• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * mm/rmap.c - physical to virtual reverse mappings
3  *
4  * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5  * Released under the General Public License (GPL).
6  *
7  * Simple, low overhead reverse mapping scheme.
8  * Please try to keep this thing as modular as possible.
9  *
10  * Provides methods for unmapping each kind of mapped page:
11  * the anon methods track anonymous pages, and
12  * the file methods track pages belonging to an inode.
13  *
14  * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15  * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16  * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17  * Contributions by Hugh Dickins 2003, 2004
18  */
19 
20 /*
21  * Lock ordering in mm:
22  *
23  * inode->i_rwsem	(while writing or truncating, not reading or faulting)
24  *   mm->mmap_lock
25  *     mapping->invalidate_lock (in filemap_fault)
26  *       page->flags PG_locked (lock_page)   * (see hugetlbfs below)
27  *         hugetlbfs_i_mmap_rwsem_key (in huge_pmd_share)
28  *           mapping->i_mmap_rwsem
29  *             hugetlb_fault_mutex (hugetlbfs specific page fault mutex)
30  *             anon_vma->rwsem
31  *               mm->page_table_lock or pte_lock
32  *                 swap_lock (in swap_duplicate, swap_info_get)
33  *                   mmlist_lock (in mmput, drain_mmlist and others)
34  *                   mapping->private_lock (in __set_page_dirty_buffers)
35  *                     lock_page_memcg move_lock (in __set_page_dirty_buffers)
36  *                       i_pages lock (widely used)
37  *                         lruvec->lru_lock (in lock_page_lruvec_irq)
38  *                   inode->i_lock (in set_page_dirty's __mark_inode_dirty)
39  *                   bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
40  *                     sb_lock (within inode_lock in fs/fs-writeback.c)
41  *                     i_pages lock (widely used, in set_page_dirty,
42  *                               in arch-dependent flush_dcache_mmap_lock,
43  *                               within bdi.wb->list_lock in __sync_single_inode)
44  *
45  * anon_vma->rwsem,mapping->i_mmap_rwsem   (memory_failure, collect_procs_anon)
46  *   ->tasklist_lock
47  *     pte map lock
48  *
49  * * hugetlbfs PageHuge() pages take locks in this order:
50  *         mapping->i_mmap_rwsem
51  *           hugetlb_fault_mutex (hugetlbfs specific page fault mutex)
52  *             page->flags PG_locked (lock_page)
53  */
54 
55 #include <linux/mm.h>
56 #include <linux/sched/mm.h>
57 #include <linux/sched/task.h>
58 #include <linux/pagemap.h>
59 #include <linux/swap.h>
60 #include <linux/swapops.h>
61 #include <linux/slab.h>
62 #include <linux/init.h>
63 #include <linux/ksm.h>
64 #include <linux/rmap.h>
65 #include <linux/rcupdate.h>
66 #include <linux/export.h>
67 #include <linux/memcontrol.h>
68 #include <linux/mmu_notifier.h>
69 #include <linux/migrate.h>
70 #include <linux/hugetlb.h>
71 #include <linux/huge_mm.h>
72 #include <linux/backing-dev.h>
73 #include <linux/page_idle.h>
74 #include <linux/memremap.h>
75 #include <linux/userfaultfd_k.h>
76 #include <linux/mm_inline.h>
77 
78 #include <asm/tlbflush.h>
79 
80 #include <trace/events/tlb.h>
81 
82 #include <trace/hooks/mm.h>
83 
84 #include "internal.h"
85 
86 static struct kmem_cache *anon_vma_cachep;
87 static struct kmem_cache *anon_vma_chain_cachep;
88 
anon_vma_alloc(void)89 static inline struct anon_vma *anon_vma_alloc(void)
90 {
91 	struct anon_vma *anon_vma;
92 
93 	anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
94 	if (anon_vma) {
95 		atomic_set(&anon_vma->refcount, 1);
96 		anon_vma->num_children = 0;
97 		anon_vma->num_active_vmas = 0;
98 		anon_vma->parent = anon_vma;
99 		/*
100 		 * Initialise the anon_vma root to point to itself. If called
101 		 * from fork, the root will be reset to the parents anon_vma.
102 		 */
103 		anon_vma->root = anon_vma;
104 	}
105 
106 	return anon_vma;
107 }
108 
anon_vma_free(struct anon_vma * anon_vma)109 static inline void anon_vma_free(struct anon_vma *anon_vma)
110 {
111 	VM_BUG_ON(atomic_read(&anon_vma->refcount));
112 
113 	/*
114 	 * Synchronize against page_lock_anon_vma_read() such that
115 	 * we can safely hold the lock without the anon_vma getting
116 	 * freed.
117 	 *
118 	 * Relies on the full mb implied by the atomic_dec_and_test() from
119 	 * put_anon_vma() against the acquire barrier implied by
120 	 * down_read_trylock() from page_lock_anon_vma_read(). This orders:
121 	 *
122 	 * page_lock_anon_vma_read()	VS	put_anon_vma()
123 	 *   down_read_trylock()		  atomic_dec_and_test()
124 	 *   LOCK				  MB
125 	 *   atomic_read()			  rwsem_is_locked()
126 	 *
127 	 * LOCK should suffice since the actual taking of the lock must
128 	 * happen _before_ what follows.
129 	 */
130 	might_sleep();
131 	if (rwsem_is_locked(&anon_vma->root->rwsem)) {
132 		anon_vma_lock_write(anon_vma);
133 		anon_vma_unlock_write(anon_vma);
134 	}
135 
136 	kmem_cache_free(anon_vma_cachep, anon_vma);
137 }
138 
anon_vma_chain_alloc(gfp_t gfp)139 static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
140 {
141 	return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
142 }
143 
anon_vma_chain_free(struct anon_vma_chain * anon_vma_chain)144 static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
145 {
146 	kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
147 }
148 
anon_vma_chain_link(struct vm_area_struct * vma,struct anon_vma_chain * avc,struct anon_vma * anon_vma)149 static void anon_vma_chain_link(struct vm_area_struct *vma,
150 				struct anon_vma_chain *avc,
151 				struct anon_vma *anon_vma)
152 {
153 	avc->vma = vma;
154 	avc->anon_vma = anon_vma;
155 	list_add(&avc->same_vma, &vma->anon_vma_chain);
156 	anon_vma_interval_tree_insert(avc, &anon_vma->rb_root);
157 }
158 
159 /**
160  * __anon_vma_prepare - attach an anon_vma to a memory region
161  * @vma: the memory region in question
162  *
163  * This makes sure the memory mapping described by 'vma' has
164  * an 'anon_vma' attached to it, so that we can associate the
165  * anonymous pages mapped into it with that anon_vma.
166  *
167  * The common case will be that we already have one, which
168  * is handled inline by anon_vma_prepare(). But if
169  * not we either need to find an adjacent mapping that we
170  * can re-use the anon_vma from (very common when the only
171  * reason for splitting a vma has been mprotect()), or we
172  * allocate a new one.
173  *
174  * Anon-vma allocations are very subtle, because we may have
175  * optimistically looked up an anon_vma in page_lock_anon_vma_read()
176  * and that may actually touch the rwsem even in the newly
177  * allocated vma (it depends on RCU to make sure that the
178  * anon_vma isn't actually destroyed).
179  *
180  * As a result, we need to do proper anon_vma locking even
181  * for the new allocation. At the same time, we do not want
182  * to do any locking for the common case of already having
183  * an anon_vma.
184  *
185  * This must be called with the mmap_lock held for reading.
186  */
__anon_vma_prepare(struct vm_area_struct * vma)187 int __anon_vma_prepare(struct vm_area_struct *vma)
188 {
189 	struct mm_struct *mm = vma->vm_mm;
190 	struct anon_vma *anon_vma, *allocated;
191 	struct anon_vma_chain *avc;
192 
193 	might_sleep();
194 
195 	avc = anon_vma_chain_alloc(GFP_KERNEL);
196 	if (!avc)
197 		goto out_enomem;
198 
199 	anon_vma = find_mergeable_anon_vma(vma);
200 	allocated = NULL;
201 	if (!anon_vma) {
202 		anon_vma = anon_vma_alloc();
203 		if (unlikely(!anon_vma))
204 			goto out_enomem_free_avc;
205 		anon_vma->num_children++; /* self-parent link for new root */
206 		allocated = anon_vma;
207 	}
208 
209 	anon_vma_lock_write(anon_vma);
210 	/* page_table_lock to protect against threads */
211 	spin_lock(&mm->page_table_lock);
212 	if (likely(!vma->anon_vma)) {
213 		vma->anon_vma = anon_vma;
214 		anon_vma_chain_link(vma, avc, anon_vma);
215 		anon_vma->num_active_vmas++;
216 		allocated = NULL;
217 		avc = NULL;
218 	}
219 	spin_unlock(&mm->page_table_lock);
220 	anon_vma_unlock_write(anon_vma);
221 
222 	if (unlikely(allocated))
223 		put_anon_vma(allocated);
224 	if (unlikely(avc))
225 		anon_vma_chain_free(avc);
226 
227 	return 0;
228 
229  out_enomem_free_avc:
230 	anon_vma_chain_free(avc);
231  out_enomem:
232 	return -ENOMEM;
233 }
234 
235 /*
236  * This is a useful helper function for locking the anon_vma root as
237  * we traverse the vma->anon_vma_chain, looping over anon_vma's that
238  * have the same vma.
239  *
240  * Such anon_vma's should have the same root, so you'd expect to see
241  * just a single mutex_lock for the whole traversal.
242  */
lock_anon_vma_root(struct anon_vma * root,struct anon_vma * anon_vma)243 static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
244 {
245 	struct anon_vma *new_root = anon_vma->root;
246 	if (new_root != root) {
247 		if (WARN_ON_ONCE(root))
248 			up_write(&root->rwsem);
249 		root = new_root;
250 		down_write(&root->rwsem);
251 	}
252 	return root;
253 }
254 
unlock_anon_vma_root(struct anon_vma * root)255 static inline void unlock_anon_vma_root(struct anon_vma *root)
256 {
257 	if (root)
258 		up_write(&root->rwsem);
259 }
260 
261 /*
262  * Attach the anon_vmas from src to dst.
263  * Returns 0 on success, -ENOMEM on failure.
264  *
265  * anon_vma_clone() is called by __vma_adjust(), __split_vma(), copy_vma() and
266  * anon_vma_fork(). The first three want an exact copy of src, while the last
267  * one, anon_vma_fork(), may try to reuse an existing anon_vma to prevent
268  * endless growth of anon_vma. Since dst->anon_vma is set to NULL before call,
269  * we can identify this case by checking (!dst->anon_vma && src->anon_vma).
270  *
271  * If (!dst->anon_vma && src->anon_vma) is true, this function tries to find
272  * and reuse existing anon_vma which has no vmas and only one child anon_vma.
273  * This prevents degradation of anon_vma hierarchy to endless linear chain in
274  * case of constantly forking task. On the other hand, an anon_vma with more
275  * than one child isn't reused even if there was no alive vma, thus rmap
276  * walker has a good chance of avoiding scanning the whole hierarchy when it
277  * searches where page is mapped.
278  */
anon_vma_clone(struct vm_area_struct * dst,struct vm_area_struct * src)279 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
280 {
281 	struct anon_vma_chain *avc, *pavc;
282 	struct anon_vma *root = NULL;
283 
284 	list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
285 		struct anon_vma *anon_vma;
286 
287 		avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
288 		if (unlikely(!avc)) {
289 			unlock_anon_vma_root(root);
290 			root = NULL;
291 			avc = anon_vma_chain_alloc(GFP_KERNEL);
292 			if (!avc)
293 				goto enomem_failure;
294 		}
295 		anon_vma = pavc->anon_vma;
296 		root = lock_anon_vma_root(root, anon_vma);
297 		anon_vma_chain_link(dst, avc, anon_vma);
298 
299 		/*
300 		 * Reuse existing anon_vma if it has no vma and only one
301 		 * anon_vma child.
302 		 *
303 		 * Root anon_vma is never reused:
304 		 * it has self-parent reference and at least one child.
