1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * Procedures for creating, accessing and interpreting the device tree.
4 *
5 * Paul Mackerras August 1996.
6 * Copyright (C) 1996-2005 Paul Mackerras.
7 *
8 * Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
9 * {engebret|bergner}@us.ibm.com
10 *
11 * Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net
12 *
13 * Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and
14 * Grant Likely.
15 */
16
17 #define pr_fmt(fmt) "OF: " fmt
18
19 #include <linux/bitmap.h>
20 #include <linux/console.h>
21 #include <linux/ctype.h>
22 #include <linux/cpu.h>
23 #include <linux/module.h>
24 #include <linux/of.h>
25 #include <linux/of_device.h>
26 #include <linux/of_graph.h>
27 #include <linux/spinlock.h>
28 #include <linux/slab.h>
29 #include <linux/string.h>
30 #include <linux/proc_fs.h>
31
32 #include "of_private.h"
33
34 LIST_HEAD(aliases_lookup);
35
36 struct device_node *of_root;
37 EXPORT_SYMBOL(of_root);
38 struct device_node *of_chosen;
39 EXPORT_SYMBOL(of_chosen);
40 struct device_node *of_aliases;
41 struct device_node *of_stdout;
42 static const char *of_stdout_options;
43
44 struct kset *of_kset;
45
46 /*
47 * Used to protect the of_aliases, to hold off addition of nodes to sysfs.
48 * This mutex must be held whenever modifications are being made to the
49 * device tree. The of_{attach,detach}_node() and
50 * of_{add,remove,update}_property() helpers make sure this happens.
51 */
52 DEFINE_MUTEX(of_mutex);
53
54 /* use when traversing tree through the child, sibling,
55 * or parent members of struct device_node.
56 */
57 DEFINE_RAW_SPINLOCK(devtree_lock);
58
of_node_name_eq(const struct device_node * np,const char * name)59 bool of_node_name_eq(const struct device_node *np, const char *name)
60 {
61 const char *node_name;
62 size_t len;
63
64 if (!np)
65 return false;
66
67 node_name = kbasename(np->full_name);
68 len = strchrnul(node_name, '@') - node_name;
69
70 return (strlen(name) == len) && (strncmp(node_name, name, len) == 0);
71 }
72 EXPORT_SYMBOL(of_node_name_eq);
73
of_node_name_prefix(const struct device_node * np,const char * prefix)74 bool of_node_name_prefix(const struct device_node *np, const char *prefix)
75 {
76 if (!np)
77 return false;
78
79 return strncmp(kbasename(np->full_name), prefix, strlen(prefix)) == 0;
80 }
81 EXPORT_SYMBOL(of_node_name_prefix);
82
__of_node_is_type(const struct device_node * np,const char * type)83 static bool __of_node_is_type(const struct device_node *np, const char *type)
84 {
85 const char *match = __of_get_property(np, "device_type", NULL);
86
87 return np && match && type && !strcmp(match, type);
88 }
89
of_bus_n_addr_cells(struct device_node * np)90 int of_bus_n_addr_cells(struct device_node *np)
91 {
92 u32 cells;
93
94 for (; np; np = np->parent)
95 if (!of_property_read_u32(np, "#address-cells", &cells))
96 return cells;
97
98 /* No #address-cells property for the root node */
99 return OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
100 }
101
of_n_addr_cells(struct device_node * np)102 int of_n_addr_cells(struct device_node *np)
103 {
104 if (np->parent)
105 np = np->parent;
106
107 return of_bus_n_addr_cells(np);
108 }
109 EXPORT_SYMBOL(of_n_addr_cells);
110
of_bus_n_size_cells(struct device_node * np)111 int of_bus_n_size_cells(struct device_node *np)
112 {
113 u32 cells;
114
115 for (; np; np = np->parent)
116 if (!of_property_read_u32(np, "#size-cells", &cells))
117 return cells;
118
119 /* No #size-cells property for the root node */
120 return OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
121 }
122
of_n_size_cells(struct device_node * np)123 int of_n_size_cells(struct device_node *np)
124 {
125 if (np->parent)
126 np = np->parent;
127
128 return of_bus_n_size_cells(np);
129 }
130 EXPORT_SYMBOL(of_n_size_cells);
131
132 #ifdef CONFIG_NUMA
of_node_to_nid(struct device_node * np)133 int __weak of_node_to_nid(struct device_node *np)
134 {
135 return NUMA_NO_NODE;
136 }
137 #endif
138
139 #define OF_PHANDLE_CACHE_BITS 7
140 #define OF_PHANDLE_CACHE_SZ BIT(OF_PHANDLE_CACHE_BITS)
141
142 static struct device_node *phandle_cache[OF_PHANDLE_CACHE_SZ];
143
of_phandle_cache_hash(phandle handle)144 static u32 of_phandle_cache_hash(phandle handle)
145 {
146 return hash_32(handle, OF_PHANDLE_CACHE_BITS);
147 }
148
149 /*
150 * Caller must hold devtree_lock.
151 */
__of_phandle_cache_inv_entry(phandle handle)152 void __of_phandle_cache_inv_entry(phandle handle)
153 {
154 u32 handle_hash;
155 struct device_node *np;
156
157 if (!handle)
158 return;
159
160 handle_hash = of_phandle_cache_hash(handle);
161
162 np = phandle_cache[handle_hash];
163 if (np && handle == np->phandle)
164 phandle_cache[handle_hash] = NULL;
165 }
166
of_core_init(void)167 void __init of_core_init(void)
168 {
169 struct device_node *np;
170
171
172 /* Create the kset, and register existing nodes */
173 mutex_lock(&of_mutex);
174 of_kset = kset_create_and_add("devicetree", NULL, firmware_kobj);
175 if (!of_kset) {
176 mutex_unlock(&of_mutex);
177 pr_err("failed to register existing nodes\n");
178 return;
179 }
180 for_each_of_allnodes(np) {
181 __of_attach_node_sysfs(np);
182 if (np->phandle && !phandle_cache[of_phandle_cache_hash(np->phandle)])
183 phandle_cache[of_phandle_cache_hash(np->phandle)] = np;
184 }
185 mutex_unlock(&of_mutex);
186
187 /* Symlink in /proc as required by userspace ABI */
188 if (of_root)
189 proc_symlink("device-tree", NULL, "/sys/firmware/devicetree/base");
190 }
191
__of_find_property(const struct device_node * np,const char * name,int * lenp)192 static struct property *__of_find_property(const struct device_node *np,
193 const char *name, int *lenp)
194 {
195 struct property *pp;
196
197 if (!np)
198 return NULL;
199
200 for (pp = np->properties; pp; pp = pp->next) {
201 if (of_prop_cmp(pp->name, name) == 0) {
202 if (lenp)
203 *lenp = pp->length;
204 break;
205 }
206 }
207
208 return pp;
209 }
210
of_find_property(const struct device_node * np,const char * name,int * lenp)211 struct property *of_find_property(const struct device_node *np,
212 const char *name,
213 int *lenp)
214 {
215 struct property *pp;
216 unsigned long flags;
217
218 raw_spin_lock_irqsave(&devtree_lock, flags);
219 pp = __of_find_property(np, name, lenp);
220 raw_spin_unlock_irqrestore(&devtree_lock, flags);
221
222 return pp;
223 }
224 EXPORT_SYMBOL(of_find_property);
225
__of_find_all_nodes(struct device_node * prev)226 struct device_node *__of_find_all_nodes(struct device_node *prev)
227 {
228 struct device_node *np;
229 if (!prev) {
230 np = of_root;
231 } else if (prev->child) {
232 np = prev->child;
233 } else {
234 /* Walk back up looking for a sibling, or the end of the structure */
235 np = prev;
236 while (np->parent && !np->sibling)
237 np = np->parent;
238 np = np->sibling; /* Might be null at the end of the tree */
239 }
240 return np;
241 }
242
243 /**
244 * of_find_all_nodes - Get next node in global list
245 * @prev: Previous node or NULL to start iteration
246 * of_node_put() will be called on it
247 *
248 * Return: A node pointer with refcount incremented, use
249 * of_node_put() on it when done.
250 */
of_find_all_nodes(struct device_node * prev)251 struct device_node *of_find_all_nodes(struct device_node *prev)
252 {
253 struct device_node *np;
254 unsigned long flags;
255
256 raw_spin_lock_irqsave(&devtree_lock, flags);
257 np = __of_find_all_nodes(prev);
258 of_node_get(np);
259 of_node_put(prev);
260 raw_spin_unlock_irqrestore(&devtree_lock, flags);
261 return np;
262 }
263 EXPORT_SYMBOL(of_find_all_nodes);
264
265 /*
266 * Find a property with a given name for a given node
267 * and return the value.
268 */
__of_get_property(const struct device_node * np,const char * name,int * lenp)269 const void *__of_get_property(const struct device_node *np,
270 const char *name, int *lenp)
271 {
272 struct property *pp = __of_find_property(np, name, lenp);
273
274 return pp ? pp->value : NULL;
275 }
276
277 /*
278 * Find a property with a given name for a given node
279 * and return the value.
280 */
of_get_property(const struct device_node * np,const char * name,int * lenp)281 const void *of_get_property(const struct device_node *np, const char *name,
282 int *lenp)
283 {
284 struct property *pp = of_find_property(np, name, lenp);
285
286 return pp ? pp->value : NULL;
287 }
288 EXPORT_SYMBOL(of_get_property);
289
290 /*
291 * arch_match_cpu_phys_id - Match the given logical CPU and physical id
292 *
293 * @cpu: logical cpu index of a core/thread
294 * @phys_id: physical identifier of a core/thread
295 *
296 * CPU logical to physical index mapping is architecture specific.
297 * However this __weak function provides a default match of physical
298 * id to logical cpu index. phys_id provided here is usually values read
299 * from the device tree which must match the hardware internal registers.
300 *
301 * Returns true if the physical identifier and the logical cpu index
302 * correspond to the same core/thread, false otherwise.
