• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * PCI Bus Services, see include/linux/pci.h for further explanation.
4  *
5  * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
6  * David Mosberger-Tang
7  *
8  * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
9  */
10 
11 #include <linux/acpi.h>
12 #include <linux/kernel.h>
13 #include <linux/delay.h>
14 #include <linux/dmi.h>
15 #include <linux/init.h>
16 #include <linux/msi.h>
17 #include <linux/of.h>
18 #include <linux/pci.h>
19 #include <linux/pm.h>
20 #include <linux/slab.h>
21 #include <linux/module.h>
22 #include <linux/spinlock.h>
23 #include <linux/string.h>
24 #include <linux/log2.h>
25 #include <linux/logic_pio.h>
26 #include <linux/pm_wakeup.h>
27 #include <linux/interrupt.h>
28 #include <linux/device.h>
29 #include <linux/pm_runtime.h>
30 #include <linux/pci_hotplug.h>
31 #include <linux/vmalloc.h>
32 #include <asm/dma.h>
33 #include <linux/aer.h>
34 #include <linux/bitfield.h>
35 #include "pci.h"
36 
37 DEFINE_MUTEX(pci_slot_mutex);
38 
39 const char *pci_power_names[] = {
40 	"error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
41 };
42 EXPORT_SYMBOL_GPL(pci_power_names);
43 
44 int isa_dma_bridge_buggy;
45 EXPORT_SYMBOL(isa_dma_bridge_buggy);
46 
47 int pci_pci_problems;
48 EXPORT_SYMBOL(pci_pci_problems);
49 
50 unsigned int pci_pm_d3hot_delay;
51 
52 static void pci_pme_list_scan(struct work_struct *work);
53 
54 static LIST_HEAD(pci_pme_list);
55 static DEFINE_MUTEX(pci_pme_list_mutex);
56 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
57 
58 struct pci_pme_device {
59 	struct list_head list;
60 	struct pci_dev *dev;
61 };
62 
63 #define PME_TIMEOUT 1000 /* How long between PME checks */
64 
pci_dev_d3_sleep(struct pci_dev * dev)65 static void pci_dev_d3_sleep(struct pci_dev *dev)
66 {
67 	unsigned int delay_ms = max(dev->d3hot_delay, pci_pm_d3hot_delay);
68 	unsigned int upper;
69 
70 	if (delay_ms) {
71 		/* Use a 20% upper bound, 1ms minimum */
72 		upper = max(DIV_ROUND_CLOSEST(delay_ms, 5), 1U);
73 		usleep_range(delay_ms * USEC_PER_MSEC,
74 			     (delay_ms + upper) * USEC_PER_MSEC);
75 	}
76 }
77 
pci_reset_supported(struct pci_dev * dev)78 bool pci_reset_supported(struct pci_dev *dev)
79 {
80 	return dev->reset_methods[0] != 0;
81 }
82 
83 #ifdef CONFIG_PCI_DOMAINS
84 int pci_domains_supported = 1;
85 #endif
86 
87 #define DEFAULT_CARDBUS_IO_SIZE		(256)
88 #define DEFAULT_CARDBUS_MEM_SIZE	(64*1024*1024)
89 /* pci=cbmemsize=nnM,cbiosize=nn can override this */
90 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
91 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
92 
93 #define DEFAULT_HOTPLUG_IO_SIZE		(256)
94 #define DEFAULT_HOTPLUG_MMIO_SIZE	(2*1024*1024)
95 #define DEFAULT_HOTPLUG_MMIO_PREF_SIZE	(2*1024*1024)
96 /* hpiosize=nn can override this */
97 unsigned long pci_hotplug_io_size  = DEFAULT_HOTPLUG_IO_SIZE;
98 /*
99  * pci=hpmmiosize=nnM overrides non-prefetchable MMIO size,
100  * pci=hpmmioprefsize=nnM overrides prefetchable MMIO size;
101  * pci=hpmemsize=nnM overrides both
102  */
103 unsigned long pci_hotplug_mmio_size = DEFAULT_HOTPLUG_MMIO_SIZE;
104 unsigned long pci_hotplug_mmio_pref_size = DEFAULT_HOTPLUG_MMIO_PREF_SIZE;
105 
106 #define DEFAULT_HOTPLUG_BUS_SIZE	1
107 unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
108 
109 
110 /* PCIe MPS/MRRS strategy; can be overridden by kernel command-line param */
111 #ifdef CONFIG_PCIE_BUS_TUNE_OFF
112 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_TUNE_OFF;
113 #elif defined CONFIG_PCIE_BUS_SAFE
114 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_SAFE;
115 #elif defined CONFIG_PCIE_BUS_PERFORMANCE
116 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PERFORMANCE;
117 #elif defined CONFIG_PCIE_BUS_PEER2PEER
118 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PEER2PEER;
119 #else
120 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT;
121 #endif
122 
123 /*
124  * The default CLS is used if arch didn't set CLS explicitly and not
125  * all pci devices agree on the same value.  Arch can override either
126  * the dfl or actual value as it sees fit.  Don't forget this is
127  * measured in 32-bit words, not bytes.
128  */
129 u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2;
130 u8 pci_cache_line_size;
131 
132 /*
133  * If we set up a device for bus mastering, we need to check the latency
134  * timer as certain BIOSes forget to set it properly.
135  */
136 unsigned int pcibios_max_latency = 255;
137 
138 /* If set, the PCIe ARI capability will not be used. */
139 static bool pcie_ari_disabled;
140 
141 /* If set, the PCIe ATS capability will not be used. */
142 static bool pcie_ats_disabled;
143 
144 /* If set, the PCI config space of each device is printed during boot. */
145 bool pci_early_dump;
146 
pci_ats_disabled(void)147 bool pci_ats_disabled(void)
148 {
149 	return pcie_ats_disabled;
150 }
151 EXPORT_SYMBOL_GPL(pci_ats_disabled);
152 
153 /* Disable bridge_d3 for all PCIe ports */
154 static bool pci_bridge_d3_disable;
155 /* Force bridge_d3 for all PCIe ports */
156 static bool pci_bridge_d3_force;
157 
pcie_port_pm_setup(char * str)158 static int __init pcie_port_pm_setup(char *str)
159 {
160 	if (!strcmp(str, "off"))
161 		pci_bridge_d3_disable = true;
162 	else if (!strcmp(str, "force"))
163 		pci_bridge_d3_force = true;
164 	return 1;
165 }
166 __setup("pcie_port_pm=", pcie_port_pm_setup);
167 
168 /**
169  * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
170  * @bus: pointer to PCI bus structure to search
171  *
172  * Given a PCI bus, returns the highest PCI bus number present in the set
173  * including the given PCI bus and its list of child PCI buses.
174  */
pci_bus_max_busnr(struct pci_bus * bus)175 unsigned char pci_bus_max_busnr(struct pci_bus *bus)
176 {
177 	struct pci_bus *tmp;
178 	unsigned char max, n;
179 
180 	max = bus->busn_res.end;
181 	list_for_each_entry(tmp, &bus->children, node) {
182 		n = pci_bus_max_busnr(tmp);
183 		if (n > max)
184 			max = n;
185 	}
186 	return max;
187 }
188 EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
189 
190 /**
191  * pci_status_get_and_clear_errors - return and clear error bits in PCI_STATUS
192  * @pdev: the PCI device
193  *
194  * Returns error bits set in PCI_STATUS and clears them.
195  */
pci_status_get_and_clear_errors(struct pci_dev * pdev)196 int pci_status_get_and_clear_errors(struct pci_dev *pdev)
197 {
198 	u16 status;
199 	int ret;
200 
201 	ret = pci_read_config_word(pdev, PCI_STATUS, &status);
202 	if (ret != PCIBIOS_SUCCESSFUL)
203 		return -EIO;
204 
205 	status &= PCI_STATUS_ERROR_BITS;
206 	if (status)
207 		pci_write_config_word(pdev, PCI_STATUS, status);
208 
209 	return status;
210 }
211 EXPORT_SYMBOL_GPL(pci_status_get_and_clear_errors);
212 
213 #ifdef CONFIG_HAS_IOMEM
__pci_ioremap_resource(struct pci_dev * pdev,int bar,bool write_combine)214 static void __iomem *__pci_ioremap_resource(struct pci_dev *pdev, int bar,
215 					    bool write_combine)
216 {
217 	struct resource *res = &pdev->resource[bar];
218 	resource_size_t start = res->start;
219 	resource_size_t size = resource_size(res);
220 
221 	/*
222 	 * Make sure the BAR is actually a memory resource, not an IO resource
223 	 */
224 	if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) {
225 		pci_err(pdev, "can't ioremap BAR %d: %pR\n", bar, res);
226 		return NULL;
227 	}
228 
229 	if (write_combine)
230 		return ioremap_wc(start, size);
231 
232 	return ioremap(start, size);
233 }
234 
pci_ioremap_bar(struct pci_dev * pdev,int bar)235 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
236 {
237 	return __pci_ioremap_resource(pdev, bar, false);
238 }
239 EXPORT_SYMBOL_GPL(pci_ioremap_bar);
240 
pci_ioremap_wc_bar(struct pci_dev * pdev,int bar)241 void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar)
242 {
243 	return __pci_ioremap_resource(pdev, bar, true);
244 }
245 EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar);
246 #endif
247 
248 /**
249  * pci_dev_str_match_path - test if a path string matches a device
250  * @dev: the PCI device to test
251  * @path: string to match the device against
252  * @endptr: pointer to the string after the match
253  *
254  * Test if a string (typically from a kernel parameter) formatted as a
255  * path of device/function addresses matches a PCI device. The string must
256  * be of the form:
257  *
258  *   [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
259  *
260  * A path for a device can be obtained using 'lspci -t'.  Using a path
261  * is more robust against bus renumbering than using only a single bus,
262  * device and function address.
263  *
264  * Returns 1 if the string matches the device, 0 if it does not and
265  * a negative error code if it fails to parse the string.
266  */
pci_dev_str_match_path(struct pci_dev * dev,const char * path,const char ** endptr)267 static int pci_dev_str_match_path(struct pci_dev *dev, const char *path,
268 				  const char **endptr)
269 {
270 	int ret;
271 	int seg, bus, slot, func;
272 	char *wpath, *p;
273 	char end;
274 
275 	*endptr = strchrnul(path, ';');
276 
277 	wpath = kmemdup_nul(path, *endptr - path, GFP_ATOMIC);
278 	if (!wpath)
279 		return -ENOMEM;
280 
281 	while (1) {
282 		p = strrchr(wpath, '/');
283 		if (!p)
284 			break;
285 		ret = sscanf(p, "/%x.%x%c", &slot, &func, &end);
286 		if (ret != 2) {
287 			ret = -EINVAL;
288 			goto free_and_exit;
289 		}
290 
291 		if (dev->devfn != PCI_DEVFN(slot, func)) {
292 			ret = 0;
293 			goto free_and_exit;
294 		}
295 
296 		/*
297 		 * Note: we don't need to get a reference to the upstream
298 		 * bridge because we hold a reference to the top level
299 		 * device which should hold a reference to the bridge,
300 		 * and so on.
301 		 */
302 		dev = pci_upstream_bridge(dev);
303 		if (!dev) {
304 			ret = 0;
305 			goto free_and_exit;
306 		}
307 
308 		*p = 0;
309 	}
310 
311 	ret = sscanf(wpath, "%x:%x:%x.%x%c", &seg, &bus, &slot,
312 		     &func, &end);
313 	if (ret != 4) {
314 		seg = 0;
315 		ret = sscanf(wpath, "%x:%x.%x%c", &bus, &slot, &func, &end);
316 		if (ret != 3) {
317 			ret = -EINVAL;
318 			goto free_and_exit;
319 		}
320 	}
321 
322 	ret = (seg == pci_domain_nr(dev->bus) &&
323 	       bus == dev->bus->number &&
324 	       dev->devfn == PCI_DEVFN(slot, func));
325 
326 free_and_exit:
327 	kfree(wpath);
328 	return ret;
329 }
330 
331 /**
332  * pci_dev_str_match - test if a string matches a device
333  * @dev: the PCI device to test
334  * @p: string to match the device against
335  * @endptr: pointer to the string after the match
336  *
337  * Test if a string (typically from a kernel parameter) matches a specified
338  * PCI device. The string may be of one of the following formats:
339  *
340  *   [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
341  *   pci:<vendor>:<device>[:<subvendor>:<subdevice>]
342  *
343  * The first format specifies a PCI bus/device/function address which
344  * may change if new hardware is inserted, if motherboard firmware changes,
345  * or due to changes caused in kernel parameters. If the domain is
346  * left unspecified, it is taken to be 0.  In order to be robust against
347  * bus renumbering issues, a path of PCI device/function numbers may be used
348  * to address the specific device.  The path for a device can be determined
349  * through the use of 'lspci -t'.
350  *
351  * The second format matches devices using IDs in the configuration
352  * space which may match multiple devices in the system. A value of 0
353  * for any field will match all devices. (Note: this differs from
354  * in-kernel code that uses PCI_ANY_ID which is ~0; this is for
355  * legacy reasons and convenience so users don't have to specify
356  * FFFFFFFFs on the command line.)
357  *
358  * Returns 1 if the string matches the device, 0 if it does not and
359  * a negative error code if the string cannot be parsed.
360  */
pci_dev_str_match(struct pci_dev * dev,const char * p,const char ** endptr)361 static int pci_dev_str_match(struct pci_dev *dev, const char *p,
362 			     const char **endptr)
363 {
364 	int ret;
365 	int count;
366 	unsigned short vendor, device, subsystem_vendor, subsystem_device;
367 
368 	if (strncmp(p, "pci:", 4) == 0) {
369 		/* PCI vendor/device (subvendor/subdevice) IDs are specified */
370 		p += 4;
371 		ret = sscanf(p, "%hx:%hx:%hx:%hx%n", &vendor, &device,
372 			     &subsystem_vendor, &subsystem_device, &count);
373 		if (ret != 4) {
374 			ret = sscanf(p, "%hx:%hx%n", &vendor, &device, &count);
375 			if (ret != 2)
376 				return -EINVAL;
377 
378 			subsystem_vendor = 0;
379 			subsystem_device = 0;
380 		}
381 
382 		p += count;
383 
384 		if ((!vendor || vendor == dev->vendor) &&
385 		    (!device || device == dev->device) &&
386 		    (!subsystem_vendor ||
387 			    subsystem_vendor == dev->subsystem_vendor) &&
388 		    (!subsystem_device ||
389 			    subsystem_device == dev->subsystem_device))
390 			goto found;
391 	} else {
392 		/*
393 		 * PCI Bus, Device, Function IDs are specified
394 		 * (optionally, may include a path of devfns following it)
395 		 */
396 		ret = pci_dev_str_match_path(dev, p, &p);
397 		if (ret < 0)
398 			return ret;
399 		else if (ret)
400 			goto found;
401 	}
402 
403 	*endptr = p;
404 	return 0;
405 
406 found:
407 	*endptr = p;
408 	return 1;
409 }
410 
__pci_find_next_cap_ttl(struct pci_bus * bus,unsigned int devfn,u8 pos,int cap,int * ttl)411 static u8 __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
412 				  u8 pos, int cap, int *ttl)
413 {
414 	u8 id;
415 	u16 ent;
416 
417 	pci_bus_read_config_byte(bus, devfn, pos, &pos);
418 
419 	while ((*ttl)--) {
420 		if (pos < 0x40)
421 			break;
422 		pos &= ~3;
423 		pci_bus_read_config_word(bus, devfn, pos, &ent);
424 
425 		id = ent & 0xff;
426 		if (id == 0xff)
427 			break;
428 		if (id == cap)
429 			return pos;
430 		pos = (ent >> 8);
431 	}
432 	return 0;
433 }
434 
__pci_find_next_cap(struct pci_bus * bus,unsigned int devfn,u8 pos,int cap)435 static u8 __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
436 			      u8 pos, int cap)
437 {
438 	int ttl = PCI_FIND_CAP_TTL;
439 
440 	return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
441 }
442 
pci_find_next_capability(struct pci_dev * dev,u8 pos,int cap)443 u8 pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
444 {
445 	return __pci_find_next_cap(dev->bus, dev->devfn,
446 				   pos + PCI_CAP_LIST_NEXT, cap);
447 }
448 EXPORT_SYMBOL_GPL(pci_find_next_capability);
449 
__pci_bus_find_cap_start(struct pci_bus * bus,unsigned int devfn,u8 hdr_type)450 static u8 __pci_bus_find_cap_start(struct pci_bus *bus,
451 				    unsigned int devfn, u8 hdr_type)
452 {
453 	u16 status;
454 
455 	pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
456 	if (!(status & PCI_STATUS_CAP_LIST))
457 		return 0;
458 
459 	switch (hdr_type) {
460 	case PCI_HEADER_TYPE_NORMAL:
461 	case PCI_HEADER_TYPE_BRIDGE:
462 		return PCI_CAPABILITY_LIST;
463 	case PCI_HEADER_TYPE_CARDBUS:
464 		return PCI_CB_CAPABILITY_LIST;
465 	}
466 
467 	return 0;
468 }
469 
470 /**
471  * pci_find_capability - query for devices' capabilities
472  * @dev: PCI device to query
473  * @cap: capability code
474  *
475  * Tell if a device supports a given PCI capability.
476  * Returns the address of the requested capability structure within the
477  * device's PCI configuration space or 0 in case the device does not
478  * support it.  Possible values for @cap include:
479  *
480  *  %PCI_CAP_ID_PM           Power Management
481  *  %PCI_CAP_ID_AGP          Accelerated Graphics Port
482  *  %PCI_CAP_ID_VPD          Vital Product Data
483  *  %PCI_CAP_ID_SLOTID       Slot Identification
484  *  %PCI_CAP_ID_MSI          Message Signalled Interrupts
485  *  %PCI_CAP_ID_CHSWP        CompactPCI HotSwap
486  *  %PCI_CAP_ID_PCIX         PCI-X
487  *  %PCI_CAP_ID_EXP          PCI Express
488  */
pci_find_capability(struct pci_dev * dev,int cap)489 u8 pci_find_capability(struct pci_dev *dev, int cap)
490 {
491 	u8 pos;
492 
493 	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
494 	if (pos)
495 		pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
496 
497 	return pos;
498 }
499 EXPORT_SYMBOL(pci_find_capability);
500 
501 /**
502  * pci_bus_find_capability - query for devices' capabilities
503  * @bus: the PCI bus to query
504  * @devfn: PCI device to query
505  * @cap: capability code
506  *
507  * Like pci_find_capability() but works for PCI devices that do not have a
508  * pci_dev structure set up yet.
509  *
510  * Returns the address of the requested capability structure within the
511  * device's PCI configuration space or 0 in case the device does not
512  * support it.
513  */
pci_bus_find_capability(struct pci_bus * bus,unsigned int devfn,int cap)514 u8 pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
515 {
516 	u8 hdr_type, pos;
517 
518 	pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
519 
520 	pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
521 	if (pos)
522 		pos = __pci_find_next_cap(bus, devfn, pos, cap);
523 
524 	return pos;
525 }
526 EXPORT_SYMBOL(pci_bus_find_capability);
527 
528 /**
529  * pci_find_next_ext_capability - Find an extended capability
530  * @dev: PCI device to query
531  * @start: address at which to start looking (0 to start at beginning of list)
532  * @cap: capability code
533  *
534  * Returns the address of the next matching extended capability structure
535  * within the device's PCI configuration space or 0 if the device does
536  * not support it.  Some capabilities can occur several times, e.g., the
537  * vendor-specific capability, and this provides a way to find them all.
538  */
pci_find_next_ext_capability(struct pci_dev * dev,u16 start,int cap)539 u16 pci_find_next_ext_capability(struct pci_dev *dev, u16 start, int cap)
540 {
541 	u32 header;
542 	int ttl;
543 	u16 pos = PCI_CFG_SPACE_SIZE;
544 
545 	/* minimum 8 bytes per capability */
546 	ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
547 
548 	if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
549 		return 0;
550 
551 	if (start)
552 		pos = start;
553 
554 	if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
555 		return 0;
556 
557 	/*
558 	 * If we have no capabilities, this is indicated by cap ID,
559 	 * cap version and next pointer all being 0.
560 	 */
561 	if (header == 0)
562 		return 0;
563 
564 	while (ttl-- > 0) {
565 		if (PCI_EXT_CAP_ID(header) == cap && pos != start)
566 			return pos;
567 
568 		pos = PCI_EXT_CAP_NEXT(header);
569 		if (pos < PCI_CFG_SPACE_SIZE)
570 			break;
571 
572 		if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
573 			break;
574 	}
575 
576 	return 0;
577 }
578 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
579 
580 /**
581  * pci_find_ext_capability - Find an extended capability
582  * @dev: PCI device to query
583  * @cap: capability code
584  *
585  * Returns the address of the requested extended capability structure
586  * within the device's PCI configuration space or 0 if the device does
587  * not support it.  Possible values for @cap include:
588  *
589  *  %PCI_EXT_CAP_ID_ERR		Advanced Error Reporting
590  *  %PCI_EXT_CAP_ID_VC		Virtual Channel
591  *  %PCI_EXT_CAP_ID_DSN		Device Serial Number
592  *  %PCI_EXT_CAP_ID_PWR		Power Budgeting
593  */
pci_find_ext_capability(struct pci_dev * dev,int cap)594 u16 pci_find_ext_capability(struct pci_dev *dev, int cap)
595 {
596 	return pci_find_next_ext_capability(dev, 0, cap);
597 }
598 EXPORT_SYMBOL_GPL(pci_find_ext_capability);
599 
600 /**
601  * pci_get_dsn - Read and return the 8-byte Device Serial Number
602  * @dev: PCI device to query
603  *
604  * Looks up the PCI_EXT_CAP_ID_DSN and reads the 8 bytes of the Device Serial
605  * Number.
606  *
607  * Returns the DSN, or zero if the capability does not exist.
608  */
pci_get_dsn(struct pci_dev * dev)609 u64 pci_get_dsn(struct pci_dev *dev)
610 {
611 	u32 dword;
612 	u64 dsn;
613 	int pos;
614 
615 	pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DSN);
616 	if (!pos)
617 		return 0;
618 
619 	/*
620 	 * The Device Serial Number is two dwords offset 4 bytes from the
621 	 * capability position. The specification says that the first dword is
622 	 * the lower half, and the second dword is the upper half.
623 	 */
624 	pos += 4;
625 	pci_read_config_dword(dev, pos, &dword);
626 	dsn = (u64)dword;
627 	pci_read_config_dword(dev, pos + 4, &dword);
628 	dsn |= ((u64)dword) << 32;
629 
630 	return dsn;
631 }
632 EXPORT_SYMBOL_GPL(pci_get_dsn);
633 
__pci_find_next_ht_cap(struct pci_dev * dev,u8 pos,int ht_cap)634 static u8 __pci_find_next_ht_cap(struct pci_dev *dev, u8 pos, int ht_cap)
635 {
636 	int rc, ttl = PCI_FIND_CAP_TTL;
637 	u8 cap, mask;
638 
639 	if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
640 		mask = HT_3BIT_CAP_MASK;
641 	else
642 		mask = HT_5BIT_CAP_MASK;
643 
644 	pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
645 				      PCI_CAP_ID_HT, &ttl);
646 	while (pos) {
647 		rc = pci_read_config_byte(dev, pos + 3, &cap);
648 		if (rc != PCIBIOS_SUCCESSFUL)
649 			return 0;
650 
651 		if ((cap & mask) == ht_cap)
652 			return pos;
653 
654 		pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
655 					      pos + PCI_CAP_LIST_NEXT,
656 					      PCI_CAP_ID_HT, &ttl);
657 	}
658 
659 	return 0;
660 }
661 
662 /**
663  * pci_find_next_ht_capability - query a device's HyperTransport capabilities
664  * @dev: PCI device to query
665  * @pos: Position from which to continue searching
666  * @ht_cap: HyperTransport capability code
667  *
668  * To be used in conjunction with pci_find_ht_capability() to search for
669  * all capabilities matching @ht_cap. @pos should always be a value returned
670  * from pci_find_ht_capability().
671  *
672  * NB. To be 100% safe against broken PCI devices, the caller should take
673  * steps to avoid an infinite loop.
674  */
pci_find_next_ht_capability(struct pci_dev * dev,u8 pos,int ht_cap)675 u8 pci_find_next_ht_capability(struct pci_dev *dev, u8 pos, int ht_cap)
676 {
677 	return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
678 }
679 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
680 
681 /**
682  * pci_find_ht_capability - query a device's HyperTransport capabilities
683  * @dev: PCI device to query
684  * @ht_cap: HyperTransport capability code
685  *
686  * Tell if a device supports a given HyperTransport capability.
687  * Returns an address within the device's PCI configuration space
688  * or 0 in case the device does not support the request capability.
689  * The address points to the PCI capability, of type PCI_CAP_ID_HT,
690  * which has a HyperTransport capability matching @ht_cap.
691  */
pci_find_ht_capability(struct pci_dev * dev,int ht_cap)692 u8 pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
693 {
694 	u8 pos;
695 
696 	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
697 	if (pos)
698 		pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
699 
700 	return pos;
701 }
702 EXPORT_SYMBOL_GPL(pci_find_ht_capability);
703 
704 /**
705  * pci_find_vsec_capability - Find a vendor-specific extended capability
706  * @dev: PCI device to query
707  * @vendor: Vendor ID for which capability is defined
708  * @cap: Vendor-specific capability ID
709  *
710  * If @dev has Vendor ID @vendor, search for a VSEC capability with
711  * VSEC ID @cap. If found, return the capability offset in
712  * config space; otherwise return 0.
713  */
pci_find_vsec_capability(struct pci_dev * dev,u16 vendor,int cap)714 u16 pci_find_vsec_capability(struct pci_dev *dev, u16 vendor, int cap)
715 {
716 	u16 vsec = 0;
717 	u32 header;
718 
719 	if (vendor != dev->vendor)
720 		return 0;
721 
722 	while ((vsec = pci_find_next_ext_capability(dev, vsec,
723 						     PCI_EXT_CAP_ID_VNDR))) {
724 		if (pci_read_config_dword(dev, vsec + PCI_VNDR_HEADER,
725 					  &header) == PCIBIOS_SUCCESSFUL &&
726 		    PCI_VNDR_HEADER_ID(header) == cap)
727 			return vsec;
728 	}
729 
730 	return 0;
731 }
732 EXPORT_SYMBOL_GPL(pci_find_vsec_capability);
733 
734 /**
735  * pci_find_parent_resource - return resource region of parent bus of given
736  *			      region
737  * @dev: PCI device structure contains resources to be searched
738  * @res: child resource record for which parent is sought
739  *
740  * For given resource region of given device, return the resource region of
741  * parent bus the given region is contained in.
742  */
pci_find_parent_resource(const struct pci_dev * dev,struct resource * res)743 struct resource *pci_find_parent_resource(const struct pci_dev *dev,
744 					  struct resource *res)
745 {
746 	const struct pci_bus *bus = dev->bus;
747 	struct resource *r;
748 	int i;
749 
750 	pci_bus_for_each_resource(bus, r, i) {
751 		if (!r)
752 			continue;
753 		if (resource_contains(r, res)) {
754 
755 			/*
756 			 * If the window is prefetchable but the BAR is
757 			 * not, the allocator made a mistake.
758 			 */
759 			if (r->flags & IORESOURCE_PREFETCH &&
760 			    !(res->flags & IORESOURCE_PREFETCH))
761 				return NULL;
762 
763 			/*
764 			 * If we're below a transparent bridge, there may
765 			 * be both a positively-decoded aperture and a
766 			 * subtractively-decoded region that contain the BAR.
767 			 * We want the positively-decoded one, so this depends
768 			 * on pci_bus_for_each_resource() giving us those
769 			 * first.
770 			 */
771 			return r;
772 		}
773 	}
774 	return NULL;
775 }
776 EXPORT_SYMBOL(pci_find_parent_resource);
777 
778 /**
779  * pci_find_resource - Return matching PCI device resource
780  * @dev: PCI device to query
781  * @res: Resource to look for
782  *
783  * Goes over standard PCI resources (BARs) and checks if the given resource
784  * is partially or fully contained in any of them. In that case the
785  * matching resource is returned, %NULL otherwise.
786  */
pci_find_resource(struct pci_dev * dev,struct resource * res)787 struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res)
788 {
789 	int i;
790 
791 	for (i = 0; i < PCI_STD_NUM_BARS; i++) {
792 		struct resource *r = &dev->resource[i];
793 
794 		if (r->start && resource_contains(r, res))
795 			return r;
796 	}
797 
798 	return NULL;
799 }
800 EXPORT_SYMBOL(pci_find_resource);
801 
802 /**
803  * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos
804  * @dev: the PCI device to operate on
805  * @pos: config space offset of status word
806  * @mask: mask of bit(s) to care about in status word
807  *
808  * Return 1 when mask bit(s) in status word clear, 0 otherwise.
809  */
pci_wait_for_pending(struct pci_dev * dev,int pos,u16 mask)810 int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask)
811 {
812 	int i;
813 
814 	/* Wait for Transaction Pending bit clean */
815 	for (i = 0; i < 4; i++) {
816 		u16 status;
817 		if (i)
818 			msleep((1 << (i - 1)) * 100);
819 
820 		pci_read_config_word(dev, pos, &status);
821 		if (!(status & mask))
822 			return 1;
823 	}
824 
825 	if (dev->bus->self)
826 		pcie_aspm_pm_state_change(dev->bus->self);
827 
828 	return 0;
829 }
830 
831 static int pci_acs_enable;
832 
833 /**
834  * pci_request_acs - ask for ACS to be enabled if supported
835  */
pci_request_acs(void)836 void pci_request_acs(void)
837 {
838 	pci_acs_enable = 1;
839 }
840 
841 static const char *disable_acs_redir_param;
842 
843 /**
844  * pci_disable_acs_redir - disable ACS redirect capabilities
845  * @dev: the PCI device
846  *
847  * For only devices specified in the disable_acs_redir parameter.
