 *
1561 * This function issues a full PROG PAGE operation.
1562 * This function does not select/unselect the CS line.
1563 *
1564 * Returns 0 on success, a negative error code otherwise.
1565 */
nand_prog_page_op(struct nand_chip * chip,unsigned int page,unsigned int offset_in_page,const void * buf,unsigned int len)1566 int nand_prog_page_op(struct nand_chip *chip, unsigned int page,
1567 unsigned int offset_in_page, const void *buf,
1568 unsigned int len)
1569 {
1570 struct mtd_info *mtd = nand_to_mtd(chip);
1571 u8 status;
1572 int ret;
1573
1574 if (!len || !buf)
1575 return -EINVAL;
1576
1577 if (offset_in_page + len > mtd->writesize + mtd->oobsize)
1578 return -EINVAL;
1579
1580 if (nand_has_exec_op(chip)) {
1581 ret = nand_exec_prog_page_op(chip, page, offset_in_page, buf,
1582 len, true);
1583 if (ret)
1584 return ret;
1585
1586 ret = nand_status_op(chip, &status);
1587 if (ret)
1588 return ret;
1589 } else {
1590 chip->legacy.cmdfunc(chip, NAND_CMD_SEQIN, offset_in_page,
1591 page);
1592 chip->legacy.write_buf(chip, buf, len);
1593 chip->legacy.cmdfunc(chip, NAND_CMD_PAGEPROG, -1, -1);
1594 ret = chip->legacy.waitfunc(chip);
1595 if (ret < 0)
1596 return ret;
1597
1598 status = ret;
1599 }
1600
1601 if (status & NAND_STATUS_FAIL)
1602 return -EIO;
1603
1604 return 0;
1605 }
1606 EXPORT_SYMBOL_GPL(nand_prog_page_op);
1607
1608 /**
1609 * nand_change_write_column_op - Do a CHANGE WRITE COLUMN operation
1610 * @chip: The NAND chip
1611 * @offset_in_page: offset within the page
1612 * @buf: buffer containing the data to send to the NAND
1613 * @len: length of the buffer
1614 * @force_8bit: force 8-bit bus access
1615 *
1616 * This function issues a CHANGE WRITE COLUMN operation.
1617 * This function does not select/unselect the CS line.
1618 *
1619 * Returns 0 on success, a negative error code otherwise.
1620 */
nand_change_write_column_op(struct nand_chip * chip,unsigned int offset_in_page,const void * buf,unsigned int len,bool force_8bit)1621 int nand_change_write_column_op(struct nand_chip *chip,
1622 unsigned int offset_in_page,
1623 const void *buf, unsigned int len,
1624 bool force_8bit)
1625 {
1626 struct mtd_info *mtd = nand_to_mtd(chip);
1627
1628 if (len && !buf)
1629 return -EINVAL;
1630
1631 if (offset_in_page + len > mtd->writesize + mtd->oobsize)
1632 return -EINVAL;
1633
1634 /* Small page NANDs do not support column change. */
1635 if (mtd->writesize <= 512)
1636 return -ENOTSUPP;
1637
1638 if (nand_has_exec_op(chip)) {
1639 const struct nand_interface_config *conf =
1640 nand_get_interface_config(chip);
1641 u8 addrs[2];
1642 struct nand_op_instr instrs[] = {
1643 NAND_OP_CMD(NAND_CMD_RNDIN, 0),
1644 NAND_OP_ADDR(2, addrs, NAND_COMMON_TIMING_NS(conf, tCCS_min)),
1645 NAND_OP_DATA_OUT(len, buf, 0),
1646 };
1647 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1648 int ret;
1649
1650 ret = nand_fill_column_cycles(chip, addrs, offset_in_page);
1651 if (ret < 0)
1652 return ret;
1653
1654 instrs[2].ctx.data.force_8bit = force_8bit;
1655
1656 /* Drop the DATA_OUT instruction if len is set to 0. */
1657 if (!len)
1658 op.ninstrs--;
1659
1660 return nand_exec_op(chip, &op);
1661 }
1662
1663 chip->legacy.cmdfunc(chip, NAND_CMD_RNDIN, offset_in_page, -1);
1664 if (len)
1665 chip->legacy.write_buf(chip, buf, len);
1666
1667 return 0;
1668 }
1669 EXPORT_SYMBOL_GPL(nand_change_write_column_op);
1670
1671 /**
1672 * nand_readid_op - Do a READID operation
1673 * @chip: The NAND chip
1674 * @addr: address cycle to pass after the READID command
1675 * @buf: buffer used to store the ID
1676 * @len: length of the buffer
1677 *
1678 * This function sends a READID command and reads back the ID returned by the
1679 * NAND.
1680 * This function does not select/unselect the CS line.
1681 *
1682 * Returns 0 on success, a negative error code otherwise.
1683 */
nand_readid_op(struct nand_chip * chip,u8 addr,void * buf,unsigned int len)1684 int nand_readid_op(struct nand_chip *chip, u8 addr, void *buf,
1685 unsigned int len)
1686 {
1687 unsigned int i;
1688 u8 *id = buf, *ddrbuf = NULL;
1689
1690 if (len && !buf)
1691 return -EINVAL;
1692
1693 if (nand_has_exec_op(chip)) {
1694 const struct nand_interface_config *conf =
1695 nand_get_interface_config(chip);
1696 struct nand_op_instr instrs[] = {
1697 NAND_OP_CMD(NAND_CMD_READID, 0),
1698 NAND_OP_ADDR(1, &addr,
1699 NAND_COMMON_TIMING_NS(conf, tADL_min)),
1700 NAND_OP_8BIT_DATA_IN(len, buf, 0),
1701 };
1702 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1703 int ret;
1704
1705 /* READ_ID data bytes are received twice in NV-DDR mode */
1706 if (len && nand_interface_is_nvddr(conf)) {
1707 ddrbuf = kzalloc(len * 2, GFP_KERNEL);
1708 if (!ddrbuf)
1709 return -ENOMEM;
1710
1711 instrs[2].ctx.data.len *= 2;
1712 instrs[2].ctx.data.buf.in = ddrbuf;
1713 }
1714
1715 /* Drop the DATA_IN instruction if len is set to 0. */
1716 if (!len)
1717 op.ninstrs--;
1718
1719 ret = nand_exec_op(chip, &op);
1720 if (!ret && len && nand_interface_is_nvddr(conf)) {
1721 for (i = 0; i < len; i++)
1722 id[i] = ddrbuf[i * 2];
1723 }
1724
1725 kfree(ddrbuf);
1726
1727 return ret;
1728 }
1729
1730 chip->legacy.cmdfunc(chip, NAND_CMD_READID, addr, -1);
1731
1732 for (i = 0; i < len; i++)
1733 id[i] = chip->legacy.read_byte(chip);
1734
1735 return 0;
1736 }
1737 EXPORT_SYMBOL_GPL(nand_readid_op);
1738
1739 /**
1740 * nand_status_op - Do a STATUS operation
1741 * @chip: The NAND chip
1742 * @status: out variable to store the NAND status
1743 *
1744 * This function sends a STATUS command and reads back the status returned by
1745 * the NAND.
1746 * This function does not select/unselect the CS line.
1747 *
1748 * Returns 0 on success, a negative error code otherwise.
1749 */
nand_status_op(struct nand_chip * chip,u8 * status)1750 int nand_status_op(struct nand_chip *chip, u8 *status)
1751 {
1752 if (nand_has_exec_op(chip)) {
1753 const struct nand_interface_config *conf =
1754 nand_get_interface_config(chip);
1755 u8 ddrstatus[2];
1756 struct nand_op_instr instrs[] = {
1757 NAND_OP_CMD(NAND_CMD_STATUS,
1758 NAND_COMMON_TIMING_NS(conf, tADL_min)),
1759 NAND_OP_8BIT_DATA_IN(1, status, 0),
1760 };
1761 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1762 int ret;
1763
1764 /* The status data byte will be received twice in NV-DDR mode */
1765 if (status && nand_interface_is_nvddr(conf)) {
1766 instrs[1].ctx.data.len *= 2;
1767 instrs[1].ctx.data.buf.in = ddrstatus;
1768 }
1769
1770 if (!status)
1771 op.ninstrs--;
1772
1773 ret = nand_exec_op(chip, &op);
1774 if (!ret && status && nand_interface_is_nvddr(conf))
1775 *status = ddrstatus[0];
1776
1777 return ret;
1778 }
1779
1780 chip->legacy.cmdfunc(chip, NAND_CMD_STATUS, -1, -1);
1781 if (status)
1782 *status = chip->legacy.read_byte(chip);
1783
1784 return 0;
1785 }
1786 EXPORT_SYMBOL_GPL(nand_status_op);
1787
1788 /**
1789 * nand_exit_status_op - Exit a STATUS operation
1790 * @chip: The NAND chip
1791 *
1792 * This function sends a READ0 command to cancel the effect of the STATUS
1793 * command to avoid reading only the status until a new read command is sent.
1794 *
1795 * This function does not select/unselect the CS line.
1796 *
1797 * Returns 0 on success, a negative error code otherwise.
1798 */
nand_exit_status_op(struct nand_chip * chip)1799 int nand_exit_status_op(struct nand_chip *chip)
1800 {
1801 if (nand_has_exec_op(chip)) {
1802 struct nand_op_instr instrs[] = {
1803 NAND_OP_CMD(NAND_CMD_READ0, 0),
1804 };
1805 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1806
1807 return nand_exec_op(chip, &op);
1808 }
1809
1810 chip->legacy.cmdfunc(chip, NAND_CMD_READ0, -1, -1);
1811
1812 return 0;
1813 }
1814
1815 /**
1816 * nand_erase_op - Do an erase operation
1817 * @chip: The NAND chip
1818 * @eraseblock: block to erase
1819 *
1820 * This function sends an ERASE command and waits for the NAND to be ready
1821 * before returning.
1822 * This function does not select/unselect the CS line.
1823 *
1824 * Returns 0 on success, a negative error code otherwise.
1825 */
nand_erase_op(struct nand_chip * chip,unsigned int eraseblock)1826 int nand_erase_op(struct nand_chip *chip, unsigned int eraseblock)
1827 {
1828 unsigned int page = eraseblock <<
1829 (chip->phys_erase_shift - chip->page_shift);
1830 int ret;
1831 u8 status;
1832
1833 if (nand_has_exec_op(chip)) {
1834 const struct nand_interface_config *conf =
1835 nand_get_interface_config(chip);
1836 u8 addrs[3] = { page, page >> 8, page >> 16 };
1837 struct nand_op_instr instrs[] = {
1838 NAND_OP_CMD(NAND_CMD_ERASE1, 0),
1839 NAND_OP_ADDR(2, addrs, 0),
1840 NAND_OP_CMD(NAND_CMD_ERASE2,
1841 NAND_COMMON_TIMING_NS(conf, tWB_max)),
1842 NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tBERS_max),
1843 0),
1844 };
1845 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1846
1847 if (chip->options & NAND_ROW_ADDR_3)
1848 instrs[1].ctx.addr.naddrs++;
1849
1850 ret = nand_exec_op(chip, &op);
1851 if (ret)
1852 return ret;
1853
1854 ret = nand_status_op(chip, &status);
1855 if (ret)
1856 return ret;
1857 } else {
1858 chip->legacy.cmdfunc(chip, NAND_CMD_ERASE1, -1, page);
1859 chip->legacy.cmdfunc(chip, NAND_CMD_ERASE2, -1, -1);
1860
1861 ret = chip->legacy.waitfunc(chip);
1862 if (ret < 0)
1863 return ret;
1864
1865 status = ret;
1866 }
1867
1868 if (status & NAND_STATUS_FAIL)
1869 return -EIO;
1870
1871 return 0;
1872 }
1873 EXPORT_SYMBOL_GPL(nand_erase_op);
1874
1875 /**
1876 * nand_set_features_op - Do a SET FEATURES operation
1877 * @chip: The NAND chip
1878 * @feature: feature id
1879 * @data: 4 bytes of data
1880 *
1881 * This function sends a SET FEATURES command and waits for the NAND to be
1882 * ready before returning.
1883 * This function does not select/unselect the CS line.
1884 *
1885 * Returns 0 on success, a negative error code otherwise.
1886 */
nand_set_features_op(struct nand_chip * chip,u8 feature,const void * data)1887 static int nand_set_features_op(struct nand_chip *chip, u8 feature,
1888 const void *data)
1889 {
1890 const u8 *params = data;
1891 int i, ret;
1892
1893 if (nand_has_exec_op(chip)) {
1894 const struct nand_interface_config *conf =
1895 nand_get_interface_config(chip);
1896 struct nand_op_instr instrs[] = {
1897 NAND_OP_CMD(NAND_CMD_SET_FEATURES, 0),
1898 NAND_OP_ADDR(1, &feature, NAND_COMMON_TIMING_NS(conf,
1899 tADL_min)),
1900 NAND_OP_8BIT_DATA_OUT(ONFI_SUBFEATURE_PARAM_LEN, data,
1901 NAND_COMMON_TIMING_NS(conf,
1902 tWB_max)),
1903 NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tFEAT_max),
1904 0),
1905 };
1906 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1907
1908 return nand_exec_op(chip, &op);
1909 }
1910
1911 chip->legacy.cmdfunc(chip, NAND_CMD_SET_FEATURES, feature, -1);
1912 for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
1913 chip->legacy.write_byte(chip, params[i]);
1914
1915 ret = chip->legacy.waitfunc(chip);
1916 if (ret < 0)
1917 return ret;
1918
1919 if (ret & NAND_STATUS_FAIL)
1920 return -EIO;
1921
1922 return 0;
1923 }
1924
1925 /**
1926 * nand_get_features_op - Do a GET FEATURES operation
1927 * @chip: The NAND chip
1928 * @feature: feature id
1929 * @data: 4 bytes of data
1930 *
1931 * This function sends a GET FEATURES command and waits for the NAND to be
1932 * ready before returning.
1933 * This function does not select/unselect the CS line.
1934 *
1935 * Returns 0 on success, a negative error code otherwise.
1936 */
nand_get_features_op(struct nand_chip * chip,u8 feature,void * data)1937 static int nand_get_features_op(struct nand_chip *chip, u8 feature,
1938 void *data)
1939 {
1940 u8 *params = data, ddrbuf[ONFI_SUBFEATURE_PARAM_LEN * 2];
1941 int i;
1942
1943 if (nand_has_exec_op(chip)) {
1944 const struct nand_interface_config *conf =
1945 nand_get_interface_config(chip);
1946 struct nand_op_instr instrs[] = {
1947 NAND_OP_CMD(NAND_CMD_GET_FEATURES, 0),
1948 NAND_OP_ADDR(1, &feature,
1949 NAND_COMMON_TIMING_NS(conf, tWB_max)),
1950 NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tFEAT_max),
1951 NAND_COMMON_TIMING_NS(conf, tRR_min)),
1952 NAND_OP_8BIT_DATA_IN(ONFI_SUBFEATURE_PARAM_LEN,
1953 data, 0),
1954 };
1955 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1956 int ret;
1957
1958 /* GET_FEATURE data bytes are received twice in NV-DDR mode */
1959 if (nand_interface_is_nvddr(conf)) {
1960 instrs[3].ctx.data.len *= 2;
1961 instrs[3].ctx.data.buf.in = ddrbuf;
1962 }
1963
1964 ret = nand_exec_op(chip, &op);
1965 if (nand_interface_is_nvddr(conf)) {
1966 for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; i++)
1967 params[i] = ddrbuf[i * 2];
1968 }
1969
1970 return ret;
1971 }
1972
1973 chip->legacy.cmdfunc(chip, NAND_CMD_GET_FEATURES, feature, -1);
1974 for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
1975 params[i] = chip->legacy.read_byte(chip);
1976
1977 return 0;
1978 }
1979
nand_wait_rdy_op(struct nand_chip * chip,unsigned int timeout_ms,unsigned int delay_ns)1980 static int nand_wait_rdy_op(struct nand_chip *chip, unsigned int timeout_ms,
1981 unsigned int delay_ns)
1982 {
1983 if (nand_has_exec_op(chip)) {
1984 struct nand_op_instr instrs[] = {
1985 NAND_OP_WAIT_RDY(PSEC_TO_MSEC(timeout_ms),
1986 PSEC_TO_NSEC(delay_ns)),
1987 };
1988 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1989
1990 return nand_exec_op(chip, &op);
1991 }
1992
1993 /* Apply delay or wait for ready/busy pin */
1994 if (!chip->legacy.dev_ready)
1995 udelay(chip->legacy.chip_delay);
1996 else
1997 nand_wait_ready(chip);
1998
1999 return 0;
2000 }
2001
2002 /**
2003 * nand_reset_op - Do a reset operation
2004 * @chip: The NAND chip
2005 *
2006 * This function sends a RESET command and waits for the NAND to be ready
2007 * before returning.
2008 * This function does not select/unselect the CS line.
2009 *
2010 * Returns 0 on success, a negative error code otherwise.
2011 */
nand_reset_op(struct nand_chip * chip)2012 int nand_reset_op(struct nand_chip *chip)
2013 {
2014 if (nand_has_exec_op(chip)) {
2015 const struct nand_interface_config *conf =
2016 nand_get_interface_config(chip);
2017 struct nand_op_instr instrs[] = {
2018 NAND_OP_CMD(NAND_CMD_RESET,
2019 NAND_COMMON_TIMING_NS(conf, tWB_max)),
2020 NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tRST_max),
2021 0),
2022 };
2023 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
2024
2025 return nand_exec_op(chip, &op);
2026 }
2027
2028 chip->legacy.cmdfunc(chip, NAND_CMD_RESET, -1, -1);
2029
2030 return 0;
2031 }
2032 EXPORT_SYMBOL_GPL(nand_reset_op);
2033
2034 /**
2035 * nand_read_data_op - Read data from the NAND
2036 * @chip: The NAND chip
2037 * @buf: buffer used to store the data
2038 * @len: length of the buffer
2039 * @force_8bit: force 8-bit bus access
2040 * @check_only: do not actually run the command, only checks if the
2041 * controller driver supports it
2042 *
2043 * This function does a raw data read on the bus. Usually used after launching
2044 * another NAND operation like nand_read_page_op().
2045 * This function does not select/unselect the CS line.
2046 *
2047 * Returns 0 on success, a negative error code otherwise.
2048 */
nand_read_data_op(struct nand_chip * chip,void * buf,unsigned int len,bool force_8bit,bool check_only)2049 int nand_read_data_op(struct nand_chip *chip, void *buf, unsigned int len,
2050 bool force_8bit, bool check_only)
2051 {
2052 if (!len || !buf)
2053 return -EINVAL;
2054
2055 if (nand_has_exec_op(chip)) {
2056 const struct nand_interface_config *conf =
2057 nand_get_interface_config(chip);
2058 struct nand_op_instr instrs[] = {
2059 NAND_OP_DATA_IN(len, buf, 0),
2060 };
2061 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
2062 u8 *ddrbuf = NULL;
2063 int ret, i;
2064
2065 instrs[0].ctx.data.force_8bit = force_8bit;
2066
2067 /*
2068 * Parameter payloads (ID, status, features, etc) do not go
2069 * through the same pipeline as regular data, hence the
2070 * force_8bit flag must be set and this also indicates that in
2071 * case NV-DDR timings are being used the data will be received
2072 * twice.
2073 */
2074 if (force_8bit && nand_interface_is_nvddr(conf)) {
2075 ddrbuf = kzalloc(len * 2, GFP_KERNEL);
2076 if (!ddrbuf)
2077 return -ENOMEM;
2078
2079 instrs[0].ctx.data.len *= 2;
2080 instrs[0].ctx.data.buf.in = ddrbuf;
2081 }
2082
2083 if (check_only) {
2084 ret = nand_check_op(chip, &op);
2085 kfree(ddrbuf);
2086 return ret;
2087 }
2088
2089 ret = nand_exec_op(chip, &op);
2090 if (!ret && force_8bit && nand_interface_is_nvddr(conf)) {
2091 u8 *dst = buf;
2092
2093 for (i = 0; i < len; i++)
2094 dst[i] = ddrbuf[i * 2];
2095 }
2096
2097 kfree(ddrbuf);
2098
2099 return ret;
2100 }
2101
2102 if (check_only)
2103 return 0;
2104
2105 if (force_8bit) {
2106 u8 *p = buf;
2107 unsigned int i;
2108
2109 for (i = 0; i < len; i++)
2110 p[i] = chip->legacy.read_byte(chip);
2111 } else {
2112 chip->legacy.read_buf(chip, buf, len);
2113 }
2114
2115 return 0;
2116 }
2117 EXPORT_SYMBOL_GPL(nand_read_data_op);
2118
2119 /**
2120 * nand_write_data_op - Write data from the NAND
2121 * @chip: The NAND chip
2122 * @buf: buffer containing the data to send on the bus
2123 * @len: length of the buffer
2124 * @force_8bit: force 8-bit bus access
2125 *
2126 * This function does a raw data write on the bus. Usually used after launching
2127 * another NAND operation like nand_write_page_begin_op().
2128 * This function does not select/unselect the CS line.
2129 *
2130 * Returns 0 on success, a negative error code otherwise.
2131 */
nand_write_data_op(struct nand_chip * chip,const void * buf,unsigned int len,bool force_8bit)2132 int nand_write_data_op(struct nand_chip *chip, const void *buf,
2133 unsigned int len, bool force_8bit)
2134 {
2135 if (!len || !buf)
2136 return -EINVAL;
2137
2138 if (nand_has_exec_op(chip)) {
2139 struct nand_op_instr instrs[] = {
2140 NAND_OP_DATA_OUT(len, buf, 0),
2141 };
2142 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
2143
2144 instrs[0].ctx.data.force_8bit = force_8bit;
2145
2146 return nand_exec_op(chip, &op);
2147 }
2148
2149 if (force_8bit) {
2150 const u8 *p = buf;
2151 unsigned int i;
2152
2153 for (i = 0; i < len; i++)
2154 chip->legacy.write_byte(chip, p[i]);
2155 } else {
2156 chip->legacy.write_buf(chip, buf, len);
2157 }
2158
2159 return 0;
2160 }
2161 EXPORT_SYMBOL_GPL(nand_write_data_op);
2162
2163 /**
2164 * struct nand_op_parser_ctx - Context used by the parser
2165 * @instrs: array of all the instructions that must be addressed
2166 * @ninstrs: length of the @instrs array
2167 * @subop: Sub-operation to be passed to the NAND controller
2168 *
2169 * This structure is used by the core to split NAND operations into
2170 * sub-operations that can be handled by the NAND controller.
2171 */
2172 struct nand_op_parser_ctx {
2173 const struct nand_op_instr *instrs;
2174 unsigned int ninstrs;
2175 struct nand_subop subop;
2176 };
2177
2178 /**
2179 * nand_op_parser_must_split_instr - Checks if an instruction must be split
2180 * @pat: the parser pattern element that matches @instr
2181 * @instr: pointer to the instruction to check
2182 * @start_offset: this is an in/out parameter. If @instr has already been
2183 * split, then @start_offset is the offset from which to start
2184 * (either an address cycle or an offset in the data buffer).
2185 * Conversely, if the function returns true (ie. instr must be
2186 * split), this parameter is updated to point to the first
2187 * data/address cycle that has not been taken care of.
2188 *
2189 * Some NAND controllers are limited and cannot send X address cycles with a
2190 * unique operation, or cannot read/write more than Y bytes at the same time.
2191 * In this case, split the instruction that does not fit in a single
2192 * controller-operation into two or more chunks.
2193 *
2194 * Returns true if the instruction must be split, false otherwise.
2195 * The @start_offset parameter is also updated to the offset at which the next
2196 * bundle of instruction must start (if an address or a data instruction).