303 */
arch_match_cpu_phys_id(int cpu,u64 phys_id)304 bool __weak arch_match_cpu_phys_id(int cpu, u64 phys_id)
305 {
306 return (u32)phys_id == cpu;
307 }
308
309 /*
310 * Checks if the given "prop_name" property holds the physical id of the
311 * core/thread corresponding to the logical cpu 'cpu'. If 'thread' is not
312 * NULL, local thread number within the core is returned in it.
313 */
__of_find_n_match_cpu_property(struct device_node * cpun,const char * prop_name,int cpu,unsigned int * thread)314 static bool __of_find_n_match_cpu_property(struct device_node *cpun,
315 const char *prop_name, int cpu, unsigned int *thread)
316 {
317 const __be32 *cell;
318 int ac, prop_len, tid;
319 u64 hwid;
320
321 ac = of_n_addr_cells(cpun);
322 cell = of_get_property(cpun, prop_name, &prop_len);
323 if (!cell && !ac && arch_match_cpu_phys_id(cpu, 0))
324 return true;
325 if (!cell || !ac)
326 return false;
327 prop_len /= sizeof(*cell) * ac;
328 for (tid = 0; tid < prop_len; tid++) {
329 hwid = of_read_number(cell, ac);
330 if (arch_match_cpu_phys_id(cpu, hwid)) {
331 if (thread)
332 *thread = tid;
333 return true;
334 }
335 cell += ac;
336 }
337 return false;
338 }
339
340 /*
341 * arch_find_n_match_cpu_physical_id - See if the given device node is
342 * for the cpu corresponding to logical cpu 'cpu'. Return true if so,
343 * else false. If 'thread' is non-NULL, the local thread number within the
344 * core is returned in it.
345 */
arch_find_n_match_cpu_physical_id(struct device_node * cpun,int cpu,unsigned int * thread)346 bool __weak arch_find_n_match_cpu_physical_id(struct device_node *cpun,
347 int cpu, unsigned int *thread)
348 {
349 /* Check for non-standard "ibm,ppc-interrupt-server#s" property
350 * for thread ids on PowerPC. If it doesn't exist fallback to
351 * standard "reg" property.
352 */
353 if (IS_ENABLED(CONFIG_PPC) &&
354 __of_find_n_match_cpu_property(cpun,
355 "ibm,ppc-interrupt-server#s",
356 cpu, thread))
357 return true;
358
359 return __of_find_n_match_cpu_property(cpun, "reg", cpu, thread);
360 }
361
362 /**
363 * of_get_cpu_node - Get device node associated with the given logical CPU
364 *
365 * @cpu: CPU number(logical index) for which device node is required
366 * @thread: if not NULL, local thread number within the physical core is
367 * returned
368 *
369 * The main purpose of this function is to retrieve the device node for the
370 * given logical CPU index. It should be used to initialize the of_node in
371 * cpu device. Once of_node in cpu device is populated, all the further
372 * references can use that instead.
373 *
374 * CPU logical to physical index mapping is architecture specific and is built
375 * before booting secondary cores. This function uses arch_match_cpu_phys_id
376 * which can be overridden by architecture specific implementation.
377 *
378 * Return: A node pointer for the logical cpu with refcount incremented, use
379 * of_node_put() on it when done. Returns NULL if not found.
380 */
of_get_cpu_node(int cpu,unsigned int * thread)381 struct device_node *of_get_cpu_node(int cpu, unsigned int *thread)
382 {
383 struct device_node *cpun;
384
385 for_each_of_cpu_node(cpun) {
386 if (arch_find_n_match_cpu_physical_id(cpun, cpu, thread))
387 return cpun;
388 }
389 return NULL;
390 }
391 EXPORT_SYMBOL(of_get_cpu_node);
392
393 /**
394 * of_cpu_node_to_id: Get the logical CPU number for a given device_node
395 *
396 * @cpu_node: Pointer to the device_node for CPU.
397 *
398 * Return: The logical CPU number of the given CPU device_node or -ENODEV if the
399 * CPU is not found.
400 */
of_cpu_node_to_id(struct device_node * cpu_node)401 int of_cpu_node_to_id(struct device_node *cpu_node)
402 {
403 int cpu;
404 bool found = false;
405 struct device_node *np;
406
407 for_each_possible_cpu(cpu) {
408 np = of_cpu_device_node_get(cpu);
409 found = (cpu_node == np);
410 of_node_put(np);
411 if (found)
412 return cpu;
413 }
414
415 return -ENODEV;
416 }
417 EXPORT_SYMBOL(of_cpu_node_to_id);
418
419 /**
420 * of_get_cpu_state_node - Get CPU's idle state node at the given index
421 *
422 * @cpu_node: The device node for the CPU
423 * @index: The index in the list of the idle states
424 *
425 * Two generic methods can be used to describe a CPU's idle states, either via
426 * a flattened description through the "cpu-idle-states" binding or via the
427 * hierarchical layout, using the "power-domains" and the "domain-idle-states"
428 * bindings. This function check for both and returns the idle state node for
429 * the requested index.
430 *
431 * Return: An idle state node if found at @index. The refcount is incremented
432 * for it, so call of_node_put() on it when done. Returns NULL if not found.
433 */
of_get_cpu_state_node(struct device_node * cpu_node,int index)434 struct device_node *of_get_cpu_state_node(struct device_node *cpu_node,
435 int index)
436 {
437 struct of_phandle_args args;
438 int err;
439
440 err = of_parse_phandle_with_args(cpu_node, "power-domains",
441 "#power-domain-cells", 0, &args);
442 if (!err) {
443 struct device_node *state_node =
444 of_parse_phandle(args.np, "domain-idle-states", index);
445
446 of_node_put(args.np);
447 if (state_node)
448 return state_node;
449 }
450
451 return of_parse_phandle(cpu_node, "cpu-idle-states", index);
452 }
453 EXPORT_SYMBOL(of_get_cpu_state_node);
454
455 /**
456 * __of_device_is_compatible() - Check if the node matches given constraints
457 * @device: pointer to node
458 * @compat: required compatible string, NULL or "" for any match
459 * @type: required device_type value, NULL or "" for any match
460 * @name: required node name, NULL or "" for any match
461 *
462 * Checks if the given @compat, @type and @name strings match the
463 * properties of the given @device. A constraints can be skipped by
464 * passing NULL or an empty string as the constraint.
465 *
466 * Returns 0 for no match, and a positive integer on match. The return
467 * value is a relative score with larger values indicating better
468 * matches. The score is weighted for the most specific compatible value
469 * to get the highest score. Matching type is next, followed by matching
470 * name. Practically speaking, this results in the following priority
471 * order for matches:
472 *
473 * 1. specific compatible && type && name
474 * 2. specific compatible && type
475 * 3. specific compatible && name
476 * 4. specific compatible
477 * 5. general compatible && type && name
478 * 6. general compatible && type
479 * 7. general compatible && name
480 * 8. general compatible
481 * 9. type && name
482 * 10. type
483 * 11. name
484 */
__of_device_is_compatible(const struct device_node * device,const char * compat,const char * type,const char * name)485 static int __of_device_is_compatible(const struct device_node *device,
486 const char *compat, const char *type, const char *name)
487 {
488 struct property *prop;
489 const char *cp;
490 int index = 0, score = 0;
491
492 /* Compatible match has highest priority */
493 if (compat && compat[0]) {
494 prop = __of_find_property(device, "compatible", NULL);
495 for (cp = of_prop_next_string(prop, NULL); cp;
496 cp = of_prop_next_string(prop, cp), index++) {
497 if (of_compat_cmp(cp, compat, strlen(compat)) == 0) {
498 score = INT_MAX/2 - (index << 2);
499 break;
500 }
501 }
502 if (!score)
503 return 0;
504 }
505
506 /* Matching type is better than matching name */
507 if (type && type[0]) {
508 if (!__of_node_is_type(device, type))
509 return 0;
510 score += 2;
511 }
512
513 /* Matching name is a bit better than not */
514 if (name && name[0]) {
515 if (!of_node_name_eq(device, name))
516 return 0;
517 score++;
518 }
519
520 return score;
521 }
522
523 /** Checks if the given "compat" string matches one of the strings in
524 * the device's "compatible" property
525 */
of_device_is_compatible(const struct device_node * device,const char * compat)526 int of_device_is_compatible(const struct device_node *device,
527 const char *compat)
528 {
529 unsigned long flags;
530 int res;
531
532 raw_spin_lock_irqsave(&devtree_lock, flags);
533 res = __of_device_is_compatible(device, compat, NULL, NULL);
534 raw_spin_unlock_irqrestore(&devtree_lock, flags);
535 return res;
536 }
537 EXPORT_SYMBOL(of_device_is_compatible);
538
539 /** Checks if the device is compatible with any of the entries in
540 * a NULL terminated array of strings. Returns the best match
541 * score or 0.
542 */
of_device_compatible_match(struct device_node * device,const char * const * compat)543 int of_device_compatible_match(struct device_node *device,
544 const char *const *compat)
545 {
546 unsigned int tmp, score = 0;
547
548 if (!compat)
549 return 0;
550
551 while (*compat) {
552 tmp = of_device_is_compatible(device, *compat);
553 if (tmp > score)
554 score = tmp;
555 compat++;
556 }
557
558 return score;
559 }
560
561 /**
562 * of_machine_is_compatible - Test root of device tree for a given compatible value
563 * @compat: compatible string to look for in root node's compatible property.
564 *
565 * Return: A positive integer if the root node has the given value in its
566 * compatible property.