848  */
pci_disable_acs_redir(struct pci_dev * dev)849 static void pci_disable_acs_redir(struct pci_dev *dev)
850 {
851 	int ret = 0;
852 	const char *p;
853 	int pos;
854 	u16 ctrl;
855 
856 	if (!disable_acs_redir_param)
857 		return;
858 
859 	p = disable_acs_redir_param;
860 	while (*p) {
861 		ret = pci_dev_str_match(dev, p, &p);
862 		if (ret < 0) {
863 			pr_info_once("PCI: Can't parse disable_acs_redir parameter: %s\n",
864 				     disable_acs_redir_param);
865 
866 			break;
867 		} else if (ret == 1) {
868 			/* Found a match */
869 			break;
870 		}
871 
872 		if (*p != ';' && *p != ',') {
873 			/* End of param or invalid format */
874 			break;
875 		}
876 		p++;
877 	}
878 
879 	if (ret != 1)
880 		return;
881 
882 	if (!pci_dev_specific_disable_acs_redir(dev))
883 		return;
884 
885 	pos = dev->acs_cap;
886 	if (!pos) {
887 		pci_warn(dev, "cannot disable ACS redirect for this hardware as it does not have ACS capabilities\n");
888 		return;
889 	}
890 
891 	pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
892 
893 	/* P2P Request & Completion Redirect */
894 	ctrl &= ~(PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC);
895 
896 	pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
897 
898 	pci_info(dev, "disabled ACS redirect\n");
899 }
900 
901 /**
902  * pci_std_enable_acs - enable ACS on devices using standard ACS capabilities
903  * @dev: the PCI device
904  */
pci_std_enable_acs(struct pci_dev * dev)905 static void pci_std_enable_acs(struct pci_dev *dev)
906 {
907 	int pos;
908 	u16 cap;
909 	u16 ctrl;
910 
911 	pos = dev->acs_cap;
912 	if (!pos)
913 		return;
914 
915 	pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
916 	pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
917 
918 	/* Source Validation */
919 	ctrl |= (cap & PCI_ACS_SV);
920 
921 	/* P2P Request Redirect */
922 	ctrl |= (cap & PCI_ACS_RR);
923 
924 	/* P2P Completion Redirect */
925 	ctrl |= (cap & PCI_ACS_CR);
926 
927 	/* Upstream Forwarding */
928 	ctrl |= (cap & PCI_ACS_UF);
929 
930 	/* Enable Translation Blocking for external devices and noats */
931 	if (pci_ats_disabled() || dev->external_facing || dev->untrusted)
932 		ctrl |= (cap & PCI_ACS_TB);
933 
934 	pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
935 }
936 
937 /**
938  * pci_enable_acs - enable ACS if hardware support it
939  * @dev: the PCI device
940  */
pci_enable_acs(struct pci_dev * dev)941 static void pci_enable_acs(struct pci_dev *dev)
942 {
943 	if (!pci_acs_enable)
944 		goto disable_acs_redir;
945 
946 	if (!pci_dev_specific_enable_acs(dev))
947 		goto disable_acs_redir;
948 
949 	pci_std_enable_acs(dev);
950 
951 disable_acs_redir:
952 	/*
953 	 * Note: pci_disable_acs_redir() must be called even if ACS was not
954 	 * enabled by the kernel because it may have been enabled by
955 	 * platform firmware.  So if we are told to disable it, we should
956 	 * always disable it after setting the kernel's default
957 	 * preferences.
958 	 */
959 	pci_disable_acs_redir(dev);
960 }
961 
962 /**
963  * pci_restore_bars - restore a device's BAR values (e.g. after wake-up)
964  * @dev: PCI device to have its BARs restored
965  *
966  * Restore the BAR values for a given device, so as to make it
967  * accessible by its driver.
968  */
pci_restore_bars(struct pci_dev * dev)969 static void pci_restore_bars(struct pci_dev *dev)
970 {
971 	int i;
972 
973 	for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
974 		pci_update_resource(dev, i);
975 }
976 
977 static const struct pci_platform_pm_ops *pci_platform_pm;
978 
pci_set_platform_pm(const struct pci_platform_pm_ops * ops)979 int pci_set_platform_pm(const struct pci_platform_pm_ops *ops)
980 {
981 	if (!ops->is_manageable || !ops->set_state  || !ops->get_state ||
982 	    !ops->choose_state  || !ops->set_wakeup || !ops->need_resume)
983 		return -EINVAL;
984 	pci_platform_pm = ops;
985 	return 0;
986 }
987 
platform_pci_power_manageable(struct pci_dev * dev)988 static inline bool platform_pci_power_manageable(struct pci_dev *dev)
989 {
990 	return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false;
991 }
992 
platform_pci_set_power_state(struct pci_dev * dev,pci_power_t t)993 static inline int platform_pci_set_power_state(struct pci_dev *dev,
994 					       pci_power_t t)
995 {
996 	return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS;
997 }
998 
platform_pci_get_power_state(struct pci_dev * dev)999 static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev)
1000 {
1001 	return pci_platform_pm ? pci_platform_pm->get_state(dev) : PCI_UNKNOWN;
1002 }
1003 
platform_pci_refresh_power_state(struct pci_dev * dev)1004 static inline void platform_pci_refresh_power_state(struct pci_dev *dev)
1005 {
1006 	if (pci_platform_pm && pci_platform_pm->refresh_state)
1007 		pci_platform_pm->refresh_state(dev);
1008 }
1009 
platform_pci_choose_state(struct pci_dev * dev)1010 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
1011 {
1012 	return pci_platform_pm ?
1013 			pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR;
1014 }
1015 
platform_pci_set_wakeup(struct pci_dev * dev,bool enable)1016 static inline int platform_pci_set_wakeup(struct pci_dev *dev, bool enable)
1017 {
1018 	return pci_platform_pm ?
1019 			pci_platform_pm->set_wakeup(dev, enable) : -ENODEV;
1020 }
1021 
platform_pci_need_resume(struct pci_dev * dev)1022 static inline bool platform_pci_need_resume(struct pci_dev *dev)
1023 {
1024 	return pci_platform_pm ? pci_platform_pm->need_resume(dev) : false;
1025 }
1026 
platform_pci_bridge_d3(struct pci_dev * dev)1027 static inline bool platform_pci_bridge_d3(struct pci_dev *dev)
1028 {
1029 	if (pci_platform_pm && pci_platform_pm->bridge_d3)
1030 		return pci_platform_pm->bridge_d3(dev);
1031 	return false;
1032 }
1033 
1034 /**
1035  * pci_raw_set_power_state - Use PCI PM registers to set the power state of
1036  *			     given PCI device
1037  * @dev: PCI device to handle.
1038  * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
1039  *
1040  * RETURN VALUE:
1041  * -EINVAL if the requested state is invalid.
1042  * -EIO if device does not support PCI PM or its PM capabilities register has a
1043  * wrong version, or device doesn't support the requested state.
1044  * 0 if device already is in the requested state.
1045  * 0 if device's power state has been successfully changed.
1046  */
pci_raw_set_power_state(struct pci_dev * dev,pci_power_t state)1047 static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state)
1048 {
1049 	u16 pmcsr;
1050 	bool need_restore = false;
1051 
1052 	/* Check if we're already there */
1053 	if (dev->current_state == state)
1054 		return 0;
1055 
1056 	if (!dev->pm_cap)
1057 		return -EIO;
1058 
1059 	if (state < PCI_D0 || state > PCI_D3hot)
1060 		return -EINVAL;
1061 
1062 	/*
1063 	 * Validate transition: We can enter D0 from any state, but if
1064 	 * we're already in a low-power state, we can only go deeper.  E.g.,
1065 	 * we can go from D1 to D3, but we can't go directly from D3 to D1;
1066 	 * we'd have to go from D3 to D0, then to D1.
1067 	 */
1068 	if (state != PCI_D0 && dev->current_state <= PCI_D3cold
1069 	    && dev->current_state > state) {
1070 		pci_err(dev, "invalid power transition (from %s to %s)\n",
1071 			pci_power_name(dev->current_state),
1072 			pci_power_name(state));
1073 		return -EINVAL;
1074 	}
1075 
1076 	/* Check if this device supports the desired state */
1077 	if ((state == PCI_D1 && !dev->d1_support)
1078 	   || (state == PCI_D2 && !dev->d2_support))
1079 		return -EIO;
1080 
1081 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1082 	if (pmcsr == (u16) ~0) {
1083 		pci_err(dev, "can't change power state from %s to %s (config space inaccessible)\n",
1084 			pci_power_name(dev->current_state),
1085 			pci_power_name(state));
1086 		return -EIO;
1087 	}
1088 
1089 	/*
1090 	 * If we're (effectively) in D3, force entire word to 0.
1091 	 * This doesn't affect PME_Status, disables PME_En, and
1092 	 * sets PowerState to 0.
1093 	 */
1094 	switch (dev->current_state) {
1095 	case PCI_D0:
1096 	case PCI_D1:
1097 	case PCI_D2:
1098 		pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
1099 		pmcsr |= state;
1100 		break;
1101 	case PCI_D3hot:
1102 	case PCI_D3cold:
1103 	case PCI_UNKNOWN: /* Boot-up */
1104 		if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot
1105 		 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET))
1106 			need_restore = true;
1107 		fallthrough;	/* force to D0 */
1108 	default:
1109 		pmcsr = 0;
1110 		break;
1111 	}
1112 
1113 	/* Enter specified state */
1114 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1115 
1116 	/*
1117 	 * Mandatory power management transition delays; see PCI PM 1.1
1118 	 * 5.6.1 table 18
1119 	 */
1120 	if (state == PCI_D3hot || dev->current_state == PCI_D3hot)
1121 		pci_dev_d3_sleep(dev);
1122 	else if (state == PCI_D2 || dev->current_state == PCI_D2)
1123 		udelay(PCI_PM_D2_DELAY);
1124 
1125 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1126 	dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1127 	if (dev->current_state != state)
1128 		pci_info_ratelimited(dev, "refused to change power state from %s to %s\n",
1129 			 pci_power_name(dev->current_state),
1130 			 pci_power_name(state));
1131 
1132 	/*
1133 	 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
1134 	 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
1135 	 * from D3hot to D0 _may_ perform an internal reset, thereby
1136 	 * going to "D0 Uninitialized" rather than "D0 Initialized".
1137 	 * For example, at least some versions of the 3c905B and the
1138 	 * 3c556B exhibit this behaviour.
1139 	 *
1140 	 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
1141 	 * devices in a D3hot state at boot.  Consequently, we need to
1142 	 * restore at least the BARs so that the device will be
1143 	 * accessible to its driver.
1144 	 */
1145 	if (need_restore)
1146 		pci_restore_bars(dev);
1147 
1148 	if (dev->bus->self)
1149 		pcie_aspm_pm_state_change(dev->bus->self);
1150 
1151 	return 0;
1152 }
1153 
1154 /**
1155  * pci_update_current_state - Read power state of given device and cache it
1156  * @dev: PCI device to handle.
1157  * @state: State to cache in case the device doesn't have the PM capability
1158  *
1159  * The power state is read from the PMCSR register, which however is
1160  * inaccessible in D3cold.  The platform firmware is therefore queried first
1161  * to detect accessibility of the register.  In case the platform firmware
1162  * reports an incorrect state or the device isn't power manageable by the
1163  * platform at all, we try to detect D3cold by testing accessibility of the
1164  * vendor ID in config space.
1165  */
pci_update_current_state(struct pci_dev * dev,pci_power_t state)1166 void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
1167 {
1168 	if (platform_pci_get_power_state(dev) == PCI_D3cold ||
1169 	    !pci_device_is_present(dev)) {
1170 		dev->current_state = PCI_D3cold;
1171 	} else if (dev->pm_cap) {
1172 		u16 pmcsr;
1173 
1174 		pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1175 		dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1176 	} else {
1177 		dev->current_state = state;
1178 	}
1179 }
1180 
1181 /**
1182  * pci_refresh_power_state - Refresh the given device's power state data
1183  * @dev: Target PCI device.
1184  *
1185  * Ask the platform to refresh the devices power state information and invoke
1186  * pci_update_current_state() to update its current PCI power state.
1187  */
pci_refresh_power_state(struct pci_dev * dev)1188 void pci_refresh_power_state(struct pci_dev *dev)
1189 {
1190 	if (platform_pci_power_manageable(dev))
1191 		platform_pci_refresh_power_state(dev);
1192 
1193 	pci_update_current_state(dev, dev->current_state);
1194 }
1195 
1196 /**
1197  * pci_platform_power_transition - Use platform to change device power state
1198  * @dev: PCI device to handle.
1199  * @state: State to put the device into.
1200  */
pci_platform_power_transition(struct pci_dev * dev,pci_power_t state)1201 int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
1202 {
1203 	int error;
1204 
1205 	if (platform_pci_power_manageable(dev)) {
1206 		error = platform_pci_set_power_state(dev, state);
1207 		if (!error)
1208 			pci_update_current_state(dev, state);
1209 	} else
1210 		error = -ENODEV;
1211 
1212 	if (error && !dev->pm_cap) /* Fall back to PCI_D0 */
1213 		dev->current_state = PCI_D0;
1214 
1215 	return error;
1216 }
1217 EXPORT_SYMBOL_GPL(pci_platform_power_transition);
1218 
pci_resume_one(struct pci_dev * pci_dev,void * ign)1219 static int pci_resume_one(struct pci_dev *pci_dev, void *ign)
1220 {
1221 	pm_request_resume(&pci_dev->dev);
1222 	return 0;
1223 }
1224 
1225 /**
1226  * pci_resume_bus - Walk given bus and runtime resume devices on it
1227  * @bus: Top bus of the subtree to walk.
1228  */
pci_resume_bus(struct pci_bus * bus)1229 void pci_resume_bus(struct pci_bus *bus)
1230 {
1231 	if (bus)
1232 		pci_walk_bus(bus, pci_resume_one, NULL);
1233 }
1234 
pci_dev_wait(struct pci_dev * dev,char * reset_type,int timeout)1235 static int pci_dev_wait(struct pci_dev *dev, char *reset_type, int timeout)
1236 {
1237 	int delay = 1;
1238 	u32 id;
1239 
1240 	/*
1241 	 * After reset, the device should not silently discard config
1242 	 * requests, but it may still indicate that it needs more time by
1243 	 * responding to them with CRS completions.  The Root Port will
1244 	 * generally synthesize ~0 data to complete the read (except when
1245 	 * CRS SV is enabled and the read was for the Vendor ID; in that
1246 	 * case it synthesizes 0x0001 data).
1247 	 *
1248 	 * Wait for the device to return a non-CRS completion.  Read the
1249 	 * Command register instead of Vendor ID so we don't have to
1250 	 * contend with the CRS SV value.
1251 	 */
1252 	pci_read_config_dword(dev, PCI_COMMAND, &id);
1253 	while (id == ~0) {
1254 		if (delay > timeout) {
1255 			pci_warn(dev, "not ready %dms after %s; giving up\n",
1256 				 delay - 1, reset_type);
1257 			return -ENOTTY;
1258 		}
1259 
1260 		if (delay > PCI_RESET_WAIT)
1261 			pci_info(dev, "not ready %dms after %s; waiting\n",
1262 				 delay - 1, reset_type);
1263 
1264 		msleep(delay);
1265 		delay *= 2;
1266 		pci_read_config_dword(dev, PCI_COMMAND, &id);
1267 	}
1268 
1269 	if (delay > PCI_RESET_WAIT)
1270 		pci_info(dev, "ready %dms after %s\n", delay - 1,
1271 			 reset_type);
1272 
1273 	return 0;
1274 }
1275 
1276 /**
1277  * pci_power_up - Put the given device into D0
1278  * @dev: PCI device to power up
1279  */
pci_power_up(struct pci_dev * dev)1280 int pci_power_up(struct pci_dev *dev)
1281 {
1282 	pci_platform_power_transition(dev, PCI_D0);
1283 
1284 	/*
1285 	 * Mandatory power management transition delays are handled in
1286 	 * pci_pm_resume_noirq() and pci_pm_runtime_resume() of the
1287 	 * corresponding bridge.
1288 	 */
1289 	if (dev->runtime_d3cold) {
1290 		/*
1291 		 * When powering on a bridge from D3cold, the whole hierarchy
1292 		 * may be powered on into D0uninitialized state, resume them to
1293 		 * give them a chance to suspend again
1294 		 */
1295 		pci_resume_bus(dev->subordinate);
1296 	}
1297 
1298 	return pci_raw_set_power_state(dev, PCI_D0);
1299 }
1300 
1301 /**
1302  * __pci_dev_set_current_state - Set current state of a PCI device
1303  * @dev: Device to handle
1304  * @data: pointer to state to be set
1305  */
__pci_dev_set_current_state(struct pci_dev * dev,void * data)1306 static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
1307 {
1308 	pci_power_t state = *(pci_power_t *)data;
1309 
1310 	dev->current_state = state;
1311 	return 0;
1312 }
1313 
1314 /**
1315  * pci_bus_set_current_state - Walk given bus and set current state of devices
1316  * @bus: Top bus of the subtree to walk.
1317  * @state: state to be set
1318  */
pci_bus_set_current_state(struct pci_bus * bus,pci_power_t state)1319 void pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
1320 {
1321 	if (bus)
1322 		pci_walk_bus(bus, __pci_dev_set_current_state, &state);
1323 }
1324 
1325 /**
1326  * pci_set_power_state - Set the power state of a PCI device
1327  * @dev: PCI device to handle.
1328  * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
1329  *
1330  * Transition a device to a new power state, using the platform firmware and/or
1331  * the device's PCI PM registers.
1332  *
1333  * RETURN VALUE:
1334  * -EINVAL if the requested state is invalid.
1335  * -EIO if device does not support PCI PM or its PM capabilities register has a
1336  * wrong version, or device doesn't support the requested state.
1337  * 0 if the transition is to D1 or D2 but D1 and D2 are not supported.
1338  * 0 if device already is in the requested state.
1339  * 0 if the transition is to D3 but D3 is not supported.
1340  * 0 if device's power state has been successfully changed.
1341  */
pci_set_power_state(struct pci_dev * dev,pci_power_t state)1342 int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
1343 {
1344 	int error;
1345 
1346 	/* Bound the state we're entering */
1347 	if (state > PCI_D3cold)
1348 		state = PCI_D3cold;
1349 	else if (state < PCI_D0)
1350 		state = PCI_D0;
1351 	else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
1352 
1353 		/*
1354 		 * If the device or the parent bridge do not support PCI
1355 		 * PM, ignore the request if we're doing anything other
1356 		 * than putting it into D0 (which would only happen on
1357 		 * boot).
1358 		 */
1359 		return 0;
1360 
1361 	/* Check if we're already there */
1362 	if (dev->current_state == state)
1363 		return 0;
1364 
1365 	if (state == PCI_D0)
1366 		return pci_power_up(dev);
1367 
1368 	/*
1369 	 * This device is quirked not to be put into D3, so don't put it in
1370 	 * D3
1371 	 */
1372 	if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
1373 		return 0;
1374 
1375 	/*
1376 	 * To put device in D3cold, we put device into D3hot in native
1377 	 * way, then put device into D3cold with platform ops
1378 	 */
1379 	error = pci_raw_set_power_state(dev, state > PCI_D3hot ?
1380 					PCI_D3hot : state);
1381 
1382 	if (pci_platform_power_transition(dev, state))
1383 		return error;
1384 
1385 	/* Powering off a bridge may power off the whole hierarchy */
1386 	if (state == PCI_D3cold)
1387 		pci_bus_set_current_state(dev->subordinate, PCI_D3cold);
1388 
1389 	return 0;
1390 }
1391 EXPORT_SYMBOL(pci_set_power_state);
1392 
1393 /**
1394  * pci_choose_state - Choose the power state of a PCI device
1395  * @dev: PCI device to be suspended
1396  * @state: target sleep state for the whole system. This is the value
1397  *	   that is passed to suspend() function.
1398  *
1399  * Returns PCI power state suitable for given device and given system
1400  * message.
1401  */
pci_choose_state(struct pci_dev * dev,pm_message_t state)1402 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
1403 {
1404 	pci_power_t ret;
1405 
1406 	if (!dev->pm_cap)
1407 		return PCI_D0;
1408 
1409 	ret = platform_pci_choose_state(dev);
1410 	if (ret != PCI_POWER_ERROR)
1411 		return ret;
1412 
1413 	switch (state.event) {
1414 	case PM_EVENT_ON:
1415 		return PCI_D0;
1416 	case PM_EVENT_FREEZE:
1417 	case PM_EVENT_PRETHAW:
1418 		/* REVISIT both freeze and pre-thaw "should" use D0 */
1419 	case PM_EVENT_SUSPEND:
1420 	case PM_EVENT_HIBERNATE:
1421 		return PCI_D3hot;
1422 	default:
1423 		pci_info(dev, "unrecognized suspend event %d\n",
1424 			 state.event);
1425 		BUG();
1426 	}
1427 	return PCI_D0;
1428 }
1429 EXPORT_SYMBOL(pci_choose_state);
1430 
1431 #define PCI_EXP_SAVE_REGS	7
1432 
_pci_find_saved_cap(struct pci_dev * pci_dev,u16 cap,bool extended)1433 static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev,
1434 						       u16 cap, bool extended)
1435 {
1436 	struct pci_cap_saved_state *tmp;
1437 
1438 	hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) {
1439 		if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap)
1440 			return tmp;
1441 	}
1442 	return NULL;
1443 }
1444 
pci_find_saved_cap(struct pci_dev * dev,char cap)1445 struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap)
1446 {
1447 	return _pci_find_saved_cap(dev, cap, false);
1448 }
1449 
pci_find_saved_ext_cap(struct pci_dev * dev,u16 cap)1450 struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap)
1451 {
1452 	return _pci_find_saved_cap(dev, cap, true);
1453 }
1454 
pci_save_pcie_state(struct pci_dev * dev)1455 static int pci_save_pcie_state(struct pci_dev *dev)
1456 {
1457 	int i = 0;
1458 	struct pci_cap_saved_state *save_state;
1459 	u16 *cap;
1460 
1461 	if (!pci_is_pcie(dev))
1462 		return 0;
1463 
1464 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1465 	if (!save_state) {
1466 		pci_err(dev, "buffer not found in %s\n", __func__);
1467 		return -ENOMEM;
1468 	}
1469 
1470 	cap = (u16 *)&save_state->cap.data[0];
1471 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]);
1472 	pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]);
1473 	pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]);
1474 	pcie_capability_read_word(dev, PCI_EXP_RTCTL,  &cap[i++]);
1475 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]);
1476 	pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]);
1477 	pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]);
1478 
1479 	return 0;
1480 }
1481 
pci_restore_pcie_state(struct pci_dev * dev)1482 static void pci_restore_pcie_state(struct pci_dev *dev)
1483 {
1484 	int i = 0;
1485 	struct pci_cap_saved_state *save_state;
1486 	u16 *cap;
1487 
1488 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1489 	if (!save_state)
1490 		return;
1491 
1492 	cap = (u16 *)&save_state->cap.data[0];
1493 	pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]);
1494 	pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]);
1495 	pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]);
1496 	pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]);
1497 	pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]);
1498 	pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]);
1499 	pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]);
1500 }
1501 
pci_save_pcix_state(struct pci_dev * dev)1502 static int pci_save_pcix_state(struct pci_dev *dev)
1503 {
1504 	int pos;
1505 	struct pci_cap_saved_state *save_state;
1506 
1507 	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1508 	if (!pos)
1509 		return 0;
1510 
1511 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1512 	if (!save_state) {
1513 		pci_err(dev, "buffer not found in %s\n", __func__);
1514 		return -ENOMEM;
1515 	}
1516 
1517 	pci_read_config_word(dev, pos + PCI_X_CMD,
1518 			     (u16 *)save_state->cap.data);
1519 
1520 	return 0;
1521 }
1522 
pci_restore_pcix_state(struct pci_dev * dev)1523 static void pci_restore_pcix_state(struct pci_dev *dev)
1524 {
1525 	int i = 0, pos;
1526 	struct pci_cap_saved_state *save_state;
1527 	u16 *cap;
1528 
1529 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1530 	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1531 	if (!save_state || !pos)
1532 		return;
1533 	cap = (u16 *)&save_state->cap.data[0];
1534 
1535 	pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
1536 }
1537 
pci_save_ltr_state(struct pci_dev * dev)1538 static void pci_save_ltr_state(struct pci_dev *dev)
1539 {
1540 	int ltr;
1541 	struct pci_cap_saved_state *save_state;
1542 	u16 *cap;
1543 
1544 	if (!pci_is_pcie(dev))
1545 		return;
1546 
1547 	ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
1548 	if (!ltr)
1549 		return;
1550 
1551 	save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR);
1552 	if (!save_state) {
1553 		pci_err(dev, "no suspend buffer for LTR; ASPM issues possible after resume\n");
1554 		return;
1555 	}
1556 
1557 	cap = (u16 *)&save_state->cap.data[0];
1558 	pci_read_config_word(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, cap++);
1559 	pci_read_config_word(dev, ltr + PCI_LTR_MAX_NOSNOOP_LAT, cap++);
1560 }
1561 
pci_restore_ltr_state(struct pci_dev * dev)1562 static void pci_restore_ltr_state(struct pci_dev *dev)
1563 {
1564 	struct pci_cap_saved_state *save_state;
1565 	int ltr;
1566 	u16 *cap;
1567 
1568 	save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR);
1569 	ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
1570 	if (!save_state || !ltr)
1571 		return;
1572 
1573 	cap = (u16 *)&save_state->cap.data[0];
1574 	pci_write_config_word(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, *cap++);
1575 	pci_write_config_word(dev, ltr + PCI_LTR_MAX_NOSNOOP_LAT, *cap++);
1576 }
1577 
1578 /**
1579  * pci_save_state - save the PCI configuration space of a device before
1580  *		    suspending
1581  * @dev: PCI device that we're dealing with
1582  */
pci_save_state(struct pci_dev * dev)1583 int pci_save_state(struct pci_dev *dev)
1584 {
1585 	int i;
1586 	/* XXX: 100% dword access ok here? */
1587 	for (i = 0; i < 16; i++) {
1588 		pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
1589 		pci_dbg(dev, "saving config space at offset %#x (reading %#x)\n",
1590 			i * 4, dev->saved_config_space[i]);
1591 	}
1592 	dev->state_saved = true;
1593 
1594 	i = pci_save_pcie_state(dev);
1595 	if (i != 0)
1596 		return i;
1597 
1598 	i = pci_save_pcix_state(dev);
1599 	if (i != 0)
1600 		return i;
1601 
1602 	pci_save_ltr_state(dev);
1603 	pci_save_dpc_state(dev);
1604 	pci_save_aer_state(dev);
1605 	pci_save_ptm_state(dev);
1606 	return pci_save_vc_state(dev);
1607 }
1608 EXPORT_SYMBOL(pci_save_state);
1609 
pci_restore_config_dword(struct pci_dev * pdev,int offset,u32 saved_val,int retry,bool force)1610 static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
1611 				     u32 saved_val, int retry, bool force)
1612 {
1613 	u32 val;
1614 
1615 	pci_read_config_dword(pdev, offset, &val);
1616 	if (!force && val == saved_val)
1617 		return;
1618 
1619 	for (;;) {
1620 		pci_dbg(pdev, "restoring config space at offset %#x (was %#x, writing %#x)\n",
1621 			offset, val, saved_val);
1622 		pci_write_config_dword(pdev, offset, saved_val);
1623 		if (retry-- <= 0)
1624 			return;
1625 
1626 		pci_read_config_dword(pdev, offset, &val);
1627 		if (val == saved_val)
1628 			return;
1629 
1630 		mdelay(1);
1631 	}
1632 }
1633 
pci_restore_config_space_range(struct pci_dev * pdev,int start,int end,int retry,bool force)1634 static void pci_restore_config_space_range(struct pci_dev *pdev,
1635 					   int start, int end, int retry,
1636 					   bool force)
1637 {
1638 	int index;
1639 
1640 	for (index = end; index >= start; index--)
1641 		pci_restore_config_dword(pdev, 4 * index,
1642 					 pdev->saved_config_space[index],
1643 					 retry, force);
1644 }
1645 
pci_restore_config_space(struct pci_dev * pdev)1646 static void pci_restore_config_space(struct pci_dev *pdev)
1647 {
1648 	if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
1649 		pci_restore_config_space_range(pdev, 10, 15, 0, false);
1650 		/* Restore BARs before the command register. */
1651 		pci_restore_config_space_range(pdev, 4, 9, 10, false);
1652 		pci_restore_config_space_range(pdev, 0, 3, 0, false);
1653 	} else if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
1654 		pci_restore_config_space_range(pdev, 12, 15, 0, false);
1655 
1656 		/*
1657 		 * Force rewriting of prefetch registers to avoid S3 resume
1658 		 * issues on Intel PCI bridges that occur when these
1659 		 * registers are not explicitly written.
1660 		 */
1661 		pci_restore_config_space_range(pdev, 9, 11, 0, true);
1662 		pci_restore_config_space_range(pdev, 0, 8, 0, false);
1663 	} else {
1664 		pci_restore_config_space_range(pdev, 0, 15, 0, false);
1665 	}
1666 }
1667 
pci_restore_rebar_state(struct pci_dev * pdev)1668 static void pci_restore_rebar_state(struct pci_dev *pdev)
1669 {
1670 	unsigned int pos, nbars, i;
1671 	u32 ctrl;
1672 
1673 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
1674 	if (!pos)
1675 		return;
1676 
1677 	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1678 	nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >>
1679 		    PCI_REBAR_CTRL_NBAR_SHIFT;
1680 
1681 	for (i = 0; i < nbars; i++, pos += 8) {
1682 		struct resource *res;
1683 		int bar_idx, size;
1684 
1685 		pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1686 		bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
1687 		res = pdev->resource + bar_idx;
1688 		size = pci_rebar_bytes_to_size(resource_size(res));
1689 		ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
1690 		ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT;
1691 		pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
1692 	}
1693 }
1694 
1695 /**
1696  * pci_restore_state - Restore the saved state of a PCI device
1697  * @dev: PCI device that we're dealing with
1698  */
pci_restore_state(struct pci_dev * dev)1699 void pci_restore_state(struct pci_dev *dev)
1700 {
1701 	if (!dev->state_saved)
1702 		return;
1703 
1704 	/*
1705 	 * Restore max latencies (in the LTR capability) before enabling
1706 	 * LTR itself (in the PCIe capability).
1707 	 */
1708 	pci_restore_ltr_state(dev);
1709 
1710 	pci_restore_pcie_state(dev);
1711 	pci_restore_pasid_state(dev);
1712 	pci_restore_pri_state(dev);
1713 	pci_restore_ats_state(dev);
1714 	pci_restore_vc_state(dev);
1715 	pci_restore_rebar_state(dev);
1716 	pci_restore_dpc_state(dev);
1717 	pci_restore_ptm_state(dev);
1718 
1719 	pci_aer_clear_status(dev);
1720 	pci_restore_aer_state(dev);
1721 
1722 	pci_restore_config_space(dev);
1723 
1724 	pci_restore_pcix_state(dev);
1725 	pci_restore_msi_state(dev);
1726 
1727 	/* Restore ACS and IOV configuration state */
1728 	pci_enable_acs(dev);
1729 	pci_restore_iov_state(dev);
1730 
1731 	dev->state_saved = false;
1732 }
1733 EXPORT_SYMBOL(pci_restore_state);
1734 
1735 struct pci_saved_state {
1736 	u32 config_space[16];
1737 	struct pci_cap_saved_data cap[];
1738 };
1739 
1740 /**
1741  * pci_store_saved_state - Allocate and return an opaque struct containing
1742  *			   the device saved state.
1743  * @dev: PCI device that we're dealing with
1744  *
1745  * Return NULL if no state or error.
1746  */
pci_store_saved_state(struct pci_dev * dev)1747 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1748 {
1749 	struct pci_saved_state *state;
1750 	struct pci_cap_saved_state *tmp;
1751 	struct pci_cap_saved_data *cap;
1752 	size_t size;
1753 
1754 	if (!dev->state_saved)
1755 		return NULL;
1756 
1757 	size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1758 
1759 	hlist_for_each_entry(tmp, &dev->saved_cap_space, next)
1760 		size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1761 
1762 	state = kzalloc(size, GFP_KERNEL);
1763 	if (!state)
1764 		return NULL;
1765 
1766 	memcpy(state->config_space, dev->saved_config_space,
1767 	       sizeof(state->config_space));
1768 
1769 	cap = state->cap;
1770 	hlist_for_each_entry(tmp, &dev->saved_cap_space, next) {
1771 		size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1772 		memcpy(cap, &tmp->cap, len);
1773 		cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1774 	}
1775 	/* Empty cap_save terminates list */
1776 
1777 	return state;
1778 }
1779 EXPORT_SYMBOL_GPL(pci_store_saved_state);
1780 
1781 /**
1782  * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1783  * @dev: PCI device that we're dealing with
1784  * @state: Saved state returned from pci_store_saved_state()
1785  */
pci_load_saved_state(struct pci_dev * dev,struct pci_saved_state * state)1786 int pci_load_saved_state(struct pci_dev *dev,
1787 			 struct pci_saved_state *state)
1788 {
1789 	struct pci_cap_saved_data *cap;
1790 
1791 	dev->state_saved = false;
1792 
1793 	if (!state)
1794 		return 0;
1795 
1796 	memcpy(dev->saved_config_space, state->config_space,
1797 	       sizeof(state->config_space));
1798 
1799 	cap = state->cap;
1800 	while (cap->size) {
1801 		struct pci_cap_saved_state *tmp;
1802 
1803 		tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended);
1804 		if (!tmp || tmp->cap.size != cap->size)
1805 			return -EINVAL;
1806 
1807 		memcpy(tmp->cap.data, cap->data, tmp->cap.size);
1808 		cap = (struct pci_cap_saved_data *)((u8 *)cap +
1809 		       sizeof(struct pci_cap_saved_data) + cap->size);
1810 	}
1811 
1812 	dev->state_saved = true;
1813 	return 0;
1814 }
1815 EXPORT_SYMBOL_GPL(pci_load_saved_state);
1816 
1817 /**
1818  * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1819  *				   and free the memory allocated for it.