2197 */
2198 static bool
nand_op_parser_must_split_instr(const struct nand_op_parser_pattern_elem * pat,const struct nand_op_instr * instr,unsigned int * start_offset)2199 nand_op_parser_must_split_instr(const struct nand_op_parser_pattern_elem *pat,
2200 const struct nand_op_instr *instr,
2201 unsigned int *start_offset)
2202 {
2203 switch (pat->type) {
2204 case NAND_OP_ADDR_INSTR:
2205 if (!pat->ctx.addr.maxcycles)
2206 break;
2207
2208 if (instr->ctx.addr.naddrs - *start_offset >
2209 pat->ctx.addr.maxcycles) {
2210 *start_offset += pat->ctx.addr.maxcycles;
2211 return true;
2212 }
2213 break;
2214
2215 case NAND_OP_DATA_IN_INSTR:
2216 case NAND_OP_DATA_OUT_INSTR:
2217 if (!pat->ctx.data.maxlen)
2218 break;
2219
2220 if (instr->ctx.data.len - *start_offset >
2221 pat->ctx.data.maxlen) {
2222 *start_offset += pat->ctx.data.maxlen;
2223 return true;
2224 }
2225 break;
2226
2227 default:
2228 break;
2229 }
2230
2231 return false;
2232 }
2233
2234 /**
2235 * nand_op_parser_match_pat - Checks if a pattern matches the instructions
2236 * remaining in the parser context
2237 * @pat: the pattern to test
2238 * @ctx: the parser context structure to match with the pattern @pat
2239 *
2240 * Check if @pat matches the set or a sub-set of instructions remaining in @ctx.
2241 * Returns true if this is the case, false ortherwise. When true is returned,
2242 * @ctx->subop is updated with the set of instructions to be passed to the
2243 * controller driver.
2244 */
2245 static bool
nand_op_parser_match_pat(const struct nand_op_parser_pattern * pat,struct nand_op_parser_ctx * ctx)2246 nand_op_parser_match_pat(const struct nand_op_parser_pattern *pat,
2247 struct nand_op_parser_ctx *ctx)
2248 {
2249 unsigned int instr_offset = ctx->subop.first_instr_start_off;
2250 const struct nand_op_instr *end = ctx->instrs + ctx->ninstrs;
2251 const struct nand_op_instr *instr = ctx->subop.instrs;
2252 unsigned int i, ninstrs;
2253
2254 for (i = 0, ninstrs = 0; i < pat->nelems && instr < end; i++) {
2255 /*
2256 * The pattern instruction does not match the operation
2257 * instruction. If the instruction is marked optional in the
2258 * pattern definition, we skip the pattern element and continue
2259 * to the next one. If the element is mandatory, there's no
2260 * match and we can return false directly.
2261 */
2262 if (instr->type != pat->elems[i].type) {
2263 if (!pat->elems[i].optional)
2264 return false;
2265
2266 continue;
2267 }
2268
2269 /*
2270 * Now check the pattern element constraints. If the pattern is
2271 * not able to handle the whole instruction in a single step,
2272 * we have to split it.
2273 * The last_instr_end_off value comes back updated to point to
2274 * the position where we have to split the instruction (the
2275 * start of the next subop chunk).
2276 */
2277 if (nand_op_parser_must_split_instr(&pat->elems[i], instr,
2278 &instr_offset)) {
2279 ninstrs++;
2280 i++;
2281 break;
2282 }
2283
2284 instr++;
2285 ninstrs++;
2286 instr_offset = 0;
2287 }
2288
2289 /*
2290 * This can happen if all instructions of a pattern are optional.
2291 * Still, if there's not at least one instruction handled by this
2292 * pattern, this is not a match, and we should try the next one (if
2293 * any).
2294 */
2295 if (!ninstrs)
2296 return false;
2297
2298 /*
2299 * We had a match on the pattern head, but the pattern may be longer
2300 * than the instructions we're asked to execute. We need to make sure
2301 * there's no mandatory elements in the pattern tail.
2302 */
2303 for (; i < pat->nelems; i++) {
2304 if (!pat->elems[i].optional)
2305 return false;
2306 }
2307
2308 /*
2309 * We have a match: update the subop structure accordingly and return
2310 * true.
2311 */
2312 ctx->subop.ninstrs = ninstrs;
2313 ctx->subop.last_instr_end_off = instr_offset;
2314
2315 return true;
2316 }
2317
2318 #if IS_ENABLED(CONFIG_DYNAMIC_DEBUG) || defined(DEBUG)
nand_op_parser_trace(const struct nand_op_parser_ctx * ctx)2319 static void nand_op_parser_trace(const struct nand_op_parser_ctx *ctx)
2320 {
2321 const struct nand_op_instr *instr;
2322 char *prefix = " ";
2323 unsigned int i;
2324
2325 pr_debug("executing subop (CS%d):\n", ctx->subop.cs);
2326
2327 for (i = 0; i < ctx->ninstrs; i++) {
2328 instr = &ctx->instrs[i];
2329
2330 if (instr == &ctx->subop.instrs[0])
2331 prefix = " ->";
2332
2333 nand_op_trace(prefix, instr);
2334
2335 if (instr == &ctx->subop.instrs[ctx->subop.ninstrs - 1])
2336 prefix = " ";
2337 }
2338 }
2339 #else
nand_op_parser_trace(const struct nand_op_parser_ctx * ctx)2340 static void nand_op_parser_trace(const struct nand_op_parser_ctx *ctx)
2341 {
2342 /* NOP */
2343 }
2344 #endif
2345
nand_op_parser_cmp_ctx(const struct nand_op_parser_ctx * a,const struct nand_op_parser_ctx * b)2346 static int nand_op_parser_cmp_ctx(const struct nand_op_parser_ctx *a,
2347 const struct nand_op_parser_ctx *b)
2348 {
2349 if (a->subop.ninstrs < b->subop.ninstrs)
2350 return -1;
2351 else if (a->subop.ninstrs > b->subop.ninstrs)
2352 return 1;
2353
2354 if (a->subop.last_instr_end_off < b->subop.last_instr_end_off)
2355 return -1;
2356 else if (a->subop.last_instr_end_off > b->subop.last_instr_end_off)
2357 return 1;
2358
2359 return 0;
2360 }
2361
2362 /**
2363 * nand_op_parser_exec_op - exec_op parser
2364 * @chip: the NAND chip
2365 * @parser: patterns description provided by the controller driver
2366 * @op: the NAND operation to address
2367 * @check_only: when true, the function only checks if @op can be handled but
2368 * does not execute the operation
2369 *
2370 * Helper function designed to ease integration of NAND controller drivers that
2371 * only support a limited set of instruction sequences. The supported sequences
2372 * are described in @parser, and the framework takes care of splitting @op into
2373 * multiple sub-operations (if required) and pass them back to the ->exec()
2374 * callback of the matching pattern if @check_only is set to false.
2375 *
2376 * NAND controller drivers should call this function from their own ->exec_op()
2377 * implementation.
2378 *
2379 * Returns 0 on success, a negative error code otherwise. A failure can be
2380 * caused by an unsupported operation (none of the supported patterns is able
2381 * to handle the requested operation), or an error returned by one of the
2382 * matching pattern->exec() hook.
2383 */
nand_op_parser_exec_op(struct nand_chip * chip,const struct nand_op_parser * parser,const struct nand_operation * op,bool check_only)2384 int nand_op_parser_exec_op(struct nand_chip *chip,
2385 const struct nand_op_parser *parser,
2386 const struct nand_operation *op, bool check_only)
2387 {
2388 struct nand_op_parser_ctx ctx = {
2389 .subop.cs = op->cs,
2390 .subop.instrs = op->instrs,
2391 .instrs = op->instrs,
2392 .ninstrs = op->ninstrs,
2393 };
2394 unsigned int i;
2395
2396 while (ctx.subop.instrs < op->instrs + op->ninstrs) {
2397 const struct nand_op_parser_pattern *pattern;
2398 struct nand_op_parser_ctx best_ctx;
2399 int ret, best_pattern = -1;
2400
2401 for (i = 0; i < parser->npatterns; i++) {
2402 struct nand_op_parser_ctx test_ctx = ctx;
2403
2404 pattern = &parser->patterns[i];
2405 if (!nand_op_parser_match_pat(pattern, &test_ctx))
2406 continue;
2407
2408 if (best_pattern >= 0 &&
2409 nand_op_parser_cmp_ctx(&test_ctx, &best_ctx) <= 0)
2410 continue;
2411
2412 best_pattern = i;
2413 best_ctx = test_ctx;
2414 }
2415
2416 if (best_pattern < 0) {
2417 pr_debug("->exec_op() parser: pattern not found!\n");
2418 return -ENOTSUPP;
2419 }
2420
2421 ctx = best_ctx;
2422 nand_op_parser_trace(&ctx);
2423
2424 if (!check_only) {
2425 pattern = &parser->patterns[best_pattern];
2426 ret = pattern->exec(chip, &ctx.subop);
2427 if (ret)
2428 return ret;
2429 }
2430
2431 /*
2432 * Update the context structure by pointing to the start of the
2433 * next subop.
2434 */
2435 ctx.subop.instrs = ctx.subop.instrs + ctx.subop.ninstrs;
2436 if (ctx.subop.last_instr_end_off)
2437 ctx.subop.instrs -= 1;
2438
2439 ctx.subop.first_instr_start_off = ctx.subop.last_instr_end_off;
2440 }
2441
2442 return 0;
2443 }
2444 EXPORT_SYMBOL_GPL(nand_op_parser_exec_op);
2445
nand_instr_is_data(const struct nand_op_instr * instr)2446 static bool nand_instr_is_data(const struct nand_op_instr *instr)
2447 {
2448 return instr && (instr->type == NAND_OP_DATA_IN_INSTR ||
2449 instr->type == NAND_OP_DATA_OUT_INSTR);
2450 }
2451
nand_subop_instr_is_valid(const struct nand_subop * subop,unsigned int instr_idx)2452 static bool nand_subop_instr_is_valid(const struct nand_subop *subop,
2453 unsigned int instr_idx)
2454 {
2455 return subop && instr_idx < subop->ninstrs;
2456 }
2457
nand_subop_get_start_off(const struct nand_subop * subop,unsigned int instr_idx)2458 static unsigned int nand_subop_get_start_off(const struct nand_subop *subop,
2459 unsigned int instr_idx)
2460 {
2461 if (instr_idx)
2462 return 0;
2463
2464 return subop->first_instr_start_off;
2465 }
2466
2467 /**
2468 * nand_subop_get_addr_start_off - Get the start offset in an address array
2469 * @subop: The entire sub-operation
2470 * @instr_idx: Index of the instruction inside the sub-operation
2471 *
2472 * During driver development, one could be tempted to directly use the
2473 * ->addr.addrs field of address instructions. This is wrong as address
2474 * instructions might be split.
2475 *
2476 * Given an address instruction, returns the offset of the first cycle to issue.
2477 */
nand_subop_get_addr_start_off(const struct nand_subop * subop,unsigned int instr_idx)2478 unsigned int nand_subop_get_addr_start_off(const struct nand_subop *subop,
2479 unsigned int instr_idx)
2480 {
2481 if (WARN_ON(!nand_subop_instr_is_valid(subop, instr_idx) ||
2482 subop->instrs[instr_idx].type != NAND_OP_ADDR_INSTR))
2483 return 0;
2484
2485 return nand_subop_get_start_off(subop, instr_idx);
2486 }
2487 EXPORT_SYMBOL_GPL(nand_subop_get_addr_start_off);
2488
2489 /**
2490 * nand_subop_get_num_addr_cyc - Get the remaining address cycles to assert
2491 * @subop: The entire sub-operation
2492 * @instr_idx: Index of the instruction inside the sub-operation
2493 *
2494 * During driver development, one could be tempted to directly use the
2495 * ->addr->naddrs field of a data instruction. This is wrong as instructions
2496 * might be split.
2497 *
2498 * Given an address instruction, returns the number of address cycle to issue.
2499 */
nand_subop_get_num_addr_cyc(const struct nand_subop * subop,unsigned int instr_idx)2500 unsigned int nand_subop_get_num_addr_cyc(const struct nand_subop *subop,
2501 unsigned int instr_idx)
2502 {
2503 int start_off, end_off;
2504
2505 if (WARN_ON(!nand_subop_instr_is_valid(subop, instr_idx) ||
2506 subop->instrs[instr_idx].type != NAND_OP_ADDR_INSTR))
2507 return 0;
2508
2509 start_off = nand_subop_get_addr_start_off(subop, instr_idx);
2510
2511 if (instr_idx == subop->ninstrs - 1 &&
2512 subop->last_instr_end_off)
2513 end_off = subop->last_instr_end_off;
2514 else
2515 end_off = subop->instrs[instr_idx].ctx.addr.naddrs;
2516
2517 return end_off - start_off;
2518 }
2519 EXPORT_SYMBOL_GPL(nand_subop_get_num_addr_cyc);
2520
2521 /**
2522 * nand_subop_get_data_start_off - Get the start offset in a data array
2523 * @subop: The entire sub-operation
2524 * @instr_idx: Index of the instruction inside the sub-operation
2525 *
2526 * During driver development, one could be tempted to directly use the
2527 * ->data->buf.{in,out} field of data instructions. This is wrong as data
2528 * instructions might be split.
2529 *
2530 * Given a data instruction, returns the offset to start from.
2531 */
nand_subop_get_data_start_off(const struct nand_subop * subop,unsigned int instr_idx)2532 unsigned int nand_subop_get_data_start_off(const struct nand_subop *subop,
2533 unsigned int instr_idx)
2534 {
2535 if (WARN_ON(!nand_subop_instr_is_valid(subop, instr_idx) ||
2536 !nand_instr_is_data(&subop->instrs[instr_idx])))
2537 return 0;
2538
2539 return nand_subop_get_start_off(subop, instr_idx);
2540 }
2541 EXPORT_SYMBOL_GPL(nand_subop_get_data_start_off);
2542
2543 /**
2544 * nand_subop_get_data_len - Get the number of bytes to retrieve
2545 * @subop: The entire sub-operation
2546 * @instr_idx: Index of the instruction inside the sub-operation
2547 *
2548 * During driver development, one could be tempted to directly use the
2549 * ->data->len field of a data instruction. This is wrong as data instructions
2550 * might be split.
2551 *
2552 * Returns the length of the chunk of data to send/receive.
2553 */
nand_subop_get_data_len(const struct nand_subop * subop,unsigned int instr_idx)2554 unsigned int nand_subop_get_data_len(const struct nand_subop *subop,
2555 unsigned int instr_idx)
2556 {
2557 int start_off = 0, end_off;
2558
2559 if (WARN_ON(!nand_subop_instr_is_valid(subop, instr_idx) ||
2560 !nand_instr_is_data(&subop->instrs[instr_idx])))
2561 return 0;
2562
2563 start_off = nand_subop_get_data_start_off(subop, instr_idx);
2564
2565 if (instr_idx == subop->ninstrs - 1 &&
2566 subop->last_instr_end_off)
2567 end_off = subop->last_instr_end_off;
2568 else
2569 end_off = subop->instrs[instr_idx].ctx.data.len;
2570
2571 return end_off - start_off;
2572 }
2573 EXPORT_SYMBOL_GPL(nand_subop_get_data_len);
2574
2575 /**
2576 * nand_reset - Reset and initialize a NAND device
2577 * @chip: The NAND chip
2578 * @chipnr: Internal die id
2579 *
2580 * Save the timings data structure, then apply SDR timings mode 0 (see
2581 * nand_reset_interface for details), do the reset operation, and apply
2582 * back the previous timings.
2583 *
2584 * Returns 0 on success, a negative error code otherwise.
2585 */
nand_reset(struct nand_chip * chip,int chipnr)2586 int nand_reset(struct nand_chip *chip, int chipnr)
2587 {
2588 int ret;
2589
2590 ret = nand_reset_interface(chip, chipnr);
2591 if (ret)
2592 return ret;
2593
2594 /*
2595 * The CS line has to be released before we can apply the new NAND
2596 * interface settings, hence this weird nand_select_target()
2597 * nand_deselect_target() dance.
2598 */
2599 nand_select_target(chip, chipnr);
2600 ret = nand_reset_op(chip);
2601 nand_deselect_target(chip);
2602 if (ret)
2603 return ret;
2604
2605 ret = nand_setup_interface(chip, chipnr);
2606 if (ret)
2607 return ret;
2608
2609 return 0;
2610 }
2611 EXPORT_SYMBOL_GPL(nand_reset);
2612
2613 /**
2614 * nand_get_features - wrapper to perform a GET_FEATURE
2615 * @chip: NAND chip info structure
2616 * @addr: feature address
2617 * @subfeature_param: the subfeature parameters, a four bytes array
2618 *
2619 * Returns 0 for success, a negative error otherwise. Returns -ENOTSUPP if the
2620 * operation cannot be handled.
2621 */
nand_get_features(struct nand_chip * chip,int addr,u8 * subfeature_param)2622 int nand_get_features(struct nand_chip *chip, int addr,
2623 u8 *subfeature_param)
2624 {
2625 if (!nand_supports_get_features(chip, addr))
2626 return -ENOTSUPP;
2627
2628 if (chip->legacy.get_features)
2629 return chip->legacy.get_features(chip, addr, subfeature_param);
2630
2631 return nand_get_features_op(chip, addr, subfeature_param);
2632 }
2633
2634 /**
2635 * nand_set_features - wrapper to perform a SET_FEATURE
2636 * @chip: NAND chip info structure
2637 * @addr: feature address
2638 * @subfeature_param: the subfeature parameters, a four bytes array
2639 *
2640 * Returns 0 for success, a negative error otherwise. Returns -ENOTSUPP if the
2641 * operation cannot be handled.
2642 */
nand_set_features(struct nand_chip * chip,int addr,u8 * subfeature_param)2643 int nand_set_features(struct nand_chip *chip, int addr,
2644 u8 *subfeature_param)
2645 {
2646 if (!nand_supports_set_features(chip, addr))
2647 return -ENOTSUPP;
2648
2649 if (chip->legacy.set_features)
2650 return chip->legacy.set_features(chip, addr, subfeature_param);
2651
2652 return nand_set_features_op(chip, addr, subfeature_param);
2653 }
2654
2655 /**
2656 * nand_check_erased_buf - check if a buffer contains (almost) only 0xff data
2657 * @buf: buffer to test
2658 * @len: buffer length
2659 * @bitflips_threshold: maximum number of bitflips
2660 *
2661 * Check if a buffer contains only 0xff, which means the underlying region
2662 * has been erased and is ready to be programmed.
2663 * The bitflips_threshold specify the maximum number of bitflips before
2664 * considering the region is not erased.
2665 * Note: The logic of this function has been extracted from the memweight
2666 * implementation, except that nand_check_erased_buf function exit before
2667 * testing the whole buffer if the number of bitflips exceed the
2668 * bitflips_threshold value.
2669 *
2670 * Returns a positive number of bitflips less than or equal to
2671 * bitflips_threshold, or -ERROR_CODE for bitflips in excess of the
2672 * threshold.
2673 */
nand_check_erased_buf(void * buf,int len,int bitflips_threshold)2674 static int nand_check_erased_buf(void *buf, int len, int bitflips_threshold)
2675 {
2676 const unsigned char *bitmap = buf;
2677 int bitflips = 0;
2678 int weight;
2679
2680 for (; len && ((uintptr_t)bitmap) % sizeof(long);
2681 len--, bitmap++) {
2682 weight = hweight8(*bitmap);
2683 bitflips += BITS_PER_BYTE - weight;
2684 if (unlikely(bitflips > bitflips_threshold))
2685 return -EBADMSG;
2686 }
2687
2688 for (; len >= sizeof(long);
2689 len -= sizeof(long), bitmap += sizeof(long)) {
2690 unsigned long d = *((unsigned long *)bitmap);
2691 if (d == ~0UL)
2692 continue;
2693 weight = hweight_long(d);
2694 bitflips += BITS_PER_LONG - weight;
2695 if (unlikely(bitflips > bitflips_threshold))
2696 return -EBADMSG;
2697 }
2698
2699 for (; len > 0; len--, bitmap++) {
2700 weight = hweight8(*bitmap);
2701 bitflips += BITS_PER_BYTE - weight;
2702 if (unlikely(bitflips > bitflips_threshold))
2703 return -EBADMSG;
2704 }
2705
2706 return bitflips;
2707 }
2708
2709 /**
2710 * nand_check_erased_ecc_chunk - check if an ECC chunk contains (almost) only
2711 * 0xff data
2712 * @data: data buffer to test
2713 * @datalen: data length
2714 * @ecc: ECC buffer
2715 * @ecclen: ECC length
2716 * @extraoob: extra OOB buffer
2717 * @extraooblen: extra OOB length
2718 * @bitflips_threshold: maximum number of bitflips
2719 *
2720 * Check if a data buffer and its associated ECC and OOB data contains only
2721 * 0xff pattern, which means the underlying region has been erased and is
2722 * ready to be programmed.
2723 * The bitflips_threshold specify the maximum number of bitflips before
2724 * considering the region as not erased.
2725 *
2726 * Note:
2727 * 1/ ECC algorithms are working on pre-defined block sizes which are usually
2728 * different from the NAND page size. When fixing bitflips, ECC engines will
2729 * report the number of errors per chunk, and the NAND core infrastructure
2730 * expect you to return the maximum number of bitflips for the whole page.
2731 * This is why you should always use this function on a single chunk and
2732 * not on the whole page. After checking each chunk you should update your
2733 * max_bitflips value accordingly.
2734 * 2/ When checking for bitflips in erased pages you should not only check
2735 * the payload data but also their associated ECC data, because a user might
2736 * have programmed almost all bits to 1 but a few. In this case, we
2737 * shouldn't consider the chunk as erased, and checking ECC bytes prevent
2738 * this case.
2739 * 3/ The extraoob argument is optional, and should be used if some of your OOB
2740 * data are protected by the ECC engine.
2741 * It could also be used if you support subpages and want to attach some
2742 * extra OOB data to an ECC chunk.
2743 *
2744 * Returns a positive number of bitflips less than or equal to
2745 * bitflips_threshold, or -ERROR_CODE for bitflips in excess of the
2746 * threshold. In case of success, the passed buffers are filled with 0xff.
2747 */
nand_check_erased_ecc_chunk(void * data,int datalen,void * ecc,int ecclen,void * extraoob,int extraooblen,int bitflips_threshold)2748 int nand_check_erased_ecc_chunk(void *data, int datalen,
2749 void *ecc, int ecclen,
2750 void *extraoob, int extraooblen,
2751 int bitflips_threshold)
2752 {
2753 int data_bitflips = 0, ecc_bitflips = 0, extraoob_bitflips = 0;
2754
2755 data_bitflips = nand_check_erased_buf(data, datalen,
2756 bitflips_threshold);
2757 if (data_bitflips < 0)
2758 return data_bitflips;
2759
2760 bitflips_threshold -= data_bitflips;
2761
2762 ecc_bitflips = nand_check_erased_buf(ecc, ecclen, bitflips_threshold);
2763 if (ecc_bitflips < 0)
2764 return ecc_bitflips;
2765
2766 bitflips_threshold -= ecc_bitflips;
2767
2768 extraoob_bitflips = nand_check_erased_buf(extraoob, extraooblen,
2769 bitflips_threshold);
2770 if (extraoob_bitflips < 0)
2771 return extraoob_bitflips;
2772
2773 if (data_bitflips)
2774 memset(data, 0xff, datalen);
2775
2776 if (ecc_bitflips)
2777 memset(ecc, 0xff, ecclen);
2778
2779 if (extraoob_bitflips)
2780 memset(extraoob, 0xff, extraooblen);
2781
2782 return data_bitflips + ecc_bitflips + extraoob_bitflips;
2783 }
2784 EXPORT_SYMBOL(nand_check_erased_ecc_chunk);
2785
2786 /**
2787 * nand_read_page_raw_notsupp - dummy read raw page function
2788 * @chip: nand chip info structure
2789 * @buf: buffer to store read data
2790 * @oob_required: caller requires OOB data read to chip->oob_poi
2791 * @page: page number to read
2792 *
2793 * Returns -ENOTSUPP unconditionally.
