• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Connection state tracking for netfilter.  This is separated from,
3    but required by, the NAT layer; it can also be used by an iptables
4    extension. */
5 
6 /* (C) 1999-2001 Paul `Rusty' Russell
7  * (C) 2002-2006 Netfilter Core Team <coreteam@netfilter.org>
8  * (C) 2003,2004 USAGI/WIDE Project <http://www.linux-ipv6.org>
9  * (C) 2005-2012 Patrick McHardy <kaber@trash.net>
10  */
11 
12 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
13 
14 #include <linux/types.h>
15 #include <linux/netfilter.h>
16 #include <linux/module.h>
17 #include <linux/sched.h>
18 #include <linux/skbuff.h>
19 #include <linux/proc_fs.h>
20 #include <linux/vmalloc.h>
21 #include <linux/stddef.h>
22 #include <linux/slab.h>
23 #include <linux/random.h>
24 #include <linux/siphash.h>
25 #include <linux/err.h>
26 #include <linux/percpu.h>
27 #include <linux/moduleparam.h>
28 #include <linux/notifier.h>
29 #include <linux/kernel.h>
30 #include <linux/netdevice.h>
31 #include <linux/socket.h>
32 #include <linux/mm.h>
33 #include <linux/nsproxy.h>
34 #include <linux/rculist_nulls.h>
35 #include <trace/hooks/net.h>
36 
37 #include <net/netfilter/nf_conntrack.h>
38 #include <net/netfilter/nf_conntrack_l4proto.h>
39 #include <net/netfilter/nf_conntrack_expect.h>
40 #include <net/netfilter/nf_conntrack_helper.h>
41 #include <net/netfilter/nf_conntrack_seqadj.h>
42 #include <net/netfilter/nf_conntrack_core.h>
43 #include <net/netfilter/nf_conntrack_extend.h>
44 #include <net/netfilter/nf_conntrack_acct.h>
45 #include <net/netfilter/nf_conntrack_ecache.h>
46 #include <net/netfilter/nf_conntrack_zones.h>
47 #include <net/netfilter/nf_conntrack_timestamp.h>
48 #include <net/netfilter/nf_conntrack_timeout.h>
49 #include <net/netfilter/nf_conntrack_labels.h>
50 #include <net/netfilter/nf_conntrack_synproxy.h>
51 #include <net/netfilter/nf_nat.h>
52 #include <net/netfilter/nf_nat_helper.h>
53 #include <net/netns/hash.h>
54 #include <net/ip.h>
55 
56 #include "nf_internals.h"
57 
58 __cacheline_aligned_in_smp spinlock_t nf_conntrack_locks[CONNTRACK_LOCKS];
59 EXPORT_SYMBOL_GPL(nf_conntrack_locks);
60 
61 __cacheline_aligned_in_smp DEFINE_SPINLOCK(nf_conntrack_expect_lock);
62 EXPORT_SYMBOL_GPL(nf_conntrack_expect_lock);
63 
64 struct hlist_nulls_head *nf_conntrack_hash __read_mostly;
65 EXPORT_SYMBOL_GPL(nf_conntrack_hash);
66 
67 struct conntrack_gc_work {
68 	struct delayed_work	dwork;
69 	u32			next_bucket;
70 	u32			avg_timeout;
71 	u32			count;
72 	u32			start_time;
73 	bool			exiting;
74 	bool			early_drop;
75 };
76 
77 static __read_mostly struct kmem_cache *nf_conntrack_cachep;
78 static DEFINE_SPINLOCK(nf_conntrack_locks_all_lock);
79 static __read_mostly bool nf_conntrack_locks_all;
80 
81 /* serialize hash resizes and nf_ct_iterate_cleanup */
82 static DEFINE_MUTEX(nf_conntrack_mutex);
83 
84 #define GC_SCAN_INTERVAL_MAX	(60ul * HZ)
85 #define GC_SCAN_INTERVAL_MIN	(1ul * HZ)
86 
87 /* clamp timeouts to this value (TCP unacked) */
88 #define GC_SCAN_INTERVAL_CLAMP	(300ul * HZ)
89 
90 /* Initial bias pretending we have 100 entries at the upper bound so we don't
91  * wakeup often just because we have three entries with a 1s timeout while still
92  * allowing non-idle machines to wakeup more often when needed.
93  */
94 #define GC_SCAN_INITIAL_COUNT	100
95 #define GC_SCAN_INTERVAL_INIT	GC_SCAN_INTERVAL_MAX
96 
97 #define GC_SCAN_MAX_DURATION	msecs_to_jiffies(10)
98 #define GC_SCAN_EXPIRED_MAX	(64000u / HZ)
99 
100 #define MIN_CHAINLEN	50u
101 #define MAX_CHAINLEN	(80u - MIN_CHAINLEN)
102 
103 static struct conntrack_gc_work conntrack_gc_work;
104 
nf_conntrack_lock(spinlock_t * lock)105 void nf_conntrack_lock(spinlock_t *lock) __acquires(lock)
106 {
107 	/* 1) Acquire the lock */
108 	spin_lock(lock);
109 
110 	/* 2) read nf_conntrack_locks_all, with ACQUIRE semantics
111 	 * It pairs with the smp_store_release() in nf_conntrack_all_unlock()
112 	 */
113 	if (likely(smp_load_acquire(&nf_conntrack_locks_all) == false))
114 		return;
115 
116 	/* fast path failed, unlock */
117 	spin_unlock(lock);
118 
119 	/* Slow path 1) get global lock */
120 	spin_lock(&nf_conntrack_locks_all_lock);
121 
122 	/* Slow path 2) get the lock we want */
123 	spin_lock(lock);
124 
125 	/* Slow path 3) release the global lock */
126 	spin_unlock(&nf_conntrack_locks_all_lock);
127 }
128 EXPORT_SYMBOL_GPL(nf_conntrack_lock);
129 
nf_conntrack_double_unlock(unsigned int h1,unsigned int h2)130 static void nf_conntrack_double_unlock(unsigned int h1, unsigned int h2)
131 {
132 	h1 %= CONNTRACK_LOCKS;
133 	h2 %= CONNTRACK_LOCKS;
134 	spin_unlock(&nf_conntrack_locks[h1]);
135 	if (h1 != h2)
136 		spin_unlock(&nf_conntrack_locks[h2]);
137 }
138 
139 /* return true if we need to recompute hashes (in case hash table was resized) */
nf_conntrack_double_lock(struct net * net,unsigned int h1,unsigned int h2,unsigned int sequence)140 static bool nf_conntrack_double_lock(struct net *net, unsigned int h1,
141 				     unsigned int h2, unsigned int sequence)
142 {
143 	h1 %= CONNTRACK_LOCKS;
144 	h2 %= CONNTRACK_LOCKS;
145 	if (h1 <= h2) {
146 		nf_conntrack_lock(&nf_conntrack_locks[h1]);
147 		if (h1 != h2)
148 			spin_lock_nested(&nf_conntrack_locks[h2],
149 					 SINGLE_DEPTH_NESTING);
150 	} else {
151 		nf_conntrack_lock(&nf_conntrack_locks[h2]);
152 		spin_lock_nested(&nf_conntrack_locks[h1],
153 				 SINGLE_DEPTH_NESTING);
154 	}
155 	if (read_seqcount_retry(&nf_conntrack_generation, sequence)) {
156 		nf_conntrack_double_unlock(h1, h2);
157 		return true;
158 	}
159 	return false;
160 }
161 
nf_conntrack_all_lock(void)162 static void nf_conntrack_all_lock(void)
163 	__acquires(&nf_conntrack_locks_all_lock)
164 {
165 	int i;
166 
167 	spin_lock(&nf_conntrack_locks_all_lock);
168 
169 	/* For nf_contrack_locks_all, only the latest time when another
170 	 * CPU will see an update is controlled, by the "release" of the
171 	 * spin_lock below.
172 	 * The earliest time is not controlled, an thus KCSAN could detect
173 	 * a race when nf_conntract_lock() reads the variable.
174 	 * WRITE_ONCE() is used to ensure the compiler will not
175 	 * optimize the write.
176 	 */
177 	WRITE_ONCE(nf_conntrack_locks_all, true);
178 
179 	for (i = 0; i < CONNTRACK_LOCKS; i++) {
180 		spin_lock(&nf_conntrack_locks[i]);
181 
182 		/* This spin_unlock provides the "release" to ensure that
183 		 * nf_conntrack_locks_all==true is visible to everyone that
184 		 * acquired spin_lock(&nf_conntrack_locks[]).
185 		 */
186 		spin_unlock(&nf_conntrack_locks[i]);
187 	}
188 }
189 
nf_conntrack_all_unlock(void)190 static void nf_conntrack_all_unlock(void)
191 	__releases(&nf_conntrack_locks_all_lock)
192 {
193 	/* All prior stores must be complete before we clear
194 	 * 'nf_conntrack_locks_all'. Otherwise nf_conntrack_lock()
195 	 * might observe the false value but not the entire
196 	 * critical section.
197 	 * It pairs with the smp_load_acquire() in nf_conntrack_lock()
198 	 */
199 	smp_store_release(&nf_conntrack_locks_all, false);
200 	spin_unlock(&nf_conntrack_locks_all_lock);
201 }
202 
203 unsigned int nf_conntrack_htable_size __read_mostly;
204 EXPORT_SYMBOL_GPL(nf_conntrack_htable_size);
205 
206 unsigned int nf_conntrack_max __read_mostly;
207 EXPORT_SYMBOL_GPL(nf_conntrack_max);
208 seqcount_spinlock_t nf_conntrack_generation __read_mostly;
209 static siphash_key_t nf_conntrack_hash_rnd __read_mostly;
210 
hash_conntrack_raw(const struct nf_conntrack_tuple * tuple,unsigned int zoneid,const struct net * net)211 static u32 hash_conntrack_raw(const struct nf_conntrack_tuple *tuple,
212 			      unsigned int zoneid,
213 			      const struct net *net)
214 {
215 	struct {
216 		struct nf_conntrack_man src;
217 		union nf_inet_addr dst_addr;
218 		unsigned int zone;
219 		u32 net_mix;
220 		u16 dport;
221 		u16 proto;
222 	} __aligned(SIPHASH_ALIGNMENT) combined;
223 
224 	get_random_once(&nf_conntrack_hash_rnd, sizeof(nf_conntrack_hash_rnd));
225 
226 	memset(&combined, 0, sizeof(combined));
227 
228 	/* The direction must be ignored, so handle usable members manually. */
229 	combined.src = tuple->src;
230 	combined.dst_addr = tuple->dst.u3;
231 	combined.zone = zoneid;
232 	combined.net_mix = net_hash_mix(net);
233 	combined.dport = (__force __u16)tuple->dst.u.all;
234 	combined.proto = tuple->dst.protonum;
235 
236 	return (u32)siphash(&combined, sizeof(combined), &nf_conntrack_hash_rnd);
237 }
238 
scale_hash(u32 hash)239 static u32 scale_hash(u32 hash)
240 {
241 	return reciprocal_scale(hash, nf_conntrack_htable_size);
242 }
243 
__hash_conntrack(const struct net * net,const struct nf_conntrack_tuple * tuple,unsigned int zoneid,unsigned int size)244 static u32 __hash_conntrack(const struct net *net,
245 			    const struct nf_conntrack_tuple *tuple,
246 			    unsigned int zoneid,
247 			    unsigned int size)
248 {
249 	return reciprocal_scale(hash_conntrack_raw(tuple, zoneid, net), size);
250 }
251 
hash_conntrack(const struct net * net,const struct nf_conntrack_tuple * tuple,unsigned int zoneid)252 static u32 hash_conntrack(const struct net *net,
253 			  const struct nf_conntrack_tuple *tuple,
254 			  unsigned int zoneid)
255 {
256 	return scale_hash(hash_conntrack_raw(tuple, zoneid, net));
257 }
258 
nf_ct_get_tuple_ports(const struct sk_buff * skb,unsigned int dataoff,struct nf_conntrack_tuple * tuple)259 static bool nf_ct_get_tuple_ports(const struct sk_buff *skb,
260 				  unsigned int dataoff,
261 				  struct nf_conntrack_tuple *tuple)
262 {	struct {
263 		__be16 sport;
264 		__be16 dport;
265 	} _inet_hdr, *inet_hdr;
266 
267 	/* Actually only need first 4 bytes to get ports. */
268 	inet_hdr = skb_header_pointer(skb, dataoff, sizeof(_inet_hdr), &_inet_hdr);
269 	if (!inet_hdr)
270 		return false;
271 
272 	tuple->src.u.udp.port = inet_hdr->sport;
273 	tuple->dst.u.udp.port = inet_hdr->dport;
274 	return true;
275 }
276 
277 static bool
nf_ct_get_tuple(const struct sk_buff * skb,unsigned int nhoff,unsigned int dataoff,u_int16_t l3num,u_int8_t protonum,struct net * net,struct nf_conntrack_tuple * tuple)278 nf_ct_get_tuple(const struct sk_buff *skb,
279 		unsigned int nhoff,
280 		unsigned int dataoff,
281 		u_int16_t l3num,
282 		u_int8_t protonum,
283 		struct net *net,
284 		struct nf_conntrack_tuple *tuple)
285 {
286 	unsigned int size;
287 	const __be32 *ap;
288 	__be32 _addrs[8];
289 
290 	memset(tuple, 0, sizeof(*tuple));
291 
292 	tuple->src.l3num = l3num;
293 	switch (l3num) {
294 	case NFPROTO_IPV4:
295 		nhoff += offsetof(struct iphdr, saddr);
296 		size = 2 * sizeof(__be32);
297 		break;
298 	case NFPROTO_IPV6:
299 		nhoff += offsetof(struct ipv6hdr, saddr);
300 		size = sizeof(_addrs);
301 		break;
302 	default:
303 		return true;
304 	}
305 
306 	ap = skb_header_pointer(skb, nhoff, size, _addrs);
307 	if (!ap)
308 		return false;
309 
310 	switch (l3num) {
311 	case NFPROTO_IPV4:
312 		tuple->src.u3.ip = ap[0];
313 		tuple->dst.u3.ip = ap[1];
314 		break;
315 	case NFPROTO_IPV6:
316 		memcpy(tuple->src.u3.ip6, ap, sizeof(tuple->src.u3.ip6));
317 		memcpy(tuple->dst.u3.ip6, ap + 4, sizeof(tuple->dst.u3.ip6));
318 		break;
319 	}
320 
321 	tuple->dst.protonum = protonum;
322 	tuple->dst.dir = IP_CT_DIR_ORIGINAL;
323 
324 	switch (protonum) {
325 #if IS_ENABLED(CONFIG_IPV6)
326 	case IPPROTO_ICMPV6:
327 		return icmpv6_pkt_to_tuple(skb, dataoff, net, tuple);
328 #endif
329 	case IPPROTO_ICMP:
330 		return icmp_pkt_to_tuple(skb, dataoff, net, tuple);
331 #ifdef CONFIG_NF_CT_PROTO_GRE
332 	case IPPROTO_GRE:
333 		return gre_pkt_to_tuple(skb, dataoff, net, tuple);
334 #endif
335 	case IPPROTO_TCP:
336 	case IPPROTO_UDP: /* fallthrough */
337 		return nf_ct_get_tuple_ports(skb, dataoff, tuple);
338 #ifdef CONFIG_NF_CT_PROTO_UDPLITE
339 	case IPPROTO_UDPLITE:
340 		return nf_ct_get_tuple_ports(skb, dataoff, tuple);
341 #endif
342 #ifdef CONFIG_NF_CT_PROTO_SCTP
343 	case IPPROTO_SCTP:
344 		return nf_ct_get_tuple_ports(skb, dataoff, tuple);
345 #endif
346 #ifdef CONFIG_NF_CT_PROTO_DCCP
347 	case IPPROTO_DCCP:
348 		return nf_ct_get_tuple_ports(skb, dataoff, tuple);
349 #endif
350 	default:
351 		break;
352 	}
353 
354 	return true;
355 }
356 
ipv4_get_l4proto(const struct sk_buff * skb,unsigned int nhoff,u_int8_t * protonum)357 static int ipv4_get_l4proto(const struct sk_buff *skb, unsigned int nhoff,
358 			    u_int8_t *protonum)
359 {
360 	int dataoff = -1;
361 	const struct iphdr *iph;
362 	struct iphdr _iph;
363 
364 	iph = skb_header_pointer(skb, nhoff, sizeof(_iph), &_iph);
365 	if (!iph)
366 		return -1;
367 
368 	/* Conntrack defragments packets, we might still see fragments
369 	 * inside ICMP packets though.
