1 /*
2 * Copyright 2012-15 Advanced Micro Devices, Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 *
22 * Authors: AMD
23 *
24 */
25
26
27 #include "reg_helper.h"
28 #include "dcn10_optc.h"
29 #include "dc.h"
30
31 #define REG(reg)\
32 optc1->tg_regs->reg
33
34 #define CTX \
35 optc1->base.ctx
36
37 #undef FN
38 #define FN(reg_name, field_name) \
39 optc1->tg_shift->field_name, optc1->tg_mask->field_name
40
41 #define STATIC_SCREEN_EVENT_MASK_RANGETIMING_DOUBLE_BUFFER_UPDATE_EN 0x100
42
43 /**
44 * apply_front_porch_workaround TODO FPGA still need?
45 *
46 * This is a workaround for a bug that has existed since R5xx and has not been
47 * fixed keep Front porch at minimum 2 for Interlaced mode or 1 for progressive.
48 */
apply_front_porch_workaround(struct dc_crtc_timing * timing)49 static void apply_front_porch_workaround(struct dc_crtc_timing *timing)
50 {
51 if (timing->flags.INTERLACE == 1) {
52 if (timing->v_front_porch < 2)
53 timing->v_front_porch = 2;
54 } else {
55 if (timing->v_front_porch < 1)
56 timing->v_front_porch = 1;
57 }
58 }
59
optc1_program_global_sync(struct timing_generator * optc,int vready_offset,int vstartup_start,int vupdate_offset,int vupdate_width)60 void optc1_program_global_sync(
61 struct timing_generator *optc,
62 int vready_offset,
63 int vstartup_start,
64 int vupdate_offset,
65 int vupdate_width)
66 {
67 struct optc *optc1 = DCN10TG_FROM_TG(optc);
68
69 optc1->vready_offset = vready_offset;
70 optc1->vstartup_start = vstartup_start;
71 optc1->vupdate_offset = vupdate_offset;
72 optc1->vupdate_width = vupdate_width;
73
74 if (optc1->vstartup_start == 0) {
75 BREAK_TO_DEBUGGER();
76 return;
77 }
78
79 REG_SET(OTG_VSTARTUP_PARAM, 0,
80 VSTARTUP_START, optc1->vstartup_start);
81
82 REG_SET_2(OTG_VUPDATE_PARAM, 0,
83 VUPDATE_OFFSET, optc1->vupdate_offset,
84 VUPDATE_WIDTH, optc1->vupdate_width);
85
86 REG_SET(OTG_VREADY_PARAM, 0,
87 VREADY_OFFSET, optc1->vready_offset);
88 }
89
optc1_disable_stereo(struct timing_generator * optc)90 static void optc1_disable_stereo(struct timing_generator *optc)
91 {
92 struct optc *optc1 = DCN10TG_FROM_TG(optc);
93
94 REG_SET(OTG_STEREO_CONTROL, 0,
95 OTG_STEREO_EN, 0);
96
97 REG_SET_2(OTG_3D_STRUCTURE_CONTROL, 0,
98 OTG_3D_STRUCTURE_EN, 0,
99 OTG_3D_STRUCTURE_STEREO_SEL_OVR, 0);
100 }
101
optc1_setup_vertical_interrupt0(struct timing_generator * optc,uint32_t start_line,uint32_t end_line)102 void optc1_setup_vertical_interrupt0(
103 struct timing_generator *optc,
104 uint32_t start_line,
105 uint32_t end_line)
106 {
107 struct optc *optc1 = DCN10TG_FROM_TG(optc);
108
109 REG_SET_2(OTG_VERTICAL_INTERRUPT0_POSITION, 0,
110 OTG_VERTICAL_INTERRUPT0_LINE_START, start_line,
111 OTG_VERTICAL_INTERRUPT0_LINE_END, end_line);
112 }
113
optc1_setup_vertical_interrupt1(struct timing_generator * optc,uint32_t start_line)114 void optc1_setup_vertical_interrupt1(
115 struct timing_generator *optc,
116 uint32_t start_line)
117 {
118 struct optc *optc1 = DCN10TG_FROM_TG(optc);
119
120 REG_SET(OTG_VERTICAL_INTERRUPT1_POSITION, 0,
121 OTG_VERTICAL_INTERRUPT1_LINE_START, start_line);
122 }
123
optc1_setup_vertical_interrupt2(struct timing_generator * optc,uint32_t start_line)124 void optc1_setup_vertical_interrupt2(
125 struct timing_generator *optc,
126 uint32_t start_line)
127 {
128 struct optc *optc1 = DCN10TG_FROM_TG(optc);
129
130 REG_SET(OTG_VERTICAL_INTERRUPT2_POSITION, 0,
131 OTG_VERTICAL_INTERRUPT2_LINE_START, start_line);
132 }
133
134 /**
135 * Vupdate keepout can be set to a window to block the update lock for that pipe from changing.
136 * Start offset begins with vstartup and goes for x number of clocks,
137 * end offset starts from end of vupdate to x number of clocks.
138 */
optc1_set_vupdate_keepout(struct timing_generator * optc,struct vupdate_keepout_params * params)139 void optc1_set_vupdate_keepout(struct timing_generator *optc,
140 struct vupdate_keepout_params *params)
141 {
142 struct optc *optc1 = DCN10TG_FROM_TG(optc);
143
144 REG_SET_3(OTG_VUPDATE_KEEPOUT, 0,
145 MASTER_UPDATE_LOCK_VUPDATE_KEEPOUT_START_OFFSET, params->start_offset,
146 MASTER_UPDATE_LOCK_VUPDATE_KEEPOUT_END_OFFSET, params->end_offset,
147 OTG_MASTER_UPDATE_LOCK_VUPDATE_KEEPOUT_EN, params->enable);
148 }
149
150 /**
151 * program_timing_generator used by mode timing set
152 * Program CRTC Timing Registers - OTG_H_*, OTG_V_*, Pixel repetition.
153 * Including SYNC. Call BIOS command table to program Timings.
154 */
optc1_program_timing(struct timing_generator * optc,const struct dc_crtc_timing * dc_crtc_timing,int vready_offset,int vstartup_start,int vupdate_offset,int vupdate_width,const enum signal_type signal,bool use_vbios)155 void optc1_program_timing(
156 struct timing_generator *optc,
157 const struct dc_crtc_timing *dc_crtc_timing,
158 int vready_offset,
159 int vstartup_start,
160 int vupdate_offset,
161 int vupdate_width,
162 const enum signal_type signal,
163 bool use_vbios)
164 {
165 struct dc_crtc_timing patched_crtc_timing;
166 uint32_t asic_blank_end;
167 uint32_t asic_blank_start;
168 uint32_t v_total;
169 uint32_t v_sync_end;
170 uint32_t h_sync_polarity, v_sync_polarity;
171 uint32_t start_point = 0;
172 uint32_t field_num = 0;
173 enum h_timing_div_mode h_div = H_TIMING_NO_DIV;
174
175 struct optc *optc1 = DCN10TG_FROM_TG(optc);
176
177 optc1->signal = signal;
178 optc1->vready_offset = vready_offset;
179 optc1->vstartup_start = vstartup_start;
180 optc1->vupdate_offset = vupdate_offset;
181 optc1->vupdate_width = vupdate_width;
182 patched_crtc_timing = *dc_crtc_timing;
183 apply_front_porch_workaround(&patched_crtc_timing);
184
185 /* Load horizontal timing */
186
187 /* CRTC_H_TOTAL = vesa.h_total - 1 */
188 REG_SET(OTG_H_TOTAL, 0,
189 OTG_H_TOTAL, patched_crtc_timing.h_total - 1);
190
191 /* h_sync_start = 0, h_sync_end = vesa.h_sync_width */
192 REG_UPDATE_2(OTG_H_SYNC_A,
193 OTG_H_SYNC_A_START, 0,
194 OTG_H_SYNC_A_END, patched_crtc_timing.h_sync_width);
195
196 /* blank_start = line end - front porch */
197 asic_blank_start = patched_crtc_timing.h_total -
198 patched_crtc_timing.h_front_porch;
199
200 /* blank_end = blank_start - active */
201 asic_blank_end = asic_blank_start -
202 patched_crtc_timing.h_border_right -
203 patched_crtc_timing.h_addressable -
204 patched_crtc_timing.h_border_left;
205
206 REG_UPDATE_2(OTG_H_BLANK_START_END,
207 OTG_H_BLANK_START, asic_blank_start,
208 OTG_H_BLANK_END, asic_blank_end);
209
210 /* h_sync polarity */
211 h_sync_polarity = patched_crtc_timing.flags.HSYNC_POSITIVE_POLARITY ?
212 0 : 1;
213
214 REG_UPDATE(OTG_H_SYNC_A_CNTL,
215 OTG_H_SYNC_A_POL, h_sync_polarity);
216
217 v_total = patched_crtc_timing.v_total - 1;
218
219 REG_SET(OTG_V_TOTAL, 0,
220 OTG_V_TOTAL, v_total);
221
222 /* In case of V_TOTAL_CONTROL is on, make sure OTG_V_TOTAL_MAX and
223 * OTG_V_TOTAL_MIN are equal to V_TOTAL.