2794 */
nand_read_page_raw_notsupp(struct nand_chip * chip,u8 * buf,int oob_required,int page)2795 int nand_read_page_raw_notsupp(struct nand_chip *chip, u8 *buf,
2796 int oob_required, int page)
2797 {
2798 return -ENOTSUPP;
2799 }
2800
2801 /**
2802 * nand_read_page_raw - [INTERN] read raw page data without ecc
2803 * @chip: nand chip info structure
2804 * @buf: buffer to store read data
2805 * @oob_required: caller requires OOB data read to chip->oob_poi
2806 * @page: page number to read
2807 *
2808 * Not for syndrome calculating ECC controllers, which use a special oob layout.
2809 */
nand_read_page_raw(struct nand_chip * chip,uint8_t * buf,int oob_required,int page)2810 int nand_read_page_raw(struct nand_chip *chip, uint8_t *buf, int oob_required,
2811 int page)
2812 {
2813 struct mtd_info *mtd = nand_to_mtd(chip);
2814 int ret;
2815
2816 ret = nand_read_page_op(chip, page, 0, buf, mtd->writesize);
2817 if (ret)
2818 return ret;
2819
2820 if (oob_required) {
2821 ret = nand_read_data_op(chip, chip->oob_poi, mtd->oobsize,
2822 false, false);
2823 if (ret)
2824 return ret;
2825 }
2826
2827 return 0;
2828 }
2829 EXPORT_SYMBOL(nand_read_page_raw);
2830
2831 /**
2832 * nand_monolithic_read_page_raw - Monolithic page read in raw mode
2833 * @chip: NAND chip info structure
2834 * @buf: buffer to store read data
2835 * @oob_required: caller requires OOB data read to chip->oob_poi
2836 * @page: page number to read
2837 *
2838 * This is a raw page read, ie. without any error detection/correction.
2839 * Monolithic means we are requesting all the relevant data (main plus
2840 * eventually OOB) to be loaded in the NAND cache and sent over the
2841 * bus (from the NAND chip to the NAND controller) in a single
2842 * operation. This is an alternative to nand_read_page_raw(), which
2843 * first reads the main data, and if the OOB data is requested too,
2844 * then reads more data on the bus.
2845 */
nand_monolithic_read_page_raw(struct nand_chip * chip,u8 * buf,int oob_required,int page)2846 int nand_monolithic_read_page_raw(struct nand_chip *chip, u8 *buf,
2847 int oob_required, int page)
2848 {
2849 struct mtd_info *mtd = nand_to_mtd(chip);
2850 unsigned int size = mtd->writesize;
2851 u8 *read_buf = buf;
2852 int ret;
2853
2854 if (oob_required) {
2855 size += mtd->oobsize;
2856
2857 if (buf != chip->data_buf)
2858 read_buf = nand_get_data_buf(chip);
2859 }
2860
2861 ret = nand_read_page_op(chip, page, 0, read_buf, size);
2862 if (ret)
2863 return ret;
2864
2865 if (buf != chip->data_buf)
2866 memcpy(buf, read_buf, mtd->writesize);
2867
2868 return 0;
2869 }
2870 EXPORT_SYMBOL(nand_monolithic_read_page_raw);
2871
2872 /**
2873 * nand_read_page_raw_syndrome - [INTERN] read raw page data without ecc
2874 * @chip: nand chip info structure
2875 * @buf: buffer to store read data
2876 * @oob_required: caller requires OOB data read to chip->oob_poi
2877 * @page: page number to read
2878 *
2879 * We need a special oob layout and handling even when OOB isn't used.
2880 */
nand_read_page_raw_syndrome(struct nand_chip * chip,uint8_t * buf,int oob_required,int page)2881 static int nand_read_page_raw_syndrome(struct nand_chip *chip, uint8_t *buf,
2882 int oob_required, int page)
2883 {
2884 struct mtd_info *mtd = nand_to_mtd(chip);
2885 int eccsize = chip->ecc.size;
2886 int eccbytes = chip->ecc.bytes;
2887 uint8_t *oob = chip->oob_poi;
2888 int steps, size, ret;
2889
2890 ret = nand_read_page_op(chip, page, 0, NULL, 0);
2891 if (ret)
2892 return ret;
2893
2894 for (steps = chip->ecc.steps; steps > 0; steps--) {
2895 ret = nand_read_data_op(chip, buf, eccsize, false, false);
2896 if (ret)
2897 return ret;
2898
2899 buf += eccsize;
2900
2901 if (chip->ecc.prepad) {
2902 ret = nand_read_data_op(chip, oob, chip->ecc.prepad,
2903 false, false);
2904 if (ret)
2905 return ret;
2906
2907 oob += chip->ecc.prepad;
2908 }
2909
2910 ret = nand_read_data_op(chip, oob, eccbytes, false, false);
2911 if (ret)
2912 return ret;
2913
2914 oob += eccbytes;
2915
2916 if (chip->ecc.postpad) {
2917 ret = nand_read_data_op(chip, oob, chip->ecc.postpad,
2918 false, false);
2919 if (ret)
2920 return ret;
2921
2922 oob += chip->ecc.postpad;
2923 }
2924 }
2925
2926 size = mtd->oobsize - (oob - chip->oob_poi);
2927 if (size) {
2928 ret = nand_read_data_op(chip, oob, size, false, false);
2929 if (ret)
2930 return ret;
2931 }
2932
2933 return 0;
2934 }
2935
2936 /**
2937 * nand_read_page_swecc - [REPLACEABLE] software ECC based page read function
2938 * @chip: nand chip info structure
2939 * @buf: buffer to store read data
2940 * @oob_required: caller requires OOB data read to chip->oob_poi
2941 * @page: page number to read
2942 */
nand_read_page_swecc(struct nand_chip * chip,uint8_t * buf,int oob_required,int page)2943 static int nand_read_page_swecc(struct nand_chip *chip, uint8_t *buf,
2944 int oob_required, int page)
2945 {
2946 struct mtd_info *mtd = nand_to_mtd(chip);
2947 int i, eccsize = chip->ecc.size, ret;
2948 int eccbytes = chip->ecc.bytes;
2949 int eccsteps = chip->ecc.steps;
2950 uint8_t *p = buf;
2951 uint8_t *ecc_calc = chip->ecc.calc_buf;
2952 uint8_t *ecc_code = chip->ecc.code_buf;
2953 unsigned int max_bitflips = 0;
2954
2955 chip->ecc.read_page_raw(chip, buf, 1, page);
2956
2957 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
2958 chip->ecc.calculate(chip, p, &ecc_calc[i]);
2959
2960 ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0,
2961 chip->ecc.total);
2962 if (ret)
2963 return ret;
2964
2965 eccsteps = chip->ecc.steps;
2966 p = buf;
2967
2968 for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
2969 int stat;
2970
2971 stat = chip->ecc.correct(chip, p, &ecc_code[i], &ecc_calc[i]);
2972 if (stat < 0) {
2973 mtd->ecc_stats.failed++;
2974 } else {
2975 mtd->ecc_stats.corrected += stat;
2976 max_bitflips = max_t(unsigned int, max_bitflips, stat);
2977 }
2978 }
2979 return max_bitflips;
2980 }
2981
2982 /**
2983 * nand_read_subpage - [REPLACEABLE] ECC based sub-page read function
2984 * @chip: nand chip info structure
2985 * @data_offs: offset of requested data within the page
2986 * @readlen: data length
2987 * @bufpoi: buffer to store read data
2988 * @page: page number to read
2989 */
nand_read_subpage(struct nand_chip * chip,uint32_t data_offs,uint32_t readlen,uint8_t * bufpoi,int page)2990 static int nand_read_subpage(struct nand_chip *chip, uint32_t data_offs,
2991 uint32_t readlen, uint8_t *bufpoi, int page)
2992 {
2993 struct mtd_info *mtd = nand_to_mtd(chip);
2994 int start_step, end_step, num_steps, ret;
2995 uint8_t *p;
2996 int data_col_addr, i, gaps = 0;
2997 int datafrag_len, eccfrag_len, aligned_len, aligned_pos;
2998 int busw = (chip->options & NAND_BUSWIDTH_16) ? 2 : 1;
2999 int index, section = 0;
3000 unsigned int max_bitflips = 0;
3001 struct mtd_oob_region oobregion = { };
3002
3003 /* Column address within the page aligned to ECC size (256bytes) */
3004 start_step = data_offs / chip->ecc.size;
3005 end_step = (data_offs + readlen - 1) / chip->ecc.size;
3006 num_steps = end_step - start_step + 1;
3007 index = start_step * chip->ecc.bytes;
3008
3009 /* Data size aligned to ECC ecc.size */
3010 datafrag_len = num_steps * chip->ecc.size;
3011 eccfrag_len = num_steps * chip->ecc.bytes;
3012
3013 data_col_addr = start_step * chip->ecc.size;
3014 /* If we read not a page aligned data */
3015 p = bufpoi + data_col_addr;
3016 ret = nand_read_page_op(chip, page, data_col_addr, p, datafrag_len);
3017 if (ret)
3018 return ret;
3019
3020 /* Calculate ECC */
3021 for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size)
3022 chip->ecc.calculate(chip, p, &chip->ecc.calc_buf[i]);
3023
3024 /*
3025 * The performance is faster if we position offsets according to
3026 * ecc.pos. Let's make sure that there are no gaps in ECC positions.
3027 */
3028 ret = mtd_ooblayout_find_eccregion(mtd, index, §ion, &oobregion);
3029 if (ret)
3030 return ret;
3031
3032 if (oobregion.length < eccfrag_len)
3033 gaps = 1;
3034
3035 if (gaps) {
3036 ret = nand_change_read_column_op(chip, mtd->writesize,
3037 chip->oob_poi, mtd->oobsize,
3038 false);
3039 if (ret)
3040 return ret;
3041 } else {
3042 /*
3043 * Send the command to read the particular ECC bytes take care
3044 * about buswidth alignment in read_buf.
3045 */
3046 aligned_pos = oobregion.offset & ~(busw - 1);
3047 aligned_len = eccfrag_len;
3048 if (oobregion.offset & (busw - 1))
3049 aligned_len++;
3050 if ((oobregion.offset + (num_steps * chip->ecc.bytes)) &
3051 (busw - 1))
3052 aligned_len++;
3053
3054 ret = nand_change_read_column_op(chip,
3055 mtd->writesize + aligned_pos,
3056 &chip->oob_poi[aligned_pos],
3057 aligned_len, false);
3058 if (ret)
3059 return ret;
3060 }
3061
3062 ret = mtd_ooblayout_get_eccbytes(mtd, chip->ecc.code_buf,
3063 chip->oob_poi, index, eccfrag_len);
3064 if (ret)
3065 return ret;
3066
3067 p = bufpoi + data_col_addr;
3068 for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size) {
3069 int stat;
3070
3071 stat = chip->ecc.correct(chip, p, &chip->ecc.code_buf[i],
3072 &chip->ecc.calc_buf[i]);
3073 if (stat == -EBADMSG &&
3074 (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
3075 /* check for empty pages with bitflips */
3076 stat = nand_check_erased_ecc_chunk(p, chip->ecc.size,
3077 &chip->ecc.code_buf[i],
3078 chip->ecc.bytes,
3079 NULL, 0,
3080 chip->ecc.strength);
3081 }
3082
3083 if (stat < 0) {
3084 mtd->ecc_stats.failed++;
3085 } else {
3086 mtd->ecc_stats.corrected += stat;
3087 max_bitflips = max_t(unsigned int, max_bitflips, stat);
3088 }
3089 }
3090 return max_bitflips;
3091 }
3092
3093 /**
3094 * nand_read_page_hwecc - [REPLACEABLE] hardware ECC based page read function
3095 * @chip: nand chip info structure
3096 * @buf: buffer to store read data
3097 * @oob_required: caller requires OOB data read to chip->oob_poi
3098 * @page: page number to read
3099 *
3100 * Not for syndrome calculating ECC controllers which need a special oob layout.
3101 */
nand_read_page_hwecc(struct nand_chip * chip,uint8_t * buf,int oob_required,int page)3102 static int nand_read_page_hwecc(struct nand_chip *chip, uint8_t *buf,
3103 int oob_required, int page)
3104 {
3105 struct mtd_info *mtd = nand_to_mtd(chip);
3106 int i, eccsize = chip->ecc.size, ret;
3107 int eccbytes = chip->ecc.bytes;
3108 int eccsteps = chip->ecc.steps;
3109 uint8_t *p = buf;
3110 uint8_t *ecc_calc = chip->ecc.calc_buf;
3111 uint8_t *ecc_code = chip->ecc.code_buf;
3112 unsigned int max_bitflips = 0;
3113
3114 ret = nand_read_page_op(chip, page, 0, NULL, 0);
3115 if (ret)
3116 return ret;
3117
3118 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
3119 chip->ecc.hwctl(chip, NAND_ECC_READ);
3120
3121 ret = nand_read_data_op(chip, p, eccsize, false, false);
3122 if (ret)
3123 return ret;
3124
3125 chip->ecc.calculate(chip, p, &ecc_calc[i]);
3126 }
3127
3128 ret = nand_read_data_op(chip, chip->oob_poi, mtd->oobsize, false,
3129 false);
3130 if (ret)
3131 return ret;
3132
3133 ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0,
3134 chip->ecc.total);
3135 if (ret)
3136 return ret;
3137
3138 eccsteps = chip->ecc.steps;
3139 p = buf;
3140
3141 for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
3142 int stat;
3143
3144 stat = chip->ecc.correct(chip, p, &ecc_code[i], &ecc_calc[i]);
3145 if (stat == -EBADMSG &&
3146 (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
3147 /* check for empty pages with bitflips */
3148 stat = nand_check_erased_ecc_chunk(p, eccsize,
3149 &ecc_code[i], eccbytes,
3150 NULL, 0,
3151 chip->ecc.strength);
3152 }
3153
3154 if (stat < 0) {
3155 mtd->ecc_stats.failed++;
3156 } else {
3157 mtd->ecc_stats.corrected += stat;
3158 max_bitflips = max_t(unsigned int, max_bitflips, stat);
3159 }
3160 }
3161 return max_bitflips;
3162 }
3163
3164 /**
3165 * nand_read_page_hwecc_oob_first - Hardware ECC page read with ECC
3166 * data read from OOB area
3167 * @chip: nand chip info structure
3168 * @buf: buffer to store read data
3169 * @oob_required: caller requires OOB data read to chip->oob_poi
3170 * @page: page number to read
3171 *
3172 * Hardware ECC for large page chips, which requires the ECC data to be
3173 * extracted from the OOB before the actual data is read.
3174 */
nand_read_page_hwecc_oob_first(struct nand_chip * chip,uint8_t * buf,int oob_required,int page)3175 int nand_read_page_hwecc_oob_first(struct nand_chip *chip, uint8_t *buf,
3176 int oob_required, int page)
3177 {
3178 struct mtd_info *mtd = nand_to_mtd(chip);
3179 int i, eccsize = chip->ecc.size, ret;
3180 int eccbytes = chip->ecc.bytes;
3181 int eccsteps = chip->ecc.steps;
3182 uint8_t *p = buf;
3183 uint8_t *ecc_code = chip->ecc.code_buf;
3184 unsigned int max_bitflips = 0;
3185
3186 /* Read the OOB area first */
3187 ret = nand_read_oob_op(chip, page, 0, chip->oob_poi, mtd->oobsize);
3188 if (ret)
3189 return ret;
3190
3191 /* Move read cursor to start of page */
3192 ret = nand_change_read_column_op(chip, 0, NULL, 0, false);
3193 if (ret)
3194 return ret;
3195
3196 ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0,
3197 chip->ecc.total);
3198 if (ret)
3199 return ret;
3200
3201 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
3202 int stat;
3203
3204 chip->ecc.hwctl(chip, NAND_ECC_READ);
3205
3206 ret = nand_read_data_op(chip, p, eccsize, false, false);
3207 if (ret)
3208 return ret;
3209
3210 stat = chip->ecc.correct(chip, p, &ecc_code[i], NULL);
3211 if (stat == -EBADMSG &&
3212 (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
3213 /* check for empty pages with bitflips */
3214 stat = nand_check_erased_ecc_chunk(p, eccsize,
3215 &ecc_code[i],
3216 eccbytes, NULL, 0,
3217 chip->ecc.strength);
3218 }
3219
3220 if (stat < 0) {
3221 mtd->ecc_stats.failed++;
3222 } else {
3223 mtd->ecc_stats.corrected += stat;
3224 max_bitflips = max_t(unsigned int, max_bitflips, stat);
3225 }
3226 }
3227 return max_bitflips;
3228 }
3229 EXPORT_SYMBOL_GPL(nand_read_page_hwecc_oob_first);
3230
3231 /**
3232 * nand_read_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page read
3233 * @chip: nand chip info structure
3234 * @buf: buffer to store read data
3235 * @oob_required: caller requires OOB data read to chip->oob_poi
3236 * @page: page number to read
3237 *
3238 * The hw generator calculates the error syndrome automatically. Therefore we
3239 * need a special oob layout and handling.
3240 */
nand_read_page_syndrome(struct nand_chip * chip,uint8_t * buf,int oob_required,int page)3241 static int nand_read_page_syndrome(struct nand_chip *chip, uint8_t *buf,
3242 int oob_required, int page)
3243 {
3244 struct mtd_info *mtd = nand_to_mtd(chip);
3245 int ret, i, eccsize = chip->ecc.size;
3246 int eccbytes = chip->ecc.bytes;
3247 int eccsteps = chip->ecc.steps;
3248 int eccpadbytes = eccbytes + chip->ecc.prepad + chip->ecc.postpad;
3249 uint8_t *p = buf;
3250 uint8_t *oob = chip->oob_poi;
3251 unsigned int max_bitflips = 0;
3252
3253 ret = nand_read_page_op(chip, page, 0, NULL, 0);
3254 if (ret)
3255 return ret;
3256
3257 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
3258 int stat;
3259
3260 chip->ecc.hwctl(chip, NAND_ECC_READ);
3261
3262 ret = nand_read_data_op(chip, p, eccsize, false, false);
3263 if (ret)
3264 return ret;
3265
3266 if (chip->ecc.prepad) {
3267 ret = nand_read_data_op(chip, oob, chip->ecc.prepad,
3268 false, false);
3269 if (ret)
3270 return ret;
3271
3272 oob += chip->ecc.prepad;
3273 }
3274
3275 chip->ecc.hwctl(chip, NAND_ECC_READSYN);
3276
3277 ret = nand_read_data_op(chip, oob, eccbytes, false, false);
3278 if (ret)
3279 return ret;
3280
3281 stat = chip->ecc.correct(chip, p, oob, NULL);
3282
3283 oob += eccbytes;
3284
3285 if (chip->ecc.postpad) {
3286 ret = nand_read_data_op(chip, oob, chip->ecc.postpad,
3287 false, false);
3288 if (ret)
3289 return ret;
3290
3291 oob += chip->ecc.postpad;
3292 }
3293
3294 if (stat == -EBADMSG &&
3295 (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
3296 /* check for empty pages with bitflips */
3297 stat = nand_check_erased_ecc_chunk(p, chip->ecc.size,
3298 oob - eccpadbytes,
3299 eccpadbytes,
3300 NULL, 0,
3301 chip->ecc.strength);
3302 }
3303
3304 if (stat < 0) {
3305 mtd->ecc_stats.failed++;
3306 } else {
3307 mtd->ecc_stats.corrected += stat;
3308 max_bitflips = max_t(unsigned int, max_bitflips, stat);
3309 }
3310 }
3311
3312 /* Calculate remaining oob bytes */
3313 i = mtd->oobsize - (oob - chip->oob_poi);
3314 if (i) {
3315 ret = nand_read_data_op(chip, oob, i, false, false);
3316 if (ret)
3317 return ret;
3318 }
3319
3320 return max_bitflips;
3321 }
3322
3323 /**
3324 * nand_transfer_oob - [INTERN] Transfer oob to client buffer
3325 * @chip: NAND chip object
3326 * @oob: oob destination address
3327 * @ops: oob ops structure
3328 * @len: size of oob to transfer
3329 */
nand_transfer_oob(struct nand_chip * chip,uint8_t * oob,struct mtd_oob_ops * ops,size_t len)3330 static uint8_t *nand_transfer_oob(struct nand_chip *chip, uint8_t *oob,
3331 struct mtd_oob_ops *ops, size_t len)
3332 {
3333 struct mtd_info *mtd = nand_to_mtd(chip);
3334 int ret;
3335
3336 switch (ops->mode) {
3337
3338 case MTD_OPS_PLACE_OOB:
3339 case MTD_OPS_RAW:
3340 memcpy(oob, chip->oob_poi + ops->ooboffs, len);
3341 return oob + len;
3342
3343 case MTD_OPS_AUTO_OOB:
3344 ret = mtd_ooblayout_get_databytes(mtd, oob, chip->oob_poi,
3345 ops->ooboffs, len);
3346 BUG_ON(ret);
3347 return oob + len;
3348
3349 default:
3350 BUG();
3351 }
3352 return NULL;
3353 }
3354
3355 /**
3356 * nand_setup_read_retry - [INTERN] Set the READ RETRY mode
3357 * @chip: NAND chip object
3358 * @retry_mode: the retry mode to use
3359 *
3360 * Some vendors supply a special command to shift the Vt threshold, to be used
3361 * when there are too many bitflips in a page (i.e., ECC error). After setting
3362 * a new threshold, the host should retry reading the page.
3363 */
nand_setup_read_retry(struct nand_chip * chip,int retry_mode)3364 static int nand_setup_read_retry(struct nand_chip *chip, int retry_mode)
3365 {
3366 pr_debug("setting READ RETRY mode %d\n", retry_mode);
3367
3368 if (retry_mode >= chip->read_retries)
3369 return -EINVAL;
3370
3371 if (!chip->ops.setup_read_retry)
3372 return -EOPNOTSUPP;
3373
3374 return chip->ops.setup_read_retry(chip, retry_mode);
3375 }
3376
nand_wait_readrdy(struct nand_chip * chip)3377 static void nand_wait_readrdy(struct nand_chip *chip)
3378 {
3379 const struct nand_interface_config *conf;
3380
3381 if (!(chip->options & NAND_NEED_READRDY))
3382 return;
3383
3384 conf = nand_get_interface_config(chip);
3385 WARN_ON(nand_wait_rdy_op(chip, NAND_COMMON_TIMING_MS(conf, tR_max), 0));
3386 }
3387
3388 /**
3389 * nand_do_read_ops - [INTERN] Read data with ECC
3390 * @chip: NAND chip object
3391 * @from: offset to read from
3392 * @ops: oob ops structure
3393 *
3394 * Internal function. Called with chip held.
