• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/fs/namespace.c
4  *
5  * (C) Copyright Al Viro 2000, 2001
6  *
7  * Based on code from fs/super.c, copyright Linus Torvalds and others.
8  * Heavily rewritten.
9  */
10 
11 #include <linux/syscalls.h>
12 #include <linux/export.h>
13 #include <linux/capability.h>
14 #include <linux/mnt_namespace.h>
15 #include <linux/user_namespace.h>
16 #include <linux/namei.h>
17 #include <linux/security.h>
18 #include <linux/cred.h>
19 #include <linux/idr.h>
20 #include <linux/init.h>		/* init_rootfs */
21 #include <linux/fs_struct.h>	/* get_fs_root et.al. */
22 #include <linux/fsnotify.h>	/* fsnotify_vfsmount_delete */
23 #include <linux/file.h>
24 #include <linux/uaccess.h>
25 #include <linux/proc_ns.h>
26 #include <linux/magic.h>
27 #include <linux/memblock.h>
28 #include <linux/proc_fs.h>
29 #include <linux/task_work.h>
30 #include <linux/sched/task.h>
31 #include <uapi/linux/mount.h>
32 #include <linux/fs_context.h>
33 #include <linux/shmem_fs.h>
34 #include <linux/mnt_idmapping.h>
35 
36 #include "pnode.h"
37 #include "internal.h"
38 
39 /* Maximum number of mounts in a mount namespace */
40 unsigned int sysctl_mount_max __read_mostly = 100000;
41 
42 static unsigned int m_hash_mask __read_mostly;
43 static unsigned int m_hash_shift __read_mostly;
44 static unsigned int mp_hash_mask __read_mostly;
45 static unsigned int mp_hash_shift __read_mostly;
46 
47 static __initdata unsigned long mhash_entries;
set_mhash_entries(char * str)48 static int __init set_mhash_entries(char *str)
49 {
50 	if (!str)
51 		return 0;
52 	mhash_entries = simple_strtoul(str, &str, 0);
53 	return 1;
54 }
55 __setup("mhash_entries=", set_mhash_entries);
56 
57 static __initdata unsigned long mphash_entries;
set_mphash_entries(char * str)58 static int __init set_mphash_entries(char *str)
59 {
60 	if (!str)
61 		return 0;
62 	mphash_entries = simple_strtoul(str, &str, 0);
63 	return 1;
64 }
65 __setup("mphash_entries=", set_mphash_entries);
66 
67 static u64 event;
68 static DEFINE_IDA(mnt_id_ida);
69 static DEFINE_IDA(mnt_group_ida);
70 
71 static struct hlist_head *mount_hashtable __read_mostly;
72 static struct hlist_head *mountpoint_hashtable __read_mostly;
73 static struct kmem_cache *mnt_cache __read_mostly;
74 static DECLARE_RWSEM(namespace_sem);
75 static HLIST_HEAD(unmounted);	/* protected by namespace_sem */
76 static LIST_HEAD(ex_mountpoints); /* protected by namespace_sem */
77 
78 struct mount_kattr {
79 	unsigned int attr_set;
80 	unsigned int attr_clr;
81 	unsigned int propagation;
82 	unsigned int lookup_flags;
83 	bool recurse;
84 	struct user_namespace *mnt_userns;
85 };
86 
87 /* /sys/fs */
88 struct kobject *fs_kobj;
89 EXPORT_SYMBOL_GPL(fs_kobj);
90 
91 /*
92  * vfsmount lock may be taken for read to prevent changes to the
93  * vfsmount hash, ie. during mountpoint lookups or walking back
94  * up the tree.
95  *
96  * It should be taken for write in all cases where the vfsmount
97  * tree or hash is modified or when a vfsmount structure is modified.
98  */
99 __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
100 
lock_mount_hash(void)101 static inline void lock_mount_hash(void)
102 {
103 	write_seqlock(&mount_lock);
104 }
105 
unlock_mount_hash(void)106 static inline void unlock_mount_hash(void)
107 {
108 	write_sequnlock(&mount_lock);
109 }
110 
m_hash(struct vfsmount * mnt,struct dentry * dentry)111 static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
112 {
113 	unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
114 	tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
115 	tmp = tmp + (tmp >> m_hash_shift);
116 	return &mount_hashtable[tmp & m_hash_mask];
117 }
118 
mp_hash(struct dentry * dentry)119 static inline struct hlist_head *mp_hash(struct dentry *dentry)
120 {
121 	unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
122 	tmp = tmp + (tmp >> mp_hash_shift);
123 	return &mountpoint_hashtable[tmp & mp_hash_mask];
124 }
125 
mnt_alloc_id(struct mount * mnt)126 static int mnt_alloc_id(struct mount *mnt)
127 {
128 	int res = ida_alloc(&mnt_id_ida, GFP_KERNEL);
129 
130 	if (res < 0)
131 		return res;
132 	mnt->mnt_id = res;
133 	return 0;
134 }
135 
mnt_free_id(struct mount * mnt)136 static void mnt_free_id(struct mount *mnt)
137 {
138 	ida_free(&mnt_id_ida, mnt->mnt_id);
139 }
140 
141 /*
142  * Allocate a new peer group ID
143  */
mnt_alloc_group_id(struct mount * mnt)144 static int mnt_alloc_group_id(struct mount *mnt)
145 {
146 	int res = ida_alloc_min(&mnt_group_ida, 1, GFP_KERNEL);
147 
148 	if (res < 0)
149 		return res;
150 	mnt->mnt_group_id = res;
151 	return 0;
152 }
153 
154 /*
155  * Release a peer group ID
156  */
mnt_release_group_id(struct mount * mnt)157 void mnt_release_group_id(struct mount *mnt)
158 {
159 	ida_free(&mnt_group_ida, mnt->mnt_group_id);
160 	mnt->mnt_group_id = 0;
161 }
162 
163 /*
164  * vfsmount lock must be held for read
165  */
mnt_add_count(struct mount * mnt,int n)166 static inline void mnt_add_count(struct mount *mnt, int n)
167 {
168 #ifdef CONFIG_SMP
169 	this_cpu_add(mnt->mnt_pcp->mnt_count, n);
170 #else
171 	preempt_disable();
172 	mnt->mnt_count += n;
173 	preempt_enable();
174 #endif
175 }
176 
177 /*
178  * vfsmount lock must be held for write
179  */
mnt_get_count(struct mount * mnt)180 int mnt_get_count(struct mount *mnt)
181 {
182 #ifdef CONFIG_SMP
183 	int count = 0;
184 	int cpu;
185 
186 	for_each_possible_cpu(cpu) {
187 		count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
188 	}
189 
190 	return count;
191 #else
192 	return mnt->mnt_count;
193 #endif
194 }
195 
alloc_vfsmnt(const char * name)196 static struct mount *alloc_vfsmnt(const char *name)
197 {
198 	struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
199 	if (mnt) {
200 		int err;
201 
202 		err = mnt_alloc_id(mnt);
203 		if (err)
204 			goto out_free_cache;
205 
206 		if (name) {
207 			mnt->mnt_devname = kstrdup_const(name,
208 							 GFP_KERNEL_ACCOUNT);
209 			if (!mnt->mnt_devname)
210 				goto out_free_id;
211 		}
212 
213 #ifdef CONFIG_SMP
214 		mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
215 		if (!mnt->mnt_pcp)
216 			goto out_free_devname;
217 
218 		this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
219 #else
220 		mnt->mnt_count = 1;
221 		mnt->mnt_writers = 0;
222 #endif
223 
224 		INIT_HLIST_NODE(&mnt->mnt_hash);
225 		INIT_LIST_HEAD(&mnt->mnt_child);
226 		INIT_LIST_HEAD(&mnt->mnt_mounts);
227 		INIT_LIST_HEAD(&mnt->mnt_list);
228 		INIT_LIST_HEAD(&mnt->mnt_expire);
229 		INIT_LIST_HEAD(&mnt->mnt_share);
230 		INIT_LIST_HEAD(&mnt->mnt_slave_list);
231 		INIT_LIST_HEAD(&mnt->mnt_slave);
232 		INIT_HLIST_NODE(&mnt->mnt_mp_list);
233 		INIT_LIST_HEAD(&mnt->mnt_umounting);
234 		INIT_HLIST_HEAD(&mnt->mnt_stuck_children);
235 		mnt->mnt.mnt_userns = &init_user_ns;
236 	}
237 	return mnt;
238 
239 #ifdef CONFIG_SMP
240 out_free_devname:
241 	kfree_const(mnt->mnt_devname);
242 #endif
243 out_free_id:
244 	mnt_free_id(mnt);
245 out_free_cache:
246 	kmem_cache_free(mnt_cache, mnt);
247 	return NULL;
248 }
249 
250 /*
251  * Most r/o checks on a fs are for operations that take
252  * discrete amounts of time, like a write() or unlink().
253  * We must keep track of when those operations start
254  * (for permission checks) and when they end, so that
255  * we can determine when writes are able to occur to
256  * a filesystem.
257  */
258 /*
259  * __mnt_is_readonly: check whether a mount is read-only
260  * @mnt: the mount to check for its write status
261  *
262  * This shouldn't be used directly ouside of the VFS.
263  * It does not guarantee that the filesystem will stay
264  * r/w, just that it is right *now*.  This can not and
265  * should not be used in place of IS_RDONLY(inode).
266  * mnt_want/drop_write() will _keep_ the filesystem
267  * r/w.
268  */
__mnt_is_readonly(struct vfsmount * mnt)269 bool __mnt_is_readonly(struct vfsmount *mnt)
270 {
271 	return (mnt->mnt_flags & MNT_READONLY) || sb_rdonly(mnt->mnt_sb);
272 }
273 EXPORT_SYMBOL_GPL(__mnt_is_readonly);
274 
mnt_inc_writers(struct mount * mnt)275 static inline void mnt_inc_writers(struct mount *mnt)
276 {
277 #ifdef CONFIG_SMP
278 	this_cpu_inc(mnt->mnt_pcp->mnt_writers);
279 #else
280 	mnt->mnt_writers++;
281 #endif
282 }
283 
mnt_dec_writers(struct mount * mnt)284 static inline void mnt_dec_writers(struct mount *mnt)
285 {
286 #ifdef CONFIG_SMP
287 	this_cpu_dec(mnt->mnt_pcp->mnt_writers);
288 #else
289 	mnt->mnt_writers--;
290 #endif
291 }
292 
mnt_get_writers(struct mount * mnt)293 static unsigned int mnt_get_writers(struct mount *mnt)
294 {
295 #ifdef CONFIG_SMP
296 	unsigned int count = 0;
297 	int cpu;
298 
299 	for_each_possible_cpu(cpu) {
300 		count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
301 	}
302 
303 	return count;
304 #else
305 	return mnt->mnt_writers;
306 #endif
307 }
308 
mnt_is_readonly(struct vfsmount * mnt)309 static int mnt_is_readonly(struct vfsmount *mnt)
310 {
311 	if (mnt->mnt_sb->s_readonly_remount)
312 		return 1;
313 	/* Order wrt setting s_flags/s_readonly_remount in do_remount() */
314 	smp_rmb();
315 	return __mnt_is_readonly(mnt);
316 }
317 
318 /*
319  * Most r/o & frozen checks on a fs are for operations that take discrete
320  * amounts of time, like a write() or unlink().  We must keep track of when
321  * those operations start (for permission checks) and when they end, so that we
322  * can determine when writes are able to occur to a filesystem.
323  */
324 /**
325  * __mnt_want_write - get write access to a mount without freeze protection
326  * @m: the mount on which to take a write
327  *
328  * This tells the low-level filesystem that a write is about to be performed to
329  * it, and makes sure that writes are allowed (mnt it read-write) before
330  * returning success. This operation does not protect against filesystem being
331  * frozen. When the write operation is finished, __mnt_drop_write() must be
332  * called. This is effectively a refcount.
333  */
__mnt_want_write(struct vfsmount * m)334 int __mnt_want_write(struct vfsmount *m)
335 {
336 	struct mount *mnt = real_mount(m);
337 	int ret = 0;
338 
339 	preempt_disable();
340 	mnt_inc_writers(mnt);
341 	/*
342 	 * The store to mnt_inc_writers must be visible before we pass
343 	 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
344 	 * incremented count after it has set MNT_WRITE_HOLD.
345 	 */
346 	smp_mb();
347 	while (READ_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
348 		cpu_relax();
349 	/*
350 	 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
351 	 * be set to match its requirements. So we must not load that until
352 	 * MNT_WRITE_HOLD is cleared.
353 	 */
354 	smp_rmb();
355 	if (mnt_is_readonly(m)) {
356 		mnt_dec_writers(mnt);
357 		ret = -EROFS;
358 	}
359 	preempt_enable();
360 
361 	return ret;
362 }
363 
364 /**
365  * mnt_want_write - get write access to a mount
366  * @m: the mount on which to take a write
367  *
368  * This tells the low-level filesystem that a write is about to be performed to
369  * it, and makes sure that writes are allowed (mount is read-write, filesystem
370  * is not frozen) before returning success.  When the write operation is
371  * finished, mnt_drop_write() must be called.  This is effectively a refcount.
372  */
mnt_want_write(struct vfsmount * m)373 int mnt_want_write(struct vfsmount *m)
374 {
375 	int ret;
376 
377 	sb_start_write(m->mnt_sb);
378 	ret = __mnt_want_write(m);
379 	if (ret)
380 		sb_end_write(m->mnt_sb);
381 	return ret;
382 }
383 EXPORT_SYMBOL_GPL(mnt_want_write);
384 
385 /**
386  * __mnt_want_write_file - get write access to a file's mount
387  * @file: the file who's mount on which to take a write
388  *
389  * This is like __mnt_want_write, but if the file is already open for writing it
390  * skips incrementing mnt_writers (since the open file already has a reference)
391  * and instead only does the check for emergency r/o remounts.  This must be
392  * paired with __mnt_drop_write_file.
393  */
__mnt_want_write_file(struct file * file)394 int __mnt_want_write_file(struct file *file)
395 {
396 	if (file->f_mode & FMODE_WRITER) {
397 		/*
398 		 * Superblock may have become readonly while there are still
399 		 * writable fd's, e.g. due to a fs error with errors=remount-ro
400 		 */
401 		if (__mnt_is_readonly(file->f_path.mnt))
402 			return -EROFS;
403 		return 0;
404 	}
405 	return __mnt_want_write(file->f_path.mnt);
406 }
407 
408 /**
409  * mnt_want_write_file - get write access to a file's mount
410  * @file: the file who's mount on which to take a write
411  *
412  * This is like mnt_want_write, but if the file is already open for writing it
413  * skips incrementing mnt_writers (since the open file already has a reference)
414  * and instead only does the freeze protection and the check for emergency r/o
415  * remounts.  This must be paired with mnt_drop_write_file.
416  */
mnt_want_write_file(struct file * file)417 int mnt_want_write_file(struct file *file)
418 {
419 	int ret;
420 
421 	sb_start_write(file_inode(file)->i_sb);
422 	ret = __mnt_want_write_file(file);
423 	if (ret)
424 		sb_end_write(file_inode(file)->i_sb);
425 	return ret;
426 }
427 EXPORT_SYMBOL_NS_GPL(mnt_want_write_file, ANDROID_GKI_VFS_EXPORT_ONLY);
428 
429 /**
430  * __mnt_drop_write - give up write access to a mount
431  * @mnt: the mount on which to give up write access
432  *
433  * Tells the low-level filesystem that we are done
434  * performing writes to it.  Must be matched with
435  * __mnt_want_write() call above.
436  */
__mnt_drop_write(struct vfsmount * mnt)437 void __mnt_drop_write(struct vfsmount *mnt)
438 {
439 	preempt_disable();
440 	mnt_dec_writers(real_mount(mnt));
441 	preempt_enable();
442 }
443 
444 /**
445  * mnt_drop_write - give up write access to a mount
446  * @mnt: the mount on which to give up write access
447  *
448  * Tells the low-level filesystem that we are done performing writes to it and
449  * also allows filesystem to be frozen again.  Must be matched with
450  * mnt_want_write() call above.
451  */
mnt_drop_write(struct vfsmount * mnt)452 void mnt_drop_write(struct vfsmount *mnt)
453 {
454 	__mnt_drop_write(mnt);
455 	sb_end_write(mnt->mnt_sb);
456 }
457 EXPORT_SYMBOL_GPL(mnt_drop_write);
458 
__mnt_drop_write_file(struct file * file)459 void __mnt_drop_write_file(struct file *file)
460 {
461 	if (!(file->f_mode & FMODE_WRITER))
462 		__mnt_drop_write(file->f_path.mnt);
463 }
464 
mnt_drop_write_file(struct file * file)465 void mnt_drop_write_file(struct file *file)
466 {
467 	__mnt_drop_write_file(file);
468 	sb_end_write(file_inode(file)->i_sb);
469 }
470 EXPORT_SYMBOL_NS(mnt_drop_write_file, ANDROID_GKI_VFS_EXPORT_ONLY);
471 
mnt_hold_writers(struct mount * mnt)472 static inline int mnt_hold_writers(struct mount *mnt)
473 {
474 	mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
475 	/*
476 	 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
477 	 * should be visible before we do.
478 	 */
479 	smp_mb();
480 
481 	/*
482 	 * With writers on hold, if this value is zero, then there are
483 	 * definitely no active writers (although held writers may subsequently
484 	 * increment the count, they'll have to wait, and decrement it after
485 	 * seeing MNT_READONLY).
486 	 *
487 	 * It is OK to have counter incremented on one CPU and decremented on
488 	 * another: the sum will add up correctly. The danger would be when we
489 	 * sum up each counter, if we read a counter before it is incremented,
490 	 * but then read another CPU's count which it has been subsequently
491 	 * decremented from -- we would see more decrements than we should.
492 	 * MNT_WRITE_HOLD protects against this scenario, because
493 	 * mnt_want_write first increments count, then smp_mb, then spins on
494 	 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
495 	 * we're counting up here.
496 	 */
497 	if (mnt_get_writers(mnt) > 0)
498 		return -EBUSY;
499 
500 	return 0;
501 }
502 
mnt_unhold_writers(struct mount * mnt)503 static inline void mnt_unhold_writers(struct mount *mnt)
504 {
505 	/*
506 	 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
507 	 * that become unheld will see MNT_READONLY.
508 	 */
509 	smp_wmb();
510 	mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
511 }
512 
mnt_make_readonly(struct mount * mnt)513 static int mnt_make_readonly(struct mount *mnt)
514 {
515 	int ret;
516 
517 	ret = mnt_hold_writers(mnt);
518 	if (!ret)
519 		mnt->mnt.mnt_flags |= MNT_READONLY;
520 	mnt_unhold_writers(mnt);
521 	return ret;
522 }
523 
sb_prepare_remount_readonly(struct super_block * sb)524 int sb_prepare_remount_readonly(struct super_block *sb)
525 {
526 	struct mount *mnt;
527 	int err = 0;
528 
529 	/* Racy optimization.  Recheck the counter under MNT_WRITE_HOLD */
530 	if (atomic_long_read(&sb->s_remove_count))
531 		return -EBUSY;
532 
533 	lock_mount_hash();
534 	list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
535 		if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
536 			mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
537 			smp_mb();
538 			if (mnt_get_writers(mnt) > 0) {
539 				err = -EBUSY;
540 				break;
541 			}
542 		}
543 	}
544 	if (!err && atomic_long_read(&sb->s_remove_count))
545 		err = -EBUSY;
546 
547 	if (!err) {
548 		sb->s_readonly_remount = 1;
549 		smp_wmb();
550 	}
551 	list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
552 		if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
553 			mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
554 	}
555 	unlock_mount_hash();
556 
557 	return err;
558 }
559 
free_vfsmnt(struct mount * mnt)560 static void free_vfsmnt(struct mount *mnt)
561 {
562 	struct user_namespace *mnt_userns;
563 
564 	mnt_userns = mnt_user_ns(&mnt->mnt);
565 	if (!initial_idmapping(mnt_userns))
566 		put_user_ns(mnt_userns);
567 	kfree_const(mnt->mnt_devname);
568 #ifdef CONFIG_SMP
569 	free_percpu(mnt->mnt_pcp);
570 #endif
571 	kmem_cache_free(mnt_cache, mnt);
572 }
573 
delayed_free_vfsmnt(struct rcu_head * head)574 static void delayed_free_vfsmnt(struct rcu_head *head)
575 {
576 	free_vfsmnt(container_of(head, struct mount, mnt_rcu));
577 }
578 
579 /* call under rcu_read_lock */
__legitimize_mnt(struct vfsmount * bastard,unsigned seq)580 int __legitimize_mnt(struct vfsmount *bastard, unsigned seq)
581 {
582 	struct mount *mnt;
583 	if (read_seqretry(&mount_lock, seq))
584 		return 1;
585 	if (bastard == NULL)
586 		return 0;
587 	mnt = real_mount(bastard);
588 	mnt_add_count(mnt, 1);
589 	smp_mb();			// see mntput_no_expire()
590 	if (likely(!read_seqretry(&mount_lock, seq)))
591 		return 0;
592 	if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
593 		mnt_add_count(mnt, -1);
594 		return 1;
595 	}
596 	lock_mount_hash();
597 	if (unlikely(bastard->mnt_flags & MNT_DOOMED)) {
598 		mnt_add_count(mnt, -1);
599 		unlock_mount_hash();
600 		return 1;
601 	}
602 	unlock_mount_hash();
603 	/* caller will mntput() */
604 	return -1;
605 }
606 
607 /* call under rcu_read_lock */
legitimize_mnt(struct vfsmount * bastard,unsigned seq)608 bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
609 {
610 	int res = __legitimize_mnt(bastard, seq);
611 	if (likely(!res))
612 		return true;
613 	if (unlikely(res < 0)) {
614 		rcu_read_unlock();
615 		mntput(bastard);
616 		rcu_read_lock();
617 	}
618 	return false;
619 }
620 
621 /*
622  * find the first mount at @dentry on vfsmount @mnt.