305 		 */
306 		if (!dst->anon_vma && src->anon_vma &&
307 		    anon_vma->num_children < 2 &&
308 		    anon_vma->num_active_vmas == 0)
309 			dst->anon_vma = anon_vma;
310 	}
311 	if (dst->anon_vma)
312 		dst->anon_vma->num_active_vmas++;
313 	unlock_anon_vma_root(root);
314 	return 0;
315 
316  enomem_failure:
317 	/*
318 	 * dst->anon_vma is dropped here otherwise its degree can be incorrectly
319 	 * decremented in unlink_anon_vmas().
320 	 * We can safely do this because callers of anon_vma_clone() don't care
321 	 * about dst->anon_vma if anon_vma_clone() failed.
322 	 */
323 	dst->anon_vma = NULL;
324 	unlink_anon_vmas(dst);
325 	return -ENOMEM;
326 }
327 
328 /*
329  * Attach vma to its own anon_vma, as well as to the anon_vmas that
330  * the corresponding VMA in the parent process is attached to.
331  * Returns 0 on success, non-zero on failure.
332  */
anon_vma_fork(struct vm_area_struct * vma,struct vm_area_struct * pvma)333 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
334 {
335 	struct anon_vma_chain *avc;
336 	struct anon_vma *anon_vma;
337 	int error;
338 
339 	/* Don't bother if the parent process has no anon_vma here. */
340 	if (!pvma->anon_vma)
341 		return 0;
342 
343 	/* Drop inherited anon_vma, we'll reuse existing or allocate new. */
344 	vma->anon_vma = NULL;
345 
346 	/*
347 	 * First, attach the new VMA to the parent VMA's anon_vmas,
348 	 * so rmap can find non-COWed pages in child processes.
349 	 */
350 	error = anon_vma_clone(vma, pvma);
351 	if (error)
352 		return error;
353 
354 	/* An existing anon_vma has been reused, all done then. */
355 	if (vma->anon_vma)
356 		return 0;
357 
358 	/* Then add our own anon_vma. */
359 	anon_vma = anon_vma_alloc();
360 	if (!anon_vma)
361 		goto out_error;
362 	anon_vma->num_active_vmas++;
363 	avc = anon_vma_chain_alloc(GFP_KERNEL);
364 	if (!avc)
365 		goto out_error_free_anon_vma;
366 
367 	/*
368 	 * The root anon_vma's rwsem is the lock actually used when we
369 	 * lock any of the anon_vmas in this anon_vma tree.
370 	 */
371 	anon_vma->root = pvma->anon_vma->root;
372 	anon_vma->parent = pvma->anon_vma;
373 	/*
374 	 * With refcounts, an anon_vma can stay around longer than the
375 	 * process it belongs to. The root anon_vma needs to be pinned until
376 	 * this anon_vma is freed, because the lock lives in the root.
377 	 */
378 	get_anon_vma(anon_vma->root);
379 	/* Mark this anon_vma as the one where our new (COWed) pages go. */
380 	vma->anon_vma = anon_vma;
381 	anon_vma_lock_write(anon_vma);
382 	anon_vma_chain_link(vma, avc, anon_vma);
383 	anon_vma->parent->num_children++;
384 	anon_vma_unlock_write(anon_vma);
385 
386 	return 0;
387 
388  out_error_free_anon_vma:
389 	put_anon_vma(anon_vma);
390  out_error:
391 	unlink_anon_vmas(vma);
392 	return -ENOMEM;
393 }
394 
unlink_anon_vmas(struct vm_area_struct * vma)395 void unlink_anon_vmas(struct vm_area_struct *vma)
396 {
397 	struct anon_vma_chain *avc, *next;
398 	struct anon_vma *root = NULL;
399 
400 	/*
401 	 * Unlink each anon_vma chained to the VMA.  This list is ordered
402 	 * from newest to oldest, ensuring the root anon_vma gets freed last.
403 	 */
404 	list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
405 		struct anon_vma *anon_vma = avc->anon_vma;
406 
407 		root = lock_anon_vma_root(root, anon_vma);
408 		anon_vma_interval_tree_remove(avc, &anon_vma->rb_root);
409 
410 		/*
411 		 * Leave empty anon_vmas on the list - we'll need
412 		 * to free them outside the lock.
413 		 */
414 		if (RB_EMPTY_ROOT(&anon_vma->rb_root.rb_root)) {
415 			anon_vma->parent->num_children--;
416 			continue;
417 		}
418 
419 		list_del(&avc->same_vma);
420 		anon_vma_chain_free(avc);
421 	}
422 	if (vma->anon_vma) {
423 		vma->anon_vma->num_active_vmas--;
424 
425 #ifndef CONFIG_SPECULATIVE_PAGE_FAULT
426 		/*
427 		 * vma would still be needed after unlink, and anon_vma will be prepared
428 		 * when handle fault.
429 		 */
430 		vma->anon_vma = NULL;
431 #endif
432 	}
433 	unlock_anon_vma_root(root);
434 
435 	/*
436 	 * Iterate the list once more, it now only contains empty and unlinked
437 	 * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
438 	 * needing to write-acquire the anon_vma->root->rwsem.
439 	 */
440 	list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
441 		struct anon_vma *anon_vma = avc->anon_vma;
442 
443 		VM_WARN_ON(anon_vma->num_children);
444 		VM_WARN_ON(anon_vma->num_active_vmas);
445 		put_anon_vma(anon_vma);
446 
447 		list_del(&avc->same_vma);
448 		anon_vma_chain_free(avc);
449 	}
450 }
451 
anon_vma_ctor(void * data)452 static void anon_vma_ctor(void *data)
453 {
454 	struct anon_vma *anon_vma = data;
455 
456 	init_rwsem(&anon_vma->rwsem);
457 	atomic_set(&anon_vma->refcount, 0);
458 	anon_vma->rb_root = RB_ROOT_CACHED;
459 }
460 
anon_vma_init(void)461 void __init anon_vma_init(void)
462 {
463 	anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
464 			0, SLAB_TYPESAFE_BY_RCU|SLAB_PANIC|SLAB_ACCOUNT,
465 			anon_vma_ctor);
466 	anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain,
467 			SLAB_PANIC|SLAB_ACCOUNT);
468 }
469 
470 /*
471  * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
472  *
473  * Since there is no serialization what so ever against page_remove_rmap()
474  * the best this function can do is return a refcount increased anon_vma
475  * that might have been relevant to this page.
476  *
477  * The page might have been remapped to a different anon_vma or the anon_vma
478  * returned may already be freed (and even reused).
479  *
480  * In case it was remapped to a different anon_vma, the new anon_vma will be a
481  * child of the old anon_vma, and the anon_vma lifetime rules will therefore
482  * ensure that any anon_vma obtained from the page will still be valid for as
483  * long as we observe page_mapped() [ hence all those page_mapped() tests ].
484  *
485  * All users of this function must be very careful when walking the anon_vma
486  * chain and verify that the page in question is indeed mapped in it
487  * [ something equivalent to page_mapped_in_vma() ].
488  *
489  * Since anon_vma's slab is SLAB_TYPESAFE_BY_RCU and we know from
490  * page_remove_rmap() that the anon_vma pointer from page->mapping is valid
491  * if there is a mapcount, we can dereference the anon_vma after observing
492  * those.
493  */
page_get_anon_vma(struct page * page)494 struct anon_vma *page_get_anon_vma(struct page *page)
495 {
496 	struct anon_vma *anon_vma = NULL;
497 	unsigned long anon_mapping;
498 
499 	rcu_read_lock();
500 	anon_mapping = (unsigned long)READ_ONCE(page->mapping);
501 	if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
502 		goto out;
503 	if (!page_mapped(page))
504 		goto out;
505 
506 	anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
507 	if (!atomic_inc_not_zero(&anon_vma->refcount)) {
508 		anon_vma = NULL;
509 		goto out;
510 	}
511 
512 	/*
513 	 * If this page is still mapped, then its anon_vma cannot have been
514 	 * freed.  But if it has been unmapped, we have no security against the
515 	 * anon_vma structure being freed and reused (for another anon_vma:
516 	 * SLAB_TYPESAFE_BY_RCU guarantees that - so the atomic_inc_not_zero()
517 	 * above cannot corrupt).
518 	 */
519 	if (!page_mapped(page)) {
520 		rcu_read_unlock();
521 		put_anon_vma(anon_vma);
522 		return NULL;
523 	}
524 out:
525 	rcu_read_unlock();
526 
527 	return anon_vma;
528 }
529 
530 /*
531  * Similar to page_get_anon_vma() except it locks the anon_vma.
532  *
533  * Its a little more complex as it tries to keep the fast path to a single
534  * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
535  * reference like with page_get_anon_vma() and then block on the mutex
536  * on !rwc->try_lock case.
537  */
page_lock_anon_vma_read(struct page * page,struct rmap_walk_control * rwc)538 struct anon_vma *page_lock_anon_vma_read(struct page *page,
539 					 struct rmap_walk_control *rwc)
540 {
541 	struct anon_vma *anon_vma = NULL;
542 	struct anon_vma *root_anon_vma;
543 	unsigned long anon_mapping;
544 
545 	rcu_read_lock();
546 	anon_mapping = (unsigned long)READ_ONCE(page->mapping);
547 	if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
548 		goto out;
549 	if (!page_mapped(page))
550 		goto out;
551 
552 	anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
553 	root_anon_vma = READ_ONCE(anon_vma->root);
554 	if (down_read_trylock(&root_anon_vma->rwsem)) {
555 		/*
556 		 * If the page is still mapped, then this anon_vma is still
557 		 * its anon_vma, and holding the mutex ensures that it will
558 		 * not go away, see anon_vma_free().
559 		 */
560 		if (!page_mapped(page)) {
561 			up_read(&root_anon_vma->rwsem);
562 			anon_vma = NULL;
563 		}
564 		goto out;
565 	}
566 
567 	if (rwc && rwc->try_lock) {
568 		anon_vma = NULL;
569 		rwc->contended = true;
570 		goto out;
571 	}
572 
573 	/* trylock failed, we got to sleep */
574 	if (!atomic_inc_not_zero(&anon_vma->refcount)) {
575 		anon_vma = NULL;
576 		goto out;
577 	}
578 
579 	if (!page_mapped(page)) {
580 		rcu_read_unlock();
581 		put_anon_vma(anon_vma);
582 		return NULL;
583 	}
584 
585 	/* we pinned the anon_vma, its safe to sleep */
586 	rcu_read_unlock();
587 	anon_vma_lock_read(anon_vma);
588 
589 	if (atomic_dec_and_test(&anon_vma->refcount)) {
590 		/*
591 		 * Oops, we held the last refcount, release the lock
592 		 * and bail -- can't simply use put_anon_vma() because
593 		 * we'll deadlock on the anon_vma_lock_write() recursion.
594 		 */
595 		anon_vma_unlock_read(anon_vma);
596 		__put_anon_vma(anon_vma);
597 		anon_vma = NULL;
598 	}
599 
600 	return anon_vma;
601 
602 out:
603 	rcu_read_unlock();
604 	return anon_vma;
605 }
606 
page_unlock_anon_vma_read(struct anon_vma * anon_vma)607 void page_unlock_anon_vma_read(struct anon_vma *anon_vma)
608 {
609 	anon_vma_unlock_read(anon_vma);
610 }
611 
612 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
613 /*
614  * Flush TLB entries for recently unmapped pages from remote CPUs. It is
615  * important if a PTE was dirty when it was unmapped that it's flushed
616  * before any IO is initiated on the page to prevent lost writes. Similarly,
617  * it must be flushed before freeing to prevent data leakage.
618  */
try_to_unmap_flush(void)619 void try_to_unmap_flush(void)
620 {
621 	struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
622 
623 	if (!tlb_ubc->flush_required)
624 		return;
625 
626 	arch_tlbbatch_flush(&tlb_ubc->arch);
627 	tlb_ubc->flush_required = false;
628 	tlb_ubc->writable = false;
629 }
630 
631 /* Flush iff there are potentially writable TLB entries that can race with IO */
try_to_unmap_flush_dirty(void)632 void try_to_unmap_flush_dirty(void)
633 {
634 	struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
635 
636 	if (tlb_ubc->writable)
637 		try_to_unmap_flush();
638 }
639 
set_tlb_ubc_flush_pending(struct mm_struct * mm,bool writable)640 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable)
641 {
642 	struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
643 
644 	arch_tlbbatch_add_mm(&tlb_ubc->arch, mm);
645 	tlb_ubc->flush_required = true;
646 
647 	/*
648 	 * Ensure compiler does not re-order the setting of tlb_flush_batched
649 	 * before the PTE is cleared.