567 */
of_machine_is_compatible(const char * compat)568 int of_machine_is_compatible(const char *compat)
569 {
570 struct device_node *root;
571 int rc = 0;
572
573 root = of_find_node_by_path("/");
574 if (root) {
575 rc = of_device_is_compatible(root, compat);
576 of_node_put(root);
577 }
578 return rc;
579 }
580 EXPORT_SYMBOL(of_machine_is_compatible);
581
582 /**
583 * __of_device_is_available - check if a device is available for use
584 *
585 * @device: Node to check for availability, with locks already held
586 *
587 * Return: True if the status property is absent or set to "okay" or "ok",
588 * false otherwise
589 */
__of_device_is_available(const struct device_node * device)590 static bool __of_device_is_available(const struct device_node *device)
591 {
592 const char *status;
593 int statlen;
594
595 if (!device)
596 return false;
597
598 status = __of_get_property(device, "status", &statlen);
599 if (status == NULL)
600 return true;
601
602 if (statlen > 0) {
603 if (!strcmp(status, "okay") || !strcmp(status, "ok"))
604 return true;
605 }
606
607 return false;
608 }
609
610 /**
611 * of_device_is_available - check if a device is available for use
612 *
613 * @device: Node to check for availability
614 *
615 * Return: True if the status property is absent or set to "okay" or "ok",
616 * false otherwise
617 */
of_device_is_available(const struct device_node * device)618 bool of_device_is_available(const struct device_node *device)
619 {
620 unsigned long flags;
621 bool res;
622
623 raw_spin_lock_irqsave(&devtree_lock, flags);
624 res = __of_device_is_available(device);
625 raw_spin_unlock_irqrestore(&devtree_lock, flags);
626 return res;
627
628 }
629 EXPORT_SYMBOL(of_device_is_available);
630
631 /**
632 * of_device_is_big_endian - check if a device has BE registers
633 *
634 * @device: Node to check for endianness
635 *
636 * Return: True if the device has a "big-endian" property, or if the kernel
637 * was compiled for BE *and* the device has a "native-endian" property.
638 * Returns false otherwise.
639 *
640 * Callers would nominally use ioread32be/iowrite32be if
641 * of_device_is_big_endian() == true, or readl/writel otherwise.
642 */
of_device_is_big_endian(const struct device_node * device)643 bool of_device_is_big_endian(const struct device_node *device)
644 {
645 if (of_property_read_bool(device, "big-endian"))
646 return true;
647 if (IS_ENABLED(CONFIG_CPU_BIG_ENDIAN) &&
648 of_property_read_bool(device, "native-endian"))
649 return true;
650 return false;
651 }
652 EXPORT_SYMBOL(of_device_is_big_endian);
653
654 /**
655 * of_get_parent - Get a node's parent if any
656 * @node: Node to get parent
657 *
658 * Return: A node pointer with refcount incremented, use
659 * of_node_put() on it when done.
660 */
of_get_parent(const struct device_node * node)661 struct device_node *of_get_parent(const struct device_node *node)
662 {
663 struct device_node *np;
664 unsigned long flags;
665
666 if (!node)
667 return NULL;
668
669 raw_spin_lock_irqsave(&devtree_lock, flags);
670 np = of_node_get(node->parent);
671 raw_spin_unlock_irqrestore(&devtree_lock, flags);
672 return np;
673 }
674 EXPORT_SYMBOL(of_get_parent);
675
676 /**
677 * of_get_next_parent - Iterate to a node's parent
678 * @node: Node to get parent of
679 *
680 * This is like of_get_parent() except that it drops the
681 * refcount on the passed node, making it suitable for iterating
682 * through a node's parents.
683 *
684 * Return: A node pointer with refcount incremented, use
685 * of_node_put() on it when done.
686 */
of_get_next_parent(struct device_node * node)687 struct device_node *of_get_next_parent(struct device_node *node)
688 {
689 struct device_node *parent;
690 unsigned long flags;
691
692 if (!node)
693 return NULL;
694
695 raw_spin_lock_irqsave(&devtree_lock, flags);
696 parent = of_node_get(node->parent);
697 of_node_put(node);
698 raw_spin_unlock_irqrestore(&devtree_lock, flags);
699 return parent;
700 }
701 EXPORT_SYMBOL(of_get_next_parent);
702
__of_get_next_child(const struct device_node * node,struct device_node * prev)703 static struct device_node *__of_get_next_child(const struct device_node *node,
704 struct device_node *prev)
705 {
706 struct device_node *next;
707
708 if (!node)
709 return NULL;
710
711 next = prev ? prev->sibling : node->child;
712 of_node_get(next);
713 of_node_put(prev);
714 return next;
715 }
716 #define __for_each_child_of_node(parent, child) \
717 for (child = __of_get_next_child(parent, NULL); child != NULL; \
718 child = __of_get_next_child(parent, child))
719
720 /**
721 * of_get_next_child - Iterate a node childs
722 * @node: parent node
723 * @prev: previous child of the parent node, or NULL to get first
724 *
725 * Return: A node pointer with refcount incremented, use of_node_put() on
726 * it when done. Returns NULL when prev is the last child. Decrements the
727 * refcount of prev.
728 */
of_get_next_child(const struct device_node * node,struct device_node * prev)729 struct device_node *of_get_next_child(const struct device_node *node,
730 struct device_node *prev)
731 {
732 struct device_node *next;
733 unsigned long flags;
734
735 raw_spin_lock_irqsave(&devtree_lock, flags);
736 next = __of_get_next_child(node, prev);
737 raw_spin_unlock_irqrestore(&devtree_lock, flags);
738 return next;
739 }
740 EXPORT_SYMBOL(of_get_next_child);
741
742 /**
743 * of_get_next_available_child - Find the next available child node
744 * @node: parent node
745 * @prev: previous child of the parent node, or NULL to get first
746 *
747 * This function is like of_get_next_child(), except that it
748 * automatically skips any disabled nodes (i.e. status = "disabled").
749 */
of_get_next_available_child(const struct device_node * node,struct device_node * prev)750 struct device_node *of_get_next_available_child(const struct device_node *node,
751 struct device_node *prev)
752 {
753 struct device_node *next;
754 unsigned long flags;
755
756 if (!node)
757 return NULL;
758
759 raw_spin_lock_irqsave(&devtree_lock, flags);
760 next = prev ? prev->sibling : node->child;
761 for (; next; next = next->sibling) {
762 if (!__of_device_is_available(next))
763 continue;
764 if (of_node_get(next))
765 break;
766 }
767 of_node_put(prev);
768 raw_spin_unlock_irqrestore(&devtree_lock, flags);
769 return next;
770 }
771 EXPORT_SYMBOL(of_get_next_available_child);
772
773 /**
774 * of_get_next_cpu_node - Iterate on cpu nodes
775 * @prev: previous child of the /cpus node, or NULL to get first
776 *
777 * Return: A cpu node pointer with refcount incremented, use of_node_put()
778 * on it when done. Returns NULL when prev is the last child. Decrements
779 * the refcount of prev.
780 */
of_get_next_cpu_node(struct device_node * prev)781 struct device_node *of_get_next_cpu_node(struct device_node *prev)
782 {
783 struct device_node *next = NULL;
784 unsigned long flags;
785 struct device_node *node;
786
787 if (!prev)
788 node = of_find_node_by_path("/cpus");
789
790 raw_spin_lock_irqsave(&devtree_lock, flags);
791 if (prev)
792 next = prev->sibling;
793 else if (node) {
794 next = node->child;
795 of_node_put(node);
796 }
797 for (; next; next = next->sibling) {
798 if (!(of_node_name_eq(next, "cpu") ||
799 __of_node_is_type(next, "cpu")))
800 continue;
801 if (of_node_get(next))
802 break;
803 }
804 of_node_put(prev);
805 raw_spin_unlock_irqrestore(&devtree_lock, flags);
806 return next;
807 }
808 EXPORT_SYMBOL(of_get_next_cpu_node);
809
810 /**
811 * of_get_compatible_child - Find compatible child node
812 * @parent: parent node
813 * @compatible: compatible string
814 *
815 * Lookup child node whose compatible property contains the given compatible
816 * string.
817 *
818 * Return: a node pointer with refcount incremented, use of_node_put() on it
819 * when done; or NULL if not found.
820 */
of_get_compatible_child(const struct device_node * parent,const char * compatible)821 struct device_node *of_get_compatible_child(const struct device_node *parent,
822 const char *compatible)
823 {
824 struct device_node *child;
825
826 for_each_child_of_node(parent, child) {
827 if (of_device_is_compatible(child, compatible))
828 break;
829 }
830
831 return child;
832 }
833 EXPORT_SYMBOL(of_get_compatible_child);
834
835 /**
836 * of_get_child_by_name - Find the child node by name for a given parent
837 * @node: parent node
838 * @name: child name to look for.
839 *
840 * This function looks for child node for given matching name
841 *
842 * Return: A node pointer if found, with refcount incremented, use
843 * of_node_put() on it when done.
844 * Returns NULL if node is not found.
845 */
of_get_child_by_name(const struct device_node * node,const char * name)846 struct device_node *of_get_child_by_name(const struct device_node *node,
847 const char *name)
848 {
849 struct device_node *child;
850
851 for_each_child_of_node(node, child)
852 if (of_node_name_eq(child, name))
853 break;
854 return child;
855 }
856 EXPORT_SYMBOL(of_get_child_by_name);
857
__of_find_node_by_path(struct device_node * parent,const char * path)858 struct device_node *__of_find_node_by_path(struct device_node *parent,
859 const char *path)
860 {
861 struct device_node *child;
862 int len;
863
864 len = strcspn(path, "/:");
865 if (!len)
866 return NULL;
867
868 __for_each_child_of_node(parent, child) {
869 const char *name = kbasename(child->full_name);
870 if (strncmp(path, name, len) == 0 && (strlen(name) == len))
871 return child;
872 }
873 return NULL;
874 }
875
__of_find_node_by_full_path(struct device_node * node,const char * path)876 struct device_node *__of_find_node_by_full_path(struct device_node *node,
877 const char *path)
878 {
879 const char *separator = strchr(path, ':');
880
881 while (node && *path == '/') {
882 struct device_node *tmp = node;
883
884 path++; /* Increment past '/' delimiter */
885 node = __of_find_node_by_path(node, path);
886 of_node_put(tmp);
887 path = strchrnul(path, '/');
888 if (separator && separator < path)
889 break;
890 }
891 return node;
892 }
893
894 /**
895 * of_find_node_opts_by_path - Find a node matching a full OF path
896 * @path: Either the full path to match, or if the path does not
897 * start with '/', the name of a property of the /aliases
898 * node (an alias). In the case of an alias, the node
899 * matching the alias' value will be returned.
900 * @opts: Address of a pointer into which to store the start of
901 * an options string appended to the end of the path with
902 * a ':' separator.