623  * call under rcu_read_lock()
624  */
__lookup_mnt(struct vfsmount * mnt,struct dentry * dentry)625 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
626 {
627 	struct hlist_head *head = m_hash(mnt, dentry);
628 	struct mount *p;
629 
630 	hlist_for_each_entry_rcu(p, head, mnt_hash)
631 		if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
632 			return p;
633 	return NULL;
634 }
635 
636 /*
637  * lookup_mnt - Return the first child mount mounted at path
638  *
639  * "First" means first mounted chronologically.  If you create the
640  * following mounts:
641  *
642  * mount /dev/sda1 /mnt
643  * mount /dev/sda2 /mnt
644  * mount /dev/sda3 /mnt
645  *
646  * Then lookup_mnt() on the base /mnt dentry in the root mount will
647  * return successively the root dentry and vfsmount of /dev/sda1, then
648  * /dev/sda2, then /dev/sda3, then NULL.
649  *
650  * lookup_mnt takes a reference to the found vfsmount.
651  */
lookup_mnt(const struct path * path)652 struct vfsmount *lookup_mnt(const struct path *path)
653 {
654 	struct mount *child_mnt;
655 	struct vfsmount *m;
656 	unsigned seq;
657 
658 	rcu_read_lock();
659 	do {
660 		seq = read_seqbegin(&mount_lock);
661 		child_mnt = __lookup_mnt(path->mnt, path->dentry);
662 		m = child_mnt ? &child_mnt->mnt : NULL;
663 	} while (!legitimize_mnt(m, seq));
664 	rcu_read_unlock();
665 	return m;
666 }
667 
lock_ns_list(struct mnt_namespace * ns)668 static inline void lock_ns_list(struct mnt_namespace *ns)
669 {
670 	spin_lock(&ns->ns_lock);
671 }
672 
unlock_ns_list(struct mnt_namespace * ns)673 static inline void unlock_ns_list(struct mnt_namespace *ns)
674 {
675 	spin_unlock(&ns->ns_lock);
676 }
677 
mnt_is_cursor(struct mount * mnt)678 static inline bool mnt_is_cursor(struct mount *mnt)
679 {
680 	return mnt->mnt.mnt_flags & MNT_CURSOR;
681 }
682 
683 /*
684  * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
685  *                         current mount namespace.
686  *
687  * The common case is dentries are not mountpoints at all and that
688  * test is handled inline.  For the slow case when we are actually
689  * dealing with a mountpoint of some kind, walk through all of the
690  * mounts in the current mount namespace and test to see if the dentry
691  * is a mountpoint.
692  *
693  * The mount_hashtable is not usable in the context because we
694  * need to identify all mounts that may be in the current mount
695  * namespace not just a mount that happens to have some specified
696  * parent mount.
697  */
__is_local_mountpoint(struct dentry * dentry)698 bool __is_local_mountpoint(struct dentry *dentry)
699 {
700 	struct mnt_namespace *ns = current->nsproxy->mnt_ns;
701 	struct mount *mnt;
702 	bool is_covered = false;
703 
704 	down_read(&namespace_sem);
705 	lock_ns_list(ns);
706 	list_for_each_entry(mnt, &ns->list, mnt_list) {
707 		if (mnt_is_cursor(mnt))
708 			continue;
709 		is_covered = (mnt->mnt_mountpoint == dentry);
710 		if (is_covered)
711 			break;
712 	}
713 	unlock_ns_list(ns);
714 	up_read(&namespace_sem);
715 
716 	return is_covered;
717 }
718 
lookup_mountpoint(struct dentry * dentry)719 static struct mountpoint *lookup_mountpoint(struct dentry *dentry)
720 {
721 	struct hlist_head *chain = mp_hash(dentry);
722 	struct mountpoint *mp;
723 
724 	hlist_for_each_entry(mp, chain, m_hash) {
725 		if (mp->m_dentry == dentry) {
726 			mp->m_count++;
727 			return mp;
728 		}
729 	}
730 	return NULL;
731 }
732 
get_mountpoint(struct dentry * dentry)733 static struct mountpoint *get_mountpoint(struct dentry *dentry)
734 {
735 	struct mountpoint *mp, *new = NULL;
736 	int ret;
737 
738 	if (d_mountpoint(dentry)) {
739 		/* might be worth a WARN_ON() */
740 		if (d_unlinked(dentry))
741 			return ERR_PTR(-ENOENT);
742 mountpoint:
743 		read_seqlock_excl(&mount_lock);
744 		mp = lookup_mountpoint(dentry);
745 		read_sequnlock_excl(&mount_lock);
746 		if (mp)
747 			goto done;
748 	}
749 
750 	if (!new)
751 		new = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
752 	if (!new)
753 		return ERR_PTR(-ENOMEM);
754 
755 
756 	/* Exactly one processes may set d_mounted */
757 	ret = d_set_mounted(dentry);
758 
759 	/* Someone else set d_mounted? */
760 	if (ret == -EBUSY)
761 		goto mountpoint;
762 
763 	/* The dentry is not available as a mountpoint? */
764 	mp = ERR_PTR(ret);
765 	if (ret)
766 		goto done;
767 
768 	/* Add the new mountpoint to the hash table */
769 	read_seqlock_excl(&mount_lock);
770 	new->m_dentry = dget(dentry);
771 	new->m_count = 1;
772 	hlist_add_head(&new->m_hash, mp_hash(dentry));
773 	INIT_HLIST_HEAD(&new->m_list);
774 	read_sequnlock_excl(&mount_lock);
775 
776 	mp = new;
777 	new = NULL;
778 done:
779 	kfree(new);
780 	return mp;
781 }
782 
783 /*
784  * vfsmount lock must be held.  Additionally, the caller is responsible
785  * for serializing calls for given disposal list.
786  */
__put_mountpoint(struct mountpoint * mp,struct list_head * list)787 static void __put_mountpoint(struct mountpoint *mp, struct list_head *list)
788 {
789 	if (!--mp->m_count) {
790 		struct dentry *dentry = mp->m_dentry;
791 		BUG_ON(!hlist_empty(&mp->m_list));
792 		spin_lock(&dentry->d_lock);
793 		dentry->d_flags &= ~DCACHE_MOUNTED;
794 		spin_unlock(&dentry->d_lock);
795 		dput_to_list(dentry, list);
796 		hlist_del(&mp->m_hash);
797 		kfree(mp);
798 	}
799 }
800 
801 /* called with namespace_lock and vfsmount lock */
put_mountpoint(struct mountpoint * mp)802 static void put_mountpoint(struct mountpoint *mp)
803 {
804 	__put_mountpoint(mp, &ex_mountpoints);
805 }
806 
check_mnt(struct mount * mnt)807 static inline int check_mnt(struct mount *mnt)
808 {
809 	return mnt->mnt_ns == current->nsproxy->mnt_ns;
810 }
811 
812 /*
813  * vfsmount lock must be held for write
814  */
touch_mnt_namespace(struct mnt_namespace * ns)815 static void touch_mnt_namespace(struct mnt_namespace *ns)
816 {
817 	if (ns) {
818 		ns->event = ++event;
819 		wake_up_interruptible(&ns->poll);
820 	}
821 }
822 
823 /*
824  * vfsmount lock must be held for write
825  */
__touch_mnt_namespace(struct mnt_namespace * ns)826 static void __touch_mnt_namespace(struct mnt_namespace *ns)
827 {
828 	if (ns && ns->event != event) {
829 		ns->event = event;
830 		wake_up_interruptible(&ns->poll);
831 	}
832 }
833 
834 /*
835  * vfsmount lock must be held for write
836  */
unhash_mnt(struct mount * mnt)837 static struct mountpoint *unhash_mnt(struct mount *mnt)
838 {
839 	struct mountpoint *mp;
840 	mnt->mnt_parent = mnt;
841 	mnt->mnt_mountpoint = mnt->mnt.mnt_root;
842 	list_del_init(&mnt->mnt_child);
843 	hlist_del_init_rcu(&mnt->mnt_hash);
844 	hlist_del_init(&mnt->mnt_mp_list);
845 	mp = mnt->mnt_mp;
846 	mnt->mnt_mp = NULL;
847 	return mp;
848 }
849 
850 /*
851  * vfsmount lock must be held for write
852  */
umount_mnt(struct mount * mnt)853 static void umount_mnt(struct mount *mnt)
854 {
855 	put_mountpoint(unhash_mnt(mnt));
856 }
857 
858 /*
859  * vfsmount lock must be held for write
860  */
mnt_set_mountpoint(struct mount * mnt,struct mountpoint * mp,struct mount * child_mnt)861 void mnt_set_mountpoint(struct mount *mnt,
862 			struct mountpoint *mp,
863 			struct mount *child_mnt)
864 {
865 	mp->m_count++;
866 	mnt_add_count(mnt, 1);	/* essentially, that's mntget */
867 	child_mnt->mnt_mountpoint = mp->m_dentry;
868 	child_mnt->mnt_parent = mnt;
869 	child_mnt->mnt_mp = mp;
870 	hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list);
871 }
872 
__attach_mnt(struct mount * mnt,struct mount * parent)873 static void __attach_mnt(struct mount *mnt, struct mount *parent)
874 {
875 	hlist_add_head_rcu(&mnt->mnt_hash,
876 			   m_hash(&parent->mnt, mnt->mnt_mountpoint));
877 	list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
878 }
879 
880 /*
881  * vfsmount lock must be held for write
882  */
attach_mnt(struct mount * mnt,struct mount * parent,struct mountpoint * mp)883 static void attach_mnt(struct mount *mnt,
884 			struct mount *parent,
885 			struct mountpoint *mp)
886 {
887 	mnt_set_mountpoint(parent, mp, mnt);
888 	__attach_mnt(mnt, parent);
889 }
890 
mnt_change_mountpoint(struct mount * parent,struct mountpoint * mp,struct mount * mnt)891 void mnt_change_mountpoint(struct mount *parent, struct mountpoint *mp, struct mount *mnt)
892 {
893 	struct mountpoint *old_mp = mnt->mnt_mp;
894 	struct mount *old_parent = mnt->mnt_parent;
895 
896 	list_del_init(&mnt->mnt_child);
897 	hlist_del_init(&mnt->mnt_mp_list);
898 	hlist_del_init_rcu(&mnt->mnt_hash);
899 
900 	attach_mnt(mnt, parent, mp);
901 
902 	put_mountpoint(old_mp);
903 	mnt_add_count(old_parent, -1);
904 }
905 
906 /*
907  * vfsmount lock must be held for write
908  */
commit_tree(struct mount * mnt)909 static void commit_tree(struct mount *mnt)
910 {
911 	struct mount *parent = mnt->mnt_parent;
912 	struct mount *m;
913 	LIST_HEAD(head);
914 	struct mnt_namespace *n = parent->mnt_ns;
915 
916 	BUG_ON(parent == mnt);
917 
918 	list_add_tail(&head, &mnt->mnt_list);
919 	list_for_each_entry(m, &head, mnt_list)
920 		m->mnt_ns = n;
921 
922 	list_splice(&head, n->list.prev);
923 
924 	n->mounts += n->pending_mounts;
925 	n->pending_mounts = 0;
926 
927 	__attach_mnt(mnt, parent);
928 	touch_mnt_namespace(n);
929 }
930 
next_mnt(struct mount * p,struct mount * root)931 static struct mount *next_mnt(struct mount *p, struct mount *root)
932 {
933 	struct list_head *next = p->mnt_mounts.next;
934 	if (next == &p->mnt_mounts) {
935 		while (1) {
936 			if (p == root)
937 				return NULL;
938 			next = p->mnt_child.next;
939 			if (next != &p->mnt_parent->mnt_mounts)
940 				break;
941 			p = p->mnt_parent;
942 		}
943 	}
944 	return list_entry(next, struct mount, mnt_child);
945 }
946 
skip_mnt_tree(struct mount * p)947 static struct mount *skip_mnt_tree(struct mount *p)
948 {
949 	struct list_head *prev = p->mnt_mounts.prev;
950 	while (prev != &p->mnt_mounts) {
951 		p = list_entry(prev, struct mount, mnt_child);
952 		prev = p->mnt_mounts.prev;
953 	}
954 	return p;
955 }
956 
957 /**
958  * vfs_create_mount - Create a mount for a configured superblock
959  * @fc: The configuration context with the superblock attached
960  *
961  * Create a mount to an already configured superblock.  If necessary, the
962  * caller should invoke vfs_get_tree() before calling this.
963  *
964  * Note that this does not attach the mount to anything.
965  */
vfs_create_mount(struct fs_context * fc)966 struct vfsmount *vfs_create_mount(struct fs_context *fc)
967 {
968 	struct mount *mnt;
969 	struct user_namespace *fs_userns;
970 
971 	if (!fc->root)
972 		return ERR_PTR(-EINVAL);
973 
974 	mnt = alloc_vfsmnt(fc->source ?: "none");
975 	if (!mnt)
976 		return ERR_PTR(-ENOMEM);
977 
978 	if (fc->sb_flags & SB_KERNMOUNT)
979 		mnt->mnt.mnt_flags = MNT_INTERNAL;
980 
981 	atomic_inc(&fc->root->d_sb->s_active);
982 	mnt->mnt.mnt_sb		= fc->root->d_sb;
983 	mnt->mnt.mnt_root	= dget(fc->root);
984 	mnt->mnt_mountpoint	= mnt->mnt.mnt_root;
985 	mnt->mnt_parent		= mnt;
986 
987 	fs_userns = mnt->mnt.mnt_sb->s_user_ns;
988 	if (!initial_idmapping(fs_userns))
989 		mnt->mnt.mnt_userns = get_user_ns(fs_userns);
990 
991 	lock_mount_hash();
992 	list_add_tail(&mnt->mnt_instance, &mnt->mnt.mnt_sb->s_mounts);
993 	unlock_mount_hash();
994 	return &mnt->mnt;
995 }
996 EXPORT_SYMBOL(vfs_create_mount);
997 
fc_mount(struct fs_context * fc)998 struct vfsmount *fc_mount(struct fs_context *fc)
999 {
1000 	int err = vfs_get_tree(fc);
1001 	if (!err) {
1002 		up_write(&fc->root->d_sb->s_umount);
1003 		return vfs_create_mount(fc);
1004 	}
1005 	return ERR_PTR(err);
1006 }
1007 EXPORT_SYMBOL(fc_mount);
1008 
vfs_kern_mount(struct file_system_type * type,int flags,const char * name,void * data)1009 struct vfsmount *vfs_kern_mount(struct file_system_type *type,
1010 				int flags, const char *name,
1011 				void *data)
1012 {
1013 	struct fs_context *fc;
1014 	struct vfsmount *mnt;
1015 	int ret = 0;
1016 
1017 	if (!type)
1018 		return ERR_PTR(-EINVAL);
1019 
1020 	fc = fs_context_for_mount(type, flags);
1021 	if (IS_ERR(fc))
1022 		return ERR_CAST(fc);
1023 
1024 	if (name)
1025 		ret = vfs_parse_fs_string(fc, "source",
1026 					  name, strlen(name));
1027 	if (!ret)
1028 		ret = parse_monolithic_mount_data(fc, data);
1029 	if (!ret)
1030 		mnt = fc_mount(fc);
1031 	else
1032 		mnt = ERR_PTR(ret);
1033 
1034 	put_fs_context(fc);
1035 	return mnt;
1036 }
1037 EXPORT_SYMBOL_GPL(vfs_kern_mount);
1038 
1039 struct vfsmount *
vfs_submount(const struct dentry * mountpoint,struct file_system_type * type,const char * name,void * data)1040 vfs_submount(const struct dentry *mountpoint, struct file_system_type *type,
1041 	     const char *name, void *data)
1042 {
1043 	/* Until it is worked out how to pass the user namespace
1044 	 * through from the parent mount to the submount don't support
1045 	 * unprivileged mounts with submounts.
1046 	 */
1047 	if (mountpoint->d_sb->s_user_ns != &init_user_ns)
1048 		return ERR_PTR(-EPERM);
1049 
1050 	return vfs_kern_mount(type, SB_SUBMOUNT, name, data);
1051 }
1052 EXPORT_SYMBOL_GPL(vfs_submount);
1053 
clone_mnt(struct mount * old,struct dentry * root,int flag)1054 static struct mount *clone_mnt(struct mount *old, struct dentry *root,
1055 					int flag)
1056 {
1057 	struct super_block *sb = old->mnt.mnt_sb;
1058 	struct mount *mnt;
1059 	int err;
1060 
1061 	mnt = alloc_vfsmnt(old->mnt_devname);
1062 	if (!mnt)
1063 		return ERR_PTR(-ENOMEM);
1064 
1065 	if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
1066 		mnt->mnt_group_id = 0; /* not a peer of original */
1067 	else
1068 		mnt->mnt_group_id = old->mnt_group_id;
1069 
1070 	if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
1071 		err = mnt_alloc_group_id(mnt);
1072 		if (err)
1073 			goto out_free;
1074 	}
1075 
1076 	mnt->mnt.mnt_flags = old->mnt.mnt_flags;
1077 	mnt->mnt.mnt_flags &= ~(MNT_WRITE_HOLD|MNT_MARKED|MNT_INTERNAL);
1078 
1079 	atomic_inc(&sb->s_active);
1080 	mnt->mnt.mnt_userns = mnt_user_ns(&old->mnt);
1081 	if (!initial_idmapping(mnt->mnt.mnt_userns))
1082 		mnt->mnt.mnt_userns = get_user_ns(mnt->mnt.mnt_userns);
1083 	mnt->mnt.mnt_sb = sb;
1084 	mnt->mnt.mnt_root = dget(root);
1085 	mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1086 	mnt->mnt_parent = mnt;
1087 	lock_mount_hash();
1088 	list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
1089 	unlock_mount_hash();
1090 
1091 	if ((flag & CL_SLAVE) ||
1092 	    ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
1093 		list_add(&mnt->mnt_slave, &old->mnt_slave_list);
1094 		mnt->mnt_master = old;
1095 		CLEAR_MNT_SHARED(mnt);
1096 	} else if (!(flag & CL_PRIVATE)) {
1097 		if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
1098 			list_add(&mnt->mnt_share, &old->mnt_share);
1099 		if (IS_MNT_SLAVE(old))
1100 			list_add(&mnt->mnt_slave, &old->mnt_slave);
1101 		mnt->mnt_master = old->mnt_master;
1102 	} else {
1103 		CLEAR_MNT_SHARED(mnt);
1104 	}
1105 	if (flag & CL_MAKE_SHARED)
1106 		set_mnt_shared(mnt);
1107 
1108 	/* stick the duplicate mount on the same expiry list
1109 	 * as the original if that was on one */
1110 	if (flag & CL_EXPIRE) {
1111 		if (!list_empty(&old->mnt_expire))
1112 			list_add(&mnt->mnt_expire, &old->mnt_expire);
1113 	}
1114 
1115 	return mnt;
1116 
1117  out_free:
1118 	mnt_free_id(mnt);
1119 	free_vfsmnt(mnt);
1120 	return ERR_PTR(err);
1121 }
1122 
cleanup_mnt(struct mount * mnt)1123 static void cleanup_mnt(struct mount *mnt)
1124 {
1125 	struct hlist_node *p;
1126 	struct mount *m;
1127 	/*
1128 	 * The warning here probably indicates that somebody messed
1129 	 * up a mnt_want/drop_write() pair.  If this happens, the
1130 	 * filesystem was probably unable to make r/w->r/o transitions.
1131 	 * The locking used to deal with mnt_count decrement provides barriers,
1132 	 * so mnt_get_writers() below is safe.
1133 	 */
1134 	WARN_ON(mnt_get_writers(mnt));
1135 	if (unlikely(mnt->mnt_pins.first))
1136 		mnt_pin_kill(mnt);
1137 	hlist_for_each_entry_safe(m, p, &mnt->mnt_stuck_children, mnt_umount) {
1138 		hlist_del(&m->mnt_umount);
1139 		mntput(&m->mnt);
1140 	}
1141 	fsnotify_vfsmount_delete(&mnt->mnt);
1142 	dput(mnt->mnt.mnt_root);
1143 	deactivate_super(mnt->mnt.mnt_sb);
1144 	mnt_free_id(mnt);
1145 	call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
1146 }
1147 
__cleanup_mnt(struct rcu_head * head)1148 static void __cleanup_mnt(struct rcu_head *head)
1149 {
1150 	cleanup_mnt(container_of(head, struct mount, mnt_rcu));
1151 }
1152 
1153 static LLIST_HEAD(delayed_mntput_list);
delayed_mntput(struct work_struct * unused)1154 static void delayed_mntput(struct work_struct *unused)
1155 {
1156 	struct llist_node *node = llist_del_all(&delayed_mntput_list);
1157 	struct mount *m, *t;
1158 
1159 	llist_for_each_entry_safe(m, t, node, mnt_llist)
1160 		cleanup_mnt(m);
1161 }
1162 static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);
1163 
mntput_no_expire(struct mount * mnt)1164 static void mntput_no_expire(struct mount *mnt)
1165 {
1166 	LIST_HEAD(list);
1167 	int count;
1168 
1169 	rcu_read_lock();
1170 	if (likely(READ_ONCE(mnt->mnt_ns))) {
1171 		/*
1172 		 * Since we don't do lock_mount_hash() here,
1173 		 * ->mnt_ns can change under us.  However, if it's
1174 		 * non-NULL, then there's a reference that won't
1175 		 * be dropped until after an RCU delay done after
1176 		 * turning ->mnt_ns NULL.  So if we observe it
1177 		 * non-NULL under rcu_read_lock(), the reference
1178 		 * we are dropping is not the final one.
1179 		 */
1180 		mnt_add_count(mnt, -1);
1181 		rcu_read_unlock();
1182 		return;
1183 	}
1184 	lock_mount_hash();
1185 	/*
1186 	 * make sure that if __legitimize_mnt() has not seen us grab
1187 	 * mount_lock, we'll see their refcount increment here.