224 */
225 REG_SET(OTG_V_TOTAL_MAX, 0,
226 OTG_V_TOTAL_MAX, v_total);
227 REG_SET(OTG_V_TOTAL_MIN, 0,
228 OTG_V_TOTAL_MIN, v_total);
229
230 /* v_sync_start = 0, v_sync_end = v_sync_width */
231 v_sync_end = patched_crtc_timing.v_sync_width;
232
233 REG_UPDATE_2(OTG_V_SYNC_A,
234 OTG_V_SYNC_A_START, 0,
235 OTG_V_SYNC_A_END, v_sync_end);
236
237 /* blank_start = frame end - front porch */
238 asic_blank_start = patched_crtc_timing.v_total -
239 patched_crtc_timing.v_front_porch;
240
241 /* blank_end = blank_start - active */
242 asic_blank_end = asic_blank_start -
243 patched_crtc_timing.v_border_bottom -
244 patched_crtc_timing.v_addressable -
245 patched_crtc_timing.v_border_top;
246
247 REG_UPDATE_2(OTG_V_BLANK_START_END,
248 OTG_V_BLANK_START, asic_blank_start,
249 OTG_V_BLANK_END, asic_blank_end);
250
251 /* v_sync polarity */
252 v_sync_polarity = patched_crtc_timing.flags.VSYNC_POSITIVE_POLARITY ?
253 0 : 1;
254
255 REG_UPDATE(OTG_V_SYNC_A_CNTL,
256 OTG_V_SYNC_A_POL, v_sync_polarity);
257
258 if (optc1->signal == SIGNAL_TYPE_DISPLAY_PORT ||
259 optc1->signal == SIGNAL_TYPE_DISPLAY_PORT_MST ||
260 optc1->signal == SIGNAL_TYPE_EDP) {
261 start_point = 1;
262 if (patched_crtc_timing.flags.INTERLACE == 1)
263 field_num = 1;
264 }
265
266 /* Interlace */
267 if (REG(OTG_INTERLACE_CONTROL)) {
268 if (patched_crtc_timing.flags.INTERLACE == 1)
269 REG_UPDATE(OTG_INTERLACE_CONTROL,
270 OTG_INTERLACE_ENABLE, 1);
271 else
272 REG_UPDATE(OTG_INTERLACE_CONTROL,
273 OTG_INTERLACE_ENABLE, 0);
274 }
275
276 /* VTG enable set to 0 first VInit */
277 REG_UPDATE(CONTROL,
278 VTG0_ENABLE, 0);
279
280 /* original code is using VTG offset to address OTG reg, seems wrong */
281 REG_UPDATE_2(OTG_CONTROL,
282 OTG_START_POINT_CNTL, start_point,
283 OTG_FIELD_NUMBER_CNTL, field_num);
284
285 optc->funcs->program_global_sync(optc,
286 vready_offset,
287 vstartup_start,
288 vupdate_offset,
289 vupdate_width);
290
291 optc->funcs->set_vtg_params(optc, dc_crtc_timing, true);
292
293 /* TODO
294 * patched_crtc_timing.flags.HORZ_COUNT_BY_TWO == 1
295 * program_horz_count_by_2
296 * for DVI 30bpp mode, 0 otherwise
297 * program_horz_count_by_2(optc, &patched_crtc_timing);
298 */
299
300 /* Enable stereo - only when we need to pack 3D frame. Other types
301 * of stereo handled in explicit call
302 */
303
304 if (optc1_is_two_pixels_per_containter(&patched_crtc_timing) || optc1->opp_count == 2)
305 h_div = H_TIMING_DIV_BY2;
306
307 if (REG(OPTC_DATA_FORMAT_CONTROL)) {
308 uint32_t data_fmt = 0;
309
310 if (patched_crtc_timing.pixel_encoding == PIXEL_ENCODING_YCBCR422)
311 data_fmt = 1;
312 else if (patched_crtc_timing.pixel_encoding == PIXEL_ENCODING_YCBCR420)
313 data_fmt = 2;
314
315 REG_UPDATE(OPTC_DATA_FORMAT_CONTROL, OPTC_DATA_FORMAT, data_fmt);
316 }
317
318 if (optc1->tg_mask->OTG_H_TIMING_DIV_MODE != 0) {
319 if (optc1->opp_count == 4)
320 h_div = H_TIMING_DIV_BY4;
321
322 REG_UPDATE(OTG_H_TIMING_CNTL,
323 OTG_H_TIMING_DIV_MODE, h_div);
324 } else {
325 REG_UPDATE(OTG_H_TIMING_CNTL,
326 OTG_H_TIMING_DIV_BY2, h_div);
327 }
328 }
329
optc1_set_vtg_params(struct timing_generator * optc,const struct dc_crtc_timing * dc_crtc_timing,bool program_fp2)330 void optc1_set_vtg_params(struct timing_generator *optc,
331 const struct dc_crtc_timing *dc_crtc_timing, bool program_fp2)
332 {
333 struct dc_crtc_timing patched_crtc_timing;
334 uint32_t asic_blank_end;
335 uint32_t v_init;
336 uint32_t v_fp2 = 0;
337 int32_t vertical_line_start;
338
339 struct optc *optc1 = DCN10TG_FROM_TG(optc);
340
341 patched_crtc_timing = *dc_crtc_timing;
342 apply_front_porch_workaround(&patched_crtc_timing);
343
344 /* VCOUNT_INIT is the start of blank */
345 v_init = patched_crtc_timing.v_total - patched_crtc_timing.v_front_porch;
346
347 /* end of blank = v_init - active */
348 asic_blank_end = v_init -
349 patched_crtc_timing.v_border_bottom -
350 patched_crtc_timing.v_addressable -
351 patched_crtc_timing.v_border_top;
352
353 /* if VSTARTUP is before VSYNC, FP2 is the offset, otherwise 0 */
354 vertical_line_start = asic_blank_end - optc1->vstartup_start + 1;
355 if (vertical_line_start < 0)
356 v_fp2 = -vertical_line_start;
357
358 /* Interlace */
359 if (REG(OTG_INTERLACE_CONTROL)) {
360 if (patched_crtc_timing.flags.INTERLACE == 1) {
361 v_init = v_init / 2;
362 if ((optc1->vstartup_start/2)*2 > asic_blank_end)
363 v_fp2 = v_fp2 / 2;
364 }
365 }
366
367 if (program_fp2)
368 REG_UPDATE_2(CONTROL,
369 VTG0_FP2, v_fp2,
370 VTG0_VCOUNT_INIT, v_init);
371 else
372 REG_UPDATE(CONTROL, VTG0_VCOUNT_INIT, v_init);
373 }
374
optc1_set_blank_data_double_buffer(struct timing_generator * optc,bool enable)375 void optc1_set_blank_data_double_buffer(struct timing_generator *optc, bool enable)
376 {
377 struct optc *optc1 = DCN10TG_FROM_TG(optc);
378
379 uint32_t blank_data_double_buffer_enable = enable ? 1 : 0;
380
381 REG_UPDATE(OTG_DOUBLE_BUFFER_CONTROL,
382 OTG_BLANK_DATA_DOUBLE_BUFFER_EN, blank_data_double_buffer_enable);
383 }
384
385 /**
386 * optc1_set_timing_double_buffer() - DRR double buffering control
387 *
388 * Sets double buffer point for V_TOTAL, H_TOTAL, VTOTAL_MIN,
389 * VTOTAL_MAX, VTOTAL_MIN_SEL and VTOTAL_MAX_SEL registers.
390 *
391 * Options: any time, start of frame, dp start of frame (range timing)
392 */
optc1_set_timing_double_buffer(struct timing_generator * optc,bool enable)393 void optc1_set_timing_double_buffer(struct timing_generator *optc, bool enable)
394 {
395 struct optc *optc1 = DCN10TG_FROM_TG(optc);
396 uint32_t mode = enable ? 2 : 0;
397
398 REG_UPDATE(OTG_DOUBLE_BUFFER_CONTROL,
399 OTG_RANGE_TIMING_DBUF_UPDATE_MODE, mode);
400 }
401
402 /**
403 * unblank_crtc
404 * Call ASIC Control Object to UnBlank CRTC.
405 */
optc1_unblank_crtc(struct timing_generator * optc)406 static void optc1_unblank_crtc(struct timing_generator *optc)
407 {
408 struct optc *optc1 = DCN10TG_FROM_TG(optc);
409
410 REG_UPDATE_2(OTG_BLANK_CONTROL,
411 OTG_BLANK_DATA_EN, 0,
412 OTG_BLANK_DE_MODE, 0);
413
414 /* W/A for automated testing
415 * Automated testing will fail underflow test as there
416 * sporadic underflows which occur during the optc blank
417 * sequence. As a w/a, clear underflow on unblank.
418 * This prevents the failure, but will not mask actual
419 * underflow that affect real use cases.
420 */
421 optc1_clear_optc_underflow(optc);
422 }
423
424 /**
425 * blank_crtc
426 * Call ASIC Control Object to Blank CRTC.