650 	 */
651 	barrier();
652 	mm->tlb_flush_batched = true;
653 
654 	/*
655 	 * If the PTE was dirty then it's best to assume it's writable. The
656 	 * caller must use try_to_unmap_flush_dirty() or try_to_unmap_flush()
657 	 * before the page is queued for IO.
658 	 */
659 	if (writable)
660 		tlb_ubc->writable = true;
661 }
662 
663 /*
664  * Returns true if the TLB flush should be deferred to the end of a batch of
665  * unmap operations to reduce IPIs.
666  */
should_defer_flush(struct mm_struct * mm,enum ttu_flags flags)667 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
668 {
669 	bool should_defer = false;
670 
671 	if (!(flags & TTU_BATCH_FLUSH))
672 		return false;
673 
674 	/* If remote CPUs need to be flushed then defer batch the flush */
675 	if (cpumask_any_but(mm_cpumask(mm), get_cpu()) < nr_cpu_ids)
676 		should_defer = true;
677 	put_cpu();
678 
679 	return should_defer;
680 }
681 
682 /*
683  * Reclaim unmaps pages under the PTL but do not flush the TLB prior to
684  * releasing the PTL if TLB flushes are batched. It's possible for a parallel
685  * operation such as mprotect or munmap to race between reclaim unmapping
686  * the page and flushing the page. If this race occurs, it potentially allows
687  * access to data via a stale TLB entry. Tracking all mm's that have TLB
688  * batching in flight would be expensive during reclaim so instead track
689  * whether TLB batching occurred in the past and if so then do a flush here
690  * if required. This will cost one additional flush per reclaim cycle paid
691  * by the first operation at risk such as mprotect and mumap.
692  *
693  * This must be called under the PTL so that an access to tlb_flush_batched
694  * that is potentially a "reclaim vs mprotect/munmap/etc" race will synchronise
695  * via the PTL.
696  */
flush_tlb_batched_pending(struct mm_struct * mm)697 void flush_tlb_batched_pending(struct mm_struct *mm)
698 {
699 	if (data_race(mm->tlb_flush_batched)) {
700 		flush_tlb_mm(mm);
701 
702 		/*
703 		 * Do not allow the compiler to re-order the clearing of
704 		 * tlb_flush_batched before the tlb is flushed.
705 		 */
706 		barrier();
707 		mm->tlb_flush_batched = false;
708 	}
709 }
710 #else
set_tlb_ubc_flush_pending(struct mm_struct * mm,bool writable)711 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable)
712 {
713 }
714 
should_defer_flush(struct mm_struct * mm,enum ttu_flags flags)715 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
716 {
717 	return false;
718 }
719 #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
720 
721 /*
722  * At what user virtual address is page expected in vma?
723  * Caller should check the page is actually part of the vma.
724  */
page_address_in_vma(struct page * page,struct vm_area_struct * vma)725 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
726 {
727 	if (PageAnon(page)) {
728 		struct anon_vma *page__anon_vma = page_anon_vma(page);
729 		/*
730 		 * Note: swapoff's unuse_vma() is more efficient with this
731 		 * check, and needs it to match anon_vma when KSM is active.
732 		 */
733 		if (!vma->anon_vma || !page__anon_vma ||
734 		    vma->anon_vma->root != page__anon_vma->root)
735 			return -EFAULT;
736 	} else if (!vma->vm_file) {
737 		return -EFAULT;
738 	} else if (vma->vm_file->f_mapping != compound_head(page)->mapping) {
739 		return -EFAULT;
740 	}
741 
742 	return vma_address(page, vma);
743 }
744 
mm_find_pmd(struct mm_struct * mm,unsigned long address)745 pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address)
746 {
747 	pgd_t *pgd;
748 	p4d_t *p4d;
749 	pud_t *pud;
750 	pmd_t *pmd = NULL;
751 	pmd_t pmde;
752 
753 	pgd = pgd_offset(mm, address);
754 	if (!pgd_present(*pgd))
755 		goto out;
756 
757 	p4d = p4d_offset(pgd, address);
758 	if (!p4d_present(*p4d))
759 		goto out;
760 
761 	pud = pud_offset(p4d, address);
762 	if (!pud_present(*pud))
763 		goto out;
764 
765 	pmd = pmd_offset(pud, address);
766 	/*
767 	 * Some THP functions use the sequence pmdp_huge_clear_flush(), set_pmd_at()
768 	 * without holding anon_vma lock for write.  So when looking for a
769 	 * genuine pmde (in which to find pte), test present and !THP together.
770 	 */
771 	pmde = *pmd;
772 	barrier();
773 	if (!pmd_present(pmde) || pmd_trans_huge(pmde))
774 		pmd = NULL;
775 out:
776 	return pmd;
777 }
778 
779 struct page_referenced_arg {
780 	int mapcount;
781 	int referenced;
782 	unsigned long vm_flags;
783 	struct mem_cgroup *memcg;
784 };
785 /*
786  * arg: page_referenced_arg will be passed
787  */
page_referenced_one(struct page * page,struct vm_area_struct * vma,unsigned long address,void * arg)788 static bool page_referenced_one(struct page *page, struct vm_area_struct *vma,
789 			unsigned long address, void *arg)
790 {
791 	struct page_referenced_arg *pra = arg;
792 	struct page_vma_mapped_walk pvmw = {
793 		.page = page,
794 		.vma = vma,
795 		.address = address,
796 	};
797 	int referenced = 0;
798 
799 	while (page_vma_mapped_walk(&pvmw)) {
800 		address = pvmw.address;
801 
802 		if (vma->vm_flags & VM_LOCKED) {
803 			page_vma_mapped_walk_done(&pvmw);
804 			pra->vm_flags |= VM_LOCKED;
805 			return false; /* To break the loop */
806 		}
807 
808 		if (pvmw.pte) {
809 			if (lru_gen_enabled() && pte_young(*pvmw.pte)) {
810 				lru_gen_look_around(&pvmw);
811 				referenced++;
812 			}
813 
814 			if (ptep_clear_flush_young_notify(vma, address,
815 						pvmw.pte))
816 				referenced++;
817 		} else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
818 			if (pmdp_clear_flush_young_notify(vma, address,
819 						pvmw.pmd))
820 				referenced++;
821 		} else {
822 			/* unexpected pmd-mapped page? */
823 			WARN_ON_ONCE(1);
824 		}
825 
826 		pra->mapcount--;
827 	}
828 
829 	if (referenced)
830 		clear_page_idle(page);
831 	if (test_and_clear_page_young(page))
832 		referenced++;
833 
834 	if (referenced) {
835 		pra->referenced++;
836 		pra->vm_flags |= vma->vm_flags;
837 	}
838 
839 	if (!pra->mapcount)
840 		return false; /* To break the loop */
841 
842 	return true;
843 }
844 
invalid_page_referenced_vma(struct vm_area_struct * vma,void * arg)845 static bool invalid_page_referenced_vma(struct vm_area_struct *vma, void *arg)
846 {
847 	struct page_referenced_arg *pra = arg;
848 	struct mem_cgroup *memcg = pra->memcg;
849 
850 	/*
851 	 * Ignore references from this mapping if it has no recency. If the
852 	 * folio has been used in another mapping, we will catch it; if this
853 	 * other mapping is already gone, the unmap path will have set the
854 	 * referenced flag or activated the folio in zap_pte_range().
855 	 */
856 	if (!vma_has_recency(vma))
857 		return true;
858 
859 	/*
860 	 * If we are reclaiming on behalf of a cgroup, skip counting on behalf
861 	 * of references from different cgroups.
862 	 */
863 	if (memcg && !mm_match_cgroup(vma->vm_mm, memcg))
864 		return true;
865 
866 	return false;
867 }
868 
869 /**
870  * page_referenced - test if the page was referenced
871  * @page: the page to test
872  * @is_locked: caller holds lock on the page
873  * @memcg: target memory cgroup
874  * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
875  *
876  * Quick test_and_clear_referenced for all mappings of a page,
877  *
878  * Return: The number of mappings which referenced the page. Return -1 if
879  * the function bailed out due to rmap lock contention.
880  */
page_referenced(struct page * page,int is_locked,struct mem_cgroup * memcg,unsigned long * vm_flags)881 int page_referenced(struct page *page,
882 		    int is_locked,
883 		    struct mem_cgroup *memcg,
884 		    unsigned long *vm_flags)
885 {
886 	int we_locked = 0;
887 	struct page_referenced_arg pra = {
888 		.mapcount = total_mapcount(page),
889 		.memcg = memcg,
890 	};
891 	struct rmap_walk_control rwc = {
892 		.rmap_one = page_referenced_one,
893 		.arg = (void *)&pra,
894 		.anon_lock = page_lock_anon_vma_read,
895 		.try_lock = true,
896 		.invalid_vma = invalid_page_referenced_vma,
897 	};
898 
899 	*vm_flags = 0;
900 	if (!pra.mapcount)
901 		return 0;
902 
903 	if (!page_rmapping(page))
904 		return 0;
905 
906 	if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
907 		we_locked = trylock_page(page);
908 		if (!we_locked)
909 			return 1;
910 	}
911 
912 	rmap_walk(page, &rwc);
913 	*vm_flags = pra.vm_flags;
914 
915 	if (we_locked)
916 		unlock_page(page);
917 
918 	return rwc.contended ? -1 : pra.referenced;
919 }
920 
page_mkclean_one(struct page * page,struct vm_area_struct * vma,unsigned long address,void * arg)921 static bool page_mkclean_one(struct page *page, struct vm_area_struct *vma,
922 			    unsigned long address, void *arg)
923 {
924 	struct page_vma_mapped_walk pvmw = {
925 		.page = page,
926 		.vma = vma,
927 		.address = address,
928 		.flags = PVMW_SYNC,
929 	};
930 	struct mmu_notifier_range range;
931 	int *cleaned = arg;
932 
933 	/*
934 	 * We have to assume the worse case ie pmd for invalidation. Note that
935 	 * the page can not be free from this function.
936 	 */
937 	mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
938 				0, vma, vma->vm_mm, address,
939 				vma_address_end(page, vma));
940 	mmu_notifier_invalidate_range_start(&range);
941 
942 	while (page_vma_mapped_walk(&pvmw)) {
943 		int ret = 0;
944 
945 		address = pvmw.address;
946 		if (pvmw.pte) {
947 			pte_t entry;
948 			pte_t *pte = pvmw.pte;
949 
950 			if (!pte_dirty(*pte) && !pte_write(*pte))
951 				continue;
952 
953 			flush_cache_page(vma, address, pte_pfn(*pte));
954 			entry = ptep_clear_flush(vma, address, pte);
955 			entry = pte_wrprotect(entry);
956 			entry = pte_mkclean(entry);
957 			set_pte_at(vma->vm_mm, address, pte, entry);
958 			ret = 1;
959 		} else {
960 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
961 			pmd_t *pmd = pvmw.pmd;
962 			pmd_t entry;
963 
964 			if (!pmd_dirty(*pmd) && !pmd_write(*pmd))
965 				continue;
966 
967 			flush_cache_page(vma, address, page_to_pfn(page));
968 			entry = pmdp_invalidate(vma, address, pmd);
969 			entry = pmd_wrprotect(entry);
970 			entry = pmd_mkclean(entry);
971 			set_pmd_at(vma->vm_mm, address, pmd, entry);
972 			ret = 1;
973 #else
974 			/* unexpected pmd-mapped page? */
975 			WARN_ON_ONCE(1);
976 #endif
977 		}
978 
979 		/*
980 		 * No need to call mmu_notifier_invalidate_range() as we are
981 		 * downgrading page table protection not changing it to point
982 		 * to a new page.