1188 	 */
1189 	smp_mb();
1190 	mnt_add_count(mnt, -1);
1191 	count = mnt_get_count(mnt);
1192 	if (count != 0) {
1193 		WARN_ON(count < 0);
1194 		rcu_read_unlock();
1195 		unlock_mount_hash();
1196 		return;
1197 	}
1198 	if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
1199 		rcu_read_unlock();
1200 		unlock_mount_hash();
1201 		return;
1202 	}
1203 	mnt->mnt.mnt_flags |= MNT_DOOMED;
1204 	rcu_read_unlock();
1205 
1206 	list_del(&mnt->mnt_instance);
1207 
1208 	if (unlikely(!list_empty(&mnt->mnt_mounts))) {
1209 		struct mount *p, *tmp;
1210 		list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts,  mnt_child) {
1211 			__put_mountpoint(unhash_mnt(p), &list);
1212 			hlist_add_head(&p->mnt_umount, &mnt->mnt_stuck_children);
1213 		}
1214 	}
1215 	unlock_mount_hash();
1216 	shrink_dentry_list(&list);
1217 
1218 	if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
1219 		struct task_struct *task = current;
1220 		if (likely(!(task->flags & PF_KTHREAD))) {
1221 			init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
1222 			if (!task_work_add(task, &mnt->mnt_rcu, TWA_RESUME))
1223 				return;
1224 		}
1225 		if (llist_add(&mnt->mnt_llist, &delayed_mntput_list))
1226 			schedule_delayed_work(&delayed_mntput_work, 1);
1227 		return;
1228 	}
1229 	cleanup_mnt(mnt);
1230 }
1231 
mntput(struct vfsmount * mnt)1232 void mntput(struct vfsmount *mnt)
1233 {
1234 	if (mnt) {
1235 		struct mount *m = real_mount(mnt);
1236 		/* avoid cacheline pingpong, hope gcc doesn't get "smart" */
1237 		if (unlikely(m->mnt_expiry_mark))
1238 			m->mnt_expiry_mark = 0;
1239 		mntput_no_expire(m);
1240 	}
1241 }
1242 EXPORT_SYMBOL(mntput);
1243 
mntget(struct vfsmount * mnt)1244 struct vfsmount *mntget(struct vfsmount *mnt)
1245 {
1246 	if (mnt)
1247 		mnt_add_count(real_mount(mnt), 1);
1248 	return mnt;
1249 }
1250 EXPORT_SYMBOL(mntget);
1251 
1252 /**
1253  * path_is_mountpoint() - Check if path is a mount in the current namespace.
1254  * @path: path to check
1255  *
1256  *  d_mountpoint() can only be used reliably to establish if a dentry is
1257  *  not mounted in any namespace and that common case is handled inline.
1258  *  d_mountpoint() isn't aware of the possibility there may be multiple
1259  *  mounts using a given dentry in a different namespace. This function
1260  *  checks if the passed in path is a mountpoint rather than the dentry
1261  *  alone.
1262  */
path_is_mountpoint(const struct path * path)1263 bool path_is_mountpoint(const struct path *path)
1264 {
1265 	unsigned seq;
1266 	bool res;
1267 
1268 	if (!d_mountpoint(path->dentry))
1269 		return false;
1270 
1271 	rcu_read_lock();
1272 	do {
1273 		seq = read_seqbegin(&mount_lock);
1274 		res = __path_is_mountpoint(path);
1275 	} while (read_seqretry(&mount_lock, seq));
1276 	rcu_read_unlock();
1277 
1278 	return res;
1279 }
1280 EXPORT_SYMBOL(path_is_mountpoint);
1281 
mnt_clone_internal(const struct path * path)1282 struct vfsmount *mnt_clone_internal(const struct path *path)
1283 {
1284 	struct mount *p;
1285 	p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
1286 	if (IS_ERR(p))
1287 		return ERR_CAST(p);
1288 	p->mnt.mnt_flags |= MNT_INTERNAL;
1289 	return &p->mnt;
1290 }
1291 
1292 #ifdef CONFIG_PROC_FS
mnt_list_next(struct mnt_namespace * ns,struct list_head * p)1293 static struct mount *mnt_list_next(struct mnt_namespace *ns,
1294 				   struct list_head *p)
1295 {
1296 	struct mount *mnt, *ret = NULL;
1297 
1298 	lock_ns_list(ns);
1299 	list_for_each_continue(p, &ns->list) {
1300 		mnt = list_entry(p, typeof(*mnt), mnt_list);
1301 		if (!mnt_is_cursor(mnt)) {
1302 			ret = mnt;
1303 			break;
1304 		}
1305 	}
1306 	unlock_ns_list(ns);
1307 
1308 	return ret;
1309 }
1310 
1311 /* iterator; we want it to have access to namespace_sem, thus here... */
m_start(struct seq_file * m,loff_t * pos)1312 static void *m_start(struct seq_file *m, loff_t *pos)
1313 {
1314 	struct proc_mounts *p = m->private;
1315 	struct list_head *prev;
1316 
1317 	down_read(&namespace_sem);
1318 	if (!*pos) {
1319 		prev = &p->ns->list;
1320 	} else {
1321 		prev = &p->cursor.mnt_list;
1322 
1323 		/* Read after we'd reached the end? */
1324 		if (list_empty(prev))
1325 			return NULL;
1326 	}
1327 
1328 	return mnt_list_next(p->ns, prev);
1329 }
1330 
m_next(struct seq_file * m,void * v,loff_t * pos)1331 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1332 {
1333 	struct proc_mounts *p = m->private;
1334 	struct mount *mnt = v;
1335 
1336 	++*pos;
1337 	return mnt_list_next(p->ns, &mnt->mnt_list);
1338 }
1339 
m_stop(struct seq_file * m,void * v)1340 static void m_stop(struct seq_file *m, void *v)
1341 {
1342 	struct proc_mounts *p = m->private;
1343 	struct mount *mnt = v;
1344 
1345 	lock_ns_list(p->ns);
1346 	if (mnt)
1347 		list_move_tail(&p->cursor.mnt_list, &mnt->mnt_list);
1348 	else
1349 		list_del_init(&p->cursor.mnt_list);
1350 	unlock_ns_list(p->ns);
1351 	up_read(&namespace_sem);
1352 }
1353 
m_show(struct seq_file * m,void * v)1354 static int m_show(struct seq_file *m, void *v)
1355 {
1356 	struct proc_mounts *p = m->private;
1357 	struct mount *r = v;
1358 	return p->show(m, &r->mnt);
1359 }
1360 
1361 const struct seq_operations mounts_op = {
1362 	.start	= m_start,
1363 	.next	= m_next,
1364 	.stop	= m_stop,
1365 	.show	= m_show,
1366 };
1367 
mnt_cursor_del(struct mnt_namespace * ns,struct mount * cursor)1368 void mnt_cursor_del(struct mnt_namespace *ns, struct mount *cursor)
1369 {
1370 	down_read(&namespace_sem);
1371 	lock_ns_list(ns);
1372 	list_del(&cursor->mnt_list);
1373 	unlock_ns_list(ns);
1374 	up_read(&namespace_sem);
1375 }
1376 #endif  /* CONFIG_PROC_FS */
1377 
1378 /**
1379  * may_umount_tree - check if a mount tree is busy
1380  * @m: root of mount tree
1381  *
1382  * This is called to check if a tree of mounts has any
1383  * open files, pwds, chroots or sub mounts that are
1384  * busy.
1385  */
may_umount_tree(struct vfsmount * m)1386 int may_umount_tree(struct vfsmount *m)
1387 {
1388 	struct mount *mnt = real_mount(m);
1389 	int actual_refs = 0;
1390 	int minimum_refs = 0;
1391 	struct mount *p;
1392 	BUG_ON(!m);
1393 
1394 	/* write lock needed for mnt_get_count */
1395 	lock_mount_hash();
1396 	for (p = mnt; p; p = next_mnt(p, mnt)) {
1397 		actual_refs += mnt_get_count(p);
1398 		minimum_refs += 2;
1399 	}
1400 	unlock_mount_hash();
1401 
1402 	if (actual_refs > minimum_refs)
1403 		return 0;
1404 
1405 	return 1;
1406 }
1407 
1408 EXPORT_SYMBOL(may_umount_tree);
1409 
1410 /**
1411  * may_umount - check if a mount point is busy
1412  * @mnt: root of mount
1413  *
1414  * This is called to check if a mount point has any
1415  * open files, pwds, chroots or sub mounts. If the
1416  * mount has sub mounts this will return busy
1417  * regardless of whether the sub mounts are busy.
1418  *
1419  * Doesn't take quota and stuff into account. IOW, in some cases it will
1420  * give false negatives. The main reason why it's here is that we need
1421  * a non-destructive way to look for easily umountable filesystems.
1422  */
may_umount(struct vfsmount * mnt)1423 int may_umount(struct vfsmount *mnt)
1424 {
1425 	int ret = 1;
1426 	down_read(&namespace_sem);
1427 	lock_mount_hash();
1428 	if (propagate_mount_busy(real_mount(mnt), 2))
1429 		ret = 0;
1430 	unlock_mount_hash();
1431 	up_read(&namespace_sem);
1432 	return ret;
1433 }
1434 
1435 EXPORT_SYMBOL(may_umount);
1436 
namespace_unlock(void)1437 static void namespace_unlock(void)
1438 {
1439 	struct hlist_head head;
1440 	struct hlist_node *p;
1441 	struct mount *m;
1442 	LIST_HEAD(list);
1443 
1444 	hlist_move_list(&unmounted, &head);
1445 	list_splice_init(&ex_mountpoints, &list);
1446 
1447 	up_write(&namespace_sem);
1448 
1449 	shrink_dentry_list(&list);
1450 
1451 	if (likely(hlist_empty(&head)))
1452 		return;
1453 
1454 	synchronize_rcu_expedited();
1455 
1456 	hlist_for_each_entry_safe(m, p, &head, mnt_umount) {
1457 		hlist_del(&m->mnt_umount);
1458 		mntput(&m->mnt);
1459 	}
1460 }
1461 
namespace_lock(void)1462 static inline void namespace_lock(void)
1463 {
1464 	down_write(&namespace_sem);
1465 }
1466 
1467 enum umount_tree_flags {
1468 	UMOUNT_SYNC = 1,
1469 	UMOUNT_PROPAGATE = 2,
1470 	UMOUNT_CONNECTED = 4,
1471 };
1472 
disconnect_mount(struct mount * mnt,enum umount_tree_flags how)1473 static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how)
1474 {
1475 	/* Leaving mounts connected is only valid for lazy umounts */
1476 	if (how & UMOUNT_SYNC)
1477 		return true;
1478 
1479 	/* A mount without a parent has nothing to be connected to */
1480 	if (!mnt_has_parent(mnt))
1481 		return true;
1482 
1483 	/* Because the reference counting rules change when mounts are
1484 	 * unmounted and connected, umounted mounts may not be
1485 	 * connected to mounted mounts.
1486 	 */
1487 	if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT))
1488 		return true;
1489 
1490 	/* Has it been requested that the mount remain connected? */
1491 	if (how & UMOUNT_CONNECTED)
1492 		return false;
1493 
1494 	/* Is the mount locked such that it needs to remain connected? */
1495 	if (IS_MNT_LOCKED(mnt))
1496 		return false;
1497 
1498 	/* By default disconnect the mount */
1499 	return true;
1500 }
1501 
1502 /*
1503  * mount_lock must be held
1504  * namespace_sem must be held for write
1505  */
umount_tree(struct mount * mnt,enum umount_tree_flags how)1506 static void umount_tree(struct mount *mnt, enum umount_tree_flags how)
1507 {
1508 	LIST_HEAD(tmp_list);
1509 	struct mount *p;
1510 
1511 	if (how & UMOUNT_PROPAGATE)
1512 		propagate_mount_unlock(mnt);
1513 
1514 	/* Gather the mounts to umount */
1515 	for (p = mnt; p; p = next_mnt(p, mnt)) {
1516 		p->mnt.mnt_flags |= MNT_UMOUNT;
1517 		list_move(&p->mnt_list, &tmp_list);
1518 	}
1519 
1520 	/* Hide the mounts from mnt_mounts */
1521 	list_for_each_entry(p, &tmp_list, mnt_list) {
1522 		list_del_init(&p->mnt_child);
1523 	}
1524 
1525 	/* Add propogated mounts to the tmp_list */
1526 	if (how & UMOUNT_PROPAGATE)
1527 		propagate_umount(&tmp_list);
1528 
1529 	while (!list_empty(&tmp_list)) {
1530 		struct mnt_namespace *ns;
1531 		bool disconnect;
1532 		p = list_first_entry(&tmp_list, struct mount, mnt_list);
1533 		list_del_init(&p->mnt_expire);
1534 		list_del_init(&p->mnt_list);
1535 		ns = p->mnt_ns;
1536 		if (ns) {
1537 			ns->mounts--;
1538 			__touch_mnt_namespace(ns);
1539 		}
1540 		p->mnt_ns = NULL;
1541 		if (how & UMOUNT_SYNC)
1542 			p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
1543 
1544 		disconnect = disconnect_mount(p, how);
1545 		if (mnt_has_parent(p)) {
1546 			mnt_add_count(p->mnt_parent, -1);
1547 			if (!disconnect) {
1548 				/* Don't forget about p */
1549 				list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts);
1550 			} else {
1551 				umount_mnt(p);
1552 			}
1553 		}
1554 		change_mnt_propagation(p, MS_PRIVATE);
1555 		if (disconnect)
1556 			hlist_add_head(&p->mnt_umount, &unmounted);
1557 	}
1558 }
1559 
1560 static void shrink_submounts(struct mount *mnt);
1561 
do_umount_root(struct super_block * sb)1562 static int do_umount_root(struct super_block *sb)
1563 {
1564 	int ret = 0;
1565 
1566 	down_write(&sb->s_umount);
1567 	if (!sb_rdonly(sb)) {
1568 		struct fs_context *fc;
1569 
1570 		fc = fs_context_for_reconfigure(sb->s_root, SB_RDONLY,
1571 						SB_RDONLY);
1572 		if (IS_ERR(fc)) {
1573 			ret = PTR_ERR(fc);
1574 		} else {
1575 			ret = parse_monolithic_mount_data(fc, NULL);
1576 			if (!ret)
1577 				ret = reconfigure_super(fc);
1578 			put_fs_context(fc);
1579 		}
1580 	}
1581 	up_write(&sb->s_umount);
1582 	return ret;
1583 }
1584 
do_umount(struct mount * mnt,int flags)1585 static int do_umount(struct mount *mnt, int flags)
1586 {
1587 	struct super_block *sb = mnt->mnt.mnt_sb;
1588 	int retval;
1589 
1590 	retval = security_sb_umount(&mnt->mnt, flags);
1591 	if (retval)
1592 		return retval;
1593 
1594 	/*
1595 	 * Allow userspace to request a mountpoint be expired rather than
1596 	 * unmounting unconditionally. Unmount only happens if:
1597 	 *  (1) the mark is already set (the mark is cleared by mntput())
1598 	 *  (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1599 	 */
1600 	if (flags & MNT_EXPIRE) {
1601 		if (&mnt->mnt == current->fs->root.mnt ||
1602 		    flags & (MNT_FORCE | MNT_DETACH))
1603 			return -EINVAL;
1604 
1605 		/*
1606 		 * probably don't strictly need the lock here if we examined
1607 		 * all race cases, but it's a slowpath.
1608 		 */
1609 		lock_mount_hash();
1610 		if (mnt_get_count(mnt) != 2) {
1611 			unlock_mount_hash();
1612 			return -EBUSY;
1613 		}
1614 		unlock_mount_hash();
1615 
1616 		if (!xchg(&mnt->mnt_expiry_mark, 1))
1617 			return -EAGAIN;
1618 	}
1619 
1620 	/*
1621 	 * If we may have to abort operations to get out of this
1622 	 * mount, and they will themselves hold resources we must
1623 	 * allow the fs to do things. In the Unix tradition of
1624 	 * 'Gee thats tricky lets do it in userspace' the umount_begin
1625 	 * might fail to complete on the first run through as other tasks
1626 	 * must return, and the like. Thats for the mount program to worry
1627 	 * about for the moment.
1628 	 */
1629 
1630 	if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1631 		sb->s_op->umount_begin(sb);
1632 	}
1633 
1634 	/*
1635 	 * No sense to grab the lock for this test, but test itself looks
1636 	 * somewhat bogus. Suggestions for better replacement?
1637 	 * Ho-hum... In principle, we might treat that as umount + switch
1638 	 * to rootfs. GC would eventually take care of the old vfsmount.
1639 	 * Actually it makes sense, especially if rootfs would contain a
1640 	 * /reboot - static binary that would close all descriptors and
1641 	 * call reboot(9). Then init(8) could umount root and exec /reboot.
1642 	 */
1643 	if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1644 		/*
1645 		 * Special case for "unmounting" root ...
1646 		 * we just try to remount it readonly.
1647 		 */
1648 		if (!ns_capable(sb->s_user_ns, CAP_SYS_ADMIN))
1649 			return -EPERM;
1650 		return do_umount_root(sb);
1651 	}
1652 
1653 	namespace_lock();
1654 	lock_mount_hash();
1655 
1656 	/* Recheck MNT_LOCKED with the locks held */
1657 	retval = -EINVAL;
1658 	if (mnt->mnt.mnt_flags & MNT_LOCKED)
1659 		goto out;
1660 
1661 	event++;
1662 	if (flags & MNT_DETACH) {
1663 		if (!list_empty(&mnt->mnt_list))
1664 			umount_tree(mnt, UMOUNT_PROPAGATE);
1665 		retval = 0;
1666 	} else {
1667 		shrink_submounts(mnt);
1668 		retval = -EBUSY;
1669 		if (!propagate_mount_busy(mnt, 2)) {
1670 			if (!list_empty(&mnt->mnt_list))
1671 				umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
1672 			retval = 0;
1673 		}
1674 	}
1675 out:
1676 	unlock_mount_hash();
1677 	namespace_unlock();
1678 	return retval;
1679 }
1680 
1681 /*
1682  * __detach_mounts - lazily unmount all mounts on the specified dentry
1683  *
1684  * During unlink, rmdir, and d_drop it is possible to loose the path
1685  * to an existing mountpoint, and wind up leaking the mount.
1686  * detach_mounts allows lazily unmounting those mounts instead of
1687  * leaking them.
1688  *
1689  * The caller may hold dentry->d_inode->i_mutex.
1690  */
__detach_mounts(struct dentry * dentry)1691 void __detach_mounts(struct dentry *dentry)
1692 {
1693 	struct mountpoint *mp;
1694 	struct mount *mnt;
1695 
1696 	namespace_lock();
1697 	lock_mount_hash();
1698 	mp = lookup_mountpoint(dentry);
1699 	if (!mp)
1700 		goto out_unlock;
1701 
1702 	event++;
1703 	while (!hlist_empty(&mp->m_list)) {
1704 		mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list);
1705 		if (mnt->mnt.mnt_flags & MNT_UMOUNT) {
1706 			umount_mnt(mnt);
1707 			hlist_add_head(&mnt->mnt_umount, &unmounted);
1708 		}
1709 		else umount_tree(mnt, UMOUNT_CONNECTED);
1710 	}
1711 	put_mountpoint(mp);
1712 out_unlock:
1713 	unlock_mount_hash();
1714 	namespace_unlock();
1715 }
1716 
1717 /*
1718  * Is the caller allowed to modify his namespace?
1719  */
may_mount(void)1720 static inline bool may_mount(void)
1721 {
1722 	return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1723 }
1724 
warn_mandlock(void)1725 static void warn_mandlock(void)
1726 {
1727 	pr_warn_once("=======================================================\n"
1728 		     "WARNING: The mand mount option has been deprecated and\n"
1729 		     "         and is ignored by this kernel. Remove the mand\n"
1730 		     "         option from the mount to silence this warning.\n"
1731 		     "=======================================================\n");
1732 }
1733 
can_umount(const struct path * path,int flags)1734 static int can_umount(const struct path *path, int flags)
1735 {
1736 	struct mount *mnt = real_mount(path->mnt);
1737 
1738 	if (!may_mount())
1739 		return -EPERM;
1740 	if (path->dentry != path->mnt->mnt_root)
1741 		return -EINVAL;
1742 	if (!check_mnt(mnt))
1743 		return -EINVAL;
1744 	if (mnt->mnt.mnt_flags & MNT_LOCKED) /* Check optimistically */
1745 		return -EINVAL;
1746 	if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN))
1747 		return -EPERM;
1748 	return 0;
1749 }
1750 
1751 // caller is responsible for flags being sane
path_umount(struct path * path,int flags)1752 int path_umount(struct path *path, int flags)
1753 {
1754 	struct mount *mnt = real_mount(path->mnt);
1755 	int ret;
1756 
1757 	ret = can_umount(path, flags);
1758 	if (!ret)
1759 		ret = do_umount(mnt, flags);
1760 
1761 	/* we mustn't call path_put() as that would clear mnt_expiry_mark */
1762 	dput(path->dentry);
1763 	mntput_no_expire(mnt);
1764 	return ret;
1765 }
1766 
ksys_umount(char __user * name,int flags)1767 static int ksys_umount(char __user *name, int flags)
1768 {
1769 	int lookup_flags = LOOKUP_MOUNTPOINT;
1770 	struct path path;
1771 	int ret;
1772 
1773 	// basic validity checks done first
1774 	if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1775 		return -EINVAL;
1776 
1777 	if (!(flags & UMOUNT_NOFOLLOW))
1778 		lookup_flags |= LOOKUP_FOLLOW;
1779 	ret = user_path_at(AT_FDCWD, name, lookup_flags, &path);
1780 	if (ret)
1781 		return ret;
1782 	return path_umount(&path, flags);
1783 }
1784 
SYSCALL_DEFINE2(umount,char __user *,name,int,flags)1785 SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1786 {
1787 	return ksys_umount(name, flags);
1788 }
1789 
1790 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
1791 
1792 /*
1793  *	The 2.0 compatible umount. No flags.