903 *
904 * Valid paths:
905 * * /foo/bar Full path
906 * * foo Valid alias
907 * * foo/bar Valid alias + relative path
908 *
909 * Return: A node pointer with refcount incremented, use
910 * of_node_put() on it when done.
911 */
of_find_node_opts_by_path(const char * path,const char ** opts)912 struct device_node *of_find_node_opts_by_path(const char *path, const char **opts)
913 {
914 struct device_node *np = NULL;
915 struct property *pp;
916 unsigned long flags;
917 const char *separator = strchr(path, ':');
918
919 if (opts)
920 *opts = separator ? separator + 1 : NULL;
921
922 if (strcmp(path, "/") == 0)
923 return of_node_get(of_root);
924
925 /* The path could begin with an alias */
926 if (*path != '/') {
927 int len;
928 const char *p = separator;
929
930 if (!p)
931 p = strchrnul(path, '/');
932 len = p - path;
933
934 /* of_aliases must not be NULL */
935 if (!of_aliases)
936 return NULL;
937
938 for_each_property_of_node(of_aliases, pp) {
939 if (strlen(pp->name) == len && !strncmp(pp->name, path, len)) {
940 np = of_find_node_by_path(pp->value);
941 break;
942 }
943 }
944 if (!np)
945 return NULL;
946 path = p;
947 }
948
949 /* Step down the tree matching path components */
950 raw_spin_lock_irqsave(&devtree_lock, flags);
951 if (!np)
952 np = of_node_get(of_root);
953 np = __of_find_node_by_full_path(np, path);
954 raw_spin_unlock_irqrestore(&devtree_lock, flags);
955 return np;
956 }
957 EXPORT_SYMBOL(of_find_node_opts_by_path);
958
959 /**
960 * of_find_node_by_name - Find a node by its "name" property
961 * @from: The node to start searching from or NULL; the node
962 * you pass will not be searched, only the next one
963 * will. Typically, you pass what the previous call
964 * returned. of_node_put() will be called on @from.
965 * @name: The name string to match against
966 *
967 * Return: A node pointer with refcount incremented, use
968 * of_node_put() on it when done.
969 */
of_find_node_by_name(struct device_node * from,const char * name)970 struct device_node *of_find_node_by_name(struct device_node *from,
971 const char *name)
972 {
973 struct device_node *np;
974 unsigned long flags;
975
976 raw_spin_lock_irqsave(&devtree_lock, flags);
977 for_each_of_allnodes_from(from, np)
978 if (of_node_name_eq(np, name) && of_node_get(np))
979 break;
980 of_node_put(from);
981 raw_spin_unlock_irqrestore(&devtree_lock, flags);
982 return np;
983 }
984 EXPORT_SYMBOL(of_find_node_by_name);
985
986 /**
987 * of_find_node_by_type - Find a node by its "device_type" property
988 * @from: The node to start searching from, or NULL to start searching
989 * the entire device tree. The node you pass will not be
990 * searched, only the next one will; typically, you pass
991 * what the previous call returned. of_node_put() will be
992 * called on from for you.
993 * @type: The type string to match against
994 *
995 * Return: A node pointer with refcount incremented, use
996 * of_node_put() on it when done.
997 */
of_find_node_by_type(struct device_node * from,const char * type)998 struct device_node *of_find_node_by_type(struct device_node *from,
999 const char *type)
1000 {
1001 struct device_node *np;
1002 unsigned long flags;
1003
1004 raw_spin_lock_irqsave(&devtree_lock, flags);
1005 for_each_of_allnodes_from(from, np)
1006 if (__of_node_is_type(np, type) && of_node_get(np))
1007 break;
1008 of_node_put(from);
1009 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1010 return np;
1011 }
1012 EXPORT_SYMBOL(of_find_node_by_type);
1013
1014 /**
1015 * of_find_compatible_node - Find a node based on type and one of the
1016 * tokens in its "compatible" property
1017 * @from: The node to start searching from or NULL, the node
1018 * you pass will not be searched, only the next one
1019 * will; typically, you pass what the previous call
1020 * returned. of_node_put() will be called on it
1021 * @type: The type string to match "device_type" or NULL to ignore
1022 * @compatible: The string to match to one of the tokens in the device
1023 * "compatible" list.
1024 *
1025 * Return: A node pointer with refcount incremented, use
1026 * of_node_put() on it when done.
1027 */
of_find_compatible_node(struct device_node * from,const char * type,const char * compatible)1028 struct device_node *of_find_compatible_node(struct device_node *from,
1029 const char *type, const char *compatible)
1030 {
1031 struct device_node *np;
1032 unsigned long flags;
1033
1034 raw_spin_lock_irqsave(&devtree_lock, flags);
1035 for_each_of_allnodes_from(from, np)
1036 if (__of_device_is_compatible(np, compatible, type, NULL) &&
1037 of_node_get(np))
1038 break;
1039 of_node_put(from);
1040 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1041 return np;
1042 }
1043 EXPORT_SYMBOL(of_find_compatible_node);
1044
1045 /**
1046 * of_find_node_with_property - Find a node which has a property with
1047 * the given name.
1048 * @from: The node to start searching from or NULL, the node
1049 * you pass will not be searched, only the next one
1050 * will; typically, you pass what the previous call
1051 * returned. of_node_put() will be called on it
1052 * @prop_name: The name of the property to look for.
1053 *
1054 * Return: A node pointer with refcount incremented, use
1055 * of_node_put() on it when done.
1056 */
of_find_node_with_property(struct device_node * from,const char * prop_name)1057 struct device_node *of_find_node_with_property(struct device_node *from,
1058 const char *prop_name)
1059 {
1060 struct device_node *np;
1061 struct property *pp;
1062 unsigned long flags;
1063
1064 raw_spin_lock_irqsave(&devtree_lock, flags);
1065 for_each_of_allnodes_from(from, np) {
1066 for (pp = np->properties; pp; pp = pp->next) {
1067 if (of_prop_cmp(pp->name, prop_name) == 0) {
1068 of_node_get(np);
1069 goto out;
1070 }
1071 }
1072 }
1073 out:
1074 of_node_put(from);
1075 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1076 return np;
1077 }
1078 EXPORT_SYMBOL(of_find_node_with_property);
1079
1080 static
__of_match_node(const struct of_device_id * matches,const struct device_node * node)1081 const struct of_device_id *__of_match_node(const struct of_device_id *matches,
1082 const struct device_node *node)
1083 {
1084 const struct of_device_id *best_match = NULL;
1085 int score, best_score = 0;
1086
1087 if (!matches)
1088 return NULL;
1089
1090 for (; matches->name[0] || matches->type[0] || matches->compatible[0]; matches++) {
1091 score = __of_device_is_compatible(node, matches->compatible,
1092 matches->type, matches->name);
1093 if (score > best_score) {
1094 best_match = matches;
1095 best_score = score;
1096 }
1097 }
1098
1099 return best_match;
1100 }
1101
1102 /**
1103 * of_match_node - Tell if a device_node has a matching of_match structure
1104 * @matches: array of of device match structures to search in
1105 * @node: the of device structure to match against
1106 *
1107 * Low level utility function used by device matching.
1108 */
of_match_node(const struct of_device_id * matches,const struct device_node * node)1109 const struct of_device_id *of_match_node(const struct of_device_id *matches,
1110 const struct device_node *node)
1111 {
1112 const struct of_device_id *match;
1113 unsigned long flags;
1114
1115 raw_spin_lock_irqsave(&devtree_lock, flags);
1116 match = __of_match_node(matches, node);
1117 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1118 return match;
1119 }
1120 EXPORT_SYMBOL(of_match_node);
1121
1122 /**
1123 * of_find_matching_node_and_match - Find a node based on an of_device_id
1124 * match table.
1125 * @from: The node to start searching from or NULL, the node
1126 * you pass will not be searched, only the next one
1127 * will; typically, you pass what the previous call
1128 * returned. of_node_put() will be called on it
1129 * @matches: array of of device match structures to search in
1130 * @match: Updated to point at the matches entry which matched
1131 *
1132 * Return: A node pointer with refcount incremented, use
1133 * of_node_put() on it when done.
1134 */
of_find_matching_node_and_match(struct device_node * from,const struct of_device_id * matches,const struct of_device_id ** match)1135 struct device_node *of_find_matching_node_and_match(struct device_node *from,
1136 const struct of_device_id *matches,
1137 const struct of_device_id **match)
1138 {
1139 struct device_node *np;
1140 const struct of_device_id *m;
1141 unsigned long flags;
1142
1143 if (match)
1144 *match = NULL;
1145
1146 raw_spin_lock_irqsave(&devtree_lock, flags);
1147 for_each_of_allnodes_from(from, np) {
1148 m = __of_match_node(matches, np);
1149 if (m && of_node_get(np)) {
1150 if (match)
1151 *match = m;
1152 break;
1153 }
1154 }
1155 of_node_put(from);
1156 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1157 return np;
1158 }
1159 EXPORT_SYMBOL(of_find_matching_node_and_match);
1160
1161 /**
1162 * of_modalias_node - Lookup appropriate modalias for a device node
1163 * @node: pointer to a device tree node
1164 * @modalias: Pointer to buffer that modalias value will be copied into
1165 * @len: Length of modalias value
1166 *
1167 * Based on the value of the compatible property, this routine will attempt
1168 * to choose an appropriate modalias value for a particular device tree node.
1169 * It does this by stripping the manufacturer prefix (as delimited by a ',')
1170 * from the first entry in the compatible list property.
1171 *
1172 * Return: This routine returns 0 on success, <0 on failure.
1173 */
of_modalias_node(struct device_node * node,char * modalias,int len)1174 int of_modalias_node(struct device_node *node, char *modalias, int len)
1175 {
1176 const char *compatible, *p;
1177 int cplen;
1178
1179 compatible = of_get_property(node, "compatible", &cplen);
1180 if (!compatible || strlen(compatible) > cplen)
1181 return -ENODEV;
1182 p = strchr(compatible, ',');
1183 strlcpy(modalias, p ? p + 1 : compatible, len);
1184 return 0;
1185 }
1186 EXPORT_SYMBOL_GPL(of_modalias_node);
1187
1188 /**
1189 * of_find_node_by_phandle - Find a node given a phandle
1190 * @handle: phandle of the node to find
1191 *
1192 * Return: A node pointer with refcount incremented, use
1193 * of_node_put() on it when done.
