1 // SPDX-License-Identifier: GPL-2.0
2 #define pr_fmt(fmt) "OF: " fmt
3
4 #include <linux/device.h>
5 #include <linux/fwnode.h>
6 #include <linux/io.h>
7 #include <linux/ioport.h>
8 #include <linux/logic_pio.h>
9 #include <linux/module.h>
10 #include <linux/of_address.h>
11 #include <linux/pci.h>
12 #include <linux/pci_regs.h>
13 #include <linux/sizes.h>
14 #include <linux/slab.h>
15 #include <linux/string.h>
16 #include <linux/dma-direct.h> /* for bus_dma_region */
17
18 #include "of_private.h"
19
20 /* Max address size we deal with */
21 #define OF_MAX_ADDR_CELLS 4
22 #define OF_CHECK_ADDR_COUNT(na) ((na) > 0 && (na) <= OF_MAX_ADDR_CELLS)
23 #define OF_CHECK_COUNTS(na, ns) (OF_CHECK_ADDR_COUNT(na) && (ns) > 0)
24
25 static struct of_bus *of_match_bus(struct device_node *np);
26 static int __of_address_to_resource(struct device_node *dev, int index,
27 int bar_no, struct resource *r);
28 static bool of_mmio_is_nonposted(struct device_node *np);
29
30 /* Debug utility */
31 #ifdef DEBUG
of_dump_addr(const char * s,const __be32 * addr,int na)32 static void of_dump_addr(const char *s, const __be32 *addr, int na)
33 {
34 pr_debug("%s", s);
35 while (na--)
36 pr_cont(" %08x", be32_to_cpu(*(addr++)));
37 pr_cont("\n");
38 }
39 #else
of_dump_addr(const char * s,const __be32 * addr,int na)40 static void of_dump_addr(const char *s, const __be32 *addr, int na) { }
41 #endif
42
43 /* Callbacks for bus specific translators */
44 struct of_bus {
45 const char *name;
46 const char *addresses;
47 int (*match)(struct device_node *parent);
48 void (*count_cells)(struct device_node *child,
49 int *addrc, int *sizec);
50 u64 (*map)(__be32 *addr, const __be32 *range,
51 int na, int ns, int pna);
52 int (*translate)(__be32 *addr, u64 offset, int na);
53 bool has_flags;
54 unsigned int (*get_flags)(const __be32 *addr);
55 };
56
57 /*
58 * Default translator (generic bus)
59 */
60
of_bus_default_count_cells(struct device_node * dev,int * addrc,int * sizec)61 static void of_bus_default_count_cells(struct device_node *dev,
62 int *addrc, int *sizec)
63 {
64 if (addrc)
65 *addrc = of_n_addr_cells(dev);
66 if (sizec)
67 *sizec = of_n_size_cells(dev);
68 }
69
of_bus_default_map(__be32 * addr,const __be32 * range,int na,int ns,int pna)70 static u64 of_bus_default_map(__be32 *addr, const __be32 *range,
71 int na, int ns, int pna)
72 {
73 u64 cp, s, da;
74
75 cp = of_read_number(range, na);
76 s = of_read_number(range + na + pna, ns);
77 da = of_read_number(addr, na);
78
79 pr_debug("default map, cp=%llx, s=%llx, da=%llx\n", cp, s, da);
80
81 if (da < cp || da >= (cp + s))
82 return OF_BAD_ADDR;
83 return da - cp;
84 }
85
of_bus_default_translate(__be32 * addr,u64 offset,int na)86 static int of_bus_default_translate(__be32 *addr, u64 offset, int na)
87 {
88 u64 a = of_read_number(addr, na);
89 memset(addr, 0, na * 4);
90 a += offset;
91 if (na > 1)
92 addr[na - 2] = cpu_to_be32(a >> 32);
93 addr[na - 1] = cpu_to_be32(a & 0xffffffffu);
94
95 return 0;
96 }
97
of_bus_default_get_flags(const __be32 * addr)98 static unsigned int of_bus_default_get_flags(const __be32 *addr)
99 {
100 return IORESOURCE_MEM;
101 }
102
103 #ifdef CONFIG_PCI
of_bus_pci_get_flags(const __be32 * addr)104 static unsigned int of_bus_pci_get_flags(const __be32 *addr)
105 {
106 unsigned int flags = 0;
107 u32 w = be32_to_cpup(addr);
108
109 if (!IS_ENABLED(CONFIG_PCI))
110 return 0;
111
112 switch((w >> 24) & 0x03) {
113 case 0x01:
114 flags |= IORESOURCE_IO;
115 break;
116 case 0x02: /* 32 bits */
117 flags |= IORESOURCE_MEM;
118 break;
119
120 case 0x03: /* 64 bits */
121 flags |= IORESOURCE_MEM | IORESOURCE_MEM_64;
122 break;
123 }
124 if (w & 0x40000000)
125 flags |= IORESOURCE_PREFETCH;
126 return flags;
127 }
128
129 /*
130 * PCI bus specific translator
131 */
132
of_node_is_pcie(struct device_node * np)133 static bool of_node_is_pcie(struct device_node *np)
134 {
135 bool is_pcie = of_node_name_eq(np, "pcie");
136
137 if (is_pcie)
138 pr_warn_once("%pOF: Missing device_type\n", np);
139
140 return is_pcie;
141 }
142
of_bus_pci_match(struct device_node * np)143 static int of_bus_pci_match(struct device_node *np)
144 {
145 /*
146 * "pciex" is PCI Express
147 * "vci" is for the /chaos bridge on 1st-gen PCI powermacs
148 * "ht" is hypertransport
149 *
150 * If none of the device_type match, and that the node name is
151 * "pcie", accept the device as PCI (with a warning).