1794  */
SYSCALL_DEFINE1(oldumount,char __user *,name)1795 SYSCALL_DEFINE1(oldumount, char __user *, name)
1796 {
1797 	return ksys_umount(name, 0);
1798 }
1799 
1800 #endif
1801 
is_mnt_ns_file(struct dentry * dentry)1802 static bool is_mnt_ns_file(struct dentry *dentry)
1803 {
1804 	/* Is this a proxy for a mount namespace? */
1805 	return dentry->d_op == &ns_dentry_operations &&
1806 	       dentry->d_fsdata == &mntns_operations;
1807 }
1808 
to_mnt_ns(struct ns_common * ns)1809 static struct mnt_namespace *to_mnt_ns(struct ns_common *ns)
1810 {
1811 	return container_of(ns, struct mnt_namespace, ns);
1812 }
1813 
from_mnt_ns(struct mnt_namespace * mnt)1814 struct ns_common *from_mnt_ns(struct mnt_namespace *mnt)
1815 {
1816 	return &mnt->ns;
1817 }
1818 
mnt_ns_loop(struct dentry * dentry)1819 static bool mnt_ns_loop(struct dentry *dentry)
1820 {
1821 	/* Could bind mounting the mount namespace inode cause a
1822 	 * mount namespace loop?
1823 	 */
1824 	struct mnt_namespace *mnt_ns;
1825 	if (!is_mnt_ns_file(dentry))
1826 		return false;
1827 
1828 	mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode));
1829 	return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1830 }
1831 
copy_tree(struct mount * mnt,struct dentry * dentry,int flag)1832 struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
1833 					int flag)
1834 {
1835 	struct mount *res, *p, *q, *r, *parent;
1836 
1837 	if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
1838 		return ERR_PTR(-EINVAL);
1839 
1840 	if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
1841 		return ERR_PTR(-EINVAL);
1842 
1843 	res = q = clone_mnt(mnt, dentry, flag);
1844 	if (IS_ERR(q))
1845 		return q;
1846 
1847 	q->mnt_mountpoint = mnt->mnt_mountpoint;
1848 
1849 	p = mnt;
1850 	list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
1851 		struct mount *s;
1852 		if (!is_subdir(r->mnt_mountpoint, dentry))
1853 			continue;
1854 
1855 		for (s = r; s; s = next_mnt(s, r)) {
1856 			if (!(flag & CL_COPY_UNBINDABLE) &&
1857 			    IS_MNT_UNBINDABLE(s)) {
1858 				if (s->mnt.mnt_flags & MNT_LOCKED) {
1859 					/* Both unbindable and locked. */
1860 					q = ERR_PTR(-EPERM);
1861 					goto out;
1862 				} else {
1863 					s = skip_mnt_tree(s);
1864 					continue;
1865 				}
1866 			}
1867 			if (!(flag & CL_COPY_MNT_NS_FILE) &&
1868 			    is_mnt_ns_file(s->mnt.mnt_root)) {
1869 				s = skip_mnt_tree(s);
1870 				continue;
1871 			}
1872 			while (p != s->mnt_parent) {
1873 				p = p->mnt_parent;
1874 				q = q->mnt_parent;
1875 			}
1876 			p = s;
1877 			parent = q;
1878 			q = clone_mnt(p, p->mnt.mnt_root, flag);
1879 			if (IS_ERR(q))
1880 				goto out;
1881 			lock_mount_hash();
1882 			list_add_tail(&q->mnt_list, &res->mnt_list);
1883 			attach_mnt(q, parent, p->mnt_mp);
1884 			unlock_mount_hash();
1885 		}
1886 	}
1887 	return res;
1888 out:
1889 	if (res) {
1890 		lock_mount_hash();
1891 		umount_tree(res, UMOUNT_SYNC);
1892 		unlock_mount_hash();
1893 	}
1894 	return q;
1895 }
1896 
1897 /* Caller should check returned pointer for errors */
1898 
collect_mounts(const struct path * path)1899 struct vfsmount *collect_mounts(const struct path *path)
1900 {
1901 	struct mount *tree;
1902 	namespace_lock();
1903 	if (!check_mnt(real_mount(path->mnt)))
1904 		tree = ERR_PTR(-EINVAL);
1905 	else
1906 		tree = copy_tree(real_mount(path->mnt), path->dentry,
1907 				 CL_COPY_ALL | CL_PRIVATE);
1908 	namespace_unlock();
1909 	if (IS_ERR(tree))
1910 		return ERR_CAST(tree);
1911 	return &tree->mnt;
1912 }
1913 
1914 static void free_mnt_ns(struct mnt_namespace *);
1915 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *, bool);
1916 
dissolve_on_fput(struct vfsmount * mnt)1917 void dissolve_on_fput(struct vfsmount *mnt)
1918 {
1919 	struct mnt_namespace *ns;
1920 	namespace_lock();
1921 	lock_mount_hash();
1922 	ns = real_mount(mnt)->mnt_ns;
1923 	if (ns) {
1924 		if (is_anon_ns(ns))
1925 			umount_tree(real_mount(mnt), UMOUNT_CONNECTED);
1926 		else
1927 			ns = NULL;
1928 	}
1929 	unlock_mount_hash();
1930 	namespace_unlock();
1931 	if (ns)
1932 		free_mnt_ns(ns);
1933 }
1934 
drop_collected_mounts(struct vfsmount * mnt)1935 void drop_collected_mounts(struct vfsmount *mnt)
1936 {
1937 	namespace_lock();
1938 	lock_mount_hash();
1939 	umount_tree(real_mount(mnt), 0);
1940 	unlock_mount_hash();
1941 	namespace_unlock();
1942 }
1943 
has_locked_children(struct mount * mnt,struct dentry * dentry)1944 static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
1945 {
1946 	struct mount *child;
1947 
1948 	list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
1949 		if (!is_subdir(child->mnt_mountpoint, dentry))
1950 			continue;
1951 
1952 		if (child->mnt.mnt_flags & MNT_LOCKED)
1953 			return true;
1954 	}
1955 	return false;
1956 }
1957 
1958 /**
1959  * clone_private_mount - create a private clone of a path
1960  * @path: path to clone
1961  *
1962  * This creates a new vfsmount, which will be the clone of @path.  The new mount
1963  * will not be attached anywhere in the namespace and will be private (i.e.
1964  * changes to the originating mount won't be propagated into this).
1965  *
1966  * Release with mntput().
1967  */
clone_private_mount(const struct path * path)1968 struct vfsmount *clone_private_mount(const struct path *path)
1969 {
1970 	struct mount *old_mnt = real_mount(path->mnt);
1971 	struct mount *new_mnt;
1972 
1973 	down_read(&namespace_sem);
1974 	if (IS_MNT_UNBINDABLE(old_mnt))
1975 		goto invalid;
1976 
1977 	if (!check_mnt(old_mnt))
1978 		goto invalid;
1979 
1980 	if (has_locked_children(old_mnt, path->dentry))
1981 		goto invalid;
1982 
1983 	new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE);
1984 	up_read(&namespace_sem);
1985 
1986 	if (IS_ERR(new_mnt))
1987 		return ERR_CAST(new_mnt);
1988 
1989 	/* Longterm mount to be removed by kern_unmount*() */
1990 	new_mnt->mnt_ns = MNT_NS_INTERNAL;
1991 
1992 	return &new_mnt->mnt;
1993 
1994 invalid:
1995 	up_read(&namespace_sem);
1996 	return ERR_PTR(-EINVAL);
1997 }
1998 EXPORT_SYMBOL_GPL(clone_private_mount);
1999 
iterate_mounts(int (* f)(struct vfsmount *,void *),void * arg,struct vfsmount * root)2000 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
2001 		   struct vfsmount *root)
2002 {
2003 	struct mount *mnt;
2004 	int res = f(root, arg);
2005 	if (res)
2006 		return res;
2007 	list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
2008 		res = f(&mnt->mnt, arg);
2009 		if (res)
2010 			return res;
2011 	}
2012 	return 0;
2013 }
2014 
lock_mnt_tree(struct mount * mnt)2015 static void lock_mnt_tree(struct mount *mnt)
2016 {
2017 	struct mount *p;
2018 
2019 	for (p = mnt; p; p = next_mnt(p, mnt)) {
2020 		int flags = p->mnt.mnt_flags;
2021 		/* Don't allow unprivileged users to change mount flags */
2022 		flags |= MNT_LOCK_ATIME;
2023 
2024 		if (flags & MNT_READONLY)
2025 			flags |= MNT_LOCK_READONLY;
2026 
2027 		if (flags & MNT_NODEV)
2028 			flags |= MNT_LOCK_NODEV;
2029 
2030 		if (flags & MNT_NOSUID)
2031 			flags |= MNT_LOCK_NOSUID;
2032 
2033 		if (flags & MNT_NOEXEC)
2034 			flags |= MNT_LOCK_NOEXEC;
2035 		/* Don't allow unprivileged users to reveal what is under a mount */
2036 		if (list_empty(&p->mnt_expire))
2037 			flags |= MNT_LOCKED;
2038 		p->mnt.mnt_flags = flags;
2039 	}
2040 }
2041 
cleanup_group_ids(struct mount * mnt,struct mount * end)2042 static void cleanup_group_ids(struct mount *mnt, struct mount *end)
2043 {
2044 	struct mount *p;
2045 
2046 	for (p = mnt; p != end; p = next_mnt(p, mnt)) {
2047 		if (p->mnt_group_id && !IS_MNT_SHARED(p))
2048 			mnt_release_group_id(p);
2049 	}
2050 }
2051 
invent_group_ids(struct mount * mnt,bool recurse)2052 static int invent_group_ids(struct mount *mnt, bool recurse)
2053 {
2054 	struct mount *p;
2055 
2056 	for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
2057 		if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
2058 			int err = mnt_alloc_group_id(p);
2059 			if (err) {
2060 				cleanup_group_ids(mnt, p);
2061 				return err;
2062 			}
2063 		}
2064 	}
2065 
2066 	return 0;
2067 }
2068 
count_mounts(struct mnt_namespace * ns,struct mount * mnt)2069 int count_mounts(struct mnt_namespace *ns, struct mount *mnt)
2070 {
2071 	unsigned int max = READ_ONCE(sysctl_mount_max);
2072 	unsigned int mounts = 0, old, pending, sum;
2073 	struct mount *p;
2074 
2075 	for (p = mnt; p; p = next_mnt(p, mnt))
2076 		mounts++;
2077 
2078 	old = ns->mounts;
2079 	pending = ns->pending_mounts;
2080 	sum = old + pending;
2081 	if ((old > sum) ||
2082 	    (pending > sum) ||
2083 	    (max < sum) ||
2084 	    (mounts > (max - sum)))
2085 		return -ENOSPC;
2086 
2087 	ns->pending_mounts = pending + mounts;
2088 	return 0;
2089 }
2090 
2091 /*
2092  *  @source_mnt : mount tree to be attached
2093  *  @nd         : place the mount tree @source_mnt is attached
2094  *  @parent_nd  : if non-null, detach the source_mnt from its parent and
2095  *  		   store the parent mount and mountpoint dentry.
2096  *  		   (done when source_mnt is moved)
2097  *
2098  *  NOTE: in the table below explains the semantics when a source mount
2099  *  of a given type is attached to a destination mount of a given type.
2100  * ---------------------------------------------------------------------------
2101  * |         BIND MOUNT OPERATION                                            |
2102  * |**************************************************************************
2103  * | source-->| shared        |       private  |       slave    | unbindable |
2104  * | dest     |               |                |                |            |
2105  * |   |      |               |                |                |            |
2106  * |   v      |               |                |                |            |
2107  * |**************************************************************************
2108  * |  shared  | shared (++)   |     shared (+) |     shared(+++)|  invalid   |
2109  * |          |               |                |                |            |
2110  * |non-shared| shared (+)    |      private   |      slave (*) |  invalid   |
2111  * ***************************************************************************
2112  * A bind operation clones the source mount and mounts the clone on the
2113  * destination mount.
2114  *
2115  * (++)  the cloned mount is propagated to all the mounts in the propagation
2116  * 	 tree of the destination mount and the cloned mount is added to
2117  * 	 the peer group of the source mount.
2118  * (+)   the cloned mount is created under the destination mount and is marked
2119  *       as shared. The cloned mount is added to the peer group of the source
2120  *       mount.
2121  * (+++) the mount is propagated to all the mounts in the propagation tree
2122  *       of the destination mount and the cloned mount is made slave
2123  *       of the same master as that of the source mount. The cloned mount
2124  *       is marked as 'shared and slave'.
2125  * (*)   the cloned mount is made a slave of the same master as that of the
2126  * 	 source mount.
2127  *
2128  * ---------------------------------------------------------------------------
2129  * |         		MOVE MOUNT OPERATION                                 |
2130  * |**************************************************************************
2131  * | source-->| shared        |       private  |       slave    | unbindable |
2132  * | dest     |               |                |                |            |
2133  * |   |      |               |                |                |            |
2134  * |   v      |               |                |                |            |
2135  * |**************************************************************************
2136  * |  shared  | shared (+)    |     shared (+) |    shared(+++) |  invalid   |
2137  * |          |               |                |                |            |
2138  * |non-shared| shared (+*)   |      private   |    slave (*)   | unbindable |
2139  * ***************************************************************************
2140  *
2141  * (+)  the mount is moved to the destination. And is then propagated to
2142  * 	all the mounts in the propagation tree of the destination mount.
2143  * (+*)  the mount is moved to the destination.
2144  * (+++)  the mount is moved to the destination and is then propagated to
2145  * 	all the mounts belonging to the destination mount's propagation tree.
2146  * 	the mount is marked as 'shared and slave'.
2147  * (*)	the mount continues to be a slave at the new location.
2148  *
2149  * if the source mount is a tree, the operations explained above is
2150  * applied to each mount in the tree.
2151  * Must be called without spinlocks held, since this function can sleep
2152  * in allocations.
2153  */
attach_recursive_mnt(struct mount * source_mnt,struct mount * dest_mnt,struct mountpoint * dest_mp,bool moving)2154 static int attach_recursive_mnt(struct mount *source_mnt,
2155 			struct mount *dest_mnt,
2156 			struct mountpoint *dest_mp,
2157 			bool moving)
2158 {
2159 	struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
2160 	HLIST_HEAD(tree_list);
2161 	struct mnt_namespace *ns = dest_mnt->mnt_ns;
2162 	struct mountpoint *smp;
2163 	struct mount *child, *p;
2164 	struct hlist_node *n;
2165 	int err;
2166 
2167 	/* Preallocate a mountpoint in case the new mounts need
2168 	 * to be tucked under other mounts.
2169 	 */
2170 	smp = get_mountpoint(source_mnt->mnt.mnt_root);
2171 	if (IS_ERR(smp))
2172 		return PTR_ERR(smp);
2173 
2174 	/* Is there space to add these mounts to the mount namespace? */
2175 	if (!moving) {
2176 		err = count_mounts(ns, source_mnt);
2177 		if (err)
2178 			goto out;
2179 	}
2180 
2181 	if (IS_MNT_SHARED(dest_mnt)) {
2182 		err = invent_group_ids(source_mnt, true);
2183 		if (err)
2184 			goto out;
2185 		err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
2186 		lock_mount_hash();
2187 		if (err)
2188 			goto out_cleanup_ids;
2189 		for (p = source_mnt; p; p = next_mnt(p, source_mnt))
2190 			set_mnt_shared(p);
2191 	} else {
2192 		lock_mount_hash();
2193 	}
2194 	if (moving) {
2195 		unhash_mnt(source_mnt);
2196 		attach_mnt(source_mnt, dest_mnt, dest_mp);
2197 		touch_mnt_namespace(source_mnt->mnt_ns);
2198 	} else {
2199 		if (source_mnt->mnt_ns) {
2200 			/* move from anon - the caller will destroy */
2201 			list_del_init(&source_mnt->mnt_ns->list);
2202 		}
2203 		mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
2204 		commit_tree(source_mnt);
2205 	}
2206 
2207 	hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
2208 		struct mount *q;
2209 		hlist_del_init(&child->mnt_hash);
2210 		q = __lookup_mnt(&child->mnt_parent->mnt,
2211 				 child->mnt_mountpoint);
2212 		if (q)
2213 			mnt_change_mountpoint(child, smp, q);
2214 		/* Notice when we are propagating across user namespaces */
2215 		if (child->mnt_parent->mnt_ns->user_ns != user_ns)
2216 			lock_mnt_tree(child);
2217 		child->mnt.mnt_flags &= ~MNT_LOCKED;
2218 		commit_tree(child);
2219 	}
2220 	put_mountpoint(smp);
2221 	unlock_mount_hash();
2222 
2223 	return 0;
2224 
2225  out_cleanup_ids:
2226 	while (!hlist_empty(&tree_list)) {
2227 		child = hlist_entry(tree_list.first, struct mount, mnt_hash);
2228 		child->mnt_parent->mnt_ns->pending_mounts = 0;
2229 		umount_tree(child, UMOUNT_SYNC);
2230 	}
2231 	unlock_mount_hash();
2232 	cleanup_group_ids(source_mnt, NULL);
2233  out:
2234 	ns->pending_mounts = 0;
2235 
2236 	read_seqlock_excl(&mount_lock);
2237 	put_mountpoint(smp);
2238 	read_sequnlock_excl(&mount_lock);
2239 
2240 	return err;
2241 }
2242 
lock_mount(struct path * path)2243 static struct mountpoint *lock_mount(struct path *path)
2244 {
2245 	struct vfsmount *mnt;
2246 	struct dentry *dentry = path->dentry;
2247 retry:
2248 	inode_lock(dentry->d_inode);
2249 	if (unlikely(cant_mount(dentry))) {
2250 		inode_unlock(dentry->d_inode);
2251 		return ERR_PTR(-ENOENT);
2252 	}
2253 	namespace_lock();
2254 	mnt = lookup_mnt(path);
2255 	if (likely(!mnt)) {
2256 		struct mountpoint *mp = get_mountpoint(dentry);
2257 		if (IS_ERR(mp)) {
2258 			namespace_unlock();
2259 			inode_unlock(dentry->d_inode);
2260 			return mp;
2261 		}
2262 		return mp;
2263 	}
2264 	namespace_unlock();
2265 	inode_unlock(path->dentry->d_inode);
2266 	path_put(path);
2267 	path->mnt = mnt;
2268 	dentry = path->dentry = dget(mnt->mnt_root);
2269 	goto retry;
2270 }
2271 
unlock_mount(struct mountpoint * where)2272 static void unlock_mount(struct mountpoint *where)
2273 {
2274 	struct dentry *dentry = where->m_dentry;
2275 
2276 	read_seqlock_excl(&mount_lock);
2277 	put_mountpoint(where);
2278 	read_sequnlock_excl(&mount_lock);
2279 
2280 	namespace_unlock();
2281 	inode_unlock(dentry->d_inode);
2282 }
2283 
graft_tree(struct mount * mnt,struct mount * p,struct mountpoint * mp)2284 static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
2285 {
2286 	if (mnt->mnt.mnt_sb->s_flags & SB_NOUSER)
2287 		return -EINVAL;
2288 
2289 	if (d_is_dir(mp->m_dentry) !=
2290 	      d_is_dir(mnt->mnt.mnt_root))
2291 		return -ENOTDIR;
2292 
2293 	return attach_recursive_mnt(mnt, p, mp, false);
2294 }
2295 
2296 /*
2297  * Sanity check the flags to change_mnt_propagation.
2298  */
2299 
flags_to_propagation_type(int ms_flags)2300 static int flags_to_propagation_type(int ms_flags)
2301 {
2302 	int type = ms_flags & ~(MS_REC | MS_SILENT);
2303 
2304 	/* Fail if any non-propagation flags are set */
2305 	if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2306 		return 0;
2307 	/* Only one propagation flag should be set */
2308 	if (!is_power_of_2(type))
2309 		return 0;
2310 	return type;
2311 }
2312 
2313 /*
2314  * recursively change the type of the mountpoint.
2315  */
do_change_type(struct path * path,int ms_flags)2316 static int do_change_type(struct path *path, int ms_flags)
2317 {
2318 	struct mount *m;
2319 	struct mount *mnt = real_mount(path->mnt);
2320 	int recurse = ms_flags & MS_REC;
2321 	int type;
2322 	int err = 0;
2323 
2324 	if (path->dentry != path->mnt->mnt_root)
2325 		return -EINVAL;
2326 
2327 	type = flags_to_propagation_type(ms_flags);
2328 	if (!type)
2329 		return -EINVAL;
2330 
2331 	namespace_lock();
2332 	if (type == MS_SHARED) {
2333 		err = invent_group_ids(mnt, recurse);
2334 		if (err)
2335 			goto out_unlock;
2336 	}
2337 
2338 	lock_mount_hash();
2339 	for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
2340 		change_mnt_propagation(m, type);
2341 	unlock_mount_hash();
2342 
2343  out_unlock:
2344 	namespace_unlock();
2345 	return err;
2346 }
2347 
__do_loopback(struct path * old_path,int recurse)2348 static struct mount *__do_loopback(struct path *old_path, int recurse)
2349 {
2350 	struct mount *mnt = ERR_PTR(-EINVAL), *old = real_mount(old_path->mnt);
2351 
2352 	if (IS_MNT_UNBINDABLE(old))
2353 		return mnt;
2354 
2355 	if (!check_mnt(old) && old_path->dentry->d_op != &ns_dentry_operations)
2356 		return mnt;
2357 
2358 	if (!recurse && has_locked_children(old, old_path->dentry))
2359 		return mnt;
2360 
2361 	if (recurse)
2362 		mnt = copy_tree(old, old_path->dentry, CL_COPY_MNT_NS_FILE);
2363 	else
2364 		mnt = clone_mnt(old, old_path->dentry, 0);
2365 
2366 	if (!IS_ERR(mnt))
2367 		mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2368 
2369 	return mnt;
2370 }
2371 
2372 /*
2373  * do loopback mount.