983 		 *
984 		 * See Documentation/vm/mmu_notifier.rst
985 		 */
986 		if (ret)
987 			(*cleaned)++;
988 	}
989 
990 	mmu_notifier_invalidate_range_end(&range);
991 
992 	return true;
993 }
994 
invalid_mkclean_vma(struct vm_area_struct * vma,void * arg)995 static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg)
996 {
997 	if (vma->vm_flags & VM_SHARED)
998 		return false;
999 
1000 	return true;
1001 }
1002 
page_mkclean(struct page * page)1003 int page_mkclean(struct page *page)
1004 {
1005 	int cleaned = 0;
1006 	struct address_space *mapping;
1007 	struct rmap_walk_control rwc = {
1008 		.arg = (void *)&cleaned,
1009 		.rmap_one = page_mkclean_one,
1010 		.invalid_vma = invalid_mkclean_vma,
1011 	};
1012 
1013 	BUG_ON(!PageLocked(page));
1014 
1015 	if (!page_mapped(page))
1016 		return 0;
1017 
1018 	mapping = page_mapping(page);
1019 	if (!mapping)
1020 		return 0;
1021 
1022 	rmap_walk(page, &rwc);
1023 
1024 	return cleaned;
1025 }
1026 EXPORT_SYMBOL_GPL(page_mkclean);
1027 
1028 /**
1029  * page_move_anon_rmap - move a page to our anon_vma
1030  * @page:	the page to move to our anon_vma
1031  * @vma:	the vma the page belongs to
1032  *
1033  * When a page belongs exclusively to one process after a COW event,
1034  * that page can be moved into the anon_vma that belongs to just that
1035  * process, so the rmap code will not search the parent or sibling
1036  * processes.
1037  */
page_move_anon_rmap(struct page * page,struct vm_area_struct * vma)1038 void page_move_anon_rmap(struct page *page, struct vm_area_struct *vma)
1039 {
1040 	struct anon_vma *anon_vma = vma->anon_vma;
1041 
1042 	page = compound_head(page);
1043 
1044 	VM_BUG_ON_PAGE(!PageLocked(page), page);
1045 	VM_BUG_ON_VMA(!anon_vma, vma);
1046 
1047 	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1048 	/*
1049 	 * Ensure that anon_vma and the PAGE_MAPPING_ANON bit are written
1050 	 * simultaneously, so a concurrent reader (eg page_referenced()'s
1051 	 * PageAnon()) will not see one without the other.
1052 	 */
1053 	WRITE_ONCE(page->mapping, (struct address_space *) anon_vma);
1054 }
1055 
1056 /**
1057  * __page_set_anon_rmap - set up new anonymous rmap
1058  * @page:	Page or Hugepage to add to rmap
1059  * @vma:	VM area to add page to.
1060  * @address:	User virtual address of the mapping
1061  * @exclusive:	the page is exclusively owned by the current process
1062  */
__page_set_anon_rmap(struct page * page,struct vm_area_struct * vma,unsigned long address,int exclusive)1063 static void __page_set_anon_rmap(struct page *page,
1064 	struct vm_area_struct *vma, unsigned long address, int exclusive)
1065 {
1066 	struct anon_vma *anon_vma = vma->anon_vma;
1067 
1068 	BUG_ON(!anon_vma);
1069 
1070 	if (PageAnon(page))
1071 		return;
1072 
1073 	/*
1074 	 * If the page isn't exclusively mapped into this vma,
1075 	 * we must use the _oldest_ possible anon_vma for the
1076 	 * page mapping!
1077 	 */
1078 	if (!exclusive)
1079 		anon_vma = anon_vma->root;
1080 
1081 	/*
1082 	 * page_idle does a lockless/optimistic rmap scan on page->mapping.
1083 	 * Make sure the compiler doesn't split the stores of anon_vma and
1084 	 * the PAGE_MAPPING_ANON type identifier, otherwise the rmap code
1085 	 * could mistake the mapping for a struct address_space and crash.
1086 	 */
1087 	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1088 	WRITE_ONCE(page->mapping, (struct address_space *) anon_vma);
1089 	page->index = linear_page_index(vma, address);
1090 }
1091 
1092 /**
1093  * __page_check_anon_rmap - sanity check anonymous rmap addition
1094  * @page:	the page to add the mapping to
1095  * @vma:	the vm area in which the mapping is added
1096  * @address:	the user virtual address mapped
1097  */
__page_check_anon_rmap(struct page * page,struct vm_area_struct * vma,unsigned long address)1098 static void __page_check_anon_rmap(struct page *page,
1099 	struct vm_area_struct *vma, unsigned long address)
1100 {
1101 	/*
1102 	 * The page's anon-rmap details (mapping and index) are guaranteed to
1103 	 * be set up correctly at this point.
1104 	 *
1105 	 * We have exclusion against page_add_anon_rmap because the caller
1106 	 * always holds the page locked.
1107 	 *
1108 	 * We have exclusion against page_add_new_anon_rmap because those pages
1109 	 * are initially only visible via the pagetables, and the pte is locked
1110 	 * over the call to page_add_new_anon_rmap.
1111 	 */
1112 	VM_BUG_ON_PAGE(page_anon_vma(page)->root != vma->anon_vma->root, page);
1113 	VM_BUG_ON_PAGE(page_to_pgoff(page) != linear_page_index(vma, address),
1114 		       page);
1115 }
1116 
1117 /**
1118  * page_add_anon_rmap - add pte mapping to an anonymous page
1119  * @page:	the page to add the mapping to
1120  * @vma:	the vm area in which the mapping is added
1121  * @address:	the user virtual address mapped
1122  * @compound:	charge the page as compound or small page
1123  *
1124  * The caller needs to hold the pte lock, and the page must be locked in
1125  * the anon_vma case: to serialize mapping,index checking after setting,
1126  * and to ensure that PageAnon is not being upgraded racily to PageKsm
1127  * (but PageKsm is never downgraded to PageAnon).
1128  */
page_add_anon_rmap(struct page * page,struct vm_area_struct * vma,unsigned long address,bool compound)1129 void page_add_anon_rmap(struct page *page,
1130 	struct vm_area_struct *vma, unsigned long address, bool compound)
1131 {
1132 	do_page_add_anon_rmap(page, vma, address, compound ? RMAP_COMPOUND : 0);
1133 }
1134 
1135 /*
1136  * Special version of the above for do_swap_page, which often runs
1137  * into pages that are exclusively owned by the current process.
1138  * Everybody else should continue to use page_add_anon_rmap above.
1139  */
do_page_add_anon_rmap(struct page * page,struct vm_area_struct * vma,unsigned long address,int flags)1140 void do_page_add_anon_rmap(struct page *page,
1141 	struct vm_area_struct *vma, unsigned long address, int flags)
1142 {
1143 	bool compound = flags & RMAP_COMPOUND;
1144 	bool first;
1145 
1146 	if (unlikely(PageKsm(page)))
1147 		lock_page_memcg(page);
1148 	else
1149 		VM_BUG_ON_PAGE(!PageLocked(page), page);
1150 
1151 	if (compound) {
1152 		atomic_t *mapcount;
1153 		VM_BUG_ON_PAGE(!PageLocked(page), page);
1154 		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
1155 		mapcount = compound_mapcount_ptr(page);
1156 		first = atomic_inc_and_test(mapcount);
1157 	} else {
1158 		first = atomic_inc_and_test(&page->_mapcount);
1159 	}
1160 
1161 	if (first) {
1162 		int nr = compound ? thp_nr_pages(page) : 1;
1163 		/*
1164 		 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1165 		 * these counters are not modified in interrupt context, and
1166 		 * pte lock(a spinlock) is held, which implies preemption
1167 		 * disabled.
1168 		 */
1169 		if (compound)
1170 			__mod_lruvec_page_state(page, NR_ANON_THPS, nr);
1171 		__mod_lruvec_page_state(page, NR_ANON_MAPPED, nr);
1172 	}
1173 
1174 	if (unlikely(PageKsm(page))) {
1175 		unlock_page_memcg(page);
1176 		return;
1177 	}
1178 
1179 	/* address might be in next vma when migration races vma_adjust */
1180 	if (first)
1181 		__page_set_anon_rmap(page, vma, address,
1182 				flags & RMAP_EXCLUSIVE);
1183 	else
1184 		__page_check_anon_rmap(page, vma, address);
1185 }
1186 
1187 /**
1188  * page_add_new_anon_rmap - add pte mapping to a new anonymous page
1189  * @page:	the page to add the mapping to
1190  * @vma:	the vm area in which the mapping is added
1191  * @address:	the user virtual address mapped
1192  * @compound:	charge the page as compound or small page
1193  *
1194  * Same as page_add_anon_rmap but must only be called on *new* pages.
1195  * This means the inc-and-test can be bypassed.
1196  * Page does not have to be locked.
1197  */
page_add_new_anon_rmap(struct page * page,struct vm_area_struct * vma,unsigned long address,bool compound)1198 void page_add_new_anon_rmap(struct page *page,
1199 	struct vm_area_struct *vma, unsigned long address, bool compound)
1200 {
1201 	int nr = compound ? thp_nr_pages(page) : 1;
1202 
1203 	VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
1204 	__SetPageSwapBacked(page);
1205 	if (compound) {
1206 		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
1207 		/* increment count (starts at -1) */
1208 		atomic_set(compound_mapcount_ptr(page), 0);
1209 		if (hpage_pincount_available(page))
1210 			atomic_set(compound_pincount_ptr(page), 0);
1211 
1212 		__mod_lruvec_page_state(page, NR_ANON_THPS, nr);
1213 	} else {
1214 		/* Anon THP always mapped first with PMD */
1215 		VM_BUG_ON_PAGE(PageTransCompound(page), page);
1216 		/* increment count (starts at -1) */
1217 		atomic_set(&page->_mapcount, 0);
1218 	}
1219 	__mod_lruvec_page_state(page, NR_ANON_MAPPED, nr);
1220 	__page_set_anon_rmap(page, vma, address, 1);
1221 }
1222 
1223 /**
1224  * page_add_file_rmap - add pte mapping to a file page
1225  * @page: the page to add the mapping to
1226  * @compound: charge the page as compound or small page
1227  *
1228  * The caller needs to hold the pte lock.
1229  */
page_add_file_rmap(struct page * page,bool compound)1230 void page_add_file_rmap(struct page *page, bool compound)
1231 {
1232 	int i, nr = 1;
1233 
1234 	VM_BUG_ON_PAGE(compound && !PageTransHuge(page), page);
1235 	lock_page_memcg(page);
1236 	if (compound && PageTransHuge(page)) {
1237 		int nr_pages = thp_nr_pages(page);
1238 
1239 		for (i = 0, nr = 0; i < nr_pages; i++) {
1240 			if (atomic_inc_and_test(&page[i]._mapcount))
1241 				nr++;
1242 		}
1243 		if (!atomic_inc_and_test(compound_mapcount_ptr(page)))
1244 			goto out;
1245 		if (PageSwapBacked(page))
1246 			__mod_lruvec_page_state(page, NR_SHMEM_PMDMAPPED,
1247 						nr_pages);
1248 		else
1249 			__mod_lruvec_page_state(page, NR_FILE_PMDMAPPED,
1250 						nr_pages);
1251 	} else {
1252 		if (PageTransCompound(page) && page_mapping(page)) {
1253 			struct page *head = compound_head(page);
1254 
1255 			VM_WARN_ON_ONCE(!PageLocked(page));
1256 
1257 			SetPageDoubleMap(head);
1258 			if (PageMlocked(page))
1259 				clear_page_mlock(head);
1260 		}
1261 		if (!atomic_inc_and_test(&page->_mapcount))
1262 			goto out;
1263 	}
1264 	__mod_lruvec_page_state(page, NR_FILE_MAPPED, nr);
1265 out:
1266 	unlock_page_memcg(page);
1267 }
1268 
page_remove_file_rmap(struct page * page,bool compound)1269 static void page_remove_file_rmap(struct page *page, bool compound)
1270 {
1271 	int i, nr = 1;
1272 
1273 	VM_BUG_ON_PAGE(compound && !PageHead(page), page);
1274 
1275 	/* Hugepages are not counted in NR_FILE_MAPPED for now. */
1276 	if (unlikely(PageHuge(page))) {
1277 		/* hugetlb pages are always mapped with pmds */
1278 		atomic_dec(compound_mapcount_ptr(page));
1279 		return;
1280 	}
1281 
1282 	/* page still mapped by someone else? */
1283 	if (compound && PageTransHuge(page)) {
1284 		int nr_pages = thp_nr_pages(page);
1285 
1286 		for (i = 0, nr = 0; i < nr_pages; i++) {
1287 			if (atomic_add_negative(-1, &page[i]._mapcount))
1288 				nr++;
1289 		}
1290 		if (!atomic_add_negative(-1, compound_mapcount_ptr(page)))
1291 			return;
1292 		if (PageSwapBacked(page))
1293 			__mod_lruvec_page_state(page, NR_SHMEM_PMDMAPPED,
1294 						-nr_pages);
1295 		else
1296 			__mod_lruvec_page_state(page, NR_FILE_PMDMAPPED,
1297 						-nr_pages);
1298 	} else {
1299 		if (!atomic_add_negative(-1, &page->_mapcount))
1300 			return;
1301 	}
1302 
1303 	/*
1304 	 * We use the irq-unsafe __{inc|mod}_lruvec_page_state because
1305 	 * these counters are not modified in interrupt context, and
1306 	 * pte lock(a spinlock) is held, which implies preemption disabled.