370 	 */
371 	if (iph->frag_off & htons(IP_OFFSET))
372 		return -1;
373 
374 	dataoff = nhoff + (iph->ihl << 2);
375 	*protonum = iph->protocol;
376 
377 	/* Check bogus IP headers */
378 	if (dataoff > skb->len) {
379 		pr_debug("bogus IPv4 packet: nhoff %u, ihl %u, skblen %u\n",
380 			 nhoff, iph->ihl << 2, skb->len);
381 		return -1;
382 	}
383 	return dataoff;
384 }
385 
386 #if IS_ENABLED(CONFIG_IPV6)
ipv6_get_l4proto(const struct sk_buff * skb,unsigned int nhoff,u8 * protonum)387 static int ipv6_get_l4proto(const struct sk_buff *skb, unsigned int nhoff,
388 			    u8 *protonum)
389 {
390 	int protoff = -1;
391 	unsigned int extoff = nhoff + sizeof(struct ipv6hdr);
392 	__be16 frag_off;
393 	u8 nexthdr;
394 
395 	if (skb_copy_bits(skb, nhoff + offsetof(struct ipv6hdr, nexthdr),
396 			  &nexthdr, sizeof(nexthdr)) != 0) {
397 		pr_debug("can't get nexthdr\n");
398 		return -1;
399 	}
400 	protoff = ipv6_skip_exthdr(skb, extoff, &nexthdr, &frag_off);
401 	/*
402 	 * (protoff == skb->len) means the packet has not data, just
403 	 * IPv6 and possibly extensions headers, but it is tracked anyway
404 	 */
405 	if (protoff < 0 || (frag_off & htons(~0x7)) != 0) {
406 		pr_debug("can't find proto in pkt\n");
407 		return -1;
408 	}
409 
410 	*protonum = nexthdr;
411 	return protoff;
412 }
413 #endif
414 
get_l4proto(const struct sk_buff * skb,unsigned int nhoff,u8 pf,u8 * l4num)415 static int get_l4proto(const struct sk_buff *skb,
416 		       unsigned int nhoff, u8 pf, u8 *l4num)
417 {
418 	switch (pf) {
419 	case NFPROTO_IPV4:
420 		return ipv4_get_l4proto(skb, nhoff, l4num);
421 #if IS_ENABLED(CONFIG_IPV6)
422 	case NFPROTO_IPV6:
423 		return ipv6_get_l4proto(skb, nhoff, l4num);
424 #endif
425 	default:
426 		*l4num = 0;
427 		break;
428 	}
429 	return -1;
430 }
431 
nf_ct_get_tuplepr(const struct sk_buff * skb,unsigned int nhoff,u_int16_t l3num,struct net * net,struct nf_conntrack_tuple * tuple)432 bool nf_ct_get_tuplepr(const struct sk_buff *skb, unsigned int nhoff,
433 		       u_int16_t l3num,
434 		       struct net *net, struct nf_conntrack_tuple *tuple)
435 {
436 	u8 protonum;
437 	int protoff;
438 
439 	protoff = get_l4proto(skb, nhoff, l3num, &protonum);
440 	if (protoff <= 0)
441 		return false;
442 
443 	return nf_ct_get_tuple(skb, nhoff, protoff, l3num, protonum, net, tuple);
444 }
445 EXPORT_SYMBOL_GPL(nf_ct_get_tuplepr);
446 
447 bool
nf_ct_invert_tuple(struct nf_conntrack_tuple * inverse,const struct nf_conntrack_tuple * orig)448 nf_ct_invert_tuple(struct nf_conntrack_tuple *inverse,
449 		   const struct nf_conntrack_tuple *orig)
450 {
451 	memset(inverse, 0, sizeof(*inverse));
452 
453 	inverse->src.l3num = orig->src.l3num;
454 
455 	switch (orig->src.l3num) {
456 	case NFPROTO_IPV4:
457 		inverse->src.u3.ip = orig->dst.u3.ip;
458 		inverse->dst.u3.ip = orig->src.u3.ip;
459 		break;
460 	case NFPROTO_IPV6:
461 		inverse->src.u3.in6 = orig->dst.u3.in6;
462 		inverse->dst.u3.in6 = orig->src.u3.in6;
463 		break;
464 	default:
465 		break;
466 	}
467 
468 	inverse->dst.dir = !orig->dst.dir;
469 
470 	inverse->dst.protonum = orig->dst.protonum;
471 
472 	switch (orig->dst.protonum) {
473 	case IPPROTO_ICMP:
474 		return nf_conntrack_invert_icmp_tuple(inverse, orig);
475 #if IS_ENABLED(CONFIG_IPV6)
476 	case IPPROTO_ICMPV6:
477 		return nf_conntrack_invert_icmpv6_tuple(inverse, orig);
478 #endif
479 	}
480 
481 	inverse->src.u.all = orig->dst.u.all;
482 	inverse->dst.u.all = orig->src.u.all;
483 	return true;
484 }
485 EXPORT_SYMBOL_GPL(nf_ct_invert_tuple);
486 
487 /* Generate a almost-unique pseudo-id for a given conntrack.
488  *
489  * intentionally doesn't re-use any of the seeds used for hash
490  * table location, we assume id gets exposed to userspace.
491  *
492  * Following nf_conn items do not change throughout lifetime
493  * of the nf_conn:
494  *
495  * 1. nf_conn address
496  * 2. nf_conn->master address (normally NULL)
497  * 3. the associated net namespace
498  * 4. the original direction tuple
499  */
nf_ct_get_id(const struct nf_conn * ct)500 u32 nf_ct_get_id(const struct nf_conn *ct)
501 {
502 	static __read_mostly siphash_key_t ct_id_seed;
503 	unsigned long a, b, c, d;
504 
505 	net_get_random_once(&ct_id_seed, sizeof(ct_id_seed));
506 
507 	a = (unsigned long)ct;
508 	b = (unsigned long)ct->master;
509 	c = (unsigned long)nf_ct_net(ct);
510 	d = (unsigned long)siphash(&ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
511 				   sizeof(ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple),
512 				   &ct_id_seed);
513 #ifdef CONFIG_64BIT
514 	return siphash_4u64((u64)a, (u64)b, (u64)c, (u64)d, &ct_id_seed);
515 #else
516 	return siphash_4u32((u32)a, (u32)b, (u32)c, (u32)d, &ct_id_seed);
517 #endif
518 }
519 EXPORT_SYMBOL_GPL(nf_ct_get_id);
520 
521 static void
clean_from_lists(struct nf_conn * ct)522 clean_from_lists(struct nf_conn *ct)
523 {
524 	pr_debug("clean_from_lists(%p)\n", ct);
525 	hlist_nulls_del_rcu(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode);
526 	hlist_nulls_del_rcu(&ct->tuplehash[IP_CT_DIR_REPLY].hnnode);
527 
528 	/* Destroy all pending expectations */
529 	nf_ct_remove_expectations(ct);
530 }
531 
532 /* must be called with local_bh_disable */
nf_ct_add_to_dying_list(struct nf_conn * ct)533 static void nf_ct_add_to_dying_list(struct nf_conn *ct)
534 {
535 	struct ct_pcpu *pcpu;
536 
537 	/* add this conntrack to the (per cpu) dying list */
538 	ct->cpu = smp_processor_id();
539 	pcpu = per_cpu_ptr(nf_ct_net(ct)->ct.pcpu_lists, ct->cpu);
540 
541 	spin_lock(&pcpu->lock);
542 	hlist_nulls_add_head(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode,
543 			     &pcpu->dying);
544 	spin_unlock(&pcpu->lock);
545 }
546 
547 /* must be called with local_bh_disable */
nf_ct_add_to_unconfirmed_list(struct nf_conn * ct)548 static void nf_ct_add_to_unconfirmed_list(struct nf_conn *ct)
549 {
550 	struct ct_pcpu *pcpu;
551 
552 	/* add this conntrack to the (per cpu) unconfirmed list */
553 	ct->cpu = smp_processor_id();
554 	pcpu = per_cpu_ptr(nf_ct_net(ct)->ct.pcpu_lists, ct->cpu);
555 
556 	spin_lock(&pcpu->lock);
557 	hlist_nulls_add_head(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode,
558 			     &pcpu->unconfirmed);
559 	spin_unlock(&pcpu->lock);
560 }
561 
562 /* must be called with local_bh_disable */
nf_ct_del_from_dying_or_unconfirmed_list(struct nf_conn * ct)563 static void nf_ct_del_from_dying_or_unconfirmed_list(struct nf_conn *ct)
564 {
565 	struct ct_pcpu *pcpu;
566 
567 	/* We overload first tuple to link into unconfirmed or dying list.*/
568 	pcpu = per_cpu_ptr(nf_ct_net(ct)->ct.pcpu_lists, ct->cpu);
569 
570 	spin_lock(&pcpu->lock);
571 	BUG_ON(hlist_nulls_unhashed(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode));
572 	hlist_nulls_del_rcu(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode);
573 	spin_unlock(&pcpu->lock);
574 }
575 
576 #define NFCT_ALIGN(len)	(((len) + NFCT_INFOMASK) & ~NFCT_INFOMASK)
577 
578 /* Released via nf_ct_destroy() */
nf_ct_tmpl_alloc(struct net * net,const struct nf_conntrack_zone * zone,gfp_t flags)579 struct nf_conn *nf_ct_tmpl_alloc(struct net *net,
580 				 const struct nf_conntrack_zone *zone,
581 				 gfp_t flags)
582 {
583 	struct nf_conn *tmpl, *p;
584 
585 	if (ARCH_KMALLOC_MINALIGN <= NFCT_INFOMASK) {
586 		tmpl = kzalloc(sizeof(*tmpl) + NFCT_INFOMASK, flags);
587 		if (!tmpl)
588 			return NULL;
589 
590 		p = tmpl;
591 		tmpl = (struct nf_conn *)NFCT_ALIGN((unsigned long)p);
592 		if (tmpl != p) {
593 			tmpl = (struct nf_conn *)NFCT_ALIGN((unsigned long)p);
594 			tmpl->proto.tmpl_padto = (char *)tmpl - (char *)p;
595 		}
596 	} else {
597 		tmpl = kzalloc(sizeof(*tmpl), flags);
598 		if (!tmpl)
599 			return NULL;
600 	}
601 
602 	tmpl->status = IPS_TEMPLATE;
603 	write_pnet(&tmpl->ct_net, net);
604 	nf_ct_zone_add(tmpl, zone);
605 	refcount_set(&tmpl->ct_general.use, 1);
606 
607 	return tmpl;
608 }
609 EXPORT_SYMBOL_GPL(nf_ct_tmpl_alloc);
610 
nf_ct_tmpl_free(struct nf_conn * tmpl)611 void nf_ct_tmpl_free(struct nf_conn *tmpl)
612 {
613 	nf_ct_ext_destroy(tmpl);
614 
615 	if (ARCH_KMALLOC_MINALIGN <= NFCT_INFOMASK)
616 		kfree((char *)tmpl - tmpl->proto.tmpl_padto);
617 	else
618 		kfree(tmpl);
619 }
620 EXPORT_SYMBOL_GPL(nf_ct_tmpl_free);
621 
destroy_gre_conntrack(struct nf_conn * ct)622 static void destroy_gre_conntrack(struct nf_conn *ct)
623 {
624 #ifdef CONFIG_NF_CT_PROTO_GRE
625 	struct nf_conn *master = ct->master;
626 
627 	if (master)
628 		nf_ct_gre_keymap_destroy(master);
629 #endif
630 }
631 
nf_ct_destroy(struct nf_conntrack * nfct)632 void nf_ct_destroy(struct nf_conntrack *nfct)
633 {
634 	struct nf_conn *ct = (struct nf_conn *)nfct;
635 
636 	pr_debug("%s(%p)\n", __func__, ct);
637 	WARN_ON(refcount_read(&nfct->use) != 0);
638 
639 	if (unlikely(nf_ct_is_template(ct))) {
640 		nf_ct_tmpl_free(ct);
641 		return;
642 	}
643 
644 	if (unlikely(nf_ct_protonum(ct) == IPPROTO_GRE))
645 		destroy_gre_conntrack(ct);
646 
647 	local_bh_disable();
648 	/* Expectations will have been removed in clean_from_lists,
649 	 * except TFTP can create an expectation on the first packet,
650 	 * before connection is in the list, so we need to clean here,
651 	 * too.
652 	 */
653 	nf_ct_remove_expectations(ct);
654 
655 	nf_ct_del_from_dying_or_unconfirmed_list(ct);
656 
657 	local_bh_enable();
658 
659 	if (ct->master)
660 		nf_ct_put(ct->master);
661 
662 	pr_debug("%s: returning ct=%p to slab\n", __func__, ct);
663 	nf_conntrack_free(ct);
664 }
665 EXPORT_SYMBOL(nf_ct_destroy);
666 
nf_ct_delete_from_lists(struct nf_conn * ct)667 static void nf_ct_delete_from_lists(struct nf_conn *ct)
668 {
669 	struct net *net = nf_ct_net(ct);
670 	unsigned int hash, reply_hash;
671 	unsigned int sequence;
672 
673 	nf_ct_helper_destroy(ct);
674 
675 	local_bh_disable();
676 	do {
677 		sequence = read_seqcount_begin(&nf_conntrack_generation);
678 		hash = hash_conntrack(net,
679 				      &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
680 				      nf_ct_zone_id(nf_ct_zone(ct), IP_CT_DIR_ORIGINAL));
681 		reply_hash = hash_conntrack(net,
682 					   &ct->tuplehash[IP_CT_DIR_REPLY].tuple,
683 					   nf_ct_zone_id(nf_ct_zone(ct), IP_CT_DIR_REPLY));
684 	} while (nf_conntrack_double_lock(net, hash, reply_hash, sequence));
685 
686 	clean_from_lists(ct);
687 	nf_conntrack_double_unlock(hash, reply_hash);
688 
689 	nf_ct_add_to_dying_list(ct);
690 
691 	local_bh_enable();
692 }
693 
nf_ct_delete(struct nf_conn * ct,u32 portid,int report)694 bool nf_ct_delete(struct nf_conn *ct, u32 portid, int report)
695 {
696 	struct nf_conn_tstamp *tstamp;
697 	struct net *net;
698 
699 	if (test_and_set_bit(IPS_DYING_BIT, &ct->status))
700 		return false;
701 
702 	tstamp = nf_conn_tstamp_find(ct);
703 	if (tstamp) {
704 		s32 timeout = READ_ONCE(ct->timeout) - nfct_time_stamp;
705 
706 		tstamp->stop = ktime_get_real_ns();
707 		if (timeout < 0)
708 			tstamp->stop -= jiffies_to_nsecs(-timeout);
709 	}
710 
711 	if (nf_conntrack_event_report(IPCT_DESTROY, ct,
712 				    portid, report) < 0) {
713 		/* destroy event was not delivered. nf_ct_put will
714 		 * be done by event cache worker on redelivery.