1820  * @dev: PCI device that we're dealing with
1821  * @state: Pointer to saved state returned from pci_store_saved_state()
1822  */
pci_load_and_free_saved_state(struct pci_dev * dev,struct pci_saved_state ** state)1823 int pci_load_and_free_saved_state(struct pci_dev *dev,
1824 				  struct pci_saved_state **state)
1825 {
1826 	int ret = pci_load_saved_state(dev, *state);
1827 	kfree(*state);
1828 	*state = NULL;
1829 	return ret;
1830 }
1831 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
1832 
pcibios_enable_device(struct pci_dev * dev,int bars)1833 int __weak pcibios_enable_device(struct pci_dev *dev, int bars)
1834 {
1835 	return pci_enable_resources(dev, bars);
1836 }
1837 
do_pci_enable_device(struct pci_dev * dev,int bars)1838 static int do_pci_enable_device(struct pci_dev *dev, int bars)
1839 {
1840 	int err;
1841 	struct pci_dev *bridge;
1842 	u16 cmd;
1843 	u8 pin;
1844 
1845 	err = pci_set_power_state(dev, PCI_D0);
1846 	if (err < 0 && err != -EIO)
1847 		return err;
1848 
1849 	bridge = pci_upstream_bridge(dev);
1850 	if (bridge)
1851 		pcie_aspm_powersave_config_link(bridge);
1852 
1853 	err = pcibios_enable_device(dev, bars);
1854 	if (err < 0)
1855 		return err;
1856 	pci_fixup_device(pci_fixup_enable, dev);
1857 
1858 	if (dev->msi_enabled || dev->msix_enabled)
1859 		return 0;
1860 
1861 	pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin);
1862 	if (pin) {
1863 		pci_read_config_word(dev, PCI_COMMAND, &cmd);
1864 		if (cmd & PCI_COMMAND_INTX_DISABLE)
1865 			pci_write_config_word(dev, PCI_COMMAND,
1866 					      cmd & ~PCI_COMMAND_INTX_DISABLE);
1867 	}
1868 
1869 	return 0;
1870 }
1871 
1872 /**
1873  * pci_reenable_device - Resume abandoned device
1874  * @dev: PCI device to be resumed
1875  *
1876  * NOTE: This function is a backend of pci_default_resume() and is not supposed
1877  * to be called by normal code, write proper resume handler and use it instead.
1878  */
pci_reenable_device(struct pci_dev * dev)1879 int pci_reenable_device(struct pci_dev *dev)
1880 {
1881 	if (pci_is_enabled(dev))
1882 		return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
1883 	return 0;
1884 }
1885 EXPORT_SYMBOL(pci_reenable_device);
1886 
pci_enable_bridge(struct pci_dev * dev)1887 static void pci_enable_bridge(struct pci_dev *dev)
1888 {
1889 	struct pci_dev *bridge;
1890 	int retval;
1891 
1892 	bridge = pci_upstream_bridge(dev);
1893 	if (bridge)
1894 		pci_enable_bridge(bridge);
1895 
1896 	if (pci_is_enabled(dev)) {
1897 		if (!dev->is_busmaster)
1898 			pci_set_master(dev);
1899 		return;
1900 	}
1901 
1902 	retval = pci_enable_device(dev);
1903 	if (retval)
1904 		pci_err(dev, "Error enabling bridge (%d), continuing\n",
1905 			retval);
1906 	pci_set_master(dev);
1907 }
1908 
pci_enable_device_flags(struct pci_dev * dev,unsigned long flags)1909 static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags)
1910 {
1911 	struct pci_dev *bridge;
1912 	int err;
1913 	int i, bars = 0;
1914 
1915 	/*
1916 	 * Power state could be unknown at this point, either due to a fresh
1917 	 * boot or a device removal call.  So get the current power state
1918 	 * so that things like MSI message writing will behave as expected
1919 	 * (e.g. if the device really is in D0 at enable time).
1920 	 */
1921 	pci_update_current_state(dev, dev->current_state);
1922 
1923 	if (atomic_inc_return(&dev->enable_cnt) > 1)
1924 		return 0;		/* already enabled */
1925 
1926 	bridge = pci_upstream_bridge(dev);
1927 	if (bridge)
1928 		pci_enable_bridge(bridge);
1929 
1930 	/* only skip sriov related */
1931 	for (i = 0; i <= PCI_ROM_RESOURCE; i++)
1932 		if (dev->resource[i].flags & flags)
1933 			bars |= (1 << i);
1934 	for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
1935 		if (dev->resource[i].flags & flags)
1936 			bars |= (1 << i);
1937 
1938 	err = do_pci_enable_device(dev, bars);
1939 	if (err < 0)
1940 		atomic_dec(&dev->enable_cnt);
1941 	return err;
1942 }
1943 
1944 /**
1945  * pci_enable_device_io - Initialize a device for use with IO space
1946  * @dev: PCI device to be initialized
1947  *
1948  * Initialize device before it's used by a driver. Ask low-level code
1949  * to enable I/O resources. Wake up the device if it was suspended.
1950  * Beware, this function can fail.
1951  */
pci_enable_device_io(struct pci_dev * dev)1952 int pci_enable_device_io(struct pci_dev *dev)
1953 {
1954 	return pci_enable_device_flags(dev, IORESOURCE_IO);
1955 }
1956 EXPORT_SYMBOL(pci_enable_device_io);
1957 
1958 /**
1959  * pci_enable_device_mem - Initialize a device for use with Memory space
1960  * @dev: PCI device to be initialized
1961  *
1962  * Initialize device before it's used by a driver. Ask low-level code
1963  * to enable Memory resources. Wake up the device if it was suspended.
1964  * Beware, this function can fail.
1965  */
pci_enable_device_mem(struct pci_dev * dev)1966 int pci_enable_device_mem(struct pci_dev *dev)
1967 {
1968 	return pci_enable_device_flags(dev, IORESOURCE_MEM);
1969 }
1970 EXPORT_SYMBOL(pci_enable_device_mem);
1971 
1972 /**
1973  * pci_enable_device - Initialize device before it's used by a driver.
1974  * @dev: PCI device to be initialized
1975  *
1976  * Initialize device before it's used by a driver. Ask low-level code
1977  * to enable I/O and memory. Wake up the device if it was suspended.
1978  * Beware, this function can fail.
1979  *
1980  * Note we don't actually enable the device many times if we call
1981  * this function repeatedly (we just increment the count).
1982  */
pci_enable_device(struct pci_dev * dev)1983 int pci_enable_device(struct pci_dev *dev)
1984 {
1985 	return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
1986 }
1987 EXPORT_SYMBOL(pci_enable_device);
1988 
1989 /*
1990  * Managed PCI resources.  This manages device on/off, INTx/MSI/MSI-X
1991  * on/off and BAR regions.  pci_dev itself records MSI/MSI-X status, so
1992  * there's no need to track it separately.  pci_devres is initialized
1993  * when a device is enabled using managed PCI device enable interface.
1994  */
1995 struct pci_devres {
1996 	unsigned int enabled:1;
1997 	unsigned int pinned:1;
1998 	unsigned int orig_intx:1;
1999 	unsigned int restore_intx:1;
2000 	unsigned int mwi:1;
2001 	u32 region_mask;
2002 };
2003 
pcim_release(struct device * gendev,void * res)2004 static void pcim_release(struct device *gendev, void *res)
2005 {
2006 	struct pci_dev *dev = to_pci_dev(gendev);
2007 	struct pci_devres *this = res;
2008 	int i;
2009 
2010 	if (dev->msi_enabled)
2011 		pci_disable_msi(dev);
2012 	if (dev->msix_enabled)
2013 		pci_disable_msix(dev);
2014 
2015 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
2016 		if (this->region_mask & (1 << i))
2017 			pci_release_region(dev, i);
2018 
2019 	if (this->mwi)
2020 		pci_clear_mwi(dev);
2021 
2022 	if (this->restore_intx)
2023 		pci_intx(dev, this->orig_intx);
2024 
2025 	if (this->enabled && !this->pinned)
2026 		pci_disable_device(dev);
2027 }
2028 
get_pci_dr(struct pci_dev * pdev)2029 static struct pci_devres *get_pci_dr(struct pci_dev *pdev)
2030 {
2031 	struct pci_devres *dr, *new_dr;
2032 
2033 	dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
2034 	if (dr)
2035 		return dr;
2036 
2037 	new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
2038 	if (!new_dr)
2039 		return NULL;
2040 	return devres_get(&pdev->dev, new_dr, NULL, NULL);
2041 }
2042 
find_pci_dr(struct pci_dev * pdev)2043 static struct pci_devres *find_pci_dr(struct pci_dev *pdev)
2044 {
2045 	if (pci_is_managed(pdev))
2046 		return devres_find(&pdev->dev, pcim_release, NULL, NULL);
2047 	return NULL;
2048 }
2049 
2050 /**
2051  * pcim_enable_device - Managed pci_enable_device()
2052  * @pdev: PCI device to be initialized
2053  *
2054  * Managed pci_enable_device().
2055  */
pcim_enable_device(struct pci_dev * pdev)2056 int pcim_enable_device(struct pci_dev *pdev)
2057 {
2058 	struct pci_devres *dr;
2059 	int rc;
2060 
2061 	dr = get_pci_dr(pdev);
2062 	if (unlikely(!dr))
2063 		return -ENOMEM;
2064 	if (dr->enabled)
2065 		return 0;
2066 
2067 	rc = pci_enable_device(pdev);
2068 	if (!rc) {
2069 		pdev->is_managed = 1;
2070 		dr->enabled = 1;
2071 	}
2072 	return rc;
2073 }
2074 EXPORT_SYMBOL(pcim_enable_device);
2075 
2076 /**
2077  * pcim_pin_device - Pin managed PCI device
2078  * @pdev: PCI device to pin
2079  *
2080  * Pin managed PCI device @pdev.  Pinned device won't be disabled on
2081  * driver detach.  @pdev must have been enabled with
2082  * pcim_enable_device().
2083  */
pcim_pin_device(struct pci_dev * pdev)2084 void pcim_pin_device(struct pci_dev *pdev)
2085 {
2086 	struct pci_devres *dr;
2087 
2088 	dr = find_pci_dr(pdev);
2089 	WARN_ON(!dr || !dr->enabled);
2090 	if (dr)
2091 		dr->pinned = 1;
2092 }
2093 EXPORT_SYMBOL(pcim_pin_device);
2094 
2095 /*
2096  * pcibios_add_device - provide arch specific hooks when adding device dev
2097  * @dev: the PCI device being added
2098  *
2099  * Permits the platform to provide architecture specific functionality when
2100  * devices are added. This is the default implementation. Architecture
2101  * implementations can override this.
2102  */
pcibios_add_device(struct pci_dev * dev)2103 int __weak pcibios_add_device(struct pci_dev *dev)
2104 {
2105 	return 0;
2106 }
2107 
2108 /**
2109  * pcibios_release_device - provide arch specific hooks when releasing
2110  *			    device dev
2111  * @dev: the PCI device being released
2112  *
2113  * Permits the platform to provide architecture specific functionality when
2114  * devices are released. This is the default implementation. Architecture
2115  * implementations can override this.
2116  */
pcibios_release_device(struct pci_dev * dev)2117 void __weak pcibios_release_device(struct pci_dev *dev) {}
2118 
2119 /**
2120  * pcibios_disable_device - disable arch specific PCI resources for device dev
2121  * @dev: the PCI device to disable
2122  *
2123  * Disables architecture specific PCI resources for the device. This
2124  * is the default implementation. Architecture implementations can
2125  * override this.
2126  */
pcibios_disable_device(struct pci_dev * dev)2127 void __weak pcibios_disable_device(struct pci_dev *dev) {}
2128 
2129 /**
2130  * pcibios_penalize_isa_irq - penalize an ISA IRQ
2131  * @irq: ISA IRQ to penalize
2132  * @active: IRQ active or not
2133  *
2134  * Permits the platform to provide architecture-specific functionality when
2135  * penalizing ISA IRQs. This is the default implementation. Architecture
2136  * implementations can override this.
2137  */
pcibios_penalize_isa_irq(int irq,int active)2138 void __weak pcibios_penalize_isa_irq(int irq, int active) {}
2139 
do_pci_disable_device(struct pci_dev * dev)2140 static void do_pci_disable_device(struct pci_dev *dev)
2141 {
2142 	u16 pci_command;
2143 
2144 	pci_read_config_word(dev, PCI_COMMAND, &pci_command);
2145 	if (pci_command & PCI_COMMAND_MASTER) {
2146 		pci_command &= ~PCI_COMMAND_MASTER;
2147 		pci_write_config_word(dev, PCI_COMMAND, pci_command);
2148 	}
2149 
2150 	pcibios_disable_device(dev);
2151 }
2152 
2153 /**
2154  * pci_disable_enabled_device - Disable device without updating enable_cnt
2155  * @dev: PCI device to disable
2156  *
2157  * NOTE: This function is a backend of PCI power management routines and is
2158  * not supposed to be called drivers.
2159  */
pci_disable_enabled_device(struct pci_dev * dev)2160 void pci_disable_enabled_device(struct pci_dev *dev)
2161 {
2162 	if (pci_is_enabled(dev))
2163 		do_pci_disable_device(dev);
2164 }
2165 
2166 /**
2167  * pci_disable_device - Disable PCI device after use
2168  * @dev: PCI device to be disabled
2169  *
2170  * Signal to the system that the PCI device is not in use by the system
2171  * anymore.  This only involves disabling PCI bus-mastering, if active.
2172  *
2173  * Note we don't actually disable the device until all callers of
2174  * pci_enable_device() have called pci_disable_device().
2175  */
pci_disable_device(struct pci_dev * dev)2176 void pci_disable_device(struct pci_dev *dev)
2177 {
2178 	struct pci_devres *dr;
2179 
2180 	dr = find_pci_dr(dev);
2181 	if (dr)
2182 		dr->enabled = 0;
2183 
2184 	dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0,
2185 		      "disabling already-disabled device");
2186 
2187 	if (atomic_dec_return(&dev->enable_cnt) != 0)
2188 		return;
2189 
2190 	do_pci_disable_device(dev);
2191 
2192 	dev->is_busmaster = 0;
2193 }
2194 EXPORT_SYMBOL(pci_disable_device);
2195 
2196 /**
2197  * pcibios_set_pcie_reset_state - set reset state for device dev
2198  * @dev: the PCIe device reset
2199  * @state: Reset state to enter into
2200  *
2201  * Set the PCIe reset state for the device. This is the default
2202  * implementation. Architecture implementations can override this.
2203  */
pcibios_set_pcie_reset_state(struct pci_dev * dev,enum pcie_reset_state state)2204 int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
2205 					enum pcie_reset_state state)
2206 {
2207 	return -EINVAL;
2208 }
2209 
2210 /**
2211  * pci_set_pcie_reset_state - set reset state for device dev
2212  * @dev: the PCIe device reset
2213  * @state: Reset state to enter into
2214  *
2215  * Sets the PCI reset state for the device.
2216  */
pci_set_pcie_reset_state(struct pci_dev * dev,enum pcie_reset_state state)2217 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
2218 {
2219 	return pcibios_set_pcie_reset_state(dev, state);
2220 }
2221 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
2222 
pcie_clear_device_status(struct pci_dev * dev)2223 void pcie_clear_device_status(struct pci_dev *dev)
2224 {
2225 	u16 sta;
2226 
2227 	pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &sta);
2228 	pcie_capability_write_word(dev, PCI_EXP_DEVSTA, sta);
2229 }
2230 
2231 /**
2232  * pcie_clear_root_pme_status - Clear root port PME interrupt status.
2233  * @dev: PCIe root port or event collector.
2234  */
pcie_clear_root_pme_status(struct pci_dev * dev)2235 void pcie_clear_root_pme_status(struct pci_dev *dev)
2236 {
2237 	pcie_capability_set_dword(dev, PCI_EXP_RTSTA, PCI_EXP_RTSTA_PME);
2238 }
2239 
2240 /**
2241  * pci_check_pme_status - Check if given device has generated PME.
2242  * @dev: Device to check.
2243  *
2244  * Check the PME status of the device and if set, clear it and clear PME enable
2245  * (if set).  Return 'true' if PME status and PME enable were both set or
2246  * 'false' otherwise.
2247  */
pci_check_pme_status(struct pci_dev * dev)2248 bool pci_check_pme_status(struct pci_dev *dev)
2249 {
2250 	int pmcsr_pos;
2251 	u16 pmcsr;
2252 	bool ret = false;
2253 
2254 	if (!dev->pm_cap)
2255 		return false;
2256 
2257 	pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
2258 	pci_read_config_word(dev, pmcsr_pos, &pmcsr);
2259 	if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
2260 		return false;
2261 
2262 	/* Clear PME status. */
2263 	pmcsr |= PCI_PM_CTRL_PME_STATUS;
2264 	if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
2265 		/* Disable PME to avoid interrupt flood. */
2266 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2267 		ret = true;
2268 	}
2269 
2270 	pci_write_config_word(dev, pmcsr_pos, pmcsr);
2271 
2272 	return ret;
2273 }
2274 
2275 /**
2276  * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
2277  * @dev: Device to handle.
2278  * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
2279  *
2280  * Check if @dev has generated PME and queue a resume request for it in that
2281  * case.
2282  */
pci_pme_wakeup(struct pci_dev * dev,void * pme_poll_reset)2283 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
2284 {
2285 	if (pme_poll_reset && dev->pme_poll)
2286 		dev->pme_poll = false;
2287 
2288 	if (pci_check_pme_status(dev)) {
2289 		pci_wakeup_event(dev);
2290 		pm_request_resume(&dev->dev);
2291 	}
2292 	return 0;
2293 }
2294 
2295 /**
2296  * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
2297  * @bus: Top bus of the subtree to walk.
2298  */
pci_pme_wakeup_bus(struct pci_bus * bus)2299 void pci_pme_wakeup_bus(struct pci_bus *bus)
2300 {
2301 	if (bus)
2302 		pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
2303 }
2304 
2305 
2306 /**
2307  * pci_pme_capable - check the capability of PCI device to generate PME#
2308  * @dev: PCI device to handle.
2309  * @state: PCI state from which device will issue PME#.
2310  */
pci_pme_capable(struct pci_dev * dev,pci_power_t state)2311 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
2312 {
2313 	if (!dev->pm_cap)
2314 		return false;
2315 
2316 	return !!(dev->pme_support & (1 << state));
2317 }
2318 EXPORT_SYMBOL(pci_pme_capable);
2319 
pci_pme_list_scan(struct work_struct * work)2320 static void pci_pme_list_scan(struct work_struct *work)
2321 {
2322 	struct pci_pme_device *pme_dev, *n;
2323 
2324 	mutex_lock(&pci_pme_list_mutex);
2325 	list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
2326 		if (pme_dev->dev->pme_poll) {
2327 			struct pci_dev *bridge;
2328 
2329 			bridge = pme_dev->dev->bus->self;
2330 			/*
2331 			 * If bridge is in low power state, the
2332 			 * configuration space of subordinate devices
2333 			 * may be not accessible
2334 			 */
2335 			if (bridge && bridge->current_state != PCI_D0)
2336 				continue;
2337 			/*
2338 			 * If the device is in D3cold it should not be
2339 			 * polled either.
2340 			 */
2341 			if (pme_dev->dev->current_state == PCI_D3cold)
2342 				continue;
2343 
2344 			pci_pme_wakeup(pme_dev->dev, NULL);
2345 		} else {
2346 			list_del(&pme_dev->list);
2347 			kfree(pme_dev);
2348 		}
2349 	}
2350 	if (!list_empty(&pci_pme_list))
2351 		queue_delayed_work(system_freezable_wq, &pci_pme_work,
2352 				   msecs_to_jiffies(PME_TIMEOUT));
2353 	mutex_unlock(&pci_pme_list_mutex);
2354 }
2355 
__pci_pme_active(struct pci_dev * dev,bool enable)2356 static void __pci_pme_active(struct pci_dev *dev, bool enable)
2357 {
2358 	u16 pmcsr;
2359 
2360 	if (!dev->pme_support)
2361 		return;
2362 
2363 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2364 	/* Clear PME_Status by writing 1 to it and enable PME# */
2365 	pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
2366 	if (!enable)
2367 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2368 
2369 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2370 }
2371 
2372 /**
2373  * pci_pme_restore - Restore PME configuration after config space restore.
2374  * @dev: PCI device to update.
2375  */
pci_pme_restore(struct pci_dev * dev)2376 void pci_pme_restore(struct pci_dev *dev)
2377 {
2378 	u16 pmcsr;
2379 
2380 	if (!dev->pme_support)
2381 		return;
2382 
2383 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2384 	if (dev->wakeup_prepared) {
2385 		pmcsr |= PCI_PM_CTRL_PME_ENABLE;
2386 		pmcsr &= ~PCI_PM_CTRL_PME_STATUS;
2387 	} else {
2388 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2389 		pmcsr |= PCI_PM_CTRL_PME_STATUS;
2390 	}
2391 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2392 }
2393 
2394 /**
2395  * pci_pme_active - enable or disable PCI device's PME# function
2396  * @dev: PCI device to handle.
2397  * @enable: 'true' to enable PME# generation; 'false' to disable it.
2398  *
2399  * The caller must verify that the device is capable of generating PME# before
2400  * calling this function with @enable equal to 'true'.
2401  */
pci_pme_active(struct pci_dev * dev,bool enable)2402 void pci_pme_active(struct pci_dev *dev, bool enable)
2403 {
2404 	__pci_pme_active(dev, enable);
2405 
2406 	/*
2407 	 * PCI (as opposed to PCIe) PME requires that the device have
2408 	 * its PME# line hooked up correctly. Not all hardware vendors
2409 	 * do this, so the PME never gets delivered and the device
2410 	 * remains asleep. The easiest way around this is to
2411 	 * periodically walk the list of suspended devices and check
2412 	 * whether any have their PME flag set. The assumption is that
2413 	 * we'll wake up often enough anyway that this won't be a huge
2414 	 * hit, and the power savings from the devices will still be a
2415 	 * win.
2416 	 *
2417 	 * Although PCIe uses in-band PME message instead of PME# line
2418 	 * to report PME, PME does not work for some PCIe devices in
2419 	 * reality.  For example, there are devices that set their PME
2420 	 * status bits, but don't really bother to send a PME message;
2421 	 * there are PCI Express Root Ports that don't bother to
2422 	 * trigger interrupts when they receive PME messages from the
2423 	 * devices below.  So PME poll is used for PCIe devices too.
2424 	 */
2425 
2426 	if (dev->pme_poll) {
2427 		struct pci_pme_device *pme_dev;
2428 		if (enable) {
2429 			pme_dev = kmalloc(sizeof(struct pci_pme_device),
2430 					  GFP_KERNEL);
2431 			if (!pme_dev) {
2432 				pci_warn(dev, "can't enable PME#\n");
2433 				return;
2434 			}
2435 			pme_dev->dev = dev;
2436 			mutex_lock(&pci_pme_list_mutex);
2437 			list_add(&pme_dev->list, &pci_pme_list);
2438 			if (list_is_singular(&pci_pme_list))
2439 				queue_delayed_work(system_freezable_wq,
2440 						   &pci_pme_work,
2441 						   msecs_to_jiffies(PME_TIMEOUT));
2442 			mutex_unlock(&pci_pme_list_mutex);
2443 		} else {
2444 			mutex_lock(&pci_pme_list_mutex);
2445 			list_for_each_entry(pme_dev, &pci_pme_list, list) {
2446 				if (pme_dev->dev == dev) {
2447 					list_del(&pme_dev->list);
2448 					kfree(pme_dev);
2449 					break;
2450 				}
2451 			}
2452 			mutex_unlock(&pci_pme_list_mutex);
2453 		}
2454 	}
2455 
2456 	pci_dbg(dev, "PME# %s\n", enable ? "enabled" : "disabled");
2457 }
2458 EXPORT_SYMBOL(pci_pme_active);
2459 
2460 /**
2461  * __pci_enable_wake - enable PCI device as wakeup event source
2462  * @dev: PCI device affected
2463  * @state: PCI state from which device will issue wakeup events
2464  * @enable: True to enable event generation; false to disable
2465  *
2466  * This enables the device as a wakeup event source, or disables it.
2467  * When such events involves platform-specific hooks, those hooks are
2468  * called automatically by this routine.
2469  *
2470  * Devices with legacy power management (no standard PCI PM capabilities)
2471  * always require such platform hooks.
2472  *
2473  * RETURN VALUE:
2474  * 0 is returned on success
2475  * -EINVAL is returned if device is not supposed to wake up the system
2476  * Error code depending on the platform is returned if both the platform and
2477  * the native mechanism fail to enable the generation of wake-up events
2478  */
__pci_enable_wake(struct pci_dev * dev,pci_power_t state,bool enable)2479 static int __pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable)
2480 {
2481 	int ret = 0;
2482 
2483 	/*
2484 	 * Bridges that are not power-manageable directly only signal
2485 	 * wakeup on behalf of subordinate devices which is set up
2486 	 * elsewhere, so skip them. However, bridges that are
2487 	 * power-manageable may signal wakeup for themselves (for example,
2488 	 * on a hotplug event) and they need to be covered here.
2489 	 */
2490 	if (!pci_power_manageable(dev))
2491 		return 0;
2492 
2493 	/* Don't do the same thing twice in a row for one device. */
2494 	if (!!enable == !!dev->wakeup_prepared)
2495 		return 0;
2496 
2497 	/*
2498 	 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
2499 	 * Anderson we should be doing PME# wake enable followed by ACPI wake
2500 	 * enable.  To disable wake-up we call the platform first, for symmetry.
2501 	 */
2502 
2503 	if (enable) {
2504 		int error;
2505 
2506 		/*
2507 		 * Enable PME signaling if the device can signal PME from
2508 		 * D3cold regardless of whether or not it can signal PME from
2509 		 * the current target state, because that will allow it to
2510 		 * signal PME when the hierarchy above it goes into D3cold and
2511 		 * the device itself ends up in D3cold as a result of that.
2512 		 */
2513 		if (pci_pme_capable(dev, state) || pci_pme_capable(dev, PCI_D3cold))
2514 			pci_pme_active(dev, true);
2515 		else
2516 			ret = 1;
2517 		error = platform_pci_set_wakeup(dev, true);
2518 		if (ret)
2519 			ret = error;
2520 		if (!ret)
2521 			dev->wakeup_prepared = true;
2522 	} else {
2523 		platform_pci_set_wakeup(dev, false);
2524 		pci_pme_active(dev, false);
2525 		dev->wakeup_prepared = false;
2526 	}
2527 
2528 	return ret;
2529 }
2530 
2531 /**
2532  * pci_enable_wake - change wakeup settings for a PCI device
2533  * @pci_dev: Target device
2534  * @state: PCI state from which device will issue wakeup events
2535  * @enable: Whether or not to enable event generation
2536  *
2537  * If @enable is set, check device_may_wakeup() for the device before calling
2538  * __pci_enable_wake() for it.
2539  */
pci_enable_wake(struct pci_dev * pci_dev,pci_power_t state,bool enable)2540 int pci_enable_wake(struct pci_dev *pci_dev, pci_power_t state, bool enable)
2541 {
2542 	if (enable && !device_may_wakeup(&pci_dev->dev))
2543 		return -EINVAL;
2544 
2545 	return __pci_enable_wake(pci_dev, state, enable);
2546 }
2547 EXPORT_SYMBOL(pci_enable_wake);
2548 
2549 /**
2550  * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
2551  * @dev: PCI device to prepare
2552  * @enable: True to enable wake-up event generation; false to disable
2553  *
2554  * Many drivers want the device to wake up the system from D3_hot or D3_cold
2555  * and this function allows them to set that up cleanly - pci_enable_wake()
2556  * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
2557  * ordering constraints.
2558  *
2559  * This function only returns error code if the device is not allowed to wake
2560  * up the system from sleep or it is not capable of generating PME# from both
2561  * D3_hot and D3_cold and the platform is unable to enable wake-up power for it.
2562  */
pci_wake_from_d3(struct pci_dev * dev,bool enable)2563 int pci_wake_from_d3(struct pci_dev *dev, bool enable)
2564 {
2565 	return pci_pme_capable(dev, PCI_D3cold) ?
2566 			pci_enable_wake(dev, PCI_D3cold, enable) :
2567 			pci_enable_wake(dev, PCI_D3hot, enable);
2568 }
2569 EXPORT_SYMBOL(pci_wake_from_d3);
2570 
2571 /**
2572  * pci_target_state - find an appropriate low power state for a given PCI dev
2573  * @dev: PCI device
2574  * @wakeup: Whether or not wakeup functionality will be enabled for the device.
2575  *
2576  * Use underlying platform code to find a supported low power state for @dev.
2577  * If the platform can't manage @dev, return the deepest state from which it
2578  * can generate wake events, based on any available PME info.
2579  */
pci_target_state(struct pci_dev * dev,bool wakeup)2580 static pci_power_t pci_target_state(struct pci_dev *dev, bool wakeup)
2581 {
2582 	pci_power_t target_state = PCI_D3hot;
2583 
2584 	if (platform_pci_power_manageable(dev)) {
2585 		/*
2586 		 * Call the platform to find the target state for the device.
2587 		 */
2588 		pci_power_t state = platform_pci_choose_state(dev);
2589 
2590 		switch (state) {
2591 		case PCI_POWER_ERROR:
2592 		case PCI_UNKNOWN:
2593 			break;
2594 		case PCI_D1:
2595 		case PCI_D2:
2596 			if (pci_no_d1d2(dev))
2597 				break;
2598 			fallthrough;
2599 		default:
2600 			target_state = state;
2601 		}
2602 
2603 		return target_state;
2604 	}
2605 
2606 	if (!dev->pm_cap)
2607 		target_state = PCI_D0;
2608 
2609 	/*
2610 	 * If the device is in D3cold even though it's not power-manageable by
2611 	 * the platform, it may have been powered down by non-standard means.
2612 	 * Best to let it slumber.
2613 	 */
2614 	if (dev->current_state == PCI_D3cold)
2615 		target_state = PCI_D3cold;
2616 
2617 	if (wakeup && dev->pme_support) {
2618 		pci_power_t state = target_state;
2619 
2620 		/*
2621 		 * Find the deepest state from which the device can generate
2622 		 * PME#.
2623 		 */
2624 		while (state && !(dev->pme_support & (1 << state)))
2625 			state--;
2626 
2627 		if (state)
2628 			return state;
2629 		else if (dev->pme_support & 1)
2630 			return PCI_D0;
2631 	}
2632 
2633 	return target_state;
2634 }
2635 
2636 /**
2637  * pci_prepare_to_sleep - prepare PCI device for system-wide transition
2638  *			  into a sleep state
2639  * @dev: Device to handle.