1307 	 */
1308 	__mod_lruvec_page_state(page, NR_FILE_MAPPED, -nr);
1309 
1310 	if (unlikely(PageMlocked(page)))
1311 		clear_page_mlock(page);
1312 }
1313 
page_remove_anon_compound_rmap(struct page * page)1314 static void page_remove_anon_compound_rmap(struct page *page)
1315 {
1316 	int i, nr;
1317 
1318 	if (!atomic_add_negative(-1, compound_mapcount_ptr(page)))
1319 		return;
1320 
1321 	/* Hugepages are not counted in NR_ANON_PAGES for now. */
1322 	if (unlikely(PageHuge(page)))
1323 		return;
1324 
1325 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1326 		return;
1327 
1328 	__mod_lruvec_page_state(page, NR_ANON_THPS, -thp_nr_pages(page));
1329 
1330 	if (TestClearPageDoubleMap(page)) {
1331 		/*
1332 		 * Subpages can be mapped with PTEs too. Check how many of
1333 		 * them are still mapped.
1334 		 */
1335 		for (i = 0, nr = 0; i < thp_nr_pages(page); i++) {
1336 			if (atomic_add_negative(-1, &page[i]._mapcount))
1337 				nr++;
1338 		}
1339 
1340 		/*
1341 		 * Queue the page for deferred split if at least one small
1342 		 * page of the compound page is unmapped, but at least one
1343 		 * small page is still mapped.
1344 		 */
1345 		if (nr && nr < thp_nr_pages(page))
1346 			deferred_split_huge_page(page);
1347 	} else {
1348 		nr = thp_nr_pages(page);
1349 	}
1350 
1351 	if (unlikely(PageMlocked(page)))
1352 		clear_page_mlock(page);
1353 
1354 	if (nr)
1355 		__mod_lruvec_page_state(page, NR_ANON_MAPPED, -nr);
1356 }
1357 
1358 /**
1359  * page_remove_rmap - take down pte mapping from a page
1360  * @page:	page to remove mapping from
1361  * @compound:	uncharge the page as compound or small page
1362  *
1363  * The caller needs to hold the pte lock.
1364  */
page_remove_rmap(struct page * page,bool compound)1365 void page_remove_rmap(struct page *page, bool compound)
1366 {
1367 	lock_page_memcg(page);
1368 
1369 	if (!PageAnon(page)) {
1370 		page_remove_file_rmap(page, compound);
1371 		goto out;
1372 	}
1373 
1374 	if (compound) {
1375 		page_remove_anon_compound_rmap(page);
1376 		goto out;
1377 	}
1378 
1379 	/* page still mapped by someone else? */
1380 	if (!atomic_add_negative(-1, &page->_mapcount))
1381 		goto out;
1382 
1383 	/*
1384 	 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1385 	 * these counters are not modified in interrupt context, and
1386 	 * pte lock(a spinlock) is held, which implies preemption disabled.
1387 	 */
1388 	__dec_lruvec_page_state(page, NR_ANON_MAPPED);
1389 
1390 	if (unlikely(PageMlocked(page)))
1391 		clear_page_mlock(page);
1392 
1393 	if (PageTransCompound(page))
1394 		deferred_split_huge_page(compound_head(page));
1395 
1396 	/*
1397 	 * It would be tidy to reset the PageAnon mapping here,
1398 	 * but that might overwrite a racing page_add_anon_rmap
1399 	 * which increments mapcount after us but sets mapping
1400 	 * before us: so leave the reset to free_unref_page,
1401 	 * and remember that it's only reliable while mapped.
1402 	 * Leaving it set also helps swapoff to reinstate ptes
1403 	 * faster for those pages still in swapcache.
1404 	 */
1405 out:
1406 	unlock_page_memcg(page);
1407 }
1408 
1409 /*
1410  * @arg: enum ttu_flags will be passed to this argument
1411  */
try_to_unmap_one(struct page * page,struct vm_area_struct * vma,unsigned long address,void * arg)1412 static bool try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
1413 		     unsigned long address, void *arg)
1414 {
1415 	struct mm_struct *mm = vma->vm_mm;
1416 	struct page_vma_mapped_walk pvmw = {
1417 		.page = page,
1418 		.vma = vma,
1419 		.address = address,
1420 	};
1421 	pte_t pteval;
1422 	struct page *subpage;
1423 	bool ret = true;
1424 	struct mmu_notifier_range range;
1425 	enum ttu_flags flags = (enum ttu_flags)(long)arg;
1426 
1427 	/*
1428 	 * When racing against e.g. zap_pte_range() on another cpu,
1429 	 * in between its ptep_get_and_clear_full() and page_remove_rmap(),
1430 	 * try_to_unmap() may return before page_mapped() has become false,
1431 	 * if page table locking is skipped: use TTU_SYNC to wait for that.
1432 	 */
1433 	if (flags & TTU_SYNC)
1434 		pvmw.flags = PVMW_SYNC;
1435 
1436 	if (flags & TTU_SPLIT_HUGE_PMD)
1437 		split_huge_pmd_address(vma, address, false, page);
1438 
1439 	/*
1440 	 * For THP, we have to assume the worse case ie pmd for invalidation.
1441 	 * For hugetlb, it could be much worse if we need to do pud
1442 	 * invalidation in the case of pmd sharing.
1443 	 *
1444 	 * Note that the page can not be free in this function as call of
1445 	 * try_to_unmap() must hold a reference on the page.
1446 	 */
1447 	range.end = PageKsm(page) ?
1448 			address + PAGE_SIZE : vma_address_end(page, vma);
1449 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1450 				address, range.end);
1451 	if (PageHuge(page)) {
1452 		/*
1453 		 * If sharing is possible, start and end will be adjusted
1454 		 * accordingly.
1455 		 */
1456 		adjust_range_if_pmd_sharing_possible(vma, &range.start,
1457 						     &range.end);
1458 	}
1459 	mmu_notifier_invalidate_range_start(&range);
1460 
1461 	while (page_vma_mapped_walk(&pvmw)) {
1462 		/*
1463 		 * If the page is mlock()d, we cannot swap it out.
1464 		 */
1465 		if (!(flags & TTU_IGNORE_MLOCK) &&
1466 		    (vma->vm_flags & VM_LOCKED)) {
1467 			/*
1468 			 * PTE-mapped THP are never marked as mlocked: so do
1469 			 * not set it on a DoubleMap THP, nor on an Anon THP
1470 			 * (which may still be PTE-mapped after DoubleMap was
1471 			 * cleared).  But stop unmapping even in those cases.
1472 			 */
1473 			if (!PageTransCompound(page) || (PageHead(page) &&
1474 			     !PageDoubleMap(page) && !PageAnon(page)))
1475 				mlock_vma_page(page);
1476 			page_vma_mapped_walk_done(&pvmw);
1477 			ret = false;
1478 			break;
1479 		}
1480 
1481 		/* Unexpected PMD-mapped THP? */
1482 		VM_BUG_ON_PAGE(!pvmw.pte, page);
1483 
1484 		subpage = page - page_to_pfn(page) + pte_pfn(*pvmw.pte);
1485 		address = pvmw.address;
1486 
1487 		if (PageHuge(page) && !PageAnon(page)) {
1488 			/*
1489 			 * To call huge_pmd_unshare, i_mmap_rwsem must be
1490 			 * held in write mode.  Caller needs to explicitly
1491 			 * do this outside rmap routines.
1492 			 */
1493 			VM_BUG_ON(!(flags & TTU_RMAP_LOCKED));
1494 			if (huge_pmd_unshare(mm, vma, &address, pvmw.pte)) {
1495 				/*
1496 				 * huge_pmd_unshare unmapped an entire PMD
1497 				 * page.  There is no way of knowing exactly
1498 				 * which PMDs may be cached for this mm, so
1499 				 * we must flush them all.  start/end were
1500 				 * already adjusted above to cover this range.
1501 				 */
1502 				flush_cache_range(vma, range.start, range.end);
1503 				flush_tlb_range(vma, range.start, range.end);
1504 				mmu_notifier_invalidate_range(mm, range.start,
1505 							      range.end);
1506 
1507 				/*
1508 				 * The ref count of the PMD page was dropped
1509 				 * which is part of the way map counting
1510 				 * is done for shared PMDs.  Return 'true'
1511 				 * here.  When there is no other sharing,
1512 				 * huge_pmd_unshare returns false and we will
1513 				 * unmap the actual page and drop map count
1514 				 * to zero.
1515 				 */
1516 				page_vma_mapped_walk_done(&pvmw);
1517 				break;
1518 			}
1519 		}
1520 
1521 		/* Nuke the page table entry. */
1522 		flush_cache_page(vma, address, pte_pfn(*pvmw.pte));
1523 		if (should_defer_flush(mm, flags)) {
1524 			/*
1525 			 * We clear the PTE but do not flush so potentially
1526 			 * a remote CPU could still be writing to the page.
1527 			 * If the entry was previously clean then the
1528 			 * architecture must guarantee that a clear->dirty
1529 			 * transition on a cached TLB entry is written through
1530 			 * and traps if the PTE is unmapped.
1531 			 */
1532 			pteval = ptep_get_and_clear(mm, address, pvmw.pte);
1533 
1534 			set_tlb_ubc_flush_pending(mm, pte_dirty(pteval));
1535 		} else {
1536 			pteval = ptep_clear_flush(vma, address, pvmw.pte);
1537 		}
1538 
1539 		/* Move the dirty bit to the page. Now the pte is gone. */
1540 		if (pte_dirty(pteval))
1541 			set_page_dirty(page);
1542 
1543 		/* Update high watermark before we lower rss */
1544 		update_hiwater_rss(mm);
1545 
1546 		if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
1547 			pteval = swp_entry_to_pte(make_hwpoison_entry(subpage));
1548 			if (PageHuge(page)) {
1549 				hugetlb_count_sub(compound_nr(page), mm);
1550 				set_huge_swap_pte_at(mm, address,
1551 						     pvmw.pte, pteval,
1552 						     vma_mmu_pagesize(vma));
1553 			} else {
1554 				dec_mm_counter(mm, mm_counter(page));
1555 				set_pte_at(mm, address, pvmw.pte, pteval);
1556 			}
1557 
1558 		} else if (pte_unused(pteval) && !userfaultfd_armed(vma)) {
1559 			/*
1560 			 * The guest indicated that the page content is of no
1561 			 * interest anymore. Simply discard the pte, vmscan
1562 			 * will take care of the rest.
1563 			 * A future reference will then fault in a new zero
1564 			 * page. When userfaultfd is active, we must not drop
1565 			 * this page though, as its main user (postcopy
1566 			 * migration) will not expect userfaults on already
1567 			 * copied pages.
1568 			 */
1569 			dec_mm_counter(mm, mm_counter(page));
1570 			/* We have to invalidate as we cleared the pte */
1571 			mmu_notifier_invalidate_range(mm, address,
1572 						      address + PAGE_SIZE);
1573 		} else if (PageAnon(page)) {
1574 			swp_entry_t entry = { .val = page_private(subpage) };
1575 			pte_t swp_pte;
1576 			/*
1577 			 * Store the swap location in the pte.
1578 			 * See handle_pte_fault() ...