2374  */
do_loopback(struct path * path,const char * old_name,int recurse)2375 static int do_loopback(struct path *path, const char *old_name,
2376 				int recurse)
2377 {
2378 	struct path old_path;
2379 	struct mount *mnt = NULL, *parent;
2380 	struct mountpoint *mp;
2381 	int err;
2382 	if (!old_name || !*old_name)
2383 		return -EINVAL;
2384 	err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
2385 	if (err)
2386 		return err;
2387 
2388 	err = -EINVAL;
2389 	if (mnt_ns_loop(old_path.dentry))
2390 		goto out;
2391 
2392 	mp = lock_mount(path);
2393 	if (IS_ERR(mp)) {
2394 		err = PTR_ERR(mp);
2395 		goto out;
2396 	}
2397 
2398 	parent = real_mount(path->mnt);
2399 	if (!check_mnt(parent))
2400 		goto out2;
2401 
2402 	mnt = __do_loopback(&old_path, recurse);
2403 	if (IS_ERR(mnt)) {
2404 		err = PTR_ERR(mnt);
2405 		goto out2;
2406 	}
2407 
2408 	err = graft_tree(mnt, parent, mp);
2409 	if (err) {
2410 		lock_mount_hash();
2411 		umount_tree(mnt, UMOUNT_SYNC);
2412 		unlock_mount_hash();
2413 	}
2414 out2:
2415 	unlock_mount(mp);
2416 out:
2417 	path_put(&old_path);
2418 	return err;
2419 }
2420 
open_detached_copy(struct path * path,bool recursive)2421 static struct file *open_detached_copy(struct path *path, bool recursive)
2422 {
2423 	struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
2424 	struct mnt_namespace *ns = alloc_mnt_ns(user_ns, true);
2425 	struct mount *mnt, *p;
2426 	struct file *file;
2427 
2428 	if (IS_ERR(ns))
2429 		return ERR_CAST(ns);
2430 
2431 	namespace_lock();
2432 	mnt = __do_loopback(path, recursive);
2433 	if (IS_ERR(mnt)) {
2434 		namespace_unlock();
2435 		free_mnt_ns(ns);
2436 		return ERR_CAST(mnt);
2437 	}
2438 
2439 	lock_mount_hash();
2440 	for (p = mnt; p; p = next_mnt(p, mnt)) {
2441 		p->mnt_ns = ns;
2442 		ns->mounts++;
2443 	}
2444 	ns->root = mnt;
2445 	list_add_tail(&ns->list, &mnt->mnt_list);
2446 	mntget(&mnt->mnt);
2447 	unlock_mount_hash();
2448 	namespace_unlock();
2449 
2450 	mntput(path->mnt);
2451 	path->mnt = &mnt->mnt;
2452 	file = dentry_open(path, O_PATH, current_cred());
2453 	if (IS_ERR(file))
2454 		dissolve_on_fput(path->mnt);
2455 	else
2456 		file->f_mode |= FMODE_NEED_UNMOUNT;
2457 	return file;
2458 }
2459 
SYSCALL_DEFINE3(open_tree,int,dfd,const char __user *,filename,unsigned,flags)2460 SYSCALL_DEFINE3(open_tree, int, dfd, const char __user *, filename, unsigned, flags)
2461 {
2462 	struct file *file;
2463 	struct path path;
2464 	int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW;
2465 	bool detached = flags & OPEN_TREE_CLONE;
2466 	int error;
2467 	int fd;
2468 
2469 	BUILD_BUG_ON(OPEN_TREE_CLOEXEC != O_CLOEXEC);
2470 
2471 	if (flags & ~(AT_EMPTY_PATH | AT_NO_AUTOMOUNT | AT_RECURSIVE |
2472 		      AT_SYMLINK_NOFOLLOW | OPEN_TREE_CLONE |
2473 		      OPEN_TREE_CLOEXEC))
2474 		return -EINVAL;
2475 
2476 	if ((flags & (AT_RECURSIVE | OPEN_TREE_CLONE)) == AT_RECURSIVE)
2477 		return -EINVAL;
2478 
2479 	if (flags & AT_NO_AUTOMOUNT)
2480 		lookup_flags &= ~LOOKUP_AUTOMOUNT;
2481 	if (flags & AT_SYMLINK_NOFOLLOW)
2482 		lookup_flags &= ~LOOKUP_FOLLOW;
2483 	if (flags & AT_EMPTY_PATH)
2484 		lookup_flags |= LOOKUP_EMPTY;
2485 
2486 	if (detached && !may_mount())
2487 		return -EPERM;
2488 
2489 	fd = get_unused_fd_flags(flags & O_CLOEXEC);
2490 	if (fd < 0)
2491 		return fd;
2492 
2493 	error = user_path_at(dfd, filename, lookup_flags, &path);
2494 	if (unlikely(error)) {
2495 		file = ERR_PTR(error);
2496 	} else {
2497 		if (detached)
2498 			file = open_detached_copy(&path, flags & AT_RECURSIVE);
2499 		else
2500 			file = dentry_open(&path, O_PATH, current_cred());
2501 		path_put(&path);
2502 	}
2503 	if (IS_ERR(file)) {
2504 		put_unused_fd(fd);
2505 		return PTR_ERR(file);
2506 	}
2507 	fd_install(fd, file);
2508 	return fd;
2509 }
2510 
2511 /*
2512  * Don't allow locked mount flags to be cleared.
2513  *
2514  * No locks need to be held here while testing the various MNT_LOCK
2515  * flags because those flags can never be cleared once they are set.
2516  */
can_change_locked_flags(struct mount * mnt,unsigned int mnt_flags)2517 static bool can_change_locked_flags(struct mount *mnt, unsigned int mnt_flags)
2518 {
2519 	unsigned int fl = mnt->mnt.mnt_flags;
2520 
2521 	if ((fl & MNT_LOCK_READONLY) &&
2522 	    !(mnt_flags & MNT_READONLY))
2523 		return false;
2524 
2525 	if ((fl & MNT_LOCK_NODEV) &&
2526 	    !(mnt_flags & MNT_NODEV))
2527 		return false;
2528 
2529 	if ((fl & MNT_LOCK_NOSUID) &&
2530 	    !(mnt_flags & MNT_NOSUID))
2531 		return false;
2532 
2533 	if ((fl & MNT_LOCK_NOEXEC) &&
2534 	    !(mnt_flags & MNT_NOEXEC))
2535 		return false;
2536 
2537 	if ((fl & MNT_LOCK_ATIME) &&
2538 	    ((fl & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK)))
2539 		return false;
2540 
2541 	return true;
2542 }
2543 
change_mount_ro_state(struct mount * mnt,unsigned int mnt_flags)2544 static int change_mount_ro_state(struct mount *mnt, unsigned int mnt_flags)
2545 {
2546 	bool readonly_request = (mnt_flags & MNT_READONLY);
2547 
2548 	if (readonly_request == __mnt_is_readonly(&mnt->mnt))
2549 		return 0;
2550 
2551 	if (readonly_request)
2552 		return mnt_make_readonly(mnt);
2553 
2554 	mnt->mnt.mnt_flags &= ~MNT_READONLY;
2555 	return 0;
2556 }
2557 
set_mount_attributes(struct mount * mnt,unsigned int mnt_flags)2558 static void set_mount_attributes(struct mount *mnt, unsigned int mnt_flags)
2559 {
2560 	mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
2561 	mnt->mnt.mnt_flags = mnt_flags;
2562 	touch_mnt_namespace(mnt->mnt_ns);
2563 }
2564 
mnt_warn_timestamp_expiry(struct path * mountpoint,struct vfsmount * mnt)2565 static void mnt_warn_timestamp_expiry(struct path *mountpoint, struct vfsmount *mnt)
2566 {
2567 	struct super_block *sb = mnt->mnt_sb;
2568 
2569 	if (!__mnt_is_readonly(mnt) &&
2570 	   (ktime_get_real_seconds() + TIME_UPTIME_SEC_MAX > sb->s_time_max)) {
2571 		char *buf = (char *)__get_free_page(GFP_KERNEL);
2572 		char *mntpath = buf ? d_path(mountpoint, buf, PAGE_SIZE) : ERR_PTR(-ENOMEM);
2573 		struct tm tm;
2574 
2575 		time64_to_tm(sb->s_time_max, 0, &tm);
2576 
2577 		pr_warn("%s filesystem being %s at %s supports timestamps until %04ld (0x%llx)\n",
2578 			sb->s_type->name,
2579 			is_mounted(mnt) ? "remounted" : "mounted",
2580 			mntpath,
2581 			tm.tm_year+1900, (unsigned long long)sb->s_time_max);
2582 
2583 		free_page((unsigned long)buf);
2584 	}
2585 }
2586 
2587 /*
2588  * Handle reconfiguration of the mountpoint only without alteration of the
2589  * superblock it refers to.  This is triggered by specifying MS_REMOUNT|MS_BIND
2590  * to mount(2).
2591  */
do_reconfigure_mnt(struct path * path,unsigned int mnt_flags)2592 static int do_reconfigure_mnt(struct path *path, unsigned int mnt_flags)
2593 {
2594 	struct super_block *sb = path->mnt->mnt_sb;
2595 	struct mount *mnt = real_mount(path->mnt);
2596 	int ret;
2597 
2598 	if (!check_mnt(mnt))
2599 		return -EINVAL;
2600 
2601 	if (path->dentry != mnt->mnt.mnt_root)
2602 		return -EINVAL;
2603 
2604 	if (!can_change_locked_flags(mnt, mnt_flags))
2605 		return -EPERM;
2606 
2607 	/*
2608 	 * We're only checking whether the superblock is read-only not
2609 	 * changing it, so only take down_read(&sb->s_umount).
2610 	 */
2611 	down_read(&sb->s_umount);
2612 	lock_mount_hash();
2613 	ret = change_mount_ro_state(mnt, mnt_flags);
2614 	if (ret == 0)
2615 		set_mount_attributes(mnt, mnt_flags);
2616 	unlock_mount_hash();
2617 	up_read(&sb->s_umount);
2618 
2619 	mnt_warn_timestamp_expiry(path, &mnt->mnt);
2620 
2621 	return ret;
2622 }
2623 
2624 /*
2625  * change filesystem flags. dir should be a physical root of filesystem.
2626  * If you've mounted a non-root directory somewhere and want to do remount
2627  * on it - tough luck.
2628  */
do_remount(struct path * path,int ms_flags,int sb_flags,int mnt_flags,void * data)2629 static int do_remount(struct path *path, int ms_flags, int sb_flags,
2630 		      int mnt_flags, void *data)
2631 {
2632 	int err;
2633 	struct super_block *sb = path->mnt->mnt_sb;
2634 	struct mount *mnt = real_mount(path->mnt);
2635 	struct fs_context *fc;
2636 
2637 	if (!check_mnt(mnt))
2638 		return -EINVAL;
2639 
2640 	if (path->dentry != path->mnt->mnt_root)
2641 		return -EINVAL;
2642 
2643 	if (!can_change_locked_flags(mnt, mnt_flags))
2644 		return -EPERM;
2645 
2646 	fc = fs_context_for_reconfigure(path->dentry, sb_flags, MS_RMT_MASK);
2647 	if (IS_ERR(fc))
2648 		return PTR_ERR(fc);
2649 
2650 	/*
2651 	 * Indicate to the filesystem that the remount request is coming
2652 	 * from the legacy mount system call.
2653 	 */
2654 	fc->oldapi = true;
2655 
2656 	err = parse_monolithic_mount_data(fc, data);
2657 	if (!err) {
2658 		down_write(&sb->s_umount);
2659 		err = -EPERM;
2660 		if (ns_capable(sb->s_user_ns, CAP_SYS_ADMIN)) {
2661 			err = reconfigure_super(fc);
2662 			if (!err) {
2663 				lock_mount_hash();
2664 				set_mount_attributes(mnt, mnt_flags);
2665 				unlock_mount_hash();
2666 			}
2667 		}
2668 		up_write(&sb->s_umount);
2669 	}
2670 
2671 	mnt_warn_timestamp_expiry(path, &mnt->mnt);
2672 
2673 	put_fs_context(fc);
2674 	return err;
2675 }
2676 
tree_contains_unbindable(struct mount * mnt)2677 static inline int tree_contains_unbindable(struct mount *mnt)
2678 {
2679 	struct mount *p;
2680 	for (p = mnt; p; p = next_mnt(p, mnt)) {
2681 		if (IS_MNT_UNBINDABLE(p))
2682 			return 1;
2683 	}
2684 	return 0;
2685 }
2686 
2687 /*
2688  * Check that there aren't references to earlier/same mount namespaces in the
2689  * specified subtree.  Such references can act as pins for mount namespaces
2690  * that aren't checked by the mount-cycle checking code, thereby allowing
2691  * cycles to be made.
2692  */
check_for_nsfs_mounts(struct mount * subtree)2693 static bool check_for_nsfs_mounts(struct mount *subtree)
2694 {
2695 	struct mount *p;
2696 	bool ret = false;
2697 
2698 	lock_mount_hash();
2699 	for (p = subtree; p; p = next_mnt(p, subtree))
2700 		if (mnt_ns_loop(p->mnt.mnt_root))
2701 			goto out;
2702 
2703 	ret = true;
2704 out:
2705 	unlock_mount_hash();
2706 	return ret;
2707 }
2708 
do_set_group(struct path * from_path,struct path * to_path)2709 static int do_set_group(struct path *from_path, struct path *to_path)
2710 {
2711 	struct mount *from, *to;
2712 	int err;
2713 
2714 	from = real_mount(from_path->mnt);
2715 	to = real_mount(to_path->mnt);
2716 
2717 	namespace_lock();
2718 
2719 	err = -EINVAL;
2720 	/* To and From must be mounted */
2721 	if (!is_mounted(&from->mnt))
2722 		goto out;
2723 	if (!is_mounted(&to->mnt))
2724 		goto out;
2725 
2726 	err = -EPERM;
2727 	/* We should be allowed to modify mount namespaces of both mounts */
2728 	if (!ns_capable(from->mnt_ns->user_ns, CAP_SYS_ADMIN))
2729 		goto out;
2730 	if (!ns_capable(to->mnt_ns->user_ns, CAP_SYS_ADMIN))
2731 		goto out;
2732 
2733 	err = -EINVAL;
2734 	/* To and From paths should be mount roots */
2735 	if (from_path->dentry != from_path->mnt->mnt_root)
2736 		goto out;
2737 	if (to_path->dentry != to_path->mnt->mnt_root)
2738 		goto out;
2739 
2740 	/* Setting sharing groups is only allowed across same superblock */
2741 	if (from->mnt.mnt_sb != to->mnt.mnt_sb)
2742 		goto out;
2743 
2744 	/* From mount root should be wider than To mount root */
2745 	if (!is_subdir(to->mnt.mnt_root, from->mnt.mnt_root))
2746 		goto out;
2747 
2748 	/* From mount should not have locked children in place of To's root */
2749 	if (has_locked_children(from, to->mnt.mnt_root))
2750 		goto out;
2751 
2752 	/* Setting sharing groups is only allowed on private mounts */
2753 	if (IS_MNT_SHARED(to) || IS_MNT_SLAVE(to))
2754 		goto out;
2755 
2756 	/* From should not be private */
2757 	if (!IS_MNT_SHARED(from) && !IS_MNT_SLAVE(from))
2758 		goto out;
2759 
2760 	if (IS_MNT_SLAVE(from)) {
2761 		struct mount *m = from->mnt_master;
2762 
2763 		list_add(&to->mnt_slave, &m->mnt_slave_list);
2764 		to->mnt_master = m;
2765 	}
2766 
2767 	if (IS_MNT_SHARED(from)) {
2768 		to->mnt_group_id = from->mnt_group_id;
2769 		list_add(&to->mnt_share, &from->mnt_share);
2770 		lock_mount_hash();
2771 		set_mnt_shared(to);
2772 		unlock_mount_hash();
2773 	}
2774 
2775 	err = 0;
2776 out:
2777 	namespace_unlock();
2778 	return err;
2779 }
2780 
do_move_mount(struct path * old_path,struct path * new_path)2781 static int do_move_mount(struct path *old_path, struct path *new_path)
2782 {
2783 	struct mnt_namespace *ns;
2784 	struct mount *p;
2785 	struct mount *old;
2786 	struct mount *parent;
2787 	struct mountpoint *mp, *old_mp;
2788 	int err;
2789 	bool attached;
2790 
2791 	mp = lock_mount(new_path);
2792 	if (IS_ERR(mp))
2793 		return PTR_ERR(mp);
2794 
2795 	old = real_mount(old_path->mnt);
2796 	p = real_mount(new_path->mnt);
2797 	parent = old->mnt_parent;
2798 	attached = mnt_has_parent(old);
2799 	old_mp = old->mnt_mp;
2800 	ns = old->mnt_ns;
2801 
2802 	err = -EINVAL;
2803 	/* The mountpoint must be in our namespace. */
2804 	if (!check_mnt(p))
2805 		goto out;
2806 
2807 	/* The thing moved must be mounted... */
2808 	if (!is_mounted(&old->mnt))
2809 		goto out;
2810 
2811 	/* ... and either ours or the root of anon namespace */
2812 	if (!(attached ? check_mnt(old) : is_anon_ns(ns)))
2813 		goto out;
2814 
2815 	if (old->mnt.mnt_flags & MNT_LOCKED)
2816 		goto out;
2817 
2818 	if (old_path->dentry != old_path->mnt->mnt_root)
2819 		goto out;
2820 
2821 	if (d_is_dir(new_path->dentry) !=
2822 	    d_is_dir(old_path->dentry))
2823 		goto out;
2824 	/*
2825 	 * Don't move a mount residing in a shared parent.
2826 	 */
2827 	if (attached && IS_MNT_SHARED(parent))
2828 		goto out;
2829 	/*
2830 	 * Don't move a mount tree containing unbindable mounts to a destination
2831 	 * mount which is shared.
2832 	 */
2833 	if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
2834 		goto out;
2835 	err = -ELOOP;
2836 	if (!check_for_nsfs_mounts(old))
2837 		goto out;
2838 	for (; mnt_has_parent(p); p = p->mnt_parent)
2839 		if (p == old)
2840 			goto out;
2841 
2842 	err = attach_recursive_mnt(old, real_mount(new_path->mnt), mp,
2843 				   attached);
2844 	if (err)
2845 		goto out;
2846 
2847 	/* if the mount is moved, it should no longer be expire
2848 	 * automatically */
2849 	list_del_init(&old->mnt_expire);
2850 	if (attached)
2851 		put_mountpoint(old_mp);
2852 out:
2853 	unlock_mount(mp);
2854 	if (!err) {
2855 		if (attached)
2856 			mntput_no_expire(parent);
2857 		else
2858 			free_mnt_ns(ns);
2859 	}
2860 	return err;
2861 }
2862 
do_move_mount_old(struct path * path,const char * old_name)2863 static int do_move_mount_old(struct path *path, const char *old_name)
2864 {
2865 	struct path old_path;
2866 	int err;
2867 
2868 	if (!old_name || !*old_name)
2869 		return -EINVAL;
2870 
2871 	err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
2872 	if (err)
2873 		return err;
2874 
2875 	err = do_move_mount(&old_path, path);
2876 	path_put(&old_path);
2877 	return err;
2878 }
2879 
2880 /*
2881  * add a mount into a namespace's mount tree
2882  */
do_add_mount(struct mount * newmnt,struct mountpoint * mp,struct path * path,int mnt_flags)2883 static int do_add_mount(struct mount *newmnt, struct mountpoint *mp,
2884 			struct path *path, int mnt_flags)
2885 {
2886 	struct mount *parent = real_mount(path->mnt);
2887 
2888 	mnt_flags &= ~MNT_INTERNAL_FLAGS;
2889 
2890 	if (unlikely(!check_mnt(parent))) {
2891 		/* that's acceptable only for automounts done in private ns */
2892 		if (!(mnt_flags & MNT_SHRINKABLE))
2893 			return -EINVAL;
2894 		/* ... and for those we'd better have mountpoint still alive */
2895 		if (!parent->mnt_ns)
2896 			return -EINVAL;
2897 	}
2898 
2899 	/* Refuse the same filesystem on the same mount point */
2900 	if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
2901 	    path->mnt->mnt_root == path->dentry)
2902 		return -EBUSY;
2903 
2904 	if (d_is_symlink(newmnt->mnt.mnt_root))
2905 		return -EINVAL;
2906 
2907 	newmnt->mnt.mnt_flags = mnt_flags;
2908 	return graft_tree(newmnt, parent, mp);
2909 }
2910 
2911 static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags);
2912 
2913 /*
2914  * Create a new mount using a superblock configuration and request it
2915  * be added to the namespace tree.
2916  */
do_new_mount_fc(struct fs_context * fc,struct path * mountpoint,unsigned int mnt_flags)2917 static int do_new_mount_fc(struct fs_context *fc, struct path *mountpoint,
2918 			   unsigned int mnt_flags)
2919 {
2920 	struct vfsmount *mnt;
2921 	struct mountpoint *mp;
2922 	struct super_block *sb = fc->root->d_sb;
2923 	int error;
2924 
2925 	error = security_sb_kern_mount(sb);
2926 	if (!error && mount_too_revealing(sb, &mnt_flags))
2927 		error = -EPERM;
2928 
2929 	if (unlikely(error)) {
2930 		fc_drop_locked(fc);
2931 		return error;
2932 	}
2933 
2934 	up_write(&sb->s_umount);
2935 
2936 	mnt = vfs_create_mount(fc);
2937 	if (IS_ERR(mnt))
2938 		return PTR_ERR(mnt);
2939 
2940 	mnt_warn_timestamp_expiry(mountpoint, mnt);
2941 
2942 	mp = lock_mount(mountpoint);
2943 	if (IS_ERR(mp)) {
2944 		mntput(mnt);
2945 		return PTR_ERR(mp);
2946 	}
2947 	error = do_add_mount(real_mount(mnt), mp, mountpoint, mnt_flags);
2948 	unlock_mount(mp);
2949 	if (error < 0)
2950 		mntput(mnt);
2951 	return error;
2952 }
2953 
2954 /*
2955  * create a new mount for userspace and request it to be added into the
2956  * namespace's tree
2957  */
do_new_mount(struct path * path,const char * fstype,int sb_flags,int mnt_flags,const char * name,void * data)2958 static int do_new_mount(struct path *path, const char *fstype, int sb_flags,
2959 			int mnt_flags, const char *name, void *data)
2960 {
2961 	struct file_system_type *type;
2962 	struct fs_context *fc;
2963 	const char *subtype = NULL;
2964 	int err = 0;
2965 
2966 	if (!fstype)
2967 		return -EINVAL;
2968 
2969 	type = get_fs_type(fstype);
2970 	if (!type)
2971 		return -ENODEV;
2972 
2973 	if (type->fs_flags & FS_HAS_SUBTYPE) {
2974 		subtype = strchr(fstype, '.');
2975 		if (subtype) {
2976 			subtype++;
2977 			if (!*subtype) {
2978 				put_filesystem(type);
2979 				return -EINVAL;
2980 			}
2981 		}
2982 	}
2983 
2984 	fc = fs_context_for_mount(type, sb_flags);
2985 	put_filesystem(type);
2986 	if (IS_ERR(fc))
2987 		return PTR_ERR(fc);
2988 
2989 	/*
2990 	 * Indicate to the filesystem that the mount request is coming
2991 	 * from the legacy mount system call.