152 */
153 return of_node_is_type(np, "pci") || of_node_is_type(np, "pciex") ||
154 of_node_is_type(np, "vci") || of_node_is_type(np, "ht") ||
155 of_node_is_pcie(np);
156 }
157
of_bus_pci_count_cells(struct device_node * np,int * addrc,int * sizec)158 static void of_bus_pci_count_cells(struct device_node *np,
159 int *addrc, int *sizec)
160 {
161 if (addrc)
162 *addrc = 3;
163 if (sizec)
164 *sizec = 2;
165 }
166
of_bus_pci_map(__be32 * addr,const __be32 * range,int na,int ns,int pna)167 static u64 of_bus_pci_map(__be32 *addr, const __be32 *range, int na, int ns,
168 int pna)
169 {
170 u64 cp, s, da;
171 unsigned int af, rf;
172
173 af = of_bus_pci_get_flags(addr);
174 rf = of_bus_pci_get_flags(range);
175
176 /* Check address type match */
177 if ((af ^ rf) & (IORESOURCE_MEM | IORESOURCE_IO))
178 return OF_BAD_ADDR;
179
180 /* Read address values, skipping high cell */
181 cp = of_read_number(range + 1, na - 1);
182 s = of_read_number(range + na + pna, ns);
183 da = of_read_number(addr + 1, na - 1);
184
185 pr_debug("PCI map, cp=%llx, s=%llx, da=%llx\n", cp, s, da);
186
187 if (da < cp || da >= (cp + s))
188 return OF_BAD_ADDR;
189 return da - cp;
190 }
191
of_bus_pci_translate(__be32 * addr,u64 offset,int na)192 static int of_bus_pci_translate(__be32 *addr, u64 offset, int na)
193 {
194 return of_bus_default_translate(addr + 1, offset, na - 1);
195 }
196 #endif /* CONFIG_PCI */
197
of_pci_address_to_resource(struct device_node * dev,int bar,struct resource * r)198 int of_pci_address_to_resource(struct device_node *dev, int bar,
199 struct resource *r)
200 {
201
202 if (!IS_ENABLED(CONFIG_PCI))
203 return -ENOSYS;
204
205 return __of_address_to_resource(dev, -1, bar, r);
206 }
207 EXPORT_SYMBOL_GPL(of_pci_address_to_resource);
208
209 /*
210 * of_pci_range_to_resource - Create a resource from an of_pci_range
211 * @range: the PCI range that describes the resource
212 * @np: device node where the range belongs to
213 * @res: pointer to a valid resource that will be updated to
214 * reflect the values contained in the range.
215 *
216 * Returns EINVAL if the range cannot be converted to resource.
217 *
218 * Note that if the range is an IO range, the resource will be converted
219 * using pci_address_to_pio() which can fail if it is called too early or
220 * if the range cannot be matched to any host bridge IO space (our case here).
221 * To guard against that we try to register the IO range first.
222 * If that fails we know that pci_address_to_pio() will do too.