1579 			 */
1580 			if (unlikely(PageSwapBacked(page) != PageSwapCache(page))) {
1581 				WARN_ON_ONCE(1);
1582 				ret = false;
1583 				/* We have to invalidate as we cleared the pte */
1584 				mmu_notifier_invalidate_range(mm, address,
1585 							address + PAGE_SIZE);
1586 				page_vma_mapped_walk_done(&pvmw);
1587 				break;
1588 			}
1589 
1590 			/* MADV_FREE page check */
1591 			if (!PageSwapBacked(page)) {
1592 				int ref_count, map_count;
1593 
1594 				/*
1595 				 * Synchronize with gup_pte_range():
1596 				 * - clear PTE; barrier; read refcount
1597 				 * - inc refcount; barrier; read PTE
1598 				 */
1599 				smp_mb();
1600 
1601 				ref_count = page_ref_count(page);
1602 				map_count = page_mapcount(page);
1603 
1604 				/*
1605 				 * Order reads for page refcount and dirty flag
1606 				 * (see comments in __remove_mapping()).
1607 				 */
1608 				smp_rmb();
1609 
1610 				/*
1611 				 * The only page refs must be one from isolation
1612 				 * plus the rmap(s) (dropped by discard:).
1613 				 */
1614 				if (ref_count == 1 + map_count &&
1615 				    !PageDirty(page)) {
1616 					/* Invalidate as we cleared the pte */
1617 					mmu_notifier_invalidate_range(mm,
1618 						address, address + PAGE_SIZE);
1619 					dec_mm_counter(mm, MM_ANONPAGES);
1620 					goto discard;
1621 				}
1622 
1623 				/*
1624 				 * If the page was redirtied, it cannot be
1625 				 * discarded. Remap the page to page table.
1626 				 */
1627 				set_pte_at(mm, address, pvmw.pte, pteval);
1628 				SetPageSwapBacked(page);
1629 				ret = false;
1630 				page_vma_mapped_walk_done(&pvmw);
1631 				break;
1632 			}
1633 
1634 			if (swap_duplicate(entry) < 0) {
1635 				set_pte_at(mm, address, pvmw.pte, pteval);
1636 				ret = false;
1637 				page_vma_mapped_walk_done(&pvmw);
1638 				break;
1639 			}
1640 			if (arch_unmap_one(mm, vma, address, pteval) < 0) {
1641 				set_pte_at(mm, address, pvmw.pte, pteval);
1642 				ret = false;
1643 				page_vma_mapped_walk_done(&pvmw);
1644 				break;
1645 			}
1646 			if (list_empty(&mm->mmlist)) {
1647 				spin_lock(&mmlist_lock);
1648 				if (list_empty(&mm->mmlist))
1649 					list_add(&mm->mmlist, &init_mm.mmlist);
1650 				spin_unlock(&mmlist_lock);
1651 			}
1652 			dec_mm_counter(mm, MM_ANONPAGES);
1653 			inc_mm_counter(mm, MM_SWAPENTS);
1654 			swp_pte = swp_entry_to_pte(entry);
1655 			if (pte_soft_dirty(pteval))
1656 				swp_pte = pte_swp_mksoft_dirty(swp_pte);
1657 			if (pte_uffd_wp(pteval))
1658 				swp_pte = pte_swp_mkuffd_wp(swp_pte);
1659 			set_pte_at(mm, address, pvmw.pte, swp_pte);
1660 			/* Invalidate as we cleared the pte */
1661 			mmu_notifier_invalidate_range(mm, address,
1662 						      address + PAGE_SIZE);
1663 		} else {
1664 			/*
1665 			 * This is a locked file-backed page, thus it cannot
1666 			 * be removed from the page cache and replaced by a new
1667 			 * page before mmu_notifier_invalidate_range_end, so no
1668 			 * concurrent thread might update its page table to
1669 			 * point at new page while a device still is using this
1670 			 * page.
1671 			 *
1672 			 * See Documentation/vm/mmu_notifier.rst
1673 			 */
1674 			dec_mm_counter(mm, mm_counter_file(page));
1675 		}
1676 discard:
1677 		/*
1678 		 * No need to call mmu_notifier_invalidate_range() it has be
1679 		 * done above for all cases requiring it to happen under page
1680 		 * table lock before mmu_notifier_invalidate_range_end()
1681 		 *
1682 		 * See Documentation/vm/mmu_notifier.rst
1683 		 */
1684 		page_remove_rmap(subpage, PageHuge(page));
1685 		put_page(page);
1686 	}
1687 
1688 	mmu_notifier_invalidate_range_end(&range);
1689 	trace_android_vh_try_to_unmap_one(vma, page, address, ret);
1690 
1691 	return ret;
1692 }
1693 
invalid_migration_vma(struct vm_area_struct * vma,void * arg)1694 static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg)
1695 {
1696 	return vma_is_temporary_stack(vma);
1697 }
1698 
page_not_mapped(struct page * page)1699 static int page_not_mapped(struct page *page)
1700 {
1701 	return !page_mapped(page);
1702 }
1703 
1704 /**
1705  * try_to_unmap - try to remove all page table mappings to a page
1706  * @page: the page to get unmapped
1707  * @flags: action and flags
1708  *
1709  * Tries to remove all the page table entries which are mapping this
1710  * page, used in the pageout path.  Caller must hold the page lock.
1711  *
1712  * It is the caller's responsibility to check if the page is still
1713  * mapped when needed (use TTU_SYNC to prevent accounting races).
1714  */
try_to_unmap(struct page * page,enum ttu_flags flags)1715 void try_to_unmap(struct page *page, enum ttu_flags flags)
1716 {
1717 	struct rmap_walk_control rwc = {
1718 		.rmap_one = try_to_unmap_one,
1719 		.arg = (void *)flags,
1720 		.done = page_not_mapped,
1721 		.anon_lock = page_lock_anon_vma_read,
1722 	};
1723 
1724 	if (flags & TTU_RMAP_LOCKED)
1725 		rmap_walk_locked(page, &rwc);
1726 	else
1727 		rmap_walk(page, &rwc);
1728 }
1729 
1730 /*
1731  * @arg: enum ttu_flags will be passed to this argument.
1732  *
1733  * If TTU_SPLIT_HUGE_PMD is specified any PMD mappings will be split into PTEs
1734  * containing migration entries.
1735  */
try_to_migrate_one(struct page * page,struct vm_area_struct * vma,unsigned long address,void * arg)1736 static bool try_to_migrate_one(struct page *page, struct vm_area_struct *vma,
1737 		     unsigned long address, void *arg)
1738 {
1739 	struct mm_struct *mm = vma->vm_mm;
1740 	struct page_vma_mapped_walk pvmw = {
1741 		.page = page,
1742 		.vma = vma,
1743 		.address = address,
1744 	};
1745 	pte_t pteval;
1746 	struct page *subpage;
1747 	bool ret = true;
1748 	struct mmu_notifier_range range;
1749 	enum ttu_flags flags = (enum ttu_flags)(long)arg;
1750 
1751 	/*
1752 	 * When racing against e.g. zap_pte_range() on another cpu,
1753 	 * in between its ptep_get_and_clear_full() and page_remove_rmap(),
1754 	 * try_to_migrate() may return before page_mapped() has become false,
1755 	 * if page table locking is skipped: use TTU_SYNC to wait for that.
1756 	 */
1757 	if (flags & TTU_SYNC)
1758 		pvmw.flags = PVMW_SYNC;
1759 
1760 	/*
1761 	 * unmap_page() in mm/huge_memory.c is the only user of migration with
1762 	 * TTU_SPLIT_HUGE_PMD and it wants to freeze.
1763 	 */
1764 	if (flags & TTU_SPLIT_HUGE_PMD)
1765 		split_huge_pmd_address(vma, address, true, page);
1766 
1767 	/*
1768 	 * For THP, we have to assume the worse case ie pmd for invalidation.
1769 	 * For hugetlb, it could be much worse if we need to do pud
1770 	 * invalidation in the case of pmd sharing.
1771 	 *
1772 	 * Note that the page can not be free in this function as call of
1773 	 * try_to_unmap() must hold a reference on the page.
1774 	 */
1775 	range.end = PageKsm(page) ?
1776 			address + PAGE_SIZE : vma_address_end(page, vma);
1777 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1778 				address, range.end);
1779 	if (PageHuge(page)) {
1780 		/*
1781 		 * If sharing is possible, start and end will be adjusted
1782 		 * accordingly.
1783 		 */
1784 		adjust_range_if_pmd_sharing_possible(vma, &range.start,
1785 						     &range.end);
1786 	}
1787 	mmu_notifier_invalidate_range_start(&range);
1788 
1789 	while (page_vma_mapped_walk(&pvmw)) {
1790 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1791 		/* PMD-mapped THP migration entry */
1792 		if (!pvmw.pte) {
1793 			VM_BUG_ON_PAGE(PageHuge(page) ||
1794 				       !PageTransCompound(page), page);
1795 
1796 			set_pmd_migration_entry(&pvmw, page);
1797 			continue;
1798 		}
1799 #endif
1800 
1801 		/* Unexpected PMD-mapped THP? */
1802 		VM_BUG_ON_PAGE(!pvmw.pte, page);
1803 
1804 		subpage = page - page_to_pfn(page) + pte_pfn(*pvmw.pte);
1805 		address = pvmw.address;
1806 
1807 		if (PageHuge(page) && !PageAnon(page)) {
1808 			/*
1809 			 * To call huge_pmd_unshare, i_mmap_rwsem must be
1810 			 * held in write mode.  Caller needs to explicitly
1811 			 * do this outside rmap routines.
1812 			 */
1813 			VM_BUG_ON(!(flags & TTU_RMAP_LOCKED));
1814 			if (huge_pmd_unshare(mm, vma, &address, pvmw.pte)) {
1815 				/*
1816 				 * huge_pmd_unshare unmapped an entire PMD
1817 				 * page.  There is no way of knowing exactly
1818 				 * which PMDs may be cached for this mm, so
1819 				 * we must flush them all.  start/end were
1820 				 * already adjusted above to cover this range.
1821 				 */
1822 				flush_cache_range(vma, range.start, range.end);
1823 				flush_tlb_range(vma, range.start, range.end);
1824 				mmu_notifier_invalidate_range(mm, range.start,
1825 							      range.end);
1826 
1827 				/*
1828 				 * The ref count of the PMD page was dropped
1829 				 * which is part of the way map counting
1830 				 * is done for shared PMDs.  Return 'true'
1831 				 * here.  When there is no other sharing,
1832 				 * huge_pmd_unshare returns false and we will
1833 				 * unmap the actual page and drop map count
1834 				 * to zero.
1835 				 */
1836 				page_vma_mapped_walk_done(&pvmw);
1837 				break;
1838 			}
1839 		}
1840 
1841 		/* Nuke the page table entry. */
1842 		flush_cache_page(vma, address, pte_pfn(*pvmw.pte));
1843 		pteval = ptep_clear_flush(vma, address, pvmw.pte);
1844 
1845 		/* Move the dirty bit to the page. Now the pte is gone. */
1846 		if (pte_dirty(pteval))
1847 			set_page_dirty(page);
1848 
1849 		/* Update high watermark before we lower rss */
1850 		update_hiwater_rss(mm);
1851 
1852 		if (is_zone_device_page(page)) {
1853 			swp_entry_t entry;
1854 			pte_t swp_pte;
1855 
1856 			/*
1857 			 * Store the pfn of the page in a special migration
1858 			 * pte. do_swap_page() will wait until the migration
1859 			 * pte is removed and then restart fault handling.
1860 			 */
1861 			entry = make_readable_migration_entry(
1862 							page_to_pfn(page));
1863 			swp_pte = swp_entry_to_pte(entry);
1864 
1865 			/*
1866 			 * pteval maps a zone device page and is therefore
1867 			 * a swap pte.
1868 			 */
1869 			if (pte_swp_soft_dirty(pteval))
1870 				swp_pte = pte_swp_mksoft_dirty(swp_pte);
1871 			if (pte_swp_uffd_wp(pteval))
1872 				swp_pte = pte_swp_mkuffd_wp(swp_pte);
1873 			set_pte_at(mm, pvmw.address, pvmw.pte, swp_pte);
1874 			/*
1875 			 * No need to invalidate here it will synchronize on
1876 			 * against the special swap migration pte.
1877 			 *
1878 			 * The assignment to subpage above was computed from a
1879 			 * swap PTE which results in an invalid pointer.
1880 			 * Since only PAGE_SIZE pages can currently be
1881 			 * migrated, just set it to page. This will need to be
1882 			 * changed when hugepage migrations to device private
1883 			 * memory are supported.