2992 	 */
2993 	fc->oldapi = true;
2994 
2995 	if (subtype)
2996 		err = vfs_parse_fs_string(fc, "subtype",
2997 					  subtype, strlen(subtype));
2998 	if (!err && name)
2999 		err = vfs_parse_fs_string(fc, "source", name, strlen(name));
3000 	if (!err)
3001 		err = parse_monolithic_mount_data(fc, data);
3002 	if (!err && !mount_capable(fc))
3003 		err = -EPERM;
3004 	if (!err)
3005 		err = vfs_get_tree(fc);
3006 	if (!err)
3007 		err = do_new_mount_fc(fc, path, mnt_flags);
3008 
3009 	put_fs_context(fc);
3010 	return err;
3011 }
3012 
finish_automount(struct vfsmount * m,struct path * path)3013 int finish_automount(struct vfsmount *m, struct path *path)
3014 {
3015 	struct dentry *dentry = path->dentry;
3016 	struct mountpoint *mp;
3017 	struct mount *mnt;
3018 	int err;
3019 
3020 	if (!m)
3021 		return 0;
3022 	if (IS_ERR(m))
3023 		return PTR_ERR(m);
3024 
3025 	mnt = real_mount(m);
3026 	/* The new mount record should have at least 2 refs to prevent it being
3027 	 * expired before we get a chance to add it
3028 	 */
3029 	BUG_ON(mnt_get_count(mnt) < 2);
3030 
3031 	if (m->mnt_sb == path->mnt->mnt_sb &&
3032 	    m->mnt_root == dentry) {
3033 		err = -ELOOP;
3034 		goto discard;
3035 	}
3036 
3037 	/*
3038 	 * we don't want to use lock_mount() - in this case finding something
3039 	 * that overmounts our mountpoint to be means "quitely drop what we've
3040 	 * got", not "try to mount it on top".
3041 	 */
3042 	inode_lock(dentry->d_inode);
3043 	namespace_lock();
3044 	if (unlikely(cant_mount(dentry))) {
3045 		err = -ENOENT;
3046 		goto discard_locked;
3047 	}
3048 	rcu_read_lock();
3049 	if (unlikely(__lookup_mnt(path->mnt, dentry))) {
3050 		rcu_read_unlock();
3051 		err = 0;
3052 		goto discard_locked;
3053 	}
3054 	rcu_read_unlock();
3055 	mp = get_mountpoint(dentry);
3056 	if (IS_ERR(mp)) {
3057 		err = PTR_ERR(mp);
3058 		goto discard_locked;
3059 	}
3060 
3061 	err = do_add_mount(mnt, mp, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
3062 	unlock_mount(mp);
3063 	if (unlikely(err))
3064 		goto discard;
3065 	mntput(m);
3066 	return 0;
3067 
3068 discard_locked:
3069 	namespace_unlock();
3070 	inode_unlock(dentry->d_inode);
3071 discard:
3072 	/* remove m from any expiration list it may be on */
3073 	if (!list_empty(&mnt->mnt_expire)) {
3074 		namespace_lock();
3075 		list_del_init(&mnt->mnt_expire);
3076 		namespace_unlock();
3077 	}
3078 	mntput(m);
3079 	mntput(m);
3080 	return err;
3081 }
3082 
3083 /**
3084  * mnt_set_expiry - Put a mount on an expiration list
3085  * @mnt: The mount to list.
3086  * @expiry_list: The list to add the mount to.
3087  */
mnt_set_expiry(struct vfsmount * mnt,struct list_head * expiry_list)3088 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
3089 {
3090 	namespace_lock();
3091 
3092 	list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
3093 
3094 	namespace_unlock();
3095 }
3096 EXPORT_SYMBOL(mnt_set_expiry);
3097 
3098 /*
3099  * process a list of expirable mountpoints with the intent of discarding any
3100  * mountpoints that aren't in use and haven't been touched since last we came
3101  * here
3102  */
mark_mounts_for_expiry(struct list_head * mounts)3103 void mark_mounts_for_expiry(struct list_head *mounts)
3104 {
3105 	struct mount *mnt, *next;
3106 	LIST_HEAD(graveyard);
3107 
3108 	if (list_empty(mounts))
3109 		return;
3110 
3111 	namespace_lock();
3112 	lock_mount_hash();
3113 
3114 	/* extract from the expiration list every vfsmount that matches the
3115 	 * following criteria:
3116 	 * - only referenced by its parent vfsmount
3117 	 * - still marked for expiry (marked on the last call here; marks are
3118 	 *   cleared by mntput())
3119 	 */
3120 	list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
3121 		if (!xchg(&mnt->mnt_expiry_mark, 1) ||
3122 			propagate_mount_busy(mnt, 1))
3123 			continue;
3124 		list_move(&mnt->mnt_expire, &graveyard);
3125 	}
3126 	while (!list_empty(&graveyard)) {
3127 		mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
3128 		touch_mnt_namespace(mnt->mnt_ns);
3129 		umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
3130 	}
3131 	unlock_mount_hash();
3132 	namespace_unlock();
3133 }
3134 
3135 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
3136 
3137 /*
3138  * Ripoff of 'select_parent()'
3139  *
3140  * search the list of submounts for a given mountpoint, and move any
3141  * shrinkable submounts to the 'graveyard' list.
3142  */
select_submounts(struct mount * parent,struct list_head * graveyard)3143 static int select_submounts(struct mount *parent, struct list_head *graveyard)
3144 {
3145 	struct mount *this_parent = parent;
3146 	struct list_head *next;
3147 	int found = 0;
3148 
3149 repeat:
3150 	next = this_parent->mnt_mounts.next;
3151 resume:
3152 	while (next != &this_parent->mnt_mounts) {
3153 		struct list_head *tmp = next;
3154 		struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
3155 
3156 		next = tmp->next;
3157 		if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
3158 			continue;
3159 		/*
3160 		 * Descend a level if the d_mounts list is non-empty.
3161 		 */
3162 		if (!list_empty(&mnt->mnt_mounts)) {
3163 			this_parent = mnt;
3164 			goto repeat;
3165 		}
3166 
3167 		if (!propagate_mount_busy(mnt, 1)) {
3168 			list_move_tail(&mnt->mnt_expire, graveyard);
3169 			found++;
3170 		}
3171 	}
3172 	/*
3173 	 * All done at this level ... ascend and resume the search
3174 	 */
3175 	if (this_parent != parent) {
3176 		next = this_parent->mnt_child.next;
3177 		this_parent = this_parent->mnt_parent;
3178 		goto resume;
3179 	}
3180 	return found;
3181 }
3182 
3183 /*
3184  * process a list of expirable mountpoints with the intent of discarding any
3185  * submounts of a specific parent mountpoint
3186  *
3187  * mount_lock must be held for write
3188  */
shrink_submounts(struct mount * mnt)3189 static void shrink_submounts(struct mount *mnt)
3190 {
3191 	LIST_HEAD(graveyard);
3192 	struct mount *m;
3193 
3194 	/* extract submounts of 'mountpoint' from the expiration list */
3195 	while (select_submounts(mnt, &graveyard)) {
3196 		while (!list_empty(&graveyard)) {
3197 			m = list_first_entry(&graveyard, struct mount,
3198 						mnt_expire);
3199 			touch_mnt_namespace(m->mnt_ns);
3200 			umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC);
3201 		}
3202 	}
3203 }
3204 
copy_mount_options(const void __user * data)3205 static void *copy_mount_options(const void __user * data)
3206 {
3207 	char *copy;
3208 	unsigned left, offset;
3209 
3210 	if (!data)
3211 		return NULL;
3212 
3213 	copy = kmalloc(PAGE_SIZE, GFP_KERNEL);
3214 	if (!copy)
3215 		return ERR_PTR(-ENOMEM);
3216 
3217 	left = copy_from_user(copy, data, PAGE_SIZE);
3218 
3219 	/*
3220 	 * Not all architectures have an exact copy_from_user(). Resort to
3221 	 * byte at a time.
3222 	 */
3223 	offset = PAGE_SIZE - left;
3224 	while (left) {
3225 		char c;
3226 		if (get_user(c, (const char __user *)data + offset))
3227 			break;
3228 		copy[offset] = c;
3229 		left--;
3230 		offset++;
3231 	}
3232 
3233 	if (left == PAGE_SIZE) {
3234 		kfree(copy);
3235 		return ERR_PTR(-EFAULT);
3236 	}
3237 
3238 	return copy;
3239 }
3240 
copy_mount_string(const void __user * data)3241 static char *copy_mount_string(const void __user *data)
3242 {
3243 	return data ? strndup_user(data, PATH_MAX) : NULL;
3244 }
3245 
3246 /*
3247  * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
3248  * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
3249  *
3250  * data is a (void *) that can point to any structure up to
3251  * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
3252  * information (or be NULL).
3253  *
3254  * Pre-0.97 versions of mount() didn't have a flags word.
3255  * When the flags word was introduced its top half was required
3256  * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
3257  * Therefore, if this magic number is present, it carries no information
3258  * and must be discarded.
3259  */
path_mount(const char * dev_name,struct path * path,const char * type_page,unsigned long flags,void * data_page)3260 int path_mount(const char *dev_name, struct path *path,
3261 		const char *type_page, unsigned long flags, void *data_page)
3262 {
3263 	unsigned int mnt_flags = 0, sb_flags;
3264 	int ret;
3265 
3266 	/* Discard magic */
3267 	if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
3268 		flags &= ~MS_MGC_MSK;
3269 
3270 	/* Basic sanity checks */
3271 	if (data_page)
3272 		((char *)data_page)[PAGE_SIZE - 1] = 0;
3273 
3274 	if (flags & MS_NOUSER)
3275 		return -EINVAL;
3276 
3277 	ret = security_sb_mount(dev_name, path, type_page, flags, data_page);
3278 	if (ret)
3279 		return ret;
3280 	if (!may_mount())
3281 		return -EPERM;
3282 	if (flags & SB_MANDLOCK)
3283 		warn_mandlock();
3284 
3285 	/* Default to relatime unless overriden */
3286 	if (!(flags & MS_NOATIME))
3287 		mnt_flags |= MNT_RELATIME;
3288 
3289 	/* Separate the per-mountpoint flags */
3290 	if (flags & MS_NOSUID)
3291 		mnt_flags |= MNT_NOSUID;
3292 	if (flags & MS_NODEV)
3293 		mnt_flags |= MNT_NODEV;
3294 	if (flags & MS_NOEXEC)
3295 		mnt_flags |= MNT_NOEXEC;
3296 	if (flags & MS_NOATIME)
3297 		mnt_flags |= MNT_NOATIME;
3298 	if (flags & MS_NODIRATIME)
3299 		mnt_flags |= MNT_NODIRATIME;
3300 	if (flags & MS_STRICTATIME)
3301 		mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
3302 	if (flags & MS_RDONLY)
3303 		mnt_flags |= MNT_READONLY;
3304 	if (flags & MS_NOSYMFOLLOW)
3305 		mnt_flags |= MNT_NOSYMFOLLOW;
3306 
3307 	/* The default atime for remount is preservation */
3308 	if ((flags & MS_REMOUNT) &&
3309 	    ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
3310 		       MS_STRICTATIME)) == 0)) {
3311 		mnt_flags &= ~MNT_ATIME_MASK;
3312 		mnt_flags |= path->mnt->mnt_flags & MNT_ATIME_MASK;
3313 	}
3314 
3315 	sb_flags = flags & (SB_RDONLY |
3316 			    SB_SYNCHRONOUS |
3317 			    SB_MANDLOCK |
3318 			    SB_DIRSYNC |
3319 			    SB_SILENT |
3320 			    SB_POSIXACL |
3321 			    SB_LAZYTIME |
3322 			    SB_I_VERSION);
3323 
3324 	if ((flags & (MS_REMOUNT | MS_BIND)) == (MS_REMOUNT | MS_BIND))
3325 		return do_reconfigure_mnt(path, mnt_flags);
3326 	if (flags & MS_REMOUNT)
3327 		return do_remount(path, flags, sb_flags, mnt_flags, data_page);
3328 	if (flags & MS_BIND)
3329 		return do_loopback(path, dev_name, flags & MS_REC);
3330 	if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
3331 		return do_change_type(path, flags);
3332 	if (flags & MS_MOVE)
3333 		return do_move_mount_old(path, dev_name);
3334 
3335 	return do_new_mount(path, type_page, sb_flags, mnt_flags, dev_name,
3336 			    data_page);
3337 }
3338 
do_mount(const char * dev_name,const char __user * dir_name,const char * type_page,unsigned long flags,void * data_page)3339 long do_mount(const char *dev_name, const char __user *dir_name,
3340 		const char *type_page, unsigned long flags, void *data_page)
3341 {
3342 	struct path path;
3343 	int ret;
3344 
3345 	ret = user_path_at(AT_FDCWD, dir_name, LOOKUP_FOLLOW, &path);
3346 	if (ret)
3347 		return ret;
3348 	ret = path_mount(dev_name, &path, type_page, flags, data_page);
3349 	path_put(&path);
3350 	return ret;
3351 }
3352 
inc_mnt_namespaces(struct user_namespace * ns)3353 static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns)
3354 {
3355 	return inc_ucount(ns, current_euid(), UCOUNT_MNT_NAMESPACES);
3356 }
3357 
dec_mnt_namespaces(struct ucounts * ucounts)3358 static void dec_mnt_namespaces(struct ucounts *ucounts)
3359 {
3360 	dec_ucount(ucounts, UCOUNT_MNT_NAMESPACES);
3361 }
3362 
free_mnt_ns(struct mnt_namespace * ns)3363 static void free_mnt_ns(struct mnt_namespace *ns)
3364 {
3365 	if (!is_anon_ns(ns))
3366 		ns_free_inum(&ns->ns);
3367 	dec_mnt_namespaces(ns->ucounts);
3368 	put_user_ns(ns->user_ns);
3369 	kfree(ns);
3370 }
3371 
3372 /*
3373  * Assign a sequence number so we can detect when we attempt to bind
3374  * mount a reference to an older mount namespace into the current
3375  * mount namespace, preventing reference counting loops.  A 64bit
3376  * number incrementing at 10Ghz will take 12,427 years to wrap which
3377  * is effectively never, so we can ignore the possibility.
3378  */
3379 static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
3380 
alloc_mnt_ns(struct user_namespace * user_ns,bool anon)3381 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns, bool anon)
3382 {
3383 	struct mnt_namespace *new_ns;
3384 	struct ucounts *ucounts;
3385 	int ret;
3386 
3387 	ucounts = inc_mnt_namespaces(user_ns);
3388 	if (!ucounts)
3389 		return ERR_PTR(-ENOSPC);
3390 
3391 	new_ns = kzalloc(sizeof(struct mnt_namespace), GFP_KERNEL_ACCOUNT);
3392 	if (!new_ns) {
3393 		dec_mnt_namespaces(ucounts);
3394 		return ERR_PTR(-ENOMEM);
3395 	}
3396 	if (!anon) {
3397 		ret = ns_alloc_inum(&new_ns->ns);
3398 		if (ret) {
3399 			kfree(new_ns);
3400 			dec_mnt_namespaces(ucounts);
3401 			return ERR_PTR(ret);
3402 		}
3403 	}
3404 	new_ns->ns.ops = &mntns_operations;
3405 	if (!anon)
3406 		new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
3407 	refcount_set(&new_ns->ns.count, 1);
3408 	INIT_LIST_HEAD(&new_ns->list);
3409 	init_waitqueue_head(&new_ns->poll);
3410 	spin_lock_init(&new_ns->ns_lock);
3411 	new_ns->user_ns = get_user_ns(user_ns);
3412 	new_ns->ucounts = ucounts;
3413 	return new_ns;
3414 }
3415 
3416 __latent_entropy
copy_mnt_ns(unsigned long flags,struct mnt_namespace * ns,struct user_namespace * user_ns,struct fs_struct * new_fs)3417 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
3418 		struct user_namespace *user_ns, struct fs_struct *new_fs)
3419 {
3420 	struct mnt_namespace *new_ns;
3421 	struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
3422 	struct mount *p, *q;
3423 	struct mount *old;
3424 	struct mount *new;
3425 	int copy_flags;
3426 
3427 	BUG_ON(!ns);
3428 
3429 	if (likely(!(flags & CLONE_NEWNS))) {
3430 		get_mnt_ns(ns);
3431 		return ns;
3432 	}
3433 
3434 	old = ns->root;
3435 
3436 	new_ns = alloc_mnt_ns(user_ns, false);
3437 	if (IS_ERR(new_ns))
3438 		return new_ns;
3439 
3440 	namespace_lock();
3441 	/* First pass: copy the tree topology */
3442 	copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
3443 	if (user_ns != ns->user_ns)
3444 		copy_flags |= CL_SHARED_TO_SLAVE;
3445 	new = copy_tree(old, old->mnt.mnt_root, copy_flags);
3446 	if (IS_ERR(new)) {
3447 		namespace_unlock();
3448 		free_mnt_ns(new_ns);
3449 		return ERR_CAST(new);
3450 	}
3451 	if (user_ns != ns->user_ns) {
3452 		lock_mount_hash();
3453 		lock_mnt_tree(new);
3454 		unlock_mount_hash();
3455 	}
3456 	new_ns->root = new;
3457 	list_add_tail(&new_ns->list, &new->mnt_list);
3458 
3459 	/*
3460 	 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
3461 	 * as belonging to new namespace.  We have already acquired a private
3462 	 * fs_struct, so tsk->fs->lock is not needed.
3463 	 */
3464 	p = old;
3465 	q = new;
3466 	while (p) {
3467 		q->mnt_ns = new_ns;
3468 		new_ns->mounts++;
3469 		if (new_fs) {
3470 			if (&p->mnt == new_fs->root.mnt) {
3471 				new_fs->root.mnt = mntget(&q->mnt);
3472 				rootmnt = &p->mnt;
3473 			}
3474 			if (&p->mnt == new_fs->pwd.mnt) {
3475 				new_fs->pwd.mnt = mntget(&q->mnt);
3476 				pwdmnt = &p->mnt;
3477 			}
3478 		}
3479 		p = next_mnt(p, old);
3480 		q = next_mnt(q, new);
3481 		if (!q)
3482 			break;
3483 		while (p->mnt.mnt_root != q->mnt.mnt_root)
3484 			p = next_mnt(p, old);
3485 	}
3486 	namespace_unlock();
3487 
3488 	if (rootmnt)
3489 		mntput(rootmnt);
3490 	if (pwdmnt)
3491 		mntput(pwdmnt);
3492 
3493 	return new_ns;
3494 }
3495 
mount_subtree(struct vfsmount * m,const char * name)3496 struct dentry *mount_subtree(struct vfsmount *m, const char *name)
3497 {
3498 	struct mount *mnt = real_mount(m);
3499 	struct mnt_namespace *ns;
3500 	struct super_block *s;
3501 	struct path path;
3502 	int err;
3503 
3504 	ns = alloc_mnt_ns(&init_user_ns, true);
3505 	if (IS_ERR(ns)) {
3506 		mntput(m);
3507 		return ERR_CAST(ns);
3508 	}
3509 	mnt->mnt_ns = ns;
3510 	ns->root = mnt;
3511 	ns->mounts++;
3512 	list_add(&mnt->mnt_list, &ns->list);
3513 
3514 	err = vfs_path_lookup(m->mnt_root, m,
3515 			name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
3516 
3517 	put_mnt_ns(ns);
3518 
3519 	if (err)
3520 		return ERR_PTR(err);
3521 
3522 	/* trade a vfsmount reference for active sb one */
3523 	s = path.mnt->mnt_sb;
3524 	atomic_inc(&s->s_active);
3525 	mntput(path.mnt);
3526 	/* lock the sucker */
3527 	down_write(&s->s_umount);
3528 	/* ... and return the root of (sub)tree on it */
3529 	return path.dentry;
3530 }
3531 EXPORT_SYMBOL(mount_subtree);
3532 
SYSCALL_DEFINE5(mount,char __user *,dev_name,char __user *,dir_name,char __user *,type,unsigned long,flags,void __user *,data)3533 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
3534 		char __user *, type, unsigned long, flags, void __user *, data)
3535 {
3536 	int ret;
3537 	char *kernel_type;
3538 	char *kernel_dev;
3539 	void *options;
3540 
3541 	kernel_type = copy_mount_string(type);
3542 	ret = PTR_ERR(kernel_type);
3543 	if (IS_ERR(kernel_type))
3544 		goto out_type;
3545 
3546 	kernel_dev = copy_mount_string(dev_name);
3547 	ret = PTR_ERR(kernel_dev);
3548 	if (IS_ERR(kernel_dev))
3549 		goto out_dev;
3550 
3551 	options = copy_mount_options(data);
3552 	ret = PTR_ERR(options);
3553 	if (IS_ERR(options))
3554 		goto out_data;
3555 
3556 	ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options);
3557 
3558 	kfree(options);
3559 out_data:
3560 	kfree(kernel_dev);
3561 out_dev:
3562 	kfree(kernel_type);
3563 out_type:
3564 	return ret;
3565 }
3566 
3567 #define FSMOUNT_VALID_FLAGS                                                    \
3568 	(MOUNT_ATTR_RDONLY | MOUNT_ATTR_NOSUID | MOUNT_ATTR_NODEV |            \
3569 	 MOUNT_ATTR_NOEXEC | MOUNT_ATTR__ATIME | MOUNT_ATTR_NODIRATIME |       \
3570 	 MOUNT_ATTR_NOSYMFOLLOW)
3571 
3572 #define MOUNT_SETATTR_VALID_FLAGS (FSMOUNT_VALID_FLAGS | MOUNT_ATTR_IDMAP)
3573 
3574 #define MOUNT_SETATTR_PROPAGATION_FLAGS \
3575 	(MS_UNBINDABLE | MS_PRIVATE | MS_SLAVE | MS_SHARED)
3576 
attr_flags_to_mnt_flags(u64 attr_flags)3577 static unsigned int attr_flags_to_mnt_flags(u64 attr_flags)
3578 {
3579 	unsigned int mnt_flags = 0;
3580 
3581 	if (attr_flags & MOUNT_ATTR_RDONLY)
3582 		mnt_flags |= MNT_READONLY;
3583 	if (attr_flags & MOUNT_ATTR_NOSUID)
3584 		mnt_flags |= MNT_NOSUID;
3585 	if (attr_flags & MOUNT_ATTR_NODEV)
3586 		mnt_flags |= MNT_NODEV;
3587 	if (attr_flags & MOUNT_ATTR_NOEXEC)
3588 		mnt_flags |= MNT_NOEXEC;
3589 	if (attr_flags & MOUNT_ATTR_NODIRATIME)
3590 		mnt_flags |= MNT_NODIRATIME;
3591 	if (attr_flags & MOUNT_ATTR_NOSYMFOLLOW)
3592 		mnt_flags |= MNT_NOSYMFOLLOW;
3593 
3594 	return mnt_flags;
3595 }
3596 
3597 /*
3598  * Create a kernel mount representation for a new, prepared superblock
3599  * (specified by fs_fd) and attach to an open_tree-like file descriptor.