427 */
428
optc1_blank_crtc(struct timing_generator * optc)429 static void optc1_blank_crtc(struct timing_generator *optc)
430 {
431 struct optc *optc1 = DCN10TG_FROM_TG(optc);
432
433 REG_UPDATE_2(OTG_BLANK_CONTROL,
434 OTG_BLANK_DATA_EN, 1,
435 OTG_BLANK_DE_MODE, 0);
436
437 optc1_set_blank_data_double_buffer(optc, false);
438 }
439
optc1_set_blank(struct timing_generator * optc,bool enable_blanking)440 void optc1_set_blank(struct timing_generator *optc,
441 bool enable_blanking)
442 {
443 if (enable_blanking)
444 optc1_blank_crtc(optc);
445 else
446 optc1_unblank_crtc(optc);
447 }
448
optc1_is_blanked(struct timing_generator * optc)449 bool optc1_is_blanked(struct timing_generator *optc)
450 {
451 struct optc *optc1 = DCN10TG_FROM_TG(optc);
452 uint32_t blank_en;
453 uint32_t blank_state;
454
455 REG_GET_2(OTG_BLANK_CONTROL,
456 OTG_BLANK_DATA_EN, &blank_en,
457 OTG_CURRENT_BLANK_STATE, &blank_state);
458
459 return blank_en && blank_state;
460 }
461
optc1_enable_optc_clock(struct timing_generator * optc,bool enable)462 void optc1_enable_optc_clock(struct timing_generator *optc, bool enable)
463 {
464 struct optc *optc1 = DCN10TG_FROM_TG(optc);
465
466 if (enable) {
467 REG_UPDATE_2(OPTC_INPUT_CLOCK_CONTROL,
468 OPTC_INPUT_CLK_EN, 1,
469 OPTC_INPUT_CLK_GATE_DIS, 1);
470
471 REG_WAIT(OPTC_INPUT_CLOCK_CONTROL,
472 OPTC_INPUT_CLK_ON, 1,
473 1, 1000);
474
475 /* Enable clock */
476 REG_UPDATE_2(OTG_CLOCK_CONTROL,
477 OTG_CLOCK_EN, 1,
478 OTG_CLOCK_GATE_DIS, 1);
479 REG_WAIT(OTG_CLOCK_CONTROL,
480 OTG_CLOCK_ON, 1,
481 1, 1000);
482 } else {
483
484 //last chance to clear underflow, otherwise, it will always there due to clock is off.
485 if (optc->funcs->is_optc_underflow_occurred(optc) == true)
486 optc->funcs->clear_optc_underflow(optc);
487
488 REG_UPDATE_2(OTG_CLOCK_CONTROL,
489 OTG_CLOCK_GATE_DIS, 0,
490 OTG_CLOCK_EN, 0);
491
492 REG_UPDATE_2(OPTC_INPUT_CLOCK_CONTROL,
493 OPTC_INPUT_CLK_GATE_DIS, 0,
494 OPTC_INPUT_CLK_EN, 0);
495 }
496 }
497
498 /**
499 * Enable CRTC
500 * Enable CRTC - call ASIC Control Object to enable Timing generator.
501 */
optc1_enable_crtc(struct timing_generator * optc)502 static bool optc1_enable_crtc(struct timing_generator *optc)
503 {
504 /* TODO FPGA wait for answer
505 * OTG_MASTER_UPDATE_MODE != CRTC_MASTER_UPDATE_MODE
506 * OTG_MASTER_UPDATE_LOCK != CRTC_MASTER_UPDATE_LOCK
507 */
508 struct optc *optc1 = DCN10TG_FROM_TG(optc);
509
510 /* opp instance for OTG. For DCN1.0, ODM is remoed.
511 * OPP and OPTC should 1:1 mapping
512 */
513 REG_UPDATE(OPTC_DATA_SOURCE_SELECT,
514 OPTC_SRC_SEL, optc->inst);
515
516 /* VTG enable first is for HW workaround */
517 REG_UPDATE(CONTROL,
518 VTG0_ENABLE, 1);
519
520 REG_SEQ_START();
521
522 /* Enable CRTC */
523 REG_UPDATE_2(OTG_CONTROL,
524 OTG_DISABLE_POINT_CNTL, 3,
525 OTG_MASTER_EN, 1);
526
527 REG_SEQ_SUBMIT();
528 REG_SEQ_WAIT_DONE();
529
530 return true;
531 }
532
533 /* disable_crtc - call ASIC Control Object to disable Timing generator. */
optc1_disable_crtc(struct timing_generator * optc)534 bool optc1_disable_crtc(struct timing_generator *optc)
535 {
536 struct optc *optc1 = DCN10TG_FROM_TG(optc);
537
538 /* disable otg request until end of the first line
539 * in the vertical blank region
540 */
541 REG_UPDATE_2(OTG_CONTROL,
542 OTG_DISABLE_POINT_CNTL, 3,
543 OTG_MASTER_EN, 0);
544
545 REG_UPDATE(CONTROL,
546 VTG0_ENABLE, 0);
547
548 /* CRTC disabled, so disable clock. */
549 REG_WAIT(OTG_CLOCK_CONTROL,
550 OTG_BUSY, 0,
551 1, 100000);
552
553 return true;
554 }
555
556
optc1_program_blank_color(struct timing_generator * optc,const struct tg_color * black_color)557 void optc1_program_blank_color(
558 struct timing_generator *optc,
559 const struct tg_color *black_color)
560 {
561 struct optc *optc1 = DCN10TG_FROM_TG(optc);
562
563 REG_SET_3(OTG_BLACK_COLOR, 0,
564 OTG_BLACK_COLOR_B_CB, black_color->color_b_cb,
565 OTG_BLACK_COLOR_G_Y, black_color->color_g_y,
566 OTG_BLACK_COLOR_R_CR, black_color->color_r_cr);
567 }
568
optc1_validate_timing(struct timing_generator * optc,const struct dc_crtc_timing * timing)569 bool optc1_validate_timing(
570 struct timing_generator *optc,
571 const struct dc_crtc_timing *timing)
572 {
573 uint32_t v_blank;
574 uint32_t h_blank;
575 uint32_t min_v_blank;
576 struct optc *optc1 = DCN10TG_FROM_TG(optc);
577
578 ASSERT(timing != NULL);
579
580 v_blank = (timing->v_total - timing->v_addressable -
581 timing->v_border_top - timing->v_border_bottom);
582
583 h_blank = (timing->h_total - timing->h_addressable -
584 timing->h_border_right -
585 timing->h_border_left);
586
587 if (timing->timing_3d_format != TIMING_3D_FORMAT_NONE &&
588 timing->timing_3d_format != TIMING_3D_FORMAT_HW_FRAME_PACKING &&
589 timing->timing_3d_format != TIMING_3D_FORMAT_TOP_AND_BOTTOM &&
590 timing->timing_3d_format != TIMING_3D_FORMAT_SIDE_BY_SIDE &&
591 timing->timing_3d_format != TIMING_3D_FORMAT_FRAME_ALTERNATE &&
592 timing->timing_3d_format != TIMING_3D_FORMAT_INBAND_FA)
593 return false;
594
595 /* Temporarily blocking interlacing mode until it's supported */
596 if (timing->flags.INTERLACE == 1)
597 return false;
598
599 /* Check maximum number of pixels supported by Timing Generator
600 * (Currently will never fail, in order to fail needs display which
601 * needs more than 8192 horizontal and
602 * more than 8192 vertical total pixels)
603 */
604 if (timing->h_total > optc1->max_h_total ||
605 timing->v_total > optc1->max_v_total)
606 return false;
607
608
609 if (h_blank < optc1->min_h_blank)
610 return false;
611
612 if (timing->h_sync_width < optc1->min_h_sync_width ||
613 timing->v_sync_width < optc1->min_v_sync_width)
614 return false;
615
616 min_v_blank = timing->flags.INTERLACE?optc1->min_v_blank_interlace:optc1->min_v_blank;
617
618 if (v_blank < min_v_blank)
619 return false;
620
621 return true;
622
623 }
624
625 /*
626 * get_vblank_counter
627 *
628 * @brief
629 * Get counter for vertical blanks. use register CRTC_STATUS_FRAME_COUNT which
630 * holds the counter of frames.
631 *
632 * @param
633 * struct timing_generator *optc - [in] timing generator which controls the
634 * desired CRTC
635 *
636 * @return
637 * Counter of frames, which should equal to number of vblanks.