1194 */
of_find_node_by_phandle(phandle handle)1195 struct device_node *of_find_node_by_phandle(phandle handle)
1196 {
1197 struct device_node *np = NULL;
1198 unsigned long flags;
1199 u32 handle_hash;
1200
1201 if (!handle)
1202 return NULL;
1203
1204 handle_hash = of_phandle_cache_hash(handle);
1205
1206 raw_spin_lock_irqsave(&devtree_lock, flags);
1207
1208 if (phandle_cache[handle_hash] &&
1209 handle == phandle_cache[handle_hash]->phandle)
1210 np = phandle_cache[handle_hash];
1211
1212 if (!np) {
1213 for_each_of_allnodes(np)
1214 if (np->phandle == handle &&
1215 !of_node_check_flag(np, OF_DETACHED)) {
1216 phandle_cache[handle_hash] = np;
1217 break;
1218 }
1219 }
1220
1221 of_node_get(np);
1222 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1223 return np;
1224 }
1225 EXPORT_SYMBOL(of_find_node_by_phandle);
1226
of_print_phandle_args(const char * msg,const struct of_phandle_args * args)1227 void of_print_phandle_args(const char *msg, const struct of_phandle_args *args)
1228 {
1229 int i;
1230 printk("%s %pOF", msg, args->np);
1231 for (i = 0; i < args->args_count; i++) {
1232 const char delim = i ? ',' : ':';
1233
1234 pr_cont("%c%08x", delim, args->args[i]);
1235 }
1236 pr_cont("\n");
1237 }
1238
of_phandle_iterator_init(struct of_phandle_iterator * it,const struct device_node * np,const char * list_name,const char * cells_name,int cell_count)1239 int of_phandle_iterator_init(struct of_phandle_iterator *it,
1240 const struct device_node *np,
1241 const char *list_name,
1242 const char *cells_name,
1243 int cell_count)
1244 {
1245 const __be32 *list;
1246 int size;
1247
1248 memset(it, 0, sizeof(*it));
1249
1250 /*
1251 * one of cell_count or cells_name must be provided to determine the
1252 * argument length.
1253 */
1254 if (cell_count < 0 && !cells_name)
1255 return -EINVAL;
1256
1257 list = of_get_property(np, list_name, &size);
1258 if (!list)
1259 return -ENOENT;
1260
1261 it->cells_name = cells_name;
1262 it->cell_count = cell_count;
1263 it->parent = np;
1264 it->list_end = list + size / sizeof(*list);
1265 it->phandle_end = list;
1266 it->cur = list;
1267
1268 return 0;
1269 }
1270 EXPORT_SYMBOL_GPL(of_phandle_iterator_init);
1271
of_phandle_iterator_next(struct of_phandle_iterator * it)1272 int of_phandle_iterator_next(struct of_phandle_iterator *it)
1273 {
1274 uint32_t count = 0;
1275
1276 if (it->node) {
1277 of_node_put(it->node);
1278 it->node = NULL;
1279 }
1280
1281 if (!it->cur || it->phandle_end >= it->list_end)
1282 return -ENOENT;
1283
1284 it->cur = it->phandle_end;
1285
1286 /* If phandle is 0, then it is an empty entry with no arguments. */
1287 it->phandle = be32_to_cpup(it->cur++);
1288
1289 if (it->phandle) {
1290
1291 /*
1292 * Find the provider node and parse the #*-cells property to
1293 * determine the argument length.
1294 */
1295 it->node = of_find_node_by_phandle(it->phandle);
1296
1297 if (it->cells_name) {
1298 if (!it->node) {
1299 pr_err("%pOF: could not find phandle %d\n",
1300 it->parent, it->phandle);
1301 goto err;
1302 }
1303
1304 if (of_property_read_u32(it->node, it->cells_name,
1305 &count)) {
1306 /*
1307 * If both cell_count and cells_name is given,
1308 * fall back to cell_count in absence
1309 * of the cells_name property
1310 */
1311 if (it->cell_count >= 0) {
1312 count = it->cell_count;
1313 } else {
1314 pr_err("%pOF: could not get %s for %pOF\n",
1315 it->parent,
1316 it->cells_name,
1317 it->node);
1318 goto err;
1319 }
1320 }
1321 } else {
1322 count = it->cell_count;
1323 }
1324
1325 /*
1326 * Make sure that the arguments actually fit in the remaining
1327 * property data length
1328 */
1329 if (it->cur + count > it->list_end) {
1330 if (it->cells_name)
1331 pr_err("%pOF: %s = %d found %td\n",
1332 it->parent, it->cells_name,
1333 count, it->list_end - it->cur);
1334 else
1335 pr_err("%pOF: phandle %s needs %d, found %td\n",
1336 it->parent, of_node_full_name(it->node),
1337 count, it->list_end - it->cur);
1338 goto err;
1339 }
1340 }
1341
1342 it->phandle_end = it->cur + count;
1343 it->cur_count = count;
1344
1345 return 0;
1346
1347 err:
1348 if (it->node) {
1349 of_node_put(it->node);
1350 it->node = NULL;
1351 }
1352
1353 return -EINVAL;
1354 }
1355 EXPORT_SYMBOL_GPL(of_phandle_iterator_next);
1356
of_phandle_iterator_args(struct of_phandle_iterator * it,uint32_t * args,int size)1357 int of_phandle_iterator_args(struct of_phandle_iterator *it,
1358 uint32_t *args,
1359 int size)
1360 {
1361 int i, count;
1362
1363 count = it->cur_count;
1364
1365 if (WARN_ON(size < count))
1366 count = size;
1367
1368 for (i = 0; i < count; i++)
1369 args[i] = be32_to_cpup(it->cur++);
1370
1371 return count;
1372 }
1373
__of_parse_phandle_with_args(const struct device_node * np,const char * list_name,const char * cells_name,int cell_count,int index,struct of_phandle_args * out_args)1374 static int __of_parse_phandle_with_args(const struct device_node *np,
1375 const char *list_name,
1376 const char *cells_name,
1377 int cell_count, int index,
1378 struct of_phandle_args *out_args)
1379 {
1380 struct of_phandle_iterator it;
1381 int rc, cur_index = 0;
1382
1383 /* Loop over the phandles until all the requested entry is found */
1384 of_for_each_phandle(&it, rc, np, list_name, cells_name, cell_count) {
1385 /*
1386 * All of the error cases bail out of the loop, so at
1387 * this point, the parsing is successful. If the requested
1388 * index matches, then fill the out_args structure and return,
1389 * or return -ENOENT for an empty entry.
1390 */
1391 rc = -ENOENT;
1392 if (cur_index == index) {
1393 if (!it.phandle)
1394 goto err;
1395
1396 if (out_args) {
1397 int c;
1398
1399 c = of_phandle_iterator_args(&it,
1400 out_args->args,
1401 MAX_PHANDLE_ARGS);
1402 out_args->np = it.node;
1403 out_args->args_count = c;
1404 } else {
1405 of_node_put(it.node);
1406 }
1407
1408 /* Found it! return success */
1409 return 0;
1410 }
1411
1412 cur_index++;
1413 }
1414
1415 /*
1416 * Unlock node before returning result; will be one of:
1417 * -ENOENT : index is for empty phandle
1418 * -EINVAL : parsing error on data
1419 */
1420
1421 err:
1422 of_node_put(it.node);
1423 return rc;
1424 }
1425
1426 /**
1427 * of_parse_phandle - Resolve a phandle property to a device_node pointer
1428 * @np: Pointer to device node holding phandle property
1429 * @phandle_name: Name of property holding a phandle value
1430 * @index: For properties holding a table of phandles, this is the index into
1431 * the table
1432 *
1433 * Return: The device_node pointer with refcount incremented. Use
1434 * of_node_put() on it when done.
1435 */
of_parse_phandle(const struct device_node * np,const char * phandle_name,int index)1436 struct device_node *of_parse_phandle(const struct device_node *np,
1437 const char *phandle_name, int index)
1438 {
1439 struct of_phandle_args args;
1440
1441 if (index < 0)
1442 return NULL;
1443
1444 if (__of_parse_phandle_with_args(np, phandle_name, NULL, 0,
1445 index, &args))
1446 return NULL;
1447
1448 return args.np;
1449 }
1450 EXPORT_SYMBOL(of_parse_phandle);
1451
1452 /**
1453 * of_parse_phandle_with_args() - Find a node pointed by phandle in a list
1454 * @np: pointer to a device tree node containing a list
1455 * @list_name: property name that contains a list
1456 * @cells_name: property name that specifies phandles' arguments count
1457 * @index: index of a phandle to parse out
1458 * @out_args: optional pointer to output arguments structure (will be filled)
1459 *
1460 * This function is useful to parse lists of phandles and their arguments.
1461 * Returns 0 on success and fills out_args, on error returns appropriate
1462 * errno value.
1463 *
1464 * Caller is responsible to call of_node_put() on the returned out_args->np
1465 * pointer.
1466 *
1467 * Example::
1468 *
1469 * phandle1: node1 {
1470 * #list-cells = <2>;
1471 * };
1472 *
1473 * phandle2: node2 {
1474 * #list-cells = <1>;
1475 * };
1476 *
1477 * node3 {
1478 * list = <&phandle1 1 2 &phandle2 3>;
1479 * };
1480 *
1481 * To get a device_node of the ``node2`` node you may call this:
1482 * of_parse_phandle_with_args(node3, "list", "#list-cells", 1, &args);
1483 */
of_parse_phandle_with_args(const struct device_node * np,const char * list_name,const char * cells_name,int index,struct of_phandle_args * out_args)1484 int of_parse_phandle_with_args(const struct device_node *np, const char *list_name,
1485 const char *cells_name, int index,
1486 struct of_phandle_args *out_args)
1487 {
1488 int cell_count = -1;
1489
1490 if (index < 0)
1491 return -EINVAL;
1492
1493 /* If cells_name is NULL we assume a cell count of 0 */
1494 if (!cells_name)
1495 cell_count = 0;
1496
1497 return __of_parse_phandle_with_args(np, list_name, cells_name,
1498 cell_count, index, out_args);
1499 }
1500 EXPORT_SYMBOL(of_parse_phandle_with_args);
1501
1502 /**
1503 * of_parse_phandle_with_args_map() - Find a node pointed by phandle in a list and remap it
1504 * @np: pointer to a device tree node containing a list
1505 * @list_name: property name that contains a list
1506 * @stem_name: stem of property names that specify phandles' arguments count
1507 * @index: index of a phandle to parse out
1508 * @out_args: optional pointer to output arguments structure (will be filled)
1509 *
1510 * This function is useful to parse lists of phandles and their arguments.