3600  */
SYSCALL_DEFINE3(fsmount,int,fs_fd,unsigned int,flags,unsigned int,attr_flags)3601 SYSCALL_DEFINE3(fsmount, int, fs_fd, unsigned int, flags,
3602 		unsigned int, attr_flags)
3603 {
3604 	struct mnt_namespace *ns;
3605 	struct fs_context *fc;
3606 	struct file *file;
3607 	struct path newmount;
3608 	struct mount *mnt;
3609 	struct fd f;
3610 	unsigned int mnt_flags = 0;
3611 	long ret;
3612 
3613 	if (!may_mount())
3614 		return -EPERM;
3615 
3616 	if ((flags & ~(FSMOUNT_CLOEXEC)) != 0)
3617 		return -EINVAL;
3618 
3619 	if (attr_flags & ~FSMOUNT_VALID_FLAGS)
3620 		return -EINVAL;
3621 
3622 	mnt_flags = attr_flags_to_mnt_flags(attr_flags);
3623 
3624 	switch (attr_flags & MOUNT_ATTR__ATIME) {
3625 	case MOUNT_ATTR_STRICTATIME:
3626 		break;
3627 	case MOUNT_ATTR_NOATIME:
3628 		mnt_flags |= MNT_NOATIME;
3629 		break;
3630 	case MOUNT_ATTR_RELATIME:
3631 		mnt_flags |= MNT_RELATIME;
3632 		break;
3633 	default:
3634 		return -EINVAL;
3635 	}
3636 
3637 	f = fdget(fs_fd);
3638 	if (!f.file)
3639 		return -EBADF;
3640 
3641 	ret = -EINVAL;
3642 	if (f.file->f_op != &fscontext_fops)
3643 		goto err_fsfd;
3644 
3645 	fc = f.file->private_data;
3646 
3647 	ret = mutex_lock_interruptible(&fc->uapi_mutex);
3648 	if (ret < 0)
3649 		goto err_fsfd;
3650 
3651 	/* There must be a valid superblock or we can't mount it */
3652 	ret = -EINVAL;
3653 	if (!fc->root)
3654 		goto err_unlock;
3655 
3656 	ret = -EPERM;
3657 	if (mount_too_revealing(fc->root->d_sb, &mnt_flags)) {
3658 		pr_warn("VFS: Mount too revealing\n");
3659 		goto err_unlock;
3660 	}
3661 
3662 	ret = -EBUSY;
3663 	if (fc->phase != FS_CONTEXT_AWAITING_MOUNT)
3664 		goto err_unlock;
3665 
3666 	if (fc->sb_flags & SB_MANDLOCK)
3667 		warn_mandlock();
3668 
3669 	newmount.mnt = vfs_create_mount(fc);
3670 	if (IS_ERR(newmount.mnt)) {
3671 		ret = PTR_ERR(newmount.mnt);
3672 		goto err_unlock;
3673 	}
3674 	newmount.dentry = dget(fc->root);
3675 	newmount.mnt->mnt_flags = mnt_flags;
3676 
3677 	/* We've done the mount bit - now move the file context into more or
3678 	 * less the same state as if we'd done an fspick().  We don't want to
3679 	 * do any memory allocation or anything like that at this point as we
3680 	 * don't want to have to handle any errors incurred.
3681 	 */
3682 	vfs_clean_context(fc);
3683 
3684 	ns = alloc_mnt_ns(current->nsproxy->mnt_ns->user_ns, true);
3685 	if (IS_ERR(ns)) {
3686 		ret = PTR_ERR(ns);
3687 		goto err_path;
3688 	}
3689 	mnt = real_mount(newmount.mnt);
3690 	mnt->mnt_ns = ns;
3691 	ns->root = mnt;
3692 	ns->mounts = 1;
3693 	list_add(&mnt->mnt_list, &ns->list);
3694 	mntget(newmount.mnt);
3695 
3696 	/* Attach to an apparent O_PATH fd with a note that we need to unmount
3697 	 * it, not just simply put it.
3698 	 */
3699 	file = dentry_open(&newmount, O_PATH, fc->cred);
3700 	if (IS_ERR(file)) {
3701 		dissolve_on_fput(newmount.mnt);
3702 		ret = PTR_ERR(file);
3703 		goto err_path;
3704 	}
3705 	file->f_mode |= FMODE_NEED_UNMOUNT;
3706 
3707 	ret = get_unused_fd_flags((flags & FSMOUNT_CLOEXEC) ? O_CLOEXEC : 0);
3708 	if (ret >= 0)
3709 		fd_install(ret, file);
3710 	else
3711 		fput(file);
3712 
3713 err_path:
3714 	path_put(&newmount);
3715 err_unlock:
3716 	mutex_unlock(&fc->uapi_mutex);
3717 err_fsfd:
3718 	fdput(f);
3719 	return ret;
3720 }
3721 
3722 /*
3723  * Move a mount from one place to another.  In combination with
3724  * fsopen()/fsmount() this is used to install a new mount and in combination
3725  * with open_tree(OPEN_TREE_CLONE [| AT_RECURSIVE]) it can be used to copy
3726  * a mount subtree.
3727  *
3728  * Note the flags value is a combination of MOVE_MOUNT_* flags.
3729  */
SYSCALL_DEFINE5(move_mount,int,from_dfd,const char __user *,from_pathname,int,to_dfd,const char __user *,to_pathname,unsigned int,flags)3730 SYSCALL_DEFINE5(move_mount,
3731 		int, from_dfd, const char __user *, from_pathname,
3732 		int, to_dfd, const char __user *, to_pathname,
3733 		unsigned int, flags)
3734 {
3735 	struct path from_path, to_path;
3736 	unsigned int lflags;
3737 	int ret = 0;
3738 
3739 	if (!may_mount())
3740 		return -EPERM;
3741 
3742 	if (flags & ~MOVE_MOUNT__MASK)
3743 		return -EINVAL;
3744 
3745 	/* If someone gives a pathname, they aren't permitted to move
3746 	 * from an fd that requires unmount as we can't get at the flag
3747 	 * to clear it afterwards.
3748 	 */
3749 	lflags = 0;
3750 	if (flags & MOVE_MOUNT_F_SYMLINKS)	lflags |= LOOKUP_FOLLOW;
3751 	if (flags & MOVE_MOUNT_F_AUTOMOUNTS)	lflags |= LOOKUP_AUTOMOUNT;
3752 	if (flags & MOVE_MOUNT_F_EMPTY_PATH)	lflags |= LOOKUP_EMPTY;
3753 
3754 	ret = user_path_at(from_dfd, from_pathname, lflags, &from_path);
3755 	if (ret < 0)
3756 		return ret;
3757 
3758 	lflags = 0;
3759 	if (flags & MOVE_MOUNT_T_SYMLINKS)	lflags |= LOOKUP_FOLLOW;
3760 	if (flags & MOVE_MOUNT_T_AUTOMOUNTS)	lflags |= LOOKUP_AUTOMOUNT;
3761 	if (flags & MOVE_MOUNT_T_EMPTY_PATH)	lflags |= LOOKUP_EMPTY;
3762 
3763 	ret = user_path_at(to_dfd, to_pathname, lflags, &to_path);
3764 	if (ret < 0)
3765 		goto out_from;
3766 
3767 	ret = security_move_mount(&from_path, &to_path);
3768 	if (ret < 0)
3769 		goto out_to;
3770 
3771 	if (flags & MOVE_MOUNT_SET_GROUP)
3772 		ret = do_set_group(&from_path, &to_path);
3773 	else
3774 		ret = do_move_mount(&from_path, &to_path);
3775 
3776 out_to:
3777 	path_put(&to_path);
3778 out_from:
3779 	path_put(&from_path);
3780 	return ret;
3781 }
3782 
3783 /*
3784  * Return true if path is reachable from root
3785  *
3786  * namespace_sem or mount_lock is held
3787  */
is_path_reachable(struct mount * mnt,struct dentry * dentry,const struct path * root)3788 bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
3789 			 const struct path *root)
3790 {
3791 	while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
3792 		dentry = mnt->mnt_mountpoint;
3793 		mnt = mnt->mnt_parent;
3794 	}
3795 	return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
3796 }
3797 
path_is_under(const struct path * path1,const struct path * path2)3798 bool path_is_under(const struct path *path1, const struct path *path2)
3799 {
3800 	bool res;
3801 	read_seqlock_excl(&mount_lock);
3802 	res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
3803 	read_sequnlock_excl(&mount_lock);
3804 	return res;
3805 }
3806 EXPORT_SYMBOL(path_is_under);
3807 
3808 /*
3809  * pivot_root Semantics:
3810  * Moves the root file system of the current process to the directory put_old,
3811  * makes new_root as the new root file system of the current process, and sets
3812  * root/cwd of all processes which had them on the current root to new_root.
3813  *
3814  * Restrictions:
3815  * The new_root and put_old must be directories, and  must not be on the
3816  * same file  system as the current process root. The put_old  must  be
3817  * underneath new_root,  i.e. adding a non-zero number of /.. to the string
3818  * pointed to by put_old must yield the same directory as new_root. No other
3819  * file system may be mounted on put_old. After all, new_root is a mountpoint.
3820  *
3821  * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
3822  * See Documentation/filesystems/ramfs-rootfs-initramfs.rst for alternatives
3823  * in this situation.
3824  *
3825  * Notes:
3826  *  - we don't move root/cwd if they are not at the root (reason: if something
3827  *    cared enough to change them, it's probably wrong to force them elsewhere)
3828  *  - it's okay to pick a root that isn't the root of a file system, e.g.
3829  *    /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
3830  *    though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
3831  *    first.
3832  */
SYSCALL_DEFINE2(pivot_root,const char __user *,new_root,const char __user *,put_old)3833 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
3834 		const char __user *, put_old)
3835 {
3836 	struct path new, old, root;
3837 	struct mount *new_mnt, *root_mnt, *old_mnt, *root_parent, *ex_parent;
3838 	struct mountpoint *old_mp, *root_mp;
3839 	int error;
3840 
3841 	if (!may_mount())
3842 		return -EPERM;
3843 
3844 	error = user_path_at(AT_FDCWD, new_root,
3845 			     LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &new);
3846 	if (error)
3847 		goto out0;
3848 
3849 	error = user_path_at(AT_FDCWD, put_old,
3850 			     LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &old);
3851 	if (error)
3852 		goto out1;
3853 
3854 	error = security_sb_pivotroot(&old, &new);
3855 	if (error)
3856 		goto out2;
3857 
3858 	get_fs_root(current->fs, &root);
3859 	old_mp = lock_mount(&old);
3860 	error = PTR_ERR(old_mp);
3861 	if (IS_ERR(old_mp))
3862 		goto out3;
3863 
3864 	error = -EINVAL;
3865 	new_mnt = real_mount(new.mnt);
3866 	root_mnt = real_mount(root.mnt);
3867 	old_mnt = real_mount(old.mnt);
3868 	ex_parent = new_mnt->mnt_parent;
3869 	root_parent = root_mnt->mnt_parent;
3870 	if (IS_MNT_SHARED(old_mnt) ||
3871 		IS_MNT_SHARED(ex_parent) ||
3872 		IS_MNT_SHARED(root_parent))
3873 		goto out4;
3874 	if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
3875 		goto out4;
3876 	if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
3877 		goto out4;
3878 	error = -ENOENT;
3879 	if (d_unlinked(new.dentry))
3880 		goto out4;
3881 	error = -EBUSY;
3882 	if (new_mnt == root_mnt || old_mnt == root_mnt)
3883 		goto out4; /* loop, on the same file system  */
3884 	error = -EINVAL;
3885 	if (root.mnt->mnt_root != root.dentry)
3886 		goto out4; /* not a mountpoint */
3887 	if (!mnt_has_parent(root_mnt))
3888 		goto out4; /* not attached */
3889 	if (new.mnt->mnt_root != new.dentry)
3890 		goto out4; /* not a mountpoint */
3891 	if (!mnt_has_parent(new_mnt))
3892 		goto out4; /* not attached */
3893 	/* make sure we can reach put_old from new_root */
3894 	if (!is_path_reachable(old_mnt, old.dentry, &new))
3895 		goto out4;
3896 	/* make certain new is below the root */
3897 	if (!is_path_reachable(new_mnt, new.dentry, &root))
3898 		goto out4;
3899 	lock_mount_hash();
3900 	umount_mnt(new_mnt);
3901 	root_mp = unhash_mnt(root_mnt);  /* we'll need its mountpoint */
3902 	if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
3903 		new_mnt->mnt.mnt_flags |= MNT_LOCKED;
3904 		root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
3905 	}
3906 	/* mount old root on put_old */
3907 	attach_mnt(root_mnt, old_mnt, old_mp);
3908 	/* mount new_root on / */
3909 	attach_mnt(new_mnt, root_parent, root_mp);
3910 	mnt_add_count(root_parent, -1);
3911 	touch_mnt_namespace(current->nsproxy->mnt_ns);
3912 	/* A moved mount should not expire automatically */
3913 	list_del_init(&new_mnt->mnt_expire);
3914 	put_mountpoint(root_mp);
3915 	unlock_mount_hash();
3916 	chroot_fs_refs(&root, &new);
3917 	error = 0;
3918 out4:
3919 	unlock_mount(old_mp);
3920 	if (!error)
3921 		mntput_no_expire(ex_parent);
3922 out3:
3923 	path_put(&root);
3924 out2:
3925 	path_put(&old);
3926 out1:
3927 	path_put(&new);
3928 out0:
3929 	return error;
3930 }
3931 
recalc_flags(struct mount_kattr * kattr,struct mount * mnt)3932 static unsigned int recalc_flags(struct mount_kattr *kattr, struct mount *mnt)
3933 {
3934 	unsigned int flags = mnt->mnt.mnt_flags;
3935 
3936 	/*  flags to clear */
3937 	flags &= ~kattr->attr_clr;
3938 	/* flags to raise */
3939 	flags |= kattr->attr_set;
3940 
3941 	return flags;
3942 }
3943 
can_idmap_mount(const struct mount_kattr * kattr,struct mount * mnt)3944 static int can_idmap_mount(const struct mount_kattr *kattr, struct mount *mnt)
3945 {
3946 	struct vfsmount *m = &mnt->mnt;
3947 	struct user_namespace *fs_userns = m->mnt_sb->s_user_ns;
3948 
3949 	if (!kattr->mnt_userns)
3950 		return 0;
3951 
3952 	/*
3953 	 * Creating an idmapped mount with the filesystem wide idmapping
3954 	 * doesn't make sense so block that. We don't allow mushy semantics.
3955 	 */
3956 	if (kattr->mnt_userns == fs_userns)
3957 		return -EINVAL;
3958 
3959 	/*
3960 	 * Once a mount has been idmapped we don't allow it to change its
3961 	 * mapping. It makes things simpler and callers can just create
3962 	 * another bind-mount they can idmap if they want to.
3963 	 */
3964 	if (is_idmapped_mnt(m))
3965 		return -EPERM;
3966 
3967 	/* The underlying filesystem doesn't support idmapped mounts yet. */
3968 	if (!(m->mnt_sb->s_type->fs_flags & FS_ALLOW_IDMAP))
3969 		return -EINVAL;
3970 
3971 	/* We're not controlling the superblock. */
3972 	if (!ns_capable(fs_userns, CAP_SYS_ADMIN))
3973 		return -EPERM;
3974 
3975 	/* Mount has already been visible in the filesystem hierarchy. */
3976 	if (!is_anon_ns(mnt->mnt_ns))
3977 		return -EINVAL;
3978 
3979 	return 0;
3980 }
3981 
3982 /**
3983  * mnt_allow_writers() - check whether the attribute change allows writers
3984  * @kattr: the new mount attributes
3985  * @mnt: the mount to which @kattr will be applied
3986  *
3987  * Check whether thew new mount attributes in @kattr allow concurrent writers.
3988  *
3989  * Return: true if writers need to be held, false if not
3990  */
mnt_allow_writers(const struct mount_kattr * kattr,const struct mount * mnt)3991 static inline bool mnt_allow_writers(const struct mount_kattr *kattr,
3992 				     const struct mount *mnt)
3993 {
3994 	return (!(kattr->attr_set & MNT_READONLY) ||
3995 		(mnt->mnt.mnt_flags & MNT_READONLY)) &&
3996 	       !kattr->mnt_userns;
3997 }
3998 
mount_setattr_prepare(struct mount_kattr * kattr,struct mount * mnt,int * err)3999 static struct mount *mount_setattr_prepare(struct mount_kattr *kattr,
4000 					   struct mount *mnt, int *err)
4001 {
4002 	struct mount *m = mnt, *last = NULL;
4003 
4004 	if (!is_mounted(&m->mnt)) {
4005 		*err = -EINVAL;
4006 		goto out;
4007 	}
4008 
4009 	if (!(mnt_has_parent(m) ? check_mnt(m) : is_anon_ns(m->mnt_ns))) {
4010 		*err = -EINVAL;
4011 		goto out;
4012 	}
4013 
4014 	do {
4015 		unsigned int flags;
4016 
4017 		flags = recalc_flags(kattr, m);
4018 		if (!can_change_locked_flags(m, flags)) {
4019 			*err = -EPERM;
4020 			goto out;
4021 		}
4022 
4023 		*err = can_idmap_mount(kattr, m);
4024 		if (*err)
4025 			goto out;
4026 
4027 		last = m;
4028 
4029 		if (!mnt_allow_writers(kattr, m)) {
4030 			*err = mnt_hold_writers(m);
4031 			if (*err)
4032 				goto out;
4033 		}
4034 	} while (kattr->recurse && (m = next_mnt(m, mnt)));
4035 
4036 out:
4037 	return last;
4038 }
4039 
do_idmap_mount(const struct mount_kattr * kattr,struct mount * mnt)4040 static void do_idmap_mount(const struct mount_kattr *kattr, struct mount *mnt)
4041 {
4042 	struct user_namespace *mnt_userns, *old_mnt_userns;
4043 
4044 	if (!kattr->mnt_userns)
4045 		return;
4046 
4047 	/*
4048 	 * We're the only ones able to change the mount's idmapping. So
4049 	 * mnt->mnt.mnt_userns is stable and we can retrieve it directly.
4050 	 */
4051 	old_mnt_userns = mnt->mnt.mnt_userns;
4052 
4053 	mnt_userns = get_user_ns(kattr->mnt_userns);
4054 	/* Pairs with smp_load_acquire() in mnt_user_ns(). */
4055 	smp_store_release(&mnt->mnt.mnt_userns, mnt_userns);
4056 
4057 	/*
4058 	 * If this is an idmapped filesystem drop the reference we've taken
4059 	 * in vfs_create_mount() before.
4060 	 */
4061 	if (!initial_idmapping(old_mnt_userns))
4062 		put_user_ns(old_mnt_userns);
4063 }
4064 
mount_setattr_commit(struct mount_kattr * kattr,struct mount * mnt,struct mount * last,int err)4065 static void mount_setattr_commit(struct mount_kattr *kattr,
4066 				 struct mount *mnt, struct mount *last,
4067 				 int err)
4068 {
4069 	struct mount *m = mnt;
4070 
4071 	do {
4072 		if (!err) {
4073 			unsigned int flags;
4074 
4075 			do_idmap_mount(kattr, m);
4076 			flags = recalc_flags(kattr, m);
4077 			WRITE_ONCE(m->mnt.mnt_flags, flags);
4078 		}
4079 
4080 		/* If we had to hold writers unblock them. */
4081 		if (m->mnt.mnt_flags & MNT_WRITE_HOLD)
4082 			mnt_unhold_writers(m);
4083 
4084 		if (!err && kattr->propagation)
4085 			change_mnt_propagation(m, kattr->propagation);
4086 
4087 		/*
4088 		 * On failure, only cleanup until we found the first mount
4089 		 * we failed to handle.