715 		 */
716 		nf_ct_delete_from_lists(ct);
717 		nf_conntrack_ecache_work(nf_ct_net(ct), NFCT_ECACHE_DESTROY_FAIL);
718 		return false;
719 	}
720 
721 	net = nf_ct_net(ct);
722 	if (nf_conntrack_ecache_dwork_pending(net))
723 		nf_conntrack_ecache_work(net, NFCT_ECACHE_DESTROY_SENT);
724 	nf_ct_delete_from_lists(ct);
725 	nf_ct_put(ct);
726 	return true;
727 }
728 EXPORT_SYMBOL_GPL(nf_ct_delete);
729 
730 static inline bool
nf_ct_key_equal(struct nf_conntrack_tuple_hash * h,const struct nf_conntrack_tuple * tuple,const struct nf_conntrack_zone * zone,const struct net * net)731 nf_ct_key_equal(struct nf_conntrack_tuple_hash *h,
732 		const struct nf_conntrack_tuple *tuple,
733 		const struct nf_conntrack_zone *zone,
734 		const struct net *net)
735 {
736 	struct nf_conn *ct = nf_ct_tuplehash_to_ctrack(h);
737 
738 	/* A conntrack can be recreated with the equal tuple,
739 	 * so we need to check that the conntrack is confirmed
740 	 */
741 	return nf_ct_tuple_equal(tuple, &h->tuple) &&
742 	       nf_ct_zone_equal(ct, zone, NF_CT_DIRECTION(h)) &&
743 	       nf_ct_is_confirmed(ct) &&
744 	       net_eq(net, nf_ct_net(ct));
745 }
746 
747 static inline bool
nf_ct_match(const struct nf_conn * ct1,const struct nf_conn * ct2)748 nf_ct_match(const struct nf_conn *ct1, const struct nf_conn *ct2)
749 {
750 	return nf_ct_tuple_equal(&ct1->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
751 				 &ct2->tuplehash[IP_CT_DIR_ORIGINAL].tuple) &&
752 	       nf_ct_tuple_equal(&ct1->tuplehash[IP_CT_DIR_REPLY].tuple,
753 				 &ct2->tuplehash[IP_CT_DIR_REPLY].tuple) &&
754 	       nf_ct_zone_equal(ct1, nf_ct_zone(ct2), IP_CT_DIR_ORIGINAL) &&
755 	       nf_ct_zone_equal(ct1, nf_ct_zone(ct2), IP_CT_DIR_REPLY) &&
756 	       net_eq(nf_ct_net(ct1), nf_ct_net(ct2));
757 }
758 
759 /* caller must hold rcu readlock and none of the nf_conntrack_locks */
nf_ct_gc_expired(struct nf_conn * ct)760 static void nf_ct_gc_expired(struct nf_conn *ct)
761 {
762 	if (!refcount_inc_not_zero(&ct->ct_general.use))
763 		return;
764 
765 	if (nf_ct_should_gc(ct))
766 		nf_ct_kill(ct);
767 
768 	nf_ct_put(ct);
769 }
770 
771 /*
772  * Warning :
773  * - Caller must take a reference on returned object
774  *   and recheck nf_ct_tuple_equal(tuple, &h->tuple)
775  */
776 static struct nf_conntrack_tuple_hash *
____nf_conntrack_find(struct net * net,const struct nf_conntrack_zone * zone,const struct nf_conntrack_tuple * tuple,u32 hash)777 ____nf_conntrack_find(struct net *net, const struct nf_conntrack_zone *zone,
778 		      const struct nf_conntrack_tuple *tuple, u32 hash)
779 {
780 	struct nf_conntrack_tuple_hash *h;
781 	struct hlist_nulls_head *ct_hash;
782 	struct hlist_nulls_node *n;
783 	unsigned int bucket, hsize;
784 
785 begin:
786 	nf_conntrack_get_ht(&ct_hash, &hsize);
787 	bucket = reciprocal_scale(hash, hsize);
788 
789 	hlist_nulls_for_each_entry_rcu(h, n, &ct_hash[bucket], hnnode) {
790 		struct nf_conn *ct;
791 
792 		ct = nf_ct_tuplehash_to_ctrack(h);
793 		if (nf_ct_is_expired(ct)) {
794 			nf_ct_gc_expired(ct);
795 			continue;
796 		}
797 
798 		if (nf_ct_key_equal(h, tuple, zone, net))
799 			return h;
800 	}
801 	/*
802 	 * if the nulls value we got at the end of this lookup is
803 	 * not the expected one, we must restart lookup.
804 	 * We probably met an item that was moved to another chain.
805 	 */
806 	if (get_nulls_value(n) != bucket) {
807 		NF_CT_STAT_INC_ATOMIC(net, search_restart);
808 		goto begin;
809 	}
810 
811 	return NULL;
812 }
813 
814 /* Find a connection corresponding to a tuple. */
815 static struct nf_conntrack_tuple_hash *
__nf_conntrack_find_get(struct net * net,const struct nf_conntrack_zone * zone,const struct nf_conntrack_tuple * tuple,u32 hash)816 __nf_conntrack_find_get(struct net *net, const struct nf_conntrack_zone *zone,
817 			const struct nf_conntrack_tuple *tuple, u32 hash)
818 {
819 	struct nf_conntrack_tuple_hash *h;
820 	struct nf_conn *ct;
821 
822 	rcu_read_lock();
823 
824 	h = ____nf_conntrack_find(net, zone, tuple, hash);
825 	if (h) {
826 		/* We have a candidate that matches the tuple we're interested
827 		 * in, try to obtain a reference and re-check tuple
828 		 */
829 		ct = nf_ct_tuplehash_to_ctrack(h);
830 		if (likely(refcount_inc_not_zero(&ct->ct_general.use))) {
831 			if (likely(nf_ct_key_equal(h, tuple, zone, net)))
832 				goto found;
833 
834 			/* TYPESAFE_BY_RCU recycled the candidate */
835 			nf_ct_put(ct);
836 		}
837 
838 		h = NULL;
839 	}
840 found:
841 	rcu_read_unlock();
842 
843 	return h;
844 }
845 
846 struct nf_conntrack_tuple_hash *
nf_conntrack_find_get(struct net * net,const struct nf_conntrack_zone * zone,const struct nf_conntrack_tuple * tuple)847 nf_conntrack_find_get(struct net *net, const struct nf_conntrack_zone *zone,
848 		      const struct nf_conntrack_tuple *tuple)
849 {
850 	unsigned int rid, zone_id = nf_ct_zone_id(zone, IP_CT_DIR_ORIGINAL);
851 	struct nf_conntrack_tuple_hash *thash;
852 
853 	thash = __nf_conntrack_find_get(net, zone, tuple,
854 					hash_conntrack_raw(tuple, zone_id, net));
855 
856 	if (thash)
857 		return thash;
858 
859 	rid = nf_ct_zone_id(zone, IP_CT_DIR_REPLY);
860 	if (rid != zone_id)
861 		return __nf_conntrack_find_get(net, zone, tuple,
862 					       hash_conntrack_raw(tuple, rid, net));
863 	return thash;
864 }
865 EXPORT_SYMBOL_GPL(nf_conntrack_find_get);
866 
__nf_conntrack_hash_insert(struct nf_conn * ct,unsigned int hash,unsigned int reply_hash)867 static void __nf_conntrack_hash_insert(struct nf_conn *ct,
868 				       unsigned int hash,
869 				       unsigned int reply_hash)
870 {
871 	hlist_nulls_add_head_rcu(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode,
872 			   &nf_conntrack_hash[hash]);
873 	hlist_nulls_add_head_rcu(&ct->tuplehash[IP_CT_DIR_REPLY].hnnode,
874 			   &nf_conntrack_hash[reply_hash]);
875 }
876 
877 int
nf_conntrack_hash_check_insert(struct nf_conn * ct)878 nf_conntrack_hash_check_insert(struct nf_conn *ct)
879 {
880 	const struct nf_conntrack_zone *zone;
881 	struct net *net = nf_ct_net(ct);
882 	unsigned int hash, reply_hash;
883 	struct nf_conntrack_tuple_hash *h;
884 	struct hlist_nulls_node *n;
885 	unsigned int max_chainlen;
886 	unsigned int chainlen = 0;
887 	unsigned int sequence;
888 	int err = -EEXIST;
889 
890 	zone = nf_ct_zone(ct);
891 
892 	local_bh_disable();
893 	do {
894 		sequence = read_seqcount_begin(&nf_conntrack_generation);
895 		hash = hash_conntrack(net,
896 				      &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
897 				      nf_ct_zone_id(nf_ct_zone(ct), IP_CT_DIR_ORIGINAL));
898 		reply_hash = hash_conntrack(net,
899 					   &ct->tuplehash[IP_CT_DIR_REPLY].tuple,
900 					   nf_ct_zone_id(nf_ct_zone(ct), IP_CT_DIR_REPLY));
901 	} while (nf_conntrack_double_lock(net, hash, reply_hash, sequence));
902 
903 	max_chainlen = MIN_CHAINLEN + prandom_u32_max(MAX_CHAINLEN);
904 
905 	/* See if there's one in the list already, including reverse */
906 	hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[hash], hnnode) {
907 		if (nf_ct_key_equal(h, &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
908 				    zone, net))
909 			goto out;
910 
911 		if (chainlen++ > max_chainlen)
912 			goto chaintoolong;
913 	}
914 
915 	chainlen = 0;
916 
917 	hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[reply_hash], hnnode) {
918 		if (nf_ct_key_equal(h, &ct->tuplehash[IP_CT_DIR_REPLY].tuple,
919 				    zone, net))
920 			goto out;
921 		if (chainlen++ > max_chainlen)
922 			goto chaintoolong;
923 	}
924 
925 	smp_wmb();
926 	/* The caller holds a reference to this object */
927 	refcount_set(&ct->ct_general.use, 2);
928 	__nf_conntrack_hash_insert(ct, hash, reply_hash);
929 	nf_conntrack_double_unlock(hash, reply_hash);
930 	NF_CT_STAT_INC(net, insert);
931 	local_bh_enable();
932 	return 0;
933 chaintoolong:
934 	NF_CT_STAT_INC(net, chaintoolong);
935 	err = -ENOSPC;
936 out:
937 	nf_conntrack_double_unlock(hash, reply_hash);
938 	local_bh_enable();
939 	return err;
940 }
941 EXPORT_SYMBOL_GPL(nf_conntrack_hash_check_insert);
942 
nf_ct_acct_add(struct nf_conn * ct,u32 dir,unsigned int packets,unsigned int bytes)943 void nf_ct_acct_add(struct nf_conn *ct, u32 dir, unsigned int packets,
944 		    unsigned int bytes)
945 {
946 	struct nf_conn_acct *acct;
947 
948 	acct = nf_conn_acct_find(ct);
949 	if (acct) {
950 		struct nf_conn_counter *counter = acct->counter;
951 
952 		atomic64_add(packets, &counter[dir].packets);
953 		atomic64_add(bytes, &counter[dir].bytes);
954 	}
955 }
956 EXPORT_SYMBOL_GPL(nf_ct_acct_add);
957 
nf_ct_acct_merge(struct nf_conn * ct,enum ip_conntrack_info ctinfo,const struct nf_conn * loser_ct)958 static void nf_ct_acct_merge(struct nf_conn *ct, enum ip_conntrack_info ctinfo,
959 			     const struct nf_conn *loser_ct)
960 {
961 	struct nf_conn_acct *acct;
962 
963 	acct = nf_conn_acct_find(loser_ct);
964 	if (acct) {
965 		struct nf_conn_counter *counter = acct->counter;
966 		unsigned int bytes;
967 
968 		/* u32 should be fine since we must have seen one packet. */
969 		bytes = atomic64_read(&counter[CTINFO2DIR(ctinfo)].bytes);
970 		nf_ct_acct_update(ct, CTINFO2DIR(ctinfo), bytes);
971 	}
972 }
973 
__nf_conntrack_insert_prepare(struct nf_conn * ct)974 static void __nf_conntrack_insert_prepare(struct nf_conn *ct)
975 {
976 	struct nf_conn_tstamp *tstamp;
977 
978 	refcount_inc(&ct->ct_general.use);
979 	ct->status |= IPS_CONFIRMED;
980 
981 	/* set conntrack timestamp, if enabled. */
982 	tstamp = nf_conn_tstamp_find(ct);
983 	if (tstamp)
984 		tstamp->start = ktime_get_real_ns();
985 }
986 
987 /* caller must hold locks to prevent concurrent changes */
__nf_ct_resolve_clash(struct sk_buff * skb,struct nf_conntrack_tuple_hash * h)988 static int __nf_ct_resolve_clash(struct sk_buff *skb,
989 				 struct nf_conntrack_tuple_hash *h)
990 {
991 	/* This is the conntrack entry already in hashes that won race. */
992 	struct nf_conn *ct = nf_ct_tuplehash_to_ctrack(h);
993 	enum ip_conntrack_info ctinfo;
994 	struct nf_conn *loser_ct;
995 
996 	loser_ct = nf_ct_get(skb, &ctinfo);
997 
998 	if (nf_ct_is_dying(ct))
999 		return NF_DROP;
1000 
1001 	if (((ct->status & IPS_NAT_DONE_MASK) == 0) ||
1002 	    nf_ct_match(ct, loser_ct)) {
1003 		struct net *net = nf_ct_net(ct);
1004 
1005 		nf_conntrack_get(&ct->ct_general);
1006 
1007 		nf_ct_acct_merge(ct, ctinfo, loser_ct);
1008 		nf_ct_add_to_dying_list(loser_ct);
1009 		nf_ct_put(loser_ct);
1010 		nf_ct_set(skb, ct, ctinfo);
1011 
1012 		NF_CT_STAT_INC(net, clash_resolve);
1013 		return NF_ACCEPT;
1014 	}
1015 
1016 	return NF_DROP;
1017 }
1018 
1019 /**
1020  * nf_ct_resolve_clash_harder - attempt to insert clashing conntrack entry
1021  *
1022  * @skb: skb that causes the collision
1023  * @repl_idx: hash slot for reply direction
1024  *
1025  * Called when origin or reply direction had a clash.
1026  * The skb can be handled without packet drop provided the reply direction
1027  * is unique or there the existing entry has the identical tuple in both
1028  * directions.
1029  *
1030  * Caller must hold conntrack table locks to prevent concurrent updates.
1031  *
1032  * Returns NF_DROP if the clash could not be handled.
1033  */
nf_ct_resolve_clash_harder(struct sk_buff * skb,u32 repl_idx)1034 static int nf_ct_resolve_clash_harder(struct sk_buff *skb, u32 repl_idx)
1035 {
1036 	struct nf_conn *loser_ct = (struct nf_conn *)skb_nfct(skb);
1037 	const struct nf_conntrack_zone *zone;
1038 	struct nf_conntrack_tuple_hash *h;
1039 	struct hlist_nulls_node *n;
1040 	struct net *net;
1041 
1042 	zone = nf_ct_zone(loser_ct);
1043 	net = nf_ct_net(loser_ct);
1044 
1045 	/* Reply direction must never result in a clash, unless both origin
1046 	 * and reply tuples are identical.
1047 	 */
1048 	hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[repl_idx], hnnode) {
1049 		if (nf_ct_key_equal(h,
1050 				    &loser_ct->tuplehash[IP_CT_DIR_REPLY].tuple,
1051 				    zone, net))
1052 			return __nf_ct_resolve_clash(skb, h);
1053 	}
1054 
1055 	/* We want the clashing entry to go away real soon: 1 second timeout. */
1056 	WRITE_ONCE(loser_ct->timeout, nfct_time_stamp + HZ);
1057 
1058 	/* IPS_NAT_CLASH removes the entry automatically on the first
1059 	 * reply.  Also prevents UDP tracker from moving the entry to
1060 	 * ASSURED state, i.e. the entry can always be evicted under
1061 	 * pressure.
1062 	 */
1063 	loser_ct->status |= IPS_FIXED_TIMEOUT | IPS_NAT_CLASH;
1064 
1065 	__nf_conntrack_insert_prepare(loser_ct);
1066 
1067 	/* fake add for ORIGINAL dir: we want lookups to only find the entry
1068 	 * already in the table.  This also hides the clashing entry from
1069 	 * ctnetlink iteration, i.e. conntrack -L won't show them.
1070 	 */
1071 	hlist_nulls_add_fake(&loser_ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode);
1072 
1073 	hlist_nulls_add_head_rcu(&loser_ct->tuplehash[IP_CT_DIR_REPLY].hnnode,
1074 				 &nf_conntrack_hash[repl_idx]);
1075 
1076 	NF_CT_STAT_INC(net, clash_resolve);
1077 	return NF_ACCEPT;
1078 }
1079 
1080 /**
1081  * nf_ct_resolve_clash - attempt to handle clash without packet drop
1082  *
1083  * @skb: skb that causes the clash
1084  * @h: tuplehash of the clashing entry already in table
1085  * @reply_hash: hash slot for reply direction
1086  *
1087  * A conntrack entry can be inserted to the connection tracking table
1088  * if there is no existing entry with an identical tuple.