638 */
optc1_get_vblank_counter(struct timing_generator * optc)639 uint32_t optc1_get_vblank_counter(struct timing_generator *optc)
640 {
641 struct optc *optc1 = DCN10TG_FROM_TG(optc);
642 uint32_t frame_count;
643
644 REG_GET(OTG_STATUS_FRAME_COUNT,
645 OTG_FRAME_COUNT, &frame_count);
646
647 return frame_count;
648 }
649
optc1_lock(struct timing_generator * optc)650 void optc1_lock(struct timing_generator *optc)
651 {
652 struct optc *optc1 = DCN10TG_FROM_TG(optc);
653 uint32_t regval = 0;
654
655 regval = REG_READ(OTG_CONTROL);
656
657 /* otg is not running, do not need to be locked */
658 if ((regval & 0x1) == 0x0)
659 return;
660
661 REG_SET(OTG_GLOBAL_CONTROL0, 0,
662 OTG_MASTER_UPDATE_LOCK_SEL, optc->inst);
663 REG_SET(OTG_MASTER_UPDATE_LOCK, 0,
664 OTG_MASTER_UPDATE_LOCK, 1);
665
666 /* Should be fast, status does not update on maximus */
667 if (optc->ctx->dce_environment != DCE_ENV_FPGA_MAXIMUS) {
668
669 REG_WAIT(OTG_MASTER_UPDATE_LOCK,
670 UPDATE_LOCK_STATUS, 1,
671 1, 10);
672 }
673 }
674
optc1_unlock(struct timing_generator * optc)675 void optc1_unlock(struct timing_generator *optc)
676 {
677 struct optc *optc1 = DCN10TG_FROM_TG(optc);
678
679 REG_SET(OTG_MASTER_UPDATE_LOCK, 0,
680 OTG_MASTER_UPDATE_LOCK, 0);
681 }
682
optc1_is_locked(struct timing_generator * optc)683 bool optc1_is_locked(struct timing_generator *optc)
684 {
685 struct optc *optc1 = DCN10TG_FROM_TG(optc);
686 uint32_t locked;
687
688 REG_GET(OTG_MASTER_UPDATE_LOCK, UPDATE_LOCK_STATUS, &locked);
689
690 return (locked == 1);
691 }
692
optc1_get_position(struct timing_generator * optc,struct crtc_position * position)693 void optc1_get_position(struct timing_generator *optc,
694 struct crtc_position *position)
695 {
696 struct optc *optc1 = DCN10TG_FROM_TG(optc);
697
698 REG_GET_2(OTG_STATUS_POSITION,
699 OTG_HORZ_COUNT, &position->horizontal_count,
700 OTG_VERT_COUNT, &position->vertical_count);
701
702 REG_GET(OTG_NOM_VERT_POSITION,
703 OTG_VERT_COUNT_NOM, &position->nominal_vcount);
704 }
705
optc1_is_counter_moving(struct timing_generator * optc)706 bool optc1_is_counter_moving(struct timing_generator *optc)
707 {
708 struct crtc_position position1, position2;
709
710 optc->funcs->get_position(optc, &position1);
711 optc->funcs->get_position(optc, &position2);
712
713 if (position1.horizontal_count == position2.horizontal_count &&
714 position1.vertical_count == position2.vertical_count)
715 return false;
716 else
717 return true;
718 }
719
optc1_did_triggered_reset_occur(struct timing_generator * optc)720 bool optc1_did_triggered_reset_occur(
721 struct timing_generator *optc)
722 {
723 struct optc *optc1 = DCN10TG_FROM_TG(optc);
724 uint32_t occurred_force, occurred_vsync;
725
726 REG_GET(OTG_FORCE_COUNT_NOW_CNTL,
727 OTG_FORCE_COUNT_NOW_OCCURRED, &occurred_force);
728
729 REG_GET(OTG_VERT_SYNC_CONTROL,
730 OTG_FORCE_VSYNC_NEXT_LINE_OCCURRED, &occurred_vsync);
731
732 return occurred_vsync != 0 || occurred_force != 0;
733 }
734
optc1_disable_reset_trigger(struct timing_generator * optc)735 void optc1_disable_reset_trigger(struct timing_generator *optc)
736 {
737 struct optc *optc1 = DCN10TG_FROM_TG(optc);
738
739 REG_WRITE(OTG_TRIGA_CNTL, 0);
740
741 REG_SET(OTG_FORCE_COUNT_NOW_CNTL, 0,
742 OTG_FORCE_COUNT_NOW_CLEAR, 1);
743
744 REG_SET(OTG_VERT_SYNC_CONTROL, 0,
745 OTG_FORCE_VSYNC_NEXT_LINE_CLEAR, 1);
746 }
747
optc1_enable_reset_trigger(struct timing_generator * optc,int source_tg_inst)748 void optc1_enable_reset_trigger(struct timing_generator *optc, int source_tg_inst)
749 {
750 struct optc *optc1 = DCN10TG_FROM_TG(optc);
751 uint32_t falling_edge;
752
753 REG_GET(OTG_V_SYNC_A_CNTL,
754 OTG_V_SYNC_A_POL, &falling_edge);
755
756 if (falling_edge)
757 REG_SET_3(OTG_TRIGA_CNTL, 0,
758 /* vsync signal from selected OTG pipe based
759 * on OTG_TRIG_SOURCE_PIPE_SELECT setting
760 */
761 OTG_TRIGA_SOURCE_SELECT, 20,
762 OTG_TRIGA_SOURCE_PIPE_SELECT, source_tg_inst,
763 /* always detect falling edge */
764 OTG_TRIGA_FALLING_EDGE_DETECT_CNTL, 1);
765 else
766 REG_SET_3(OTG_TRIGA_CNTL, 0,
767 /* vsync signal from selected OTG pipe based
768 * on OTG_TRIG_SOURCE_PIPE_SELECT setting
769 */
770 OTG_TRIGA_SOURCE_SELECT, 20,
771 OTG_TRIGA_SOURCE_PIPE_SELECT, source_tg_inst,
772 /* always detect rising edge */
773 OTG_TRIGA_RISING_EDGE_DETECT_CNTL, 1);
774
775 REG_SET(OTG_FORCE_COUNT_NOW_CNTL, 0,
776 /* force H count to H_TOTAL and V count to V_TOTAL in
777 * progressive mode and V_TOTAL-1 in interlaced mode
778 */
779 OTG_FORCE_COUNT_NOW_MODE, 2);
780 }
781
optc1_enable_crtc_reset(struct timing_generator * optc,int source_tg_inst,struct crtc_trigger_info * crtc_tp)782 void optc1_enable_crtc_reset(
783 struct timing_generator *optc,
784 int source_tg_inst,
785 struct crtc_trigger_info *crtc_tp)
786 {
787 struct optc *optc1 = DCN10TG_FROM_TG(optc);
788 uint32_t falling_edge = 0;
789 uint32_t rising_edge = 0;
790
791 switch (crtc_tp->event) {
792
793 case CRTC_EVENT_VSYNC_RISING:
794 rising_edge = 1;
795 break;
796
797 case CRTC_EVENT_VSYNC_FALLING:
798 falling_edge = 1;
799 break;
800 }
801
802 REG_SET_4(OTG_TRIGA_CNTL, 0,
803 /* vsync signal from selected OTG pipe based
804 * on OTG_TRIG_SOURCE_PIPE_SELECT setting
805 */
806 OTG_TRIGA_SOURCE_SELECT, 20,
807 OTG_TRIGA_SOURCE_PIPE_SELECT, source_tg_inst,
808 /* always detect falling edge */
809 OTG_TRIGA_RISING_EDGE_DETECT_CNTL, rising_edge,
810 OTG_TRIGA_FALLING_EDGE_DETECT_CNTL, falling_edge);
811
812 switch (crtc_tp->delay) {
813 case TRIGGER_DELAY_NEXT_LINE:
814 REG_SET(OTG_VERT_SYNC_CONTROL, 0,
815 OTG_AUTO_FORCE_VSYNC_MODE, 1);
816 break;
817 case TRIGGER_DELAY_NEXT_PIXEL:
818 REG_SET(OTG_FORCE_COUNT_NOW_CNTL, 0,
819 /* force H count to H_TOTAL and V count to V_TOTAL in
820 * progressive mode and V_TOTAL-1 in interlaced mode
821 */
822 OTG_FORCE_COUNT_NOW_MODE, 2);
823 break;
824 }
825 }
826
optc1_wait_for_state(struct timing_generator * optc,enum crtc_state state)827 void optc1_wait_for_state(struct timing_generator *optc,
828 enum crtc_state state)
829 {
830 struct optc *optc1 = DCN10TG_FROM_TG(optc);
831
832 switch (state) {
833 case CRTC_STATE_VBLANK:
834 REG_WAIT(OTG_STATUS,
835 OTG_V_BLANK, 1,
836 1, 100000); /* 1 vupdate at 10hz */
837 break;
838
839 case CRTC_STATE_VACTIVE:
840 REG_WAIT(OTG_STATUS,
841 OTG_V_ACTIVE_DISP, 1,
842 1, 100000); /* 1 vupdate at 10hz */
843 break;
844
845 default:
846 break;
847 }
848 }
849
optc1_set_early_control(struct timing_generator * optc,uint32_t early_cntl)850 void optc1_set_early_control(
851 struct timing_generator *optc,
852 uint32_t early_cntl)
853 {
854 /* asic design change, do not need this control
855 * empty for share caller logic
856 */
857 }
858
859
optc1_set_static_screen_control(struct timing_generator * optc,uint32_t event_triggers,uint32_t num_frames)860 void optc1_set_static_screen_control(
861 struct timing_generator *optc,
862 uint32_t event_triggers,
863 uint32_t num_frames)
864 {
865 struct optc *optc1 = DCN10TG_FROM_TG(optc);
866
867 // By register spec, it only takes 8 bit value
868 if (num_frames > 0xFF)
869 num_frames = 0xFF;
870
871 /* Bit 8 is no longer applicable in RV for PSR case,
872 * set bit 8 to 0 if given
873 */
874 if ((event_triggers & STATIC_SCREEN_EVENT_MASK_RANGETIMING_DOUBLE_BUFFER_UPDATE_EN)
875 != 0)
876 event_triggers = event_triggers &
877 ~STATIC_SCREEN_EVENT_MASK_RANGETIMING_DOUBLE_BUFFER_UPDATE_EN;
878
879 REG_SET_2(OTG_STATIC_SCREEN_CONTROL, 0,
880 OTG_STATIC_SCREEN_EVENT_MASK, event_triggers,
881 OTG_STATIC_SCREEN_FRAME_COUNT, num_frames);
882 }
883
optc1_setup_manual_trigger(struct timing_generator * optc)884 void optc1_setup_manual_trigger(struct timing_generator *optc)
885 {
886 struct optc *optc1 = DCN10TG_FROM_TG(optc);
887
888 REG_SET(OTG_GLOBAL_CONTROL2, 0,
889 MANUAL_FLOW_CONTROL_SEL, optc->inst);
890
891 REG_SET_8(OTG_TRIGA_CNTL, 0,
892 OTG_TRIGA_SOURCE_SELECT, 22,
893 OTG_TRIGA_SOURCE_PIPE_SELECT, optc->inst,
894 OTG_TRIGA_RISING_EDGE_DETECT_CNTL, 1,
895 OTG_TRIGA_FALLING_EDGE_DETECT_CNTL, 0,
896 OTG_TRIGA_POLARITY_SELECT, 0,
897 OTG_TRIGA_FREQUENCY_SELECT, 0,
898 OTG_TRIGA_DELAY, 0,
899 OTG_TRIGA_CLEAR, 1);
900 }
901
optc1_program_manual_trigger(struct timing_generator * optc)902 void optc1_program_manual_trigger(struct timing_generator *optc)
903 {
904 struct optc *optc1 = DCN10TG_FROM_TG(optc);
905
906 REG_SET(OTG_MANUAL_FLOW_CONTROL, 0,
907 MANUAL_FLOW_CONTROL, 1);
908
909 REG_SET(OTG_MANUAL_FLOW_CONTROL, 0,
910 MANUAL_FLOW_CONTROL, 0);
911 }
912
913
914 /**
915 *****************************************************************************
916 * Function: set_drr
917 *
918 * @brief
919 * Program dynamic refresh rate registers m_OTGx_OTG_V_TOTAL_*.