3395 */
nand_do_read_ops(struct nand_chip * chip,loff_t from,struct mtd_oob_ops * ops)3396 static int nand_do_read_ops(struct nand_chip *chip, loff_t from,
3397 struct mtd_oob_ops *ops)
3398 {
3399 int chipnr, page, realpage, col, bytes, aligned, oob_required;
3400 struct mtd_info *mtd = nand_to_mtd(chip);
3401 int ret = 0;
3402 uint32_t readlen = ops->len;
3403 uint32_t oobreadlen = ops->ooblen;
3404 uint32_t max_oobsize = mtd_oobavail(mtd, ops);
3405
3406 uint8_t *bufpoi, *oob, *buf;
3407 int use_bounce_buf;
3408 unsigned int max_bitflips = 0;
3409 int retry_mode = 0;
3410 bool ecc_fail = false;
3411
3412 /* Check if the region is secured */
3413 if (nand_region_is_secured(chip, from, readlen))
3414 return -EIO;
3415
3416 chipnr = (int)(from >> chip->chip_shift);
3417 nand_select_target(chip, chipnr);
3418
3419 realpage = (int)(from >> chip->page_shift);
3420 page = realpage & chip->pagemask;
3421
3422 col = (int)(from & (mtd->writesize - 1));
3423
3424 buf = ops->datbuf;
3425 oob = ops->oobbuf;
3426 oob_required = oob ? 1 : 0;
3427
3428 while (1) {
3429 struct mtd_ecc_stats ecc_stats = mtd->ecc_stats;
3430
3431 bytes = min(mtd->writesize - col, readlen);
3432 aligned = (bytes == mtd->writesize);
3433
3434 if (!aligned)
3435 use_bounce_buf = 1;
3436 else if (chip->options & NAND_USES_DMA)
3437 use_bounce_buf = !virt_addr_valid(buf) ||
3438 !IS_ALIGNED((unsigned long)buf,
3439 chip->buf_align);
3440 else
3441 use_bounce_buf = 0;
3442
3443 /* Is the current page in the buffer? */
3444 if (realpage != chip->pagecache.page || oob) {
3445 bufpoi = use_bounce_buf ? chip->data_buf : buf;
3446
3447 if (use_bounce_buf && aligned)
3448 pr_debug("%s: using read bounce buffer for buf@%p\n",
3449 __func__, buf);
3450
3451 read_retry:
3452 /*
3453 * Now read the page into the buffer. Absent an error,
3454 * the read methods return max bitflips per ecc step.
3455 */
3456 if (unlikely(ops->mode == MTD_OPS_RAW))
3457 ret = chip->ecc.read_page_raw(chip, bufpoi,
3458 oob_required,
3459 page);
3460 else if (!aligned && NAND_HAS_SUBPAGE_READ(chip) &&
3461 !oob)
3462 ret = chip->ecc.read_subpage(chip, col, bytes,
3463 bufpoi, page);
3464 else
3465 ret = chip->ecc.read_page(chip, bufpoi,
3466 oob_required, page);
3467 if (ret < 0) {
3468 if (use_bounce_buf)
3469 /* Invalidate page cache */
3470 chip->pagecache.page = -1;
3471 break;
3472 }
3473
3474 /*
3475 * Copy back the data in the initial buffer when reading
3476 * partial pages or when a bounce buffer is required.
3477 */
3478 if (use_bounce_buf) {
3479 if (!NAND_HAS_SUBPAGE_READ(chip) && !oob &&
3480 !(mtd->ecc_stats.failed - ecc_stats.failed) &&
3481 (ops->mode != MTD_OPS_RAW)) {
3482 chip->pagecache.page = realpage;
3483 chip->pagecache.bitflips = ret;
3484 } else {
3485 /* Invalidate page cache */
3486 chip->pagecache.page = -1;
3487 }
3488 memcpy(buf, bufpoi + col, bytes);
3489 }
3490
3491 if (unlikely(oob)) {
3492 int toread = min(oobreadlen, max_oobsize);
3493
3494 if (toread) {
3495 oob = nand_transfer_oob(chip, oob, ops,
3496 toread);
3497 oobreadlen -= toread;
3498 }
3499 }
3500
3501 nand_wait_readrdy(chip);
3502
3503 if (mtd->ecc_stats.failed - ecc_stats.failed) {
3504 if (retry_mode + 1 < chip->read_retries) {
3505 retry_mode++;
3506 ret = nand_setup_read_retry(chip,
3507 retry_mode);
3508 if (ret < 0)
3509 break;
3510
3511 /* Reset ecc_stats; retry */
3512 mtd->ecc_stats = ecc_stats;
3513 goto read_retry;
3514 } else {
3515 /* No more retry modes; real failure */
3516 ecc_fail = true;
3517 }
3518 }
3519
3520 buf += bytes;
3521 max_bitflips = max_t(unsigned int, max_bitflips, ret);
3522 } else {
3523 memcpy(buf, chip->data_buf + col, bytes);
3524 buf += bytes;
3525 max_bitflips = max_t(unsigned int, max_bitflips,
3526 chip->pagecache.bitflips);
3527 }
3528
3529 readlen -= bytes;
3530
3531 /* Reset to retry mode 0 */
3532 if (retry_mode) {
3533 ret = nand_setup_read_retry(chip, 0);
3534 if (ret < 0)
3535 break;
3536 retry_mode = 0;
3537 }
3538
3539 if (!readlen)
3540 break;
3541
3542 /* For subsequent reads align to page boundary */
3543 col = 0;
3544 /* Increment page address */
3545 realpage++;
3546
3547 page = realpage & chip->pagemask;
3548 /* Check, if we cross a chip boundary */
3549 if (!page) {
3550 chipnr++;
3551 nand_deselect_target(chip);
3552 nand_select_target(chip, chipnr);
3553 }
3554 }
3555 nand_deselect_target(chip);
3556
3557 ops->retlen = ops->len - (size_t) readlen;
3558 if (oob)
3559 ops->oobretlen = ops->ooblen - oobreadlen;
3560
3561 if (ret < 0)
3562 return ret;
3563
3564 if (ecc_fail)
3565 return -EBADMSG;
3566
3567 return max_bitflips;
3568 }
3569
3570 /**
3571 * nand_read_oob_std - [REPLACEABLE] the most common OOB data read function
3572 * @chip: nand chip info structure
3573 * @page: page number to read
3574 */
nand_read_oob_std(struct nand_chip * chip,int page)3575 int nand_read_oob_std(struct nand_chip *chip, int page)
3576 {
3577 struct mtd_info *mtd = nand_to_mtd(chip);
3578
3579 return nand_read_oob_op(chip, page, 0, chip->oob_poi, mtd->oobsize);
3580 }
3581 EXPORT_SYMBOL(nand_read_oob_std);
3582
3583 /**
3584 * nand_read_oob_syndrome - [REPLACEABLE] OOB data read function for HW ECC
3585 * with syndromes
3586 * @chip: nand chip info structure
3587 * @page: page number to read
3588 */
nand_read_oob_syndrome(struct nand_chip * chip,int page)3589 static int nand_read_oob_syndrome(struct nand_chip *chip, int page)
3590 {
3591 struct mtd_info *mtd = nand_to_mtd(chip);
3592 int length = mtd->oobsize;
3593 int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
3594 int eccsize = chip->ecc.size;
3595 uint8_t *bufpoi = chip->oob_poi;
3596 int i, toread, sndrnd = 0, pos, ret;
3597
3598 ret = nand_read_page_op(chip, page, chip->ecc.size, NULL, 0);
3599 if (ret)
3600 return ret;
3601
3602 for (i = 0; i < chip->ecc.steps; i++) {
3603 if (sndrnd) {
3604 int ret;
3605
3606 pos = eccsize + i * (eccsize + chunk);
3607 if (mtd->writesize > 512)
3608 ret = nand_change_read_column_op(chip, pos,
3609 NULL, 0,
3610 false);
3611 else
3612 ret = nand_read_page_op(chip, page, pos, NULL,
3613 0);
3614
3615 if (ret)
3616 return ret;
3617 } else
3618 sndrnd = 1;
3619 toread = min_t(int, length, chunk);
3620
3621 ret = nand_read_data_op(chip, bufpoi, toread, false, false);
3622 if (ret)
3623 return ret;
3624
3625 bufpoi += toread;
3626 length -= toread;
3627 }
3628 if (length > 0) {
3629 ret = nand_read_data_op(chip, bufpoi, length, false, false);
3630 if (ret)
3631 return ret;
3632 }
3633
3634 return 0;
3635 }
3636
3637 /**
3638 * nand_write_oob_std - [REPLACEABLE] the most common OOB data write function
3639 * @chip: nand chip info structure
3640 * @page: page number to write
3641 */
nand_write_oob_std(struct nand_chip * chip,int page)3642 int nand_write_oob_std(struct nand_chip *chip, int page)
3643 {
3644 struct mtd_info *mtd = nand_to_mtd(chip);
3645
3646 return nand_prog_page_op(chip, page, mtd->writesize, chip->oob_poi,
3647 mtd->oobsize);
3648 }
3649 EXPORT_SYMBOL(nand_write_oob_std);
3650
3651 /**
3652 * nand_write_oob_syndrome - [REPLACEABLE] OOB data write function for HW ECC
3653 * with syndrome - only for large page flash
3654 * @chip: nand chip info structure
3655 * @page: page number to write
3656 */
nand_write_oob_syndrome(struct nand_chip * chip,int page)3657 static int nand_write_oob_syndrome(struct nand_chip *chip, int page)
3658 {
3659 struct mtd_info *mtd = nand_to_mtd(chip);
3660 int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
3661 int eccsize = chip->ecc.size, length = mtd->oobsize;
3662 int ret, i, len, pos, sndcmd = 0, steps = chip->ecc.steps;
3663 const uint8_t *bufpoi = chip->oob_poi;
3664
3665 /*
3666 * data-ecc-data-ecc ... ecc-oob
3667 * or
3668 * data-pad-ecc-pad-data-pad .... ecc-pad-oob
3669 */
3670 if (!chip->ecc.prepad && !chip->ecc.postpad) {
3671 pos = steps * (eccsize + chunk);
3672 steps = 0;
3673 } else
3674 pos = eccsize;
3675
3676 ret = nand_prog_page_begin_op(chip, page, pos, NULL, 0);
3677 if (ret)
3678 return ret;
3679
3680 for (i = 0; i < steps; i++) {
3681 if (sndcmd) {
3682 if (mtd->writesize <= 512) {
3683 uint32_t fill = 0xFFFFFFFF;
3684
3685 len = eccsize;
3686 while (len > 0) {
3687 int num = min_t(int, len, 4);
3688
3689 ret = nand_write_data_op(chip, &fill,
3690 num, false);
3691 if (ret)
3692 return ret;
3693
3694 len -= num;
3695 }
3696 } else {
3697 pos = eccsize + i * (eccsize + chunk);
3698 ret = nand_change_write_column_op(chip, pos,
3699 NULL, 0,
3700 false);
3701 if (ret)
3702 return ret;
3703 }
3704 } else
3705 sndcmd = 1;
3706 len = min_t(int, length, chunk);
3707
3708 ret = nand_write_data_op(chip, bufpoi, len, false);
3709 if (ret)
3710 return ret;
3711
3712 bufpoi += len;
3713 length -= len;
3714 }
3715 if (length > 0) {
3716 ret = nand_write_data_op(chip, bufpoi, length, false);
3717 if (ret)
3718 return ret;
3719 }
3720
3721 return nand_prog_page_end_op(chip);
3722 }
3723
3724 /**
3725 * nand_do_read_oob - [INTERN] NAND read out-of-band
3726 * @chip: NAND chip object
3727 * @from: offset to read from
3728 * @ops: oob operations description structure
3729 *
3730 * NAND read out-of-band data from the spare area.
3731 */
nand_do_read_oob(struct nand_chip * chip,loff_t from,struct mtd_oob_ops * ops)3732 static int nand_do_read_oob(struct nand_chip *chip, loff_t from,
3733 struct mtd_oob_ops *ops)
3734 {
3735 struct mtd_info *mtd = nand_to_mtd(chip);
3736 unsigned int max_bitflips = 0;
3737 int page, realpage, chipnr;
3738 struct mtd_ecc_stats stats;
3739 int readlen = ops->ooblen;
3740 int len;
3741 uint8_t *buf = ops->oobbuf;
3742 int ret = 0;
3743
3744 pr_debug("%s: from = 0x%08Lx, len = %i\n",
3745 __func__, (unsigned long long)from, readlen);
3746
3747 /* Check if the region is secured */
3748 if (nand_region_is_secured(chip, from, readlen))
3749 return -EIO;
3750
3751 stats = mtd->ecc_stats;
3752
3753 len = mtd_oobavail(mtd, ops);
3754
3755 chipnr = (int)(from >> chip->chip_shift);
3756 nand_select_target(chip, chipnr);
3757
3758 /* Shift to get page */
3759 realpage = (int)(from >> chip->page_shift);
3760 page = realpage & chip->pagemask;
3761
3762 while (1) {
3763 if (ops->mode == MTD_OPS_RAW)
3764 ret = chip->ecc.read_oob_raw(chip, page);
3765 else
3766 ret = chip->ecc.read_oob(chip, page);
3767
3768 if (ret < 0)
3769 break;
3770
3771 len = min(len, readlen);
3772 buf = nand_transfer_oob(chip, buf, ops, len);
3773
3774 nand_wait_readrdy(chip);
3775
3776 max_bitflips = max_t(unsigned int, max_bitflips, ret);
3777
3778 readlen -= len;
3779 if (!readlen)
3780 break;
3781
3782 /* Increment page address */
3783 realpage++;
3784
3785 page = realpage & chip->pagemask;
3786 /* Check, if we cross a chip boundary */
3787 if (!page) {
3788 chipnr++;
3789 nand_deselect_target(chip);
3790 nand_select_target(chip, chipnr);
3791 }
3792 }
3793 nand_deselect_target(chip);
3794
3795 ops->oobretlen = ops->ooblen - readlen;
3796
3797 if (ret < 0)
3798 return ret;
3799
3800 if (mtd->ecc_stats.failed - stats.failed)
3801 return -EBADMSG;
3802
3803 return max_bitflips;
3804 }
3805
3806 /**
3807 * nand_read_oob - [MTD Interface] NAND read data and/or out-of-band
3808 * @mtd: MTD device structure
3809 * @from: offset to read from
3810 * @ops: oob operation description structure
3811 *
3812 * NAND read data and/or out-of-band data.
3813 */
nand_read_oob(struct mtd_info * mtd,loff_t from,struct mtd_oob_ops * ops)3814 static int nand_read_oob(struct mtd_info *mtd, loff_t from,
3815 struct mtd_oob_ops *ops)
3816 {
3817 struct nand_chip *chip = mtd_to_nand(mtd);
3818 int ret;
3819
3820 ops->retlen = 0;
3821
3822 if (ops->mode != MTD_OPS_PLACE_OOB &&
3823 ops->mode != MTD_OPS_AUTO_OOB &&
3824 ops->mode != MTD_OPS_RAW)
3825 return -ENOTSUPP;
3826
3827 nand_get_device(chip);
3828
3829 if (!ops->datbuf)
3830 ret = nand_do_read_oob(chip, from, ops);
3831 else
3832 ret = nand_do_read_ops(chip, from, ops);
3833
3834 nand_release_device(chip);
3835 return ret;
3836 }
3837
3838 /**
3839 * nand_write_page_raw_notsupp - dummy raw page write function
3840 * @chip: nand chip info structure
3841 * @buf: data buffer
3842 * @oob_required: must write chip->oob_poi to OOB
3843 * @page: page number to write
3844 *
3845 * Returns -ENOTSUPP unconditionally.
3846 */
nand_write_page_raw_notsupp(struct nand_chip * chip,const u8 * buf,int oob_required,int page)3847 int nand_write_page_raw_notsupp(struct nand_chip *chip, const u8 *buf,
3848 int oob_required, int page)
3849 {
3850 return -ENOTSUPP;
3851 }
3852
3853 /**
3854 * nand_write_page_raw - [INTERN] raw page write function
3855 * @chip: nand chip info structure
3856 * @buf: data buffer
3857 * @oob_required: must write chip->oob_poi to OOB
3858 * @page: page number to write
3859 *
3860 * Not for syndrome calculating ECC controllers, which use a special oob layout.
3861 */
nand_write_page_raw(struct nand_chip * chip,const uint8_t * buf,int oob_required,int page)3862 int nand_write_page_raw(struct nand_chip *chip, const uint8_t *buf,
3863 int oob_required, int page)
3864 {
3865 struct mtd_info *mtd = nand_to_mtd(chip);
3866 int ret;
3867
3868 ret = nand_prog_page_begin_op(chip, page, 0, buf, mtd->writesize);
3869 if (ret)
3870 return ret;
3871
3872 if (oob_required) {
3873 ret = nand_write_data_op(chip, chip->oob_poi, mtd->oobsize,
3874 false);
3875 if (ret)
3876 return ret;
3877 }
3878
3879 return nand_prog_page_end_op(chip);
3880 }
3881 EXPORT_SYMBOL(nand_write_page_raw);
3882
3883 /**
3884 * nand_monolithic_write_page_raw - Monolithic page write in raw mode
3885 * @chip: NAND chip info structure
3886 * @buf: data buffer to write
3887 * @oob_required: must write chip->oob_poi to OOB
3888 * @page: page number to write
3889 *
3890 * This is a raw page write, ie. without any error detection/correction.
3891 * Monolithic means we are requesting all the relevant data (main plus
3892 * eventually OOB) to be sent over the bus and effectively programmed
3893 * into the NAND chip arrays in a single operation. This is an
3894 * alternative to nand_write_page_raw(), which first sends the main
3895 * data, then eventually send the OOB data by latching more data
3896 * cycles on the NAND bus, and finally sends the program command to
3897 * synchronyze the NAND chip cache.
3898 */
nand_monolithic_write_page_raw(struct nand_chip * chip,const u8 * buf,int oob_required,int page)3899 int nand_monolithic_write_page_raw(struct nand_chip *chip, const u8 *buf,
3900 int oob_required, int page)
3901 {
3902 struct mtd_info *mtd = nand_to_mtd(chip);
3903 unsigned int size = mtd->writesize;
3904 u8 *write_buf = (u8 *)buf;
3905
3906 if (oob_required) {
3907 size += mtd->oobsize;
3908
3909 if (buf != chip->data_buf) {
3910 write_buf = nand_get_data_buf(chip);
3911 memcpy(write_buf, buf, mtd->writesize);
3912 }
3913 }
3914
3915 return nand_prog_page_op(chip, page, 0, write_buf, size);
3916 }
3917 EXPORT_SYMBOL(nand_monolithic_write_page_raw);
3918
3919 /**
3920 * nand_write_page_raw_syndrome - [INTERN] raw page write function
3921 * @chip: nand chip info structure
3922 * @buf: data buffer
3923 * @oob_required: must write chip->oob_poi to OOB
3924 * @page: page number to write
3925 *
3926 * We need a special oob layout and handling even when ECC isn't checked.
3927 */
nand_write_page_raw_syndrome(struct nand_chip * chip,const uint8_t * buf,int oob_required,int page)3928 static int nand_write_page_raw_syndrome(struct nand_chip *chip,
3929 const uint8_t *buf, int oob_required,
3930 int page)
3931 {
3932 struct mtd_info *mtd = nand_to_mtd(chip);
3933 int eccsize = chip->ecc.size;
3934 int eccbytes = chip->ecc.bytes;
3935 uint8_t *oob = chip->oob_poi;
3936 int steps, size, ret;
3937
3938 ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0);
3939 if (ret)
3940 return ret;
3941
3942 for (steps = chip->ecc.steps; steps > 0; steps--) {
3943 ret = nand_write_data_op(chip, buf, eccsize, false);
3944 if (ret)
3945 return ret;
3946
3947 buf += eccsize;
3948
3949 if (chip->ecc.prepad) {
3950 ret = nand_write_data_op(chip, oob, chip->ecc.prepad,
3951 false);
3952 if (ret)
3953 return ret;
3954
3955 oob += chip->ecc.prepad;
3956 }
3957
3958 ret = nand_write_data_op(chip, oob, eccbytes, false);
3959 if (ret)
3960 return ret;
3961
3962 oob += eccbytes;
3963
3964 if (chip->ecc.postpad) {
3965 ret = nand_write_data_op(chip, oob, chip->ecc.postpad,
3966 false);
3967 if (ret)
3968 return ret;
3969
3970 oob += chip->ecc.postpad;
3971 }
3972 }
3973
3974 size = mtd->oobsize - (oob - chip->oob_poi);
3975 if (size) {
3976 ret = nand_write_data_op(chip, oob, size, false);
3977 if (ret)
3978 return ret;
3979 }
3980
3981 return nand_prog_page_end_op(chip);
3982 }
3983 /**
3984 * nand_write_page_swecc - [REPLACEABLE] software ECC based page write function
3985 * @chip: nand chip info structure
3986 * @buf: data buffer
3987 * @oob_required: must write chip->oob_poi to OOB
3988 * @page: page number to write
3989 */
nand_write_page_swecc(struct nand_chip * chip,const uint8_t * buf,int oob_required,int page)3990 static int nand_write_page_swecc(struct nand_chip *chip, const uint8_t *buf,
3991 int oob_required, int page)
3992 {
3993 struct mtd_info *mtd = nand_to_mtd(chip);
3994 int i, eccsize = chip->ecc.size, ret;
3995 int eccbytes = chip->ecc.bytes;
3996 int eccsteps = chip->ecc.steps;
3997 uint8_t *ecc_calc = chip->ecc.calc_buf;
3998 const uint8_t *p = buf;
3999
4000 /* Software ECC calculation */
4001 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
4002 chip->ecc.calculate(chip, p, &ecc_calc[i]);
4003
4004 ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0,
4005 chip->ecc.total);
4006 if (ret)
4007 return ret;
4008
4009 return chip->ecc.write_page_raw(chip, buf, 1, page);
4010 }
4011
4012 /**
4013 * nand_write_page_hwecc - [REPLACEABLE] hardware ECC based page write function
4014 * @chip: nand chip info structure
4015 * @buf: data buffer
4016 * @oob_required: must write chip->oob_poi to OOB
4017 * @page: page number to write
4018 */
nand_write_page_hwecc(struct nand_chip * chip,const uint8_t * buf,int oob_required,int page)4019 static int nand_write_page_hwecc(struct nand_chip *chip, const uint8_t *buf,
4020 int oob_required, int page)
4021 {
4022 struct mtd_info *mtd = nand_to_mtd(chip);
4023 int i, eccsize = chip->ecc.size, ret;
4024 int eccbytes = chip->ecc.bytes;
4025 int eccsteps = chip->ecc.steps;
4026 uint8_t *ecc_calc = chip->ecc.calc_buf;
4027 const uint8_t *p = buf;
4028
4029 ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0);
4030 if (ret)
4031 return ret;
4032
4033 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
4034 chip->ecc.hwctl(chip, NAND_ECC_WRITE);
4035
4036 ret = nand_write_data_op(chip, p, eccsize, false);
4037 if (ret)
4038 return ret;
4039
4040 chip->ecc.calculate(chip, p, &ecc_calc[i]);
4041 }
4042
4043 ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0,
4044 chip->ecc.total);
4045 if (ret)
4046 return ret;
4047
4048 ret = nand_write_data_op(chip, chip->oob_poi, mtd->oobsize, false);
4049 if (ret)
4050 return ret;
4051
4052 return nand_prog_page_end_op(chip);
4053 }
4054
4055
4056 /**
4057 * nand_write_subpage_hwecc - [REPLACEABLE] hardware ECC based subpage write
4058 * @chip: nand chip info structure
4059 * @offset: column address of subpage within the page
4060 * @data_len: data length
4061 * @buf: data buffer
4062 * @oob_required: must write chip->oob_poi to OOB
4063 * @page: page number to write
4064 */
nand_write_subpage_hwecc(struct nand_chip * chip,uint32_t offset,uint32_t data_len,const uint8_t * buf,int oob_required,int page)4065 static int nand_write_subpage_hwecc(struct nand_chip *chip, uint32_t offset,
4066 uint32_t data_len, const uint8_t *buf,
4067 int oob_required, int page)
4068 {
4069 struct mtd_info *mtd = nand_to_mtd(chip);
4070 uint8_t *oob_buf = chip->oob_poi;
4071 uint8_t *ecc_calc = chip->ecc.calc_buf;
4072 int ecc_size = chip->ecc.size;
4073 int ecc_bytes = chip->ecc.bytes;
4074 int ecc_steps = chip->ecc.steps;
4075 uint32_t start_step = offset / ecc_size;
4076 uint32_t end_step = (offset + data_len - 1) / ecc_size;
4077 int oob_bytes = mtd->oobsize / ecc_steps;
4078 int step, ret;
4079
4080 ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0);
4081 if (ret)
4082 return ret;
4083
4084 for (step = 0; step < ecc_steps; step++) {
4085 /* configure controller for WRITE access */
4086 chip->ecc.hwctl(chip, NAND_ECC_WRITE);
4087
4088 /* write data (untouched subpages already masked by 0xFF) */
4089 ret = nand_write_data_op(chip, buf, ecc_size, false);
4090 if (ret)
4091 return ret;
4092
4093 /* mask ECC of un-touched subpages by padding 0xFF */
4094 if ((step < start_step) || (step > end_step))
4095 memset(ecc_calc, 0xff, ecc_bytes);
4096 else
4097 chip->ecc.calculate(chip, buf, ecc_calc);
4098
4099 /* mask OOB of un-touched subpages by padding 0xFF */
4100 /* if oob_required, preserve OOB metadata of written subpage */
4101 if (!oob_required || (step < start_step) || (step > end_step))
4102 memset(oob_buf, 0xff, oob_bytes);
4103
4104 buf += ecc_size;
4105 ecc_calc += ecc_bytes;
4106 oob_buf += oob_bytes;
4107 }
4108
4109 /* copy calculated ECC for whole page to chip->buffer->oob */
4110 /* this include masked-value(0xFF) for unwritten subpages */
4111 ecc_calc = chip->ecc.calc_buf;
4112 ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0,
4113 chip->ecc.total);
4114 if (ret)
4115 return ret;
4116
4117 /* write OOB buffer to NAND device */
4118 ret = nand_write_data_op(chip, chip->oob_poi, mtd->oobsize, false);
4119 if (ret)
4120 return ret;
4121
4122 return nand_prog_page_end_op(chip);
4123 }
4124
4125
4126 /**
4127 * nand_write_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page write
4128 * @chip: nand chip info structure
4129 * @buf: data buffer
4130 * @oob_required: must write chip->oob_poi to OOB
4131 * @page: page number to write
4132 *
4133 * The hw generator calculates the error syndrome automatically. Therefore we
4134 * need a special oob layout and handling.