1089  *
1090  * If there is one, @skb (and the assocated, unconfirmed conntrack) has
1091  * to be dropped.  In case @skb is retransmitted, next conntrack lookup
1092  * will find the already-existing entry.
1093  *
1094  * The major problem with such packet drop is the extra delay added by
1095  * the packet loss -- it will take some time for a retransmit to occur
1096  * (or the sender to time out when waiting for a reply).
1097  *
1098  * This function attempts to handle the situation without packet drop.
1099  *
1100  * If @skb has no NAT transformation or if the colliding entries are
1101  * exactly the same, only the to-be-confirmed conntrack entry is discarded
1102  * and @skb is associated with the conntrack entry already in the table.
1103  *
1104  * Failing that, the new, unconfirmed conntrack is still added to the table
1105  * provided that the collision only occurs in the ORIGINAL direction.
1106  * The new entry will be added only in the non-clashing REPLY direction,
1107  * so packets in the ORIGINAL direction will continue to match the existing
1108  * entry.  The new entry will also have a fixed timeout so it expires --
1109  * due to the collision, it will only see reply traffic.
1110  *
1111  * Returns NF_DROP if the clash could not be resolved.
1112  */
1113 static __cold noinline int
nf_ct_resolve_clash(struct sk_buff * skb,struct nf_conntrack_tuple_hash * h,u32 reply_hash)1114 nf_ct_resolve_clash(struct sk_buff *skb, struct nf_conntrack_tuple_hash *h,
1115 		    u32 reply_hash)
1116 {
1117 	/* This is the conntrack entry already in hashes that won race. */
1118 	struct nf_conn *ct = nf_ct_tuplehash_to_ctrack(h);
1119 	const struct nf_conntrack_l4proto *l4proto;
1120 	enum ip_conntrack_info ctinfo;
1121 	struct nf_conn *loser_ct;
1122 	struct net *net;
1123 	int ret;
1124 
1125 	loser_ct = nf_ct_get(skb, &ctinfo);
1126 	net = nf_ct_net(loser_ct);
1127 
1128 	l4proto = nf_ct_l4proto_find(nf_ct_protonum(ct));
1129 	if (!l4proto->allow_clash)
1130 		goto drop;
1131 
1132 	ret = __nf_ct_resolve_clash(skb, h);
1133 	if (ret == NF_ACCEPT)
1134 		return ret;
1135 
1136 	ret = nf_ct_resolve_clash_harder(skb, reply_hash);
1137 	if (ret == NF_ACCEPT)
1138 		return ret;
1139 
1140 drop:
1141 	nf_ct_add_to_dying_list(loser_ct);
1142 	NF_CT_STAT_INC(net, drop);
1143 	NF_CT_STAT_INC(net, insert_failed);
1144 	return NF_DROP;
1145 }
1146 
1147 /* Confirm a connection given skb; places it in hash table */
1148 int
__nf_conntrack_confirm(struct sk_buff * skb)1149 __nf_conntrack_confirm(struct sk_buff *skb)
1150 {
1151 	unsigned int chainlen = 0, sequence, max_chainlen;
1152 	const struct nf_conntrack_zone *zone;
1153 	unsigned int hash, reply_hash;
1154 	struct nf_conntrack_tuple_hash *h;
1155 	struct nf_conn *ct;
1156 	struct nf_conn_help *help;
1157 	struct hlist_nulls_node *n;
1158 	enum ip_conntrack_info ctinfo;
1159 	struct net *net;
1160 	int ret = NF_DROP;
1161 
1162 	ct = nf_ct_get(skb, &ctinfo);
1163 	net = nf_ct_net(ct);
1164 
1165 	/* ipt_REJECT uses nf_conntrack_attach to attach related
1166 	   ICMP/TCP RST packets in other direction.  Actual packet
1167 	   which created connection will be IP_CT_NEW or for an
1168 	   expected connection, IP_CT_RELATED. */
1169 	if (CTINFO2DIR(ctinfo) != IP_CT_DIR_ORIGINAL)
1170 		return NF_ACCEPT;
1171 
1172 	zone = nf_ct_zone(ct);
1173 	local_bh_disable();
1174 
1175 	do {
1176 		sequence = read_seqcount_begin(&nf_conntrack_generation);
1177 		/* reuse the hash saved before */
1178 		hash = *(unsigned long *)&ct->tuplehash[IP_CT_DIR_REPLY].hnnode.pprev;
1179 		hash = scale_hash(hash);
1180 		reply_hash = hash_conntrack(net,
1181 					   &ct->tuplehash[IP_CT_DIR_REPLY].tuple,
1182 					   nf_ct_zone_id(nf_ct_zone(ct), IP_CT_DIR_REPLY));
1183 	} while (nf_conntrack_double_lock(net, hash, reply_hash, sequence));
1184 
1185 	/* We're not in hash table, and we refuse to set up related
1186 	 * connections for unconfirmed conns.  But packet copies and
1187 	 * REJECT will give spurious warnings here.
1188 	 */
1189 
1190 	/* Another skb with the same unconfirmed conntrack may
1191 	 * win the race. This may happen for bridge(br_flood)
1192 	 * or broadcast/multicast packets do skb_clone with
1193 	 * unconfirmed conntrack.
1194 	 */
1195 	if (unlikely(nf_ct_is_confirmed(ct))) {
1196 		WARN_ON_ONCE(1);
1197 		nf_conntrack_double_unlock(hash, reply_hash);
1198 		local_bh_enable();
1199 		return NF_DROP;
1200 	}
1201 
1202 	pr_debug("Confirming conntrack %p\n", ct);
1203 	/* We have to check the DYING flag after unlink to prevent
1204 	 * a race against nf_ct_get_next_corpse() possibly called from
1205 	 * user context, else we insert an already 'dead' hash, blocking
1206 	 * further use of that particular connection -JM.
1207 	 */
1208 	nf_ct_del_from_dying_or_unconfirmed_list(ct);
1209 
1210 	if (unlikely(nf_ct_is_dying(ct))) {
1211 		nf_ct_add_to_dying_list(ct);
1212 		NF_CT_STAT_INC(net, insert_failed);
1213 		goto dying;
1214 	}
1215 
1216 	max_chainlen = MIN_CHAINLEN + prandom_u32_max(MAX_CHAINLEN);
1217 	/* See if there's one in the list already, including reverse:
1218 	   NAT could have grabbed it without realizing, since we're
1219 	   not in the hash.  If there is, we lost race. */
1220 	hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[hash], hnnode) {
1221 		if (nf_ct_key_equal(h, &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
1222 				    zone, net))
1223 			goto out;
1224 		if (chainlen++ > max_chainlen)
1225 			goto chaintoolong;
1226 	}
1227 
1228 	chainlen = 0;
1229 	hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[reply_hash], hnnode) {
1230 		if (nf_ct_key_equal(h, &ct->tuplehash[IP_CT_DIR_REPLY].tuple,
1231 				    zone, net))
1232 			goto out;
1233 		if (chainlen++ > max_chainlen) {
1234 chaintoolong:
1235 			nf_ct_add_to_dying_list(ct);
1236 			NF_CT_STAT_INC(net, chaintoolong);
1237 			NF_CT_STAT_INC(net, insert_failed);
1238 			ret = NF_DROP;
1239 			goto dying;
1240 		}
1241 	}
1242 
1243 	/* Timer relative to confirmation time, not original
1244 	   setting time, otherwise we'd get timer wrap in
1245 	   weird delay cases. */
1246 	ct->timeout += nfct_time_stamp;
1247 
1248 	__nf_conntrack_insert_prepare(ct);
1249 
1250 	/* Since the lookup is lockless, hash insertion must be done after
1251 	 * starting the timer and setting the CONFIRMED bit. The RCU barriers
1252 	 * guarantee that no other CPU can find the conntrack before the above
1253 	 * stores are visible.
1254 	 */
1255 	__nf_conntrack_hash_insert(ct, hash, reply_hash);
1256 	nf_conntrack_double_unlock(hash, reply_hash);
1257 	local_bh_enable();
1258 
1259 	help = nfct_help(ct);
1260 	if (help && help->helper)
1261 		nf_conntrack_event_cache(IPCT_HELPER, ct);
1262 
1263 	nf_conntrack_event_cache(master_ct(ct) ?
1264 				 IPCT_RELATED : IPCT_NEW, ct);
1265 	return NF_ACCEPT;
1266 
1267 out:
1268 	ret = nf_ct_resolve_clash(skb, h, reply_hash);
1269 dying:
1270 	nf_conntrack_double_unlock(hash, reply_hash);
1271 	local_bh_enable();
1272 	return ret;
1273 }
1274 EXPORT_SYMBOL_GPL(__nf_conntrack_confirm);
1275 
1276 /* Returns true if a connection correspondings to the tuple (required
1277    for NAT). */
1278 int
nf_conntrack_tuple_taken(const struct nf_conntrack_tuple * tuple,const struct nf_conn * ignored_conntrack)1279 nf_conntrack_tuple_taken(const struct nf_conntrack_tuple *tuple,
1280 			 const struct nf_conn *ignored_conntrack)
1281 {
1282 	struct net *net = nf_ct_net(ignored_conntrack);
1283 	const struct nf_conntrack_zone *zone;
1284 	struct nf_conntrack_tuple_hash *h;
1285 	struct hlist_nulls_head *ct_hash;
1286 	unsigned int hash, hsize;
1287 	struct hlist_nulls_node *n;
1288 	struct nf_conn *ct;
1289 
1290 	zone = nf_ct_zone(ignored_conntrack);
1291 
1292 	rcu_read_lock();
1293  begin:
1294 	nf_conntrack_get_ht(&ct_hash, &hsize);
1295 	hash = __hash_conntrack(net, tuple, nf_ct_zone_id(zone, IP_CT_DIR_REPLY), hsize);
1296 
1297 	hlist_nulls_for_each_entry_rcu(h, n, &ct_hash[hash], hnnode) {
1298 		ct = nf_ct_tuplehash_to_ctrack(h);
1299 
1300 		if (ct == ignored_conntrack)
1301 			continue;
1302 
1303 		if (nf_ct_is_expired(ct)) {
1304 			nf_ct_gc_expired(ct);
1305 			continue;
1306 		}
1307 
1308 		if (nf_ct_key_equal(h, tuple, zone, net)) {
1309 			/* Tuple is taken already, so caller will need to find
1310 			 * a new source port to use.
1311 			 *
1312 			 * Only exception:
1313 			 * If the *original tuples* are identical, then both
1314 			 * conntracks refer to the same flow.
1315 			 * This is a rare situation, it can occur e.g. when
1316 			 * more than one UDP packet is sent from same socket
1317 			 * in different threads.
1318 			 *
1319 			 * Let nf_ct_resolve_clash() deal with this later.
1320 			 */
1321 			if (nf_ct_tuple_equal(&ignored_conntrack->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
1322 					      &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple) &&
1323 					      nf_ct_zone_equal(ct, zone, IP_CT_DIR_ORIGINAL))
1324 				continue;
1325 
1326 			NF_CT_STAT_INC_ATOMIC(net, found);
1327 			rcu_read_unlock();
1328 			return 1;
1329 		}
1330 	}
1331 
1332 	if (get_nulls_value(n) != hash) {
1333 		NF_CT_STAT_INC_ATOMIC(net, search_restart);
1334 		goto begin;
1335 	}
1336 
1337 	rcu_read_unlock();
1338 
1339 	return 0;
1340 }
1341 EXPORT_SYMBOL_GPL(nf_conntrack_tuple_taken);
1342 
1343 #define NF_CT_EVICTION_RANGE	8
1344 
1345 /* There's a small race here where we may free a just-assured
1346    connection.  Too bad: we're in trouble anyway. */
early_drop_list(struct net * net,struct hlist_nulls_head * head)1347 static unsigned int early_drop_list(struct net *net,
1348 				    struct hlist_nulls_head *head)
1349 {
1350 	struct nf_conntrack_tuple_hash *h;
1351 	struct hlist_nulls_node *n;
1352 	unsigned int drops = 0;
1353 	struct nf_conn *tmp;
1354 
1355 	hlist_nulls_for_each_entry_rcu(h, n, head, hnnode) {
1356 		tmp = nf_ct_tuplehash_to_ctrack(h);
1357 
1358 		if (test_bit(IPS_OFFLOAD_BIT, &tmp->status))
1359 			continue;
1360 
1361 		if (nf_ct_is_expired(tmp)) {
1362 			nf_ct_gc_expired(tmp);
1363 			continue;
1364 		}
1365 
1366 		if (test_bit(IPS_ASSURED_BIT, &tmp->status) ||
1367 		    !net_eq(nf_ct_net(tmp), net) ||
1368 		    nf_ct_is_dying(tmp))
1369 			continue;
1370 
1371 		if (!refcount_inc_not_zero(&tmp->ct_general.use))
1372 			continue;
1373 
1374 		/* kill only if still in same netns -- might have moved due to
1375 		 * SLAB_TYPESAFE_BY_RCU rules.
1376 		 *
1377 		 * We steal the timer reference.  If that fails timer has
1378 		 * already fired or someone else deleted it. Just drop ref
1379 		 * and move to next entry.
1380 		 */
1381 		if (net_eq(nf_ct_net(tmp), net) &&
1382 		    nf_ct_is_confirmed(tmp) &&
1383 		    nf_ct_delete(tmp, 0, 0))
1384 			drops++;
1385 
1386 		nf_ct_put(tmp);
1387 	}
1388 
1389 	return drops;
1390 }
1391 
early_drop(struct net * net,unsigned int hash)1392 static noinline int early_drop(struct net *net, unsigned int hash)
1393 {
1394 	unsigned int i, bucket;
1395 
1396 	for (i = 0; i < NF_CT_EVICTION_RANGE; i++) {
1397 		struct hlist_nulls_head *ct_hash;
1398 		unsigned int hsize, drops;
1399 
1400 		rcu_read_lock();
1401 		nf_conntrack_get_ht(&ct_hash, &hsize);
1402 		if (!i)
1403 			bucket = reciprocal_scale(hash, hsize);
1404 		else
1405 			bucket = (bucket + 1) % hsize;
1406 
1407 		drops = early_drop_list(net, &ct_hash[bucket]);
1408 		rcu_read_unlock();
1409 
1410 		if (drops) {
1411 			NF_CT_STAT_ADD_ATOMIC(net, early_drop, drops);
1412 			return true;
1413 		}
1414 	}
1415 
1416 	return false;
1417 }
1418 
gc_worker_skip_ct(const struct nf_conn * ct)1419 static bool gc_worker_skip_ct(const struct nf_conn *ct)
1420 {
1421 	return !nf_ct_is_confirmed(ct) || nf_ct_is_dying(ct);
1422 }
1423 
gc_worker_can_early_drop(const struct nf_conn * ct)1424 static bool gc_worker_can_early_drop(const struct nf_conn *ct)
1425 {
1426 	const struct nf_conntrack_l4proto *l4proto;
1427 
1428 	if (!test_bit(IPS_ASSURED_BIT, &ct->status))
1429 		return true;
1430 
1431 	l4proto = nf_ct_l4proto_find(nf_ct_protonum(ct));
1432 	if (l4proto->can_early_drop && l4proto->can_early_drop(ct))
1433 		return true;
1434 
1435 	return false;
1436 }
1437 
gc_worker(struct work_struct * work)1438 static void gc_worker(struct work_struct *work)
1439 {
1440 	unsigned int i, hashsz, nf_conntrack_max95 = 0;
1441 	u32 end_time, start_time = nfct_time_stamp;
1442 	struct conntrack_gc_work *gc_work;
1443 	unsigned int expired_count = 0;
1444 	unsigned long next_run;
1445 	s32 delta_time;
1446 	long count;
1447 
1448 	gc_work = container_of(work, struct conntrack_gc_work, dwork.work);
1449 
1450 	i = gc_work->next_bucket;
1451 	if (gc_work->early_drop)
1452 		nf_conntrack_max95 = nf_conntrack_max / 100u * 95u;
1453 
1454 	if (i == 0) {
1455 		gc_work->avg_timeout = GC_SCAN_INTERVAL_INIT;
1456 		gc_work->count = GC_SCAN_INITIAL_COUNT;
1457 		gc_work->start_time = start_time;
1458 	}
1459 
1460 	next_run = gc_work->avg_timeout;
1461 	count = gc_work->count;
1462 
1463 	end_time = start_time + GC_SCAN_MAX_DURATION;
1464 
1465 	do {
1466 		struct nf_conntrack_tuple_hash *h;
1467 		struct hlist_nulls_head *ct_hash;
1468 		struct hlist_nulls_node *n;
1469 		struct nf_conn *tmp;
1470 
1471 		rcu_read_lock();
1472 
1473 		nf_conntrack_get_ht(&ct_hash, &hashsz);
1474 		if (i >= hashsz) {
1475 			rcu_read_unlock();
1476 			break;
1477 		}
1478 
1479 		hlist_nulls_for_each_entry_rcu(h, n, &ct_hash[i], hnnode) {
1480 			struct nf_conntrack_net *cnet;
1481 			struct net *net;
1482 			long expires;
1483 
1484 			tmp = nf_ct_tuplehash_to_ctrack(h);
1485 
1486 			if (test_bit(IPS_OFFLOAD_BIT, &tmp->status)) {
1487 				nf_ct_offload_timeout(tmp);
1488 				continue;
1489 			}
1490 
1491 			if (expired_count > GC_SCAN_EXPIRED_MAX) {
1492 				rcu_read_unlock();
1493 
1494 				gc_work->next_bucket = i;
1495 				gc_work->avg_timeout = next_run;
1496 				gc_work->count = count;
1497 
1498 				delta_time = nfct_time_stamp - gc_work->start_time;
1499 
1500 				/* re-sched immediately if total cycle time is exceeded */
1501 				next_run = delta_time < (s32)GC_SCAN_INTERVAL_MAX;
1502 				goto early_exit;
1503 			}
1504 
1505 			if (nf_ct_is_expired(tmp)) {
1506 				nf_ct_gc_expired(tmp);
1507 				expired_count++;
1508 				continue;
1509 			}
1510 
1511 			expires = clamp(nf_ct_expires(tmp), GC_SCAN_INTERVAL_MIN, GC_SCAN_INTERVAL_CLAMP);
1512 			expires = (expires - (long)next_run) / ++count;
1513 			next_run += expires;
1514 
1515 			if (nf_conntrack_max95 == 0 || gc_worker_skip_ct(tmp))
1516 				continue;
1517 
1518 			net = nf_ct_net(tmp);
1519 			cnet = nf_ct_pernet(net);
1520 			if (atomic_read(&cnet->count) < nf_conntrack_max95)
1521 				continue;
1522 
1523 			/* need to take reference to avoid possible races */
1524 			if (!refcount_inc_not_zero(&tmp->ct_general.use))
1525 				continue;
1526 
1527 			if (gc_worker_skip_ct(tmp)) {
1528 				nf_ct_put(tmp);
1529 				continue;
1530 			}
1531 
1532 			if (gc_worker_can_early_drop(tmp)) {
1533 				nf_ct_kill(tmp);
1534 				expired_count++;
1535 			}
1536 
1537 			nf_ct_put(tmp);
1538 		}
1539 
1540 		/* could check get_nulls_value() here and restart if ct
1541 		 * was moved to another chain.  But given gc is best-effort
1542 		 * we will just continue with next hash slot.