920 *
921 *****************************************************************************
922 */
optc1_set_drr(struct timing_generator * optc,const struct drr_params * params)923 void optc1_set_drr(
924 struct timing_generator *optc,
925 const struct drr_params *params)
926 {
927 struct optc *optc1 = DCN10TG_FROM_TG(optc);
928
929 if (params != NULL &&
930 params->vertical_total_max > 0 &&
931 params->vertical_total_min > 0) {
932
933 if (params->vertical_total_mid != 0) {
934
935 REG_SET(OTG_V_TOTAL_MID, 0,
936 OTG_V_TOTAL_MID, params->vertical_total_mid - 1);
937
938 REG_UPDATE_2(OTG_V_TOTAL_CONTROL,
939 OTG_VTOTAL_MID_REPLACING_MAX_EN, 1,
940 OTG_VTOTAL_MID_FRAME_NUM,
941 (uint8_t)params->vertical_total_mid_frame_num);
942
943 }
944
945 REG_SET(OTG_V_TOTAL_MAX, 0,
946 OTG_V_TOTAL_MAX, params->vertical_total_max - 1);
947
948 REG_SET(OTG_V_TOTAL_MIN, 0,
949 OTG_V_TOTAL_MIN, params->vertical_total_min - 1);
950
951 REG_UPDATE_5(OTG_V_TOTAL_CONTROL,
952 OTG_V_TOTAL_MIN_SEL, 1,
953 OTG_V_TOTAL_MAX_SEL, 1,
954 OTG_FORCE_LOCK_ON_EVENT, 0,
955 OTG_SET_V_TOTAL_MIN_MASK_EN, 0,
956 OTG_SET_V_TOTAL_MIN_MASK, 0);
957
958 // Setup manual flow control for EOF via TRIG_A
959 optc->funcs->setup_manual_trigger(optc);
960
961 } else {
962 REG_UPDATE_4(OTG_V_TOTAL_CONTROL,
963 OTG_SET_V_TOTAL_MIN_MASK, 0,
964 OTG_V_TOTAL_MIN_SEL, 0,
965 OTG_V_TOTAL_MAX_SEL, 0,
966 OTG_FORCE_LOCK_ON_EVENT, 0);
967
968 REG_SET(OTG_V_TOTAL_MIN, 0,
969 OTG_V_TOTAL_MIN, 0);
970
971 REG_SET(OTG_V_TOTAL_MAX, 0,
972 OTG_V_TOTAL_MAX, 0);
973 }
974 }
975
optc1_set_vtotal_min_max(struct timing_generator * optc,int vtotal_min,int vtotal_max)976 void optc1_set_vtotal_min_max(struct timing_generator *optc, int vtotal_min, int vtotal_max)
977 {
978 struct optc *optc1 = DCN10TG_FROM_TG(optc);
979
980 REG_SET(OTG_V_TOTAL_MAX, 0,
981 OTG_V_TOTAL_MAX, vtotal_max);
982
983 REG_SET(OTG_V_TOTAL_MIN, 0,
984 OTG_V_TOTAL_MIN, vtotal_min);
985 }
986
optc1_set_test_pattern(struct timing_generator * optc,enum controller_dp_test_pattern test_pattern,enum dc_color_depth color_depth)987 static void optc1_set_test_pattern(
988 struct timing_generator *optc,
989 /* TODO: replace 'controller_dp_test_pattern' by 'test_pattern_mode'
990 * because this is not DP-specific (which is probably somewhere in DP
991 * encoder) */
992 enum controller_dp_test_pattern test_pattern,
993 enum dc_color_depth color_depth)
994 {
995 struct optc *optc1 = DCN10TG_FROM_TG(optc);
996 enum test_pattern_color_format bit_depth;
997 enum test_pattern_dyn_range dyn_range;
998 enum test_pattern_mode mode;
999 uint32_t pattern_mask;
1000 uint32_t pattern_data;
1001 /* color ramp generator mixes 16-bits color */
1002 uint32_t src_bpc = 16;
1003 /* requested bpc */
1004 uint32_t dst_bpc;
1005 uint32_t index;
1006 /* RGB values of the color bars.
1007 * Produce two RGB colors: RGB0 - white (all Fs)
1008 * and RGB1 - black (all 0s)
1009 * (three RGB components for two colors)
1010 */
1011 uint16_t src_color[6] = {0xFFFF, 0xFFFF, 0xFFFF, 0x0000,
1012 0x0000, 0x0000};
1013 /* dest color (converted to the specified color format) */
1014 uint16_t dst_color[6];
1015 uint32_t inc_base;
1016
1017 /* translate to bit depth */
1018 switch (color_depth) {
1019 case COLOR_DEPTH_666:
1020 bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_6;
1021 break;
1022 case COLOR_DEPTH_888:
1023 bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_8;
1024 break;
1025 case COLOR_DEPTH_101010:
1026 bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_10;
1027 break;
1028 case COLOR_DEPTH_121212:
1029 bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_12;
1030 break;
1031 default:
1032 bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_8;
1033 break;
1034 }
1035
1036 switch (test_pattern) {
1037 case CONTROLLER_DP_TEST_PATTERN_COLORSQUARES:
1038 case CONTROLLER_DP_TEST_PATTERN_COLORSQUARES_CEA:
1039 {
1040 dyn_range = (test_pattern ==
1041 CONTROLLER_DP_TEST_PATTERN_COLORSQUARES_CEA ?
1042 TEST_PATTERN_DYN_RANGE_CEA :
1043 TEST_PATTERN_DYN_RANGE_VESA);
1044 mode = TEST_PATTERN_MODE_COLORSQUARES_RGB;
1045
1046 REG_UPDATE_2(OTG_TEST_PATTERN_PARAMETERS,
1047 OTG_TEST_PATTERN_VRES, 6,
1048 OTG_TEST_PATTERN_HRES, 6);
1049
1050 REG_UPDATE_4(OTG_TEST_PATTERN_CONTROL,
1051 OTG_TEST_PATTERN_EN, 1,
1052 OTG_TEST_PATTERN_MODE, mode,
1053 OTG_TEST_PATTERN_DYNAMIC_RANGE, dyn_range,
1054 OTG_TEST_PATTERN_COLOR_FORMAT, bit_depth);
1055 }
1056 break;
1057
1058 case CONTROLLER_DP_TEST_PATTERN_VERTICALBARS:
1059 case CONTROLLER_DP_TEST_PATTERN_HORIZONTALBARS:
1060 {
1061 mode = (test_pattern ==
1062 CONTROLLER_DP_TEST_PATTERN_VERTICALBARS ?
1063 TEST_PATTERN_MODE_VERTICALBARS :
1064 TEST_PATTERN_MODE_HORIZONTALBARS);
1065
1066 switch (bit_depth) {
1067 case TEST_PATTERN_COLOR_FORMAT_BPC_6:
1068 dst_bpc = 6;
1069 break;
1070 case TEST_PATTERN_COLOR_FORMAT_BPC_8:
1071 dst_bpc = 8;
1072 break;
1073 case TEST_PATTERN_COLOR_FORMAT_BPC_10:
1074 dst_bpc = 10;
1075 break;
1076 default:
1077 dst_bpc = 8;
1078 break;
1079 }
1080
1081 /* adjust color to the required colorFormat */
1082 for (index = 0; index < 6; index++) {
1083 /* dst = 2^dstBpc * src / 2^srcBpc = src >>
1084 * (srcBpc - dstBpc);
1085 */
1086 dst_color[index] =
1087 src_color[index] >> (src_bpc - dst_bpc);
1088 /* CRTC_TEST_PATTERN_DATA has 16 bits,
1089 * lowest 6 are hardwired to ZERO
1090 * color bits should be left aligned aligned to MSB
1091 * XXXXXXXXXX000000 for 10 bit,
1092 * XXXXXXXX00000000 for 8 bit and XXXXXX0000000000 for 6
1093 */
1094 dst_color[index] <<= (16 - dst_bpc);
1095 }
1096
1097 REG_WRITE(OTG_TEST_PATTERN_PARAMETERS, 0);
1098
1099 /* We have to write the mask before data, similar to pipeline.
1100 * For example, for 8 bpc, if we want RGB0 to be magenta,
1101 * and RGB1 to be cyan,
1102 * we need to make 7 writes:
1103 * MASK DATA
1104 * 000001 00000000 00000000 set mask to R0
1105 * 000010 11111111 00000000 R0 255, 0xFF00, set mask to G0
1106 * 000100 00000000 00000000 G0 0, 0x0000, set mask to B0
1107 * 001000 11111111 00000000 B0 255, 0xFF00, set mask to R1
1108 * 010000 00000000 00000000 R1 0, 0x0000, set mask to G1
1109 * 100000 11111111 00000000 G1 255, 0xFF00, set mask to B1
1110 * 100000 11111111 00000000 B1 255, 0xFF00
1111 *
1112 * we will make a loop of 6 in which we prepare the mask,
1113 * then write, then prepare the color for next write.
1114 * first iteration will write mask only,
1115 * but each next iteration color prepared in
1116 * previous iteration will be written within new mask,
1117 * the last component will written separately,
1118 * mask is not changing between 6th and 7th write
1119 * and color will be prepared by last iteration
1120 */
1121
1122 /* write color, color values mask in CRTC_TEST_PATTERN_MASK
1123 * is B1, G1, R1, B0, G0, R0
1124 */
1125 pattern_data = 0;
1126 for (index = 0; index < 6; index++) {
1127 /* prepare color mask, first write PATTERN_DATA
1128 * will have all zeros
1129 */
1130 pattern_mask = (1 << index);
1131
1132 /* write color component */
1133 REG_SET_2(OTG_TEST_PATTERN_COLOR, 0,
1134 OTG_TEST_PATTERN_MASK, pattern_mask,
1135 OTG_TEST_PATTERN_DATA, pattern_data);
1136
1137 /* prepare next color component,
1138 * will be written in the next iteration
1139 */
1140 pattern_data = dst_color[index];
1141 }
1142 /* write last color component,
1143 * it's been already prepared in the loop
1144 */
1145 REG_SET_2(OTG_TEST_PATTERN_COLOR, 0,
1146 OTG_TEST_PATTERN_MASK, pattern_mask,
1147 OTG_TEST_PATTERN_DATA, pattern_data);
1148
1149 /* enable test pattern */
1150 REG_UPDATE_4(OTG_TEST_PATTERN_CONTROL,
1151 OTG_TEST_PATTERN_EN, 1,
1152 OTG_TEST_PATTERN_MODE, mode,
1153 OTG_TEST_PATTERN_DYNAMIC_RANGE, 0,
1154 OTG_TEST_PATTERN_COLOR_FORMAT, bit_depth);
1155 }
1156 break;
1157
1158 case CONTROLLER_DP_TEST_PATTERN_COLORRAMP:
1159 {
1160 mode = (bit_depth ==
1161 TEST_PATTERN_COLOR_FORMAT_BPC_10 ?
1162 TEST_PATTERN_MODE_DUALRAMP_RGB :
1163 TEST_PATTERN_MODE_SINGLERAMP_RGB);
1164
1165 switch (bit_depth) {
1166 case TEST_PATTERN_COLOR_FORMAT_BPC_6:
1167 dst_bpc = 6;
1168 break;
1169 case TEST_PATTERN_COLOR_FORMAT_BPC_8:
1170 dst_bpc = 8;
1171 break;
1172 case TEST_PATTERN_COLOR_FORMAT_BPC_10:
1173 dst_bpc = 10;
1174 break;
1175 default:
1176 dst_bpc = 8;
1177 break;
1178 }
1179
1180 /* increment for the first ramp for one color gradation
1181 * 1 gradation for 6-bit color is 2^10
1182 * gradations in 16-bit color
1183 */
1184 inc_base = (src_bpc - dst_bpc);
1185
1186 switch (bit_depth) {
1187 case TEST_PATTERN_COLOR_FORMAT_BPC_6:
1188 {
1189 REG_UPDATE_5(OTG_TEST_PATTERN_PARAMETERS,
1190 OTG_TEST_PATTERN_INC0, inc_base,
1191 OTG_TEST_PATTERN_INC1, 0,
1192 OTG_TEST_PATTERN_HRES, 6,
1193 OTG_TEST_PATTERN_VRES, 6,
1194 OTG_TEST_PATTERN_RAMP0_OFFSET, 0);
1195 }
1196 break;
1197 case TEST_PATTERN_COLOR_FORMAT_BPC_8:
1198 {
1199 REG_UPDATE_5(OTG_TEST_PATTERN_PARAMETERS,
1200 OTG_TEST_PATTERN_INC0, inc_base,
1201 OTG_TEST_PATTERN_INC1, 0,
1202 OTG_TEST_PATTERN_HRES, 8,
1203 OTG_TEST_PATTERN_VRES, 6,
1204 OTG_TEST_PATTERN_RAMP0_OFFSET, 0);
1205 }
1206 break;
1207 case TEST_PATTERN_COLOR_FORMAT_BPC_10:
1208 {
1209 REG_UPDATE_5(OTG_TEST_PATTERN_PARAMETERS,
1210 OTG_TEST_PATTERN_INC0, inc_base,
1211 OTG_TEST_PATTERN_INC1, inc_base + 2,
1212 OTG_TEST_PATTERN_HRES, 8,
1213 OTG_TEST_PATTERN_VRES, 5,
1214 OTG_TEST_PATTERN_RAMP0_OFFSET, 384 << 6);
1215 }
1216 break;
1217 default:
1218 break;
1219 }
1220
1221 REG_WRITE(OTG_TEST_PATTERN_COLOR, 0);
1222
1223 /* enable test pattern */
1224 REG_WRITE(OTG_TEST_PATTERN_CONTROL, 0);
1225
1226 REG_SET_4(OTG_TEST_PATTERN_CONTROL, 0,
1227 OTG_TEST_PATTERN_EN, 1,
1228 OTG_TEST_PATTERN_MODE, mode,
1229 OTG_TEST_PATTERN_DYNAMIC_RANGE, 0,
1230 OTG_TEST_PATTERN_COLOR_FORMAT, bit_depth);
1231 }
1232 break;
1233 case CONTROLLER_DP_TEST_PATTERN_VIDEOMODE:
1234 {
1235 REG_WRITE(OTG_TEST_PATTERN_CONTROL, 0);
1236 REG_WRITE(OTG_TEST_PATTERN_COLOR, 0);
1237 REG_WRITE(OTG_TEST_PATTERN_PARAMETERS, 0);
1238 }
1239 break;
1240 default:
1241 break;
1242
1243 }
1244 }
1245
optc1_get_crtc_scanoutpos(struct timing_generator * optc,uint32_t * v_blank_start,uint32_t * v_blank_end,uint32_t * h_position,uint32_t * v_position)1246 void optc1_get_crtc_scanoutpos(
1247 struct timing_generator *optc,
1248 uint32_t *v_blank_start,
1249 uint32_t *v_blank_end,
1250 uint32_t *h_position,
1251 uint32_t *v_position)
1252 {
1253 struct optc *optc1 = DCN10TG_FROM_TG(optc);
1254 struct crtc_position position;
1255
1256 REG_GET_2(OTG_V_BLANK_START_END,
1257 OTG_V_BLANK_START, v_blank_start,
1258 OTG_V_BLANK_END, v_blank_end);
1259
1260 optc1_get_position(optc, &position);
1261
1262 *h_position = position.horizontal_count;
1263 *v_position = position.vertical_count;
1264 }
1265
optc1_enable_stereo(struct timing_generator * optc,const struct dc_crtc_timing * timing,struct crtc_stereo_flags * flags)1266 static void optc1_enable_stereo(struct timing_generator *optc,