223 */
of_pci_range_to_resource(struct of_pci_range * range,struct device_node * np,struct resource * res)224 int of_pci_range_to_resource(struct of_pci_range *range,
225 struct device_node *np, struct resource *res)
226 {
227 int err;
228 res->flags = range->flags;
229 res->parent = res->child = res->sibling = NULL;
230 res->name = np->full_name;
231
232 if (!IS_ENABLED(CONFIG_PCI))
233 return -ENOSYS;
234
235 if (res->flags & IORESOURCE_IO) {
236 unsigned long port;
237 err = pci_register_io_range(&np->fwnode, range->cpu_addr,
238 range->size);
239 if (err)
240 goto invalid_range;
241 port = pci_address_to_pio(range->cpu_addr);
242 if (port == (unsigned long)-1) {
243 err = -EINVAL;
244 goto invalid_range;
245 }
246 res->start = port;
247 } else {
248 if ((sizeof(resource_size_t) < 8) &&
249 upper_32_bits(range->cpu_addr)) {
250 err = -EINVAL;
251 goto invalid_range;
252 }
253
254 res->start = range->cpu_addr;
255 }
256 res->end = res->start + range->size - 1;
257 return 0;
258
259 invalid_range:
260 res->start = (resource_size_t)OF_BAD_ADDR;
261 res->end = (resource_size_t)OF_BAD_ADDR;
262 return err;
263 }
264 EXPORT_SYMBOL(of_pci_range_to_resource);
265
266 /*
267 * ISA bus specific translator
268 */
269
of_bus_isa_match(struct device_node * np)270 static int of_bus_isa_match(struct device_node *np)
271 {
272 return of_node_name_eq(np, "isa");
273 }
274
of_bus_isa_count_cells(struct device_node * child,int * addrc,int * sizec)275 static void of_bus_isa_count_cells(struct device_node *child,
276 int *addrc, int *sizec)
277 {
278 if (addrc)
279 *addrc = 2;
280 if (sizec)
281 *sizec = 1;
282 }
283
of_bus_isa_map(__be32 * addr,const __be32 * range,int na,int ns,int pna)284 static u64 of_bus_isa_map(__be32 *addr, const __be32 *range, int na, int ns,
285 int pna)
286 {
287 u64 cp, s, da;
288
289 /* Check address type match */
290 if ((addr[0] ^ range[0]) & cpu_to_be32(1))
291 return OF_BAD_ADDR;
292
293 /* Read address values, skipping high cell */
294 cp = of_read_number(range + 1, na - 1);
295 s = of_read_number(range + na + pna, ns);
296 da = of_read_number(addr + 1, na - 1);
297
298 pr_debug("ISA map, cp=%llx, s=%llx, da=%llx\n", cp, s, da);
299
300 if (da < cp || da >= (cp + s))
301 return OF_BAD_ADDR;
302 return da - cp;
303 }
304
of_bus_isa_translate(__be32 * addr,u64 offset,int na)305 static int of_bus_isa_translate(__be32 *addr, u64 offset, int na)
306 {
307 return of_bus_default_translate(addr + 1, offset, na - 1);
308 }
309
of_bus_isa_get_flags(const __be32 * addr)310 static unsigned int of_bus_isa_get_flags(const __be32 *addr)
311 {
312 unsigned int flags = 0;
313 u32 w = be32_to_cpup(addr);
314
315 if (w & 1)
316 flags |= IORESOURCE_IO;
317 else
318 flags |= IORESOURCE_MEM;
319 return flags;
320 }
321
322 /*
323 * Array of bus specific translators
324 */
325
326 static struct of_bus of_busses[] = {
327 #ifdef CONFIG_PCI
328 /* PCI */
329 {
330 .name = "pci",
331 .addresses = "assigned-addresses",
332 .match = of_bus_pci_match,
333 .count_cells = of_bus_pci_count_cells,
334 .map = of_bus_pci_map,
335 .translate = of_bus_pci_translate,
336 .has_flags = true,
337 .get_flags = of_bus_pci_get_flags,
338 },
339 #endif /* CONFIG_PCI */
340 /* ISA */
341 {
342 .name = "isa",
343 .addresses = "reg",
344 .match = of_bus_isa_match,
345 .count_cells = of_bus_isa_count_cells,
346 .map = of_bus_isa_map,
347 .translate = of_bus_isa_translate,
348 .has_flags = true,
349 .get_flags = of_bus_isa_get_flags,
350 },
351 /* Default */
352 {
353 .name = "default",
354 .addresses = "reg",
355 .match = NULL,
356 .count_cells = of_bus_default_count_cells,
357 .map = of_bus_default_map,
358 .translate = of_bus_default_translate,
359 .get_flags = of_bus_default_get_flags,
360 },
361 };
362
of_match_bus(struct device_node * np)363 static struct of_bus *of_match_bus(struct device_node *np)
364 {
365 int i;
366
367 for (i = 0; i < ARRAY_SIZE(of_busses); i++)
368 if (!of_busses[i].match || of_busses[i].match(np))
369 return &of_busses[i];
370 BUG();
371 return NULL;
372 }
373
of_empty_ranges_quirk(struct device_node * np)374 static int of_empty_ranges_quirk(struct device_node *np)
375 {
376 if (IS_ENABLED(CONFIG_PPC)) {
377 /* To save cycles, we cache the result for global "Mac" setting */
378 static int quirk_state = -1;
379
380 /* PA-SEMI sdc DT bug */
381 if (of_device_is_compatible(np, "1682m-sdc"))
382 return true;
383
384 /* Make quirk cached */
385 if (quirk_state < 0)
386 quirk_state =
387 of_machine_is_compatible("Power Macintosh") ||
388 of_machine_is_compatible("MacRISC");
389 return quirk_state;
390 }
391 return false;
392 }
393
of_translate_one(struct device_node * parent,struct of_bus * bus,struct of_bus * pbus,__be32 * addr,int na,int ns,int pna,const char * rprop)394 static int of_translate_one(struct device_node *parent, struct of_bus *bus,
395 struct of_bus *pbus, __be32 *addr,
396 int na, int ns, int pna, const char *rprop)
397 {
398 const __be32 *ranges;
399 unsigned int rlen;
400 int rone;
401 u64 offset = OF_BAD_ADDR;
402
403 /*
404 * Normally, an absence of a "ranges" property means we are
405 * crossing a non-translatable boundary, and thus the addresses
406 * below the current cannot be converted to CPU physical ones.