2640  *
2641  * Choose the power state appropriate for the device depending on whether
2642  * it can wake up the system and/or is power manageable by the platform
2643  * (PCI_D3hot is the default) and put the device into that state.
2644  */
pci_prepare_to_sleep(struct pci_dev * dev)2645 int pci_prepare_to_sleep(struct pci_dev *dev)
2646 {
2647 	bool wakeup = device_may_wakeup(&dev->dev);
2648 	pci_power_t target_state = pci_target_state(dev, wakeup);
2649 	int error;
2650 
2651 	if (target_state == PCI_POWER_ERROR)
2652 		return -EIO;
2653 
2654 	/*
2655 	 * There are systems (for example, Intel mobile chips since Coffee
2656 	 * Lake) where the power drawn while suspended can be significantly
2657 	 * reduced by disabling PTM on PCIe root ports as this allows the
2658 	 * port to enter a lower-power PM state and the SoC to reach a
2659 	 * lower-power idle state as a whole.
2660 	 */
2661 	if (pci_pcie_type(dev) == PCI_EXP_TYPE_ROOT_PORT)
2662 		pci_disable_ptm(dev);
2663 
2664 	pci_enable_wake(dev, target_state, wakeup);
2665 
2666 	error = pci_set_power_state(dev, target_state);
2667 
2668 	if (error) {
2669 		pci_enable_wake(dev, target_state, false);
2670 		pci_restore_ptm_state(dev);
2671 	}
2672 
2673 	return error;
2674 }
2675 EXPORT_SYMBOL(pci_prepare_to_sleep);
2676 
2677 /**
2678  * pci_back_from_sleep - turn PCI device on during system-wide transition
2679  *			 into working state
2680  * @dev: Device to handle.
2681  *
2682  * Disable device's system wake-up capability and put it into D0.
2683  */
pci_back_from_sleep(struct pci_dev * dev)2684 int pci_back_from_sleep(struct pci_dev *dev)
2685 {
2686 	pci_enable_wake(dev, PCI_D0, false);
2687 	return pci_set_power_state(dev, PCI_D0);
2688 }
2689 EXPORT_SYMBOL(pci_back_from_sleep);
2690 
2691 /**
2692  * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
2693  * @dev: PCI device being suspended.
2694  *
2695  * Prepare @dev to generate wake-up events at run time and put it into a low
2696  * power state.
2697  */
pci_finish_runtime_suspend(struct pci_dev * dev)2698 int pci_finish_runtime_suspend(struct pci_dev *dev)
2699 {
2700 	pci_power_t target_state;
2701 	int error;
2702 
2703 	target_state = pci_target_state(dev, device_can_wakeup(&dev->dev));
2704 	if (target_state == PCI_POWER_ERROR)
2705 		return -EIO;
2706 
2707 	dev->runtime_d3cold = target_state == PCI_D3cold;
2708 
2709 	/*
2710 	 * There are systems (for example, Intel mobile chips since Coffee
2711 	 * Lake) where the power drawn while suspended can be significantly
2712 	 * reduced by disabling PTM on PCIe root ports as this allows the
2713 	 * port to enter a lower-power PM state and the SoC to reach a
2714 	 * lower-power idle state as a whole.
2715 	 */
2716 	if (pci_pcie_type(dev) == PCI_EXP_TYPE_ROOT_PORT)
2717 		pci_disable_ptm(dev);
2718 
2719 	__pci_enable_wake(dev, target_state, pci_dev_run_wake(dev));
2720 
2721 	error = pci_set_power_state(dev, target_state);
2722 
2723 	if (error) {
2724 		pci_enable_wake(dev, target_state, false);
2725 		pci_restore_ptm_state(dev);
2726 		dev->runtime_d3cold = false;
2727 	}
2728 
2729 	return error;
2730 }
2731 
2732 /**
2733  * pci_dev_run_wake - Check if device can generate run-time wake-up events.
2734  * @dev: Device to check.
2735  *
2736  * Return true if the device itself is capable of generating wake-up events
2737  * (through the platform or using the native PCIe PME) or if the device supports
2738  * PME and one of its upstream bridges can generate wake-up events.
2739  */
pci_dev_run_wake(struct pci_dev * dev)2740 bool pci_dev_run_wake(struct pci_dev *dev)
2741 {
2742 	struct pci_bus *bus = dev->bus;
2743 
2744 	if (!dev->pme_support)
2745 		return false;
2746 
2747 	/* PME-capable in principle, but not from the target power state */
2748 	if (!pci_pme_capable(dev, pci_target_state(dev, true)))
2749 		return false;
2750 
2751 	if (device_can_wakeup(&dev->dev))
2752 		return true;
2753 
2754 	while (bus->parent) {
2755 		struct pci_dev *bridge = bus->self;
2756 
2757 		if (device_can_wakeup(&bridge->dev))
2758 			return true;
2759 
2760 		bus = bus->parent;
2761 	}
2762 
2763 	/* We have reached the root bus. */
2764 	if (bus->bridge)
2765 		return device_can_wakeup(bus->bridge);
2766 
2767 	return false;
2768 }
2769 EXPORT_SYMBOL_GPL(pci_dev_run_wake);
2770 
2771 /**
2772  * pci_dev_need_resume - Check if it is necessary to resume the device.
2773  * @pci_dev: Device to check.
2774  *
2775  * Return 'true' if the device is not runtime-suspended or it has to be
2776  * reconfigured due to wakeup settings difference between system and runtime
2777  * suspend, or the current power state of it is not suitable for the upcoming
2778  * (system-wide) transition.
2779  */
pci_dev_need_resume(struct pci_dev * pci_dev)2780 bool pci_dev_need_resume(struct pci_dev *pci_dev)
2781 {
2782 	struct device *dev = &pci_dev->dev;
2783 	pci_power_t target_state;
2784 
2785 	if (!pm_runtime_suspended(dev) || platform_pci_need_resume(pci_dev))
2786 		return true;
2787 
2788 	target_state = pci_target_state(pci_dev, device_may_wakeup(dev));
2789 
2790 	/*
2791 	 * If the earlier platform check has not triggered, D3cold is just power
2792 	 * removal on top of D3hot, so no need to resume the device in that
2793 	 * case.
2794 	 */
2795 	return target_state != pci_dev->current_state &&
2796 		target_state != PCI_D3cold &&
2797 		pci_dev->current_state != PCI_D3hot;
2798 }
2799 
2800 /**
2801  * pci_dev_adjust_pme - Adjust PME setting for a suspended device.
2802  * @pci_dev: Device to check.
2803  *
2804  * If the device is suspended and it is not configured for system wakeup,
2805  * disable PME for it to prevent it from waking up the system unnecessarily.
2806  *
2807  * Note that if the device's power state is D3cold and the platform check in
2808  * pci_dev_need_resume() has not triggered, the device's configuration need not
2809  * be changed.
2810  */
pci_dev_adjust_pme(struct pci_dev * pci_dev)2811 void pci_dev_adjust_pme(struct pci_dev *pci_dev)
2812 {
2813 	struct device *dev = &pci_dev->dev;
2814 
2815 	spin_lock_irq(&dev->power.lock);
2816 
2817 	if (pm_runtime_suspended(dev) && !device_may_wakeup(dev) &&
2818 	    pci_dev->current_state < PCI_D3cold)
2819 		__pci_pme_active(pci_dev, false);
2820 
2821 	spin_unlock_irq(&dev->power.lock);
2822 }
2823 
2824 /**
2825  * pci_dev_complete_resume - Finalize resume from system sleep for a device.
2826  * @pci_dev: Device to handle.
2827  *
2828  * If the device is runtime suspended and wakeup-capable, enable PME for it as
2829  * it might have been disabled during the prepare phase of system suspend if
2830  * the device was not configured for system wakeup.
2831  */
pci_dev_complete_resume(struct pci_dev * pci_dev)2832 void pci_dev_complete_resume(struct pci_dev *pci_dev)
2833 {
2834 	struct device *dev = &pci_dev->dev;
2835 
2836 	if (!pci_dev_run_wake(pci_dev))
2837 		return;
2838 
2839 	spin_lock_irq(&dev->power.lock);
2840 
2841 	if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold)
2842 		__pci_pme_active(pci_dev, true);
2843 
2844 	spin_unlock_irq(&dev->power.lock);
2845 }
2846 
pci_config_pm_runtime_get(struct pci_dev * pdev)2847 void pci_config_pm_runtime_get(struct pci_dev *pdev)
2848 {
2849 	struct device *dev = &pdev->dev;
2850 	struct device *parent = dev->parent;
2851 
2852 	if (parent)
2853 		pm_runtime_get_sync(parent);
2854 	pm_runtime_get_noresume(dev);
2855 	/*
2856 	 * pdev->current_state is set to PCI_D3cold during suspending,
2857 	 * so wait until suspending completes
2858 	 */
2859 	pm_runtime_barrier(dev);
2860 	/*
2861 	 * Only need to resume devices in D3cold, because config
2862 	 * registers are still accessible for devices suspended but
2863 	 * not in D3cold.
2864 	 */
2865 	if (pdev->current_state == PCI_D3cold)
2866 		pm_runtime_resume(dev);
2867 }
2868 
pci_config_pm_runtime_put(struct pci_dev * pdev)2869 void pci_config_pm_runtime_put(struct pci_dev *pdev)
2870 {
2871 	struct device *dev = &pdev->dev;
2872 	struct device *parent = dev->parent;
2873 
2874 	pm_runtime_put(dev);
2875 	if (parent)
2876 		pm_runtime_put_sync(parent);
2877 }
2878 
2879 static const struct dmi_system_id bridge_d3_blacklist[] = {
2880 #ifdef CONFIG_X86
2881 	{
2882 		/*
2883 		 * Gigabyte X299 root port is not marked as hotplug capable
2884 		 * which allows Linux to power manage it.  However, this
2885 		 * confuses the BIOS SMI handler so don't power manage root
2886 		 * ports on that system.
2887 		 */
2888 		.ident = "X299 DESIGNARE EX-CF",
2889 		.matches = {
2890 			DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co., Ltd."),
2891 			DMI_MATCH(DMI_BOARD_NAME, "X299 DESIGNARE EX-CF"),
2892 		},
2893 	},
2894 	{
2895 		/*
2896 		 * Downstream device is not accessible after putting a root port
2897 		 * into D3cold and back into D0 on Elo Continental Z2 board
2898 		 */
2899 		.ident = "Elo Continental Z2",
2900 		.matches = {
2901 			DMI_MATCH(DMI_BOARD_VENDOR, "Elo Touch Solutions"),
2902 			DMI_MATCH(DMI_BOARD_NAME, "Geminilake"),
2903 			DMI_MATCH(DMI_BOARD_VERSION, "Continental Z2"),
2904 		},
2905 	},
2906 #endif
2907 	{ }
2908 };
2909 
2910 /**
2911  * pci_bridge_d3_possible - Is it possible to put the bridge into D3
2912  * @bridge: Bridge to check
2913  *
2914  * This function checks if it is possible to move the bridge to D3.
2915  * Currently we only allow D3 for recent enough PCIe ports and Thunderbolt.
2916  */
pci_bridge_d3_possible(struct pci_dev * bridge)2917 bool pci_bridge_d3_possible(struct pci_dev *bridge)
2918 {
2919 	if (!pci_is_pcie(bridge))
2920 		return false;
2921 
2922 	switch (pci_pcie_type(bridge)) {
2923 	case PCI_EXP_TYPE_ROOT_PORT:
2924 	case PCI_EXP_TYPE_UPSTREAM:
2925 	case PCI_EXP_TYPE_DOWNSTREAM:
2926 		if (pci_bridge_d3_disable)
2927 			return false;
2928 
2929 		/*
2930 		 * Hotplug ports handled by firmware in System Management Mode
2931 		 * may not be put into D3 by the OS (Thunderbolt on non-Macs).
2932 		 */
2933 		if (bridge->is_hotplug_bridge && !pciehp_is_native(bridge))
2934 			return false;
2935 
2936 		if (pci_bridge_d3_force)
2937 			return true;
2938 
2939 		/* Even the oldest 2010 Thunderbolt controller supports D3. */
2940 		if (bridge->is_thunderbolt)
2941 			return true;
2942 
2943 		/* Platform might know better if the bridge supports D3 */
2944 		if (platform_pci_bridge_d3(bridge))
2945 			return true;
2946 
2947 		/*
2948 		 * Hotplug ports handled natively by the OS were not validated
2949 		 * by vendors for runtime D3 at least until 2018 because there
2950 		 * was no OS support.
2951 		 */
2952 		if (bridge->is_hotplug_bridge)
2953 			return false;
2954 
2955 		if (dmi_check_system(bridge_d3_blacklist))
2956 			return false;
2957 
2958 		/*
2959 		 * It should be safe to put PCIe ports from 2015 or newer
2960 		 * to D3.
2961 		 */
2962 		if (dmi_get_bios_year() >= 2015)
2963 			return true;
2964 		break;
2965 	}
2966 
2967 	return false;
2968 }
2969 
pci_dev_check_d3cold(struct pci_dev * dev,void * data)2970 static int pci_dev_check_d3cold(struct pci_dev *dev, void *data)
2971 {
2972 	bool *d3cold_ok = data;
2973 
2974 	if (/* The device needs to be allowed to go D3cold ... */
2975 	    dev->no_d3cold || !dev->d3cold_allowed ||
2976 
2977 	    /* ... and if it is wakeup capable to do so from D3cold. */
2978 	    (device_may_wakeup(&dev->dev) &&
2979 	     !pci_pme_capable(dev, PCI_D3cold)) ||
2980 
2981 	    /* If it is a bridge it must be allowed to go to D3. */
2982 	    !pci_power_manageable(dev))
2983 
2984 		*d3cold_ok = false;
2985 
2986 	return !*d3cold_ok;
2987 }
2988 
2989 /*
2990  * pci_bridge_d3_update - Update bridge D3 capabilities
2991  * @dev: PCI device which is changed
2992  *
2993  * Update upstream bridge PM capabilities accordingly depending on if the
2994  * device PM configuration was changed or the device is being removed.  The
2995  * change is also propagated upstream.
2996  */
pci_bridge_d3_update(struct pci_dev * dev)2997 void pci_bridge_d3_update(struct pci_dev *dev)
2998 {
2999 	bool remove = !device_is_registered(&dev->dev);
3000 	struct pci_dev *bridge;
3001 	bool d3cold_ok = true;
3002 
3003 	bridge = pci_upstream_bridge(dev);
3004 	if (!bridge || !pci_bridge_d3_possible(bridge))
3005 		return;
3006 
3007 	/*
3008 	 * If D3 is currently allowed for the bridge, removing one of its
3009 	 * children won't change that.
3010 	 */
3011 	if (remove && bridge->bridge_d3)
3012 		return;
3013 
3014 	/*
3015 	 * If D3 is currently allowed for the bridge and a child is added or
3016 	 * changed, disallowance of D3 can only be caused by that child, so
3017 	 * we only need to check that single device, not any of its siblings.
3018 	 *
3019 	 * If D3 is currently not allowed for the bridge, checking the device
3020 	 * first may allow us to skip checking its siblings.
3021 	 */
3022 	if (!remove)
3023 		pci_dev_check_d3cold(dev, &d3cold_ok);
3024 
3025 	/*
3026 	 * If D3 is currently not allowed for the bridge, this may be caused
3027 	 * either by the device being changed/removed or any of its siblings,
3028 	 * so we need to go through all children to find out if one of them
3029 	 * continues to block D3.
3030 	 */
3031 	if (d3cold_ok && !bridge->bridge_d3)
3032 		pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold,
3033 			     &d3cold_ok);
3034 
3035 	if (bridge->bridge_d3 != d3cold_ok) {
3036 		bridge->bridge_d3 = d3cold_ok;
3037 		/* Propagate change to upstream bridges */
3038 		pci_bridge_d3_update(bridge);
3039 	}
3040 }
3041 
3042 /**
3043  * pci_d3cold_enable - Enable D3cold for device
3044  * @dev: PCI device to handle
3045  *
3046  * This function can be used in drivers to enable D3cold from the device
3047  * they handle.  It also updates upstream PCI bridge PM capabilities
3048  * accordingly.
3049  */
pci_d3cold_enable(struct pci_dev * dev)3050 void pci_d3cold_enable(struct pci_dev *dev)
3051 {
3052 	if (dev->no_d3cold) {
3053 		dev->no_d3cold = false;
3054 		pci_bridge_d3_update(dev);
3055 	}
3056 }
3057 EXPORT_SYMBOL_GPL(pci_d3cold_enable);
3058 
3059 /**
3060  * pci_d3cold_disable - Disable D3cold for device
3061  * @dev: PCI device to handle
3062  *
3063  * This function can be used in drivers to disable D3cold from the device
3064  * they handle.  It also updates upstream PCI bridge PM capabilities
3065  * accordingly.
3066  */
pci_d3cold_disable(struct pci_dev * dev)3067 void pci_d3cold_disable(struct pci_dev *dev)
3068 {
3069 	if (!dev->no_d3cold) {
3070 		dev->no_d3cold = true;
3071 		pci_bridge_d3_update(dev);
3072 	}
3073 }
3074 EXPORT_SYMBOL_GPL(pci_d3cold_disable);
3075 
3076 /**
3077  * pci_pm_init - Initialize PM functions of given PCI device
3078  * @dev: PCI device to handle.
3079  */
pci_pm_init(struct pci_dev * dev)3080 void pci_pm_init(struct pci_dev *dev)
3081 {
3082 	int pm;
3083 	u16 status;
3084 	u16 pmc;
3085 
3086 	pm_runtime_forbid(&dev->dev);
3087 	pm_runtime_set_active(&dev->dev);
3088 	pm_runtime_enable(&dev->dev);
3089 	device_enable_async_suspend(&dev->dev);
3090 	dev->wakeup_prepared = false;
3091 
3092 	dev->pm_cap = 0;
3093 	dev->pme_support = 0;
3094 
3095 	/* find PCI PM capability in list */
3096 	pm = pci_find_capability(dev, PCI_CAP_ID_PM);
3097 	if (!pm)
3098 		return;
3099 	/* Check device's ability to generate PME# */
3100 	pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
3101 
3102 	if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
3103 		pci_err(dev, "unsupported PM cap regs version (%u)\n",
3104 			pmc & PCI_PM_CAP_VER_MASK);
3105 		return;
3106 	}
3107 
3108 	dev->pm_cap = pm;
3109 	dev->d3hot_delay = PCI_PM_D3HOT_WAIT;
3110 	dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
3111 	dev->bridge_d3 = pci_bridge_d3_possible(dev);
3112 	dev->d3cold_allowed = true;
3113 
3114 	dev->d1_support = false;
3115 	dev->d2_support = false;
3116 	if (!pci_no_d1d2(dev)) {
3117 		if (pmc & PCI_PM_CAP_D1)
3118 			dev->d1_support = true;
3119 		if (pmc & PCI_PM_CAP_D2)
3120 			dev->d2_support = true;
3121 
3122 		if (dev->d1_support || dev->d2_support)
3123 			pci_info(dev, "supports%s%s\n",
3124 				   dev->d1_support ? " D1" : "",
3125 				   dev->d2_support ? " D2" : "");
3126 	}
3127 
3128 	pmc &= PCI_PM_CAP_PME_MASK;
3129 	if (pmc) {
3130 		pci_info(dev, "PME# supported from%s%s%s%s%s\n",
3131 			 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
3132 			 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
3133 			 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
3134 			 (pmc & PCI_PM_CAP_PME_D3hot) ? " D3hot" : "",
3135 			 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
3136 		dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
3137 		dev->pme_poll = true;
3138 		/*
3139 		 * Make device's PM flags reflect the wake-up capability, but
3140 		 * let the user space enable it to wake up the system as needed.
3141 		 */
3142 		device_set_wakeup_capable(&dev->dev, true);
3143 		/* Disable the PME# generation functionality */
3144 		pci_pme_active(dev, false);
3145 	}
3146 
3147 	pci_read_config_word(dev, PCI_STATUS, &status);
3148 	if (status & PCI_STATUS_IMM_READY)
3149 		dev->imm_ready = 1;
3150 }
3151 
pci_ea_flags(struct pci_dev * dev,u8 prop)3152 static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop)
3153 {
3154 	unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI;
3155 
3156 	switch (prop) {
3157 	case PCI_EA_P_MEM:
3158 	case PCI_EA_P_VF_MEM:
3159 		flags |= IORESOURCE_MEM;
3160 		break;
3161 	case PCI_EA_P_MEM_PREFETCH:
3162 	case PCI_EA_P_VF_MEM_PREFETCH:
3163 		flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH;
3164 		break;
3165 	case PCI_EA_P_IO:
3166 		flags |= IORESOURCE_IO;
3167 		break;
3168 	default:
3169 		return 0;
3170 	}
3171 
3172 	return flags;
3173 }
3174 
pci_ea_get_resource(struct pci_dev * dev,u8 bei,u8 prop)3175 static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei,
3176 					    u8 prop)
3177 {
3178 	if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO)
3179 		return &dev->resource[bei];
3180 #ifdef CONFIG_PCI_IOV
3181 	else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 &&
3182 		 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH))
3183 		return &dev->resource[PCI_IOV_RESOURCES +
3184 				      bei - PCI_EA_BEI_VF_BAR0];
3185 #endif
3186 	else if (bei == PCI_EA_BEI_ROM)
3187 		return &dev->resource[PCI_ROM_RESOURCE];
3188 	else
3189 		return NULL;
3190 }
3191 
3192 /* Read an Enhanced Allocation (EA) entry */
pci_ea_read(struct pci_dev * dev,int offset)3193 static int pci_ea_read(struct pci_dev *dev, int offset)
3194 {
3195 	struct resource *res;
3196 	int ent_size, ent_offset = offset;
3197 	resource_size_t start, end;
3198 	unsigned long flags;
3199 	u32 dw0, bei, base, max_offset;
3200 	u8 prop;
3201 	bool support_64 = (sizeof(resource_size_t) >= 8);
3202 
3203 	pci_read_config_dword(dev, ent_offset, &dw0);
3204 	ent_offset += 4;
3205 
3206 	/* Entry size field indicates DWORDs after 1st */
3207 	ent_size = ((dw0 & PCI_EA_ES) + 1) << 2;
3208 
3209 	if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */
3210 		goto out;
3211 
3212 	bei = (dw0 & PCI_EA_BEI) >> 4;
3213 	prop = (dw0 & PCI_EA_PP) >> 8;
3214 
3215 	/*
3216 	 * If the Property is in the reserved range, try the Secondary
3217 	 * Property instead.
3218 	 */
3219 	if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED)
3220 		prop = (dw0 & PCI_EA_SP) >> 16;
3221 	if (prop > PCI_EA_P_BRIDGE_IO)
3222 		goto out;
3223 
3224 	res = pci_ea_get_resource(dev, bei, prop);
3225 	if (!res) {
3226 		pci_err(dev, "Unsupported EA entry BEI: %u\n", bei);
3227 		goto out;
3228 	}
3229 
3230 	flags = pci_ea_flags(dev, prop);
3231 	if (!flags) {
3232 		pci_err(dev, "Unsupported EA properties: %#x\n", prop);
3233 		goto out;
3234 	}
3235 
3236 	/* Read Base */
3237 	pci_read_config_dword(dev, ent_offset, &base);
3238 	start = (base & PCI_EA_FIELD_MASK);
3239 	ent_offset += 4;
3240 
3241 	/* Read MaxOffset */
3242 	pci_read_config_dword(dev, ent_offset, &max_offset);
3243 	ent_offset += 4;
3244 
3245 	/* Read Base MSBs (if 64-bit entry) */
3246 	if (base & PCI_EA_IS_64) {
3247 		u32 base_upper;
3248 
3249 		pci_read_config_dword(dev, ent_offset, &base_upper);
3250 		ent_offset += 4;
3251 
3252 		flags |= IORESOURCE_MEM_64;
3253 
3254 		/* entry starts above 32-bit boundary, can't use */
3255 		if (!support_64 && base_upper)
3256 			goto out;
3257 
3258 		if (support_64)
3259 			start |= ((u64)base_upper << 32);
3260 	}
3261 
3262 	end = start + (max_offset | 0x03);
3263 
3264 	/* Read MaxOffset MSBs (if 64-bit entry) */
3265 	if (max_offset & PCI_EA_IS_64) {
3266 		u32 max_offset_upper;
3267 
3268 		pci_read_config_dword(dev, ent_offset, &max_offset_upper);
3269 		ent_offset += 4;
3270 
3271 		flags |= IORESOURCE_MEM_64;
3272 
3273 		/* entry too big, can't use */
3274 		if (!support_64 && max_offset_upper)
3275 			goto out;
3276 
3277 		if (support_64)
3278 			end += ((u64)max_offset_upper << 32);
3279 	}
3280 
3281 	if (end < start) {
3282 		pci_err(dev, "EA Entry crosses address boundary\n");
3283 		goto out;
3284 	}
3285 
3286 	if (ent_size != ent_offset - offset) {
3287 		pci_err(dev, "EA Entry Size (%d) does not match length read (%d)\n",
3288 			ent_size, ent_offset - offset);
3289 		goto out;
3290 	}
3291 
3292 	res->name = pci_name(dev);
3293 	res->start = start;
3294 	res->end = end;
3295 	res->flags = flags;
3296 
3297 	if (bei <= PCI_EA_BEI_BAR5)
3298 		pci_info(dev, "BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
3299 			   bei, res, prop);
3300 	else if (bei == PCI_EA_BEI_ROM)
3301 		pci_info(dev, "ROM: %pR (from Enhanced Allocation, properties %#02x)\n",
3302 			   res, prop);
3303 	else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5)
3304 		pci_info(dev, "VF BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
3305 			   bei - PCI_EA_BEI_VF_BAR0, res, prop);
3306 	else
3307 		pci_info(dev, "BEI %d res: %pR (from Enhanced Allocation, properties %#02x)\n",
3308 			   bei, res, prop);
3309 
3310 out:
3311 	return offset + ent_size;
3312 }
3313 
3314 /* Enhanced Allocation Initialization */
pci_ea_init(struct pci_dev * dev)3315 void pci_ea_init(struct pci_dev *dev)
3316 {
3317 	int ea;
3318 	u8 num_ent;
3319 	int offset;
3320 	int i;
3321 
3322 	/* find PCI EA capability in list */
3323 	ea = pci_find_capability(dev, PCI_CAP_ID_EA);
3324 	if (!ea)
3325 		return;
3326 
3327 	/* determine the number of entries */
3328 	pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT,
3329 					&num_ent);
3330 	num_ent &= PCI_EA_NUM_ENT_MASK;
3331 
3332 	offset = ea + PCI_EA_FIRST_ENT;
3333 
3334 	/* Skip DWORD 2 for type 1 functions */
3335 	if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE)
3336 		offset += 4;
3337 
3338 	/* parse each EA entry */
3339 	for (i = 0; i < num_ent; ++i)
3340 		offset = pci_ea_read(dev, offset);
3341 }
3342 
pci_add_saved_cap(struct pci_dev * pci_dev,struct pci_cap_saved_state * new_cap)3343 static void pci_add_saved_cap(struct pci_dev *pci_dev,
3344 	struct pci_cap_saved_state *new_cap)
3345 {
3346 	hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
3347 }
3348 
3349 /**
3350  * _pci_add_cap_save_buffer - allocate buffer for saving given
3351  *			      capability registers
3352  * @dev: the PCI device
3353  * @cap: the capability to allocate the buffer for
3354  * @extended: Standard or Extended capability ID
3355  * @size: requested size of the buffer
3356  */
_pci_add_cap_save_buffer(struct pci_dev * dev,u16 cap,bool extended,unsigned int size)3357 static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap,
3358 				    bool extended, unsigned int size)
3359 {
3360 	int pos;
3361 	struct pci_cap_saved_state *save_state;
3362 
3363 	if (extended)
3364 		pos = pci_find_ext_capability(dev, cap);
3365 	else
3366 		pos = pci_find_capability(dev, cap);
3367 
3368 	if (!pos)
3369 		return 0;
3370 
3371 	save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
3372 	if (!save_state)
3373 		return -ENOMEM;
3374 
3375 	save_state->cap.cap_nr = cap;
3376 	save_state->cap.cap_extended = extended;
3377 	save_state->cap.size = size;
3378 	pci_add_saved_cap(dev, save_state);
3379 
3380 	return 0;
3381 }
3382 
pci_add_cap_save_buffer(struct pci_dev * dev,char cap,unsigned int size)3383 int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size)
3384 {
3385 	return _pci_add_cap_save_buffer(dev, cap, false, size);
3386 }
3387 
pci_add_ext_cap_save_buffer(struct pci_dev * dev,u16 cap,unsigned int size)3388 int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size)
3389 {
3390 	return _pci_add_cap_save_buffer(dev, cap, true, size);
3391 }
3392 
3393 /**
3394  * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
3395  * @dev: the PCI device
3396  */
pci_allocate_cap_save_buffers(struct pci_dev * dev)3397 void pci_allocate_cap_save_buffers(struct pci_dev *dev)
3398 {
3399 	int error;
3400 
3401 	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
3402 					PCI_EXP_SAVE_REGS * sizeof(u16));
3403 	if (error)
3404 		pci_err(dev, "unable to preallocate PCI Express save buffer\n");
3405 
3406 	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
3407 	if (error)
3408 		pci_err(dev, "unable to preallocate PCI-X save buffer\n");
3409 
3410 	error = pci_add_ext_cap_save_buffer(dev, PCI_EXT_CAP_ID_LTR,
3411 					    2 * sizeof(u16));
3412 	if (error)
3413 		pci_err(dev, "unable to allocate suspend buffer for LTR\n");
3414 
3415 	pci_allocate_vc_save_buffers(dev);
3416 }
3417 
pci_free_cap_save_buffers(struct pci_dev * dev)3418 void pci_free_cap_save_buffers(struct pci_dev *dev)
3419 {
3420 	struct pci_cap_saved_state *tmp;
3421 	struct hlist_node *n;
3422 
3423 	hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next)
3424 		kfree(tmp);
3425 }
3426 
3427 /**
3428  * pci_configure_ari - enable or disable ARI forwarding
3429  * @dev: the PCI device
3430  *
3431  * If @dev and its upstream bridge both support ARI, enable ARI in the
3432  * bridge.  Otherwise, disable ARI in the bridge.
3433  */
pci_configure_ari(struct pci_dev * dev)3434 void pci_configure_ari(struct pci_dev *dev)
3435 {
3436 	u32 cap;
3437 	struct pci_dev *bridge;
3438 
3439 	if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
3440 		return;
3441 
3442 	bridge = dev->bus->self;
3443 	if (!bridge)
3444 		return;
3445 
3446 	pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3447 	if (!(cap & PCI_EXP_DEVCAP2_ARI))
3448 		return;
3449 
3450 	if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) {
3451 		pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
3452 					 PCI_EXP_DEVCTL2_ARI);
3453 		bridge->ari_enabled = 1;
3454 	} else {
3455 		pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2,
3456 					   PCI_EXP_DEVCTL2_ARI);
3457 		bridge->ari_enabled = 0;
3458 	}
3459 }
3460 
pci_acs_flags_enabled(struct pci_dev * pdev,u16 acs_flags)3461 static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags)
3462 {
3463 	int pos;
3464 	u16 cap, ctrl;
3465 
3466 	pos = pdev->acs_cap;
3467 	if (!pos)
3468 		return false;
3469 
3470 	/*
3471 	 * Except for egress control, capabilities are either required
3472 	 * or only required if controllable.  Features missing from the
3473 	 * capability field can therefore be assumed as hard-wired enabled.