1267 const struct dc_crtc_timing *timing, struct crtc_stereo_flags *flags)
1268 {
1269 struct optc *optc1 = DCN10TG_FROM_TG(optc);
1270
1271 if (flags) {
1272 uint32_t stereo_en;
1273 stereo_en = flags->FRAME_PACKED == 0 ? 1 : 0;
1274
1275 if (flags->PROGRAM_STEREO)
1276 REG_UPDATE_3(OTG_STEREO_CONTROL,
1277 OTG_STEREO_EN, stereo_en,
1278 OTG_STEREO_SYNC_OUTPUT_LINE_NUM, 0,
1279 OTG_STEREO_SYNC_OUTPUT_POLARITY, flags->RIGHT_EYE_POLARITY == 0 ? 0 : 1);
1280
1281 if (flags->PROGRAM_POLARITY)
1282 REG_UPDATE(OTG_STEREO_CONTROL,
1283 OTG_STEREO_EYE_FLAG_POLARITY,
1284 flags->RIGHT_EYE_POLARITY == 0 ? 0 : 1);
1285
1286 if (flags->DISABLE_STEREO_DP_SYNC)
1287 REG_UPDATE(OTG_STEREO_CONTROL,
1288 OTG_DISABLE_STEREOSYNC_OUTPUT_FOR_DP, 1);
1289
1290 if (flags->PROGRAM_STEREO)
1291 REG_UPDATE_2(OTG_3D_STRUCTURE_CONTROL,
1292 OTG_3D_STRUCTURE_EN, flags->FRAME_PACKED,
1293 OTG_3D_STRUCTURE_STEREO_SEL_OVR, flags->FRAME_PACKED);
1294
1295 }
1296 }
1297
optc1_program_stereo(struct timing_generator * optc,const struct dc_crtc_timing * timing,struct crtc_stereo_flags * flags)1298 void optc1_program_stereo(struct timing_generator *optc,
1299 const struct dc_crtc_timing *timing, struct crtc_stereo_flags *flags)
1300 {
1301 if (flags->PROGRAM_STEREO)
1302 optc1_enable_stereo(optc, timing, flags);
1303 else
1304 optc1_disable_stereo(optc);
1305 }
1306
1307
optc1_is_stereo_left_eye(struct timing_generator * optc)1308 bool optc1_is_stereo_left_eye(struct timing_generator *optc)
1309 {
1310 bool ret = false;
1311 uint32_t left_eye = 0;
1312 struct optc *optc1 = DCN10TG_FROM_TG(optc);
1313
1314 REG_GET(OTG_STEREO_STATUS,
1315 OTG_STEREO_CURRENT_EYE, &left_eye);
1316 if (left_eye == 1)
1317 ret = true;
1318 else
1319 ret = false;
1320
1321 return ret;
1322 }
1323
optc1_get_hw_timing(struct timing_generator * tg,struct dc_crtc_timing * hw_crtc_timing)1324 bool optc1_get_hw_timing(struct timing_generator *tg,
1325 struct dc_crtc_timing *hw_crtc_timing)
1326 {
1327 struct dcn_otg_state s = {0};
1328
1329 if (tg == NULL || hw_crtc_timing == NULL)
1330 return false;
1331
1332 optc1_read_otg_state(DCN10TG_FROM_TG(tg), &s);
1333
1334 hw_crtc_timing->h_total = s.h_total + 1;
1335 hw_crtc_timing->h_addressable = s.h_total - ((s.h_total - s.h_blank_start) + s.h_blank_end);
1336 hw_crtc_timing->h_front_porch = s.h_total + 1 - s.h_blank_start;
1337 hw_crtc_timing->h_sync_width = s.h_sync_a_end - s.h_sync_a_start;
1338
1339 hw_crtc_timing->v_total = s.v_total + 1;
1340 hw_crtc_timing->v_addressable = s.v_total - ((s.v_total - s.v_blank_start) + s.v_blank_end);
1341 hw_crtc_timing->v_front_porch = s.v_total + 1 - s.v_blank_start;
1342 hw_crtc_timing->v_sync_width = s.v_sync_a_end - s.v_sync_a_start;
1343
1344 return true;
1345 }
1346
1347
optc1_read_otg_state(struct optc * optc1,struct dcn_otg_state * s)1348 void optc1_read_otg_state(struct optc *optc1,
1349 struct dcn_otg_state *s)
1350 {
1351 REG_GET(OTG_CONTROL,
1352 OTG_MASTER_EN, &s->otg_enabled);
1353
1354 REG_GET_2(OTG_V_BLANK_START_END,
1355 OTG_V_BLANK_START, &s->v_blank_start,
1356 OTG_V_BLANK_END, &s->v_blank_end);
1357
1358 REG_GET(OTG_V_SYNC_A_CNTL,
1359 OTG_V_SYNC_A_POL, &s->v_sync_a_pol);
1360
1361 REG_GET(OTG_V_TOTAL,
1362 OTG_V_TOTAL, &s->v_total);
1363
1364 REG_GET(OTG_V_TOTAL_MAX,
1365 OTG_V_TOTAL_MAX, &s->v_total_max);
1366
1367 REG_GET(OTG_V_TOTAL_MIN,
1368 OTG_V_TOTAL_MIN, &s->v_total_min);
1369
1370 REG_GET(OTG_V_TOTAL_CONTROL,
1371 OTG_V_TOTAL_MAX_SEL, &s->v_total_max_sel);
1372
1373 REG_GET(OTG_V_TOTAL_CONTROL,
1374 OTG_V_TOTAL_MIN_SEL, &s->v_total_min_sel);
1375
1376 REG_GET_2(OTG_V_SYNC_A,
1377 OTG_V_SYNC_A_START, &s->v_sync_a_start,
1378 OTG_V_SYNC_A_END, &s->v_sync_a_end);
1379
1380 REG_GET_2(OTG_H_BLANK_START_END,
1381 OTG_H_BLANK_START, &s->h_blank_start,
1382 OTG_H_BLANK_END, &s->h_blank_end);
1383
1384 REG_GET_2(OTG_H_SYNC_A,
1385 OTG_H_SYNC_A_START, &s->h_sync_a_start,
1386 OTG_H_SYNC_A_END, &s->h_sync_a_end);
1387
1388 REG_GET(OTG_H_SYNC_A_CNTL,
1389 OTG_H_SYNC_A_POL, &s->h_sync_a_pol);
1390
1391 REG_GET(OTG_H_TOTAL,
1392 OTG_H_TOTAL, &s->h_total);
1393
1394 REG_GET(OPTC_INPUT_GLOBAL_CONTROL,
1395 OPTC_UNDERFLOW_OCCURRED_STATUS, &s->underflow_occurred_status);
1396
1397 REG_GET(OTG_VERTICAL_INTERRUPT2_CONTROL,
1398 OTG_VERTICAL_INTERRUPT2_INT_ENABLE, &s->vertical_interrupt2_en);
1399
1400 REG_GET(OTG_VERTICAL_INTERRUPT2_POSITION,
1401 OTG_VERTICAL_INTERRUPT2_LINE_START, &s->vertical_interrupt2_line);
1402 }
1403
optc1_get_otg_active_size(struct timing_generator * optc,uint32_t * otg_active_width,uint32_t * otg_active_height)1404 bool optc1_get_otg_active_size(struct timing_generator *optc,
1405 uint32_t *otg_active_width,
1406 uint32_t *otg_active_height)
1407 {
1408 uint32_t otg_enabled;
1409 uint32_t v_blank_start;
1410 uint32_t v_blank_end;
1411 uint32_t h_blank_start;
1412 uint32_t h_blank_end;
1413 struct optc *optc1 = DCN10TG_FROM_TG(optc);
1414
1415
1416 REG_GET(OTG_CONTROL,
1417 OTG_MASTER_EN, &otg_enabled);
1418
1419 if (otg_enabled == 0)
1420 return false;
1421
1422 REG_GET_2(OTG_V_BLANK_START_END,
1423 OTG_V_BLANK_START, &v_blank_start,
1424 OTG_V_BLANK_END, &v_blank_end);
1425
1426 REG_GET_2(OTG_H_BLANK_START_END,
1427 OTG_H_BLANK_START, &h_blank_start,
1428 OTG_H_BLANK_END, &h_blank_end);
1429
1430 *otg_active_width = v_blank_start - v_blank_end;
1431 *otg_active_height = h_blank_start - h_blank_end;
1432 return true;
1433 }
1434
optc1_clear_optc_underflow(struct timing_generator * optc)1435 void optc1_clear_optc_underflow(struct timing_generator *optc)
1436 {
1437 struct optc *optc1 = DCN10TG_FROM_TG(optc);
1438
1439 REG_UPDATE(OPTC_INPUT_GLOBAL_CONTROL, OPTC_UNDERFLOW_CLEAR, 1);
1440 }
1441
optc1_tg_init(struct timing_generator * optc)1442 void optc1_tg_init(struct timing_generator *optc)
1443 {
1444 optc1_set_blank_data_double_buffer(optc, true);
1445 optc1_set_timing_double_buffer(optc, true);
1446 optc1_clear_optc_underflow(optc);
1447 }
1448
optc1_is_tg_enabled(struct timing_generator * optc)1449 bool optc1_is_tg_enabled(struct timing_generator *optc)
1450 {
1451 struct optc *optc1 = DCN10TG_FROM_TG(optc);
1452 uint32_t otg_enabled = 0;
1453
1454 REG_GET(OTG_CONTROL, OTG_MASTER_EN, &otg_enabled);
1455
1456 return (otg_enabled != 0);
1457
1458 }
1459
optc1_is_optc_underflow_occurred(struct timing_generator * optc)1460 bool optc1_is_optc_underflow_occurred(struct timing_generator *optc)