407 * Unfortunately, while this is very clear in the spec, it's not
408 * what Apple understood, and they do have things like /uni-n or
409 * /ht nodes with no "ranges" property and a lot of perfectly
410 * useable mapped devices below them. Thus we treat the absence of
411 * "ranges" as equivalent to an empty "ranges" property which means
412 * a 1:1 translation at that level. It's up to the caller not to try
413 * to translate addresses that aren't supposed to be translated in
414 * the first place. --BenH.
415 *
416 * As far as we know, this damage only exists on Apple machines, so
417 * This code is only enabled on powerpc. --gcl
418 *
419 * This quirk also applies for 'dma-ranges' which frequently exist in
420 * child nodes without 'dma-ranges' in the parent nodes. --RobH
421 */
422 ranges = of_get_property(parent, rprop, &rlen);
423 if (ranges == NULL && !of_empty_ranges_quirk(parent) &&
424 strcmp(rprop, "dma-ranges")) {
425 pr_debug("no ranges; cannot translate\n");
426 return 1;
427 }
428 if (ranges == NULL || rlen == 0) {
429 offset = of_read_number(addr, na);
430 memset(addr, 0, pna * 4);
431 pr_debug("empty ranges; 1:1 translation\n");
432 goto finish;
433 }
434
435 pr_debug("walking ranges...\n");
436
437 /* Now walk through the ranges */
438 rlen /= 4;
439 rone = na + pna + ns;
440 for (; rlen >= rone; rlen -= rone, ranges += rone) {
441 offset = bus->map(addr, ranges, na, ns, pna);
442 if (offset != OF_BAD_ADDR)
443 break;
444 }
445 if (offset == OF_BAD_ADDR) {
446 pr_debug("not found !\n");
447 return 1;
448 }
449 memcpy(addr, ranges + na, 4 * pna);
450
451 finish:
452 of_dump_addr("parent translation for:", addr, pna);
453 pr_debug("with offset: %llx\n", offset);
454
455 /* Translate it into parent bus space */
456 return pbus->translate(addr, offset, pna);
457 }
458
459 /*
460 * Translate an address from the device-tree into a CPU physical address,
461 * this walks up the tree and applies the various bus mappings on the
462 * way.
463 *
464 * Note: We consider that crossing any level with #size-cells == 0 to mean
465 * that translation is impossible (that is we are not dealing with a value
466 * that can be mapped to a cpu physical address). This is not really specified
467 * that way, but this is traditionally the way IBM at least do things
468 *
469 * Whenever the translation fails, the *host pointer will be set to the
470 * device that had registered logical PIO mapping, and the return code is
471 * relative to that node.
472 */
__of_translate_address(struct device_node * dev,struct device_node * (* get_parent)(const struct device_node *),const __be32 * in_addr,const char * rprop,struct device_node ** host)473 static u64 __of_translate_address(struct device_node *dev,
474 struct device_node *(*get_parent)(const struct device_node *),
475 const __be32 *in_addr, const char *rprop,
476 struct device_node **host)
477 {
478 struct device_node *parent = NULL;
479 struct of_bus *bus, *pbus;
480 __be32 addr[OF_MAX_ADDR_CELLS];
481 int na, ns, pna, pns;
482 u64 result = OF_BAD_ADDR;
483
484 pr_debug("** translation for device %pOF **\n", dev);
485
486 /* Increase refcount at current level */
487 of_node_get(dev);
488
489 *host = NULL;
490 /* Get parent & match bus type */
491 parent = get_parent(dev);
492 if (parent == NULL)
493 goto bail;
494 bus = of_match_bus(parent);
495
496 /* Count address cells & copy address locally */
497 bus->count_cells(dev, &na, &ns);
498 if (!OF_CHECK_COUNTS(na, ns)) {
499 pr_debug("Bad cell count for %pOF\n", dev);
500 goto bail;
501 }
502 memcpy(addr, in_addr, na * 4);
503
504 pr_debug("bus is %s (na=%d, ns=%d) on %pOF\n",
505 bus->name, na, ns, parent);
506 of_dump_addr("translating address:", addr, na);
507
508 /* Translate */
509 for (;;) {
510 struct logic_pio_hwaddr *iorange;
511
512 /* Switch to parent bus */
513 of_node_put(dev);
514 dev = parent;
515 parent = get_parent(dev);
516
517 /* If root, we have finished */
518 if (parent == NULL) {
519 pr_debug("reached root node\n");
520 result = of_read_number(addr, na);
521 break;
522 }
523
524 /*
525 * For indirectIO device which has no ranges property, get
526 * the address from reg directly.