1511 * Returns 0 on success and fills out_args, on error returns appropriate errno
1512 * value. The difference between this function and of_parse_phandle_with_args()
1513 * is that this API remaps a phandle if the node the phandle points to has
1514 * a <@stem_name>-map property.
1515 *
1516 * Caller is responsible to call of_node_put() on the returned out_args->np
1517 * pointer.
1518 *
1519 * Example::
1520 *
1521 * phandle1: node1 {
1522 * #list-cells = <2>;
1523 * };
1524 *
1525 * phandle2: node2 {
1526 * #list-cells = <1>;
1527 * };
1528 *
1529 * phandle3: node3 {
1530 * #list-cells = <1>;
1531 * list-map = <0 &phandle2 3>,
1532 * <1 &phandle2 2>,
1533 * <2 &phandle1 5 1>;
1534 * list-map-mask = <0x3>;
1535 * };
1536 *
1537 * node4 {
1538 * list = <&phandle1 1 2 &phandle3 0>;
1539 * };
1540 *
1541 * To get a device_node of the ``node2`` node you may call this:
1542 * of_parse_phandle_with_args(node4, "list", "list", 1, &args);
1543 */
of_parse_phandle_with_args_map(const struct device_node * np,const char * list_name,const char * stem_name,int index,struct of_phandle_args * out_args)1544 int of_parse_phandle_with_args_map(const struct device_node *np,
1545 const char *list_name,
1546 const char *stem_name,
1547 int index, struct of_phandle_args *out_args)
1548 {
1549 char *cells_name, *map_name = NULL, *mask_name = NULL;
1550 char *pass_name = NULL;
1551 struct device_node *cur, *new = NULL;
1552 const __be32 *map, *mask, *pass;
1553 static const __be32 dummy_mask[] = { [0 ... MAX_PHANDLE_ARGS] = ~0 };
1554 static const __be32 dummy_pass[] = { [0 ... MAX_PHANDLE_ARGS] = 0 };
1555 __be32 initial_match_array[MAX_PHANDLE_ARGS];
1556 const __be32 *match_array = initial_match_array;
1557 int i, ret, map_len, match;
1558 u32 list_size, new_size;
1559
1560 if (index < 0)
1561 return -EINVAL;
1562
1563 cells_name = kasprintf(GFP_KERNEL, "#%s-cells", stem_name);
1564 if (!cells_name)
1565 return -ENOMEM;
1566
1567 ret = -ENOMEM;
1568 map_name = kasprintf(GFP_KERNEL, "%s-map", stem_name);
1569 if (!map_name)
1570 goto free;
1571
1572 mask_name = kasprintf(GFP_KERNEL, "%s-map-mask", stem_name);
1573 if (!mask_name)
1574 goto free;
1575
1576 pass_name = kasprintf(GFP_KERNEL, "%s-map-pass-thru", stem_name);
1577 if (!pass_name)
1578 goto free;
1579
1580 ret = __of_parse_phandle_with_args(np, list_name, cells_name, -1, index,
1581 out_args);
1582 if (ret)
1583 goto free;
1584
1585 /* Get the #<list>-cells property */
1586 cur = out_args->np;
1587 ret = of_property_read_u32(cur, cells_name, &list_size);
1588 if (ret < 0)
1589 goto put;
1590
1591 /* Precalculate the match array - this simplifies match loop */
1592 for (i = 0; i < list_size; i++)
1593 initial_match_array[i] = cpu_to_be32(out_args->args[i]);
1594
1595 ret = -EINVAL;
1596 while (cur) {
1597 /* Get the <list>-map property */
1598 map = of_get_property(cur, map_name, &map_len);
1599 if (!map) {
1600 ret = 0;
1601 goto free;
1602 }
1603 map_len /= sizeof(u32);
1604
1605 /* Get the <list>-map-mask property (optional) */
1606 mask = of_get_property(cur, mask_name, NULL);
1607 if (!mask)
1608 mask = dummy_mask;
1609 /* Iterate through <list>-map property */
1610 match = 0;
1611 while (map_len > (list_size + 1) && !match) {
1612 /* Compare specifiers */
1613 match = 1;
1614 for (i = 0; i < list_size; i++, map_len--)
1615 match &= !((match_array[i] ^ *map++) & mask[i]);
1616
1617 of_node_put(new);
1618 new = of_find_node_by_phandle(be32_to_cpup(map));
1619 map++;
1620 map_len--;
1621
1622 /* Check if not found */
1623 if (!new)
1624 goto put;
1625
1626 if (!of_device_is_available(new))
1627 match = 0;
1628
1629 ret = of_property_read_u32(new, cells_name, &new_size);
1630 if (ret)
1631 goto put;
1632
1633 /* Check for malformed properties */
1634 if (WARN_ON(new_size > MAX_PHANDLE_ARGS))
1635 goto put;
1636 if (map_len < new_size)
1637 goto put;
1638
1639 /* Move forward by new node's #<list>-cells amount */
1640 map += new_size;
1641 map_len -= new_size;
1642 }
1643 if (!match)
1644 goto put;
1645
1646 /* Get the <list>-map-pass-thru property (optional) */
1647 pass = of_get_property(cur, pass_name, NULL);
1648 if (!pass)
1649 pass = dummy_pass;
1650
1651 /*
1652 * Successfully parsed a <list>-map translation; copy new
1653 * specifier into the out_args structure, keeping the
1654 * bits specified in <list>-map-pass-thru.
1655 */
1656 match_array = map - new_size;
1657 for (i = 0; i < new_size; i++) {
1658 __be32 val = *(map - new_size + i);
1659
1660 if (i < list_size) {
1661 val &= ~pass[i];
1662 val |= cpu_to_be32(out_args->args[i]) & pass[i];
1663 }
1664
1665 out_args->args[i] = be32_to_cpu(val);
1666 }
1667 out_args->args_count = list_size = new_size;
1668 /* Iterate again with new provider */
1669 out_args->np = new;
1670 of_node_put(cur);
1671 cur = new;
1672 new = NULL;
1673 }
1674 put:
1675 of_node_put(cur);
1676 of_node_put(new);
1677 free:
1678 kfree(mask_name);
1679 kfree(map_name);
1680 kfree(cells_name);
1681 kfree(pass_name);
1682
1683 return ret;
1684 }
1685 EXPORT_SYMBOL(of_parse_phandle_with_args_map);
1686
1687 /**
1688 * of_parse_phandle_with_fixed_args() - Find a node pointed by phandle in a list
1689 * @np: pointer to a device tree node containing a list
1690 * @list_name: property name that contains a list
1691 * @cell_count: number of argument cells following the phandle
1692 * @index: index of a phandle to parse out
1693 * @out_args: optional pointer to output arguments structure (will be filled)
1694 *
1695 * This function is useful to parse lists of phandles and their arguments.
1696 * Returns 0 on success and fills out_args, on error returns appropriate
1697 * errno value.
1698 *
1699 * Caller is responsible to call of_node_put() on the returned out_args->np
1700 * pointer.
1701 *
1702 * Example::
1703 *
1704 * phandle1: node1 {
1705 * };
1706 *
1707 * phandle2: node2 {
1708 * };
1709 *
1710 * node3 {
1711 * list = <&phandle1 0 2 &phandle2 2 3>;
1712 * };
1713 *
1714 * To get a device_node of the ``node2`` node you may call this:
1715 * of_parse_phandle_with_fixed_args(node3, "list", 2, 1, &args);
1716 */
of_parse_phandle_with_fixed_args(const struct device_node * np,const char * list_name,int cell_count,int index,struct of_phandle_args * out_args)1717 int of_parse_phandle_with_fixed_args(const struct device_node *np,
1718 const char *list_name, int cell_count,
1719 int index, struct of_phandle_args *out_args)
1720 {
1721 if (index < 0)
1722 return -EINVAL;
1723 return __of_parse_phandle_with_args(np, list_name, NULL, cell_count,
1724 index, out_args);
1725 }
1726 EXPORT_SYMBOL(of_parse_phandle_with_fixed_args);
1727
1728 /**
1729 * of_count_phandle_with_args() - Find the number of phandles references in a property
1730 * @np: pointer to a device tree node containing a list
1731 * @list_name: property name that contains a list
1732 * @cells_name: property name that specifies phandles' arguments count
1733 *
1734 * Return: The number of phandle + argument tuples within a property. It
1735 * is a typical pattern to encode a list of phandle and variable
1736 * arguments into a single property. The number of arguments is encoded
1737 * by a property in the phandle-target node. For example, a gpios
1738 * property would contain a list of GPIO specifies consisting of a
1739 * phandle and 1 or more arguments. The number of arguments are
1740 * determined by the #gpio-cells property in the node pointed to by the
1741 * phandle.
1742 */
of_count_phandle_with_args(const struct device_node * np,const char * list_name,const char * cells_name)1743 int of_count_phandle_with_args(const struct device_node *np, const char *list_name,
1744 const char *cells_name)
1745 {
1746 struct of_phandle_iterator it;
1747 int rc, cur_index = 0;
1748
1749 /*
1750 * If cells_name is NULL we assume a cell count of 0. This makes
1751 * counting the phandles trivial as each 32bit word in the list is a
1752 * phandle and no arguments are to consider. So we don't iterate through
1753 * the list but just use the length to determine the phandle count.