1543 		 */
1544 		rcu_read_unlock();
1545 		cond_resched();
1546 		i++;
1547 
1548 		delta_time = nfct_time_stamp - end_time;
1549 		if (delta_time > 0 && i < hashsz) {
1550 			gc_work->avg_timeout = next_run;
1551 			gc_work->count = count;
1552 			gc_work->next_bucket = i;
1553 			next_run = 0;
1554 			goto early_exit;
1555 		}
1556 	} while (i < hashsz);
1557 
1558 	gc_work->next_bucket = 0;
1559 
1560 	next_run = clamp(next_run, GC_SCAN_INTERVAL_MIN, GC_SCAN_INTERVAL_MAX);
1561 
1562 	delta_time = max_t(s32, nfct_time_stamp - gc_work->start_time, 1);
1563 	if (next_run > (unsigned long)delta_time)
1564 		next_run -= delta_time;
1565 	else
1566 		next_run = 1;
1567 
1568 early_exit:
1569 	if (gc_work->exiting)
1570 		return;
1571 
1572 	if (next_run)
1573 		gc_work->early_drop = false;
1574 
1575 	queue_delayed_work(system_power_efficient_wq, &gc_work->dwork, next_run);
1576 }
1577 
conntrack_gc_work_init(struct conntrack_gc_work * gc_work)1578 static void conntrack_gc_work_init(struct conntrack_gc_work *gc_work)
1579 {
1580 	INIT_DELAYED_WORK(&gc_work->dwork, gc_worker);
1581 	gc_work->exiting = false;
1582 }
1583 
1584 static struct nf_conn *
__nf_conntrack_alloc(struct net * net,const struct nf_conntrack_zone * zone,const struct nf_conntrack_tuple * orig,const struct nf_conntrack_tuple * repl,gfp_t gfp,u32 hash)1585 __nf_conntrack_alloc(struct net *net,
1586 		     const struct nf_conntrack_zone *zone,
1587 		     const struct nf_conntrack_tuple *orig,
1588 		     const struct nf_conntrack_tuple *repl,
1589 		     gfp_t gfp, u32 hash)
1590 {
1591 	struct nf_conntrack_net *cnet = nf_ct_pernet(net);
1592 	unsigned int ct_count;
1593 	struct nf_conn *ct;
1594 
1595 	/* We don't want any race condition at early drop stage */
1596 	ct_count = atomic_inc_return(&cnet->count);
1597 
1598 	if (nf_conntrack_max && unlikely(ct_count > nf_conntrack_max)) {
1599 		if (!early_drop(net, hash)) {
1600 			if (!conntrack_gc_work.early_drop)
1601 				conntrack_gc_work.early_drop = true;
1602 			atomic_dec(&cnet->count);
1603 			net_warn_ratelimited("nf_conntrack: table full, dropping packet\n");
1604 			return ERR_PTR(-ENOMEM);
1605 		}
1606 	}
1607 
1608 	/*
1609 	 * Do not use kmem_cache_zalloc(), as this cache uses
1610 	 * SLAB_TYPESAFE_BY_RCU.
1611 	 */
1612 	ct = kmem_cache_alloc(nf_conntrack_cachep, gfp);
1613 	if (ct == NULL)
1614 		goto out;
1615 
1616 	spin_lock_init(&ct->lock);
1617 	ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple = *orig;
1618 	ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode.pprev = NULL;
1619 	ct->tuplehash[IP_CT_DIR_REPLY].tuple = *repl;
1620 	/* save hash for reusing when confirming */
1621 	*(unsigned long *)(&ct->tuplehash[IP_CT_DIR_REPLY].hnnode.pprev) = hash;
1622 	ct->status = 0;
1623 	WRITE_ONCE(ct->timeout, 0);
1624 	write_pnet(&ct->ct_net, net);
1625 	memset(&ct->__nfct_init_offset, 0,
1626 	       offsetof(struct nf_conn, proto) -
1627 	       offsetof(struct nf_conn, __nfct_init_offset));
1628 
1629 	nf_ct_zone_add(ct, zone);
1630 
1631 	trace_android_rvh_nf_conn_alloc(ct);
1632 
1633 	/* Because we use RCU lookups, we set ct_general.use to zero before
1634 	 * this is inserted in any list.
1635 	 */
1636 	refcount_set(&ct->ct_general.use, 0);
1637 	return ct;
1638 out:
1639 	atomic_dec(&cnet->count);
1640 	return ERR_PTR(-ENOMEM);
1641 }
1642 
nf_conntrack_alloc(struct net * net,const struct nf_conntrack_zone * zone,const struct nf_conntrack_tuple * orig,const struct nf_conntrack_tuple * repl,gfp_t gfp)1643 struct nf_conn *nf_conntrack_alloc(struct net *net,
1644 				   const struct nf_conntrack_zone *zone,
1645 				   const struct nf_conntrack_tuple *orig,
1646 				   const struct nf_conntrack_tuple *repl,
1647 				   gfp_t gfp)
1648 {
1649 	return __nf_conntrack_alloc(net, zone, orig, repl, gfp, 0);
1650 }
1651 EXPORT_SYMBOL_GPL(nf_conntrack_alloc);
1652 
nf_conntrack_free(struct nf_conn * ct)1653 void nf_conntrack_free(struct nf_conn *ct)
1654 {
1655 	struct net *net = nf_ct_net(ct);
1656 	struct nf_conntrack_net *cnet;
1657 
1658 	/* A freed object has refcnt == 0, that's
1659 	 * the golden rule for SLAB_TYPESAFE_BY_RCU
1660 	 */
1661 	WARN_ON(refcount_read(&ct->ct_general.use) != 0);
1662 
1663 	nf_ct_ext_destroy(ct);
1664 	kmem_cache_free(nf_conntrack_cachep, ct);
1665 	cnet = nf_ct_pernet(net);
1666 
1667 	smp_mb__before_atomic();
1668 	trace_android_rvh_nf_conn_free(ct);
1669 	atomic_dec(&cnet->count);
1670 }
1671 EXPORT_SYMBOL_GPL(nf_conntrack_free);
1672 
1673 
1674 /* Allocate a new conntrack: we return -ENOMEM if classification
1675    failed due to stress.  Otherwise it really is unclassifiable. */
1676 static noinline struct nf_conntrack_tuple_hash *
init_conntrack(struct net * net,struct nf_conn * tmpl,const struct nf_conntrack_tuple * tuple,struct sk_buff * skb,unsigned int dataoff,u32 hash)1677 init_conntrack(struct net *net, struct nf_conn *tmpl,
1678 	       const struct nf_conntrack_tuple *tuple,
1679 	       struct sk_buff *skb,
1680 	       unsigned int dataoff, u32 hash)
1681 {
1682 	struct nf_conn *ct;
1683 	struct nf_conn_help *help;
1684 	struct nf_conntrack_tuple repl_tuple;
1685 	struct nf_conntrack_ecache *ecache;
1686 	struct nf_conntrack_expect *exp = NULL;
1687 	const struct nf_conntrack_zone *zone;
1688 	struct nf_conn_timeout *timeout_ext;
1689 	struct nf_conntrack_zone tmp;
1690 	struct nf_conntrack_net *cnet;
1691 
1692 	if (!nf_ct_invert_tuple(&repl_tuple, tuple)) {
1693 		pr_debug("Can't invert tuple.\n");
1694 		return NULL;
1695 	}
1696 
1697 	zone = nf_ct_zone_tmpl(tmpl, skb, &tmp);
1698 	ct = __nf_conntrack_alloc(net, zone, tuple, &repl_tuple, GFP_ATOMIC,
1699 				  hash);
1700 	if (IS_ERR(ct))
1701 		return (struct nf_conntrack_tuple_hash *)ct;
1702 
1703 	if (!nf_ct_add_synproxy(ct, tmpl)) {
1704 		nf_conntrack_free(ct);
1705 		return ERR_PTR(-ENOMEM);
1706 	}
1707 
1708 	timeout_ext = tmpl ? nf_ct_timeout_find(tmpl) : NULL;
1709 
1710 	if (timeout_ext)
1711 		nf_ct_timeout_ext_add(ct, rcu_dereference(timeout_ext->timeout),
1712 				      GFP_ATOMIC);
1713 
1714 	nf_ct_acct_ext_add(ct, GFP_ATOMIC);
1715 	nf_ct_tstamp_ext_add(ct, GFP_ATOMIC);
1716 	nf_ct_labels_ext_add(ct);
1717 
1718 	ecache = tmpl ? nf_ct_ecache_find(tmpl) : NULL;
1719 	nf_ct_ecache_ext_add(ct, ecache ? ecache->ctmask : 0,
1720 				 ecache ? ecache->expmask : 0,
1721 			     GFP_ATOMIC);
1722 
1723 	local_bh_disable();
1724 	cnet = nf_ct_pernet(net);
1725 	if (cnet->expect_count) {
1726 		spin_lock(&nf_conntrack_expect_lock);
1727 		exp = nf_ct_find_expectation(net, zone, tuple);
1728 		if (exp) {
1729 			pr_debug("expectation arrives ct=%p exp=%p\n",
1730 				 ct, exp);
1731 			/* Welcome, Mr. Bond.  We've been expecting you... */
1732 			__set_bit(IPS_EXPECTED_BIT, &ct->status);
1733 			/* exp->master safe, refcnt bumped in nf_ct_find_expectation */
1734 			ct->master = exp->master;
1735 			if (exp->helper) {
1736 				help = nf_ct_helper_ext_add(ct, GFP_ATOMIC);
1737 				if (help)
1738 					rcu_assign_pointer(help->helper, exp->helper);
1739 			}
1740 
1741 #ifdef CONFIG_NF_CONNTRACK_MARK
1742 			ct->mark = READ_ONCE(exp->master->mark);
1743 #endif
1744 #ifdef CONFIG_NF_CONNTRACK_SECMARK
1745 			ct->secmark = exp->master->secmark;
1746 #endif
1747 			NF_CT_STAT_INC(net, expect_new);
1748 		}
1749 		spin_unlock(&nf_conntrack_expect_lock);
1750 	}
1751 	if (!exp)
1752 		__nf_ct_try_assign_helper(ct, tmpl, GFP_ATOMIC);
1753 
1754 	/* Now it is inserted into the unconfirmed list, set refcount to 1. */
1755 	refcount_set(&ct->ct_general.use, 1);
1756 	nf_ct_add_to_unconfirmed_list(ct);
1757 
1758 	local_bh_enable();
1759 
1760 	if (exp) {
1761 		if (exp->expectfn)
1762 			exp->expectfn(ct, exp);
1763 		nf_ct_expect_put(exp);
1764 	}
1765 
1766 	return &ct->tuplehash[IP_CT_DIR_ORIGINAL];
1767 }
1768 
1769 /* On success, returns 0, sets skb->_nfct | ctinfo */
1770 static int
resolve_normal_ct(struct nf_conn * tmpl,struct sk_buff * skb,unsigned int dataoff,u_int8_t protonum,const struct nf_hook_state * state)1771 resolve_normal_ct(struct nf_conn *tmpl,
1772 		  struct sk_buff *skb,
1773 		  unsigned int dataoff,
1774 		  u_int8_t protonum,
1775 		  const struct nf_hook_state *state)
1776 {
1777 	const struct nf_conntrack_zone *zone;
1778 	struct nf_conntrack_tuple tuple;
1779 	struct nf_conntrack_tuple_hash *h;
1780 	enum ip_conntrack_info ctinfo;
1781 	struct nf_conntrack_zone tmp;
1782 	u32 hash, zone_id, rid;
1783 	struct nf_conn *ct;
1784 
1785 	if (!nf_ct_get_tuple(skb, skb_network_offset(skb),
1786 			     dataoff, state->pf, protonum, state->net,
1787 			     &tuple)) {
1788 		pr_debug("Can't get tuple\n");
1789 		return 0;
1790 	}
1791 
1792 	/* look for tuple match */
1793 	zone = nf_ct_zone_tmpl(tmpl, skb, &tmp);
1794 
1795 	zone_id = nf_ct_zone_id(zone, IP_CT_DIR_ORIGINAL);
1796 	hash = hash_conntrack_raw(&tuple, zone_id, state->net);
1797 	h = __nf_conntrack_find_get(state->net, zone, &tuple, hash);
1798 
1799 	if (!h) {
1800 		rid = nf_ct_zone_id(zone, IP_CT_DIR_REPLY);
1801 		if (zone_id != rid) {
1802 			u32 tmp = hash_conntrack_raw(&tuple, rid, state->net);
1803 
1804 			h = __nf_conntrack_find_get(state->net, zone, &tuple, tmp);
1805 		}
1806 	}
1807 
1808 	if (!h) {
1809 		h = init_conntrack(state->net, tmpl, &tuple,
1810 				   skb, dataoff, hash);
1811 		if (!h)
1812 			return 0;
1813 		if (IS_ERR(h))
1814 			return PTR_ERR(h);
1815 	}
1816 	ct = nf_ct_tuplehash_to_ctrack(h);
1817 
1818 	/* It exists; we have (non-exclusive) reference. */
1819 	if (NF_CT_DIRECTION(h) == IP_CT_DIR_REPLY) {
1820 		ctinfo = IP_CT_ESTABLISHED_REPLY;
1821 	} else {
1822 		/* Once we've had two way comms, always ESTABLISHED. */
1823 		if (test_bit(IPS_SEEN_REPLY_BIT, &ct->status)) {
1824 			pr_debug("normal packet for %p\n", ct);
1825 			ctinfo = IP_CT_ESTABLISHED;
1826 		} else if (test_bit(IPS_EXPECTED_BIT, &ct->status)) {
1827 			pr_debug("related packet for %p\n", ct);
1828 			ctinfo = IP_CT_RELATED;
1829 		} else {
1830 			pr_debug("new packet for %p\n", ct);
1831 			ctinfo = IP_CT_NEW;
1832 		}
1833 	}
1834 	nf_ct_set(skb, ct, ctinfo);
1835 	return 0;
1836 }
1837 
1838 /*
1839  * icmp packets need special treatment to handle error messages that are
1840  * related to a connection.