527 */
528 iorange = find_io_range_by_fwnode(&dev->fwnode);
529 if (iorange && (iorange->flags != LOGIC_PIO_CPU_MMIO)) {
530 result = of_read_number(addr + 1, na - 1);
531 pr_debug("indirectIO matched(%pOF) 0x%llx\n",
532 dev, result);
533 *host = of_node_get(dev);
534 break;
535 }
536
537 /* Get new parent bus and counts */
538 pbus = of_match_bus(parent);
539 pbus->count_cells(dev, &pna, &pns);
540 if (!OF_CHECK_COUNTS(pna, pns)) {
541 pr_err("Bad cell count for %pOF\n", dev);
542 break;
543 }
544
545 pr_debug("parent bus is %s (na=%d, ns=%d) on %pOF\n",
546 pbus->name, pna, pns, parent);
547
548 /* Apply bus translation */
549 if (of_translate_one(dev, bus, pbus, addr, na, ns, pna, rprop))
550 break;
551
552 /* Complete the move up one level */
553 na = pna;
554 ns = pns;
555 bus = pbus;
556
557 of_dump_addr("one level translation:", addr, na);
558 }
559 bail:
560 of_node_put(parent);
561 of_node_put(dev);
562
563 return result;
564 }
565
of_translate_address(struct device_node * dev,const __be32 * in_addr)566 u64 of_translate_address(struct device_node *dev, const __be32 *in_addr)
567 {
568 struct device_node *host;
569 u64 ret;
570
571 ret = __of_translate_address(dev, of_get_parent,
572 in_addr, "ranges", &host);
573 if (host) {
574 of_node_put(host);
575 return OF_BAD_ADDR;
576 }
577
578 return ret;
579 }
580 EXPORT_SYMBOL(of_translate_address);
581
__of_get_dma_parent(const struct device_node * np)582 static struct device_node *__of_get_dma_parent(const struct device_node *np)
583 {
584 struct of_phandle_args args;
585 int ret, index;
586
587 index = of_property_match_string(np, "interconnect-names", "dma-mem");
588 if (index < 0)
589 return of_get_parent(np);
590
591 ret = of_parse_phandle_with_args(np, "interconnects",
592 "#interconnect-cells",
593 index, &args);
594 if (ret < 0)
595 return of_get_parent(np);
596
597 return of_node_get(args.np);
598 }
599
of_get_next_dma_parent(struct device_node * np)600 static struct device_node *of_get_next_dma_parent(struct device_node *np)
601 {
602 struct device_node *parent;
603
604 parent = __of_get_dma_parent(np);
605 of_node_put(np);
606
607 return parent;
608 }
609
of_translate_dma_address(struct device_node * dev,const __be32 * in_addr)610 u64 of_translate_dma_address(struct device_node *dev, const __be32 *in_addr)
611 {
612 struct device_node *host;
613 u64 ret;
614
615 ret = __of_translate_address(dev, __of_get_dma_parent,
616 in_addr, "dma-ranges", &host);
617
618 if (host) {
619 of_node_put(host);
620 return OF_BAD_ADDR;
621 }
622
623 return ret;
624 }
625 EXPORT_SYMBOL(of_translate_dma_address);
626
__of_get_address(struct device_node * dev,int index,int bar_no,u64 * size,unsigned int * flags)627 const __be32 *__of_get_address(struct device_node *dev, int index, int bar_no,
628 u64 *size, unsigned int *flags)
629 {
630 const __be32 *prop;
631 unsigned int psize;
632 struct device_node *parent;
633 struct of_bus *bus;
634 int onesize, i, na, ns;
635
636 /* Get parent & match bus type */
637 parent = of_get_parent(dev);
638 if (parent == NULL)
639 return NULL;
640 bus = of_match_bus(parent);
641 if (strcmp(bus->name, "pci") && (bar_no >= 0)) {
642 of_node_put(parent);
643 return NULL;
644 }
645 bus->count_cells(dev, &na, &ns);
646 of_node_put(parent);
647 if (!OF_CHECK_ADDR_COUNT(na))
648 return NULL;
649
650 /* Get "reg" or "assigned-addresses" property */
651 prop = of_get_property(dev, bus->addresses, &psize);
652 if (prop == NULL)
653 return NULL;
654 psize /= 4;
655
656 onesize = na + ns;
657 for (i = 0; psize >= onesize; psize -= onesize, prop += onesize, i++) {
658 u32 val = be32_to_cpu(prop[0]);
659 /* PCI bus matches on BAR number instead of index */
660 if (((bar_no >= 0) && ((val & 0xff) == ((bar_no * 4) + PCI_BASE_ADDRESS_0))) ||
661 ((index >= 0) && (i == index))) {
662 if (size)
663 *size = of_read_number(prop + na, ns);
664 if (flags)
665 *flags = bus->get_flags(prop);
666 return prop;
667 }
668 }
669 return NULL;
670 }
671 EXPORT_SYMBOL(__of_get_address);
672
parser_init(struct of_pci_range_parser * parser,struct device_node * node,const char * name)673 static int parser_init(struct of_pci_range_parser *parser,
674 struct device_node *node, const char *name)
675 {
676 int rlen;
677
678 parser->node = node;
679 parser->pna = of_n_addr_cells(node);
680 parser->na = of_bus_n_addr_cells(node);
681 parser->ns = of_bus_n_size_cells(node);
682 parser->dma = !strcmp(name, "dma-ranges");
683 parser->bus = of_match_bus(node);
684
685 parser->range = of_get_property(node, name, &rlen);
686 if (parser->range == NULL)
687 return -ENOENT;
688
689 parser->end = parser->range + rlen / sizeof(__be32);