1754 */
1755 if (!cells_name) {
1756 const __be32 *list;
1757 int size;
1758
1759 list = of_get_property(np, list_name, &size);
1760 if (!list)
1761 return -ENOENT;
1762
1763 return size / sizeof(*list);
1764 }
1765
1766 rc = of_phandle_iterator_init(&it, np, list_name, cells_name, -1);
1767 if (rc)
1768 return rc;
1769
1770 while ((rc = of_phandle_iterator_next(&it)) == 0)
1771 cur_index += 1;
1772
1773 if (rc != -ENOENT)
1774 return rc;
1775
1776 return cur_index;
1777 }
1778 EXPORT_SYMBOL(of_count_phandle_with_args);
1779
1780 /**
1781 * __of_add_property - Add a property to a node without lock operations
1782 * @np: Caller's Device Node
1783 * @prop: Property to add
1784 */
__of_add_property(struct device_node * np,struct property * prop)1785 int __of_add_property(struct device_node *np, struct property *prop)
1786 {
1787 struct property **next;
1788
1789 prop->next = NULL;
1790 next = &np->properties;
1791 while (*next) {
1792 if (strcmp(prop->name, (*next)->name) == 0)
1793 /* duplicate ! don't insert it */
1794 return -EEXIST;
1795
1796 next = &(*next)->next;
1797 }
1798 *next = prop;
1799
1800 return 0;
1801 }
1802
1803 /**
1804 * of_add_property - Add a property to a node
1805 * @np: Caller's Device Node
1806 * @prop: Property to add
1807 */
of_add_property(struct device_node * np,struct property * prop)1808 int of_add_property(struct device_node *np, struct property *prop)
1809 {
1810 unsigned long flags;
1811 int rc;
1812
1813 mutex_lock(&of_mutex);
1814
1815 raw_spin_lock_irqsave(&devtree_lock, flags);
1816 rc = __of_add_property(np, prop);
1817 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1818
1819 if (!rc)
1820 __of_add_property_sysfs(np, prop);
1821
1822 mutex_unlock(&of_mutex);
1823
1824 if (!rc)
1825 of_property_notify(OF_RECONFIG_ADD_PROPERTY, np, prop, NULL);
1826
1827 return rc;
1828 }
1829 EXPORT_SYMBOL_GPL(of_add_property);
1830
__of_remove_property(struct device_node * np,struct property * prop)1831 int __of_remove_property(struct device_node *np, struct property *prop)
1832 {
1833 struct property **next;
1834
1835 for (next = &np->properties; *next; next = &(*next)->next) {
1836 if (*next == prop)
1837 break;
1838 }
1839 if (*next == NULL)
1840 return -ENODEV;
1841
1842 /* found the node */
1843 *next = prop->next;
1844 prop->next = np->deadprops;
1845 np->deadprops = prop;
1846
1847 return 0;
1848 }
1849
1850 /**
1851 * of_remove_property - Remove a property from a node.
1852 * @np: Caller's Device Node
1853 * @prop: Property to remove
1854 *
1855 * Note that we don't actually remove it, since we have given out
1856 * who-knows-how-many pointers to the data using get-property.
1857 * Instead we just move the property to the "dead properties"
1858 * list, so it won't be found any more.
1859 */
of_remove_property(struct device_node * np,struct property * prop)1860 int of_remove_property(struct device_node *np, struct property *prop)
1861 {
1862 unsigned long flags;
1863 int rc;
1864
1865 if (!prop)
1866 return -ENODEV;
1867
1868 mutex_lock(&of_mutex);
1869
1870 raw_spin_lock_irqsave(&devtree_lock, flags);
1871 rc = __of_remove_property(np, prop);
1872 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1873
1874 if (!rc)
1875 __of_remove_property_sysfs(np, prop);
1876
1877 mutex_unlock(&of_mutex);
1878
1879 if (!rc)
1880 of_property_notify(OF_RECONFIG_REMOVE_PROPERTY, np, prop, NULL);
1881
1882 return rc;
1883 }
1884 EXPORT_SYMBOL_GPL(of_remove_property);
1885
__of_update_property(struct device_node * np,struct property * newprop,struct property ** oldpropp)1886 int __of_update_property(struct device_node *np, struct property *newprop,
1887 struct property **oldpropp)
1888 {
1889 struct property **next, *oldprop;
1890
1891 for (next = &np->properties; *next; next = &(*next)->next) {
1892 if (of_prop_cmp((*next)->name, newprop->name) == 0)
1893 break;
1894 }
1895 *oldpropp = oldprop = *next;
1896
1897 if (oldprop) {
1898 /* replace the node */
1899 newprop->next = oldprop->next;
1900 *next = newprop;
1901 oldprop->next = np->deadprops;
1902 np->deadprops = oldprop;
1903 } else {
1904 /* new node */
1905 newprop->next = NULL;
1906 *next = newprop;
1907 }
1908
1909 return 0;
1910 }
1911
1912 /*
1913 * of_update_property - Update a property in a node, if the property does
1914 * not exist, add it.
1915 *
1916 * Note that we don't actually remove it, since we have given out
1917 * who-knows-how-many pointers to the data using get-property.
1918 * Instead we just move the property to the "dead properties" list,
1919 * and add the new property to the property list
1920 */
of_update_property(struct device_node * np,struct property * newprop)1921 int of_update_property(struct device_node *np, struct property *newprop)
1922 {
1923 struct property *oldprop;
1924 unsigned long flags;
1925 int rc;
1926
1927 if (!newprop->name)
1928 return -EINVAL;
1929
1930 mutex_lock(&of_mutex);
1931
1932 raw_spin_lock_irqsave(&devtree_lock, flags);
1933 rc = __of_update_property(np, newprop, &oldprop);
1934 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1935
1936 if (!rc)
1937 __of_update_property_sysfs(np, newprop, oldprop);
1938
1939 mutex_unlock(&of_mutex);
1940
1941 if (!rc)
1942 of_property_notify(OF_RECONFIG_UPDATE_PROPERTY, np, newprop, oldprop);
1943
1944 return rc;
1945 }
1946
of_alias_add(struct alias_prop * ap,struct device_node * np,int id,const char * stem,int stem_len)1947 static void of_alias_add(struct alias_prop *ap, struct device_node *np,
1948 int id, const char *stem, int stem_len)
1949 {
1950 ap->np = np;
1951 ap->id = id;
1952 strncpy(ap->stem, stem, stem_len);
1953 ap->stem[stem_len] = 0;
1954 list_add_tail(&ap->link, &aliases_lookup);
1955 pr_debug("adding DT alias:%s: stem=%s id=%i node=%pOF\n",
1956 ap->alias, ap->stem, ap->id, np);
1957 }
1958
1959 /**
1960 * of_alias_scan - Scan all properties of the 'aliases' node
1961 * @dt_alloc: An allocator that provides a virtual address to memory
1962 * for storing the resulting tree
1963 *
1964 * The function scans all the properties of the 'aliases' node and populates
1965 * the global lookup table with the properties. It returns the
1966 * number of alias properties found, or an error code in case of failure.
1967 */
of_alias_scan(void * (* dt_alloc)(u64 size,u64 align))1968 void of_alias_scan(void * (*dt_alloc)(u64 size, u64 align))
1969 {
1970 struct property *pp;
1971
1972 of_aliases = of_find_node_by_path("/aliases");
1973 of_chosen = of_find_node_by_path("/chosen");
1974 if (of_chosen == NULL)
1975 of_chosen = of_find_node_by_path("/chosen@0");
1976
1977 if (of_chosen) {
1978 /* linux,stdout-path and /aliases/stdout are for legacy compatibility */
1979 const char *name = NULL;
1980
1981 if (of_property_read_string(of_chosen, "stdout-path", &name))
1982 of_property_read_string(of_chosen, "linux,stdout-path",
1983 &name);
1984 if (IS_ENABLED(CONFIG_PPC) && !name)
1985 of_property_read_string(of_aliases, "stdout", &name);
1986 if (name)
1987 of_stdout = of_find_node_opts_by_path(name, &of_stdout_options);
1988 }
1989
1990 if (!of_aliases)
1991 return;
1992
1993 for_each_property_of_node(of_aliases, pp) {
1994 const char *start = pp->name;
1995 const char *end = start + strlen(start);
1996 struct device_node *np;
1997 struct alias_prop *ap;
1998 int id, len;
1999
2000 /* Skip those we do not want to proceed */
2001 if (!strcmp(pp->name, "name") ||
2002 !strcmp(pp->name, "phandle") ||
2003 !strcmp(pp->name, "linux,phandle"))
2004 continue;
2005
2006 np = of_find_node_by_path(pp->value);
2007 if (!np)
2008 continue;
2009
2010 /* walk the alias backwards to extract the id and work out
2011 * the 'stem' string */
2012 while (isdigit(*(end-1)) && end > start)
2013 end--;
2014 len = end - start;
2015
2016 if (kstrtoint(end, 10, &id) < 0)
2017 continue;
2018
2019 /* Allocate an alias_prop with enough space for the stem */
2020 ap = dt_alloc(sizeof(*ap) + len + 1, __alignof__(*ap));
2021 if (!ap)
2022 continue;
2023 memset(ap, 0, sizeof(*ap) + len + 1);
2024 ap->alias = start;
2025 of_alias_add(ap, np, id, start, len);
2026 }
2027 }
2028
2029 /**
2030 * of_alias_get_id - Get alias id for the given device_node
2031 * @np: Pointer to the given device_node
2032 * @stem: Alias stem of the given device_node
2033 *
2034 * The function travels the lookup table to get the alias id for the given
2035 * device_node and alias stem.
2036 *
2037 * Return: The alias id if found.
2038 */
of_alias_get_id(struct device_node * np,const char * stem)2039 int of_alias_get_id(struct device_node *np, const char *stem)
2040 {
2041 struct alias_prop *app;
2042 int id = -ENODEV;
2043
2044 mutex_lock(&of_mutex);
2045 list_for_each_entry(app, &aliases_lookup, link) {
2046 if (strcmp(app->stem, stem) != 0)
2047 continue;
2048
2049 if (np == app->np) {
2050 id = app->id;
2051 break;
2052 }
2053 }
2054 mutex_unlock(&of_mutex);
2055
2056 return id;
2057 }
2058 EXPORT_SYMBOL_GPL(of_alias_get_id);
2059
2060 /**
2061 * of_alias_get_alias_list - Get alias list for the given device driver
2062 * @matches: Array of OF device match structures to search in
2063 * @stem: Alias stem of the given device_node
2064 * @bitmap: Bitmap field pointer
2065 * @nbits: Maximum number of alias IDs which can be recorded in bitmap
2066 *
2067 * The function travels the lookup table to record alias ids for the given
2068 * device match structures and alias stem.