4135 */
nand_write_page_syndrome(struct nand_chip * chip,const uint8_t * buf,int oob_required,int page)4136 static int nand_write_page_syndrome(struct nand_chip *chip, const uint8_t *buf,
4137 int oob_required, int page)
4138 {
4139 struct mtd_info *mtd = nand_to_mtd(chip);
4140 int i, eccsize = chip->ecc.size;
4141 int eccbytes = chip->ecc.bytes;
4142 int eccsteps = chip->ecc.steps;
4143 const uint8_t *p = buf;
4144 uint8_t *oob = chip->oob_poi;
4145 int ret;
4146
4147 ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0);
4148 if (ret)
4149 return ret;
4150
4151 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
4152 chip->ecc.hwctl(chip, NAND_ECC_WRITE);
4153
4154 ret = nand_write_data_op(chip, p, eccsize, false);
4155 if (ret)
4156 return ret;
4157
4158 if (chip->ecc.prepad) {
4159 ret = nand_write_data_op(chip, oob, chip->ecc.prepad,
4160 false);
4161 if (ret)
4162 return ret;
4163
4164 oob += chip->ecc.prepad;
4165 }
4166
4167 chip->ecc.calculate(chip, p, oob);
4168
4169 ret = nand_write_data_op(chip, oob, eccbytes, false);
4170 if (ret)
4171 return ret;
4172
4173 oob += eccbytes;
4174
4175 if (chip->ecc.postpad) {
4176 ret = nand_write_data_op(chip, oob, chip->ecc.postpad,
4177 false);
4178 if (ret)
4179 return ret;
4180
4181 oob += chip->ecc.postpad;
4182 }
4183 }
4184
4185 /* Calculate remaining oob bytes */
4186 i = mtd->oobsize - (oob - chip->oob_poi);
4187 if (i) {
4188 ret = nand_write_data_op(chip, oob, i, false);
4189 if (ret)
4190 return ret;
4191 }
4192
4193 return nand_prog_page_end_op(chip);
4194 }
4195
4196 /**
4197 * nand_write_page - write one page
4198 * @chip: NAND chip descriptor
4199 * @offset: address offset within the page
4200 * @data_len: length of actual data to be written
4201 * @buf: the data to write
4202 * @oob_required: must write chip->oob_poi to OOB
4203 * @page: page number to write
4204 * @raw: use _raw version of write_page
4205 */
nand_write_page(struct nand_chip * chip,uint32_t offset,int data_len,const uint8_t * buf,int oob_required,int page,int raw)4206 static int nand_write_page(struct nand_chip *chip, uint32_t offset,
4207 int data_len, const uint8_t *buf, int oob_required,
4208 int page, int raw)
4209 {
4210 struct mtd_info *mtd = nand_to_mtd(chip);
4211 int status, subpage;
4212
4213 if (!(chip->options & NAND_NO_SUBPAGE_WRITE) &&
4214 chip->ecc.write_subpage)
4215 subpage = offset || (data_len < mtd->writesize);
4216 else
4217 subpage = 0;
4218
4219 if (unlikely(raw))
4220 status = chip->ecc.write_page_raw(chip, buf, oob_required,
4221 page);
4222 else if (subpage)
4223 status = chip->ecc.write_subpage(chip, offset, data_len, buf,
4224 oob_required, page);
4225 else
4226 status = chip->ecc.write_page(chip, buf, oob_required, page);
4227
4228 if (status < 0)
4229 return status;
4230
4231 return 0;
4232 }
4233
4234 #define NOTALIGNED(x) ((x & (chip->subpagesize - 1)) != 0)
4235
4236 /**
4237 * nand_do_write_ops - [INTERN] NAND write with ECC
4238 * @chip: NAND chip object
4239 * @to: offset to write to
4240 * @ops: oob operations description structure
4241 *
4242 * NAND write with ECC.
4243 */
nand_do_write_ops(struct nand_chip * chip,loff_t to,struct mtd_oob_ops * ops)4244 static int nand_do_write_ops(struct nand_chip *chip, loff_t to,
4245 struct mtd_oob_ops *ops)
4246 {
4247 struct mtd_info *mtd = nand_to_mtd(chip);
4248 int chipnr, realpage, page, column;
4249 uint32_t writelen = ops->len;
4250
4251 uint32_t oobwritelen = ops->ooblen;
4252 uint32_t oobmaxlen = mtd_oobavail(mtd, ops);
4253
4254 uint8_t *oob = ops->oobbuf;
4255 uint8_t *buf = ops->datbuf;
4256 int ret;
4257 int oob_required = oob ? 1 : 0;
4258
4259 ops->retlen = 0;
4260 if (!writelen)
4261 return 0;
4262
4263 /* Reject writes, which are not page aligned */
4264 if (NOTALIGNED(to) || NOTALIGNED(ops->len)) {
4265 pr_notice("%s: attempt to write non page aligned data\n",
4266 __func__);
4267 return -EINVAL;
4268 }
4269
4270 /* Check if the region is secured */
4271 if (nand_region_is_secured(chip, to, writelen))
4272 return -EIO;
4273
4274 column = to & (mtd->writesize - 1);
4275
4276 chipnr = (int)(to >> chip->chip_shift);
4277 nand_select_target(chip, chipnr);
4278
4279 /* Check, if it is write protected */
4280 if (nand_check_wp(chip)) {
4281 ret = -EIO;
4282 goto err_out;
4283 }
4284
4285 realpage = (int)(to >> chip->page_shift);
4286 page = realpage & chip->pagemask;
4287
4288 /* Invalidate the page cache, when we write to the cached page */
4289 if (to <= ((loff_t)chip->pagecache.page << chip->page_shift) &&
4290 ((loff_t)chip->pagecache.page << chip->page_shift) < (to + ops->len))
4291 chip->pagecache.page = -1;
4292
4293 /* Don't allow multipage oob writes with offset */
4294 if (oob && ops->ooboffs && (ops->ooboffs + ops->ooblen > oobmaxlen)) {
4295 ret = -EINVAL;
4296 goto err_out;
4297 }
4298
4299 while (1) {
4300 int bytes = mtd->writesize;
4301 uint8_t *wbuf = buf;
4302 int use_bounce_buf;
4303 int part_pagewr = (column || writelen < mtd->writesize);
4304
4305 if (part_pagewr)
4306 use_bounce_buf = 1;
4307 else if (chip->options & NAND_USES_DMA)
4308 use_bounce_buf = !virt_addr_valid(buf) ||
4309 !IS_ALIGNED((unsigned long)buf,
4310 chip->buf_align);
4311 else
4312 use_bounce_buf = 0;
4313
4314 /*
4315 * Copy the data from the initial buffer when doing partial page
4316 * writes or when a bounce buffer is required.
4317 */
4318 if (use_bounce_buf) {
4319 pr_debug("%s: using write bounce buffer for buf@%p\n",
4320 __func__, buf);
4321 if (part_pagewr)
4322 bytes = min_t(int, bytes - column, writelen);
4323 wbuf = nand_get_data_buf(chip);
4324 memset(wbuf, 0xff, mtd->writesize);
4325 memcpy(&wbuf[column], buf, bytes);
4326 }
4327
4328 if (unlikely(oob)) {
4329 size_t len = min(oobwritelen, oobmaxlen);
4330 oob = nand_fill_oob(chip, oob, len, ops);
4331 oobwritelen -= len;
4332 } else {
4333 /* We still need to erase leftover OOB data */
4334 memset(chip->oob_poi, 0xff, mtd->oobsize);
4335 }
4336
4337 ret = nand_write_page(chip, column, bytes, wbuf,
4338 oob_required, page,
4339 (ops->mode == MTD_OPS_RAW));
4340 if (ret)
4341 break;
4342
4343 writelen -= bytes;
4344 if (!writelen)
4345 break;
4346
4347 column = 0;
4348 buf += bytes;
4349 realpage++;
4350
4351 page = realpage & chip->pagemask;
4352 /* Check, if we cross a chip boundary */
4353 if (!page) {
4354 chipnr++;
4355 nand_deselect_target(chip);
4356 nand_select_target(chip, chipnr);
4357 }
4358 }
4359
4360 ops->retlen = ops->len - writelen;
4361 if (unlikely(oob))
4362 ops->oobretlen = ops->ooblen;
4363
4364 err_out:
4365 nand_deselect_target(chip);
4366 return ret;
4367 }
4368
4369 /**
4370 * panic_nand_write - [MTD Interface] NAND write with ECC
4371 * @mtd: MTD device structure
4372 * @to: offset to write to
4373 * @len: number of bytes to write
4374 * @retlen: pointer to variable to store the number of written bytes
4375 * @buf: the data to write
4376 *
4377 * NAND write with ECC. Used when performing writes in interrupt context, this
4378 * may for example be called by mtdoops when writing an oops while in panic.
4379 */
panic_nand_write(struct mtd_info * mtd,loff_t to,size_t len,size_t * retlen,const uint8_t * buf)4380 static int panic_nand_write(struct mtd_info *mtd, loff_t to, size_t len,
4381 size_t *retlen, const uint8_t *buf)
4382 {
4383 struct nand_chip *chip = mtd_to_nand(mtd);
4384 int chipnr = (int)(to >> chip->chip_shift);
4385 struct mtd_oob_ops ops;
4386 int ret;
4387
4388 nand_select_target(chip, chipnr);
4389
4390 /* Wait for the device to get ready */
4391 panic_nand_wait(chip, 400);
4392
4393 memset(&ops, 0, sizeof(ops));
4394 ops.len = len;
4395 ops.datbuf = (uint8_t *)buf;
4396 ops.mode = MTD_OPS_PLACE_OOB;
4397
4398 ret = nand_do_write_ops(chip, to, &ops);
4399
4400 *retlen = ops.retlen;
4401 return ret;
4402 }
4403
4404 /**
4405 * nand_write_oob - [MTD Interface] NAND write data and/or out-of-band
4406 * @mtd: MTD device structure
4407 * @to: offset to write to
4408 * @ops: oob operation description structure
4409 */
nand_write_oob(struct mtd_info * mtd,loff_t to,struct mtd_oob_ops * ops)4410 static int nand_write_oob(struct mtd_info *mtd, loff_t to,
4411 struct mtd_oob_ops *ops)
4412 {
4413 struct nand_chip *chip = mtd_to_nand(mtd);
4414 int ret = 0;
4415
4416 ops->retlen = 0;
4417
4418 nand_get_device(chip);
4419
4420 switch (ops->mode) {
4421 case MTD_OPS_PLACE_OOB:
4422 case MTD_OPS_AUTO_OOB:
4423 case MTD_OPS_RAW:
4424 break;
4425
4426 default:
4427 goto out;
4428 }
4429
4430 if (!ops->datbuf)
4431 ret = nand_do_write_oob(chip, to, ops);
4432 else
4433 ret = nand_do_write_ops(chip, to, ops);
4434
4435 out:
4436 nand_release_device(chip);
4437 return ret;
4438 }
4439
4440 /**
4441 * nand_erase - [MTD Interface] erase block(s)
4442 * @mtd: MTD device structure
4443 * @instr: erase instruction
4444 *
4445 * Erase one ore more blocks.
4446 */
nand_erase(struct mtd_info * mtd,struct erase_info * instr)4447 static int nand_erase(struct mtd_info *mtd, struct erase_info *instr)
4448 {
4449 return nand_erase_nand(mtd_to_nand(mtd), instr, 0);
4450 }
4451
4452 /**
4453 * nand_erase_nand - [INTERN] erase block(s)
4454 * @chip: NAND chip object
4455 * @instr: erase instruction
4456 * @allowbbt: allow erasing the bbt area
4457 *
4458 * Erase one ore more blocks.
4459 */
nand_erase_nand(struct nand_chip * chip,struct erase_info * instr,int allowbbt)4460 int nand_erase_nand(struct nand_chip *chip, struct erase_info *instr,
4461 int allowbbt)
4462 {
4463 int page, pages_per_block, ret, chipnr;
4464 loff_t len;
4465
4466 pr_debug("%s: start = 0x%012llx, len = %llu\n",
4467 __func__, (unsigned long long)instr->addr,
4468 (unsigned long long)instr->len);
4469
4470 if (check_offs_len(chip, instr->addr, instr->len))
4471 return -EINVAL;
4472
4473 /* Check if the region is secured */
4474 if (nand_region_is_secured(chip, instr->addr, instr->len))
4475 return -EIO;
4476
4477 /* Grab the lock and see if the device is available */
4478 nand_get_device(chip);
4479
4480 /* Shift to get first page */
4481 page = (int)(instr->addr >> chip->page_shift);
4482 chipnr = (int)(instr->addr >> chip->chip_shift);
4483
4484 /* Calculate pages in each block */
4485 pages_per_block = 1 << (chip->phys_erase_shift - chip->page_shift);
4486
4487 /* Select the NAND device */
4488 nand_select_target(chip, chipnr);
4489
4490 /* Check, if it is write protected */
4491 if (nand_check_wp(chip)) {
4492 pr_debug("%s: device is write protected!\n",
4493 __func__);
4494 ret = -EIO;
4495 goto erase_exit;
4496 }
4497
4498 /* Loop through the pages */
4499 len = instr->len;
4500
4501 while (len) {
4502 /* Check if we have a bad block, we do not erase bad blocks! */
4503 if (nand_block_checkbad(chip, ((loff_t) page) <<
4504 chip->page_shift, allowbbt)) {
4505 pr_warn("%s: attempt to erase a bad block at page 0x%08x\n",
4506 __func__, page);
4507 ret = -EIO;
4508 goto erase_exit;
4509 }
4510
4511 /*
4512 * Invalidate the page cache, if we erase the block which
4513 * contains the current cached page.
4514 */
4515 if (page <= chip->pagecache.page && chip->pagecache.page <
4516 (page + pages_per_block))
4517 chip->pagecache.page = -1;
4518
4519 ret = nand_erase_op(chip, (page & chip->pagemask) >>
4520 (chip->phys_erase_shift - chip->page_shift));
4521 if (ret) {
4522 pr_debug("%s: failed erase, page 0x%08x\n",
4523 __func__, page);
4524 instr->fail_addr =
4525 ((loff_t)page << chip->page_shift);
4526 goto erase_exit;
4527 }
4528
4529 /* Increment page address and decrement length */
4530 len -= (1ULL << chip->phys_erase_shift);
4531 page += pages_per_block;
4532
4533 /* Check, if we cross a chip boundary */
4534 if (len && !(page & chip->pagemask)) {
4535 chipnr++;
4536 nand_deselect_target(chip);
4537 nand_select_target(chip, chipnr);
4538 }
4539 }
4540
4541 ret = 0;
4542 erase_exit:
4543
4544 /* Deselect and wake up anyone waiting on the device */
4545 nand_deselect_target(chip);
4546 nand_release_device(chip);
4547
4548 /* Return more or less happy */
4549 return ret;
4550 }
4551
4552 /**
4553 * nand_sync - [MTD Interface] sync
4554 * @mtd: MTD device structure
4555 *
4556 * Sync is actually a wait for chip ready function.
4557 */
nand_sync(struct mtd_info * mtd)4558 static void nand_sync(struct mtd_info *mtd)
4559 {
4560 struct nand_chip *chip = mtd_to_nand(mtd);
4561
4562 pr_debug("%s: called\n", __func__);
4563
4564 /* Grab the lock and see if the device is available */
4565 nand_get_device(chip);
4566 /* Release it and go back */
4567 nand_release_device(chip);
4568 }
4569
4570 /**
4571 * nand_block_isbad - [MTD Interface] Check if block at offset is bad
4572 * @mtd: MTD device structure
4573 * @offs: offset relative to mtd start
4574 */
nand_block_isbad(struct mtd_info * mtd,loff_t offs)4575 static int nand_block_isbad(struct mtd_info *mtd, loff_t offs)
4576 {
4577 struct nand_chip *chip = mtd_to_nand(mtd);
4578 int chipnr = (int)(offs >> chip->chip_shift);
4579 int ret;
4580
4581 /* Select the NAND device */
4582 nand_get_device(chip);
4583
4584 nand_select_target(chip, chipnr);
4585
4586 ret = nand_block_checkbad(chip, offs, 0);
4587
4588 nand_deselect_target(chip);
4589 nand_release_device(chip);
4590
4591 return ret;
4592 }
4593
4594 /**
4595 * nand_block_markbad - [MTD Interface] Mark block at the given offset as bad
4596 * @mtd: MTD device structure
4597 * @ofs: offset relative to mtd start
4598 */
nand_block_markbad(struct mtd_info * mtd,loff_t ofs)4599 static int nand_block_markbad(struct mtd_info *mtd, loff_t ofs)
4600 {
4601 int ret;
4602
4603 ret = nand_block_isbad(mtd, ofs);
4604 if (ret) {
4605 /* If it was bad already, return success and do nothing */
4606 if (ret > 0)
4607 return 0;
4608 return ret;
4609 }
4610
4611 return nand_block_markbad_lowlevel(mtd_to_nand(mtd), ofs);
4612 }
4613
4614 /**
4615 * nand_suspend - [MTD Interface] Suspend the NAND flash
4616 * @mtd: MTD device structure
4617 *
4618 * Returns 0 for success or negative error code otherwise.
4619 */
nand_suspend(struct mtd_info * mtd)4620 static int nand_suspend(struct mtd_info *mtd)
4621 {
4622 struct nand_chip *chip = mtd_to_nand(mtd);
4623 int ret = 0;
4624
4625 mutex_lock(&chip->lock);
4626 if (chip->ops.suspend)
4627 ret = chip->ops.suspend(chip);
4628 if (!ret)
4629 chip->suspended = 1;
4630 mutex_unlock(&chip->lock);
4631
4632 return ret;
4633 }
4634
4635 /**
4636 * nand_resume - [MTD Interface] Resume the NAND flash
4637 * @mtd: MTD device structure
4638 */
nand_resume(struct mtd_info * mtd)4639 static void nand_resume(struct mtd_info *mtd)
4640 {
4641 struct nand_chip *chip = mtd_to_nand(mtd);
4642
4643 mutex_lock(&chip->lock);
4644 if (chip->suspended) {
4645 if (chip->ops.resume)
4646 chip->ops.resume(chip);
4647 chip->suspended = 0;
4648 } else {
4649 pr_err("%s called for a chip which is not in suspended state\n",
4650 __func__);
4651 }
4652 mutex_unlock(&chip->lock);
4653
4654 wake_up_all(&chip->resume_wq);
4655 }
4656
4657 /**
4658 * nand_shutdown - [MTD Interface] Finish the current NAND operation and
4659 * prevent further operations
4660 * @mtd: MTD device structure
4661 */
nand_shutdown(struct mtd_info * mtd)4662 static void nand_shutdown(struct mtd_info *mtd)
4663 {
4664 nand_suspend(mtd);
4665 }
4666
4667 /**
4668 * nand_lock - [MTD Interface] Lock the NAND flash
4669 * @mtd: MTD device structure
4670 * @ofs: offset byte address
4671 * @len: number of bytes to lock (must be a multiple of block/page size)
4672 */
nand_lock(struct mtd_info * mtd,loff_t ofs,uint64_t len)4673 static int nand_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
4674 {
4675 struct nand_chip *chip = mtd_to_nand(mtd);
4676
4677 if (!chip->ops.lock_area)
4678 return -ENOTSUPP;
4679
4680 return chip->ops.lock_area(chip, ofs, len);
4681 }
4682
4683 /**
4684 * nand_unlock - [MTD Interface] Unlock the NAND flash
4685 * @mtd: MTD device structure
4686 * @ofs: offset byte address
4687 * @len: number of bytes to unlock (must be a multiple of block/page size)
4688 */
nand_unlock(struct mtd_info * mtd,loff_t ofs,uint64_t len)4689 static int nand_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
4690 {
4691 struct nand_chip *chip = mtd_to_nand(mtd);
4692
4693 if (!chip->ops.unlock_area)
4694 return -ENOTSUPP;
4695
4696 return chip->ops.unlock_area(chip, ofs, len);
4697 }
4698
4699 /* Set default functions */
nand_set_defaults(struct nand_chip * chip)4700 static void nand_set_defaults(struct nand_chip *chip)
4701 {
4702 /* If no controller is provided, use the dummy, legacy one. */
4703 if (!chip->controller) {
4704 chip->controller = &chip->legacy.dummy_controller;
4705 nand_controller_init(chip->controller);
4706 }
4707
4708 nand_legacy_set_defaults(chip);
4709
4710 if (!chip->buf_align)
4711 chip->buf_align = 1;
4712 }
4713
4714 /* Sanitize ONFI strings so we can safely print them */
sanitize_string(uint8_t * s,size_t len)4715 void sanitize_string(uint8_t *s, size_t len)
4716 {
4717 ssize_t i;
4718
4719 /* Null terminate */
4720 s[len - 1] = 0;
4721
4722 /* Remove non printable chars */
4723 for (i = 0; i < len - 1; i++) {
4724 if (s[i] < ' ' || s[i] > 127)
4725 s[i] = '?';
4726 }
4727
4728 /* Remove trailing spaces */
4729 strim(s);
4730 }
4731
4732 /*
4733 * nand_id_has_period - Check if an ID string has a given wraparound period
4734 * @id_data: the ID string
4735 * @arrlen: the length of the @id_data array
4736 * @period: the period of repitition
4737 *
4738 * Check if an ID string is repeated within a given sequence of bytes at
4739 * specific repetition interval period (e.g., {0x20,0x01,0x7F,0x20} has a
4740 * period of 3). This is a helper function for nand_id_len(). Returns non-zero
4741 * if the repetition has a period of @period; otherwise, returns zero.