690
691 return 0;
692 }
693
of_pci_range_parser_init(struct of_pci_range_parser * parser,struct device_node * node)694 int of_pci_range_parser_init(struct of_pci_range_parser *parser,
695 struct device_node *node)
696 {
697 return parser_init(parser, node, "ranges");
698 }
699 EXPORT_SYMBOL_GPL(of_pci_range_parser_init);
700
of_pci_dma_range_parser_init(struct of_pci_range_parser * parser,struct device_node * node)701 int of_pci_dma_range_parser_init(struct of_pci_range_parser *parser,
702 struct device_node *node)
703 {
704 return parser_init(parser, node, "dma-ranges");
705 }
706 EXPORT_SYMBOL_GPL(of_pci_dma_range_parser_init);
707 #define of_dma_range_parser_init of_pci_dma_range_parser_init
708
of_pci_range_parser_one(struct of_pci_range_parser * parser,struct of_pci_range * range)709 struct of_pci_range *of_pci_range_parser_one(struct of_pci_range_parser *parser,
710 struct of_pci_range *range)
711 {
712 int na = parser->na;
713 int ns = parser->ns;
714 int np = parser->pna + na + ns;
715 int busflag_na = 0;
716
717 if (!range)
718 return NULL;
719
720 if (!parser->range || parser->range + np > parser->end)
721 return NULL;
722
723 range->flags = parser->bus->get_flags(parser->range);
724
725 /* A extra cell for resource flags */
726 if (parser->bus->has_flags)
727 busflag_na = 1;
728
729 range->bus_addr = of_read_number(parser->range + busflag_na, na - busflag_na);
730
731 if (parser->dma)
732 range->cpu_addr = of_translate_dma_address(parser->node,
733 parser->range + na);
734 else
735 range->cpu_addr = of_translate_address(parser->node,
736 parser->range + na);
737 range->size = of_read_number(parser->range + parser->pna + na, ns);
738
739 parser->range += np;
740
741 /* Now consume following elements while they are contiguous */
742 while (parser->range + np <= parser->end) {
743 u32 flags = 0;
744 u64 bus_addr, cpu_addr, size;
745
746 flags = parser->bus->get_flags(parser->range);
747 bus_addr = of_read_number(parser->range + busflag_na, na - busflag_na);
748 if (parser->dma)
749 cpu_addr = of_translate_dma_address(parser->node,
750 parser->range + na);
751 else
752 cpu_addr = of_translate_address(parser->node,
753 parser->range + na);
754 size = of_read_number(parser->range + parser->pna + na, ns);
755
756 if (flags != range->flags)
757 break;
758 if (bus_addr != range->bus_addr + range->size ||
759 cpu_addr != range->cpu_addr + range->size)
760 break;
761
762 range->size += size;
763 parser->range += np;
764 }
765
766 return range;
767 }
768 EXPORT_SYMBOL_GPL(of_pci_range_parser_one);
769
of_translate_ioport(struct device_node * dev,const __be32 * in_addr,u64 size)770 static u64 of_translate_ioport(struct device_node *dev, const __be32 *in_addr,
771 u64 size)
772 {
773 u64 taddr;
774 unsigned long port;
775 struct device_node *host;
776
777 taddr = __of_translate_address(dev, of_get_parent,
778 in_addr, "ranges", &host);
779 if (host) {
780 /* host-specific port access */
781 port = logic_pio_trans_hwaddr(&host->fwnode, taddr, size);
782 of_node_put(host);
783 } else {
784 /* memory-mapped I/O range */
785 port = pci_address_to_pio(taddr);
786 }
787
788 if (port == (unsigned long)-1)
789 return OF_BAD_ADDR;
790
791 return port;
792 }
793
__of_address_to_resource(struct device_node * dev,int index,int bar_no,struct resource * r)794 static int __of_address_to_resource(struct device_node *dev, int index, int bar_no,
795 struct resource *r)
796 {
797 u64 taddr;
798 const __be32 *addrp;
799 u64 size;
800 unsigned int flags;
801 const char *name = NULL;
802
803 addrp = __of_get_address(dev, index, bar_no, &size, &flags);
804 if (addrp == NULL)
805 return -EINVAL;
806
807 /* Get optional "reg-names" property to add a name to a resource */
808 if (index >= 0)
809 of_property_read_string_index(dev, "reg-names", index, &name);
810
811 if (flags & IORESOURCE_MEM)
812 taddr = of_translate_address(dev, addrp);
813 else if (flags & IORESOURCE_IO)
814 taddr = of_translate_ioport(dev, addrp, size);
815 else
816 return -EINVAL;
817
818 if (taddr == OF_BAD_ADDR)
819 return -EINVAL;
820 memset(r, 0, sizeof(struct resource));
821
822 if (of_mmio_is_nonposted(dev))
823 flags |= IORESOURCE_MEM_NONPOSTED;
824
825 r->start = taddr;
826 r->end = taddr + size - 1;
827 r->flags = flags;
828 r->name = name ? name : dev->full_name;
829
830 return 0;
831 }
832
833 /**
834 * of_address_to_resource - Translate device tree address and return as resource
835 * @dev: Caller's Device Node
836 * @index: Index into the array
837 * @r: Pointer to resource array
838 *
839 * Note that if your address is a PIO address, the conversion will fail if