3474 	 */
3475 	pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap);
3476 	acs_flags &= (cap | PCI_ACS_EC);
3477 
3478 	pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
3479 	return (ctrl & acs_flags) == acs_flags;
3480 }
3481 
3482 /**
3483  * pci_acs_enabled - test ACS against required flags for a given device
3484  * @pdev: device to test
3485  * @acs_flags: required PCI ACS flags
3486  *
3487  * Return true if the device supports the provided flags.  Automatically
3488  * filters out flags that are not implemented on multifunction devices.
3489  *
3490  * Note that this interface checks the effective ACS capabilities of the
3491  * device rather than the actual capabilities.  For instance, most single
3492  * function endpoints are not required to support ACS because they have no
3493  * opportunity for peer-to-peer access.  We therefore return 'true'
3494  * regardless of whether the device exposes an ACS capability.  This makes
3495  * it much easier for callers of this function to ignore the actual type
3496  * or topology of the device when testing ACS support.
3497  */
pci_acs_enabled(struct pci_dev * pdev,u16 acs_flags)3498 bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
3499 {
3500 	int ret;
3501 
3502 	ret = pci_dev_specific_acs_enabled(pdev, acs_flags);
3503 	if (ret >= 0)
3504 		return ret > 0;
3505 
3506 	/*
3507 	 * Conventional PCI and PCI-X devices never support ACS, either
3508 	 * effectively or actually.  The shared bus topology implies that
3509 	 * any device on the bus can receive or snoop DMA.
3510 	 */
3511 	if (!pci_is_pcie(pdev))
3512 		return false;
3513 
3514 	switch (pci_pcie_type(pdev)) {
3515 	/*
3516 	 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
3517 	 * but since their primary interface is PCI/X, we conservatively
3518 	 * handle them as we would a non-PCIe device.
3519 	 */
3520 	case PCI_EXP_TYPE_PCIE_BRIDGE:
3521 	/*
3522 	 * PCIe 3.0, 6.12.1 excludes ACS on these devices.  "ACS is never
3523 	 * applicable... must never implement an ACS Extended Capability...".
3524 	 * This seems arbitrary, but we take a conservative interpretation
3525 	 * of this statement.
3526 	 */
3527 	case PCI_EXP_TYPE_PCI_BRIDGE:
3528 	case PCI_EXP_TYPE_RC_EC:
3529 		return false;
3530 	/*
3531 	 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
3532 	 * implement ACS in order to indicate their peer-to-peer capabilities,
3533 	 * regardless of whether they are single- or multi-function devices.
3534 	 */
3535 	case PCI_EXP_TYPE_DOWNSTREAM:
3536 	case PCI_EXP_TYPE_ROOT_PORT:
3537 		return pci_acs_flags_enabled(pdev, acs_flags);
3538 	/*
3539 	 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
3540 	 * implemented by the remaining PCIe types to indicate peer-to-peer
3541 	 * capabilities, but only when they are part of a multifunction
3542 	 * device.  The footnote for section 6.12 indicates the specific
3543 	 * PCIe types included here.
3544 	 */
3545 	case PCI_EXP_TYPE_ENDPOINT:
3546 	case PCI_EXP_TYPE_UPSTREAM:
3547 	case PCI_EXP_TYPE_LEG_END:
3548 	case PCI_EXP_TYPE_RC_END:
3549 		if (!pdev->multifunction)
3550 			break;
3551 
3552 		return pci_acs_flags_enabled(pdev, acs_flags);
3553 	}
3554 
3555 	/*
3556 	 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable
3557 	 * to single function devices with the exception of downstream ports.
3558 	 */
3559 	return true;
3560 }
3561 
3562 /**
3563  * pci_acs_path_enabled - test ACS flags from start to end in a hierarchy
3564  * @start: starting downstream device
3565  * @end: ending upstream device or NULL to search to the root bus
3566  * @acs_flags: required flags
3567  *
3568  * Walk up a device tree from start to end testing PCI ACS support.  If
3569  * any step along the way does not support the required flags, return false.
3570  */
pci_acs_path_enabled(struct pci_dev * start,struct pci_dev * end,u16 acs_flags)3571 bool pci_acs_path_enabled(struct pci_dev *start,
3572 			  struct pci_dev *end, u16 acs_flags)
3573 {
3574 	struct pci_dev *pdev, *parent = start;
3575 
3576 	do {
3577 		pdev = parent;
3578 
3579 		if (!pci_acs_enabled(pdev, acs_flags))
3580 			return false;
3581 
3582 		if (pci_is_root_bus(pdev->bus))
3583 			return (end == NULL);
3584 
3585 		parent = pdev->bus->self;
3586 	} while (pdev != end);
3587 
3588 	return true;
3589 }
3590 
3591 /**
3592  * pci_acs_init - Initialize ACS if hardware supports it
3593  * @dev: the PCI device
3594  */
pci_acs_init(struct pci_dev * dev)3595 void pci_acs_init(struct pci_dev *dev)
3596 {
3597 	dev->acs_cap = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
3598 
3599 	/*
3600 	 * Attempt to enable ACS regardless of capability because some Root
3601 	 * Ports (e.g. those quirked with *_intel_pch_acs_*) do not have
3602 	 * the standard ACS capability but still support ACS via those
3603 	 * quirks.
3604 	 */
3605 	pci_enable_acs(dev);
3606 }
3607 
3608 /**
3609  * pci_rebar_find_pos - find position of resize ctrl reg for BAR
3610  * @pdev: PCI device
3611  * @bar: BAR to find
3612  *
3613  * Helper to find the position of the ctrl register for a BAR.
3614  * Returns -ENOTSUPP if resizable BARs are not supported at all.
3615  * Returns -ENOENT if no ctrl register for the BAR could be found.
3616  */
pci_rebar_find_pos(struct pci_dev * pdev,int bar)3617 static int pci_rebar_find_pos(struct pci_dev *pdev, int bar)
3618 {
3619 	unsigned int pos, nbars, i;
3620 	u32 ctrl;
3621 
3622 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
3623 	if (!pos)
3624 		return -ENOTSUPP;
3625 
3626 	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3627 	nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >>
3628 		    PCI_REBAR_CTRL_NBAR_SHIFT;
3629 
3630 	for (i = 0; i < nbars; i++, pos += 8) {
3631 		int bar_idx;
3632 
3633 		pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3634 		bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
3635 		if (bar_idx == bar)
3636 			return pos;
3637 	}
3638 
3639 	return -ENOENT;
3640 }
3641 
3642 /**
3643  * pci_rebar_get_possible_sizes - get possible sizes for BAR
3644  * @pdev: PCI device
3645  * @bar: BAR to query
3646  *
3647  * Get the possible sizes of a resizable BAR as bitmask defined in the spec
3648  * (bit 0=1MB, bit 19=512GB). Returns 0 if BAR isn't resizable.
3649  */
pci_rebar_get_possible_sizes(struct pci_dev * pdev,int bar)3650 u32 pci_rebar_get_possible_sizes(struct pci_dev *pdev, int bar)
3651 {
3652 	int pos;
3653 	u32 cap;
3654 
3655 	pos = pci_rebar_find_pos(pdev, bar);
3656 	if (pos < 0)
3657 		return 0;
3658 
3659 	pci_read_config_dword(pdev, pos + PCI_REBAR_CAP, &cap);
3660 	cap = FIELD_GET(PCI_REBAR_CAP_SIZES, cap);
3661 
3662 	/* Sapphire RX 5600 XT Pulse has an invalid cap dword for BAR 0 */
3663 	if (pdev->vendor == PCI_VENDOR_ID_ATI && pdev->device == 0x731f &&
3664 	    bar == 0 && cap == 0x700)
3665 		return 0x3f00;
3666 
3667 	return cap;
3668 }
3669 EXPORT_SYMBOL(pci_rebar_get_possible_sizes);
3670 
3671 /**
3672  * pci_rebar_get_current_size - get the current size of a BAR
3673  * @pdev: PCI device
3674  * @bar: BAR to set size to
3675  *
3676  * Read the size of a BAR from the resizable BAR config.
3677  * Returns size if found or negative error code.
3678  */
pci_rebar_get_current_size(struct pci_dev * pdev,int bar)3679 int pci_rebar_get_current_size(struct pci_dev *pdev, int bar)
3680 {
3681 	int pos;
3682 	u32 ctrl;
3683 
3684 	pos = pci_rebar_find_pos(pdev, bar);
3685 	if (pos < 0)
3686 		return pos;
3687 
3688 	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3689 	return (ctrl & PCI_REBAR_CTRL_BAR_SIZE) >> PCI_REBAR_CTRL_BAR_SHIFT;
3690 }
3691 
3692 /**
3693  * pci_rebar_set_size - set a new size for a BAR
3694  * @pdev: PCI device
3695  * @bar: BAR to set size to
3696  * @size: new size as defined in the spec (0=1MB, 19=512GB)
3697  *
3698  * Set the new size of a BAR as defined in the spec.
3699  * Returns zero if resizing was successful, error code otherwise.
3700  */
pci_rebar_set_size(struct pci_dev * pdev,int bar,int size)3701 int pci_rebar_set_size(struct pci_dev *pdev, int bar, int size)
3702 {
3703 	int pos;
3704 	u32 ctrl;
3705 
3706 	pos = pci_rebar_find_pos(pdev, bar);
3707 	if (pos < 0)
3708 		return pos;
3709 
3710 	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3711 	ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
3712 	ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT;
3713 	pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
3714 	return 0;
3715 }
3716 
3717 /**
3718  * pci_enable_atomic_ops_to_root - enable AtomicOp requests to root port
3719  * @dev: the PCI device
3720  * @cap_mask: mask of desired AtomicOp sizes, including one or more of:
3721  *	PCI_EXP_DEVCAP2_ATOMIC_COMP32
3722  *	PCI_EXP_DEVCAP2_ATOMIC_COMP64
3723  *	PCI_EXP_DEVCAP2_ATOMIC_COMP128
3724  *
3725  * Return 0 if all upstream bridges support AtomicOp routing, egress
3726  * blocking is disabled on all upstream ports, and the root port supports
3727  * the requested completion capabilities (32-bit, 64-bit and/or 128-bit
3728  * AtomicOp completion), or negative otherwise.
3729  */
pci_enable_atomic_ops_to_root(struct pci_dev * dev,u32 cap_mask)3730 int pci_enable_atomic_ops_to_root(struct pci_dev *dev, u32 cap_mask)
3731 {
3732 	struct pci_bus *bus = dev->bus;
3733 	struct pci_dev *bridge;
3734 	u32 cap, ctl2;
3735 
3736 	/*
3737 	 * Per PCIe r5.0, sec 9.3.5.10, the AtomicOp Requester Enable bit
3738 	 * in Device Control 2 is reserved in VFs and the PF value applies
3739 	 * to all associated VFs.
3740 	 */
3741 	if (dev->is_virtfn)
3742 		return -EINVAL;
3743 
3744 	if (!pci_is_pcie(dev))
3745 		return -EINVAL;
3746 
3747 	/*
3748 	 * Per PCIe r4.0, sec 6.15, endpoints and root ports may be
3749 	 * AtomicOp requesters.  For now, we only support endpoints as
3750 	 * requesters and root ports as completers.  No endpoints as
3751 	 * completers, and no peer-to-peer.
3752 	 */
3753 
3754 	switch (pci_pcie_type(dev)) {
3755 	case PCI_EXP_TYPE_ENDPOINT:
3756 	case PCI_EXP_TYPE_LEG_END:
3757 	case PCI_EXP_TYPE_RC_END:
3758 		break;
3759 	default:
3760 		return -EINVAL;
3761 	}
3762 
3763 	while (bus->parent) {
3764 		bridge = bus->self;
3765 
3766 		pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3767 
3768 		switch (pci_pcie_type(bridge)) {
3769 		/* Ensure switch ports support AtomicOp routing */
3770 		case PCI_EXP_TYPE_UPSTREAM:
3771 		case PCI_EXP_TYPE_DOWNSTREAM:
3772 			if (!(cap & PCI_EXP_DEVCAP2_ATOMIC_ROUTE))
3773 				return -EINVAL;
3774 			break;
3775 
3776 		/* Ensure root port supports all the sizes we care about */
3777 		case PCI_EXP_TYPE_ROOT_PORT:
3778 			if ((cap & cap_mask) != cap_mask)
3779 				return -EINVAL;
3780 			break;
3781 		}
3782 
3783 		/* Ensure upstream ports don't block AtomicOps on egress */
3784 		if (pci_pcie_type(bridge) == PCI_EXP_TYPE_UPSTREAM) {
3785 			pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2,
3786 						   &ctl2);
3787 			if (ctl2 & PCI_EXP_DEVCTL2_ATOMIC_EGRESS_BLOCK)
3788 				return -EINVAL;
3789 		}
3790 
3791 		bus = bus->parent;
3792 	}
3793 
3794 	pcie_capability_set_word(dev, PCI_EXP_DEVCTL2,
3795 				 PCI_EXP_DEVCTL2_ATOMIC_REQ);
3796 	return 0;
3797 }
3798 EXPORT_SYMBOL(pci_enable_atomic_ops_to_root);
3799 
3800 /**
3801  * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
3802  * @dev: the PCI device
3803  * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD)
3804  *
3805  * Perform INTx swizzling for a device behind one level of bridge.  This is
3806  * required by section 9.1 of the PCI-to-PCI bridge specification for devices
3807  * behind bridges on add-in cards.  For devices with ARI enabled, the slot
3808  * number is always 0 (see the Implementation Note in section 2.2.8.1 of
3809  * the PCI Express Base Specification, Revision 2.1)
3810  */
pci_swizzle_interrupt_pin(const struct pci_dev * dev,u8 pin)3811 u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin)
3812 {
3813 	int slot;
3814 
3815 	if (pci_ari_enabled(dev->bus))
3816 		slot = 0;
3817 	else
3818 		slot = PCI_SLOT(dev->devfn);
3819 
3820 	return (((pin - 1) + slot) % 4) + 1;
3821 }
3822 
pci_get_interrupt_pin(struct pci_dev * dev,struct pci_dev ** bridge)3823 int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
3824 {
3825 	u8 pin;
3826 
3827 	pin = dev->pin;
3828 	if (!pin)
3829 		return -1;
3830 
3831 	while (!pci_is_root_bus(dev->bus)) {
3832 		pin = pci_swizzle_interrupt_pin(dev, pin);
3833 		dev = dev->bus->self;
3834 	}
3835 	*bridge = dev;
3836 	return pin;
3837 }
3838 
3839 /**
3840  * pci_common_swizzle - swizzle INTx all the way to root bridge
3841  * @dev: the PCI device
3842  * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
3843  *
3844  * Perform INTx swizzling for a device.  This traverses through all PCI-to-PCI
3845  * bridges all the way up to a PCI root bus.
3846  */
pci_common_swizzle(struct pci_dev * dev,u8 * pinp)3847 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
3848 {
3849 	u8 pin = *pinp;
3850 
3851 	while (!pci_is_root_bus(dev->bus)) {
3852 		pin = pci_swizzle_interrupt_pin(dev, pin);
3853 		dev = dev->bus->self;
3854 	}
3855 	*pinp = pin;
3856 	return PCI_SLOT(dev->devfn);
3857 }
3858 EXPORT_SYMBOL_GPL(pci_common_swizzle);
3859 
3860 /**
3861  * pci_release_region - Release a PCI bar
3862  * @pdev: PCI device whose resources were previously reserved by
3863  *	  pci_request_region()
3864  * @bar: BAR to release
3865  *
3866  * Releases the PCI I/O and memory resources previously reserved by a
3867  * successful call to pci_request_region().  Call this function only
3868  * after all use of the PCI regions has ceased.
3869  */
pci_release_region(struct pci_dev * pdev,int bar)3870 void pci_release_region(struct pci_dev *pdev, int bar)
3871 {
3872 	struct pci_devres *dr;
3873 
3874 	if (pci_resource_len(pdev, bar) == 0)
3875 		return;
3876 	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
3877 		release_region(pci_resource_start(pdev, bar),
3878 				pci_resource_len(pdev, bar));
3879 	else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
3880 		release_mem_region(pci_resource_start(pdev, bar),
3881 				pci_resource_len(pdev, bar));
3882 
3883 	dr = find_pci_dr(pdev);
3884 	if (dr)
3885 		dr->region_mask &= ~(1 << bar);
3886 }
3887 EXPORT_SYMBOL(pci_release_region);
3888 
3889 /**
3890  * __pci_request_region - Reserved PCI I/O and memory resource
3891  * @pdev: PCI device whose resources are to be reserved
3892  * @bar: BAR to be reserved
3893  * @res_name: Name to be associated with resource.
3894  * @exclusive: whether the region access is exclusive or not
3895  *
3896  * Mark the PCI region associated with PCI device @pdev BAR @bar as
3897  * being reserved by owner @res_name.  Do not access any
3898  * address inside the PCI regions unless this call returns
3899  * successfully.
3900  *
3901  * If @exclusive is set, then the region is marked so that userspace
3902  * is explicitly not allowed to map the resource via /dev/mem or
3903  * sysfs MMIO access.
3904  *
3905  * Returns 0 on success, or %EBUSY on error.  A warning
3906  * message is also printed on failure.
3907  */
__pci_request_region(struct pci_dev * pdev,int bar,const char * res_name,int exclusive)3908 static int __pci_request_region(struct pci_dev *pdev, int bar,
3909 				const char *res_name, int exclusive)
3910 {
3911 	struct pci_devres *dr;
3912 
3913 	if (pci_resource_len(pdev, bar) == 0)
3914 		return 0;
3915 
3916 	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
3917 		if (!request_region(pci_resource_start(pdev, bar),
3918 			    pci_resource_len(pdev, bar), res_name))
3919 			goto err_out;
3920 	} else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
3921 		if (!__request_mem_region(pci_resource_start(pdev, bar),
3922 					pci_resource_len(pdev, bar), res_name,
3923 					exclusive))
3924 			goto err_out;
3925 	}
3926 
3927 	dr = find_pci_dr(pdev);
3928 	if (dr)
3929 		dr->region_mask |= 1 << bar;
3930 
3931 	return 0;
3932 
3933 err_out:
3934 	pci_warn(pdev, "BAR %d: can't reserve %pR\n", bar,
3935 		 &pdev->resource[bar]);
3936 	return -EBUSY;
3937 }
3938 
3939 /**
3940  * pci_request_region - Reserve PCI I/O and memory resource
3941  * @pdev: PCI device whose resources are to be reserved
3942  * @bar: BAR to be reserved
3943  * @res_name: Name to be associated with resource
3944  *
3945  * Mark the PCI region associated with PCI device @pdev BAR @bar as
3946  * being reserved by owner @res_name.  Do not access any
3947  * address inside the PCI regions unless this call returns
3948  * successfully.
3949  *
3950  * Returns 0 on success, or %EBUSY on error.  A warning
3951  * message is also printed on failure.
3952  */
pci_request_region(struct pci_dev * pdev,int bar,const char * res_name)3953 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
3954 {
3955 	return __pci_request_region(pdev, bar, res_name, 0);
3956 }
3957 EXPORT_SYMBOL(pci_request_region);
3958 
3959 /**
3960  * pci_release_selected_regions - Release selected PCI I/O and memory resources
3961  * @pdev: PCI device whose resources were previously reserved
3962  * @bars: Bitmask of BARs to be released
3963  *
3964  * Release selected PCI I/O and memory resources previously reserved.
3965  * Call this function only after all use of the PCI regions has ceased.
3966  */
pci_release_selected_regions(struct pci_dev * pdev,int bars)3967 void pci_release_selected_regions(struct pci_dev *pdev, int bars)
3968 {
3969 	int i;
3970 
3971 	for (i = 0; i < PCI_STD_NUM_BARS; i++)
3972 		if (bars & (1 << i))
3973 			pci_release_region(pdev, i);
3974 }
3975 EXPORT_SYMBOL(pci_release_selected_regions);
3976 
__pci_request_selected_regions(struct pci_dev * pdev,int bars,const char * res_name,int excl)3977 static int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
3978 					  const char *res_name, int excl)
3979 {
3980 	int i;
3981 
3982 	for (i = 0; i < PCI_STD_NUM_BARS; i++)
3983 		if (bars & (1 << i))
3984 			if (__pci_request_region(pdev, i, res_name, excl))
3985 				goto err_out;
3986 	return 0;
3987 
3988 err_out:
3989 	while (--i >= 0)
3990 		if (bars & (1 << i))
3991 			pci_release_region(pdev, i);
3992 
3993 	return -EBUSY;
3994 }
3995 
3996 
3997 /**
3998  * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
3999  * @pdev: PCI device whose resources are to be reserved
4000  * @bars: Bitmask of BARs to be requested
4001  * @res_name: Name to be associated with resource
4002  */
pci_request_selected_regions(struct pci_dev * pdev,int bars,const char * res_name)4003 int pci_request_selected_regions(struct pci_dev *pdev, int bars,
4004 				 const char *res_name)
4005 {
4006 	return __pci_request_selected_regions(pdev, bars, res_name, 0);
4007 }
4008 EXPORT_SYMBOL(pci_request_selected_regions);
4009 
pci_request_selected_regions_exclusive(struct pci_dev * pdev,int bars,const char * res_name)4010 int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars,
4011 					   const char *res_name)
4012 {
4013 	return __pci_request_selected_regions(pdev, bars, res_name,
4014 			IORESOURCE_EXCLUSIVE);
4015 }
4016 EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
4017 
4018 /**
4019  * pci_release_regions - Release reserved PCI I/O and memory resources
4020  * @pdev: PCI device whose resources were previously reserved by
4021  *	  pci_request_regions()
4022  *
4023  * Releases all PCI I/O and memory resources previously reserved by a
4024  * successful call to pci_request_regions().  Call this function only
4025  * after all use of the PCI regions has ceased.
4026  */
4027 
pci_release_regions(struct pci_dev * pdev)4028 void pci_release_regions(struct pci_dev *pdev)
4029 {
4030 	pci_release_selected_regions(pdev, (1 << PCI_STD_NUM_BARS) - 1);
4031 }
4032 EXPORT_SYMBOL(pci_release_regions);
4033 
4034 /**
4035  * pci_request_regions - Reserve PCI I/O and memory resources
4036  * @pdev: PCI device whose resources are to be reserved
4037  * @res_name: Name to be associated with resource.
4038  *
4039  * Mark all PCI regions associated with PCI device @pdev as
4040  * being reserved by owner @res_name.  Do not access any
4041  * address inside the PCI regions unless this call returns
4042  * successfully.
4043  *
4044  * Returns 0 on success, or %EBUSY on error.  A warning
4045  * message is also printed on failure.
4046  */
pci_request_regions(struct pci_dev * pdev,const char * res_name)4047 int pci_request_regions(struct pci_dev *pdev, const char *res_name)
4048 {
4049 	return pci_request_selected_regions(pdev,
4050 			((1 << PCI_STD_NUM_BARS) - 1), res_name);
4051 }
4052 EXPORT_SYMBOL(pci_request_regions);
4053 
4054 /**
4055  * pci_request_regions_exclusive - Reserve PCI I/O and memory resources
4056  * @pdev: PCI device whose resources are to be reserved
4057  * @res_name: Name to be associated with resource.
4058  *
4059  * Mark all PCI regions associated with PCI device @pdev as being reserved
4060  * by owner @res_name.  Do not access any address inside the PCI regions
4061  * unless this call returns successfully.
4062  *
4063  * pci_request_regions_exclusive() will mark the region so that /dev/mem
4064  * and the sysfs MMIO access will not be allowed.
4065  *
4066  * Returns 0 on success, or %EBUSY on error.  A warning message is also
4067  * printed on failure.
4068  */
pci_request_regions_exclusive(struct pci_dev * pdev,const char * res_name)4069 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
4070 {
4071 	return pci_request_selected_regions_exclusive(pdev,
4072 				((1 << PCI_STD_NUM_BARS) - 1), res_name);
4073 }
4074 EXPORT_SYMBOL(pci_request_regions_exclusive);
4075 
4076 /*
4077  * Record the PCI IO range (expressed as CPU physical address + size).
4078  * Return a negative value if an error has occurred, zero otherwise
4079  */
pci_register_io_range(struct fwnode_handle * fwnode,phys_addr_t addr,resource_size_t size)4080 int pci_register_io_range(struct fwnode_handle *fwnode, phys_addr_t addr,
4081 			resource_size_t	size)
4082 {
4083 	int ret = 0;
4084 #ifdef PCI_IOBASE
4085 	struct logic_pio_hwaddr *range;
4086 
4087 	if (!size || addr + size < addr)
4088 		return -EINVAL;
4089 
4090 	range = kzalloc(sizeof(*range), GFP_ATOMIC);
4091 	if (!range)
4092 		return -ENOMEM;
4093 
4094 	range->fwnode = fwnode;
4095 	range->size = size;
4096 	range->hw_start = addr;
4097 	range->flags = LOGIC_PIO_CPU_MMIO;
4098 
4099 	ret = logic_pio_register_range(range);
4100 	if (ret)
4101 		kfree(range);
4102 
4103 	/* Ignore duplicates due to deferred probing */
4104 	if (ret == -EEXIST)
4105 		ret = 0;
4106 #endif
4107 
4108 	return ret;
4109 }
4110 
pci_pio_to_address(unsigned long pio)4111 phys_addr_t pci_pio_to_address(unsigned long pio)
4112 {
4113 	phys_addr_t address = (phys_addr_t)OF_BAD_ADDR;
4114 
4115 #ifdef PCI_IOBASE
4116 	if (pio >= MMIO_UPPER_LIMIT)
4117 		return address;
4118 
4119 	address = logic_pio_to_hwaddr(pio);
4120 #endif
4121 
4122 	return address;
4123 }
4124 EXPORT_SYMBOL_GPL(pci_pio_to_address);
4125 
pci_address_to_pio(phys_addr_t address)4126 unsigned long __weak pci_address_to_pio(phys_addr_t address)
4127 {
4128 #ifdef PCI_IOBASE
4129 	return logic_pio_trans_cpuaddr(address);
4130 #else
4131 	if (address > IO_SPACE_LIMIT)
4132 		return (unsigned long)-1;
4133 
4134 	return (unsigned long) address;
4135 #endif
4136 }
4137 
4138 /**
4139  * pci_remap_iospace - Remap the memory mapped I/O space
4140  * @res: Resource describing the I/O space
4141  * @phys_addr: physical address of range to be mapped
4142  *
4143  * Remap the memory mapped I/O space described by the @res and the CPU
4144  * physical address @phys_addr into virtual address space.  Only
4145  * architectures that have memory mapped IO functions defined (and the
4146  * PCI_IOBASE value defined) should call this function.
4147  */
pci_remap_iospace(const struct resource * res,phys_addr_t phys_addr)4148 int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr)
4149 {
4150 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
4151 	unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
4152 
4153 	if (!(res->flags & IORESOURCE_IO))
4154 		return -EINVAL;
4155 
4156 	if (res->end > IO_SPACE_LIMIT)
4157 		return -EINVAL;
4158 
4159 	return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr,
4160 				  pgprot_device(PAGE_KERNEL));
4161 #else
4162 	/*
4163 	 * This architecture does not have memory mapped I/O space,
4164 	 * so this function should never be called
4165 	 */
4166 	WARN_ONCE(1, "This architecture does not support memory mapped I/O\n");
4167 	return -ENODEV;
4168 #endif
4169 }
4170 EXPORT_SYMBOL(pci_remap_iospace);
4171 
4172 /**
4173  * pci_unmap_iospace - Unmap the memory mapped I/O space
4174  * @res: resource to be unmapped
4175  *
4176  * Unmap the CPU virtual address @res from virtual address space.  Only
4177  * architectures that have memory mapped IO functions defined (and the
4178  * PCI_IOBASE value defined) should call this function.
4179  */
pci_unmap_iospace(struct resource * res)4180 void pci_unmap_iospace(struct resource *res)
4181 {
4182 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
4183 	unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
4184 
4185 	vunmap_range(vaddr, vaddr + resource_size(res));
4186 #endif
4187 }
4188 EXPORT_SYMBOL(pci_unmap_iospace);
4189 
devm_pci_unmap_iospace(struct device * dev,void * ptr)4190 static void devm_pci_unmap_iospace(struct device *dev, void *ptr)
4191 {
4192 	struct resource **res = ptr;
4193 
4194 	pci_unmap_iospace(*res);
4195 }
4196 
4197 /**
4198  * devm_pci_remap_iospace - Managed pci_remap_iospace()
4199  * @dev: Generic device to remap IO address for
4200  * @res: Resource describing the I/O space
4201  * @phys_addr: physical address of range to be mapped
4202  *
4203  * Managed pci_remap_iospace().  Map is automatically unmapped on driver
4204  * detach.
4205  */
devm_pci_remap_iospace(struct device * dev,const struct resource * res,phys_addr_t phys_addr)4206 int devm_pci_remap_iospace(struct device *dev, const struct resource *res,
4207 			   phys_addr_t phys_addr)
4208 {
4209 	const struct resource **ptr;
4210 	int error;
4211 
4212 	ptr = devres_alloc(devm_pci_unmap_iospace, sizeof(*ptr), GFP_KERNEL);
4213 	if (!ptr)
4214 		return -ENOMEM;
4215 
4216 	error = pci_remap_iospace(res, phys_addr);
4217 	if (error) {
4218 		devres_free(ptr);
4219 	} else	{
4220 		*ptr = res;
4221 		devres_add(dev, ptr);
4222 	}
4223 
4224 	return error;
4225 }
4226 EXPORT_SYMBOL(devm_pci_remap_iospace);
4227 
4228 /**
4229  * devm_pci_remap_cfgspace - Managed pci_remap_cfgspace()
4230  * @dev: Generic device to remap IO address for
4231  * @offset: Resource address to map
4232  * @size: Size of map
4233  *
4234  * Managed pci_remap_cfgspace().  Map is automatically unmapped on driver
4235  * detach.
4236  */
devm_pci_remap_cfgspace(struct device * dev,resource_size_t offset,resource_size_t size)4237 void __iomem *devm_pci_remap_cfgspace(struct device *dev,
4238 				      resource_size_t offset,
4239 				      resource_size_t size)
4240 {
4241 	void __iomem **ptr, *addr;
4242 
4243 	ptr = devres_alloc(devm_ioremap_release, sizeof(*ptr), GFP_KERNEL);
4244 	if (!ptr)
4245 		return NULL;
4246 
4247 	addr = pci_remap_cfgspace(offset, size);
4248 	if (addr) {
4249 		*ptr = addr;
4250 		devres_add(dev, ptr);
4251 	} else
4252 		devres_free(ptr);
4253 
4254 	return addr;
4255 }
4256 EXPORT_SYMBOL(devm_pci_remap_cfgspace);
4257 
4258 /**
4259  * devm_pci_remap_cfg_resource - check, request region and ioremap cfg resource
4260  * @dev: generic device to handle the resource for
4261  * @res: configuration space resource to be handled
4262  *
4263  * Checks that a resource is a valid memory region, requests the memory
4264  * region and ioremaps with pci_remap_cfgspace() API that ensures the
4265  * proper PCI configuration space memory attributes are guaranteed.
4266  *
4267  * All operations are managed and will be undone on driver detach.