4742 */
nand_id_has_period(u8 * id_data,int arrlen,int period)4743 static int nand_id_has_period(u8 *id_data, int arrlen, int period)
4744 {
4745 int i, j;
4746 for (i = 0; i < period; i++)
4747 for (j = i + period; j < arrlen; j += period)
4748 if (id_data[i] != id_data[j])
4749 return 0;
4750 return 1;
4751 }
4752
4753 /*
4754 * nand_id_len - Get the length of an ID string returned by CMD_READID
4755 * @id_data: the ID string
4756 * @arrlen: the length of the @id_data array
4757
4758 * Returns the length of the ID string, according to known wraparound/trailing
4759 * zero patterns. If no pattern exists, returns the length of the array.
4760 */
nand_id_len(u8 * id_data,int arrlen)4761 static int nand_id_len(u8 *id_data, int arrlen)
4762 {
4763 int last_nonzero, period;
4764
4765 /* Find last non-zero byte */
4766 for (last_nonzero = arrlen - 1; last_nonzero >= 0; last_nonzero--)
4767 if (id_data[last_nonzero])
4768 break;
4769
4770 /* All zeros */
4771 if (last_nonzero < 0)
4772 return 0;
4773
4774 /* Calculate wraparound period */
4775 for (period = 1; period < arrlen; period++)
4776 if (nand_id_has_period(id_data, arrlen, period))
4777 break;
4778
4779 /* There's a repeated pattern */
4780 if (period < arrlen)
4781 return period;
4782
4783 /* There are trailing zeros */
4784 if (last_nonzero < arrlen - 1)
4785 return last_nonzero + 1;
4786
4787 /* No pattern detected */
4788 return arrlen;
4789 }
4790
4791 /* Extract the bits of per cell from the 3rd byte of the extended ID */
nand_get_bits_per_cell(u8 cellinfo)4792 static int nand_get_bits_per_cell(u8 cellinfo)
4793 {
4794 int bits;
4795
4796 bits = cellinfo & NAND_CI_CELLTYPE_MSK;
4797 bits >>= NAND_CI_CELLTYPE_SHIFT;
4798 return bits + 1;
4799 }
4800
4801 /*
4802 * Many new NAND share similar device ID codes, which represent the size of the
4803 * chip. The rest of the parameters must be decoded according to generic or
4804 * manufacturer-specific "extended ID" decoding patterns.
4805 */
nand_decode_ext_id(struct nand_chip * chip)4806 void nand_decode_ext_id(struct nand_chip *chip)
4807 {
4808 struct nand_memory_organization *memorg;
4809 struct mtd_info *mtd = nand_to_mtd(chip);
4810 int extid;
4811 u8 *id_data = chip->id.data;
4812
4813 memorg = nanddev_get_memorg(&chip->base);
4814
4815 /* The 3rd id byte holds MLC / multichip data */
4816 memorg->bits_per_cell = nand_get_bits_per_cell(id_data[2]);
4817 /* The 4th id byte is the important one */
4818 extid = id_data[3];
4819
4820 /* Calc pagesize */
4821 memorg->pagesize = 1024 << (extid & 0x03);
4822 mtd->writesize = memorg->pagesize;
4823 extid >>= 2;
4824 /* Calc oobsize */
4825 memorg->oobsize = (8 << (extid & 0x01)) * (mtd->writesize >> 9);
4826 mtd->oobsize = memorg->oobsize;
4827 extid >>= 2;
4828 /* Calc blocksize. Blocksize is multiples of 64KiB */
4829 memorg->pages_per_eraseblock = ((64 * 1024) << (extid & 0x03)) /
4830 memorg->pagesize;
4831 mtd->erasesize = (64 * 1024) << (extid & 0x03);
4832 extid >>= 2;
4833 /* Get buswidth information */
4834 if (extid & 0x1)
4835 chip->options |= NAND_BUSWIDTH_16;
4836 }
4837 EXPORT_SYMBOL_GPL(nand_decode_ext_id);
4838
4839 /*
4840 * Old devices have chip data hardcoded in the device ID table. nand_decode_id
4841 * decodes a matching ID table entry and assigns the MTD size parameters for
4842 * the chip.
4843 */
nand_decode_id(struct nand_chip * chip,struct nand_flash_dev * type)4844 static void nand_decode_id(struct nand_chip *chip, struct nand_flash_dev *type)
4845 {
4846 struct mtd_info *mtd = nand_to_mtd(chip);
4847 struct nand_memory_organization *memorg;
4848
4849 memorg = nanddev_get_memorg(&chip->base);
4850
4851 memorg->pages_per_eraseblock = type->erasesize / type->pagesize;
4852 mtd->erasesize = type->erasesize;
4853 memorg->pagesize = type->pagesize;
4854 mtd->writesize = memorg->pagesize;
4855 memorg->oobsize = memorg->pagesize / 32;
4856 mtd->oobsize = memorg->oobsize;
4857
4858 /* All legacy ID NAND are small-page, SLC */
4859 memorg->bits_per_cell = 1;
4860 }
4861
4862 /*
4863 * Set the bad block marker/indicator (BBM/BBI) patterns according to some
4864 * heuristic patterns using various detected parameters (e.g., manufacturer,
4865 * page size, cell-type information).
4866 */
nand_decode_bbm_options(struct nand_chip * chip)4867 static void nand_decode_bbm_options(struct nand_chip *chip)
4868 {
4869 struct mtd_info *mtd = nand_to_mtd(chip);
4870
4871 /* Set the bad block position */
4872 if (mtd->writesize > 512 || (chip->options & NAND_BUSWIDTH_16))
4873 chip->badblockpos = NAND_BBM_POS_LARGE;
4874 else
4875 chip->badblockpos = NAND_BBM_POS_SMALL;
4876 }
4877
is_full_id_nand(struct nand_flash_dev * type)4878 static inline bool is_full_id_nand(struct nand_flash_dev *type)
4879 {
4880 return type->id_len;
4881 }
4882
find_full_id_nand(struct nand_chip * chip,struct nand_flash_dev * type)4883 static bool find_full_id_nand(struct nand_chip *chip,
4884 struct nand_flash_dev *type)
4885 {
4886 struct nand_device *base = &chip->base;
4887 struct nand_ecc_props requirements;
4888 struct mtd_info *mtd = nand_to_mtd(chip);
4889 struct nand_memory_organization *memorg;
4890 u8 *id_data = chip->id.data;
4891
4892 memorg = nanddev_get_memorg(&chip->base);
4893
4894 if (!strncmp(type->id, id_data, type->id_len)) {
4895 memorg->pagesize = type->pagesize;
4896 mtd->writesize = memorg->pagesize;
4897 memorg->pages_per_eraseblock = type->erasesize /
4898 type->pagesize;
4899 mtd->erasesize = type->erasesize;
4900 memorg->oobsize = type->oobsize;
4901 mtd->oobsize = memorg->oobsize;
4902
4903 memorg->bits_per_cell = nand_get_bits_per_cell(id_data[2]);
4904 memorg->eraseblocks_per_lun =
4905 DIV_ROUND_DOWN_ULL((u64)type->chipsize << 20,
4906 memorg->pagesize *
4907 memorg->pages_per_eraseblock);
4908 chip->options |= type->options;
4909 requirements.strength = NAND_ECC_STRENGTH(type);
4910 requirements.step_size = NAND_ECC_STEP(type);
4911 nanddev_set_ecc_requirements(base, &requirements);
4912
4913 chip->parameters.model = kstrdup(type->name, GFP_KERNEL);
4914 if (!chip->parameters.model)
4915 return false;
4916
4917 return true;
4918 }
4919 return false;
4920 }
4921
4922 /*
4923 * Manufacturer detection. Only used when the NAND is not ONFI or JEDEC
4924 * compliant and does not have a full-id or legacy-id entry in the nand_ids
4925 * table.
4926 */
nand_manufacturer_detect(struct nand_chip * chip)4927 static void nand_manufacturer_detect(struct nand_chip *chip)
4928 {
4929 /*
4930 * Try manufacturer detection if available and use
4931 * nand_decode_ext_id() otherwise.
4932 */
4933 if (chip->manufacturer.desc && chip->manufacturer.desc->ops &&
4934 chip->manufacturer.desc->ops->detect) {
4935 struct nand_memory_organization *memorg;
4936
4937 memorg = nanddev_get_memorg(&chip->base);
4938
4939 /* The 3rd id byte holds MLC / multichip data */
4940 memorg->bits_per_cell = nand_get_bits_per_cell(chip->id.data[2]);
4941 chip->manufacturer.desc->ops->detect(chip);
4942 } else {
4943 nand_decode_ext_id(chip);
4944 }
4945 }
4946
4947 /*
4948 * Manufacturer initialization. This function is called for all NANDs including
4949 * ONFI and JEDEC compliant ones.
4950 * Manufacturer drivers should put all their specific initialization code in
4951 * their ->init() hook.
4952 */
nand_manufacturer_init(struct nand_chip * chip)4953 static int nand_manufacturer_init(struct nand_chip *chip)
4954 {
4955 if (!chip->manufacturer.desc || !chip->manufacturer.desc->ops ||
4956 !chip->manufacturer.desc->ops->init)
4957 return 0;
4958
4959 return chip->manufacturer.desc->ops->init(chip);
4960 }
4961
4962 /*
4963 * Manufacturer cleanup. This function is called for all NANDs including
4964 * ONFI and JEDEC compliant ones.
4965 * Manufacturer drivers should put all their specific cleanup code in their
4966 * ->cleanup() hook.
4967 */
nand_manufacturer_cleanup(struct nand_chip * chip)4968 static void nand_manufacturer_cleanup(struct nand_chip *chip)
4969 {
4970 /* Release manufacturer private data */
4971 if (chip->manufacturer.desc && chip->manufacturer.desc->ops &&
4972 chip->manufacturer.desc->ops->cleanup)
4973 chip->manufacturer.desc->ops->cleanup(chip);
4974 }
4975
4976 static const char *
nand_manufacturer_name(const struct nand_manufacturer_desc * manufacturer_desc)4977 nand_manufacturer_name(const struct nand_manufacturer_desc *manufacturer_desc)
4978 {
4979 return manufacturer_desc ? manufacturer_desc->name : "Unknown";
4980 }
4981
4982 /*
4983 * Get the flash and manufacturer id and lookup if the type is supported.
4984 */
nand_detect(struct nand_chip * chip,struct nand_flash_dev * type)4985 static int nand_detect(struct nand_chip *chip, struct nand_flash_dev *type)
4986 {
4987 const struct nand_manufacturer_desc *manufacturer_desc;
4988 struct mtd_info *mtd = nand_to_mtd(chip);
4989 struct nand_memory_organization *memorg;
4990 int busw, ret;
4991 u8 *id_data = chip->id.data;
4992 u8 maf_id, dev_id;
4993 u64 targetsize;
4994
4995 /*
4996 * Let's start by initializing memorg fields that might be left
4997 * unassigned by the ID-based detection logic.
4998 */
4999 memorg = nanddev_get_memorg(&chip->base);
5000 memorg->planes_per_lun = 1;
5001 memorg->luns_per_target = 1;
5002
5003 /*
5004 * Reset the chip, required by some chips (e.g. Micron MT29FxGxxxxx)
5005 * after power-up.
5006 */
5007 ret = nand_reset(chip, 0);
5008 if (ret)
5009 return ret;
5010
5011 /* Select the device */
5012 nand_select_target(chip, 0);
5013
5014 /* Send the command for reading device ID */
5015 ret = nand_readid_op(chip, 0, id_data, 2);
5016 if (ret)
5017 return ret;
5018
5019 /* Read manufacturer and device IDs */
5020 maf_id = id_data[0];
5021 dev_id = id_data[1];
5022
5023 /*
5024 * Try again to make sure, as some systems the bus-hold or other
5025 * interface concerns can cause random data which looks like a
5026 * possibly credible NAND flash to appear. If the two results do
5027 * not match, ignore the device completely.
5028 */
5029
5030 /* Read entire ID string */
5031 ret = nand_readid_op(chip, 0, id_data, sizeof(chip->id.data));
5032 if (ret)
5033 return ret;
5034
5035 if (id_data[0] != maf_id || id_data[1] != dev_id) {
5036 pr_info("second ID read did not match %02x,%02x against %02x,%02x\n",
5037 maf_id, dev_id, id_data[0], id_data[1]);
5038 return -ENODEV;
5039 }
5040
5041 chip->id.len = nand_id_len(id_data, ARRAY_SIZE(chip->id.data));
5042
5043 /* Try to identify manufacturer */
5044 manufacturer_desc = nand_get_manufacturer_desc(maf_id);
5045 chip->manufacturer.desc = manufacturer_desc;
5046
5047 if (!type)
5048 type = nand_flash_ids;
5049
5050 /*
5051 * Save the NAND_BUSWIDTH_16 flag before letting auto-detection logic
5052 * override it.
5053 * This is required to make sure initial NAND bus width set by the
5054 * NAND controller driver is coherent with the real NAND bus width
5055 * (extracted by auto-detection code).
5056 */
5057 busw = chip->options & NAND_BUSWIDTH_16;
5058
5059 /*
5060 * The flag is only set (never cleared), reset it to its default value
5061 * before starting auto-detection.
5062 */
5063 chip->options &= ~NAND_BUSWIDTH_16;
5064
5065 for (; type->name != NULL; type++) {
5066 if (is_full_id_nand(type)) {
5067 if (find_full_id_nand(chip, type))
5068 goto ident_done;
5069 } else if (dev_id == type->dev_id) {
5070 break;
5071 }
5072 }
5073
5074 if (!type->name || !type->pagesize) {
5075 /* Check if the chip is ONFI compliant */
5076 ret = nand_onfi_detect(chip);
5077 if (ret < 0)
5078 return ret;
5079 else if (ret)
5080 goto ident_done;
5081
5082 /* Check if the chip is JEDEC compliant */
5083 ret = nand_jedec_detect(chip);
5084 if (ret < 0)
5085 return ret;
5086 else if (ret)
5087 goto ident_done;
5088 }
5089
5090 if (!type->name)
5091 return -ENODEV;
5092
5093 chip->parameters.model = kstrdup(type->name, GFP_KERNEL);
5094 if (!chip->parameters.model)
5095 return -ENOMEM;
5096
5097 if (!type->pagesize)
5098 nand_manufacturer_detect(chip);
5099 else
5100 nand_decode_id(chip, type);
5101
5102 /* Get chip options */
5103 chip->options |= type->options;
5104
5105 memorg->eraseblocks_per_lun =
5106 DIV_ROUND_DOWN_ULL((u64)type->chipsize << 20,
5107 memorg->pagesize *
5108 memorg->pages_per_eraseblock);
5109
5110 ident_done:
5111 if (!mtd->name)
5112 mtd->name = chip->parameters.model;
5113
5114 if (chip->options & NAND_BUSWIDTH_AUTO) {
5115 WARN_ON(busw & NAND_BUSWIDTH_16);
5116 nand_set_defaults(chip);
5117 } else if (busw != (chip->options & NAND_BUSWIDTH_16)) {
5118 /*
5119 * Check, if buswidth is correct. Hardware drivers should set
5120 * chip correct!
5121 */
5122 pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n",
5123 maf_id, dev_id);
5124 pr_info("%s %s\n", nand_manufacturer_name(manufacturer_desc),
5125 mtd->name);
5126 pr_warn("bus width %d instead of %d bits\n", busw ? 16 : 8,
5127 (chip->options & NAND_BUSWIDTH_16) ? 16 : 8);
5128 ret = -EINVAL;
5129
5130 goto free_detect_allocation;
5131 }
5132
5133 nand_decode_bbm_options(chip);
5134
5135 /* Calculate the address shift from the page size */
5136 chip->page_shift = ffs(mtd->writesize) - 1;
5137 /* Convert chipsize to number of pages per chip -1 */
5138 targetsize = nanddev_target_size(&chip->base);
5139 chip->pagemask = (targetsize >> chip->page_shift) - 1;
5140
5141 chip->bbt_erase_shift = chip->phys_erase_shift =
5142 ffs(mtd->erasesize) - 1;
5143 if (targetsize & 0xffffffff)
5144 chip->chip_shift = ffs((unsigned)targetsize) - 1;
5145 else {
5146 chip->chip_shift = ffs((unsigned)(targetsize >> 32));
5147 chip->chip_shift += 32 - 1;
5148 }
5149
5150 if (chip->chip_shift - chip->page_shift > 16)
5151 chip->options |= NAND_ROW_ADDR_3;
5152
5153 chip->badblockbits = 8;
5154
5155 nand_legacy_adjust_cmdfunc(chip);
5156
5157 pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n",
5158 maf_id, dev_id);
5159 pr_info("%s %s\n", nand_manufacturer_name(manufacturer_desc),
5160 chip->parameters.model);
5161 pr_info("%d MiB, %s, erase size: %d KiB, page size: %d, OOB size: %d\n",
5162 (int)(targetsize >> 20), nand_is_slc(chip) ? "SLC" : "MLC",
5163 mtd->erasesize >> 10, mtd->writesize, mtd->oobsize);
5164 return 0;
5165
5166 free_detect_allocation:
5167 kfree(chip->parameters.model);
5168
5169 return ret;
5170 }
5171
5172 static enum nand_ecc_engine_type
of_get_rawnand_ecc_engine_type_legacy(struct device_node * np)5173 of_get_rawnand_ecc_engine_type_legacy(struct device_node *np)
5174 {
5175 enum nand_ecc_legacy_mode {
5176 NAND_ECC_INVALID,
5177 NAND_ECC_NONE,
5178 NAND_ECC_SOFT,
5179 NAND_ECC_SOFT_BCH,
5180 NAND_ECC_HW,
5181 NAND_ECC_HW_SYNDROME,
5182 NAND_ECC_ON_DIE,
5183 };
5184 const char * const nand_ecc_legacy_modes[] = {
5185 [NAND_ECC_NONE] = "none",
5186 [NAND_ECC_SOFT] = "soft",
5187 [NAND_ECC_SOFT_BCH] = "soft_bch",
5188 [NAND_ECC_HW] = "hw",
5189 [NAND_ECC_HW_SYNDROME] = "hw_syndrome",
5190 [NAND_ECC_ON_DIE] = "on-die",
5191 };
5192 enum nand_ecc_legacy_mode eng_type;
5193 const char *pm;
5194 int err;
5195
5196 err = of_property_read_string(np, "nand-ecc-mode", &pm);
5197 if (err)
5198 return NAND_ECC_ENGINE_TYPE_INVALID;
5199
5200 for (eng_type = NAND_ECC_NONE;
5201 eng_type < ARRAY_SIZE(nand_ecc_legacy_modes); eng_type++) {
5202 if (!strcasecmp(pm, nand_ecc_legacy_modes[eng_type])) {
5203 switch (eng_type) {
5204 case NAND_ECC_NONE:
5205 return NAND_ECC_ENGINE_TYPE_NONE;
5206 case NAND_ECC_SOFT:
5207 case NAND_ECC_SOFT_BCH:
5208 return NAND_ECC_ENGINE_TYPE_SOFT;
5209 case NAND_ECC_HW:
5210 case NAND_ECC_HW_SYNDROME:
5211 return NAND_ECC_ENGINE_TYPE_ON_HOST;
5212 case NAND_ECC_ON_DIE:
5213 return NAND_ECC_ENGINE_TYPE_ON_DIE;
5214 default:
5215 break;
5216 }
5217 }
5218 }
5219
5220 return NAND_ECC_ENGINE_TYPE_INVALID;
5221 }
5222
5223 static enum nand_ecc_placement
of_get_rawnand_ecc_placement_legacy(struct device_node * np)5224 of_get_rawnand_ecc_placement_legacy(struct device_node *np)
5225 {
5226 const char *pm;
5227 int err;
5228
5229 err = of_property_read_string(np, "nand-ecc-mode", &pm);
5230 if (!err) {
5231 if (!strcasecmp(pm, "hw_syndrome"))
5232 return NAND_ECC_PLACEMENT_INTERLEAVED;
5233 }
5234
5235 return NAND_ECC_PLACEMENT_UNKNOWN;
5236 }
5237
of_get_rawnand_ecc_algo_legacy(struct device_node * np)5238 static enum nand_ecc_algo of_get_rawnand_ecc_algo_legacy(struct device_node *np)
5239 {
5240 const char *pm;
5241 int err;
5242
5243 err = of_property_read_string(np, "nand-ecc-mode", &pm);
5244 if (!err) {
5245 if (!strcasecmp(pm, "soft"))
5246 return NAND_ECC_ALGO_HAMMING;
5247 else if (!strcasecmp(pm, "soft_bch"))
5248 return NAND_ECC_ALGO_BCH;
5249 }
5250
5251 return NAND_ECC_ALGO_UNKNOWN;
5252 }
5253
of_get_nand_ecc_legacy_user_config(struct nand_chip * chip)5254 static void of_get_nand_ecc_legacy_user_config(struct nand_chip *chip)
5255 {
5256 struct device_node *dn = nand_get_flash_node(chip);
5257 struct nand_ecc_props *user_conf = &chip->base.ecc.user_conf;
5258
5259 if (user_conf->engine_type == NAND_ECC_ENGINE_TYPE_INVALID)
5260 user_conf->engine_type = of_get_rawnand_ecc_engine_type_legacy(dn);
5261
5262 if (user_conf->algo == NAND_ECC_ALGO_UNKNOWN)
5263 user_conf->algo = of_get_rawnand_ecc_algo_legacy(dn);
5264
5265 if (user_conf->placement == NAND_ECC_PLACEMENT_UNKNOWN)
5266 user_conf->placement = of_get_rawnand_ecc_placement_legacy(dn);
5267 }
5268
of_get_nand_bus_width(struct device_node * np)5269 static int of_get_nand_bus_width(struct device_node *np)
5270 {
5271 u32 val;
5272
5273 if (of_property_read_u32(np, "nand-bus-width", &val))
5274 return 8;
5275
5276 switch (val) {
5277 case 8:
5278 case 16:
5279 return val;
5280 default:
5281 return -EIO;
5282 }
5283 }
5284
of_get_nand_on_flash_bbt(struct device_node * np)5285 static bool of_get_nand_on_flash_bbt(struct device_node *np)
5286 {
5287 return of_property_read_bool(np, "nand-on-flash-bbt");
5288 }
5289
of_get_nand_secure_regions(struct nand_chip * chip)5290 static int of_get_nand_secure_regions(struct nand_chip *chip)
5291 {
5292 struct device_node *dn = nand_get_flash_node(chip);
5293 struct property *prop;
5294 int nr_elem, i, j;
5295
5296 /* Only proceed if the "secure-regions" property is present in DT */
5297 prop = of_find_property(dn, "secure-regions", NULL);
5298 if (!prop)
5299 return 0;
5300
5301 nr_elem = of_property_count_elems_of_size(dn, "secure-regions", sizeof(u64));
5302 if (nr_elem <= 0)
5303 return nr_elem;
5304
5305 chip->nr_secure_regions = nr_elem / 2;
5306 chip->secure_regions = kcalloc(chip->nr_secure_regions, sizeof(*chip->secure_regions),
5307 GFP_KERNEL);
5308 if (!chip->secure_regions)
5309 return -ENOMEM;
5310
5311 for (i = 0, j = 0; i < chip->nr_secure_regions; i++, j += 2) {
5312 of_property_read_u64_index(dn, "secure-regions", j,
5313 &chip->secure_regions[i].offset);
5314 of_property_read_u64_index(dn, "secure-regions", j + 1,
5315 &chip->secure_regions[i].size);
5316 }
5317
5318 return 0;
5319 }
5320
5321 /**
5322 * rawnand_dt_parse_gpio_cs - Parse the gpio-cs property of a controller
5323 * @dev: Device that will be parsed. Also used for managed allocations.