1841  *
1842  * Callers need to check if skb has a conntrack assigned when this
1843  * helper returns; in such case skb belongs to an already known connection.
1844  */
1845 static unsigned int __cold
nf_conntrack_handle_icmp(struct nf_conn * tmpl,struct sk_buff * skb,unsigned int dataoff,u8 protonum,const struct nf_hook_state * state)1846 nf_conntrack_handle_icmp(struct nf_conn *tmpl,
1847 			 struct sk_buff *skb,
1848 			 unsigned int dataoff,
1849 			 u8 protonum,
1850 			 const struct nf_hook_state *state)
1851 {
1852 	int ret;
1853 
1854 	if (state->pf == NFPROTO_IPV4 && protonum == IPPROTO_ICMP)
1855 		ret = nf_conntrack_icmpv4_error(tmpl, skb, dataoff, state);
1856 #if IS_ENABLED(CONFIG_IPV6)
1857 	else if (state->pf == NFPROTO_IPV6 && protonum == IPPROTO_ICMPV6)
1858 		ret = nf_conntrack_icmpv6_error(tmpl, skb, dataoff, state);
1859 #endif
1860 	else
1861 		return NF_ACCEPT;
1862 
1863 	if (ret <= 0)
1864 		NF_CT_STAT_INC_ATOMIC(state->net, error);
1865 
1866 	return ret;
1867 }
1868 
generic_packet(struct nf_conn * ct,struct sk_buff * skb,enum ip_conntrack_info ctinfo)1869 static int generic_packet(struct nf_conn *ct, struct sk_buff *skb,
1870 			  enum ip_conntrack_info ctinfo)
1871 {
1872 	const unsigned int *timeout = nf_ct_timeout_lookup(ct);
1873 
1874 	if (!timeout)
1875 		timeout = &nf_generic_pernet(nf_ct_net(ct))->timeout;
1876 
1877 	nf_ct_refresh_acct(ct, ctinfo, skb, *timeout);
1878 	return NF_ACCEPT;
1879 }
1880 
1881 /* Returns verdict for packet, or -1 for invalid. */
nf_conntrack_handle_packet(struct nf_conn * ct,struct sk_buff * skb,unsigned int dataoff,enum ip_conntrack_info ctinfo,const struct nf_hook_state * state)1882 static int nf_conntrack_handle_packet(struct nf_conn *ct,
1883 				      struct sk_buff *skb,
1884 				      unsigned int dataoff,
1885 				      enum ip_conntrack_info ctinfo,
1886 				      const struct nf_hook_state *state)
1887 {
1888 	switch (nf_ct_protonum(ct)) {
1889 	case IPPROTO_TCP:
1890 		return nf_conntrack_tcp_packet(ct, skb, dataoff,
1891 					       ctinfo, state);
1892 	case IPPROTO_UDP:
1893 		return nf_conntrack_udp_packet(ct, skb, dataoff,
1894 					       ctinfo, state);
1895 	case IPPROTO_ICMP:
1896 		return nf_conntrack_icmp_packet(ct, skb, ctinfo, state);
1897 #if IS_ENABLED(CONFIG_IPV6)
1898 	case IPPROTO_ICMPV6:
1899 		return nf_conntrack_icmpv6_packet(ct, skb, ctinfo, state);
1900 #endif
1901 #ifdef CONFIG_NF_CT_PROTO_UDPLITE
1902 	case IPPROTO_UDPLITE:
1903 		return nf_conntrack_udplite_packet(ct, skb, dataoff,
1904 						   ctinfo, state);
1905 #endif
1906 #ifdef CONFIG_NF_CT_PROTO_SCTP
1907 	case IPPROTO_SCTP:
1908 		return nf_conntrack_sctp_packet(ct, skb, dataoff,
1909 						ctinfo, state);
1910 #endif
1911 #ifdef CONFIG_NF_CT_PROTO_DCCP
1912 	case IPPROTO_DCCP:
1913 		return nf_conntrack_dccp_packet(ct, skb, dataoff,
1914 						ctinfo, state);
1915 #endif
1916 #ifdef CONFIG_NF_CT_PROTO_GRE
1917 	case IPPROTO_GRE:
1918 		return nf_conntrack_gre_packet(ct, skb, dataoff,
1919 					       ctinfo, state);
1920 #endif
1921 	}
1922 
1923 	return generic_packet(ct, skb, ctinfo);
1924 }
1925 
1926 unsigned int
nf_conntrack_in(struct sk_buff * skb,const struct nf_hook_state * state)1927 nf_conntrack_in(struct sk_buff *skb, const struct nf_hook_state *state)
1928 {
1929 	enum ip_conntrack_info ctinfo;
1930 	struct nf_conn *ct, *tmpl;
1931 	u_int8_t protonum;
1932 	int dataoff, ret;
1933 
1934 	tmpl = nf_ct_get(skb, &ctinfo);
1935 	if (tmpl || ctinfo == IP_CT_UNTRACKED) {
1936 		/* Previously seen (loopback or untracked)?  Ignore. */
1937 		if ((tmpl && !nf_ct_is_template(tmpl)) ||
1938 		     ctinfo == IP_CT_UNTRACKED)
1939 			return NF_ACCEPT;
1940 		skb->_nfct = 0;
1941 	}
1942 
1943 	/* rcu_read_lock()ed by nf_hook_thresh */
1944 	dataoff = get_l4proto(skb, skb_network_offset(skb), state->pf, &protonum);
1945 	if (dataoff <= 0) {
1946 		pr_debug("not prepared to track yet or error occurred\n");
1947 		NF_CT_STAT_INC_ATOMIC(state->net, invalid);
1948 		ret = NF_ACCEPT;
1949 		goto out;
1950 	}
1951 
1952 	if (protonum == IPPROTO_ICMP || protonum == IPPROTO_ICMPV6) {
1953 		ret = nf_conntrack_handle_icmp(tmpl, skb, dataoff,
1954 					       protonum, state);
1955 		if (ret <= 0) {
1956 			ret = -ret;
1957 			goto out;
1958 		}
1959 		/* ICMP[v6] protocol trackers may assign one conntrack. */
1960 		if (skb->_nfct)
1961 			goto out;
1962 	}
1963 repeat:
1964 	ret = resolve_normal_ct(tmpl, skb, dataoff,
1965 				protonum, state);
1966 	if (ret < 0) {
1967 		/* Too stressed to deal. */
1968 		NF_CT_STAT_INC_ATOMIC(state->net, drop);
1969 		ret = NF_DROP;
1970 		goto out;
1971 	}
1972 
1973 	ct = nf_ct_get(skb, &ctinfo);
1974 	if (!ct) {
1975 		/* Not valid part of a connection */
1976 		NF_CT_STAT_INC_ATOMIC(state->net, invalid);
1977 		ret = NF_ACCEPT;
1978 		goto out;
1979 	}
1980 
1981 	ret = nf_conntrack_handle_packet(ct, skb, dataoff, ctinfo, state);
1982 	if (ret <= 0) {
1983 		/* Invalid: inverse of the return code tells
1984 		 * the netfilter core what to do */
1985 		pr_debug("nf_conntrack_in: Can't track with proto module\n");
1986 		nf_ct_put(ct);
1987 		skb->_nfct = 0;
1988 		/* Special case: TCP tracker reports an attempt to reopen a
1989 		 * closed/aborted connection. We have to go back and create a
1990 		 * fresh conntrack.
1991 		 */
1992 		if (ret == -NF_REPEAT)
1993 			goto repeat;
1994 
1995 		NF_CT_STAT_INC_ATOMIC(state->net, invalid);
1996 		if (ret == -NF_DROP)
1997 			NF_CT_STAT_INC_ATOMIC(state->net, drop);
1998 
1999 		ret = -ret;
2000 		goto out;
2001 	}
2002 
2003 	if (ctinfo == IP_CT_ESTABLISHED_REPLY &&
2004 	    !test_and_set_bit(IPS_SEEN_REPLY_BIT, &ct->status))
2005 		nf_conntrack_event_cache(IPCT_REPLY, ct);
2006 out:
2007 	if (tmpl)
2008 		nf_ct_put(tmpl);
2009 
2010 	return ret;
2011 }
2012 EXPORT_SYMBOL_GPL(nf_conntrack_in);
2013 
2014 /* Alter reply tuple (maybe alter helper).  This is for NAT, and is
2015    implicitly racy: see __nf_conntrack_confirm */
nf_conntrack_alter_reply(struct nf_conn * ct,const struct nf_conntrack_tuple * newreply)2016 void nf_conntrack_alter_reply(struct nf_conn *ct,
2017 			      const struct nf_conntrack_tuple *newreply)
2018 {
2019 	struct nf_conn_help *help = nfct_help(ct);
2020 
2021 	/* Should be unconfirmed, so not in hash table yet */
2022 	WARN_ON(nf_ct_is_confirmed(ct));
2023 
2024 	pr_debug("Altering reply tuple of %p to ", ct);
2025 	nf_ct_dump_tuple(newreply);
2026 
2027 	ct->tuplehash[IP_CT_DIR_REPLY].tuple = *newreply;
2028 	if (ct->master || (help && !hlist_empty(&help->expectations)))
2029 		return;
2030 
2031 	rcu_read_lock();
2032 	__nf_ct_try_assign_helper(ct, NULL, GFP_ATOMIC);
2033 	rcu_read_unlock();
2034 }
2035 EXPORT_SYMBOL_GPL(nf_conntrack_alter_reply);
2036 
2037 /* Refresh conntrack for this many jiffies and do accounting if do_acct is 1 */
__nf_ct_refresh_acct(struct nf_conn * ct,enum ip_conntrack_info ctinfo,const struct sk_buff * skb,u32 extra_jiffies,bool do_acct)2038 void __nf_ct_refresh_acct(struct nf_conn *ct,
2039 			  enum ip_conntrack_info ctinfo,
2040 			  const struct sk_buff *skb,
2041 			  u32 extra_jiffies,
2042 			  bool do_acct)
2043 {
2044 	/* Only update if this is not a fixed timeout */
2045 	if (test_bit(IPS_FIXED_TIMEOUT_BIT, &ct->status))
2046 		goto acct;
2047 
2048 	/* If not in hash table, timer will not be active yet */
2049 	if (nf_ct_is_confirmed(ct))
2050 		extra_jiffies += nfct_time_stamp;
2051 
2052 	if (READ_ONCE(ct->timeout) != extra_jiffies)
2053 		WRITE_ONCE(ct->timeout, extra_jiffies);
2054 acct:
2055 	if (do_acct)
2056 		nf_ct_acct_update(ct, CTINFO2DIR(ctinfo), skb->len);
2057 }
2058 EXPORT_SYMBOL_GPL(__nf_ct_refresh_acct);
2059 
nf_ct_kill_acct(struct nf_conn * ct,enum ip_conntrack_info ctinfo,const struct sk_buff * skb)2060 bool nf_ct_kill_acct(struct nf_conn *ct,
2061 		     enum ip_conntrack_info ctinfo,
2062 		     const struct sk_buff *skb)
2063 {
2064 	nf_ct_acct_update(ct, CTINFO2DIR(ctinfo), skb->len);
2065 
2066 	return nf_ct_delete(ct, 0, 0);
2067 }
2068 EXPORT_SYMBOL_GPL(nf_ct_kill_acct);
2069 
2070 #if IS_ENABLED(CONFIG_NF_CT_NETLINK)
2071 
2072 #include <linux/netfilter/nfnetlink.h>
2073 #include <linux/netfilter/nfnetlink_conntrack.h>
2074 #include <linux/mutex.h>
2075 
2076 /* Generic function for tcp/udp/sctp/dccp and alike. */
nf_ct_port_tuple_to_nlattr(struct sk_buff * skb,const struct nf_conntrack_tuple * tuple)2077 int nf_ct_port_tuple_to_nlattr(struct sk_buff *skb,
2078 			       const struct nf_conntrack_tuple *tuple)
2079 {
2080 	if (nla_put_be16(skb, CTA_PROTO_SRC_PORT, tuple->src.u.tcp.port) ||
2081 	    nla_put_be16(skb, CTA_PROTO_DST_PORT, tuple->dst.u.tcp.port))
2082 		goto nla_put_failure;
2083 	return 0;
2084 
2085 nla_put_failure:
2086 	return -1;
2087 }
2088 EXPORT_SYMBOL_GPL(nf_ct_port_tuple_to_nlattr);
2089 
2090 const struct nla_policy nf_ct_port_nla_policy[CTA_PROTO_MAX+1] = {
2091 	[CTA_PROTO_SRC_PORT]  = { .type = NLA_U16 },
2092 	[CTA_PROTO_DST_PORT]  = { .type = NLA_U16 },
2093 };
2094 EXPORT_SYMBOL_GPL(nf_ct_port_nla_policy);
2095 
nf_ct_port_nlattr_to_tuple(struct nlattr * tb[],struct nf_conntrack_tuple * t,u_int32_t flags)2096 int nf_ct_port_nlattr_to_tuple(struct nlattr *tb[],
2097 			       struct nf_conntrack_tuple *t,
2098 			       u_int32_t flags)
2099 {
2100 	if (flags & CTA_FILTER_FLAG(CTA_PROTO_SRC_PORT)) {
2101 		if (!tb[CTA_PROTO_SRC_PORT])
2102 			return -EINVAL;
2103 
2104 		t->src.u.tcp.port = nla_get_be16(tb[CTA_PROTO_SRC_PORT]);
2105 	}
2106 
2107 	if (flags & CTA_FILTER_FLAG(CTA_PROTO_DST_PORT)) {
2108 		if (!tb[CTA_PROTO_DST_PORT])
2109 			return -EINVAL;
2110 
2111 		t->dst.u.tcp.port = nla_get_be16(tb[CTA_PROTO_DST_PORT]);
2112 	}
2113 
2114 	return 0;
2115 }
2116 EXPORT_SYMBOL_GPL(nf_ct_port_nlattr_to_tuple);
2117 
nf_ct_port_nlattr_tuple_size(void)2118 unsigned int nf_ct_port_nlattr_tuple_size(void)
2119 {
2120 	static unsigned int size __read_mostly;
2121 
2122 	if (!size)
2123 		size = nla_policy_len(nf_ct_port_nla_policy, CTA_PROTO_MAX + 1);
2124 
2125 	return size;
2126 }
2127 EXPORT_SYMBOL_GPL(nf_ct_port_nlattr_tuple_size);
2128 #endif
2129 
2130 /* Used by ipt_REJECT and ip6t_REJECT. */
nf_conntrack_attach(struct sk_buff * nskb,const struct sk_buff * skb)2131 static void nf_conntrack_attach(struct sk_buff *nskb, const struct sk_buff *skb)
2132 {
2133 	struct nf_conn *ct;
2134 	enum ip_conntrack_info ctinfo;
2135 
2136 	/* This ICMP is in reverse direction to the packet which caused it */
2137 	ct = nf_ct_get(skb, &ctinfo);
2138 	if (CTINFO2DIR(ctinfo) == IP_CT_DIR_ORIGINAL)
2139 		ctinfo = IP_CT_RELATED_REPLY;
2140 	else
2141 		ctinfo = IP_CT_RELATED;
2142 
2143 	/* Attach to new skbuff, and increment count */
2144 	nf_ct_set(nskb, ct, ctinfo);
2145 	nf_conntrack_get(skb_nfct(nskb));
2146 }
2147 
__nf_conntrack_update(struct net * net,struct sk_buff * skb,struct nf_conn * ct,enum ip_conntrack_info ctinfo)2148 static int __nf_conntrack_update(struct net *net, struct sk_buff *skb,
2149 				 struct nf_conn *ct,
2150 				 enum ip_conntrack_info ctinfo)
2151 {
2152 	const struct nf_nat_hook *nat_hook;
2153 	struct nf_conntrack_tuple_hash *h;
2154 	struct nf_conntrack_tuple tuple;
2155 	unsigned int status;
2156 	int dataoff;
2157 	u16 l3num;
2158 	u8 l4num;
2159 
2160 	l3num = nf_ct_l3num(ct);
2161 
2162 	dataoff = get_l4proto(skb, skb_network_offset(skb), l3num, &l4num);
2163 	if (dataoff <= 0)
2164 		return -1;
2165 
2166 	if (!nf_ct_get_tuple(skb, skb_network_offset(skb), dataoff, l3num,
2167 			     l4num, net, &tuple))
2168 		return -1;
2169 
2170 	if (ct->status & IPS_SRC_NAT) {
2171 		memcpy(tuple.src.u3.all,
2172 		       ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple.src.u3.all,
2173 		       sizeof(tuple.src.u3.all));
2174 		tuple.src.u.all =
2175 			ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple.src.u.all;
2176 	}
2177 
2178 	if (ct->status & IPS_DST_NAT) {
2179 		memcpy(tuple.dst.u3.all,
2180 		       ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple.dst.u3.all,
2181 		       sizeof(tuple.dst.u3.all));
2182 		tuple.dst.u.all =
2183 			ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple.dst.u.all;
2184 	}
2185 
2186 	h = nf_conntrack_find_get(net, nf_ct_zone(ct), &tuple);
2187 	if (!h)
2188 		return 0;
2189 
2190 	/* Store status bits of the conntrack that is clashing to re-do NAT
2191 	 * mangling according to what it has been done already to this packet.