4268  *
4269  * Returns a pointer to the remapped memory or an ERR_PTR() encoded error code
4270  * on failure. Usage example::
4271  *
4272  *	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
4273  *	base = devm_pci_remap_cfg_resource(&pdev->dev, res);
4274  *	if (IS_ERR(base))
4275  *		return PTR_ERR(base);
4276  */
devm_pci_remap_cfg_resource(struct device * dev,struct resource * res)4277 void __iomem *devm_pci_remap_cfg_resource(struct device *dev,
4278 					  struct resource *res)
4279 {
4280 	resource_size_t size;
4281 	const char *name;
4282 	void __iomem *dest_ptr;
4283 
4284 	BUG_ON(!dev);
4285 
4286 	if (!res || resource_type(res) != IORESOURCE_MEM) {
4287 		dev_err(dev, "invalid resource\n");
4288 		return IOMEM_ERR_PTR(-EINVAL);
4289 	}
4290 
4291 	size = resource_size(res);
4292 
4293 	if (res->name)
4294 		name = devm_kasprintf(dev, GFP_KERNEL, "%s %s", dev_name(dev),
4295 				      res->name);
4296 	else
4297 		name = devm_kstrdup(dev, dev_name(dev), GFP_KERNEL);
4298 	if (!name)
4299 		return IOMEM_ERR_PTR(-ENOMEM);
4300 
4301 	if (!devm_request_mem_region(dev, res->start, size, name)) {
4302 		dev_err(dev, "can't request region for resource %pR\n", res);
4303 		return IOMEM_ERR_PTR(-EBUSY);
4304 	}
4305 
4306 	dest_ptr = devm_pci_remap_cfgspace(dev, res->start, size);
4307 	if (!dest_ptr) {
4308 		dev_err(dev, "ioremap failed for resource %pR\n", res);
4309 		devm_release_mem_region(dev, res->start, size);
4310 		dest_ptr = IOMEM_ERR_PTR(-ENOMEM);
4311 	}
4312 
4313 	return dest_ptr;
4314 }
4315 EXPORT_SYMBOL(devm_pci_remap_cfg_resource);
4316 
__pci_set_master(struct pci_dev * dev,bool enable)4317 static void __pci_set_master(struct pci_dev *dev, bool enable)
4318 {
4319 	u16 old_cmd, cmd;
4320 
4321 	pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
4322 	if (enable)
4323 		cmd = old_cmd | PCI_COMMAND_MASTER;
4324 	else
4325 		cmd = old_cmd & ~PCI_COMMAND_MASTER;
4326 	if (cmd != old_cmd) {
4327 		pci_dbg(dev, "%s bus mastering\n",
4328 			enable ? "enabling" : "disabling");
4329 		pci_write_config_word(dev, PCI_COMMAND, cmd);
4330 	}
4331 	dev->is_busmaster = enable;
4332 }
4333 
4334 /**
4335  * pcibios_setup - process "pci=" kernel boot arguments
4336  * @str: string used to pass in "pci=" kernel boot arguments
4337  *
4338  * Process kernel boot arguments.  This is the default implementation.
4339  * Architecture specific implementations can override this as necessary.
4340  */
pcibios_setup(char * str)4341 char * __weak __init pcibios_setup(char *str)
4342 {
4343 	return str;
4344 }
4345 
4346 /**
4347  * pcibios_set_master - enable PCI bus-mastering for device dev
4348  * @dev: the PCI device to enable
4349  *
4350  * Enables PCI bus-mastering for the device.  This is the default
4351  * implementation.  Architecture specific implementations can override
4352  * this if necessary.
4353  */
pcibios_set_master(struct pci_dev * dev)4354 void __weak pcibios_set_master(struct pci_dev *dev)
4355 {
4356 	u8 lat;
4357 
4358 	/* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
4359 	if (pci_is_pcie(dev))
4360 		return;
4361 
4362 	pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
4363 	if (lat < 16)
4364 		lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
4365 	else if (lat > pcibios_max_latency)
4366 		lat = pcibios_max_latency;
4367 	else
4368 		return;
4369 
4370 	pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
4371 }
4372 
4373 /**
4374  * pci_set_master - enables bus-mastering for device dev
4375  * @dev: the PCI device to enable
4376  *
4377  * Enables bus-mastering on the device and calls pcibios_set_master()
4378  * to do the needed arch specific settings.
4379  */
pci_set_master(struct pci_dev * dev)4380 void pci_set_master(struct pci_dev *dev)
4381 {
4382 	__pci_set_master(dev, true);
4383 	pcibios_set_master(dev);
4384 }
4385 EXPORT_SYMBOL(pci_set_master);
4386 
4387 /**
4388  * pci_clear_master - disables bus-mastering for device dev
4389  * @dev: the PCI device to disable
4390  */
pci_clear_master(struct pci_dev * dev)4391 void pci_clear_master(struct pci_dev *dev)
4392 {
4393 	__pci_set_master(dev, false);
4394 }
4395 EXPORT_SYMBOL(pci_clear_master);
4396 
4397 /**
4398  * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
4399  * @dev: the PCI device for which MWI is to be enabled
4400  *
4401  * Helper function for pci_set_mwi.
4402  * Originally copied from drivers/net/acenic.c.
4403  * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
4404  *
4405  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4406  */
pci_set_cacheline_size(struct pci_dev * dev)4407 int pci_set_cacheline_size(struct pci_dev *dev)
4408 {
4409 	u8 cacheline_size;
4410 
4411 	if (!pci_cache_line_size)
4412 		return -EINVAL;
4413 
4414 	/* Validate current setting: the PCI_CACHE_LINE_SIZE must be
4415 	   equal to or multiple of the right value. */
4416 	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4417 	if (cacheline_size >= pci_cache_line_size &&
4418 	    (cacheline_size % pci_cache_line_size) == 0)
4419 		return 0;
4420 
4421 	/* Write the correct value. */
4422 	pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
4423 	/* Read it back. */
4424 	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4425 	if (cacheline_size == pci_cache_line_size)
4426 		return 0;
4427 
4428 	pci_dbg(dev, "cache line size of %d is not supported\n",
4429 		   pci_cache_line_size << 2);
4430 
4431 	return -EINVAL;
4432 }
4433 EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
4434 
4435 /**
4436  * pci_set_mwi - enables memory-write-invalidate PCI transaction
4437  * @dev: the PCI device for which MWI is enabled
4438  *
4439  * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4440  *
4441  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4442  */
pci_set_mwi(struct pci_dev * dev)4443 int pci_set_mwi(struct pci_dev *dev)
4444 {
4445 #ifdef PCI_DISABLE_MWI
4446 	return 0;
4447 #else
4448 	int rc;
4449 	u16 cmd;
4450 
4451 	rc = pci_set_cacheline_size(dev);
4452 	if (rc)
4453 		return rc;
4454 
4455 	pci_read_config_word(dev, PCI_COMMAND, &cmd);
4456 	if (!(cmd & PCI_COMMAND_INVALIDATE)) {
4457 		pci_dbg(dev, "enabling Mem-Wr-Inval\n");
4458 		cmd |= PCI_COMMAND_INVALIDATE;
4459 		pci_write_config_word(dev, PCI_COMMAND, cmd);
4460 	}
4461 	return 0;
4462 #endif
4463 }
4464 EXPORT_SYMBOL(pci_set_mwi);
4465 
4466 /**
4467  * pcim_set_mwi - a device-managed pci_set_mwi()
4468  * @dev: the PCI device for which MWI is enabled
4469  *
4470  * Managed pci_set_mwi().
4471  *
4472  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4473  */
pcim_set_mwi(struct pci_dev * dev)4474 int pcim_set_mwi(struct pci_dev *dev)
4475 {
4476 	struct pci_devres *dr;
4477 
4478 	dr = find_pci_dr(dev);
4479 	if (!dr)
4480 		return -ENOMEM;
4481 
4482 	dr->mwi = 1;
4483 	return pci_set_mwi(dev);
4484 }
4485 EXPORT_SYMBOL(pcim_set_mwi);
4486 
4487 /**
4488  * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
4489  * @dev: the PCI device for which MWI is enabled
4490  *
4491  * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4492  * Callers are not required to check the return value.
4493  *
4494  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4495  */
pci_try_set_mwi(struct pci_dev * dev)4496 int pci_try_set_mwi(struct pci_dev *dev)
4497 {
4498 #ifdef PCI_DISABLE_MWI
4499 	return 0;
4500 #else
4501 	return pci_set_mwi(dev);
4502 #endif
4503 }
4504 EXPORT_SYMBOL(pci_try_set_mwi);
4505 
4506 /**
4507  * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
4508  * @dev: the PCI device to disable
4509  *
4510  * Disables PCI Memory-Write-Invalidate transaction on the device
4511  */
pci_clear_mwi(struct pci_dev * dev)4512 void pci_clear_mwi(struct pci_dev *dev)
4513 {
4514 #ifndef PCI_DISABLE_MWI
4515 	u16 cmd;
4516 
4517 	pci_read_config_word(dev, PCI_COMMAND, &cmd);
4518 	if (cmd & PCI_COMMAND_INVALIDATE) {
4519 		cmd &= ~PCI_COMMAND_INVALIDATE;
4520 		pci_write_config_word(dev, PCI_COMMAND, cmd);
4521 	}
4522 #endif
4523 }
4524 EXPORT_SYMBOL(pci_clear_mwi);
4525 
4526 /**
4527  * pci_disable_parity - disable parity checking for device
4528  * @dev: the PCI device to operate on
4529  *
4530  * Disable parity checking for device @dev
4531  */
pci_disable_parity(struct pci_dev * dev)4532 void pci_disable_parity(struct pci_dev *dev)
4533 {
4534 	u16 cmd;
4535 
4536 	pci_read_config_word(dev, PCI_COMMAND, &cmd);
4537 	if (cmd & PCI_COMMAND_PARITY) {
4538 		cmd &= ~PCI_COMMAND_PARITY;
4539 		pci_write_config_word(dev, PCI_COMMAND, cmd);
4540 	}
4541 }
4542 
4543 /**
4544  * pci_intx - enables/disables PCI INTx for device dev
4545  * @pdev: the PCI device to operate on
4546  * @enable: boolean: whether to enable or disable PCI INTx
4547  *
4548  * Enables/disables PCI INTx for device @pdev
4549  */
pci_intx(struct pci_dev * pdev,int enable)4550 void pci_intx(struct pci_dev *pdev, int enable)
4551 {
4552 	u16 pci_command, new;
4553 
4554 	pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
4555 
4556 	if (enable)
4557 		new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
4558 	else
4559 		new = pci_command | PCI_COMMAND_INTX_DISABLE;
4560 
4561 	if (new != pci_command) {
4562 		struct pci_devres *dr;
4563 
4564 		pci_write_config_word(pdev, PCI_COMMAND, new);
4565 
4566 		dr = find_pci_dr(pdev);
4567 		if (dr && !dr->restore_intx) {
4568 			dr->restore_intx = 1;
4569 			dr->orig_intx = !enable;
4570 		}
4571 	}
4572 }
4573 EXPORT_SYMBOL_GPL(pci_intx);
4574 
pci_check_and_set_intx_mask(struct pci_dev * dev,bool mask)4575 static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask)
4576 {
4577 	struct pci_bus *bus = dev->bus;
4578 	bool mask_updated = true;
4579 	u32 cmd_status_dword;
4580 	u16 origcmd, newcmd;
4581 	unsigned long flags;
4582 	bool irq_pending;
4583 
4584 	/*
4585 	 * We do a single dword read to retrieve both command and status.
4586 	 * Document assumptions that make this possible.
4587 	 */
4588 	BUILD_BUG_ON(PCI_COMMAND % 4);
4589 	BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS);
4590 
4591 	raw_spin_lock_irqsave(&pci_lock, flags);
4592 
4593 	bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword);
4594 
4595 	irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT;
4596 
4597 	/*
4598 	 * Check interrupt status register to see whether our device
4599 	 * triggered the interrupt (when masking) or the next IRQ is
4600 	 * already pending (when unmasking).
4601 	 */
4602 	if (mask != irq_pending) {
4603 		mask_updated = false;
4604 		goto done;
4605 	}
4606 
4607 	origcmd = cmd_status_dword;
4608 	newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE;
4609 	if (mask)
4610 		newcmd |= PCI_COMMAND_INTX_DISABLE;
4611 	if (newcmd != origcmd)
4612 		bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd);
4613 
4614 done:
4615 	raw_spin_unlock_irqrestore(&pci_lock, flags);
4616 
4617 	return mask_updated;
4618 }
4619 
4620 /**
4621  * pci_check_and_mask_intx - mask INTx on pending interrupt
4622  * @dev: the PCI device to operate on
4623  *
4624  * Check if the device dev has its INTx line asserted, mask it and return
4625  * true in that case. False is returned if no interrupt was pending.
4626  */
pci_check_and_mask_intx(struct pci_dev * dev)4627 bool pci_check_and_mask_intx(struct pci_dev *dev)
4628 {
4629 	return pci_check_and_set_intx_mask(dev, true);
4630 }
4631 EXPORT_SYMBOL_GPL(pci_check_and_mask_intx);
4632 
4633 /**
4634  * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending
4635  * @dev: the PCI device to operate on
4636  *
4637  * Check if the device dev has its INTx line asserted, unmask it if not and
4638  * return true. False is returned and the mask remains active if there was
4639  * still an interrupt pending.
4640  */
pci_check_and_unmask_intx(struct pci_dev * dev)4641 bool pci_check_and_unmask_intx(struct pci_dev *dev)
4642 {
4643 	return pci_check_and_set_intx_mask(dev, false);
4644 }
4645 EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx);
4646 
4647 /**
4648  * pci_wait_for_pending_transaction - wait for pending transaction
4649  * @dev: the PCI device to operate on
4650  *
4651  * Return 0 if transaction is pending 1 otherwise.
4652  */
pci_wait_for_pending_transaction(struct pci_dev * dev)4653 int pci_wait_for_pending_transaction(struct pci_dev *dev)
4654 {
4655 	if (!pci_is_pcie(dev))
4656 		return 1;
4657 
4658 	return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA,
4659 				    PCI_EXP_DEVSTA_TRPND);
4660 }
4661 EXPORT_SYMBOL(pci_wait_for_pending_transaction);
4662 
4663 /**
4664  * pcie_flr - initiate a PCIe function level reset
4665  * @dev: device to reset
4666  *
4667  * Initiate a function level reset unconditionally on @dev without
4668  * checking any flags and DEVCAP
4669  */
pcie_flr(struct pci_dev * dev)4670 int pcie_flr(struct pci_dev *dev)
4671 {
4672 	if (!pci_wait_for_pending_transaction(dev))
4673 		pci_err(dev, "timed out waiting for pending transaction; performing function level reset anyway\n");
4674 
4675 	pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR);
4676 
4677 	if (dev->imm_ready)
4678 		return 0;
4679 
4680 	/*
4681 	 * Per PCIe r4.0, sec 6.6.2, a device must complete an FLR within
4682 	 * 100ms, but may silently discard requests while the FLR is in
4683 	 * progress.  Wait 100ms before trying to access the device.
4684 	 */
4685 	msleep(100);
4686 
4687 	return pci_dev_wait(dev, "FLR", PCIE_RESET_READY_POLL_MS);
4688 }
4689 EXPORT_SYMBOL_GPL(pcie_flr);
4690 
4691 /**
4692  * pcie_reset_flr - initiate a PCIe function level reset
4693  * @dev: device to reset
4694  * @probe: if true, return 0 if device can be reset this way
4695  *
4696  * Initiate a function level reset on @dev.
4697  */
pcie_reset_flr(struct pci_dev * dev,bool probe)4698 int pcie_reset_flr(struct pci_dev *dev, bool probe)
4699 {
4700 	if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4701 		return -ENOTTY;
4702 
4703 	if (!(dev->devcap & PCI_EXP_DEVCAP_FLR))
4704 		return -ENOTTY;
4705 
4706 	if (probe)
4707 		return 0;
4708 
4709 	return pcie_flr(dev);
4710 }
4711 EXPORT_SYMBOL_GPL(pcie_reset_flr);
4712 
pci_af_flr(struct pci_dev * dev,bool probe)4713 static int pci_af_flr(struct pci_dev *dev, bool probe)
4714 {
4715 	int pos;
4716 	u8 cap;
4717 
4718 	pos = pci_find_capability(dev, PCI_CAP_ID_AF);
4719 	if (!pos)
4720 		return -ENOTTY;
4721 
4722 	if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4723 		return -ENOTTY;
4724 
4725 	pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
4726 	if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
4727 		return -ENOTTY;
4728 
4729 	if (probe)
4730 		return 0;
4731 
4732 	/*
4733 	 * Wait for Transaction Pending bit to clear.  A word-aligned test
4734 	 * is used, so we use the control offset rather than status and shift
4735 	 * the test bit to match.
4736 	 */
4737 	if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL,
4738 				 PCI_AF_STATUS_TP << 8))
4739 		pci_err(dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n");
4740 
4741 	pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
4742 
4743 	if (dev->imm_ready)
4744 		return 0;
4745 
4746 	/*
4747 	 * Per Advanced Capabilities for Conventional PCI ECN, 13 April 2006,
4748 	 * updated 27 July 2006; a device must complete an FLR within
4749 	 * 100ms, but may silently discard requests while the FLR is in
4750 	 * progress.  Wait 100ms before trying to access the device.
4751 	 */
4752 	msleep(100);
4753 
4754 	return pci_dev_wait(dev, "AF_FLR", PCIE_RESET_READY_POLL_MS);
4755 }
4756 
4757 /**
4758  * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
4759  * @dev: Device to reset.
4760  * @probe: if true, return 0 if the device can be reset this way.
4761  *
4762  * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
4763  * unset, it will be reinitialized internally when going from PCI_D3hot to
4764  * PCI_D0.  If that's the case and the device is not in a low-power state
4765  * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
4766  *
4767  * NOTE: This causes the caller to sleep for twice the device power transition
4768  * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
4769  * by default (i.e. unless the @dev's d3hot_delay field has a different value).
4770  * Moreover, only devices in D0 can be reset by this function.
4771  */
pci_pm_reset(struct pci_dev * dev,bool probe)4772 static int pci_pm_reset(struct pci_dev *dev, bool probe)
4773 {
4774 	u16 csr;
4775 
4776 	if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET)
4777 		return -ENOTTY;
4778 
4779 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
4780 	if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
4781 		return -ENOTTY;
4782 
4783 	if (probe)
4784 		return 0;
4785 
4786 	if (dev->current_state != PCI_D0)
4787 		return -EINVAL;
4788 
4789 	csr &= ~PCI_PM_CTRL_STATE_MASK;
4790 	csr |= PCI_D3hot;
4791 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4792 	pci_dev_d3_sleep(dev);
4793 
4794 	csr &= ~PCI_PM_CTRL_STATE_MASK;
4795 	csr |= PCI_D0;
4796 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4797 	pci_dev_d3_sleep(dev);
4798 
4799 	return pci_dev_wait(dev, "PM D3hot->D0", PCIE_RESET_READY_POLL_MS);
4800 }
4801 
4802 /**
4803  * pcie_wait_for_link_delay - Wait until link is active or inactive
4804  * @pdev: Bridge device
4805  * @active: waiting for active or inactive?
4806  * @delay: Delay to wait after link has become active (in ms)
4807  *
4808  * Use this to wait till link becomes active or inactive.
4809  */
pcie_wait_for_link_delay(struct pci_dev * pdev,bool active,int delay)4810 static bool pcie_wait_for_link_delay(struct pci_dev *pdev, bool active,
4811 				     int delay)
4812 {
4813 	int timeout = 1000;
4814 	bool ret;
4815 	u16 lnk_status;
4816 
4817 	/*
4818 	 * Some controllers might not implement link active reporting. In this
4819 	 * case, we wait for 1000 ms + any delay requested by the caller.
4820 	 */
4821 	if (!pdev->link_active_reporting) {
4822 		msleep(timeout + delay);
4823 		return true;
4824 	}
4825 
4826 	/*
4827 	 * PCIe r4.0 sec 6.6.1, a component must enter LTSSM Detect within 20ms,
4828 	 * after which we should expect an link active if the reset was
4829 	 * successful. If so, software must wait a minimum 100ms before sending
4830 	 * configuration requests to devices downstream this port.
4831 	 *
4832 	 * If the link fails to activate, either the device was physically
4833 	 * removed or the link is permanently failed.
4834 	 */
4835 	if (active)
4836 		msleep(20);
4837 	for (;;) {
4838 		pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lnk_status);
4839 		ret = !!(lnk_status & PCI_EXP_LNKSTA_DLLLA);
4840 		if (ret == active)
4841 			break;
4842 		if (timeout <= 0)
4843 			break;
4844 		msleep(10);
4845 		timeout -= 10;
4846 	}
4847 	if (active && ret)
4848 		msleep(delay);
4849 
4850 	return ret == active;
4851 }
4852 
4853 /**
4854  * pcie_wait_for_link - Wait until link is active or inactive
4855  * @pdev: Bridge device
4856  * @active: waiting for active or inactive?
4857  *
4858  * Use this to wait till link becomes active or inactive.
4859  */
pcie_wait_for_link(struct pci_dev * pdev,bool active)4860 bool pcie_wait_for_link(struct pci_dev *pdev, bool active)
4861 {
4862 	return pcie_wait_for_link_delay(pdev, active, 100);
4863 }
4864 
4865 /*
4866  * Find maximum D3cold delay required by all the devices on the bus.  The
4867  * spec says 100 ms, but firmware can lower it and we allow drivers to
4868  * increase it as well.
4869  *
4870  * Called with @pci_bus_sem locked for reading.
4871  */
pci_bus_max_d3cold_delay(const struct pci_bus * bus)4872 static int pci_bus_max_d3cold_delay(const struct pci_bus *bus)
4873 {
4874 	const struct pci_dev *pdev;
4875 	int min_delay = 100;
4876 	int max_delay = 0;
4877 
4878 	list_for_each_entry(pdev, &bus->devices, bus_list) {
4879 		if (pdev->d3cold_delay < min_delay)
4880 			min_delay = pdev->d3cold_delay;
4881 		if (pdev->d3cold_delay > max_delay)
4882 			max_delay = pdev->d3cold_delay;
4883 	}
4884 
4885 	return max(min_delay, max_delay);
4886 }
4887 
4888 /**
4889  * pci_bridge_wait_for_secondary_bus - Wait for secondary bus to be accessible
4890  * @dev: PCI bridge
4891  * @reset_type: reset type in human-readable form
4892  * @timeout: maximum time to wait for devices on secondary bus (milliseconds)
4893  *
4894  * Handle necessary delays before access to the devices on the secondary
4895  * side of the bridge are permitted after D3cold to D0 transition
4896  * or Conventional Reset.
4897  *
4898  * For PCIe this means the delays in PCIe 5.0 section 6.6.1. For
4899  * conventional PCI it means Tpvrh + Trhfa specified in PCI 3.0 section
4900  * 4.3.2.
4901  *
4902  * Return 0 on success or -ENOTTY if the first device on the secondary bus
4903  * failed to become accessible.
4904  */
pci_bridge_wait_for_secondary_bus(struct pci_dev * dev,char * reset_type,int timeout)4905 int pci_bridge_wait_for_secondary_bus(struct pci_dev *dev, char *reset_type,
4906 				      int timeout)
4907 {
4908 	struct pci_dev *child;
4909 	int delay;
4910 
4911 	if (pci_dev_is_disconnected(dev))
4912 		return 0;
4913 
4914 	if (!pci_is_bridge(dev))
4915 		return 0;
4916 
4917 	down_read(&pci_bus_sem);
4918 
4919 	/*
4920 	 * We only deal with devices that are present currently on the bus.
4921 	 * For any hot-added devices the access delay is handled in pciehp
4922 	 * board_added(). In case of ACPI hotplug the firmware is expected
4923 	 * to configure the devices before OS is notified.
4924 	 */
4925 	if (!dev->subordinate || list_empty(&dev->subordinate->devices)) {
4926 		up_read(&pci_bus_sem);
4927 		return 0;
4928 	}
4929 
4930 	/* Take d3cold_delay requirements into account */
4931 	delay = pci_bus_max_d3cold_delay(dev->subordinate);
4932 	if (!delay) {
4933 		up_read(&pci_bus_sem);
4934 		return 0;
4935 	}
4936 
4937 	child = list_first_entry(&dev->subordinate->devices, struct pci_dev,
4938 				 bus_list);
4939 	up_read(&pci_bus_sem);
4940 
4941 	/*
4942 	 * Conventional PCI and PCI-X we need to wait Tpvrh + Trhfa before
4943 	 * accessing the device after reset (that is 1000 ms + 100 ms).
4944 	 */
4945 	if (!pci_is_pcie(dev)) {
4946 		pci_dbg(dev, "waiting %d ms for secondary bus\n", 1000 + delay);
4947 		msleep(1000 + delay);
4948 		return 0;
4949 	}
4950 
4951 	/*
4952 	 * For PCIe downstream and root ports that do not support speeds
4953 	 * greater than 5 GT/s need to wait minimum 100 ms. For higher
4954 	 * speeds (gen3) we need to wait first for the data link layer to
4955 	 * become active.
4956 	 *
4957 	 * However, 100 ms is the minimum and the PCIe spec says the
4958 	 * software must allow at least 1s before it can determine that the
4959 	 * device that did not respond is a broken device. There is
4960 	 * evidence that 100 ms is not always enough, for example certain
4961 	 * Titan Ridge xHCI controller does not always respond to
4962 	 * configuration requests if we only wait for 100 ms (see
4963 	 * https://bugzilla.kernel.org/show_bug.cgi?id=203885).
4964 	 *
4965 	 * Therefore we wait for 100 ms and check for the device presence
4966 	 * until the timeout expires.
4967 	 */
4968 	if (!pcie_downstream_port(dev))
4969 		return 0;
4970 
4971 	if (pcie_get_speed_cap(dev) <= PCIE_SPEED_5_0GT) {
4972 		pci_dbg(dev, "waiting %d ms for downstream link\n", delay);
4973 		msleep(delay);
4974 	} else {
4975 		pci_dbg(dev, "waiting %d ms for downstream link, after activation\n",
4976 			delay);
4977 		if (!pcie_wait_for_link_delay(dev, true, delay)) {
4978 			/* Did not train, no need to wait any further */
4979 			pci_info(dev, "Data Link Layer Link Active not set in 1000 msec\n");
4980 			return -ENOTTY;
4981 		}
4982 	}
4983 
4984 	return pci_dev_wait(child, reset_type, timeout - delay);
4985 }
4986 
pci_reset_secondary_bus(struct pci_dev * dev)4987 void pci_reset_secondary_bus(struct pci_dev *dev)
4988 {
4989 	u16 ctrl;
4990 
4991 	pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl);
4992 	ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
4993 	pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
4994 
4995 	/*
4996 	 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms.  Double
4997 	 * this to 2ms to ensure that we meet the minimum requirement.
4998 	 */
4999 	msleep(2);
5000 
5001 	ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
5002 	pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
5003 }
5004 
pcibios_reset_secondary_bus(struct pci_dev * dev)5005 void __weak pcibios_reset_secondary_bus(struct pci_dev *dev)
5006 {
5007 	pci_reset_secondary_bus(dev);
5008 }
5009 
5010 /**
5011  * pci_bridge_secondary_bus_reset - Reset the secondary bus on a PCI bridge.
5012  * @dev: Bridge device
5013  *
5014  * Use the bridge control register to assert reset on the secondary bus.
5015  * Devices on the secondary bus are left in power-on state.
5016  */
pci_bridge_secondary_bus_reset(struct pci_dev * dev)5017 int pci_bridge_secondary_bus_reset(struct pci_dev *dev)
5018 {
5019 	pcibios_reset_secondary_bus(dev);
5020 
5021 	return pci_bridge_wait_for_secondary_bus(dev, "bus reset",
5022 						 PCIE_RESET_READY_POLL_MS);
5023 }
5024 EXPORT_SYMBOL_GPL(pci_bridge_secondary_bus_reset);
5025 
pci_parent_bus_reset(struct pci_dev * dev,bool probe)5026 static int pci_parent_bus_reset(struct pci_dev *dev, bool probe)
5027 {
5028 	struct pci_dev *pdev;
5029 
5030 	if (pci_is_root_bus(dev->bus) || dev->subordinate ||
5031 	    !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
5032 		return -ENOTTY;
5033 
5034 	list_for_each_entry(pdev, &dev->bus->devices, bus_list)
5035 		if (pdev != dev)
5036 			return -ENOTTY;
5037 
5038 	if (probe)
5039 		return 0;
5040 
5041 	return pci_bridge_secondary_bus_reset(dev->bus->self);
5042 }
5043 
pci_reset_hotplug_slot(struct hotplug_slot * hotplug,bool probe)5044 static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, bool probe)
5045 {
5046 	int rc = -ENOTTY;
5047 
5048 	if (!hotplug || !try_module_get(hotplug->owner))
5049 		return rc;
5050 
5051 	if (hotplug->ops->reset_slot)
5052 		rc = hotplug->ops->reset_slot(hotplug, probe);
5053 
5054 	module_put(hotplug->owner);
5055 
5056 	return rc;
5057 }
5058 
pci_dev_reset_slot_function(struct pci_dev * dev,bool probe)5059 static int pci_dev_reset_slot_function(struct pci_dev *dev, bool probe)
5060 {
5061 	if (dev->multifunction || dev->subordinate || !dev->slot ||
5062 	    dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
5063 		return -ENOTTY;
5064 
5065 	return pci_reset_hotplug_slot(dev->slot->hotplug, probe);
5066 }
5067 
pci_reset_bus_function(struct pci_dev * dev,bool probe)5068 static int pci_reset_bus_function(struct pci_dev *dev, bool probe)
5069 {
5070 	int rc;
5071 
5072 	rc = pci_dev_reset_slot_function(dev, probe);
5073 	if (rc != -ENOTTY)
5074 		return rc;
5075 	return pci_parent_bus_reset(dev, probe);
5076 }
5077 
pci_dev_lock(struct pci_dev * dev)5078 static void pci_dev_lock(struct pci_dev *dev)
5079 {
5080 	/* block PM suspend, driver probe, etc. */
5081 	device_lock(&dev->dev);
5082 	pci_cfg_access_lock(dev);
5083 }
5084 
5085 /* Return 1 on successful lock, 0 on contention */
pci_dev_trylock(struct pci_dev * dev)5086 int pci_dev_trylock(struct pci_dev *dev)
5087 {
5088 	if (device_trylock(&dev->dev)) {
5089 		if (pci_cfg_access_trylock(dev))
5090 			return 1;
5091 		device_unlock(&dev->dev);
5092 	}
5093 
5094 	return 0;
5095 }
5096 EXPORT_SYMBOL_GPL(pci_dev_trylock);
5097 
pci_dev_unlock(struct pci_dev * dev)5098 void pci_dev_unlock(struct pci_dev *dev)
5099 {
5100 	pci_cfg_access_unlock(dev);
5101 	device_unlock(&dev->dev);
5102 }
5103 EXPORT_SYMBOL_GPL(pci_dev_unlock);
5104 
pci_dev_save_and_disable(struct pci_dev * dev)5105 static void pci_dev_save_and_disable(struct pci_dev *dev)
5106 {
5107 	const struct pci_error_handlers *err_handler =
5108 			dev->driver ? dev->driver->err_handler : NULL;
5109 
5110 	/*
5111 	 * dev->driver->err_handler->reset_prepare() is protected against
5112 	 * races with ->remove() by the device lock, which must be held by
5113 	 * the caller.
5114 	 */
5115 	if (err_handler && err_handler->reset_prepare)
5116 		err_handler->reset_prepare(dev);
5117 
5118 	/*
5119 	 * Wake-up device prior to save.  PM registers default to D0 after
5120 	 * reset and a simple register restore doesn't reliably return
5121 	 * to a non-D0 state anyway.