5324 * @cs_array: Array of GPIO desc pointers allocated on success
5325 * @ncs_array: Number of entries in @cs_array updated on success.
5326 * @return 0 on success, an error otherwise.
5327 */
rawnand_dt_parse_gpio_cs(struct device * dev,struct gpio_desc *** cs_array,unsigned int * ncs_array)5328 int rawnand_dt_parse_gpio_cs(struct device *dev, struct gpio_desc ***cs_array,
5329 unsigned int *ncs_array)
5330 {
5331 struct device_node *np = dev->of_node;
5332 struct gpio_desc **descs;
5333 int ndescs, i;
5334
5335 ndescs = of_gpio_named_count(np, "cs-gpios");
5336 if (ndescs < 0) {
5337 dev_dbg(dev, "No valid cs-gpios property\n");
5338 return 0;
5339 }
5340
5341 descs = devm_kcalloc(dev, ndescs, sizeof(*descs), GFP_KERNEL);
5342 if (!descs)
5343 return -ENOMEM;
5344
5345 for (i = 0; i < ndescs; i++) {
5346 descs[i] = gpiod_get_index_optional(dev, "cs", i,
5347 GPIOD_OUT_HIGH);
5348 if (IS_ERR(descs[i]))
5349 return PTR_ERR(descs[i]);
5350 }
5351
5352 *ncs_array = ndescs;
5353 *cs_array = descs;
5354
5355 return 0;
5356 }
5357 EXPORT_SYMBOL(rawnand_dt_parse_gpio_cs);
5358
rawnand_dt_init(struct nand_chip * chip)5359 static int rawnand_dt_init(struct nand_chip *chip)
5360 {
5361 struct nand_device *nand = mtd_to_nanddev(nand_to_mtd(chip));
5362 struct device_node *dn = nand_get_flash_node(chip);
5363
5364 if (!dn)
5365 return 0;
5366
5367 if (of_get_nand_bus_width(dn) == 16)
5368 chip->options |= NAND_BUSWIDTH_16;
5369
5370 if (of_property_read_bool(dn, "nand-is-boot-medium"))
5371 chip->options |= NAND_IS_BOOT_MEDIUM;
5372
5373 if (of_get_nand_on_flash_bbt(dn))
5374 chip->bbt_options |= NAND_BBT_USE_FLASH;
5375
5376 of_get_nand_ecc_user_config(nand);
5377 of_get_nand_ecc_legacy_user_config(chip);
5378
5379 /*
5380 * If neither the user nor the NAND controller have requested a specific
5381 * ECC engine type, we will default to NAND_ECC_ENGINE_TYPE_ON_HOST.
5382 */
5383 nand->ecc.defaults.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST;
5384
5385 /*
5386 * Use the user requested engine type, unless there is none, in this
5387 * case default to the NAND controller choice, otherwise fallback to
5388 * the raw NAND default one.
5389 */
5390 if (nand->ecc.user_conf.engine_type != NAND_ECC_ENGINE_TYPE_INVALID)
5391 chip->ecc.engine_type = nand->ecc.user_conf.engine_type;
5392 if (chip->ecc.engine_type == NAND_ECC_ENGINE_TYPE_INVALID)
5393 chip->ecc.engine_type = nand->ecc.defaults.engine_type;
5394
5395 chip->ecc.placement = nand->ecc.user_conf.placement;
5396 chip->ecc.algo = nand->ecc.user_conf.algo;
5397 chip->ecc.strength = nand->ecc.user_conf.strength;
5398 chip->ecc.size = nand->ecc.user_conf.step_size;
5399
5400 return 0;
5401 }
5402
5403 /**
5404 * nand_scan_ident - Scan for the NAND device
5405 * @chip: NAND chip object
5406 * @maxchips: number of chips to scan for
5407 * @table: alternative NAND ID table
5408 *
5409 * This is the first phase of the normal nand_scan() function. It reads the
5410 * flash ID and sets up MTD fields accordingly.
5411 *
5412 * This helper used to be called directly from controller drivers that needed
5413 * to tweak some ECC-related parameters before nand_scan_tail(). This separation
5414 * prevented dynamic allocations during this phase which was unconvenient and
5415 * as been banned for the benefit of the ->init_ecc()/cleanup_ecc() hooks.
5416 */
nand_scan_ident(struct nand_chip * chip,unsigned int maxchips,struct nand_flash_dev * table)5417 static int nand_scan_ident(struct nand_chip *chip, unsigned int maxchips,
5418 struct nand_flash_dev *table)
5419 {
5420 struct mtd_info *mtd = nand_to_mtd(chip);
5421 struct nand_memory_organization *memorg;
5422 int nand_maf_id, nand_dev_id;
5423 unsigned int i;
5424 int ret;
5425
5426 memorg = nanddev_get_memorg(&chip->base);
5427
5428 /* Assume all dies are deselected when we enter nand_scan_ident(). */
5429 chip->cur_cs = -1;
5430
5431 mutex_init(&chip->lock);
5432 init_waitqueue_head(&chip->resume_wq);
5433
5434 /* Enforce the right timings for reset/detection */
5435 chip->current_interface_config = nand_get_reset_interface_config();
5436
5437 ret = rawnand_dt_init(chip);
5438 if (ret)
5439 return ret;
5440
5441 if (!mtd->name && mtd->dev.parent)
5442 mtd->name = dev_name(mtd->dev.parent);
5443
5444 /* Set the default functions */
5445 nand_set_defaults(chip);
5446
5447 ret = nand_legacy_check_hooks(chip);
5448 if (ret)
5449 return ret;
5450
5451 memorg->ntargets = maxchips;
5452
5453 /* Read the flash type */
5454 ret = nand_detect(chip, table);
5455 if (ret) {
5456 if (!(chip->options & NAND_SCAN_SILENT_NODEV))
5457 pr_warn("No NAND device found\n");
5458 nand_deselect_target(chip);
5459 return ret;
5460 }
5461
5462 nand_maf_id = chip->id.data[0];
5463 nand_dev_id = chip->id.data[1];
5464
5465 nand_deselect_target(chip);
5466
5467 /* Check for a chip array */
5468 for (i = 1; i < maxchips; i++) {
5469 u8 id[2];
5470
5471 /* See comment in nand_get_flash_type for reset */
5472 ret = nand_reset(chip, i);
5473 if (ret)
5474 break;
5475
5476 nand_select_target(chip, i);
5477 /* Send the command for reading device ID */
5478 ret = nand_readid_op(chip, 0, id, sizeof(id));
5479 if (ret)
5480 break;
5481 /* Read manufacturer and device IDs */
5482 if (nand_maf_id != id[0] || nand_dev_id != id[1]) {
5483 nand_deselect_target(chip);
5484 break;
5485 }
5486 nand_deselect_target(chip);
5487 }
5488 if (i > 1)
5489 pr_info("%d chips detected\n", i);
5490
5491 /* Store the number of chips and calc total size for mtd */
5492 memorg->ntargets = i;
5493 mtd->size = i * nanddev_target_size(&chip->base);
5494
5495 return 0;
5496 }
5497
nand_scan_ident_cleanup(struct nand_chip * chip)5498 static void nand_scan_ident_cleanup(struct nand_chip *chip)
5499 {
5500 kfree(chip->parameters.model);
5501 kfree(chip->parameters.onfi);
5502 }
5503
rawnand_sw_hamming_init(struct nand_chip * chip)5504 int rawnand_sw_hamming_init(struct nand_chip *chip)
5505 {
5506 struct nand_ecc_sw_hamming_conf *engine_conf;
5507 struct nand_device *base = &chip->base;
5508 int ret;
5509
5510 base->ecc.user_conf.engine_type = NAND_ECC_ENGINE_TYPE_SOFT;
5511 base->ecc.user_conf.algo = NAND_ECC_ALGO_HAMMING;
5512 base->ecc.user_conf.strength = chip->ecc.strength;
5513 base->ecc.user_conf.step_size = chip->ecc.size;
5514
5515 ret = nand_ecc_sw_hamming_init_ctx(base);
5516 if (ret)
5517 return ret;
5518
5519 engine_conf = base->ecc.ctx.priv;
5520
5521 if (chip->ecc.options & NAND_ECC_SOFT_HAMMING_SM_ORDER)
5522 engine_conf->sm_order = true;
5523
5524 chip->ecc.size = base->ecc.ctx.conf.step_size;
5525 chip->ecc.strength = base->ecc.ctx.conf.strength;
5526 chip->ecc.total = base->ecc.ctx.total;
5527 chip->ecc.steps = nanddev_get_ecc_nsteps(base);
5528 chip->ecc.bytes = base->ecc.ctx.total / nanddev_get_ecc_nsteps(base);
5529
5530 return 0;
5531 }
5532 EXPORT_SYMBOL(rawnand_sw_hamming_init);
5533
rawnand_sw_hamming_calculate(struct nand_chip * chip,const unsigned char * buf,unsigned char * code)5534 int rawnand_sw_hamming_calculate(struct nand_chip *chip,
5535 const unsigned char *buf,
5536 unsigned char *code)
5537 {
5538 struct nand_device *base = &chip->base;
5539
5540 return nand_ecc_sw_hamming_calculate(base, buf, code);
5541 }
5542 EXPORT_SYMBOL(rawnand_sw_hamming_calculate);
5543
rawnand_sw_hamming_correct(struct nand_chip * chip,unsigned char * buf,unsigned char * read_ecc,unsigned char * calc_ecc)5544 int rawnand_sw_hamming_correct(struct nand_chip *chip,
5545 unsigned char *buf,
5546 unsigned char *read_ecc,
5547 unsigned char *calc_ecc)
5548 {
5549 struct nand_device *base = &chip->base;
5550
5551 return nand_ecc_sw_hamming_correct(base, buf, read_ecc, calc_ecc);
5552 }
5553 EXPORT_SYMBOL(rawnand_sw_hamming_correct);
5554
rawnand_sw_hamming_cleanup(struct nand_chip * chip)5555 void rawnand_sw_hamming_cleanup(struct nand_chip *chip)
5556 {
5557 struct nand_device *base = &chip->base;
5558
5559 nand_ecc_sw_hamming_cleanup_ctx(base);
5560 }
5561 EXPORT_SYMBOL(rawnand_sw_hamming_cleanup);
5562
rawnand_sw_bch_init(struct nand_chip * chip)5563 int rawnand_sw_bch_init(struct nand_chip *chip)
5564 {
5565 struct nand_device *base = &chip->base;
5566 const struct nand_ecc_props *ecc_conf = nanddev_get_ecc_conf(base);
5567 int ret;
5568
5569 base->ecc.user_conf.engine_type = NAND_ECC_ENGINE_TYPE_SOFT;
5570 base->ecc.user_conf.algo = NAND_ECC_ALGO_BCH;
5571 base->ecc.user_conf.step_size = chip->ecc.size;
5572 base->ecc.user_conf.strength = chip->ecc.strength;
5573
5574 ret = nand_ecc_sw_bch_init_ctx(base);
5575 if (ret)
5576 return ret;
5577
5578 chip->ecc.size = ecc_conf->step_size;
5579 chip->ecc.strength = ecc_conf->strength;
5580 chip->ecc.total = base->ecc.ctx.total;
5581 chip->ecc.steps = nanddev_get_ecc_nsteps(base);
5582 chip->ecc.bytes = base->ecc.ctx.total / nanddev_get_ecc_nsteps(base);
5583
5584 return 0;
5585 }
5586 EXPORT_SYMBOL(rawnand_sw_bch_init);
5587
rawnand_sw_bch_calculate(struct nand_chip * chip,const unsigned char * buf,unsigned char * code)5588 static int rawnand_sw_bch_calculate(struct nand_chip *chip,
5589 const unsigned char *buf,
5590 unsigned char *code)
5591 {
5592 struct nand_device *base = &chip->base;
5593
5594 return nand_ecc_sw_bch_calculate(base, buf, code);
5595 }
5596
rawnand_sw_bch_correct(struct nand_chip * chip,unsigned char * buf,unsigned char * read_ecc,unsigned char * calc_ecc)5597 int rawnand_sw_bch_correct(struct nand_chip *chip, unsigned char *buf,
5598 unsigned char *read_ecc, unsigned char *calc_ecc)
5599 {
5600 struct nand_device *base = &chip->base;
5601
5602 return nand_ecc_sw_bch_correct(base, buf, read_ecc, calc_ecc);
5603 }
5604 EXPORT_SYMBOL(rawnand_sw_bch_correct);
5605
rawnand_sw_bch_cleanup(struct nand_chip * chip)5606 void rawnand_sw_bch_cleanup(struct nand_chip *chip)
5607 {
5608 struct nand_device *base = &chip->base;
5609
5610 nand_ecc_sw_bch_cleanup_ctx(base);
5611 }
5612 EXPORT_SYMBOL(rawnand_sw_bch_cleanup);
5613
nand_set_ecc_on_host_ops(struct nand_chip * chip)5614 static int nand_set_ecc_on_host_ops(struct nand_chip *chip)
5615 {
5616 struct nand_ecc_ctrl *ecc = &chip->ecc;
5617
5618 switch (ecc->placement) {
5619 case NAND_ECC_PLACEMENT_UNKNOWN:
5620 case NAND_ECC_PLACEMENT_OOB:
5621 /* Use standard hwecc read page function? */
5622 if (!ecc->read_page)
5623 ecc->read_page = nand_read_page_hwecc;
5624 if (!ecc->write_page)
5625 ecc->write_page = nand_write_page_hwecc;
5626 if (!ecc->read_page_raw)
5627 ecc->read_page_raw = nand_read_page_raw;
5628 if (!ecc->write_page_raw)
5629 ecc->write_page_raw = nand_write_page_raw;
5630 if (!ecc->read_oob)
5631 ecc->read_oob = nand_read_oob_std;
5632 if (!ecc->write_oob)
5633 ecc->write_oob = nand_write_oob_std;
5634 if (!ecc->read_subpage)
5635 ecc->read_subpage = nand_read_subpage;
5636 if (!ecc->write_subpage && ecc->hwctl && ecc->calculate)
5637 ecc->write_subpage = nand_write_subpage_hwecc;
5638 fallthrough;
5639
5640 case NAND_ECC_PLACEMENT_INTERLEAVED:
5641 if ((!ecc->calculate || !ecc->correct || !ecc->hwctl) &&
5642 (!ecc->read_page ||
5643 ecc->read_page == nand_read_page_hwecc ||
5644 !ecc->write_page ||
5645 ecc->write_page == nand_write_page_hwecc)) {
5646 WARN(1, "No ECC functions supplied; hardware ECC not possible\n");
5647 return -EINVAL;
5648 }
5649 /* Use standard syndrome read/write page function? */
5650 if (!ecc->read_page)
5651 ecc->read_page = nand_read_page_syndrome;
5652 if (!ecc->write_page)
5653 ecc->write_page = nand_write_page_syndrome;
5654 if (!ecc->read_page_raw)
5655 ecc->read_page_raw = nand_read_page_raw_syndrome;
5656 if (!ecc->write_page_raw)
5657 ecc->write_page_raw = nand_write_page_raw_syndrome;
5658 if (!ecc->read_oob)
5659 ecc->read_oob = nand_read_oob_syndrome;
5660 if (!ecc->write_oob)
5661 ecc->write_oob = nand_write_oob_syndrome;
5662 break;
5663
5664 default:
5665 pr_warn("Invalid NAND_ECC_PLACEMENT %d\n",
5666 ecc->placement);
5667 return -EINVAL;
5668 }
5669
5670 return 0;
5671 }
5672
nand_set_ecc_soft_ops(struct nand_chip * chip)5673 static int nand_set_ecc_soft_ops(struct nand_chip *chip)
5674 {
5675 struct mtd_info *mtd = nand_to_mtd(chip);
5676 struct nand_device *nanddev = mtd_to_nanddev(mtd);
5677 struct nand_ecc_ctrl *ecc = &chip->ecc;
5678 int ret;
5679
5680 if (WARN_ON(ecc->engine_type != NAND_ECC_ENGINE_TYPE_SOFT))
5681 return -EINVAL;
5682
5683 switch (ecc->algo) {
5684 case NAND_ECC_ALGO_HAMMING:
5685 ecc->calculate = rawnand_sw_hamming_calculate;
5686 ecc->correct = rawnand_sw_hamming_correct;
5687 ecc->read_page = nand_read_page_swecc;
5688 ecc->read_subpage = nand_read_subpage;
5689 ecc->write_page = nand_write_page_swecc;
5690 if (!ecc->read_page_raw)
5691 ecc->read_page_raw = nand_read_page_raw;
5692 if (!ecc->write_page_raw)
5693 ecc->write_page_raw = nand_write_page_raw;
5694 ecc->read_oob = nand_read_oob_std;
5695 ecc->write_oob = nand_write_oob_std;
5696 if (!ecc->size)
5697 ecc->size = 256;
5698 ecc->bytes = 3;
5699 ecc->strength = 1;
5700
5701 if (IS_ENABLED(CONFIG_MTD_NAND_ECC_SW_HAMMING_SMC))
5702 ecc->options |= NAND_ECC_SOFT_HAMMING_SM_ORDER;
5703
5704 ret = rawnand_sw_hamming_init(chip);
5705 if (ret) {
5706 WARN(1, "Hamming ECC initialization failed!\n");
5707 return ret;
5708 }
5709
5710 return 0;
5711 case NAND_ECC_ALGO_BCH:
5712 if (!IS_ENABLED(CONFIG_MTD_NAND_ECC_SW_BCH)) {
5713 WARN(1, "CONFIG_MTD_NAND_ECC_SW_BCH not enabled\n");
5714 return -EINVAL;
5715 }
5716 ecc->calculate = rawnand_sw_bch_calculate;
5717 ecc->correct = rawnand_sw_bch_correct;
5718 ecc->read_page = nand_read_page_swecc;
5719 ecc->read_subpage = nand_read_subpage;
5720 ecc->write_page = nand_write_page_swecc;
5721 if (!ecc->read_page_raw)
5722 ecc->read_page_raw = nand_read_page_raw;
5723 if (!ecc->write_page_raw)
5724 ecc->write_page_raw = nand_write_page_raw;
5725 ecc->read_oob = nand_read_oob_std;
5726 ecc->write_oob = nand_write_oob_std;
5727
5728 /*
5729 * We can only maximize ECC config when the default layout is
5730 * used, otherwise we don't know how many bytes can really be
5731 * used.
5732 */
5733 if (nanddev->ecc.user_conf.flags & NAND_ECC_MAXIMIZE_STRENGTH &&
5734 mtd->ooblayout != nand_get_large_page_ooblayout())
5735 nanddev->ecc.user_conf.flags &= ~NAND_ECC_MAXIMIZE_STRENGTH;
5736
5737 ret = rawnand_sw_bch_init(chip);
5738 if (ret) {
5739 WARN(1, "BCH ECC initialization failed!\n");
5740 return ret;
5741 }
5742
5743 return 0;
5744 default:
5745 WARN(1, "Unsupported ECC algorithm!\n");
5746 return -EINVAL;
5747 }
5748 }
5749
5750 /**
5751 * nand_check_ecc_caps - check the sanity of preset ECC settings
5752 * @chip: nand chip info structure
5753 * @caps: ECC caps info structure
5754 * @oobavail: OOB size that the ECC engine can use
5755 *
5756 * When ECC step size and strength are already set, check if they are supported
5757 * by the controller and the calculated ECC bytes fit within the chip's OOB.
5758 * On success, the calculated ECC bytes is set.
5759 */
5760 static int
nand_check_ecc_caps(struct nand_chip * chip,const struct nand_ecc_caps * caps,int oobavail)5761 nand_check_ecc_caps(struct nand_chip *chip,
5762 const struct nand_ecc_caps *caps, int oobavail)
5763 {
5764 struct mtd_info *mtd = nand_to_mtd(chip);
5765 const struct nand_ecc_step_info *stepinfo;
5766 int preset_step = chip->ecc.size;
5767 int preset_strength = chip->ecc.strength;
5768 int ecc_bytes, nsteps = mtd->writesize / preset_step;
5769 int i, j;
5770
5771 for (i = 0; i < caps->nstepinfos; i++) {
5772 stepinfo = &caps->stepinfos[i];
5773
5774 if (stepinfo->stepsize != preset_step)
5775 continue;
5776
5777 for (j = 0; j < stepinfo->nstrengths; j++) {
5778 if (stepinfo->strengths[j] != preset_strength)
5779 continue;
5780
5781 ecc_bytes = caps->calc_ecc_bytes(preset_step,
5782 preset_strength);
5783 if (WARN_ON_ONCE(ecc_bytes < 0))
5784 return ecc_bytes;
5785
5786 if (ecc_bytes * nsteps > oobavail) {
5787 pr_err("ECC (step, strength) = (%d, %d) does not fit in OOB",
5788 preset_step, preset_strength);
5789 return -ENOSPC;
5790 }
5791
5792 chip->ecc.bytes = ecc_bytes;
5793
5794 return 0;
5795 }
5796 }
5797
5798 pr_err("ECC (step, strength) = (%d, %d) not supported on this controller",
5799 preset_step, preset_strength);
5800
5801 return -ENOTSUPP;
5802 }
5803
5804 /**
5805 * nand_match_ecc_req - meet the chip's requirement with least ECC bytes
5806 * @chip: nand chip info structure
5807 * @caps: ECC engine caps info structure
5808 * @oobavail: OOB size that the ECC engine can use
5809 *
5810 * If a chip's ECC requirement is provided, try to meet it with the least
5811 * number of ECC bytes (i.e. with the largest number of OOB-free bytes).
5812 * On success, the chosen ECC settings are set.
5813 */
5814 static int
nand_match_ecc_req(struct nand_chip * chip,const struct nand_ecc_caps * caps,int oobavail)5815 nand_match_ecc_req(struct nand_chip *chip,
5816 const struct nand_ecc_caps *caps, int oobavail)
5817 {
5818 const struct nand_ecc_props *requirements =
5819 nanddev_get_ecc_requirements(&chip->base);
5820 struct mtd_info *mtd = nand_to_mtd(chip);
5821 const struct nand_ecc_step_info *stepinfo;
5822 int req_step = requirements->step_size;
5823 int req_strength = requirements->strength;
5824 int req_corr, step_size, strength, nsteps, ecc_bytes, ecc_bytes_total;
5825 int best_step, best_strength, best_ecc_bytes;
5826 int best_ecc_bytes_total = INT_MAX;
5827 int i, j;
5828
5829 /* No information provided by the NAND chip */
5830 if (!req_step || !req_strength)
5831 return -ENOTSUPP;
5832
5833 /* number of correctable bits the chip requires in a page */
5834 req_corr = mtd->writesize / req_step * req_strength;
5835
5836 for (i = 0; i < caps->nstepinfos; i++) {
5837 stepinfo = &caps->stepinfos[i];
5838 step_size = stepinfo->stepsize;
5839
5840 for (j = 0; j < stepinfo->nstrengths; j++) {
5841 strength = stepinfo->strengths[j];
5842
5843 /*
5844 * If both step size and strength are smaller than the
5845 * chip's requirement, it is not easy to compare the
5846 * resulted reliability.