1884 			 */
1885 			subpage = page;
1886 		} else if (PageHWPoison(page)) {
1887 			pteval = swp_entry_to_pte(make_hwpoison_entry(subpage));
1888 			if (PageHuge(page)) {
1889 				hugetlb_count_sub(compound_nr(page), mm);
1890 				set_huge_swap_pte_at(mm, address,
1891 						     pvmw.pte, pteval,
1892 						     vma_mmu_pagesize(vma));
1893 			} else {
1894 				dec_mm_counter(mm, mm_counter(page));
1895 				set_pte_at(mm, address, pvmw.pte, pteval);
1896 			}
1897 
1898 		} else if (pte_unused(pteval) && !userfaultfd_armed(vma)) {
1899 			/*
1900 			 * The guest indicated that the page content is of no
1901 			 * interest anymore. Simply discard the pte, vmscan
1902 			 * will take care of the rest.
1903 			 * A future reference will then fault in a new zero
1904 			 * page. When userfaultfd is active, we must not drop
1905 			 * this page though, as its main user (postcopy
1906 			 * migration) will not expect userfaults on already
1907 			 * copied pages.
1908 			 */
1909 			dec_mm_counter(mm, mm_counter(page));
1910 			/* We have to invalidate as we cleared the pte */
1911 			mmu_notifier_invalidate_range(mm, address,
1912 						      address + PAGE_SIZE);
1913 		} else {
1914 			swp_entry_t entry;
1915 			pte_t swp_pte;
1916 
1917 			if (arch_unmap_one(mm, vma, address, pteval) < 0) {
1918 				set_pte_at(mm, address, pvmw.pte, pteval);
1919 				ret = false;
1920 				page_vma_mapped_walk_done(&pvmw);
1921 				break;
1922 			}
1923 
1924 			/*
1925 			 * Store the pfn of the page in a special migration
1926 			 * pte. do_swap_page() will wait until the migration
1927 			 * pte is removed and then restart fault handling.
1928 			 */
1929 			if (pte_write(pteval))
1930 				entry = make_writable_migration_entry(
1931 							page_to_pfn(subpage));
1932 			else
1933 				entry = make_readable_migration_entry(
1934 							page_to_pfn(subpage));
1935 
1936 			swp_pte = swp_entry_to_pte(entry);
1937 			if (pte_soft_dirty(pteval))
1938 				swp_pte = pte_swp_mksoft_dirty(swp_pte);
1939 			if (pte_uffd_wp(pteval))
1940 				swp_pte = pte_swp_mkuffd_wp(swp_pte);
1941 			set_pte_at(mm, address, pvmw.pte, swp_pte);
1942 			/*
1943 			 * No need to invalidate here it will synchronize on
1944 			 * against the special swap migration pte.
1945 			 */
1946 		}
1947 
1948 		/*
1949 		 * No need to call mmu_notifier_invalidate_range() it has be
1950 		 * done above for all cases requiring it to happen under page
1951 		 * table lock before mmu_notifier_invalidate_range_end()
1952 		 *
1953 		 * See Documentation/vm/mmu_notifier.rst
1954 		 */
1955 		page_remove_rmap(subpage, PageHuge(page));
1956 		put_page(page);
1957 	}
1958 
1959 	mmu_notifier_invalidate_range_end(&range);
1960 
1961 	return ret;
1962 }
1963 
1964 /**
1965  * try_to_migrate - try to replace all page table mappings with swap entries
1966  * @page: the page to replace page table entries for
1967  * @flags: action and flags
1968  *
1969  * Tries to remove all the page table entries which are mapping this page and
1970  * replace them with special swap entries. Caller must hold the page lock.
1971  */
try_to_migrate(struct page * page,enum ttu_flags flags)1972 void try_to_migrate(struct page *page, enum ttu_flags flags)
1973 {
1974 	struct rmap_walk_control rwc = {
1975 		.rmap_one = try_to_migrate_one,
1976 		.arg = (void *)flags,
1977 		.done = page_not_mapped,
1978 		.anon_lock = page_lock_anon_vma_read,
1979 	};
1980 
1981 	/*
1982 	 * Migration always ignores mlock and only supports TTU_RMAP_LOCKED and
1983 	 * TTU_SPLIT_HUGE_PMD and TTU_SYNC flags.
1984 	 */
1985 	if (WARN_ON_ONCE(flags & ~(TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD |
1986 					TTU_SYNC)))
1987 		return;
1988 
1989 	if (is_zone_device_page(page) && !is_device_private_page(page))
1990 		return;
1991 
1992 	/*
1993 	 * During exec, a temporary VMA is setup and later moved.
1994 	 * The VMA is moved under the anon_vma lock but not the
1995 	 * page tables leading to a race where migration cannot
1996 	 * find the migration ptes. Rather than increasing the
1997 	 * locking requirements of exec(), migration skips
1998 	 * temporary VMAs until after exec() completes.
1999 	 */
2000 	if (!PageKsm(page) && PageAnon(page))
2001 		rwc.invalid_vma = invalid_migration_vma;
2002 
2003 	if (flags & TTU_RMAP_LOCKED)
2004 		rmap_walk_locked(page, &rwc);
2005 	else
2006 		rmap_walk(page, &rwc);
2007 }
2008 
2009 /*
2010  * Walks the vma's mapping a page and mlocks the page if any locked vma's are
2011  * found. Once one is found the page is locked and the scan can be terminated.
2012  */
page_mlock_one(struct page * page,struct vm_area_struct * vma,unsigned long address,void * unused)2013 static bool page_mlock_one(struct page *page, struct vm_area_struct *vma,
2014 				 unsigned long address, void *unused)
2015 {
2016 	struct page_vma_mapped_walk pvmw = {
2017 		.page = page,
2018 		.vma = vma,
2019 		.address = address,
2020 	};
2021 
2022 	/* An un-locked vma doesn't have any pages to lock, continue the scan */
2023 	if (!(vma->vm_flags & VM_LOCKED))
2024 		return true;
2025 
2026 	while (page_vma_mapped_walk(&pvmw)) {
2027 		/*
2028 		 * Need to recheck under the ptl to serialise with
2029 		 * __munlock_pagevec_fill() after VM_LOCKED is cleared in
2030 		 * munlock_vma_pages_range().
2031 		 */
2032 		if (vma->vm_flags & VM_LOCKED) {
2033 			/*
2034 			 * PTE-mapped THP are never marked as mlocked; but
2035 			 * this function is never called on a DoubleMap THP,
2036 			 * nor on an Anon THP (which may still be PTE-mapped
2037 			 * after DoubleMap was cleared).
2038 			 */
2039 			mlock_vma_page(page);
2040 			/*
2041 			 * No need to scan further once the page is marked
2042 			 * as mlocked.
2043 			 */
2044 			page_vma_mapped_walk_done(&pvmw);
2045 			return false;
2046 		}
2047 	}
2048 
2049 	return true;
2050 }
2051 
2052 /**
2053  * page_mlock - try to mlock a page
2054  * @page: the page to be mlocked
2055  *
2056  * Called from munlock code. Checks all of the VMAs mapping the page and mlocks
2057  * the page if any are found. The page will be returned with PG_mlocked cleared
2058  * if it is not mapped by any locked vmas.
2059  */
page_mlock(struct page * page)2060 void page_mlock(struct page *page)
2061 {
2062 	struct rmap_walk_control rwc = {
2063 		.rmap_one = page_mlock_one,
2064 		.done = page_not_mapped,
2065 		.anon_lock = page_lock_anon_vma_read,
2066 
2067 	};
2068 
2069 	VM_BUG_ON_PAGE(!PageLocked(page) || PageLRU(page), page);
2070 	VM_BUG_ON_PAGE(PageCompound(page) && PageDoubleMap(page), page);
2071 
2072 	/* Anon THP are only marked as mlocked when singly mapped */
2073 	if (PageTransCompound(page) && PageAnon(page))
2074 		return;
2075 
2076 	rmap_walk(page, &rwc);
2077 }
2078 
2079 #ifdef CONFIG_DEVICE_PRIVATE
2080 struct make_exclusive_args {
2081 	struct mm_struct *mm;
2082 	unsigned long address;
2083 	void *owner;
2084 	bool valid;
2085 };
2086 
page_make_device_exclusive_one(struct page * page,struct vm_area_struct * vma,unsigned long address,void * priv)2087 static bool page_make_device_exclusive_one(struct page *page,
2088 		struct vm_area_struct *vma, unsigned long address, void *priv)
2089 {
2090 	struct mm_struct *mm = vma->vm_mm;
2091 	struct page_vma_mapped_walk pvmw = {
2092 		.page = page,
2093 		.vma = vma,
2094 		.address = address,
2095 	};
2096 	struct make_exclusive_args *args = priv;
2097 	pte_t pteval;
2098 	struct page *subpage;
2099 	bool ret = true;
2100 	struct mmu_notifier_range range;
2101 	swp_entry_t entry;
2102 	pte_t swp_pte;
2103 
2104 	mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0, vma,
2105 				      vma->vm_mm, address, min(vma->vm_end,
2106 				      address + page_size(page)), args->owner);
2107 	mmu_notifier_invalidate_range_start(&range);
2108 
2109 	while (page_vma_mapped_walk(&pvmw)) {
2110 		/* Unexpected PMD-mapped THP? */
2111 		VM_BUG_ON_PAGE(!pvmw.pte, page);
2112 
2113 		if (!pte_present(*pvmw.pte)) {
2114 			ret = false;
2115 			page_vma_mapped_walk_done(&pvmw);
2116 			break;
2117 		}
2118 
2119 		subpage = page - page_to_pfn(page) + pte_pfn(*pvmw.pte);
2120 		address = pvmw.address;
2121 
2122 		/* Nuke the page table entry. */
2123 		flush_cache_page(vma, address, pte_pfn(*pvmw.pte));
2124 		pteval = ptep_clear_flush(vma, address, pvmw.pte);
2125 
2126 		/* Move the dirty bit to the page. Now the pte is gone. */
2127 		if (pte_dirty(pteval))
2128 			set_page_dirty(page);
2129 
2130 		/*
2131 		 * Check that our target page is still mapped at the expected
2132 		 * address.
2133 		 */
2134 		if (args->mm == mm && args->address == address &&
2135 		    pte_write(pteval))
2136 			args->valid = true;
2137 
2138 		/*
2139 		 * Store the pfn of the page in a special migration
2140 		 * pte. do_swap_page() will wait until the migration
2141 		 * pte is removed and then restart fault handling.
2142 		 */
2143 		if (pte_write(pteval))
2144 			entry = make_writable_device_exclusive_entry(
2145 							page_to_pfn(subpage));
2146 		else
2147 			entry = make_readable_device_exclusive_entry(
2148 							page_to_pfn(subpage));
2149 		swp_pte = swp_entry_to_pte(entry);
2150 		if (pte_soft_dirty(pteval))
2151 			swp_pte = pte_swp_mksoft_dirty(swp_pte);
2152 		if (pte_uffd_wp(pteval))
2153 			swp_pte = pte_swp_mkuffd_wp(swp_pte);
2154 
2155 		set_pte_at(mm, address, pvmw.pte, swp_pte);
2156 
2157 		/*
2158 		 * There is a reference on the page for the swap entry which has
2159 		 * been removed, so shouldn't take another.
2160 		 */
2161 		page_remove_rmap(subpage, false);
2162 	}
2163 
2164 	mmu_notifier_invalidate_range_end(&range);
2165 
2166 	return ret;
2167 }
2168 
2169 /**
2170  * page_make_device_exclusive - mark the page exclusively owned by a device
2171  * @page: the page to replace page table entries for
2172  * @mm: the mm_struct where the page is expected to be mapped
2173  * @address: address where the page is expected to be mapped
2174  * @owner: passed to MMU_NOTIFY_EXCLUSIVE range notifier callbacks
2175  *
2176  * Tries to remove all the page table entries which are mapping this page and
2177  * replace them with special device exclusive swap entries to grant a device
2178  * exclusive access to the page. Caller must hold the page lock.
2179  *
2180  * Returns false if the page is still mapped, or if it could not be unmapped
2181  * from the expected address. Otherwise returns true (success).