5122 	 */
5123 	pci_set_power_state(dev, PCI_D0);
5124 
5125 	pci_save_state(dev);
5126 	/*
5127 	 * Disable the device by clearing the Command register, except for
5128 	 * INTx-disable which is set.  This not only disables MMIO and I/O port
5129 	 * BARs, but also prevents the device from being Bus Master, preventing
5130 	 * DMA from the device including MSI/MSI-X interrupts.  For PCI 2.3
5131 	 * compliant devices, INTx-disable prevents legacy interrupts.
5132 	 */
5133 	pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
5134 }
5135 
pci_dev_restore(struct pci_dev * dev)5136 static void pci_dev_restore(struct pci_dev *dev)
5137 {
5138 	const struct pci_error_handlers *err_handler =
5139 			dev->driver ? dev->driver->err_handler : NULL;
5140 
5141 	pci_restore_state(dev);
5142 
5143 	/*
5144 	 * dev->driver->err_handler->reset_done() is protected against
5145 	 * races with ->remove() by the device lock, which must be held by
5146 	 * the caller.
5147 	 */
5148 	if (err_handler && err_handler->reset_done)
5149 		err_handler->reset_done(dev);
5150 }
5151 
5152 /* dev->reset_methods[] is a 0-terminated list of indices into this array */
5153 static const struct pci_reset_fn_method pci_reset_fn_methods[] = {
5154 	{ },
5155 	{ pci_dev_specific_reset, .name = "device_specific" },
5156 	{ pci_dev_acpi_reset, .name = "acpi" },
5157 	{ pcie_reset_flr, .name = "flr" },
5158 	{ pci_af_flr, .name = "af_flr" },
5159 	{ pci_pm_reset, .name = "pm" },
5160 	{ pci_reset_bus_function, .name = "bus" },
5161 };
5162 
reset_method_show(struct device * dev,struct device_attribute * attr,char * buf)5163 static ssize_t reset_method_show(struct device *dev,
5164 				 struct device_attribute *attr, char *buf)
5165 {
5166 	struct pci_dev *pdev = to_pci_dev(dev);
5167 	ssize_t len = 0;
5168 	int i, m;
5169 
5170 	for (i = 0; i < PCI_NUM_RESET_METHODS; i++) {
5171 		m = pdev->reset_methods[i];
5172 		if (!m)
5173 			break;
5174 
5175 		len += sysfs_emit_at(buf, len, "%s%s", len ? " " : "",
5176 				     pci_reset_fn_methods[m].name);
5177 	}
5178 
5179 	if (len)
5180 		len += sysfs_emit_at(buf, len, "\n");
5181 
5182 	return len;
5183 }
5184 
reset_method_lookup(const char * name)5185 static int reset_method_lookup(const char *name)
5186 {
5187 	int m;
5188 
5189 	for (m = 1; m < PCI_NUM_RESET_METHODS; m++) {
5190 		if (sysfs_streq(name, pci_reset_fn_methods[m].name))
5191 			return m;
5192 	}
5193 
5194 	return 0;	/* not found */
5195 }
5196 
reset_method_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)5197 static ssize_t reset_method_store(struct device *dev,
5198 				  struct device_attribute *attr,
5199 				  const char *buf, size_t count)
5200 {
5201 	struct pci_dev *pdev = to_pci_dev(dev);
5202 	char *options, *name;
5203 	int m, n;
5204 	u8 reset_methods[PCI_NUM_RESET_METHODS] = { 0 };
5205 
5206 	if (sysfs_streq(buf, "")) {
5207 		pdev->reset_methods[0] = 0;
5208 		pci_warn(pdev, "All device reset methods disabled by user");
5209 		return count;
5210 	}
5211 
5212 	if (sysfs_streq(buf, "default")) {
5213 		pci_init_reset_methods(pdev);
5214 		return count;
5215 	}
5216 
5217 	options = kstrndup(buf, count, GFP_KERNEL);
5218 	if (!options)
5219 		return -ENOMEM;
5220 
5221 	n = 0;
5222 	while ((name = strsep(&options, " ")) != NULL) {
5223 		if (sysfs_streq(name, ""))
5224 			continue;
5225 
5226 		name = strim(name);
5227 
5228 		m = reset_method_lookup(name);
5229 		if (!m) {
5230 			pci_err(pdev, "Invalid reset method '%s'", name);
5231 			goto error;
5232 		}
5233 
5234 		if (pci_reset_fn_methods[m].reset_fn(pdev, PCI_RESET_PROBE)) {
5235 			pci_err(pdev, "Unsupported reset method '%s'", name);
5236 			goto error;
5237 		}
5238 
5239 		if (n == PCI_NUM_RESET_METHODS - 1) {
5240 			pci_err(pdev, "Too many reset methods\n");
5241 			goto error;
5242 		}
5243 
5244 		reset_methods[n++] = m;
5245 	}
5246 
5247 	reset_methods[n] = 0;
5248 
5249 	/* Warn if dev-specific supported but not highest priority */
5250 	if (pci_reset_fn_methods[1].reset_fn(pdev, PCI_RESET_PROBE) == 0 &&
5251 	    reset_methods[0] != 1)
5252 		pci_warn(pdev, "Device-specific reset disabled/de-prioritized by user");
5253 	memcpy(pdev->reset_methods, reset_methods, sizeof(pdev->reset_methods));
5254 	kfree(options);
5255 	return count;
5256 
5257 error:
5258 	/* Leave previous methods unchanged */
5259 	kfree(options);
5260 	return -EINVAL;
5261 }
5262 static DEVICE_ATTR_RW(reset_method);
5263 
5264 static struct attribute *pci_dev_reset_method_attrs[] = {
5265 	&dev_attr_reset_method.attr,
5266 	NULL,
5267 };
5268 
pci_dev_reset_method_attr_is_visible(struct kobject * kobj,struct attribute * a,int n)5269 static umode_t pci_dev_reset_method_attr_is_visible(struct kobject *kobj,
5270 						    struct attribute *a, int n)
5271 {
5272 	struct pci_dev *pdev = to_pci_dev(kobj_to_dev(kobj));
5273 
5274 	if (!pci_reset_supported(pdev))
5275 		return 0;
5276 
5277 	return a->mode;
5278 }
5279 
5280 const struct attribute_group pci_dev_reset_method_attr_group = {
5281 	.attrs = pci_dev_reset_method_attrs,
5282 	.is_visible = pci_dev_reset_method_attr_is_visible,
5283 };
5284 
5285 /**
5286  * __pci_reset_function_locked - reset a PCI device function while holding
5287  * the @dev mutex lock.
5288  * @dev: PCI device to reset
5289  *
5290  * Some devices allow an individual function to be reset without affecting
5291  * other functions in the same device.  The PCI device must be responsive
5292  * to PCI config space in order to use this function.
5293  *
5294  * The device function is presumed to be unused and the caller is holding
5295  * the device mutex lock when this function is called.
5296  *
5297  * Resetting the device will make the contents of PCI configuration space
5298  * random, so any caller of this must be prepared to reinitialise the
5299  * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
5300  * etc.
5301  *
5302  * Returns 0 if the device function was successfully reset or negative if the
5303  * device doesn't support resetting a single function.
5304  */
__pci_reset_function_locked(struct pci_dev * dev)5305 int __pci_reset_function_locked(struct pci_dev *dev)
5306 {
5307 	int i, m, rc = -ENOTTY;
5308 
5309 	might_sleep();
5310 
5311 	/*
5312 	 * A reset method returns -ENOTTY if it doesn't support this device and
5313 	 * we should try the next method.
5314 	 *
5315 	 * If it returns 0 (success), we're finished.  If it returns any other
5316 	 * error, we're also finished: this indicates that further reset
5317 	 * mechanisms might be broken on the device.
5318 	 */
5319 	for (i = 0; i < PCI_NUM_RESET_METHODS; i++) {
5320 		m = dev->reset_methods[i];
5321 		if (!m)
5322 			return -ENOTTY;
5323 
5324 		rc = pci_reset_fn_methods[m].reset_fn(dev, PCI_RESET_DO_RESET);
5325 		if (!rc)
5326 			return 0;
5327 		if (rc != -ENOTTY)
5328 			return rc;
5329 	}
5330 
5331 	return -ENOTTY;
5332 }
5333 EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
5334 
5335 /**
5336  * pci_init_reset_methods - check whether device can be safely reset
5337  * and store supported reset mechanisms.
5338  * @dev: PCI device to check for reset mechanisms
5339  *
5340  * Some devices allow an individual function to be reset without affecting
5341  * other functions in the same device.  The PCI device must be in D0-D3hot
5342  * state.
5343  *
5344  * Stores reset mechanisms supported by device in reset_methods byte array
5345  * which is a member of struct pci_dev.
5346  */
pci_init_reset_methods(struct pci_dev * dev)5347 void pci_init_reset_methods(struct pci_dev *dev)
5348 {
5349 	int m, i, rc;
5350 
5351 	BUILD_BUG_ON(ARRAY_SIZE(pci_reset_fn_methods) != PCI_NUM_RESET_METHODS);
5352 
5353 	might_sleep();
5354 
5355 	i = 0;
5356 	for (m = 1; m < PCI_NUM_RESET_METHODS; m++) {
5357 		rc = pci_reset_fn_methods[m].reset_fn(dev, PCI_RESET_PROBE);
5358 		if (!rc)
5359 			dev->reset_methods[i++] = m;
5360 		else if (rc != -ENOTTY)
5361 			break;
5362 	}
5363 
5364 	dev->reset_methods[i] = 0;
5365 }
5366 
5367 /**
5368  * pci_reset_function - quiesce and reset a PCI device function
5369  * @dev: PCI device to reset
5370  *
5371  * Some devices allow an individual function to be reset without affecting
5372  * other functions in the same device.  The PCI device must be responsive
5373  * to PCI config space in order to use this function.
5374  *
5375  * This function does not just reset the PCI portion of a device, but
5376  * clears all the state associated with the device.  This function differs
5377  * from __pci_reset_function_locked() in that it saves and restores device state
5378  * over the reset and takes the PCI device lock.
5379  *
5380  * Returns 0 if the device function was successfully reset or negative if the
5381  * device doesn't support resetting a single function.
5382  */
pci_reset_function(struct pci_dev * dev)5383 int pci_reset_function(struct pci_dev *dev)
5384 {
5385 	int rc;
5386 
5387 	if (!pci_reset_supported(dev))
5388 		return -ENOTTY;
5389 
5390 	pci_dev_lock(dev);
5391 	pci_dev_save_and_disable(dev);
5392 
5393 	rc = __pci_reset_function_locked(dev);
5394 
5395 	pci_dev_restore(dev);
5396 	pci_dev_unlock(dev);
5397 
5398 	return rc;
5399 }
5400 EXPORT_SYMBOL_GPL(pci_reset_function);
5401 
5402 /**
5403  * pci_reset_function_locked - quiesce and reset a PCI device function
5404  * @dev: PCI device to reset
5405  *
5406  * Some devices allow an individual function to be reset without affecting
5407  * other functions in the same device.  The PCI device must be responsive
5408  * to PCI config space in order to use this function.
5409  *
5410  * This function does not just reset the PCI portion of a device, but
5411  * clears all the state associated with the device.  This function differs
5412  * from __pci_reset_function_locked() in that it saves and restores device state
5413  * over the reset.  It also differs from pci_reset_function() in that it
5414  * requires the PCI device lock to be held.
5415  *
5416  * Returns 0 if the device function was successfully reset or negative if the
5417  * device doesn't support resetting a single function.
5418  */
pci_reset_function_locked(struct pci_dev * dev)5419 int pci_reset_function_locked(struct pci_dev *dev)
5420 {
5421 	int rc;
5422 
5423 	if (!pci_reset_supported(dev))
5424 		return -ENOTTY;
5425 
5426 	pci_dev_save_and_disable(dev);
5427 
5428 	rc = __pci_reset_function_locked(dev);
5429 
5430 	pci_dev_restore(dev);
5431 
5432 	return rc;
5433 }
5434 EXPORT_SYMBOL_GPL(pci_reset_function_locked);
5435 
5436 /**
5437  * pci_try_reset_function - quiesce and reset a PCI device function
5438  * @dev: PCI device to reset
5439  *
5440  * Same as above, except return -EAGAIN if unable to lock device.
5441  */
pci_try_reset_function(struct pci_dev * dev)5442 int pci_try_reset_function(struct pci_dev *dev)
5443 {
5444 	int rc;
5445 
5446 	if (!pci_reset_supported(dev))
5447 		return -ENOTTY;
5448 
5449 	if (!pci_dev_trylock(dev))
5450 		return -EAGAIN;
5451 
5452 	pci_dev_save_and_disable(dev);
5453 	rc = __pci_reset_function_locked(dev);
5454 	pci_dev_restore(dev);
5455 	pci_dev_unlock(dev);
5456 
5457 	return rc;
5458 }
5459 EXPORT_SYMBOL_GPL(pci_try_reset_function);
5460 
5461 /* Do any devices on or below this bus prevent a bus reset? */
pci_bus_resetable(struct pci_bus * bus)5462 static bool pci_bus_resetable(struct pci_bus *bus)
5463 {
5464 	struct pci_dev *dev;
5465 
5466 
5467 	if (bus->self && (bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5468 		return false;
5469 
5470 	list_for_each_entry(dev, &bus->devices, bus_list) {
5471 		if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5472 		    (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
5473 			return false;
5474 	}
5475 
5476 	return true;
5477 }
5478 
5479 /* Lock devices from the top of the tree down */
pci_bus_lock(struct pci_bus * bus)5480 static void pci_bus_lock(struct pci_bus *bus)
5481 {
5482 	struct pci_dev *dev;
5483 
5484 	list_for_each_entry(dev, &bus->devices, bus_list) {
5485 		pci_dev_lock(dev);
5486 		if (dev->subordinate)
5487 			pci_bus_lock(dev->subordinate);
5488 	}
5489 }
5490 
5491 /* Unlock devices from the bottom of the tree up */
pci_bus_unlock(struct pci_bus * bus)5492 static void pci_bus_unlock(struct pci_bus *bus)
5493 {
5494 	struct pci_dev *dev;
5495 
5496 	list_for_each_entry(dev, &bus->devices, bus_list) {
5497 		if (dev->subordinate)
5498 			pci_bus_unlock(dev->subordinate);
5499 		pci_dev_unlock(dev);
5500 	}
5501 }
5502 
5503 /* Return 1 on successful lock, 0 on contention */
pci_bus_trylock(struct pci_bus * bus)5504 static int pci_bus_trylock(struct pci_bus *bus)
5505 {
5506 	struct pci_dev *dev;
5507 
5508 	list_for_each_entry(dev, &bus->devices, bus_list) {
5509 		if (!pci_dev_trylock(dev))
5510 			goto unlock;
5511 		if (dev->subordinate) {
5512 			if (!pci_bus_trylock(dev->subordinate)) {
5513 				pci_dev_unlock(dev);
5514 				goto unlock;
5515 			}
5516 		}
5517 	}
5518 	return 1;
5519 
5520 unlock:
5521 	list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) {
5522 		if (dev->subordinate)
5523 			pci_bus_unlock(dev->subordinate);
5524 		pci_dev_unlock(dev);
5525 	}
5526 	return 0;
5527 }
5528 
5529 /* Do any devices on or below this slot prevent a bus reset? */
pci_slot_resetable(struct pci_slot * slot)5530 static bool pci_slot_resetable(struct pci_slot *slot)
5531 {
5532 	struct pci_dev *dev;
5533 
5534 	if (slot->bus->self &&
5535 	    (slot->bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5536 		return false;
5537 
5538 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5539 		if (!dev->slot || dev->slot != slot)
5540 			continue;
5541 		if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5542 		    (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
5543 			return false;
5544 	}
5545 
5546 	return true;
5547 }
5548 
5549 /* Lock devices from the top of the tree down */
pci_slot_lock(struct pci_slot * slot)5550 static void pci_slot_lock(struct pci_slot *slot)
5551 {
5552 	struct pci_dev *dev;
5553 
5554 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5555 		if (!dev->slot || dev->slot != slot)
5556 			continue;
5557 		pci_dev_lock(dev);
5558 		if (dev->subordinate)
5559 			pci_bus_lock(dev->subordinate);
5560 	}
5561 }
5562 
5563 /* Unlock devices from the bottom of the tree up */
pci_slot_unlock(struct pci_slot * slot)5564 static void pci_slot_unlock(struct pci_slot *slot)
5565 {
5566 	struct pci_dev *dev;
5567 
5568 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5569 		if (!dev->slot || dev->slot != slot)
5570 			continue;
5571 		if (dev->subordinate)
5572 			pci_bus_unlock(dev->subordinate);
5573 		pci_dev_unlock(dev);
5574 	}
5575 }
5576 
5577 /* Return 1 on successful lock, 0 on contention */
pci_slot_trylock(struct pci_slot * slot)5578 static int pci_slot_trylock(struct pci_slot *slot)
5579 {
5580 	struct pci_dev *dev;
5581 
5582 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5583 		if (!dev->slot || dev->slot != slot)
5584 			continue;
5585 		if (!pci_dev_trylock(dev))
5586 			goto unlock;
5587 		if (dev->subordinate) {
5588 			if (!pci_bus_trylock(dev->subordinate)) {
5589 				pci_dev_unlock(dev);
5590 				goto unlock;
5591 			}
5592 		}
5593 	}
5594 	return 1;
5595 
5596 unlock:
5597 	list_for_each_entry_continue_reverse(dev,
5598 					     &slot->bus->devices, bus_list) {
5599 		if (!dev->slot || dev->slot != slot)
5600 			continue;
5601 		if (dev->subordinate)
5602 			pci_bus_unlock(dev->subordinate);
5603 		pci_dev_unlock(dev);
5604 	}
5605 	return 0;
5606 }
5607 
5608 /*
5609  * Save and disable devices from the top of the tree down while holding
5610  * the @dev mutex lock for the entire tree.
5611  */
pci_bus_save_and_disable_locked(struct pci_bus * bus)5612 static void pci_bus_save_and_disable_locked(struct pci_bus *bus)
5613 {
5614 	struct pci_dev *dev;
5615 
5616 	list_for_each_entry(dev, &bus->devices, bus_list) {
5617 		pci_dev_save_and_disable(dev);
5618 		if (dev->subordinate)
5619 			pci_bus_save_and_disable_locked(dev->subordinate);
5620 	}
5621 }
5622 
5623 /*
5624  * Restore devices from top of the tree down while holding @dev mutex lock
5625  * for the entire tree.  Parent bridges need to be restored before we can
5626  * get to subordinate devices.
5627  */
pci_bus_restore_locked(struct pci_bus * bus)5628 static void pci_bus_restore_locked(struct pci_bus *bus)
5629 {
5630 	struct pci_dev *dev;
5631 
5632 	list_for_each_entry(dev, &bus->devices, bus_list) {
5633 		pci_dev_restore(dev);
5634 		if (dev->subordinate)
5635 			pci_bus_restore_locked(dev->subordinate);
5636 	}
5637 }
5638 
5639 /*
5640  * Save and disable devices from the top of the tree down while holding
5641  * the @dev mutex lock for the entire tree.
5642  */
pci_slot_save_and_disable_locked(struct pci_slot * slot)5643 static void pci_slot_save_and_disable_locked(struct pci_slot *slot)
5644 {
5645 	struct pci_dev *dev;
5646 
5647 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5648 		if (!dev->slot || dev->slot != slot)
5649 			continue;
5650 		pci_dev_save_and_disable(dev);
5651 		if (dev->subordinate)
5652 			pci_bus_save_and_disable_locked(dev->subordinate);
5653 	}
5654 }
5655 
5656 /*
5657  * Restore devices from top of the tree down while holding @dev mutex lock
5658  * for the entire tree.  Parent bridges need to be restored before we can
5659  * get to subordinate devices.
5660  */
pci_slot_restore_locked(struct pci_slot * slot)5661 static void pci_slot_restore_locked(struct pci_slot *slot)
5662 {
5663 	struct pci_dev *dev;
5664 
5665 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5666 		if (!dev->slot || dev->slot != slot)
5667 			continue;
5668 		pci_dev_restore(dev);
5669 		if (dev->subordinate)
5670 			pci_bus_restore_locked(dev->subordinate);
5671 	}
5672 }
5673 
pci_slot_reset(struct pci_slot * slot,bool probe)5674 static int pci_slot_reset(struct pci_slot *slot, bool probe)
5675 {
5676 	int rc;
5677 
5678 	if (!slot || !pci_slot_resetable(slot))
5679 		return -ENOTTY;
5680 
5681 	if (!probe)
5682 		pci_slot_lock(slot);
5683 
5684 	might_sleep();
5685 
5686 	rc = pci_reset_hotplug_slot(slot->hotplug, probe);
5687 
5688 	if (!probe)
5689 		pci_slot_unlock(slot);
5690 
5691 	return rc;
5692 }
5693 
5694 /**
5695  * pci_probe_reset_slot - probe whether a PCI slot can be reset
5696  * @slot: PCI slot to probe
5697  *
5698  * Return 0 if slot can be reset, negative if a slot reset is not supported.
5699  */
pci_probe_reset_slot(struct pci_slot * slot)5700 int pci_probe_reset_slot(struct pci_slot *slot)
5701 {
5702 	return pci_slot_reset(slot, PCI_RESET_PROBE);
5703 }
5704 EXPORT_SYMBOL_GPL(pci_probe_reset_slot);
5705 
5706 /**
5707  * __pci_reset_slot - Try to reset a PCI slot
5708  * @slot: PCI slot to reset
5709  *
5710  * A PCI bus may host multiple slots, each slot may support a reset mechanism
5711  * independent of other slots.  For instance, some slots may support slot power
5712  * control.  In the case of a 1:1 bus to slot architecture, this function may
5713  * wrap the bus reset to avoid spurious slot related events such as hotplug.
5714  * Generally a slot reset should be attempted before a bus reset.  All of the
5715  * function of the slot and any subordinate buses behind the slot are reset
5716  * through this function.  PCI config space of all devices in the slot and
5717  * behind the slot is saved before and restored after reset.
5718  *
5719  * Same as above except return -EAGAIN if the slot cannot be locked
5720  */
__pci_reset_slot(struct pci_slot * slot)5721 static int __pci_reset_slot(struct pci_slot *slot)
5722 {
5723 	int rc;
5724 
5725 	rc = pci_slot_reset(slot, PCI_RESET_PROBE);
5726 	if (rc)
5727 		return rc;
5728 
5729 	if (pci_slot_trylock(slot)) {
5730 		pci_slot_save_and_disable_locked(slot);
5731 		might_sleep();
5732 		rc = pci_reset_hotplug_slot(slot->hotplug, PCI_RESET_DO_RESET);
5733 		pci_slot_restore_locked(slot);
5734 		pci_slot_unlock(slot);
5735 	} else
5736 		rc = -EAGAIN;
5737 
5738 	return rc;
5739 }
5740 
pci_bus_reset(struct pci_bus * bus,bool probe)5741 static int pci_bus_reset(struct pci_bus *bus, bool probe)
5742 {
5743 	int ret;
5744 
5745 	if (!bus->self || !pci_bus_resetable(bus))
5746 		return -ENOTTY;
5747 
5748 	if (probe)
5749 		return 0;
5750 
5751 	pci_bus_lock(bus);
5752 
5753 	might_sleep();
5754 
5755 	ret = pci_bridge_secondary_bus_reset(bus->self);
5756 
5757 	pci_bus_unlock(bus);
5758 
5759 	return ret;
5760 }
5761 
5762 /**
5763  * pci_bus_error_reset - reset the bridge's subordinate bus
5764  * @bridge: The parent device that connects to the bus to reset
5765  *
5766  * This function will first try to reset the slots on this bus if the method is
5767  * available. If slot reset fails or is not available, this will fall back to a
5768  * secondary bus reset.
5769  */
pci_bus_error_reset(struct pci_dev * bridge)5770 int pci_bus_error_reset(struct pci_dev *bridge)
5771 {
5772 	struct pci_bus *bus = bridge->subordinate;
5773 	struct pci_slot *slot;
5774 
5775 	if (!bus)
5776 		return -ENOTTY;
5777 
5778 	mutex_lock(&pci_slot_mutex);
5779 	if (list_empty(&bus->slots))
5780 		goto bus_reset;
5781 
5782 	list_for_each_entry(slot, &bus->slots, list)
5783 		if (pci_probe_reset_slot(slot))
5784 			goto bus_reset;
5785 
5786 	list_for_each_entry(slot, &bus->slots, list)
5787 		if (pci_slot_reset(slot, PCI_RESET_DO_RESET))
5788 			goto bus_reset;
5789 
5790 	mutex_unlock(&pci_slot_mutex);
5791 	return 0;
5792 bus_reset:
5793 	mutex_unlock(&pci_slot_mutex);
5794 	return pci_bus_reset(bridge->subordinate, PCI_RESET_DO_RESET);
5795 }
5796 
5797 /**
5798  * pci_probe_reset_bus - probe whether a PCI bus can be reset
5799  * @bus: PCI bus to probe
5800  *
5801  * Return 0 if bus can be reset, negative if a bus reset is not supported.
5802  */
pci_probe_reset_bus(struct pci_bus * bus)5803 int pci_probe_reset_bus(struct pci_bus *bus)
5804 {
5805 	return pci_bus_reset(bus, PCI_RESET_PROBE);
5806 }
5807 EXPORT_SYMBOL_GPL(pci_probe_reset_bus);
5808 
5809 /**
5810  * __pci_reset_bus - Try to reset a PCI bus
5811  * @bus: top level PCI bus to reset
5812  *
5813  * Same as above except return -EAGAIN if the bus cannot be locked
5814  */
__pci_reset_bus(struct pci_bus * bus)5815 static int __pci_reset_bus(struct pci_bus *bus)
5816 {
5817 	int rc;
5818 
5819 	rc = pci_bus_reset(bus, PCI_RESET_PROBE);
5820 	if (rc)
5821 		return rc;
5822 
5823 	if (pci_bus_trylock(bus)) {
5824 		pci_bus_save_and_disable_locked(bus);
5825 		might_sleep();
5826 		rc = pci_bridge_secondary_bus_reset(bus->self);
5827 		pci_bus_restore_locked(bus);
5828 		pci_bus_unlock(bus);
5829 	} else
5830 		rc = -EAGAIN;
5831 
5832 	return rc;
5833 }
5834 
5835 /**
5836  * pci_reset_bus - Try to reset a PCI bus
5837  * @pdev: top level PCI device to reset via slot/bus
5838  *
5839  * Same as above except return -EAGAIN if the bus cannot be locked
5840  */
pci_reset_bus(struct pci_dev * pdev)5841 int pci_reset_bus(struct pci_dev *pdev)
5842 {
5843 	return (!pci_probe_reset_slot(pdev->slot)) ?
5844 	    __pci_reset_slot(pdev->slot) : __pci_reset_bus(pdev->bus);
5845 }
5846 EXPORT_SYMBOL_GPL(pci_reset_bus);
5847 
5848 /**
5849  * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
5850  * @dev: PCI device to query
5851  *
5852  * Returns mmrbc: maximum designed memory read count in bytes or
5853  * appropriate error value.
5854  */
pcix_get_max_mmrbc(struct pci_dev * dev)5855 int pcix_get_max_mmrbc(struct pci_dev *dev)
5856 {
5857 	int cap;
5858 	u32 stat;
5859 
5860 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5861 	if (!cap)
5862 		return -EINVAL;
5863 
5864 	if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
5865 		return -EINVAL;
5866 
5867 	return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21);
5868 }
5869 EXPORT_SYMBOL(pcix_get_max_mmrbc);
5870 
5871 /**
5872  * pcix_get_mmrbc - get PCI-X maximum memory read byte count
5873  * @dev: PCI device to query
5874  *
5875  * Returns mmrbc: maximum memory read count in bytes or appropriate error
5876  * value.
5877  */
pcix_get_mmrbc(struct pci_dev * dev)5878 int pcix_get_mmrbc(struct pci_dev *dev)
5879 {
5880 	int cap;
5881 	u16 cmd;
5882 
5883 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5884 	if (!cap)
5885 		return -EINVAL;
5886 
5887 	if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
5888 		return -EINVAL;
5889 
5890 	return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
5891 }
5892 EXPORT_SYMBOL(pcix_get_mmrbc);
5893 
5894 /**
5895  * pcix_set_mmrbc - set PCI-X maximum memory read byte count
5896  * @dev: PCI device to query
5897  * @mmrbc: maximum memory read count in bytes
5898  *    valid values are 512, 1024, 2048, 4096
5899  *
5900  * If possible sets maximum memory read byte count, some bridges have errata
5901  * that prevent this.
5902  */
pcix_set_mmrbc(struct pci_dev * dev,int mmrbc)5903 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
5904 {
5905 	int cap;
5906 	u32 stat, v, o;
5907 	u16 cmd;
5908 
5909 	if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
5910 		return -EINVAL;
5911 
5912 	v = ffs(mmrbc) - 10;
5913 
5914 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5915 	if (!cap)
5916 		return -EINVAL;
5917 
5918 	if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
5919 		return -EINVAL;
5920 
5921 	if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
5922 		return -E2BIG;
5923 
5924 	if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
5925 		return -EINVAL;
5926 
5927 	o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
5928 	if (o != v) {
5929 		if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
5930 			return -EIO;
5931 
5932 		cmd &= ~PCI_X_CMD_MAX_READ;
5933 		cmd |= v << 2;
5934 		if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
5935 			return -EIO;
5936 	}
5937 	return 0;
5938 }
5939 EXPORT_SYMBOL(pcix_set_mmrbc);
5940 
5941 /**
5942  * pcie_get_readrq - get PCI Express read request size
5943  * @dev: PCI device to query
5944  *
5945  * Returns maximum memory read request in bytes or appropriate error value.
5946  */
pcie_get_readrq(struct pci_dev * dev)5947 int pcie_get_readrq(struct pci_dev *dev)
5948 {
5949 	u16 ctl;
5950 
5951 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
5952 
5953 	return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
5954 }
5955 EXPORT_SYMBOL(pcie_get_readrq);
5956 
5957 /**
5958  * pcie_set_readrq - set PCI Express maximum memory read request
5959  * @dev: PCI device to query
5960  * @rq: maximum memory read count in bytes
5961  *    valid values are 128, 256, 512, 1024, 2048, 4096
5962  *
5963  * If possible sets maximum memory read request in bytes
5964  */
pcie_set_readrq(struct pci_dev * dev,int rq)5965 int pcie_set_readrq(struct pci_dev *dev, int rq)
5966 {
5967 	u16 v;
5968 	int ret;
5969 	struct pci_host_bridge *bridge = pci_find_host_bridge(dev->bus);
5970 
5971 	if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
5972 		return -EINVAL;
5973 
5974 	/*
5975 	 * If using the "performance" PCIe config, we clamp the read rq
5976 	 * size to the max packet size to keep the host bridge from
5977 	 * generating requests larger than we can cope with.