2069 *
2070 * Return: 0 or -ENOSYS when !CONFIG_OF or
2071 * -EOVERFLOW if alias ID is greater then allocated nbits
2072 */
of_alias_get_alias_list(const struct of_device_id * matches,const char * stem,unsigned long * bitmap,unsigned int nbits)2073 int of_alias_get_alias_list(const struct of_device_id *matches,
2074 const char *stem, unsigned long *bitmap,
2075 unsigned int nbits)
2076 {
2077 struct alias_prop *app;
2078 int ret = 0;
2079
2080 /* Zero bitmap field to make sure that all the time it is clean */
2081 bitmap_zero(bitmap, nbits);
2082
2083 mutex_lock(&of_mutex);
2084 pr_debug("%s: Looking for stem: %s\n", __func__, stem);
2085 list_for_each_entry(app, &aliases_lookup, link) {
2086 pr_debug("%s: stem: %s, id: %d\n",
2087 __func__, app->stem, app->id);
2088
2089 if (strcmp(app->stem, stem) != 0) {
2090 pr_debug("%s: stem comparison didn't pass %s\n",
2091 __func__, app->stem);
2092 continue;
2093 }
2094
2095 if (of_match_node(matches, app->np)) {
2096 pr_debug("%s: Allocated ID %d\n", __func__, app->id);
2097
2098 if (app->id >= nbits) {
2099 pr_warn("%s: ID %d >= than bitmap field %d\n",
2100 __func__, app->id, nbits);
2101 ret = -EOVERFLOW;
2102 } else {
2103 set_bit(app->id, bitmap);
2104 }
2105 }
2106 }
2107 mutex_unlock(&of_mutex);
2108
2109 return ret;
2110 }
2111 EXPORT_SYMBOL_GPL(of_alias_get_alias_list);
2112
2113 /**
2114 * of_alias_get_highest_id - Get highest alias id for the given stem
2115 * @stem: Alias stem to be examined
2116 *
2117 * The function travels the lookup table to get the highest alias id for the
2118 * given alias stem. It returns the alias id if found.
2119 */
of_alias_get_highest_id(const char * stem)2120 int of_alias_get_highest_id(const char *stem)
2121 {
2122 struct alias_prop *app;
2123 int id = -ENODEV;
2124
2125 mutex_lock(&of_mutex);
2126 list_for_each_entry(app, &aliases_lookup, link) {
2127 if (strcmp(app->stem, stem) != 0)
2128 continue;
2129
2130 if (app->id > id)
2131 id = app->id;
2132 }
2133 mutex_unlock(&of_mutex);
2134
2135 return id;
2136 }
2137 EXPORT_SYMBOL_GPL(of_alias_get_highest_id);
2138
2139 /**
2140 * of_console_check() - Test and setup console for DT setup
2141 * @dn: Pointer to device node
2142 * @name: Name to use for preferred console without index. ex. "ttyS"
2143 * @index: Index to use for preferred console.
2144 *
2145 * Check if the given device node matches the stdout-path property in the
2146 * /chosen node. If it does then register it as the preferred console.
2147 *
2148 * Return: TRUE if console successfully setup. Otherwise return FALSE.
2149 */
of_console_check(struct device_node * dn,char * name,int index)2150 bool of_console_check(struct device_node *dn, char *name, int index)
2151 {
2152 if (!dn || dn != of_stdout || console_set_on_cmdline)
2153 return false;
2154
2155 /*
2156 * XXX: cast `options' to char pointer to suppress complication
2157 * warnings: printk, UART and console drivers expect char pointer.
2158 */
2159 return !add_preferred_console(name, index, (char *)of_stdout_options);
2160 }
2161 EXPORT_SYMBOL_GPL(of_console_check);
2162
2163 /**
2164 * of_find_next_cache_node - Find a node's subsidiary cache
2165 * @np: node of type "cpu" or "cache"
2166 *
2167 * Return: A node pointer with refcount incremented, use
2168 * of_node_put() on it when done. Caller should hold a reference
2169 * to np.
2170 */
of_find_next_cache_node(const struct device_node * np)2171 struct device_node *of_find_next_cache_node(const struct device_node *np)
2172 {
2173 struct device_node *child, *cache_node;
2174
2175 cache_node = of_parse_phandle(np, "l2-cache", 0);
2176 if (!cache_node)
2177 cache_node = of_parse_phandle(np, "next-level-cache", 0);
2178
2179 if (cache_node)
2180 return cache_node;
2181
2182 /* OF on pmac has nodes instead of properties named "l2-cache"
2183 * beneath CPU nodes.
2184 */
2185 if (IS_ENABLED(CONFIG_PPC_PMAC) && of_node_is_type(np, "cpu"))
2186 for_each_child_of_node(np, child)
2187 if (of_node_is_type(child, "cache"))
2188 return child;
2189
2190 return NULL;
2191 }
2192
2193 /**
2194 * of_find_last_cache_level - Find the level at which the last cache is
2195 * present for the given logical cpu
2196 *
2197 * @cpu: cpu number(logical index) for which the last cache level is needed
2198 *
2199 * Return: The the level at which the last cache is present. It is exactly
2200 * same as the total number of cache levels for the given logical cpu.
2201 */
of_find_last_cache_level(unsigned int cpu)2202 int of_find_last_cache_level(unsigned int cpu)
2203 {
2204 u32 cache_level = 0;
2205 struct device_node *prev = NULL, *np = of_cpu_device_node_get(cpu);
2206
2207 while (np) {
2208 prev = np;
2209 of_node_put(np);
2210 np = of_find_next_cache_node(np);
2211 }
2212
2213 of_property_read_u32(prev, "cache-level", &cache_level);
2214
2215 return cache_level;
2216 }
2217
2218 /**
2219 * of_map_id - Translate an ID through a downstream mapping.
2220 * @np: root complex device node.
2221 * @id: device ID to map.
2222 * @map_name: property name of the map to use.
2223 * @map_mask_name: optional property name of the mask to use.
2224 * @target: optional pointer to a target device node.
2225 * @id_out: optional pointer to receive the translated ID.
2226 *
2227 * Given a device ID, look up the appropriate implementation-defined
2228 * platform ID and/or the target device which receives transactions on that
2229 * ID, as per the "iommu-map" and "msi-map" bindings. Either of @target or
2230 * @id_out may be NULL if only the other is required. If @target points to
2231 * a non-NULL device node pointer, only entries targeting that node will be
2232 * matched; if it points to a NULL value, it will receive the device node of
2233 * the first matching target phandle, with a reference held.
2234 *
2235 * Return: 0 on success or a standard error code on failure.
2236 */
of_map_id(struct device_node * np,u32 id,const char * map_name,const char * map_mask_name,struct device_node ** target,u32 * id_out)2237 int of_map_id(struct device_node *np, u32 id,
2238 const char *map_name, const char *map_mask_name,
2239 struct device_node **target, u32 *id_out)
2240 {
2241 u32 map_mask, masked_id;
2242 int map_len;
2243 const __be32 *map = NULL;
2244
2245 if (!np || !map_name || (!target && !id_out))
2246 return -EINVAL;
2247
2248 map = of_get_property(np, map_name, &map_len);
2249 if (!map) {
2250 if (target)
2251 return -ENODEV;
2252 /* Otherwise, no map implies no translation */
2253 *id_out = id;
2254 return 0;
2255 }
2256
2257 if (!map_len || map_len % (4 * sizeof(*map))) {
2258 pr_err("%pOF: Error: Bad %s length: %d\n", np,
2259 map_name, map_len);
2260 return -EINVAL;
2261 }
2262
2263 /* The default is to select all bits. */
2264 map_mask = 0xffffffff;
2265
2266 /*
2267 * Can be overridden by "{iommu,msi}-map-mask" property.
2268 * If of_property_read_u32() fails, the default is used.
2269 */
2270 if (map_mask_name)
2271 of_property_read_u32(np, map_mask_name, &map_mask);
2272
2273 masked_id = map_mask & id;
2274 for ( ; map_len > 0; map_len -= 4 * sizeof(*map), map += 4) {
2275 struct device_node *phandle_node;
2276 u32 id_base = be32_to_cpup(map + 0);
2277 u32 phandle = be32_to_cpup(map + 1);
2278 u32 out_base = be32_to_cpup(map + 2);
2279 u32 id_len = be32_to_cpup(map + 3);
2280
2281 if (id_base & ~map_mask) {
2282 pr_err("%pOF: Invalid %s translation - %s-mask (0x%x) ignores id-base (0x%x)\n",
2283 np, map_name, map_name,
2284 map_mask, id_base);
2285 return -EFAULT;
2286 }
2287
2288 if (masked_id < id_base || masked_id >= id_base + id_len)
2289 continue;
2290
2291 phandle_node = of_find_node_by_phandle(phandle);
2292 if (!phandle_node)
2293 return -ENODEV;
2294
2295 if (target) {
2296 if (*target)
2297 of_node_put(phandle_node);
2298 else
2299 *target = phandle_node;
2300
2301 if (*target != phandle_node)
2302 continue;
2303 }
2304
2305 if (id_out)
2306 *id_out = masked_id - id_base + out_base;
2307
2308 pr_debug("%pOF: %s, using mask %08x, id-base: %08x, out-base: %08x, length: %08x, id: %08x -> %08x\n",
2309 np, map_name, map_mask, id_base, out_base,
2310 id_len, id, masked_id - id_base + out_base);
2311 return 0;
2312 }
2313
2314 pr_info("%pOF: no %s translation for id 0x%x on %pOF\n", np, map_name,
2315 id, target && *target ? *target : NULL);
2316
2317 /* Bypasses translation */
2318 if (id_out)
2319 *id_out = id;
2320 return 0;
2321 }
2322 EXPORT_SYMBOL_GPL(of_map_id);
2323