5847 */
5848 if (step_size < req_step && strength < req_strength)
5849 continue;
5850
5851 if (mtd->writesize % step_size)
5852 continue;
5853
5854 nsteps = mtd->writesize / step_size;
5855
5856 ecc_bytes = caps->calc_ecc_bytes(step_size, strength);
5857 if (WARN_ON_ONCE(ecc_bytes < 0))
5858 continue;
5859 ecc_bytes_total = ecc_bytes * nsteps;
5860
5861 if (ecc_bytes_total > oobavail ||
5862 strength * nsteps < req_corr)
5863 continue;
5864
5865 /*
5866 * We assume the best is to meet the chip's requrement
5867 * with the least number of ECC bytes.
5868 */
5869 if (ecc_bytes_total < best_ecc_bytes_total) {
5870 best_ecc_bytes_total = ecc_bytes_total;
5871 best_step = step_size;
5872 best_strength = strength;
5873 best_ecc_bytes = ecc_bytes;
5874 }
5875 }
5876 }
5877
5878 if (best_ecc_bytes_total == INT_MAX)
5879 return -ENOTSUPP;
5880
5881 chip->ecc.size = best_step;
5882 chip->ecc.strength = best_strength;
5883 chip->ecc.bytes = best_ecc_bytes;
5884
5885 return 0;
5886 }
5887
5888 /**
5889 * nand_maximize_ecc - choose the max ECC strength available
5890 * @chip: nand chip info structure
5891 * @caps: ECC engine caps info structure
5892 * @oobavail: OOB size that the ECC engine can use
5893 *
5894 * Choose the max ECC strength that is supported on the controller, and can fit
5895 * within the chip's OOB. On success, the chosen ECC settings are set.
5896 */
5897 static int
nand_maximize_ecc(struct nand_chip * chip,const struct nand_ecc_caps * caps,int oobavail)5898 nand_maximize_ecc(struct nand_chip *chip,
5899 const struct nand_ecc_caps *caps, int oobavail)
5900 {
5901 struct mtd_info *mtd = nand_to_mtd(chip);
5902 const struct nand_ecc_step_info *stepinfo;
5903 int step_size, strength, nsteps, ecc_bytes, corr;
5904 int best_corr = 0;
5905 int best_step = 0;
5906 int best_strength, best_ecc_bytes;
5907 int i, j;
5908
5909 for (i = 0; i < caps->nstepinfos; i++) {
5910 stepinfo = &caps->stepinfos[i];
5911 step_size = stepinfo->stepsize;
5912
5913 /* If chip->ecc.size is already set, respect it */
5914 if (chip->ecc.size && step_size != chip->ecc.size)
5915 continue;
5916
5917 for (j = 0; j < stepinfo->nstrengths; j++) {
5918 strength = stepinfo->strengths[j];
5919
5920 if (mtd->writesize % step_size)
5921 continue;
5922
5923 nsteps = mtd->writesize / step_size;
5924
5925 ecc_bytes = caps->calc_ecc_bytes(step_size, strength);
5926 if (WARN_ON_ONCE(ecc_bytes < 0))
5927 continue;
5928
5929 if (ecc_bytes * nsteps > oobavail)
5930 continue;
5931
5932 corr = strength * nsteps;
5933
5934 /*
5935 * If the number of correctable bits is the same,
5936 * bigger step_size has more reliability.
5937 */
5938 if (corr > best_corr ||
5939 (corr == best_corr && step_size > best_step)) {
5940 best_corr = corr;
5941 best_step = step_size;
5942 best_strength = strength;
5943 best_ecc_bytes = ecc_bytes;
5944 }
5945 }
5946 }
5947
5948 if (!best_corr)
5949 return -ENOTSUPP;
5950
5951 chip->ecc.size = best_step;
5952 chip->ecc.strength = best_strength;
5953 chip->ecc.bytes = best_ecc_bytes;
5954
5955 return 0;
5956 }
5957
5958 /**
5959 * nand_ecc_choose_conf - Set the ECC strength and ECC step size
5960 * @chip: nand chip info structure
5961 * @caps: ECC engine caps info structure
5962 * @oobavail: OOB size that the ECC engine can use
5963 *
5964 * Choose the ECC configuration according to following logic.
5965 *
5966 * 1. If both ECC step size and ECC strength are already set (usually by DT)
5967 * then check if it is supported by this controller.
5968 * 2. If the user provided the nand-ecc-maximize property, then select maximum
5969 * ECC strength.
5970 * 3. Otherwise, try to match the ECC step size and ECC strength closest
5971 * to the chip's requirement. If available OOB size can't fit the chip
5972 * requirement then fallback to the maximum ECC step size and ECC strength.
5973 *
5974 * On success, the chosen ECC settings are set.
5975 */
nand_ecc_choose_conf(struct nand_chip * chip,const struct nand_ecc_caps * caps,int oobavail)5976 int nand_ecc_choose_conf(struct nand_chip *chip,
5977 const struct nand_ecc_caps *caps, int oobavail)
5978 {
5979 struct mtd_info *mtd = nand_to_mtd(chip);
5980 struct nand_device *nanddev = mtd_to_nanddev(mtd);
5981
5982 if (WARN_ON(oobavail < 0 || oobavail > mtd->oobsize))
5983 return -EINVAL;
5984
5985 if (chip->ecc.size && chip->ecc.strength)
5986 return nand_check_ecc_caps(chip, caps, oobavail);
5987
5988 if (nanddev->ecc.user_conf.flags & NAND_ECC_MAXIMIZE_STRENGTH)
5989 return nand_maximize_ecc(chip, caps, oobavail);
5990
5991 if (!nand_match_ecc_req(chip, caps, oobavail))
5992 return 0;
5993
5994 return nand_maximize_ecc(chip, caps, oobavail);
5995 }
5996 EXPORT_SYMBOL_GPL(nand_ecc_choose_conf);
5997
rawnand_erase(struct nand_device * nand,const struct nand_pos * pos)5998 static int rawnand_erase(struct nand_device *nand, const struct nand_pos *pos)
5999 {
6000 struct nand_chip *chip = container_of(nand, struct nand_chip,
6001 base);
6002 unsigned int eb = nanddev_pos_to_row(nand, pos);
6003 int ret;
6004
6005 eb >>= nand->rowconv.eraseblock_addr_shift;
6006
6007 nand_select_target(chip, pos->target);
6008 ret = nand_erase_op(chip, eb);
6009 nand_deselect_target(chip);
6010
6011 return ret;
6012 }
6013
rawnand_markbad(struct nand_device * nand,const struct nand_pos * pos)6014 static int rawnand_markbad(struct nand_device *nand,
6015 const struct nand_pos *pos)
6016 {
6017 struct nand_chip *chip = container_of(nand, struct nand_chip,
6018 base);
6019
6020 return nand_markbad_bbm(chip, nanddev_pos_to_offs(nand, pos));
6021 }
6022
rawnand_isbad(struct nand_device * nand,const struct nand_pos * pos)6023 static bool rawnand_isbad(struct nand_device *nand, const struct nand_pos *pos)
6024 {
6025 struct nand_chip *chip = container_of(nand, struct nand_chip,
6026 base);
6027 int ret;
6028
6029 nand_select_target(chip, pos->target);
6030 ret = nand_isbad_bbm(chip, nanddev_pos_to_offs(nand, pos));
6031 nand_deselect_target(chip);
6032
6033 return ret;
6034 }
6035
6036 static const struct nand_ops rawnand_ops = {
6037 .erase = rawnand_erase,
6038 .markbad = rawnand_markbad,
6039 .isbad = rawnand_isbad,
6040 };
6041
6042 /**
6043 * nand_scan_tail - Scan for the NAND device
6044 * @chip: NAND chip object
6045 *
6046 * This is the second phase of the normal nand_scan() function. It fills out
6047 * all the uninitialized function pointers with the defaults and scans for a
6048 * bad block table if appropriate.
6049 */
nand_scan_tail(struct nand_chip * chip)6050 static int nand_scan_tail(struct nand_chip *chip)
6051 {
6052 struct mtd_info *mtd = nand_to_mtd(chip);
6053 struct nand_ecc_ctrl *ecc = &chip->ecc;
6054 int ret, i;
6055
6056 /* New bad blocks should be marked in OOB, flash-based BBT, or both */
6057 if (WARN_ON((chip->bbt_options & NAND_BBT_NO_OOB_BBM) &&
6058 !(chip->bbt_options & NAND_BBT_USE_FLASH))) {
6059 return -EINVAL;
6060 }
6061
6062 chip->data_buf = kmalloc(mtd->writesize + mtd->oobsize, GFP_KERNEL);
6063 if (!chip->data_buf)
6064 return -ENOMEM;
6065
6066 /*
6067 * FIXME: some NAND manufacturer drivers expect the first die to be
6068 * selected when manufacturer->init() is called. They should be fixed
6069 * to explictly select the relevant die when interacting with the NAND
6070 * chip.
6071 */
6072 nand_select_target(chip, 0);
6073 ret = nand_manufacturer_init(chip);
6074 nand_deselect_target(chip);
6075 if (ret)
6076 goto err_free_buf;
6077
6078 /* Set the internal oob buffer location, just after the page data */
6079 chip->oob_poi = chip->data_buf + mtd->writesize;
6080
6081 /*
6082 * If no default placement scheme is given, select an appropriate one.
6083 */
6084 if (!mtd->ooblayout &&
6085 !(ecc->engine_type == NAND_ECC_ENGINE_TYPE_SOFT &&
6086 ecc->algo == NAND_ECC_ALGO_BCH) &&
6087 !(ecc->engine_type == NAND_ECC_ENGINE_TYPE_SOFT &&
6088 ecc->algo == NAND_ECC_ALGO_HAMMING)) {
6089 switch (mtd->oobsize) {
6090 case 8:
6091 case 16:
6092 mtd_set_ooblayout(mtd, nand_get_small_page_ooblayout());
6093 break;
6094 case 64:
6095 case 128:
6096 mtd_set_ooblayout(mtd,
6097 nand_get_large_page_hamming_ooblayout());
6098 break;
6099 default:
6100 /*
6101 * Expose the whole OOB area to users if ECC_NONE
6102 * is passed. We could do that for all kind of
6103 * ->oobsize, but we must keep the old large/small
6104 * page with ECC layout when ->oobsize <= 128 for
6105 * compatibility reasons.
6106 */
6107 if (ecc->engine_type == NAND_ECC_ENGINE_TYPE_NONE) {
6108 mtd_set_ooblayout(mtd,
6109 nand_get_large_page_ooblayout());
6110 break;
6111 }
6112
6113 WARN(1, "No oob scheme defined for oobsize %d\n",
6114 mtd->oobsize);
6115 ret = -EINVAL;
6116 goto err_nand_manuf_cleanup;
6117 }
6118 }
6119
6120 /*
6121 * Check ECC mode, default to software if 3byte/512byte hardware ECC is
6122 * selected and we have 256 byte pagesize fallback to software ECC
6123 */
6124
6125 switch (ecc->engine_type) {
6126 case NAND_ECC_ENGINE_TYPE_ON_HOST:
6127 ret = nand_set_ecc_on_host_ops(chip);
6128 if (ret)
6129 goto err_nand_manuf_cleanup;
6130
6131 if (mtd->writesize >= ecc->size) {
6132 if (!ecc->strength) {
6133 WARN(1, "Driver must set ecc.strength when using hardware ECC\n");
6134 ret = -EINVAL;
6135 goto err_nand_manuf_cleanup;
6136 }
6137 break;
6138 }
6139 pr_warn("%d byte HW ECC not possible on %d byte page size, fallback to SW ECC\n",
6140 ecc->size, mtd->writesize);
6141 ecc->engine_type = NAND_ECC_ENGINE_TYPE_SOFT;
6142 ecc->algo = NAND_ECC_ALGO_HAMMING;
6143 fallthrough;
6144
6145 case NAND_ECC_ENGINE_TYPE_SOFT:
6146 ret = nand_set_ecc_soft_ops(chip);
6147 if (ret)
6148 goto err_nand_manuf_cleanup;
6149 break;
6150
6151 case NAND_ECC_ENGINE_TYPE_ON_DIE:
6152 if (!ecc->read_page || !ecc->write_page) {
6153 WARN(1, "No ECC functions supplied; on-die ECC not possible\n");
6154 ret = -EINVAL;
6155 goto err_nand_manuf_cleanup;
6156 }
6157 if (!ecc->read_oob)
6158 ecc->read_oob = nand_read_oob_std;
6159 if (!ecc->write_oob)
6160 ecc->write_oob = nand_write_oob_std;
6161 break;
6162
6163 case NAND_ECC_ENGINE_TYPE_NONE:
6164 pr_warn("NAND_ECC_ENGINE_TYPE_NONE selected by board driver. This is not recommended!\n");
6165 ecc->read_page = nand_read_page_raw;
6166 ecc->write_page = nand_write_page_raw;
6167 ecc->read_oob = nand_read_oob_std;
6168 ecc->read_page_raw = nand_read_page_raw;
6169 ecc->write_page_raw = nand_write_page_raw;
6170 ecc->write_oob = nand_write_oob_std;
6171 ecc->size = mtd->writesize;
6172 ecc->bytes = 0;
6173 ecc->strength = 0;
6174 break;
6175
6176 default:
6177 WARN(1, "Invalid NAND_ECC_MODE %d\n", ecc->engine_type);
6178 ret = -EINVAL;
6179 goto err_nand_manuf_cleanup;
6180 }
6181
6182 if (ecc->correct || ecc->calculate) {
6183 ecc->calc_buf = kmalloc(mtd->oobsize, GFP_KERNEL);
6184 ecc->code_buf = kmalloc(mtd->oobsize, GFP_KERNEL);
6185 if (!ecc->calc_buf || !ecc->code_buf) {
6186 ret = -ENOMEM;
6187 goto err_nand_manuf_cleanup;
6188 }
6189 }
6190
6191 /* For many systems, the standard OOB write also works for raw */
6192 if (!ecc->read_oob_raw)
6193 ecc->read_oob_raw = ecc->read_oob;
6194 if (!ecc->write_oob_raw)
6195 ecc->write_oob_raw = ecc->write_oob;
6196
6197 /* propagate ecc info to mtd_info */
6198 mtd->ecc_strength = ecc->strength;
6199 mtd->ecc_step_size = ecc->size;
6200
6201 /*
6202 * Set the number of read / write steps for one page depending on ECC
6203 * mode.
6204 */
6205 if (!ecc->steps)
6206 ecc->steps = mtd->writesize / ecc->size;
6207 if (ecc->steps * ecc->size != mtd->writesize) {
6208 WARN(1, "Invalid ECC parameters\n");
6209 ret = -EINVAL;
6210 goto err_nand_manuf_cleanup;
6211 }
6212
6213 if (!ecc->total) {
6214 ecc->total = ecc->steps * ecc->bytes;
6215 chip->base.ecc.ctx.total = ecc->total;
6216 }
6217
6218 if (ecc->total > mtd->oobsize) {
6219 WARN(1, "Total number of ECC bytes exceeded oobsize\n");
6220 ret = -EINVAL;
6221 goto err_nand_manuf_cleanup;
6222 }
6223
6224 /*
6225 * The number of bytes available for a client to place data into
6226 * the out of band area.
6227 */
6228 ret = mtd_ooblayout_count_freebytes(mtd);
6229 if (ret < 0)
6230 ret = 0;
6231
6232 mtd->oobavail = ret;
6233
6234 /* ECC sanity check: warn if it's too weak */
6235 if (!nand_ecc_is_strong_enough(&chip->base))
6236 pr_warn("WARNING: %s: the ECC used on your system (%db/%dB) is too weak compared to the one required by the NAND chip (%db/%dB)\n",
6237 mtd->name, chip->ecc.strength, chip->ecc.size,
6238 nanddev_get_ecc_requirements(&chip->base)->strength,
6239 nanddev_get_ecc_requirements(&chip->base)->step_size);
6240
6241 /* Allow subpage writes up to ecc.steps. Not possible for MLC flash */
6242 if (!(chip->options & NAND_NO_SUBPAGE_WRITE) && nand_is_slc(chip)) {
6243 switch (ecc->steps) {
6244 case 2:
6245 mtd->subpage_sft = 1;
6246 break;
6247 case 4:
6248 case 8:
6249 case 16:
6250 mtd->subpage_sft = 2;
6251 break;
6252 }
6253 }
6254 chip->subpagesize = mtd->writesize >> mtd->subpage_sft;
6255
6256 /* Invalidate the pagebuffer reference */
6257 chip->pagecache.page = -1;
6258
6259 /* Large page NAND with SOFT_ECC should support subpage reads */
6260 switch (ecc->engine_type) {
6261 case NAND_ECC_ENGINE_TYPE_SOFT:
6262 if (chip->page_shift > 9)
6263 chip->options |= NAND_SUBPAGE_READ;
6264 break;
6265
6266 default:
6267 break;
6268 }
6269
6270 ret = nanddev_init(&chip->base, &rawnand_ops, mtd->owner);
6271 if (ret)
6272 goto err_nand_manuf_cleanup;
6273
6274 /* Adjust the MTD_CAP_ flags when NAND_ROM is set. */
6275 if (chip->options & NAND_ROM)
6276 mtd->flags = MTD_CAP_ROM;
6277
6278 /* Fill in remaining MTD driver data */
6279 mtd->_erase = nand_erase;
6280 mtd->_point = NULL;
6281 mtd->_unpoint = NULL;
6282 mtd->_panic_write = panic_nand_write;
6283 mtd->_read_oob = nand_read_oob;
6284 mtd->_write_oob = nand_write_oob;
6285 mtd->_sync = nand_sync;
6286 mtd->_lock = nand_lock;
6287 mtd->_unlock = nand_unlock;
6288 mtd->_suspend = nand_suspend;
6289 mtd->_resume = nand_resume;
6290 mtd->_reboot = nand_shutdown;
6291 mtd->_block_isreserved = nand_block_isreserved;
6292 mtd->_block_isbad = nand_block_isbad;
6293 mtd->_block_markbad = nand_block_markbad;
6294 mtd->_max_bad_blocks = nanddev_mtd_max_bad_blocks;
6295
6296 /*
6297 * Initialize bitflip_threshold to its default prior scan_bbt() call.
6298 * scan_bbt() might invoke mtd_read(), thus bitflip_threshold must be
6299 * properly set.
6300 */
6301 if (!mtd->bitflip_threshold)
6302 mtd->bitflip_threshold = DIV_ROUND_UP(mtd->ecc_strength * 3, 4);
6303
6304 /* Find the fastest data interface for this chip */
6305 ret = nand_choose_interface_config(chip);
6306 if (ret)
6307 goto err_nanddev_cleanup;
6308
6309 /* Enter fastest possible mode on all dies. */
6310 for (i = 0; i < nanddev_ntargets(&chip->base); i++) {
6311 ret = nand_setup_interface(chip, i);
6312 if (ret)
6313 goto err_free_interface_config;
6314 }
6315
6316 /*
6317 * Look for secure regions in the NAND chip. These regions are supposed
6318 * to be protected by a secure element like Trustzone. So the read/write
6319 * accesses to these regions will be blocked in the runtime by this
6320 * driver.
6321 */
6322 ret = of_get_nand_secure_regions(chip);
6323 if (ret)
6324 goto err_free_interface_config;
6325
6326 /* Check, if we should skip the bad block table scan */
6327 if (chip->options & NAND_SKIP_BBTSCAN)
6328 return 0;
6329
6330 /* Build bad block table */
6331 ret = nand_create_bbt(chip);
6332 if (ret)
6333 goto err_free_secure_regions;
6334
6335 return 0;
6336
6337 err_free_secure_regions:
6338 kfree(chip->secure_regions);
6339
6340 err_free_interface_config:
6341 kfree(chip->best_interface_config);
6342
6343 err_nanddev_cleanup:
6344 nanddev_cleanup(&chip->base);
6345
6346 err_nand_manuf_cleanup:
6347 nand_manufacturer_cleanup(chip);
6348
6349 err_free_buf:
6350 kfree(chip->data_buf);
6351 kfree(ecc->code_buf);
6352 kfree(ecc->calc_buf);
6353
6354 return ret;
6355 }
6356
nand_attach(struct nand_chip * chip)6357 static int nand_attach(struct nand_chip *chip)
6358 {
6359 if (chip->controller->ops && chip->controller->ops->attach_chip)
6360 return chip->controller->ops->attach_chip(chip);
6361
6362 return 0;
6363 }
6364
nand_detach(struct nand_chip * chip)6365 static void nand_detach(struct nand_chip *chip)
6366 {
6367 if (chip->controller->ops && chip->controller->ops->detach_chip)
6368 chip->controller->ops->detach_chip(chip);
6369 }
6370
6371 /**
6372 * nand_scan_with_ids - [NAND Interface] Scan for the NAND device
6373 * @chip: NAND chip object
6374 * @maxchips: number of chips to scan for.
6375 * @ids: optional flash IDs table
6376 *
6377 * This fills out all the uninitialized function pointers with the defaults.
6378 * The flash ID is read and the mtd/chip structures are filled with the
6379 * appropriate values.
6380 */
nand_scan_with_ids(struct nand_chip * chip,unsigned int maxchips,struct nand_flash_dev * ids)6381 int nand_scan_with_ids(struct nand_chip *chip, unsigned int maxchips,
6382 struct nand_flash_dev *ids)
6383 {
6384 int ret;
6385
6386 if (!maxchips)
6387 return -EINVAL;
6388
6389 ret = nand_scan_ident(chip, maxchips, ids);
6390 if (ret)
6391 return ret;
6392
6393 ret = nand_attach(chip);
6394 if (ret)
6395 goto cleanup_ident;
6396
6397 ret = nand_scan_tail(chip);
6398 if (ret)
6399 goto detach_chip;
6400
6401 return 0;
6402
6403 detach_chip:
6404 nand_detach(chip);
6405 cleanup_ident:
6406 nand_scan_ident_cleanup(chip);
6407
6408 return ret;
6409 }
6410 EXPORT_SYMBOL(nand_scan_with_ids);
6411
6412 /**
6413 * nand_cleanup - [NAND Interface] Free resources held by the NAND device
6414 * @chip: NAND chip object
6415 */
nand_cleanup(struct nand_chip * chip)6416 void nand_cleanup(struct nand_chip *chip)
6417 {
6418 if (chip->ecc.engine_type == NAND_ECC_ENGINE_TYPE_SOFT) {
6419 if (chip->ecc.algo == NAND_ECC_ALGO_HAMMING)
6420 rawnand_sw_hamming_cleanup(chip);
6421 else if (chip->ecc.algo == NAND_ECC_ALGO_BCH)
6422 rawnand_sw_bch_cleanup(chip);
6423 }
6424
6425 nanddev_cleanup(&chip->base);
6426
6427 /* Free secure regions data */
6428 kfree(chip->secure_regions);
6429
6430 /* Free bad block table memory */
6431 kfree(chip->bbt);
6432 kfree(chip->data_buf);
6433 kfree(chip->ecc.code_buf);
6434 kfree(chip->ecc.calc_buf);
6435
6436 /* Free bad block descriptor memory */
6437 if (chip->badblock_pattern && chip->badblock_pattern->options
6438 & NAND_BBT_DYNAMICSTRUCT)
6439 kfree(chip->badblock_pattern);
6440
6441 /* Free the data interface */
6442 kfree(chip->best_interface_config);
6443
6444 /* Free manufacturer priv data. */
6445 nand_manufacturer_cleanup(chip);
6446
6447 /* Free controller specific allocations after chip identification */
6448 nand_detach(chip);
6449
6450 /* Free identification phase allocations */
6451 nand_scan_ident_cleanup(chip);
6452 }
6453
6454 EXPORT_SYMBOL_GPL(nand_cleanup);
6455
6456 MODULE_LICENSE("GPL");
6457 MODULE_AUTHOR("Steven J. Hill <sjhill@realitydiluted.com>");
6458 MODULE_AUTHOR("Thomas Gleixner <tglx@linutronix.de>");
6459 MODULE_DESCRIPTION("Generic NAND flash driver code");
6460