1461 {
1462 struct optc *optc1 = DCN10TG_FROM_TG(optc);
1463 uint32_t underflow_occurred = 0;
1464
1465 REG_GET(OPTC_INPUT_GLOBAL_CONTROL,
1466 OPTC_UNDERFLOW_OCCURRED_STATUS,
1467 &underflow_occurred);
1468
1469 return (underflow_occurred == 1);
1470 }
1471
optc1_configure_crc(struct timing_generator * optc,const struct crc_params * params)1472 bool optc1_configure_crc(struct timing_generator *optc,
1473 const struct crc_params *params)
1474 {
1475 struct optc *optc1 = DCN10TG_FROM_TG(optc);
1476
1477 /* Cannot configure crc on a CRTC that is disabled */
1478 if (!optc1_is_tg_enabled(optc))
1479 return false;
1480
1481 REG_WRITE(OTG_CRC_CNTL, 0);
1482
1483 if (!params->enable)
1484 return true;
1485
1486 /* Program frame boundaries */
1487 /* Window A x axis start and end. */
1488 REG_UPDATE_2(OTG_CRC0_WINDOWA_X_CONTROL,
1489 OTG_CRC0_WINDOWA_X_START, params->windowa_x_start,
1490 OTG_CRC0_WINDOWA_X_END, params->windowa_x_end);
1491
1492 /* Window A y axis start and end. */
1493 REG_UPDATE_2(OTG_CRC0_WINDOWA_Y_CONTROL,
1494 OTG_CRC0_WINDOWA_Y_START, params->windowa_y_start,
1495 OTG_CRC0_WINDOWA_Y_END, params->windowa_y_end);
1496
1497 /* Window B x axis start and end. */
1498 REG_UPDATE_2(OTG_CRC0_WINDOWB_X_CONTROL,
1499 OTG_CRC0_WINDOWB_X_START, params->windowb_x_start,
1500 OTG_CRC0_WINDOWB_X_END, params->windowb_x_end);
1501
1502 /* Window B y axis start and end. */
1503 REG_UPDATE_2(OTG_CRC0_WINDOWB_Y_CONTROL,
1504 OTG_CRC0_WINDOWB_Y_START, params->windowb_y_start,
1505 OTG_CRC0_WINDOWB_Y_END, params->windowb_y_end);
1506
1507 /* Set crc mode and selection, and enable. Only using CRC0*/
1508 REG_UPDATE_3(OTG_CRC_CNTL,
1509 OTG_CRC_CONT_EN, params->continuous_mode ? 1 : 0,
1510 OTG_CRC0_SELECT, params->selection,
1511 OTG_CRC_EN, 1);
1512
1513 return true;
1514 }
1515
optc1_get_crc(struct timing_generator * optc,uint32_t * r_cr,uint32_t * g_y,uint32_t * b_cb)1516 bool optc1_get_crc(struct timing_generator *optc,
1517 uint32_t *r_cr, uint32_t *g_y, uint32_t *b_cb)
1518 {
1519 uint32_t field = 0;
1520 struct optc *optc1 = DCN10TG_FROM_TG(optc);
1521
1522 REG_GET(OTG_CRC_CNTL, OTG_CRC_EN, &field);
1523
1524 /* Early return if CRC is not enabled for this CRTC */
1525 if (!field)
1526 return false;
1527
1528 REG_GET_2(OTG_CRC0_DATA_RG,
1529 CRC0_R_CR, r_cr,
1530 CRC0_G_Y, g_y);
1531
1532 REG_GET(OTG_CRC0_DATA_B,
1533 CRC0_B_CB, b_cb);
1534
1535 return true;
1536 }
1537
1538 static const struct timing_generator_funcs dcn10_tg_funcs = {
1539 .validate_timing = optc1_validate_timing,
1540 .program_timing = optc1_program_timing,
1541 .setup_vertical_interrupt0 = optc1_setup_vertical_interrupt0,
1542 .setup_vertical_interrupt1 = optc1_setup_vertical_interrupt1,
1543 .setup_vertical_interrupt2 = optc1_setup_vertical_interrupt2,
1544 .program_global_sync = optc1_program_global_sync,
1545 .enable_crtc = optc1_enable_crtc,
1546 .disable_crtc = optc1_disable_crtc,
1547 /* used by enable_timing_synchronization. Not need for FPGA */
1548 .is_counter_moving = optc1_is_counter_moving,
1549 .get_position = optc1_get_position,
1550 .get_frame_count = optc1_get_vblank_counter,
1551 .get_scanoutpos = optc1_get_crtc_scanoutpos,
1552 .get_otg_active_size = optc1_get_otg_active_size,
1553 .set_early_control = optc1_set_early_control,
1554 /* used by enable_timing_synchronization. Not need for FPGA */
1555 .wait_for_state = optc1_wait_for_state,
1556 .set_blank = optc1_set_blank,
1557 .is_blanked = optc1_is_blanked,
1558 .set_blank_color = optc1_program_blank_color,
1559 .did_triggered_reset_occur = optc1_did_triggered_reset_occur,
1560 .enable_reset_trigger = optc1_enable_reset_trigger,
1561 .enable_crtc_reset = optc1_enable_crtc_reset,
1562 .disable_reset_trigger = optc1_disable_reset_trigger,
1563 .lock = optc1_lock,
1564 .is_locked = optc1_is_locked,
1565 .unlock = optc1_unlock,
1566 .enable_optc_clock = optc1_enable_optc_clock,
1567 .set_drr = optc1_set_drr,
1568 .get_last_used_drr_vtotal = NULL,
1569 .set_static_screen_control = optc1_set_static_screen_control,
1570 .set_test_pattern = optc1_set_test_pattern,
1571 .program_stereo = optc1_program_stereo,
1572 .is_stereo_left_eye = optc1_is_stereo_left_eye,
1573 .set_blank_data_double_buffer = optc1_set_blank_data_double_buffer,
1574 .tg_init = optc1_tg_init,
1575 .is_tg_enabled = optc1_is_tg_enabled,
1576 .is_optc_underflow_occurred = optc1_is_optc_underflow_occurred,
1577 .clear_optc_underflow = optc1_clear_optc_underflow,
1578 .get_crc = optc1_get_crc,
1579 .configure_crc = optc1_configure_crc,
1580 .set_vtg_params = optc1_set_vtg_params,
1581 .program_manual_trigger = optc1_program_manual_trigger,
1582 .setup_manual_trigger = optc1_setup_manual_trigger,
1583 .get_hw_timing = optc1_get_hw_timing,
1584 };
1585
dcn10_timing_generator_init(struct optc * optc1)1586 void dcn10_timing_generator_init(struct optc *optc1)
1587 {
1588 optc1->base.funcs = &dcn10_tg_funcs;
1589
1590 optc1->max_h_total = optc1->tg_mask->OTG_H_TOTAL + 1;
1591 optc1->max_v_total = optc1->tg_mask->OTG_V_TOTAL + 1;
1592
1593 optc1->min_h_blank = 32;
1594 optc1->min_v_blank = 3;
1595 optc1->min_v_blank_interlace = 5;
1596 optc1->min_h_sync_width = 4;
1597 optc1->min_v_sync_width = 1;
1598 }
1599
1600 /* "Containter" vs. "pixel" is a concept within HW blocks, mostly those closer to the back-end. It works like this:
1601 *
1602 * - In most of the formats (RGB or YCbCr 4:4:4, 4:2:2 uncompressed and DSC 4:2:2 Simple) pixel rate is the same as
1603 * containter rate.
1604 *
1605 * - In 4:2:0 (DSC or uncompressed) there are two pixels per container, hence the target container rate has to be
1606 * halved to maintain the correct pixel rate.
1607 *
1608 * - Unlike 4:2:2 uncompressed, DSC 4:2:2 Native also has two pixels per container (this happens when DSC is applied
1609 * to it) and has to be treated the same as 4:2:0, i.e. target containter rate has to be halved in this case as well.
1610 *
1611 */
optc1_is_two_pixels_per_containter(const struct dc_crtc_timing * timing)1612 bool optc1_is_two_pixels_per_containter(const struct dc_crtc_timing *timing)
1613 {
1614 bool two_pix = timing->pixel_encoding == PIXEL_ENCODING_YCBCR420;
1615
1616 two_pix = two_pix || (timing->flags.DSC && timing->pixel_encoding == PIXEL_ENCODING_YCBCR422
1617 && !timing->dsc_cfg.ycbcr422_simple);
1618 return two_pix;
1619 }
1620
1621