4090 		 */
4091 		if (err && m == last)
4092 			break;
4093 	} while (kattr->recurse && (m = next_mnt(m, mnt)));
4094 
4095 	if (!err)
4096 		touch_mnt_namespace(mnt->mnt_ns);
4097 }
4098 
do_mount_setattr(struct path * path,struct mount_kattr * kattr)4099 static int do_mount_setattr(struct path *path, struct mount_kattr *kattr)
4100 {
4101 	struct mount *mnt = real_mount(path->mnt), *last = NULL;
4102 	int err = 0;
4103 
4104 	if (path->dentry != mnt->mnt.mnt_root)
4105 		return -EINVAL;
4106 
4107 	if (kattr->propagation) {
4108 		/*
4109 		 * Only take namespace_lock() if we're actually changing
4110 		 * propagation.
4111 		 */
4112 		namespace_lock();
4113 		if (kattr->propagation == MS_SHARED) {
4114 			err = invent_group_ids(mnt, kattr->recurse);
4115 			if (err) {
4116 				namespace_unlock();
4117 				return err;
4118 			}
4119 		}
4120 	}
4121 
4122 	lock_mount_hash();
4123 
4124 	/*
4125 	 * Get the mount tree in a shape where we can change mount
4126 	 * properties without failure.
4127 	 */
4128 	last = mount_setattr_prepare(kattr, mnt, &err);
4129 	if (last) /* Commit all changes or revert to the old state. */
4130 		mount_setattr_commit(kattr, mnt, last, err);
4131 
4132 	unlock_mount_hash();
4133 
4134 	if (kattr->propagation) {
4135 		if (err)
4136 			cleanup_group_ids(mnt, NULL);
4137 		namespace_unlock();
4138 	}
4139 
4140 	return err;
4141 }
4142 
build_mount_idmapped(const struct mount_attr * attr,size_t usize,struct mount_kattr * kattr,unsigned int flags)4143 static int build_mount_idmapped(const struct mount_attr *attr, size_t usize,
4144 				struct mount_kattr *kattr, unsigned int flags)
4145 {
4146 	int err = 0;
4147 	struct ns_common *ns;
4148 	struct user_namespace *mnt_userns;
4149 	struct file *file;
4150 
4151 	if (!((attr->attr_set | attr->attr_clr) & MOUNT_ATTR_IDMAP))
4152 		return 0;
4153 
4154 	/*
4155 	 * We currently do not support clearing an idmapped mount. If this ever
4156 	 * is a use-case we can revisit this but for now let's keep it simple
4157 	 * and not allow it.
4158 	 */
4159 	if (attr->attr_clr & MOUNT_ATTR_IDMAP)
4160 		return -EINVAL;
4161 
4162 	if (attr->userns_fd > INT_MAX)
4163 		return -EINVAL;
4164 
4165 	file = fget(attr->userns_fd);
4166 	if (!file)
4167 		return -EBADF;
4168 
4169 	if (!proc_ns_file(file)) {
4170 		err = -EINVAL;
4171 		goto out_fput;
4172 	}
4173 
4174 	ns = get_proc_ns(file_inode(file));
4175 	if (ns->ops->type != CLONE_NEWUSER) {
4176 		err = -EINVAL;
4177 		goto out_fput;
4178 	}
4179 
4180 	/*
4181 	 * The initial idmapping cannot be used to create an idmapped
4182 	 * mount. We use the initial idmapping as an indicator of a mount
4183 	 * that is not idmapped. It can simply be passed into helpers that
4184 	 * are aware of idmapped mounts as a convenient shortcut. A user
4185 	 * can just create a dedicated identity mapping to achieve the same
4186 	 * result.
4187 	 */
4188 	mnt_userns = container_of(ns, struct user_namespace, ns);
4189 	if (initial_idmapping(mnt_userns)) {
4190 		err = -EPERM;
4191 		goto out_fput;
4192 	}
4193 
4194 	/* We're not controlling the target namespace. */
4195 	if (!ns_capable(mnt_userns, CAP_SYS_ADMIN)) {
4196 		err = -EPERM;
4197 		goto out_fput;
4198 	}
4199 
4200 	kattr->mnt_userns = get_user_ns(mnt_userns);
4201 
4202 out_fput:
4203 	fput(file);
4204 	return err;
4205 }
4206 
build_mount_kattr(const struct mount_attr * attr,size_t usize,struct mount_kattr * kattr,unsigned int flags)4207 static int build_mount_kattr(const struct mount_attr *attr, size_t usize,
4208 			     struct mount_kattr *kattr, unsigned int flags)
4209 {
4210 	unsigned int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW;
4211 
4212 	if (flags & AT_NO_AUTOMOUNT)
4213 		lookup_flags &= ~LOOKUP_AUTOMOUNT;
4214 	if (flags & AT_SYMLINK_NOFOLLOW)
4215 		lookup_flags &= ~LOOKUP_FOLLOW;
4216 	if (flags & AT_EMPTY_PATH)
4217 		lookup_flags |= LOOKUP_EMPTY;
4218 
4219 	*kattr = (struct mount_kattr) {
4220 		.lookup_flags	= lookup_flags,
4221 		.recurse	= !!(flags & AT_RECURSIVE),
4222 	};
4223 
4224 	if (attr->propagation & ~MOUNT_SETATTR_PROPAGATION_FLAGS)
4225 		return -EINVAL;
4226 	if (hweight32(attr->propagation & MOUNT_SETATTR_PROPAGATION_FLAGS) > 1)
4227 		return -EINVAL;
4228 	kattr->propagation = attr->propagation;
4229 
4230 	if ((attr->attr_set | attr->attr_clr) & ~MOUNT_SETATTR_VALID_FLAGS)
4231 		return -EINVAL;
4232 
4233 	kattr->attr_set = attr_flags_to_mnt_flags(attr->attr_set);
4234 	kattr->attr_clr = attr_flags_to_mnt_flags(attr->attr_clr);
4235 
4236 	/*
4237 	 * Since the MOUNT_ATTR_<atime> values are an enum, not a bitmap,
4238 	 * users wanting to transition to a different atime setting cannot
4239 	 * simply specify the atime setting in @attr_set, but must also
4240 	 * specify MOUNT_ATTR__ATIME in the @attr_clr field.
4241 	 * So ensure that MOUNT_ATTR__ATIME can't be partially set in
4242 	 * @attr_clr and that @attr_set can't have any atime bits set if
4243 	 * MOUNT_ATTR__ATIME isn't set in @attr_clr.
4244 	 */
4245 	if (attr->attr_clr & MOUNT_ATTR__ATIME) {
4246 		if ((attr->attr_clr & MOUNT_ATTR__ATIME) != MOUNT_ATTR__ATIME)
4247 			return -EINVAL;
4248 
4249 		/*
4250 		 * Clear all previous time settings as they are mutually
4251 		 * exclusive.
4252 		 */
4253 		kattr->attr_clr |= MNT_RELATIME | MNT_NOATIME;
4254 		switch (attr->attr_set & MOUNT_ATTR__ATIME) {
4255 		case MOUNT_ATTR_RELATIME:
4256 			kattr->attr_set |= MNT_RELATIME;
4257 			break;
4258 		case MOUNT_ATTR_NOATIME:
4259 			kattr->attr_set |= MNT_NOATIME;
4260 			break;
4261 		case MOUNT_ATTR_STRICTATIME:
4262 			break;
4263 		default:
4264 			return -EINVAL;
4265 		}
4266 	} else {
4267 		if (attr->attr_set & MOUNT_ATTR__ATIME)
4268 			return -EINVAL;
4269 	}
4270 
4271 	return build_mount_idmapped(attr, usize, kattr, flags);
4272 }
4273 
finish_mount_kattr(struct mount_kattr * kattr)4274 static void finish_mount_kattr(struct mount_kattr *kattr)
4275 {
4276 	put_user_ns(kattr->mnt_userns);
4277 	kattr->mnt_userns = NULL;
4278 }
4279 
SYSCALL_DEFINE5(mount_setattr,int,dfd,const char __user *,path,unsigned int,flags,struct mount_attr __user *,uattr,size_t,usize)4280 SYSCALL_DEFINE5(mount_setattr, int, dfd, const char __user *, path,
4281 		unsigned int, flags, struct mount_attr __user *, uattr,
4282 		size_t, usize)
4283 {
4284 	int err;
4285 	struct path target;
4286 	struct mount_attr attr;
4287 	struct mount_kattr kattr;
4288 
4289 	BUILD_BUG_ON(sizeof(struct mount_attr) != MOUNT_ATTR_SIZE_VER0);
4290 
4291 	if (flags & ~(AT_EMPTY_PATH |
4292 		      AT_RECURSIVE |
4293 		      AT_SYMLINK_NOFOLLOW |
4294 		      AT_NO_AUTOMOUNT))
4295 		return -EINVAL;
4296 
4297 	if (unlikely(usize > PAGE_SIZE))
4298 		return -E2BIG;
4299 	if (unlikely(usize < MOUNT_ATTR_SIZE_VER0))
4300 		return -EINVAL;
4301 
4302 	if (!may_mount())
4303 		return -EPERM;
4304 
4305 	err = copy_struct_from_user(&attr, sizeof(attr), uattr, usize);
4306 	if (err)
4307 		return err;
4308 
4309 	/* Don't bother walking through the mounts if this is a nop. */
4310 	if (attr.attr_set == 0 &&
4311 	    attr.attr_clr == 0 &&
4312 	    attr.propagation == 0)
4313 		return 0;
4314 
4315 	err = build_mount_kattr(&attr, usize, &kattr, flags);
4316 	if (err)
4317 		return err;
4318 
4319 	err = user_path_at(dfd, path, kattr.lookup_flags, &target);
4320 	if (!err) {
4321 		err = do_mount_setattr(&target, &kattr);
4322 		path_put(&target);
4323 	}
4324 	finish_mount_kattr(&kattr);
4325 	return err;
4326 }
4327 
init_mount_tree(void)4328 static void __init init_mount_tree(void)
4329 {
4330 	struct vfsmount *mnt;
4331 	struct mount *m;
4332 	struct mnt_namespace *ns;
4333 	struct path root;
4334 
4335 	mnt = vfs_kern_mount(&rootfs_fs_type, 0, "rootfs", NULL);
4336 	if (IS_ERR(mnt))
4337 		panic("Can't create rootfs");
4338 
4339 	ns = alloc_mnt_ns(&init_user_ns, false);
4340 	if (IS_ERR(ns))
4341 		panic("Can't allocate initial namespace");
4342 	m = real_mount(mnt);
4343 	m->mnt_ns = ns;
4344 	ns->root = m;
4345 	ns->mounts = 1;
4346 	list_add(&m->mnt_list, &ns->list);
4347 	init_task.nsproxy->mnt_ns = ns;
4348 	get_mnt_ns(ns);
4349 
4350 	root.mnt = mnt;
4351 	root.dentry = mnt->mnt_root;
4352 	mnt->mnt_flags |= MNT_LOCKED;
4353 
4354 	set_fs_pwd(current->fs, &root);
4355 	set_fs_root(current->fs, &root);
4356 }
4357 
mnt_init(void)4358 void __init mnt_init(void)
4359 {
4360 	int err;
4361 
4362 	mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
4363 			0, SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, NULL);
4364 
4365 	mount_hashtable = alloc_large_system_hash("Mount-cache",
4366 				sizeof(struct hlist_head),
4367 				mhash_entries, 19,
4368 				HASH_ZERO,
4369 				&m_hash_shift, &m_hash_mask, 0, 0);
4370 	mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
4371 				sizeof(struct hlist_head),
4372 				mphash_entries, 19,
4373 				HASH_ZERO,
4374 				&mp_hash_shift, &mp_hash_mask, 0, 0);
4375 
4376 	if (!mount_hashtable || !mountpoint_hashtable)
4377 		panic("Failed to allocate mount hash table\n");
4378 
4379 	kernfs_init();
4380 
4381 	err = sysfs_init();
4382 	if (err)
4383 		printk(KERN_WARNING "%s: sysfs_init error: %d\n",
4384 			__func__, err);
4385 	fs_kobj = kobject_create_and_add("fs", NULL);
4386 	if (!fs_kobj)
4387 		printk(KERN_WARNING "%s: kobj create error\n", __func__);
4388 	shmem_init();
4389 	init_rootfs();
4390 	init_mount_tree();
4391 }
4392 
put_mnt_ns(struct mnt_namespace * ns)4393 void put_mnt_ns(struct mnt_namespace *ns)
4394 {
4395 	if (!refcount_dec_and_test(&ns->ns.count))
4396 		return;
4397 	drop_collected_mounts(&ns->root->mnt);
4398 	free_mnt_ns(ns);
4399 }
4400 
kern_mount(struct file_system_type * type)4401 struct vfsmount *kern_mount(struct file_system_type *type)
4402 {
4403 	struct vfsmount *mnt;
4404 	mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL);
4405 	if (!IS_ERR(mnt)) {
4406 		/*
4407 		 * it is a longterm mount, don't release mnt until
4408 		 * we unmount before file sys is unregistered
4409 		*/
4410 		real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
4411 	}
4412 	return mnt;
4413 }
4414 EXPORT_SYMBOL_GPL(kern_mount);
4415 
kern_unmount(struct vfsmount * mnt)4416 void kern_unmount(struct vfsmount *mnt)
4417 {
4418 	/* release long term mount so mount point can be released */
4419 	if (!IS_ERR_OR_NULL(mnt)) {
4420 		real_mount(mnt)->mnt_ns = NULL;
4421 		synchronize_rcu();	/* yecchhh... */
4422 		mntput(mnt);
4423 	}
4424 }
4425 EXPORT_SYMBOL(kern_unmount);
4426 
kern_unmount_array(struct vfsmount * mnt[],unsigned int num)4427 void kern_unmount_array(struct vfsmount *mnt[], unsigned int num)
4428 {
4429 	unsigned int i;
4430 
4431 	for (i = 0; i < num; i++)
4432 		if (mnt[i])
4433 			real_mount(mnt[i])->mnt_ns = NULL;
4434 	synchronize_rcu_expedited();
4435 	for (i = 0; i < num; i++)
4436 		mntput(mnt[i]);
4437 }
4438 EXPORT_SYMBOL(kern_unmount_array);
4439 
our_mnt(struct vfsmount * mnt)4440 bool our_mnt(struct vfsmount *mnt)
4441 {
4442 	return check_mnt(real_mount(mnt));
4443 }
4444 
current_chrooted(void)4445 bool current_chrooted(void)
4446 {
4447 	/* Does the current process have a non-standard root */
4448 	struct path ns_root;
4449 	struct path fs_root;
4450 	bool chrooted;
4451 
4452 	/* Find the namespace root */
4453 	ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
4454 	ns_root.dentry = ns_root.mnt->mnt_root;
4455 	path_get(&ns_root);
4456 	while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
4457 		;
4458 
4459 	get_fs_root(current->fs, &fs_root);
4460 
4461 	chrooted = !path_equal(&fs_root, &ns_root);
4462 
4463 	path_put(&fs_root);
4464 	path_put(&ns_root);
4465 
4466 	return chrooted;
4467 }
4468 
mnt_already_visible(struct mnt_namespace * ns,const struct super_block * sb,int * new_mnt_flags)4469 static bool mnt_already_visible(struct mnt_namespace *ns,
4470 				const struct super_block *sb,
4471 				int *new_mnt_flags)
4472 {
4473 	int new_flags = *new_mnt_flags;
4474 	struct mount *mnt;
4475 	bool visible = false;
4476 
4477 	down_read(&namespace_sem);
4478 	lock_ns_list(ns);
4479 	list_for_each_entry(mnt, &ns->list, mnt_list) {
4480 		struct mount *child;
4481 		int mnt_flags;
4482 
4483 		if (mnt_is_cursor(mnt))
4484 			continue;
4485 
4486 		if (mnt->mnt.mnt_sb->s_type != sb->s_type)
4487 			continue;
4488 
4489 		/* This mount is not fully visible if it's root directory
4490 		 * is not the root directory of the filesystem.
4491 		 */
4492 		if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root)
4493 			continue;
4494 
4495 		/* A local view of the mount flags */
4496 		mnt_flags = mnt->mnt.mnt_flags;
4497 
4498 		/* Don't miss readonly hidden in the superblock flags */
4499 		if (sb_rdonly(mnt->mnt.mnt_sb))
4500 			mnt_flags |= MNT_LOCK_READONLY;
4501 
4502 		/* Verify the mount flags are equal to or more permissive
4503 		 * than the proposed new mount.
4504 		 */
4505 		if ((mnt_flags & MNT_LOCK_READONLY) &&
4506 		    !(new_flags & MNT_READONLY))
4507 			continue;
4508 		if ((mnt_flags & MNT_LOCK_ATIME) &&
4509 		    ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK)))
4510 			continue;
4511 
4512 		/* This mount is not fully visible if there are any
4513 		 * locked child mounts that cover anything except for
4514 		 * empty directories.
4515 		 */
4516 		list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
4517 			struct inode *inode = child->mnt_mountpoint->d_inode;
4518 			/* Only worry about locked mounts */
4519 			if (!(child->mnt.mnt_flags & MNT_LOCKED))
4520 				continue;
4521 			/* Is the directory permanetly empty? */
4522 			if (!is_empty_dir_inode(inode))
4523 				goto next;
4524 		}
4525 		/* Preserve the locked attributes */
4526 		*new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \
4527 					       MNT_LOCK_ATIME);
4528 		visible = true;
4529 		goto found;
4530 	next:	;
4531 	}
4532 found:
4533 	unlock_ns_list(ns);
4534 	up_read(&namespace_sem);
4535 	return visible;
4536 }
4537 
mount_too_revealing(const struct super_block * sb,int * new_mnt_flags)4538 static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags)
4539 {
4540 	const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV;
4541 	struct mnt_namespace *ns = current->nsproxy->mnt_ns;
4542 	unsigned long s_iflags;
4543 
4544 	if (ns->user_ns == &init_user_ns)
4545 		return false;
4546 
4547 	/* Can this filesystem be too revealing? */
4548 	s_iflags = sb->s_iflags;
4549 	if (!(s_iflags & SB_I_USERNS_VISIBLE))
4550 		return false;
4551 
4552 	if ((s_iflags & required_iflags) != required_iflags) {
4553 		WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n",
4554 			  required_iflags);
4555 		return true;
4556 	}
4557 
4558 	return !mnt_already_visible(ns, sb, new_mnt_flags);
4559 }
4560 
mnt_may_suid(struct vfsmount * mnt)4561 bool mnt_may_suid(struct vfsmount *mnt)
4562 {
4563 	/*
4564 	 * Foreign mounts (accessed via fchdir or through /proc
4565 	 * symlinks) are always treated as if they are nosuid.  This
4566 	 * prevents namespaces from trusting potentially unsafe
4567 	 * suid/sgid bits, file caps, or security labels that originate
4568 	 * in other namespaces.
4569 	 */
4570 	return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) &&
4571 	       current_in_userns(mnt->mnt_sb->s_user_ns);
4572 }
4573 
mntns_get(struct task_struct * task)4574 static struct ns_common *mntns_get(struct task_struct *task)
4575 {
4576 	struct ns_common *ns = NULL;
4577 	struct nsproxy *nsproxy;
4578 
4579 	task_lock(task);
4580 	nsproxy = task->nsproxy;
4581 	if (nsproxy) {
4582 		ns = &nsproxy->mnt_ns->ns;
4583 		get_mnt_ns(to_mnt_ns(ns));
4584 	}
4585 	task_unlock(task);
4586 
4587 	return ns;
4588 }
4589 
mntns_put(struct ns_common * ns)4590 static void mntns_put(struct ns_common *ns)
4591 {
4592 	put_mnt_ns(to_mnt_ns(ns));
4593 }
4594 
mntns_install(struct nsset * nsset,struct ns_common * ns)4595 static int mntns_install(struct nsset *nsset, struct ns_common *ns)
4596 {
4597 	struct nsproxy *nsproxy = nsset->nsproxy;
4598 	struct fs_struct *fs = nsset->fs;
4599 	struct mnt_namespace *mnt_ns = to_mnt_ns(ns), *old_mnt_ns;
4600 	struct user_namespace *user_ns = nsset->cred->user_ns;
4601 	struct path root;
4602 	int err;
4603 
4604 	if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
4605 	    !ns_capable(user_ns, CAP_SYS_CHROOT) ||
4606 	    !ns_capable(user_ns, CAP_SYS_ADMIN))
4607 		return -EPERM;
4608 
4609 	if (is_anon_ns(mnt_ns))
4610 		return -EINVAL;
4611 
4612 	if (fs->users != 1)
4613 		return -EINVAL;
4614 
4615 	get_mnt_ns(mnt_ns);
4616 	old_mnt_ns = nsproxy->mnt_ns;
4617 	nsproxy->mnt_ns = mnt_ns;
4618 
4619 	/* Find the root */
4620 	err = vfs_path_lookup(mnt_ns->root->mnt.mnt_root, &mnt_ns->root->mnt,
4621 				"/", LOOKUP_DOWN, &root);
4622 	if (err) {
4623 		/* revert to old namespace */
4624 		nsproxy->mnt_ns = old_mnt_ns;
4625 		put_mnt_ns(mnt_ns);
4626 		return err;
4627 	}
4628 
4629 	put_mnt_ns(old_mnt_ns);
4630 
4631 	/* Update the pwd and root */
4632 	set_fs_pwd(fs, &root);
4633 	set_fs_root(fs, &root);
4634 
4635 	path_put(&root);
4636 	return 0;
4637 }
4638 
mntns_owner(struct ns_common * ns)4639 static struct user_namespace *mntns_owner(struct ns_common *ns)
4640 {
4641 	return to_mnt_ns(ns)->user_ns;
4642 }
4643 
4644 const struct proc_ns_operations mntns_operations = {
4645 	.name		= "mnt",
4646 	.type		= CLONE_NEWNS,
4647 	.get		= mntns_get,
4648 	.put		= mntns_put,
4649 	.install	= mntns_install,
4650 	.owner		= mntns_owner,
4651 };
4652