840 * the physical address can't be internally converted to an IO token with
841 * pci_address_to_pio(), that is because it's either called too early or it
842 * can't be matched to any host bridge IO space
843 */
of_address_to_resource(struct device_node * dev,int index,struct resource * r)844 int of_address_to_resource(struct device_node *dev, int index,
845 struct resource *r)
846 {
847 return __of_address_to_resource(dev, index, -1, r);
848 }
849 EXPORT_SYMBOL_GPL(of_address_to_resource);
850
851 /**
852 * of_iomap - Maps the memory mapped IO for a given device_node
853 * @np: the device whose io range will be mapped
854 * @index: index of the io range
855 *
856 * Returns a pointer to the mapped memory
857 */
of_iomap(struct device_node * np,int index)858 void __iomem *of_iomap(struct device_node *np, int index)
859 {
860 struct resource res;
861
862 if (of_address_to_resource(np, index, &res))
863 return NULL;
864
865 if (res.flags & IORESOURCE_MEM_NONPOSTED)
866 return ioremap_np(res.start, resource_size(&res));
867 else
868 return ioremap(res.start, resource_size(&res));
869 }
870 EXPORT_SYMBOL(of_iomap);
871
872 /*
873 * of_io_request_and_map - Requests a resource and maps the memory mapped IO
874 * for a given device_node
875 * @device: the device whose io range will be mapped
876 * @index: index of the io range
877 * @name: name "override" for the memory region request or NULL
878 *
879 * Returns a pointer to the requested and mapped memory or an ERR_PTR() encoded
880 * error code on failure. Usage example:
881 *
882 * base = of_io_request_and_map(node, 0, "foo");
883 * if (IS_ERR(base))
884 * return PTR_ERR(base);
885 */
of_io_request_and_map(struct device_node * np,int index,const char * name)886 void __iomem *of_io_request_and_map(struct device_node *np, int index,
887 const char *name)
888 {
889 struct resource res;
890 void __iomem *mem;
891
892 if (of_address_to_resource(np, index, &res))
893 return IOMEM_ERR_PTR(-EINVAL);
894
895 if (!name)
896 name = res.name;
897 if (!request_mem_region(res.start, resource_size(&res), name))
898 return IOMEM_ERR_PTR(-EBUSY);
899
900 if (res.flags & IORESOURCE_MEM_NONPOSTED)
901 mem = ioremap_np(res.start, resource_size(&res));
902 else
903 mem = ioremap(res.start, resource_size(&res));
904
905 if (!mem) {
906 release_mem_region(res.start, resource_size(&res));
907 return IOMEM_ERR_PTR(-ENOMEM);
908 }
909
910 return mem;
911 }
912 EXPORT_SYMBOL(of_io_request_and_map);
913
914 #ifdef CONFIG_HAS_DMA
915 /**
916 * of_dma_get_range - Get DMA range info and put it into a map array
917 * @np: device node to get DMA range info
918 * @map: dma range structure to return
919 *
920 * Look in bottom up direction for the first "dma-ranges" property
921 * and parse it. Put the information into a DMA offset map array.
922 *
923 * dma-ranges format:
924 * DMA addr (dma_addr) : naddr cells
925 * CPU addr (phys_addr_t) : pna cells
926 * size : nsize cells
927 *
928 * It returns -ENODEV if "dma-ranges" property was not found for this
929 * device in the DT.
930 */
of_dma_get_range(struct device_node * np,const struct bus_dma_region ** map)931 int of_dma_get_range(struct device_node *np, const struct bus_dma_region **map)
932 {
933 struct device_node *node = of_node_get(np);
934 const __be32 *ranges = NULL;
935 bool found_dma_ranges = false;
936 struct of_range_parser parser;
937 struct of_range range;
938 struct bus_dma_region *r;
939 int len, num_ranges = 0;
940 int ret = 0;
941
942 while (node) {
943 ranges = of_get_property(node, "dma-ranges", &len);
944
945 /* Ignore empty ranges, they imply no translation required */
946 if (ranges && len > 0)
947 break;
948
949 /* Once we find 'dma-ranges', then a missing one is an error */
950 if (found_dma_ranges && !ranges) {
951 ret = -ENODEV;
952 goto out;
953 }
954 found_dma_ranges = true;
955
956 node = of_get_next_dma_parent(node);
957 }
958
959 if (!node || !ranges) {
960 pr_debug("no dma-ranges found for node(%pOF)\n", np);
961 ret = -ENODEV;
962 goto out;
963 }
964
965 of_dma_range_parser_init(&parser, node);
966 for_each_of_range(&parser, &range) {
967 if (range.cpu_addr == OF_BAD_ADDR) {
968 pr_err("translation of DMA address(%llx) to CPU address failed node(%pOF)\n",
969 range.bus_addr, node);
970 continue;
971 }
972 num_ranges++;
973 }
974
975 if (!num_ranges) {
976 ret = -EINVAL;
977 goto out;
978 }
979
980 r = kcalloc(num_ranges + 1, sizeof(*r), GFP_KERNEL);
981 if (!r) {
982 ret = -ENOMEM;
983 goto out;
984 }
985
986 /*
987 * Record all info in the generic DMA ranges array for struct device,
988 * returning an error if we don't find any parsable ranges.