2192 	 */
2193 	status = ct->status;
2194 
2195 	nf_ct_put(ct);
2196 	ct = nf_ct_tuplehash_to_ctrack(h);
2197 	nf_ct_set(skb, ct, ctinfo);
2198 
2199 	nat_hook = rcu_dereference(nf_nat_hook);
2200 	if (!nat_hook)
2201 		return 0;
2202 
2203 	if (status & IPS_SRC_NAT &&
2204 	    nat_hook->manip_pkt(skb, ct, NF_NAT_MANIP_SRC,
2205 				IP_CT_DIR_ORIGINAL) == NF_DROP)
2206 		return -1;
2207 
2208 	if (status & IPS_DST_NAT &&
2209 	    nat_hook->manip_pkt(skb, ct, NF_NAT_MANIP_DST,
2210 				IP_CT_DIR_ORIGINAL) == NF_DROP)
2211 		return -1;
2212 
2213 	return 0;
2214 }
2215 
2216 /* This packet is coming from userspace via nf_queue, complete the packet
2217  * processing after the helper invocation in nf_confirm().
2218  */
nf_confirm_cthelper(struct sk_buff * skb,struct nf_conn * ct,enum ip_conntrack_info ctinfo)2219 static int nf_confirm_cthelper(struct sk_buff *skb, struct nf_conn *ct,
2220 			       enum ip_conntrack_info ctinfo)
2221 {
2222 	const struct nf_conntrack_helper *helper;
2223 	const struct nf_conn_help *help;
2224 	int protoff;
2225 
2226 	help = nfct_help(ct);
2227 	if (!help)
2228 		return 0;
2229 
2230 	helper = rcu_dereference(help->helper);
2231 	if (!helper)
2232 		return 0;
2233 
2234 	if (!(helper->flags & NF_CT_HELPER_F_USERSPACE))
2235 		return 0;
2236 
2237 	switch (nf_ct_l3num(ct)) {
2238 	case NFPROTO_IPV4:
2239 		protoff = skb_network_offset(skb) + ip_hdrlen(skb);
2240 		break;
2241 #if IS_ENABLED(CONFIG_IPV6)
2242 	case NFPROTO_IPV6: {
2243 		__be16 frag_off;
2244 		u8 pnum;
2245 
2246 		pnum = ipv6_hdr(skb)->nexthdr;
2247 		protoff = ipv6_skip_exthdr(skb, sizeof(struct ipv6hdr), &pnum,
2248 					   &frag_off);
2249 		if (protoff < 0 || (frag_off & htons(~0x7)) != 0)
2250 			return 0;
2251 		break;
2252 	}
2253 #endif
2254 	default:
2255 		return 0;
2256 	}
2257 
2258 	if (test_bit(IPS_SEQ_ADJUST_BIT, &ct->status) &&
2259 	    !nf_is_loopback_packet(skb)) {
2260 		if (!nf_ct_seq_adjust(skb, ct, ctinfo, protoff)) {
2261 			NF_CT_STAT_INC_ATOMIC(nf_ct_net(ct), drop);
2262 			return -1;
2263 		}
2264 	}
2265 
2266 	/* We've seen it coming out the other side: confirm it */
2267 	return nf_conntrack_confirm(skb) == NF_DROP ? - 1 : 0;
2268 }
2269 
nf_conntrack_update(struct net * net,struct sk_buff * skb)2270 static int nf_conntrack_update(struct net *net, struct sk_buff *skb)
2271 {
2272 	enum ip_conntrack_info ctinfo;
2273 	struct nf_conn *ct;
2274 	int err;
2275 
2276 	ct = nf_ct_get(skb, &ctinfo);
2277 	if (!ct)
2278 		return 0;
2279 
2280 	if (!nf_ct_is_confirmed(ct)) {
2281 		err = __nf_conntrack_update(net, skb, ct, ctinfo);
2282 		if (err < 0)
2283 			return err;
2284 
2285 		ct = nf_ct_get(skb, &ctinfo);
2286 	}
2287 
2288 	return nf_confirm_cthelper(skb, ct, ctinfo);
2289 }
2290 
nf_conntrack_get_tuple_skb(struct nf_conntrack_tuple * dst_tuple,const struct sk_buff * skb)2291 static bool nf_conntrack_get_tuple_skb(struct nf_conntrack_tuple *dst_tuple,
2292 				       const struct sk_buff *skb)
2293 {
2294 	const struct nf_conntrack_tuple *src_tuple;
2295 	const struct nf_conntrack_tuple_hash *hash;
2296 	struct nf_conntrack_tuple srctuple;
2297 	enum ip_conntrack_info ctinfo;
2298 	struct nf_conn *ct;
2299 
2300 	ct = nf_ct_get(skb, &ctinfo);
2301 	if (ct) {
2302 		src_tuple = nf_ct_tuple(ct, CTINFO2DIR(ctinfo));
2303 		memcpy(dst_tuple, src_tuple, sizeof(*dst_tuple));
2304 		return true;
2305 	}
2306 
2307 	if (!nf_ct_get_tuplepr(skb, skb_network_offset(skb),
2308 			       NFPROTO_IPV4, dev_net(skb->dev),
2309 			       &srctuple))
2310 		return false;
2311 
2312 	hash = nf_conntrack_find_get(dev_net(skb->dev),
2313 				     &nf_ct_zone_dflt,
2314 				     &srctuple);
2315 	if (!hash)
2316 		return false;
2317 
2318 	ct = nf_ct_tuplehash_to_ctrack(hash);
2319 	src_tuple = nf_ct_tuple(ct, !hash->tuple.dst.dir);
2320 	memcpy(dst_tuple, src_tuple, sizeof(*dst_tuple));
2321 	nf_ct_put(ct);
2322 
2323 	return true;
2324 }
2325 
2326 /* Bring out ya dead! */
2327 static struct nf_conn *
get_next_corpse(int (* iter)(struct nf_conn * i,void * data),void * data,unsigned int * bucket)2328 get_next_corpse(int (*iter)(struct nf_conn *i, void *data),
2329 		void *data, unsigned int *bucket)
2330 {
2331 	struct nf_conntrack_tuple_hash *h;
2332 	struct nf_conn *ct;
2333 	struct hlist_nulls_node *n;
2334 	spinlock_t *lockp;
2335 
2336 	for (; *bucket < nf_conntrack_htable_size; (*bucket)++) {
2337 		struct hlist_nulls_head *hslot = &nf_conntrack_hash[*bucket];
2338 
2339 		if (hlist_nulls_empty(hslot))
2340 			continue;
2341 
2342 		lockp = &nf_conntrack_locks[*bucket % CONNTRACK_LOCKS];
2343 		local_bh_disable();
2344 		nf_conntrack_lock(lockp);
2345 		hlist_nulls_for_each_entry(h, n, hslot, hnnode) {
2346 			if (NF_CT_DIRECTION(h) != IP_CT_DIR_REPLY)
2347 				continue;
2348 			/* All nf_conn objects are added to hash table twice, one
2349 			 * for original direction tuple, once for the reply tuple.
2350 			 *
2351 			 * Exception: In the IPS_NAT_CLASH case, only the reply
2352 			 * tuple is added (the original tuple already existed for
2353 			 * a different object).
2354 			 *
2355 			 * We only need to call the iterator once for each
2356 			 * conntrack, so we just use the 'reply' direction
2357 			 * tuple while iterating.
2358 			 */
2359 			ct = nf_ct_tuplehash_to_ctrack(h);
2360 			if (iter(ct, data))
2361 				goto found;
2362 		}
2363 		spin_unlock(lockp);
2364 		local_bh_enable();
2365 		cond_resched();
2366 	}
2367 
2368 	return NULL;
2369 found:
2370 	refcount_inc(&ct->ct_general.use);
2371 	spin_unlock(lockp);
2372 	local_bh_enable();
2373 	return ct;
2374 }
2375 
nf_ct_iterate_cleanup(int (* iter)(struct nf_conn * i,void * data),void * data,u32 portid,int report)2376 static void nf_ct_iterate_cleanup(int (*iter)(struct nf_conn *i, void *data),
2377 				  void *data, u32 portid, int report)
2378 {
2379 	unsigned int bucket = 0;
2380 	struct nf_conn *ct;
2381 
2382 	might_sleep();
2383 
2384 	mutex_lock(&nf_conntrack_mutex);
2385 	while ((ct = get_next_corpse(iter, data, &bucket)) != NULL) {
2386 		/* Time to push up daises... */
2387 
2388 		nf_ct_delete(ct, portid, report);
2389 		nf_ct_put(ct);
2390 		cond_resched();
2391 	}
2392 	mutex_unlock(&nf_conntrack_mutex);
2393 }
2394 
2395 struct iter_data {
2396 	int (*iter)(struct nf_conn *i, void *data);
2397 	void *data;
2398 	struct net *net;
2399 };
2400 
iter_net_only(struct nf_conn * i,void * data)2401 static int iter_net_only(struct nf_conn *i, void *data)
2402 {
2403 	struct iter_data *d = data;
2404 
2405 	if (!net_eq(d->net, nf_ct_net(i)))
2406 		return 0;
2407 
2408 	return d->iter(i, d->data);
2409 }
2410 
2411 static void
__nf_ct_unconfirmed_destroy(struct net * net)2412 __nf_ct_unconfirmed_destroy(struct net *net)
2413 {
2414 	int cpu;
2415 
2416 	for_each_possible_cpu(cpu) {
2417 		struct nf_conntrack_tuple_hash *h;
2418 		struct hlist_nulls_node *n;
2419 		struct ct_pcpu *pcpu;
2420 
2421 		pcpu = per_cpu_ptr(net->ct.pcpu_lists, cpu);
2422 
2423 		spin_lock_bh(&pcpu->lock);
2424 		hlist_nulls_for_each_entry(h, n, &pcpu->unconfirmed, hnnode) {
2425 			struct nf_conn *ct;
2426 
2427 			ct = nf_ct_tuplehash_to_ctrack(h);
2428 
2429 			/* we cannot call iter() on unconfirmed list, the
2430 			 * owning cpu can reallocate ct->ext at any time.
2431 			 */
2432 			set_bit(IPS_DYING_BIT, &ct->status);
2433 		}
2434 		spin_unlock_bh(&pcpu->lock);
2435 		cond_resched();
2436 	}
2437 }
2438 
nf_ct_unconfirmed_destroy(struct net * net)2439 void nf_ct_unconfirmed_destroy(struct net *net)
2440 {
2441 	struct nf_conntrack_net *cnet = nf_ct_pernet(net);
2442 
2443 	might_sleep();
2444 
2445 	if (atomic_read(&cnet->count) > 0) {
2446 		__nf_ct_unconfirmed_destroy(net);
2447 		nf_queue_nf_hook_drop(net);
2448 		synchronize_net();
2449 	}
2450 }
2451 EXPORT_SYMBOL_GPL(nf_ct_unconfirmed_destroy);
2452 
nf_ct_iterate_cleanup_net(struct net * net,int (* iter)(struct nf_conn * i,void * data),void * data,u32 portid,int report)2453 void nf_ct_iterate_cleanup_net(struct net *net,
2454 			       int (*iter)(struct nf_conn *i, void *data),
2455 			       void *data, u32 portid, int report)
2456 {
2457 	struct nf_conntrack_net *cnet = nf_ct_pernet(net);
2458 	struct iter_data d;
2459 
2460 	might_sleep();
2461 
2462 	if (atomic_read(&cnet->count) == 0)
2463 		return;
2464 
2465 	d.iter = iter;
2466 	d.data = data;
2467 	d.net = net;
2468 
2469 	nf_ct_iterate_cleanup(iter_net_only, &d, portid, report);
2470 }
2471 EXPORT_SYMBOL_GPL(nf_ct_iterate_cleanup_net);
2472 
2473 /**
2474  * nf_ct_iterate_destroy - destroy unconfirmed conntracks and iterate table
2475  * @iter: callback to invoke for each conntrack
2476  * @data: data to pass to @iter
2477  *
2478  * Like nf_ct_iterate_cleanup, but first marks conntracks on the
2479  * unconfirmed list as dying (so they will not be inserted into
2480  * main table).
2481  *
2482  * Can only be called in module exit path.
2483  */
2484 void
nf_ct_iterate_destroy(int (* iter)(struct nf_conn * i,void * data),void * data)2485 nf_ct_iterate_destroy(int (*iter)(struct nf_conn *i, void *data), void *data)
2486 {
2487 	struct net *net;
2488 
2489 	down_read(&net_rwsem);
2490 	for_each_net(net) {
2491 		struct nf_conntrack_net *cnet = nf_ct_pernet(net);
2492 
2493 		if (atomic_read(&cnet->count) == 0)
2494 			continue;
2495 		__nf_ct_unconfirmed_destroy(net);
2496 		nf_queue_nf_hook_drop(net);
2497 	}
2498 	up_read(&net_rwsem);
2499 
2500 	/* Need to wait for netns cleanup worker to finish, if its
2501 	 * running -- it might have deleted a net namespace from
2502 	 * the global list, so our __nf_ct_unconfirmed_destroy() might
2503 	 * not have affected all namespaces.
2504 	 */
2505 	net_ns_barrier();
2506 
2507 	/* a conntrack could have been unlinked from unconfirmed list
2508 	 * before we grabbed pcpu lock in __nf_ct_unconfirmed_destroy().
2509 	 * This makes sure its inserted into conntrack table.
2510 	 */
2511 	synchronize_net();
2512 
2513 	nf_ct_iterate_cleanup(iter, data, 0, 0);
2514 }
2515 EXPORT_SYMBOL_GPL(nf_ct_iterate_destroy);
2516 
kill_all(struct nf_conn * i,void * data)2517 static int kill_all(struct nf_conn *i, void *data)
2518 {
2519 	return net_eq(nf_ct_net(i), data);
2520 }
2521 
nf_conntrack_cleanup_start(void)2522 void nf_conntrack_cleanup_start(void)
2523 {
2524 	conntrack_gc_work.exiting = true;
2525 }
2526 
nf_conntrack_cleanup_end(void)2527 void nf_conntrack_cleanup_end(void)
2528 {
2529 	RCU_INIT_POINTER(nf_ct_hook, NULL);
2530 	cancel_delayed_work_sync(&conntrack_gc_work.dwork);
2531 	kvfree(nf_conntrack_hash);
2532 
2533 	nf_conntrack_proto_fini();
2534 	nf_conntrack_seqadj_fini();
2535 	nf_conntrack_labels_fini();
2536 	nf_conntrack_helper_fini();
2537 	nf_conntrack_timeout_fini();
2538 	nf_conntrack_ecache_fini();
2539 	nf_conntrack_tstamp_fini();
2540 	nf_conntrack_acct_fini();
2541 	nf_conntrack_expect_fini();
2542 
2543 	kmem_cache_destroy(nf_conntrack_cachep);
2544 }
2545 
2546 /*
2547  * Mishearing the voices in his head, our hero wonders how he's
2548  * supposed to kill the mall.