2182  */
page_make_device_exclusive(struct page * page,struct mm_struct * mm,unsigned long address,void * owner)2183 static bool page_make_device_exclusive(struct page *page, struct mm_struct *mm,
2184 				unsigned long address, void *owner)
2185 {
2186 	struct make_exclusive_args args = {
2187 		.mm = mm,
2188 		.address = address,
2189 		.owner = owner,
2190 		.valid = false,
2191 	};
2192 	struct rmap_walk_control rwc = {
2193 		.rmap_one = page_make_device_exclusive_one,
2194 		.done = page_not_mapped,
2195 		.anon_lock = page_lock_anon_vma_read,
2196 		.arg = &args,
2197 	};
2198 
2199 	/*
2200 	 * Restrict to anonymous pages for now to avoid potential writeback
2201 	 * issues. Also tail pages shouldn't be passed to rmap_walk so skip
2202 	 * those.
2203 	 */
2204 	if (!PageAnon(page) || PageTail(page))
2205 		return false;
2206 
2207 	rmap_walk(page, &rwc);
2208 
2209 	return args.valid && !page_mapcount(page);
2210 }
2211 
2212 /**
2213  * make_device_exclusive_range() - Mark a range for exclusive use by a device
2214  * @mm: mm_struct of assoicated target process
2215  * @start: start of the region to mark for exclusive device access
2216  * @end: end address of region
2217  * @pages: returns the pages which were successfully marked for exclusive access
2218  * @owner: passed to MMU_NOTIFY_EXCLUSIVE range notifier to allow filtering
2219  *
2220  * Returns: number of pages found in the range by GUP. A page is marked for
2221  * exclusive access only if the page pointer is non-NULL.
2222  *
2223  * This function finds ptes mapping page(s) to the given address range, locks
2224  * them and replaces mappings with special swap entries preventing userspace CPU
2225  * access. On fault these entries are replaced with the original mapping after
2226  * calling MMU notifiers.
2227  *
2228  * A driver using this to program access from a device must use a mmu notifier
2229  * critical section to hold a device specific lock during programming. Once
2230  * programming is complete it should drop the page lock and reference after
2231  * which point CPU access to the page will revoke the exclusive access.
2232  */
make_device_exclusive_range(struct mm_struct * mm,unsigned long start,unsigned long end,struct page ** pages,void * owner)2233 int make_device_exclusive_range(struct mm_struct *mm, unsigned long start,
2234 				unsigned long end, struct page **pages,
2235 				void *owner)
2236 {
2237 	long npages = (end - start) >> PAGE_SHIFT;
2238 	long i;
2239 
2240 	npages = get_user_pages_remote(mm, start, npages,
2241 				       FOLL_GET | FOLL_WRITE | FOLL_SPLIT_PMD,
2242 				       pages, NULL, NULL);
2243 	if (npages < 0)
2244 		return npages;
2245 
2246 	for (i = 0; i < npages; i++, start += PAGE_SIZE) {
2247 		if (!trylock_page(pages[i])) {
2248 			put_page(pages[i]);
2249 			pages[i] = NULL;
2250 			continue;
2251 		}
2252 
2253 		if (!page_make_device_exclusive(pages[i], mm, start, owner)) {
2254 			unlock_page(pages[i]);
2255 			put_page(pages[i]);
2256 			pages[i] = NULL;
2257 		}
2258 	}
2259 
2260 	return npages;
2261 }
2262 EXPORT_SYMBOL_GPL(make_device_exclusive_range);
2263 #endif
2264 
__put_anon_vma(struct anon_vma * anon_vma)2265 void __put_anon_vma(struct anon_vma *anon_vma)
2266 {
2267 	struct anon_vma *root = anon_vma->root;
2268 
2269 	anon_vma_free(anon_vma);
2270 	if (root != anon_vma && atomic_dec_and_test(&root->refcount))
2271 		anon_vma_free(root);
2272 }
2273 
rmap_walk_anon_lock(struct page * page,struct rmap_walk_control * rwc)2274 static struct anon_vma *rmap_walk_anon_lock(struct page *page,
2275 					struct rmap_walk_control *rwc)
2276 {
2277 	struct anon_vma *anon_vma;
2278 
2279 	if (rwc->anon_lock)
2280 		return rwc->anon_lock(page, rwc);
2281 
2282 	/*
2283 	 * Note: remove_migration_ptes() cannot use page_lock_anon_vma_read()
2284 	 * because that depends on page_mapped(); but not all its usages
2285 	 * are holding mmap_lock. Users without mmap_lock are required to
2286 	 * take a reference count to prevent the anon_vma disappearing
2287 	 */
2288 	anon_vma = page_anon_vma(page);
2289 	if (!anon_vma)
2290 		return NULL;
2291 
2292 	if (anon_vma_trylock_read(anon_vma))
2293 		goto out;
2294 
2295 	if (rwc->try_lock) {
2296 		anon_vma = NULL;
2297 		rwc->contended = true;
2298 		goto out;
2299 	}
2300 
2301 	anon_vma_lock_read(anon_vma);
2302 out:
2303 	return anon_vma;
2304 }
2305 
2306 /*
2307  * rmap_walk_anon - do something to anonymous page using the object-based
2308  * rmap method
2309  * @page: the page to be handled
2310  * @rwc: control variable according to each walk type
2311  *
2312  * Find all the mappings of a page using the mapping pointer and the vma chains
2313  * contained in the anon_vma struct it points to.
2314  *
2315  * When called from page_mlock(), the mmap_lock of the mm containing the vma
2316  * where the page was found will be held for write.  So, we won't recheck
2317  * vm_flags for that VMA.  That should be OK, because that vma shouldn't be
2318  * LOCKED.
2319  */
rmap_walk_anon(struct page * page,struct rmap_walk_control * rwc,bool locked)2320 static void rmap_walk_anon(struct page *page, struct rmap_walk_control *rwc,
2321 		bool locked)
2322 {
2323 	struct anon_vma *anon_vma;
2324 	pgoff_t pgoff_start, pgoff_end;
2325 	struct anon_vma_chain *avc;
2326 
2327 	if (locked) {
2328 		anon_vma = page_anon_vma(page);
2329 		/* anon_vma disappear under us? */
2330 		VM_BUG_ON_PAGE(!anon_vma, page);
2331 	} else {
2332 		anon_vma = rmap_walk_anon_lock(page, rwc);
2333 	}
2334 	if (!anon_vma)
2335 		return;
2336 
2337 	pgoff_start = page_to_pgoff(page);
2338 	pgoff_end = pgoff_start + thp_nr_pages(page) - 1;
2339 	anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root,
2340 			pgoff_start, pgoff_end) {
2341 		struct vm_area_struct *vma = avc->vma;
2342 		unsigned long address = vma_address(page, vma);
2343 
2344 		VM_BUG_ON_VMA(address == -EFAULT, vma);
2345 		cond_resched();
2346 
2347 		if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2348 			continue;
2349 
2350 		if (!rwc->rmap_one(page, vma, address, rwc->arg))
2351 			break;
2352 		if (rwc->done && rwc->done(page))
2353 			break;
2354 	}
2355 
2356 	if (!locked)
2357 		anon_vma_unlock_read(anon_vma);
2358 }
2359 
2360 /*
2361  * rmap_walk_file - do something to file page using the object-based rmap method
2362  * @page: the page to be handled
2363  * @rwc: control variable according to each walk type
2364  *
2365  * Find all the mappings of a page using the mapping pointer and the vma chains
2366  * contained in the address_space struct it points to.
2367  *
2368  * When called from page_mlock(), the mmap_lock of the mm containing the vma
2369  * where the page was found will be held for write.  So, we won't recheck
2370  * vm_flags for that VMA.  That should be OK, because that vma shouldn't be
2371  * LOCKED.
2372  */
rmap_walk_file(struct page * page,struct rmap_walk_control * rwc,bool locked)2373 static void rmap_walk_file(struct page *page, struct rmap_walk_control *rwc,
2374 		bool locked)
2375 {
2376 	struct address_space *mapping = page_mapping(page);
2377 	pgoff_t pgoff_start, pgoff_end;
2378 	struct vm_area_struct *vma;
2379 
2380 	/*
2381 	 * The page lock not only makes sure that page->mapping cannot
2382 	 * suddenly be NULLified by truncation, it makes sure that the
2383 	 * structure at mapping cannot be freed and reused yet,
2384 	 * so we can safely take mapping->i_mmap_rwsem.
2385 	 */
2386 	VM_BUG_ON_PAGE(!PageLocked(page), page);
2387 
2388 	if (!mapping)
2389 		return;
2390 
2391 	pgoff_start = page_to_pgoff(page);
2392 	pgoff_end = pgoff_start + thp_nr_pages(page) - 1;
2393 	if (!locked) {
2394 		if (i_mmap_trylock_read(mapping))
2395 			goto lookup;
2396 
2397 		if (rwc->try_lock) {
2398 			rwc->contended = true;
2399 			return;
2400 		}
2401 
2402 		i_mmap_lock_read(mapping);
2403 	}
2404 lookup:
2405 	vma_interval_tree_foreach(vma, &mapping->i_mmap,
2406 			pgoff_start, pgoff_end) {
2407 		unsigned long address = vma_address(page, vma);
2408 
2409 		VM_BUG_ON_VMA(address == -EFAULT, vma);
2410 		cond_resched();
2411 
2412 		if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2413 			continue;
2414 
2415 		if (!rwc->rmap_one(page, vma, address, rwc->arg))
2416 			goto done;
2417 		if (rwc->done && rwc->done(page))
2418 			goto done;
2419 	}
2420 
2421 done:
2422 	if (!locked)
2423 		i_mmap_unlock_read(mapping);
2424 }
2425 
rmap_walk(struct page * page,struct rmap_walk_control * rwc)2426 void rmap_walk(struct page *page, struct rmap_walk_control *rwc)
2427 {
2428 	if (unlikely(PageKsm(page)))
2429 		rmap_walk_ksm(page, rwc);
2430 	else if (PageAnon(page))
2431 		rmap_walk_anon(page, rwc, false);
2432 	else
2433 		rmap_walk_file(page, rwc, false);
2434 }
2435 
2436 /* Like rmap_walk, but caller holds relevant rmap lock */
rmap_walk_locked(struct page * page,struct rmap_walk_control * rwc)2437 void rmap_walk_locked(struct page *page, struct rmap_walk_control *rwc)
2438 {
2439 	/* no ksm support for now */
2440 	VM_BUG_ON_PAGE(PageKsm(page), page);
2441 	if (PageAnon(page))
2442 		rmap_walk_anon(page, rwc, true);
2443 	else
2444 		rmap_walk_file(page, rwc, true);
2445 }
2446 
2447 #ifdef CONFIG_HUGETLB_PAGE
2448 /*
2449  * The following two functions are for anonymous (private mapped) hugepages.
2450  * Unlike common anonymous pages, anonymous hugepages have no accounting code
2451  * and no lru code, because we handle hugepages differently from common pages.
2452  */
hugepage_add_anon_rmap(struct page * page,struct vm_area_struct * vma,unsigned long address)2453 void hugepage_add_anon_rmap(struct page *page,
2454 			    struct vm_area_struct *vma, unsigned long address)
2455 {
2456 	struct anon_vma *anon_vma = vma->anon_vma;
2457 	int first;
2458 
2459 	BUG_ON(!PageLocked(page));
2460 	BUG_ON(!anon_vma);
2461 	/* address might be in next vma when migration races vma_adjust */
2462 	first = atomic_inc_and_test(compound_mapcount_ptr(page));
2463 	if (first)
2464 		__page_set_anon_rmap(page, vma, address, 0);
2465 }
2466 
hugepage_add_new_anon_rmap(struct page * page,struct vm_area_struct * vma,unsigned long address)2467 void hugepage_add_new_anon_rmap(struct page *page,
2468 			struct vm_area_struct *vma, unsigned long address)
2469 {
2470 	BUG_ON(address < vma->vm_start || address >= vma->vm_end);
2471 	atomic_set(compound_mapcount_ptr(page), 0);
2472 	if (hpage_pincount_available(page))
2473 		atomic_set(compound_pincount_ptr(page), 0);
2474 
2475 	__page_set_anon_rmap(page, vma, address, 1);
2476 }
2477 #endif /* CONFIG_HUGETLB_PAGE */
2478