989 */
990 *map = r;
991 of_dma_range_parser_init(&parser, node);
992 for_each_of_range(&parser, &range) {
993 pr_debug("dma_addr(%llx) cpu_addr(%llx) size(%llx)\n",
994 range.bus_addr, range.cpu_addr, range.size);
995 if (range.cpu_addr == OF_BAD_ADDR)
996 continue;
997 r->cpu_start = range.cpu_addr;
998 r->dma_start = range.bus_addr;
999 r->size = range.size;
1000 r->offset = range.cpu_addr - range.bus_addr;
1001 r++;
1002 }
1003 out:
1004 of_node_put(node);
1005 return ret;
1006 }
1007 #endif /* CONFIG_HAS_DMA */
1008
1009 /**
1010 * of_dma_get_max_cpu_address - Gets highest CPU address suitable for DMA
1011 * @np: The node to start searching from or NULL to start from the root
1012 *
1013 * Gets the highest CPU physical address that is addressable by all DMA masters
1014 * in the sub-tree pointed by np, or the whole tree if NULL is passed. If no
1015 * DMA constrained device is found, it returns PHYS_ADDR_MAX.
1016 */
of_dma_get_max_cpu_address(struct device_node * np)1017 phys_addr_t __init of_dma_get_max_cpu_address(struct device_node *np)
1018 {
1019 phys_addr_t max_cpu_addr = PHYS_ADDR_MAX;
1020 struct of_range_parser parser;
1021 phys_addr_t subtree_max_addr;
1022 struct device_node *child;
1023 struct of_range range;
1024 const __be32 *ranges;
1025 u64 cpu_end = 0;
1026 int len;
1027
1028 if (!np)
1029 np = of_root;
1030
1031 ranges = of_get_property(np, "dma-ranges", &len);
1032 if (ranges && len) {
1033 of_dma_range_parser_init(&parser, np);
1034 for_each_of_range(&parser, &range)
1035 if (range.cpu_addr + range.size > cpu_end)
1036 cpu_end = range.cpu_addr + range.size - 1;
1037
1038 if (max_cpu_addr > cpu_end)
1039 max_cpu_addr = cpu_end;
1040 }
1041
1042 for_each_available_child_of_node(np, child) {
1043 subtree_max_addr = of_dma_get_max_cpu_address(child);
1044 if (max_cpu_addr > subtree_max_addr)
1045 max_cpu_addr = subtree_max_addr;
1046 }
1047
1048 return max_cpu_addr;
1049 }
1050
1051 /**
1052 * of_dma_is_coherent - Check if device is coherent
1053 * @np: device node
1054 *
1055 * It returns true if "dma-coherent" property was found
1056 * for this device in the DT, or if DMA is coherent by
1057 * default for OF devices on the current platform.
1058 */
of_dma_is_coherent(struct device_node * np)1059 bool of_dma_is_coherent(struct device_node *np)
1060 {
1061 struct device_node *node;
1062
1063 if (IS_ENABLED(CONFIG_OF_DMA_DEFAULT_COHERENT))
1064 return true;
1065
1066 node = of_node_get(np);
1067
1068 while (node) {
1069 if (of_property_read_bool(node, "dma-coherent")) {
1070 of_node_put(node);
1071 return true;
1072 }
1073 node = of_get_next_dma_parent(node);
1074 }
1075 of_node_put(node);
1076 return false;
1077 }
1078 EXPORT_SYMBOL_GPL(of_dma_is_coherent);
1079
1080 /**
1081 * of_mmio_is_nonposted - Check if device uses non-posted MMIO
1082 * @np: device node
1083 *
1084 * Returns true if the "nonposted-mmio" property was found for
1085 * the device's bus.
1086 *
1087 * This is currently only enabled on builds that support Apple ARM devices, as
1088 * an optimization.
1089 */
of_mmio_is_nonposted(struct device_node * np)1090 static bool of_mmio_is_nonposted(struct device_node *np)
1091 {
1092 struct device_node *parent;
1093 bool nonposted;
1094
1095 if (!IS_ENABLED(CONFIG_ARCH_APPLE))
1096 return false;
1097
1098 parent = of_get_parent(np);
1099 if (!parent)
1100 return false;
1101
1102 nonposted = of_property_read_bool(parent, "nonposted-mmio");
1103
1104 of_node_put(parent);
1105 return nonposted;
1106 }
1107