2549  */
nf_conntrack_cleanup_net(struct net * net)2550 void nf_conntrack_cleanup_net(struct net *net)
2551 {
2552 	LIST_HEAD(single);
2553 
2554 	list_add(&net->exit_list, &single);
2555 	nf_conntrack_cleanup_net_list(&single);
2556 }
2557 
nf_conntrack_cleanup_net_list(struct list_head * net_exit_list)2558 void nf_conntrack_cleanup_net_list(struct list_head *net_exit_list)
2559 {
2560 	int busy;
2561 	struct net *net;
2562 
2563 	/*
2564 	 * This makes sure all current packets have passed through
2565 	 *  netfilter framework.  Roll on, two-stage module
2566 	 *  delete...
2567 	 */
2568 	synchronize_net();
2569 i_see_dead_people:
2570 	busy = 0;
2571 	list_for_each_entry(net, net_exit_list, exit_list) {
2572 		struct nf_conntrack_net *cnet = nf_ct_pernet(net);
2573 
2574 		nf_ct_iterate_cleanup(kill_all, net, 0, 0);
2575 		if (atomic_read(&cnet->count) != 0)
2576 			busy = 1;
2577 	}
2578 	if (busy) {
2579 		schedule();
2580 		goto i_see_dead_people;
2581 	}
2582 
2583 	list_for_each_entry(net, net_exit_list, exit_list) {
2584 		nf_conntrack_ecache_pernet_fini(net);
2585 		nf_conntrack_expect_pernet_fini(net);
2586 		free_percpu(net->ct.stat);
2587 		free_percpu(net->ct.pcpu_lists);
2588 	}
2589 }
2590 
nf_ct_alloc_hashtable(unsigned int * sizep,int nulls)2591 void *nf_ct_alloc_hashtable(unsigned int *sizep, int nulls)
2592 {
2593 	struct hlist_nulls_head *hash;
2594 	unsigned int nr_slots, i;
2595 
2596 	if (*sizep > (UINT_MAX / sizeof(struct hlist_nulls_head)))
2597 		return NULL;
2598 
2599 	BUILD_BUG_ON(sizeof(struct hlist_nulls_head) != sizeof(struct hlist_head));
2600 	nr_slots = *sizep = roundup(*sizep, PAGE_SIZE / sizeof(struct hlist_nulls_head));
2601 
2602 	hash = kvcalloc(nr_slots, sizeof(struct hlist_nulls_head), GFP_KERNEL);
2603 
2604 	if (hash && nulls)
2605 		for (i = 0; i < nr_slots; i++)
2606 			INIT_HLIST_NULLS_HEAD(&hash[i], i);
2607 
2608 	return hash;
2609 }
2610 EXPORT_SYMBOL_GPL(nf_ct_alloc_hashtable);
2611 
nf_conntrack_hash_resize(unsigned int hashsize)2612 int nf_conntrack_hash_resize(unsigned int hashsize)
2613 {
2614 	int i, bucket;
2615 	unsigned int old_size;
2616 	struct hlist_nulls_head *hash, *old_hash;
2617 	struct nf_conntrack_tuple_hash *h;
2618 	struct nf_conn *ct;
2619 
2620 	if (!hashsize)
2621 		return -EINVAL;
2622 
2623 	hash = nf_ct_alloc_hashtable(&hashsize, 1);
2624 	if (!hash)
2625 		return -ENOMEM;
2626 
2627 	mutex_lock(&nf_conntrack_mutex);
2628 	old_size = nf_conntrack_htable_size;
2629 	if (old_size == hashsize) {
2630 		mutex_unlock(&nf_conntrack_mutex);
2631 		kvfree(hash);
2632 		return 0;
2633 	}
2634 
2635 	local_bh_disable();
2636 	nf_conntrack_all_lock();
2637 	write_seqcount_begin(&nf_conntrack_generation);
2638 
2639 	/* Lookups in the old hash might happen in parallel, which means we
2640 	 * might get false negatives during connection lookup. New connections
2641 	 * created because of a false negative won't make it into the hash
2642 	 * though since that required taking the locks.
2643 	 */
2644 
2645 	for (i = 0; i < nf_conntrack_htable_size; i++) {
2646 		while (!hlist_nulls_empty(&nf_conntrack_hash[i])) {
2647 			unsigned int zone_id;
2648 
2649 			h = hlist_nulls_entry(nf_conntrack_hash[i].first,
2650 					      struct nf_conntrack_tuple_hash, hnnode);
2651 			ct = nf_ct_tuplehash_to_ctrack(h);
2652 			hlist_nulls_del_rcu(&h->hnnode);
2653 
2654 			zone_id = nf_ct_zone_id(nf_ct_zone(ct), NF_CT_DIRECTION(h));
2655 			bucket = __hash_conntrack(nf_ct_net(ct),
2656 						  &h->tuple, zone_id, hashsize);
2657 			hlist_nulls_add_head_rcu(&h->hnnode, &hash[bucket]);
2658 		}
2659 	}
2660 	old_size = nf_conntrack_htable_size;
2661 	old_hash = nf_conntrack_hash;
2662 
2663 	nf_conntrack_hash = hash;
2664 	nf_conntrack_htable_size = hashsize;
2665 
2666 	write_seqcount_end(&nf_conntrack_generation);
2667 	nf_conntrack_all_unlock();
2668 	local_bh_enable();
2669 
2670 	mutex_unlock(&nf_conntrack_mutex);
2671 
2672 	synchronize_net();
2673 	kvfree(old_hash);
2674 	return 0;
2675 }
2676 
nf_conntrack_set_hashsize(const char * val,const struct kernel_param * kp)2677 int nf_conntrack_set_hashsize(const char *val, const struct kernel_param *kp)
2678 {
2679 	unsigned int hashsize;
2680 	int rc;
2681 
2682 	if (current->nsproxy->net_ns != &init_net)
2683 		return -EOPNOTSUPP;
2684 
2685 	/* On boot, we can set this without any fancy locking. */
2686 	if (!nf_conntrack_hash)
2687 		return param_set_uint(val, kp);
2688 
2689 	rc = kstrtouint(val, 0, &hashsize);
2690 	if (rc)
2691 		return rc;
2692 
2693 	return nf_conntrack_hash_resize(hashsize);
2694 }
2695 
total_extension_size(void)2696 static __always_inline unsigned int total_extension_size(void)
2697 {
2698 	/* remember to add new extensions below */
2699 	BUILD_BUG_ON(NF_CT_EXT_NUM > 9);
2700 
2701 	return sizeof(struct nf_ct_ext) +
2702 	       sizeof(struct nf_conn_help)
2703 #if IS_ENABLED(CONFIG_NF_NAT)
2704 		+ sizeof(struct nf_conn_nat)
2705 #endif
2706 		+ sizeof(struct nf_conn_seqadj)
2707 		+ sizeof(struct nf_conn_acct)
2708 #ifdef CONFIG_NF_CONNTRACK_EVENTS
2709 		+ sizeof(struct nf_conntrack_ecache)
2710 #endif
2711 #ifdef CONFIG_NF_CONNTRACK_TIMESTAMP
2712 		+ sizeof(struct nf_conn_tstamp)
2713 #endif
2714 #ifdef CONFIG_NF_CONNTRACK_TIMEOUT
2715 		+ sizeof(struct nf_conn_timeout)
2716 #endif
2717 #ifdef CONFIG_NF_CONNTRACK_LABELS
2718 		+ sizeof(struct nf_conn_labels)
2719 #endif
2720 #if IS_ENABLED(CONFIG_NETFILTER_SYNPROXY)
2721 		+ sizeof(struct nf_conn_synproxy)
2722 #endif
2723 	;
2724 };
2725 
nf_conntrack_init_start(void)2726 int nf_conntrack_init_start(void)
2727 {
2728 	unsigned long nr_pages = totalram_pages();
2729 	int max_factor = 8;
2730 	int ret = -ENOMEM;
2731 	int i;
2732 
2733 	/* struct nf_ct_ext uses u8 to store offsets/size */
2734 	BUILD_BUG_ON(total_extension_size() > 255u);
2735 
2736 	seqcount_spinlock_init(&nf_conntrack_generation,
2737 			       &nf_conntrack_locks_all_lock);
2738 
2739 	for (i = 0; i < CONNTRACK_LOCKS; i++)
2740 		spin_lock_init(&nf_conntrack_locks[i]);
2741 
2742 	if (!nf_conntrack_htable_size) {
2743 		nf_conntrack_htable_size
2744 			= (((nr_pages << PAGE_SHIFT) / 16384)
2745 			   / sizeof(struct hlist_head));
2746 		if (BITS_PER_LONG >= 64 &&
2747 		    nr_pages > (4 * (1024 * 1024 * 1024 / PAGE_SIZE)))
2748 			nf_conntrack_htable_size = 262144;
2749 		else if (nr_pages > (1024 * 1024 * 1024 / PAGE_SIZE))
2750 			nf_conntrack_htable_size = 65536;
2751 
2752 		if (nf_conntrack_htable_size < 1024)
2753 			nf_conntrack_htable_size = 1024;
2754 		/* Use a max. factor of one by default to keep the average
2755 		 * hash chain length at 2 entries.  Each entry has to be added
2756 		 * twice (once for original direction, once for reply).
2757 		 * When a table size is given we use the old value of 8 to
2758 		 * avoid implicit reduction of the max entries setting.
2759 		 */
2760 		max_factor = 1;
2761 	}
2762 
2763 	nf_conntrack_hash = nf_ct_alloc_hashtable(&nf_conntrack_htable_size, 1);
2764 	if (!nf_conntrack_hash)
2765 		return -ENOMEM;
2766 
2767 	nf_conntrack_max = max_factor * nf_conntrack_htable_size;
2768 
2769 	nf_conntrack_cachep = kmem_cache_create("nf_conntrack",
2770 						sizeof(struct nf_conn),
2771 						NFCT_INFOMASK + 1,
2772 						SLAB_TYPESAFE_BY_RCU | SLAB_HWCACHE_ALIGN, NULL);
2773 	if (!nf_conntrack_cachep)
2774 		goto err_cachep;
2775 
2776 	ret = nf_conntrack_expect_init();
2777 	if (ret < 0)
2778 		goto err_expect;
2779 
2780 	ret = nf_conntrack_acct_init();
2781 	if (ret < 0)
2782 		goto err_acct;
2783 
2784 	ret = nf_conntrack_tstamp_init();
2785 	if (ret < 0)
2786 		goto err_tstamp;
2787 
2788 	ret = nf_conntrack_ecache_init();
2789 	if (ret < 0)
2790 		goto err_ecache;
2791 
2792 	ret = nf_conntrack_timeout_init();
2793 	if (ret < 0)
2794 		goto err_timeout;
2795 
2796 	ret = nf_conntrack_helper_init();
2797 	if (ret < 0)
2798 		goto err_helper;
2799 
2800 	ret = nf_conntrack_labels_init();
2801 	if (ret < 0)
2802 		goto err_labels;
2803 
2804 	ret = nf_conntrack_seqadj_init();
2805 	if (ret < 0)
2806 		goto err_seqadj;
2807 
2808 	ret = nf_conntrack_proto_init();
2809 	if (ret < 0)
2810 		goto err_proto;
2811 
2812 	conntrack_gc_work_init(&conntrack_gc_work);
2813 	queue_delayed_work(system_power_efficient_wq, &conntrack_gc_work.dwork, HZ);
2814 
2815 	return 0;
2816 
2817 err_proto:
2818 	nf_conntrack_seqadj_fini();
2819 err_seqadj:
2820 	nf_conntrack_labels_fini();
2821 err_labels:
2822 	nf_conntrack_helper_fini();
2823 err_helper:
2824 	nf_conntrack_timeout_fini();
2825 err_timeout:
2826 	nf_conntrack_ecache_fini();
2827 err_ecache:
2828 	nf_conntrack_tstamp_fini();
2829 err_tstamp:
2830 	nf_conntrack_acct_fini();
2831 err_acct:
2832 	nf_conntrack_expect_fini();
2833 err_expect:
2834 	kmem_cache_destroy(nf_conntrack_cachep);
2835 err_cachep:
2836 	kvfree(nf_conntrack_hash);
2837 	return ret;
2838 }
2839 
nf_conntrack_set_closing(struct nf_conntrack * nfct)2840 static void nf_conntrack_set_closing(struct nf_conntrack *nfct)
2841 {
2842 	struct nf_conn *ct = nf_ct_to_nf_conn(nfct);
2843 
2844 	switch (nf_ct_protonum(ct)) {
2845 	case IPPROTO_TCP:
2846 		nf_conntrack_tcp_set_closing(ct);
2847 		break;
2848 	}
2849 }
2850 
2851 static const struct nf_ct_hook nf_conntrack_hook = {
2852 	.update		= nf_conntrack_update,
2853 	.destroy	= nf_ct_destroy,
2854 	.get_tuple_skb  = nf_conntrack_get_tuple_skb,
2855 	.attach		= nf_conntrack_attach,
2856 	.set_closing	= nf_conntrack_set_closing,
2857 	.confirm	= __nf_conntrack_confirm,
2858 };
2859 
nf_conntrack_init_end(void)2860 void nf_conntrack_init_end(void)
2861 {
2862 	RCU_INIT_POINTER(nf_ct_hook, &nf_conntrack_hook);
2863 }
2864 
2865 /*
2866  * We need to use special "null" values, not used in hash table
2867  */
2868 #define UNCONFIRMED_NULLS_VAL	((1<<30)+0)
2869 #define DYING_NULLS_VAL		((1<<30)+1)
2870 
nf_conntrack_init_net(struct net * net)2871 int nf_conntrack_init_net(struct net *net)
2872 {
2873 	struct nf_conntrack_net *cnet = nf_ct_pernet(net);
2874 	int ret = -ENOMEM;
2875 	int cpu;
2876 
2877 	BUILD_BUG_ON(IP_CT_UNTRACKED == IP_CT_NUMBER);
2878 	BUILD_BUG_ON_NOT_POWER_OF_2(CONNTRACK_LOCKS);
2879 	atomic_set(&cnet->count, 0);
2880 
2881 	net->ct.pcpu_lists = alloc_percpu(struct ct_pcpu);
2882 	if (!net->ct.pcpu_lists)
2883 		goto err_stat;
2884 
2885 	for_each_possible_cpu(cpu) {
2886 		struct ct_pcpu *pcpu = per_cpu_ptr(net->ct.pcpu_lists, cpu);
2887 
2888 		spin_lock_init(&pcpu->lock);
2889 		INIT_HLIST_NULLS_HEAD(&pcpu->unconfirmed, UNCONFIRMED_NULLS_VAL);
2890 		INIT_HLIST_NULLS_HEAD(&pcpu->dying, DYING_NULLS_VAL);
2891 	}
2892 
2893 	net->ct.stat = alloc_percpu(struct ip_conntrack_stat);
2894 	if (!net->ct.stat)
2895 		goto err_pcpu_lists;
2896 
2897 	ret = nf_conntrack_expect_pernet_init(net);
2898 	if (ret < 0)
2899 		goto err_expect;
2900 
2901 	nf_conntrack_acct_pernet_init(net);
2902 	nf_conntrack_tstamp_pernet_init(net);
2903 	nf_conntrack_ecache_pernet_init(net);
2904 	nf_conntrack_helper_pernet_init(net);
2905 	nf_conntrack_proto_pernet_init(net);
2906 
2907 	return 0;
2908 
2909 err_expect:
2910 	free_percpu(net->ct.stat);
2911 err_pcpu_lists:
2912 	free_percpu(net->ct.pcpu_lists);
2913 err_stat:
2914 	return ret;
2915 }
2916