5978 	 */
5979 	if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
5980 		int mps = pcie_get_mps(dev);
5981 
5982 		if (mps < rq)
5983 			rq = mps;
5984 	}
5985 
5986 	v = (ffs(rq) - 8) << 12;
5987 
5988 	if (bridge->no_inc_mrrs) {
5989 		int max_mrrs = pcie_get_readrq(dev);
5990 
5991 		if (rq > max_mrrs) {
5992 			pci_info(dev, "can't set Max_Read_Request_Size to %d; max is %d\n", rq, max_mrrs);
5993 			return -EINVAL;
5994 		}
5995 	}
5996 
5997 	ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
5998 						  PCI_EXP_DEVCTL_READRQ, v);
5999 
6000 	return pcibios_err_to_errno(ret);
6001 }
6002 EXPORT_SYMBOL(pcie_set_readrq);
6003 
6004 /**
6005  * pcie_get_mps - get PCI Express maximum payload size
6006  * @dev: PCI device to query
6007  *
6008  * Returns maximum payload size in bytes
6009  */
pcie_get_mps(struct pci_dev * dev)6010 int pcie_get_mps(struct pci_dev *dev)
6011 {
6012 	u16 ctl;
6013 
6014 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
6015 
6016 	return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
6017 }
6018 EXPORT_SYMBOL(pcie_get_mps);
6019 
6020 /**
6021  * pcie_set_mps - set PCI Express maximum payload size
6022  * @dev: PCI device to query
6023  * @mps: maximum payload size in bytes
6024  *    valid values are 128, 256, 512, 1024, 2048, 4096
6025  *
6026  * If possible sets maximum payload size
6027  */
pcie_set_mps(struct pci_dev * dev,int mps)6028 int pcie_set_mps(struct pci_dev *dev, int mps)
6029 {
6030 	u16 v;
6031 	int ret;
6032 
6033 	if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
6034 		return -EINVAL;
6035 
6036 	v = ffs(mps) - 8;
6037 	if (v > dev->pcie_mpss)
6038 		return -EINVAL;
6039 	v <<= 5;
6040 
6041 	ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
6042 						  PCI_EXP_DEVCTL_PAYLOAD, v);
6043 
6044 	return pcibios_err_to_errno(ret);
6045 }
6046 EXPORT_SYMBOL(pcie_set_mps);
6047 
6048 /**
6049  * pcie_bandwidth_available - determine minimum link settings of a PCIe
6050  *			      device and its bandwidth limitation
6051  * @dev: PCI device to query
6052  * @limiting_dev: storage for device causing the bandwidth limitation
6053  * @speed: storage for speed of limiting device
6054  * @width: storage for width of limiting device
6055  *
6056  * Walk up the PCI device chain and find the point where the minimum
6057  * bandwidth is available.  Return the bandwidth available there and (if
6058  * limiting_dev, speed, and width pointers are supplied) information about
6059  * that point.  The bandwidth returned is in Mb/s, i.e., megabits/second of
6060  * raw bandwidth.
6061  */
pcie_bandwidth_available(struct pci_dev * dev,struct pci_dev ** limiting_dev,enum pci_bus_speed * speed,enum pcie_link_width * width)6062 u32 pcie_bandwidth_available(struct pci_dev *dev, struct pci_dev **limiting_dev,
6063 			     enum pci_bus_speed *speed,
6064 			     enum pcie_link_width *width)
6065 {
6066 	u16 lnksta;
6067 	enum pci_bus_speed next_speed;
6068 	enum pcie_link_width next_width;
6069 	u32 bw, next_bw;
6070 
6071 	if (speed)
6072 		*speed = PCI_SPEED_UNKNOWN;
6073 	if (width)
6074 		*width = PCIE_LNK_WIDTH_UNKNOWN;
6075 
6076 	bw = 0;
6077 
6078 	while (dev) {
6079 		pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta);
6080 
6081 		next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS];
6082 		next_width = FIELD_GET(PCI_EXP_LNKSTA_NLW, lnksta);
6083 
6084 		next_bw = next_width * PCIE_SPEED2MBS_ENC(next_speed);
6085 
6086 		/* Check if current device limits the total bandwidth */
6087 		if (!bw || next_bw <= bw) {
6088 			bw = next_bw;
6089 
6090 			if (limiting_dev)
6091 				*limiting_dev = dev;
6092 			if (speed)
6093 				*speed = next_speed;
6094 			if (width)
6095 				*width = next_width;
6096 		}
6097 
6098 		dev = pci_upstream_bridge(dev);
6099 	}
6100 
6101 	return bw;
6102 }
6103 EXPORT_SYMBOL(pcie_bandwidth_available);
6104 
6105 /**
6106  * pcie_get_speed_cap - query for the PCI device's link speed capability
6107  * @dev: PCI device to query
6108  *
6109  * Query the PCI device speed capability.  Return the maximum link speed
6110  * supported by the device.
6111  */
pcie_get_speed_cap(struct pci_dev * dev)6112 enum pci_bus_speed pcie_get_speed_cap(struct pci_dev *dev)
6113 {
6114 	u32 lnkcap2, lnkcap;
6115 
6116 	/*
6117 	 * Link Capabilities 2 was added in PCIe r3.0, sec 7.8.18.  The
6118 	 * implementation note there recommends using the Supported Link
6119 	 * Speeds Vector in Link Capabilities 2 when supported.
6120 	 *
6121 	 * Without Link Capabilities 2, i.e., prior to PCIe r3.0, software
6122 	 * should use the Supported Link Speeds field in Link Capabilities,
6123 	 * where only 2.5 GT/s and 5.0 GT/s speeds were defined.
6124 	 */
6125 	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP2, &lnkcap2);
6126 
6127 	/* PCIe r3.0-compliant */
6128 	if (lnkcap2)
6129 		return PCIE_LNKCAP2_SLS2SPEED(lnkcap2);
6130 
6131 	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
6132 	if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_5_0GB)
6133 		return PCIE_SPEED_5_0GT;
6134 	else if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_2_5GB)
6135 		return PCIE_SPEED_2_5GT;
6136 
6137 	return PCI_SPEED_UNKNOWN;
6138 }
6139 EXPORT_SYMBOL(pcie_get_speed_cap);
6140 
6141 /**
6142  * pcie_get_width_cap - query for the PCI device's link width capability
6143  * @dev: PCI device to query
6144  *
6145  * Query the PCI device width capability.  Return the maximum link width
6146  * supported by the device.
6147  */
pcie_get_width_cap(struct pci_dev * dev)6148 enum pcie_link_width pcie_get_width_cap(struct pci_dev *dev)
6149 {
6150 	u32 lnkcap;
6151 
6152 	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
6153 	if (lnkcap)
6154 		return FIELD_GET(PCI_EXP_LNKCAP_MLW, lnkcap);
6155 
6156 	return PCIE_LNK_WIDTH_UNKNOWN;
6157 }
6158 EXPORT_SYMBOL(pcie_get_width_cap);
6159 
6160 /**
6161  * pcie_bandwidth_capable - calculate a PCI device's link bandwidth capability
6162  * @dev: PCI device
6163  * @speed: storage for link speed
6164  * @width: storage for link width
6165  *
6166  * Calculate a PCI device's link bandwidth by querying for its link speed
6167  * and width, multiplying them, and applying encoding overhead.  The result
6168  * is in Mb/s, i.e., megabits/second of raw bandwidth.
6169  */
pcie_bandwidth_capable(struct pci_dev * dev,enum pci_bus_speed * speed,enum pcie_link_width * width)6170 u32 pcie_bandwidth_capable(struct pci_dev *dev, enum pci_bus_speed *speed,
6171 			   enum pcie_link_width *width)
6172 {
6173 	*speed = pcie_get_speed_cap(dev);
6174 	*width = pcie_get_width_cap(dev);
6175 
6176 	if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN)
6177 		return 0;
6178 
6179 	return *width * PCIE_SPEED2MBS_ENC(*speed);
6180 }
6181 
6182 /**
6183  * __pcie_print_link_status - Report the PCI device's link speed and width
6184  * @dev: PCI device to query
6185  * @verbose: Print info even when enough bandwidth is available
6186  *
6187  * If the available bandwidth at the device is less than the device is
6188  * capable of, report the device's maximum possible bandwidth and the
6189  * upstream link that limits its performance.  If @verbose, always print
6190  * the available bandwidth, even if the device isn't constrained.
6191  */
__pcie_print_link_status(struct pci_dev * dev,bool verbose)6192 void __pcie_print_link_status(struct pci_dev *dev, bool verbose)
6193 {
6194 	enum pcie_link_width width, width_cap;
6195 	enum pci_bus_speed speed, speed_cap;
6196 	struct pci_dev *limiting_dev = NULL;
6197 	u32 bw_avail, bw_cap;
6198 
6199 	bw_cap = pcie_bandwidth_capable(dev, &speed_cap, &width_cap);
6200 	bw_avail = pcie_bandwidth_available(dev, &limiting_dev, &speed, &width);
6201 
6202 	if (bw_avail >= bw_cap && verbose)
6203 		pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth (%s x%d link)\n",
6204 			 bw_cap / 1000, bw_cap % 1000,
6205 			 pci_speed_string(speed_cap), width_cap);
6206 	else if (bw_avail < bw_cap)
6207 		pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth, limited by %s x%d link at %s (capable of %u.%03u Gb/s with %s x%d link)\n",
6208 			 bw_avail / 1000, bw_avail % 1000,
6209 			 pci_speed_string(speed), width,
6210 			 limiting_dev ? pci_name(limiting_dev) : "<unknown>",
6211 			 bw_cap / 1000, bw_cap % 1000,
6212 			 pci_speed_string(speed_cap), width_cap);
6213 }
6214 
6215 /**
6216  * pcie_print_link_status - Report the PCI device's link speed and width
6217  * @dev: PCI device to query
6218  *
6219  * Report the available bandwidth at the device.
6220  */
pcie_print_link_status(struct pci_dev * dev)6221 void pcie_print_link_status(struct pci_dev *dev)
6222 {
6223 	__pcie_print_link_status(dev, true);
6224 }
6225 EXPORT_SYMBOL(pcie_print_link_status);
6226 
6227 /**
6228  * pci_select_bars - Make BAR mask from the type of resource
6229  * @dev: the PCI device for which BAR mask is made
6230  * @flags: resource type mask to be selected
6231  *
6232  * This helper routine makes bar mask from the type of resource.
6233  */
pci_select_bars(struct pci_dev * dev,unsigned long flags)6234 int pci_select_bars(struct pci_dev *dev, unsigned long flags)
6235 {
6236 	int i, bars = 0;
6237 	for (i = 0; i < PCI_NUM_RESOURCES; i++)
6238 		if (pci_resource_flags(dev, i) & flags)
6239 			bars |= (1 << i);
6240 	return bars;
6241 }
6242 EXPORT_SYMBOL(pci_select_bars);
6243 
6244 /* Some architectures require additional programming to enable VGA */
6245 static arch_set_vga_state_t arch_set_vga_state;
6246 
pci_register_set_vga_state(arch_set_vga_state_t func)6247 void __init pci_register_set_vga_state(arch_set_vga_state_t func)
6248 {
6249 	arch_set_vga_state = func;	/* NULL disables */
6250 }
6251 
pci_set_vga_state_arch(struct pci_dev * dev,bool decode,unsigned int command_bits,u32 flags)6252 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
6253 				  unsigned int command_bits, u32 flags)
6254 {
6255 	if (arch_set_vga_state)
6256 		return arch_set_vga_state(dev, decode, command_bits,
6257 						flags);
6258 	return 0;
6259 }
6260 
6261 /**
6262  * pci_set_vga_state - set VGA decode state on device and parents if requested
6263  * @dev: the PCI device
6264  * @decode: true = enable decoding, false = disable decoding
6265  * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
6266  * @flags: traverse ancestors and change bridges
6267  * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
6268  */
pci_set_vga_state(struct pci_dev * dev,bool decode,unsigned int command_bits,u32 flags)6269 int pci_set_vga_state(struct pci_dev *dev, bool decode,
6270 		      unsigned int command_bits, u32 flags)
6271 {
6272 	struct pci_bus *bus;
6273 	struct pci_dev *bridge;
6274 	u16 cmd;
6275 	int rc;
6276 
6277 	WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
6278 
6279 	/* ARCH specific VGA enables */
6280 	rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
6281 	if (rc)
6282 		return rc;
6283 
6284 	if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
6285 		pci_read_config_word(dev, PCI_COMMAND, &cmd);
6286 		if (decode)
6287 			cmd |= command_bits;
6288 		else
6289 			cmd &= ~command_bits;
6290 		pci_write_config_word(dev, PCI_COMMAND, cmd);
6291 	}
6292 
6293 	if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
6294 		return 0;
6295 
6296 	bus = dev->bus;
6297 	while (bus) {
6298 		bridge = bus->self;
6299 		if (bridge) {
6300 			pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
6301 					     &cmd);
6302 			if (decode)
6303 				cmd |= PCI_BRIDGE_CTL_VGA;
6304 			else
6305 				cmd &= ~PCI_BRIDGE_CTL_VGA;
6306 			pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
6307 					      cmd);
6308 		}
6309 		bus = bus->parent;
6310 	}
6311 	return 0;
6312 }
6313 
6314 #ifdef CONFIG_ACPI
pci_pr3_present(struct pci_dev * pdev)6315 bool pci_pr3_present(struct pci_dev *pdev)
6316 {
6317 	struct acpi_device *adev;
6318 
6319 	if (acpi_disabled)
6320 		return false;
6321 
6322 	adev = ACPI_COMPANION(&pdev->dev);
6323 	if (!adev)
6324 		return false;
6325 
6326 	return adev->power.flags.power_resources &&
6327 		acpi_has_method(adev->handle, "_PR3");
6328 }
6329 EXPORT_SYMBOL_GPL(pci_pr3_present);
6330 #endif
6331 
6332 /**
6333  * pci_add_dma_alias - Add a DMA devfn alias for a device
6334  * @dev: the PCI device for which alias is added
6335  * @devfn_from: alias slot and function
6336  * @nr_devfns: number of subsequent devfns to alias
6337  *
6338  * This helper encodes an 8-bit devfn as a bit number in dma_alias_mask
6339  * which is used to program permissible bus-devfn source addresses for DMA
6340  * requests in an IOMMU.  These aliases factor into IOMMU group creation
6341  * and are useful for devices generating DMA requests beyond or different
6342  * from their logical bus-devfn.  Examples include device quirks where the
6343  * device simply uses the wrong devfn, as well as non-transparent bridges
6344  * where the alias may be a proxy for devices in another domain.
6345  *
6346  * IOMMU group creation is performed during device discovery or addition,
6347  * prior to any potential DMA mapping and therefore prior to driver probing
6348  * (especially for userspace assigned devices where IOMMU group definition
6349  * cannot be left as a userspace activity).  DMA aliases should therefore
6350  * be configured via quirks, such as the PCI fixup header quirk.
6351  */
pci_add_dma_alias(struct pci_dev * dev,u8 devfn_from,unsigned nr_devfns)6352 void pci_add_dma_alias(struct pci_dev *dev, u8 devfn_from, unsigned nr_devfns)
6353 {
6354 	int devfn_to;
6355 
6356 	nr_devfns = min(nr_devfns, (unsigned) MAX_NR_DEVFNS - devfn_from);
6357 	devfn_to = devfn_from + nr_devfns - 1;
6358 
6359 	if (!dev->dma_alias_mask)
6360 		dev->dma_alias_mask = bitmap_zalloc(MAX_NR_DEVFNS, GFP_KERNEL);
6361 	if (!dev->dma_alias_mask) {
6362 		pci_warn(dev, "Unable to allocate DMA alias mask\n");
6363 		return;
6364 	}
6365 
6366 	bitmap_set(dev->dma_alias_mask, devfn_from, nr_devfns);
6367 
6368 	if (nr_devfns == 1)
6369 		pci_info(dev, "Enabling fixed DMA alias to %02x.%d\n",
6370 				PCI_SLOT(devfn_from), PCI_FUNC(devfn_from));
6371 	else if (nr_devfns > 1)
6372 		pci_info(dev, "Enabling fixed DMA alias for devfn range from %02x.%d to %02x.%d\n",
6373 				PCI_SLOT(devfn_from), PCI_FUNC(devfn_from),
6374 				PCI_SLOT(devfn_to), PCI_FUNC(devfn_to));
6375 }
6376 
pci_devs_are_dma_aliases(struct pci_dev * dev1,struct pci_dev * dev2)6377 bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2)
6378 {
6379 	return (dev1->dma_alias_mask &&
6380 		test_bit(dev2->devfn, dev1->dma_alias_mask)) ||
6381 	       (dev2->dma_alias_mask &&
6382 		test_bit(dev1->devfn, dev2->dma_alias_mask)) ||
6383 	       pci_real_dma_dev(dev1) == dev2 ||
6384 	       pci_real_dma_dev(dev2) == dev1;
6385 }
6386 
pci_device_is_present(struct pci_dev * pdev)6387 bool pci_device_is_present(struct pci_dev *pdev)
6388 {
6389 	u32 v;
6390 
6391 	/* Check PF if pdev is a VF, since VF Vendor/Device IDs are 0xffff */
6392 	pdev = pci_physfn(pdev);
6393 	if (pci_dev_is_disconnected(pdev))
6394 		return false;
6395 	return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0);
6396 }
6397 EXPORT_SYMBOL_GPL(pci_device_is_present);
6398 
pci_ignore_hotplug(struct pci_dev * dev)6399 void pci_ignore_hotplug(struct pci_dev *dev)
6400 {
6401 	struct pci_dev *bridge = dev->bus->self;
6402 
6403 	dev->ignore_hotplug = 1;
6404 	/* Propagate the "ignore hotplug" setting to the parent bridge. */
6405 	if (bridge)
6406 		bridge->ignore_hotplug = 1;
6407 }
6408 EXPORT_SYMBOL_GPL(pci_ignore_hotplug);
6409 
6410 /**
6411  * pci_real_dma_dev - Get PCI DMA device for PCI device
6412  * @dev: the PCI device that may have a PCI DMA alias
6413  *
6414  * Permits the platform to provide architecture-specific functionality to
6415  * devices needing to alias DMA to another PCI device on another PCI bus. If
6416  * the PCI device is on the same bus, it is recommended to use
6417  * pci_add_dma_alias(). This is the default implementation. Architecture
6418  * implementations can override this.
6419  */
pci_real_dma_dev(struct pci_dev * dev)6420 struct pci_dev __weak *pci_real_dma_dev(struct pci_dev *dev)
6421 {
6422 	return dev;
6423 }
6424 
pcibios_default_alignment(void)6425 resource_size_t __weak pcibios_default_alignment(void)
6426 {
6427 	return 0;
6428 }
6429 
6430 /*
6431  * Arches that don't want to expose struct resource to userland as-is in
6432  * sysfs and /proc can implement their own pci_resource_to_user().
6433  */
pci_resource_to_user(const struct pci_dev * dev,int bar,const struct resource * rsrc,resource_size_t * start,resource_size_t * end)6434 void __weak pci_resource_to_user(const struct pci_dev *dev, int bar,
6435 				 const struct resource *rsrc,
6436 				 resource_size_t *start, resource_size_t *end)
6437 {
6438 	*start = rsrc->start;
6439 	*end = rsrc->end;
6440 }
6441 
6442 static char *resource_alignment_param;
6443 static DEFINE_SPINLOCK(resource_alignment_lock);
6444 
6445 /**
6446  * pci_specified_resource_alignment - get resource alignment specified by user.
6447  * @dev: the PCI device to get
6448  * @resize: whether or not to change resources' size when reassigning alignment
6449  *
6450  * RETURNS: Resource alignment if it is specified.
6451  *          Zero if it is not specified.
6452  */
pci_specified_resource_alignment(struct pci_dev * dev,bool * resize)6453 static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev,
6454 							bool *resize)
6455 {
6456 	int align_order, count;
6457 	resource_size_t align = pcibios_default_alignment();
6458 	const char *p;
6459 	int ret;
6460 
6461 	spin_lock(&resource_alignment_lock);
6462 	p = resource_alignment_param;
6463 	if (!p || !*p)
6464 		goto out;
6465 	if (pci_has_flag(PCI_PROBE_ONLY)) {
6466 		align = 0;
6467 		pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n");
6468 		goto out;
6469 	}
6470 
6471 	while (*p) {
6472 		count = 0;
6473 		if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
6474 		    p[count] == '@') {
6475 			p += count + 1;
6476 			if (align_order > 63) {
6477 				pr_err("PCI: Invalid requested alignment (order %d)\n",
6478 				       align_order);
6479 				align_order = PAGE_SHIFT;
6480 			}
6481 		} else {
6482 			align_order = PAGE_SHIFT;
6483 		}
6484 
6485 		ret = pci_dev_str_match(dev, p, &p);
6486 		if (ret == 1) {
6487 			*resize = true;
6488 			align = 1ULL << align_order;
6489 			break;
6490 		} else if (ret < 0) {
6491 			pr_err("PCI: Can't parse resource_alignment parameter: %s\n",
6492 			       p);
6493 			break;
6494 		}
6495 
6496 		if (*p != ';' && *p != ',') {
6497 			/* End of param or invalid format */
6498 			break;
6499 		}
6500 		p++;
6501 	}
6502 out:
6503 	spin_unlock(&resource_alignment_lock);
6504 	return align;
6505 }
6506 
pci_request_resource_alignment(struct pci_dev * dev,int bar,resource_size_t align,bool resize)6507 static void pci_request_resource_alignment(struct pci_dev *dev, int bar,
6508 					   resource_size_t align, bool resize)
6509 {
6510 	struct resource *r = &dev->resource[bar];
6511 	resource_size_t size;
6512 
6513 	if (!(r->flags & IORESOURCE_MEM))
6514 		return;
6515 
6516 	if (r->flags & IORESOURCE_PCI_FIXED) {
6517 		pci_info(dev, "BAR%d %pR: ignoring requested alignment %#llx\n",
6518 			 bar, r, (unsigned long long)align);
6519 		return;
6520 	}
6521 
6522 	size = resource_size(r);
6523 	if (size >= align)
6524 		return;
6525 
6526 	/*
6527 	 * Increase the alignment of the resource.  There are two ways we
6528 	 * can do this:
6529 	 *
6530 	 * 1) Increase the size of the resource.  BARs are aligned on their
6531 	 *    size, so when we reallocate space for this resource, we'll
6532 	 *    allocate it with the larger alignment.  This also prevents
6533 	 *    assignment of any other BARs inside the alignment region, so
6534 	 *    if we're requesting page alignment, this means no other BARs
6535 	 *    will share the page.
6536 	 *
6537 	 *    The disadvantage is that this makes the resource larger than
6538 	 *    the hardware BAR, which may break drivers that compute things
6539 	 *    based on the resource size, e.g., to find registers at a
6540 	 *    fixed offset before the end of the BAR.
6541 	 *
6542 	 * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and
6543 	 *    set r->start to the desired alignment.  By itself this
6544 	 *    doesn't prevent other BARs being put inside the alignment
6545 	 *    region, but if we realign *every* resource of every device in
6546 	 *    the system, none of them will share an alignment region.
6547 	 *
6548 	 * When the user has requested alignment for only some devices via
6549 	 * the "pci=resource_alignment" argument, "resize" is true and we
6550 	 * use the first method.  Otherwise we assume we're aligning all
6551 	 * devices and we use the second.
6552 	 */
6553 
6554 	pci_info(dev, "BAR%d %pR: requesting alignment to %#llx\n",
6555 		 bar, r, (unsigned long long)align);
6556 
6557 	if (resize) {
6558 		r->start = 0;
6559 		r->end = align - 1;
6560 	} else {
6561 		r->flags &= ~IORESOURCE_SIZEALIGN;
6562 		r->flags |= IORESOURCE_STARTALIGN;
6563 		r->start = align;
6564 		r->end = r->start + size - 1;
6565 	}
6566 	r->flags |= IORESOURCE_UNSET;
6567 }
6568 
6569 /*
6570  * This function disables memory decoding and releases memory resources
6571  * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
6572  * It also rounds up size to specified alignment.
6573  * Later on, the kernel will assign page-aligned memory resource back
6574  * to the device.
6575  */
pci_reassigndev_resource_alignment(struct pci_dev * dev)6576 void pci_reassigndev_resource_alignment(struct pci_dev *dev)
6577 {
6578 	int i;
6579 	struct resource *r;
6580 	resource_size_t align;
6581 	u16 command;
6582 	bool resize = false;
6583 
6584 	/*
6585 	 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec
6586 	 * 3.4.1.11.  Their resources are allocated from the space
6587 	 * described by the VF BARx register in the PF's SR-IOV capability.
6588 	 * We can't influence their alignment here.
6589 	 */
6590 	if (dev->is_virtfn)
6591 		return;
6592 
6593 	/* check if specified PCI is target device to reassign */
6594 	align = pci_specified_resource_alignment(dev, &resize);
6595 	if (!align)
6596 		return;
6597 
6598 	if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
6599 	    (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
6600 		pci_warn(dev, "Can't reassign resources to host bridge\n");
6601 		return;
6602 	}
6603 
6604 	pci_read_config_word(dev, PCI_COMMAND, &command);
6605 	command &= ~PCI_COMMAND_MEMORY;
6606 	pci_write_config_word(dev, PCI_COMMAND, command);
6607 
6608 	for (i = 0; i <= PCI_ROM_RESOURCE; i++)
6609 		pci_request_resource_alignment(dev, i, align, resize);
6610 
6611 	/*
6612 	 * Need to disable bridge's resource window,
6613 	 * to enable the kernel to reassign new resource
6614 	 * window later on.
6615 	 */
6616 	if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
6617 		for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
6618 			r = &dev->resource[i];
6619 			if (!(r->flags & IORESOURCE_MEM))
6620 				continue;
6621 			r->flags |= IORESOURCE_UNSET;
6622 			r->end = resource_size(r) - 1;
6623 			r->start = 0;
6624 		}
6625 		pci_disable_bridge_window(dev);
6626 	}
6627 }
6628 
resource_alignment_show(struct bus_type * bus,char * buf)6629 static ssize_t resource_alignment_show(struct bus_type *bus, char *buf)
6630 {
6631 	size_t count = 0;
6632 
6633 	spin_lock(&resource_alignment_lock);
6634 	if (resource_alignment_param)
6635 		count = sysfs_emit(buf, "%s\n", resource_alignment_param);
6636 	spin_unlock(&resource_alignment_lock);
6637 
6638 	return count;
6639 }
6640 
resource_alignment_store(struct bus_type * bus,const char * buf,size_t count)6641 static ssize_t resource_alignment_store(struct bus_type *bus,
6642 					const char *buf, size_t count)
6643 {
6644 	char *param, *old, *end;
6645 
6646 	if (count >= (PAGE_SIZE - 1))
6647 		return -EINVAL;
6648 
6649 	param = kstrndup(buf, count, GFP_KERNEL);
6650 	if (!param)
6651 		return -ENOMEM;
6652 
6653 	end = strchr(param, '\n');
6654 	if (end)
6655 		*end = '\0';
6656 
6657 	spin_lock(&resource_alignment_lock);
6658 	old = resource_alignment_param;
6659 	if (strlen(param)) {
6660 		resource_alignment_param = param;
6661 	} else {
6662 		kfree(param);
6663 		resource_alignment_param = NULL;
6664 	}
6665 	spin_unlock(&resource_alignment_lock);
6666 
6667 	kfree(old);
6668 
6669 	return count;
6670 }
6671 
6672 static BUS_ATTR_RW(resource_alignment);
6673 
pci_resource_alignment_sysfs_init(void)6674 static int __init pci_resource_alignment_sysfs_init(void)
6675 {
6676 	return bus_create_file(&pci_bus_type,
6677 					&bus_attr_resource_alignment);
6678 }
6679 late_initcall(pci_resource_alignment_sysfs_init);
6680 
pci_no_domains(void)6681 static void pci_no_domains(void)
6682 {
6683 #ifdef CONFIG_PCI_DOMAINS
6684 	pci_domains_supported = 0;
6685 #endif
6686 }
6687 
6688 #ifdef CONFIG_PCI_DOMAINS_GENERIC
6689 static atomic_t __domain_nr = ATOMIC_INIT(-1);
6690 
pci_get_new_domain_nr(void)6691 static int pci_get_new_domain_nr(void)
6692 {
6693 	return atomic_inc_return(&__domain_nr);
6694 }
6695 
of_pci_bus_find_domain_nr(struct device * parent)6696 static int of_pci_bus_find_domain_nr(struct device *parent)
6697 {
6698 	static int use_dt_domains = -1;
6699 	int domain = -1;
6700 
6701 	if (parent)
6702 		domain = of_get_pci_domain_nr(parent->of_node);
6703 
6704 	/*
6705 	 * Check DT domain and use_dt_domains values.
6706 	 *
6707 	 * If DT domain property is valid (domain >= 0) and
6708 	 * use_dt_domains != 0, the DT assignment is valid since this means
6709 	 * we have not previously allocated a domain number by using
6710 	 * pci_get_new_domain_nr(); we should also update use_dt_domains to
6711 	 * 1, to indicate that we have just assigned a domain number from
6712 	 * DT.
6713 	 *
6714 	 * If DT domain property value is not valid (ie domain < 0), and we
6715 	 * have not previously assigned a domain number from DT
6716 	 * (use_dt_domains != 1) we should assign a domain number by
6717 	 * using the:
6718 	 *
6719 	 * pci_get_new_domain_nr()
6720 	 *
6721 	 * API and update the use_dt_domains value to keep track of method we
6722 	 * are using to assign domain numbers (use_dt_domains = 0).
6723 	 *
6724 	 * All other combinations imply we have a platform that is trying
6725 	 * to mix domain numbers obtained from DT and pci_get_new_domain_nr(),
6726 	 * which is a recipe for domain mishandling and it is prevented by
6727 	 * invalidating the domain value (domain = -1) and printing a
6728 	 * corresponding error.
6729 	 */
6730 	if (domain >= 0 && use_dt_domains) {
6731 		use_dt_domains = 1;
6732 	} else if (domain < 0 && use_dt_domains != 1) {
6733 		use_dt_domains = 0;
6734 		domain = pci_get_new_domain_nr();
6735 	} else {
6736 		if (parent)
6737 			pr_err("Node %pOF has ", parent->of_node);
6738 		pr_err("Inconsistent \"linux,pci-domain\" property in DT\n");
6739 		domain = -1;
6740 	}
6741 
6742 	return domain;
6743 }
6744 
pci_bus_find_domain_nr(struct pci_bus * bus,struct device * parent)6745 int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent)
6746 {
6747 	return acpi_disabled ? of_pci_bus_find_domain_nr(parent) :
6748 			       acpi_pci_bus_find_domain_nr(bus);
6749 }
6750 #endif
6751 
6752 /**
6753  * pci_ext_cfg_avail - can we access extended PCI config space?
6754  *
6755  * Returns 1 if we can access PCI extended config space (offsets
6756  * greater than 0xff). This is the default implementation. Architecture
6757  * implementations can override this.
6758  */
pci_ext_cfg_avail(void)6759 int __weak pci_ext_cfg_avail(void)
6760 {
6761 	return 1;
6762 }
6763 
pci_fixup_cardbus(struct pci_bus * bus)6764 void __weak pci_fixup_cardbus(struct pci_bus *bus)
6765 {
6766 }
6767 EXPORT_SYMBOL(pci_fixup_cardbus);
6768 
pci_setup(char * str)6769 static int __init pci_setup(char *str)
6770 {
6771 	while (str) {
6772 		char *k = strchr(str, ',');
6773 		if (k)
6774 			*k++ = 0;
6775 		if (*str && (str = pcibios_setup(str)) && *str) {
6776 			if (!strcmp(str, "nomsi")) {
6777 				pci_no_msi();
6778 			} else if (!strncmp(str, "noats", 5)) {
6779 				pr_info("PCIe: ATS is disabled\n");
6780 				pcie_ats_disabled = true;
6781 			} else if (!strcmp(str, "noaer")) {
6782 				pci_no_aer();
6783 			} else if (!strcmp(str, "earlydump")) {
6784 				pci_early_dump = true;
6785 			} else if (!strncmp(str, "realloc=", 8)) {
6786 				pci_realloc_get_opt(str + 8);
6787 			} else if (!strncmp(str, "realloc", 7)) {
6788 				pci_realloc_get_opt("on");
6789 			} else if (!strcmp(str, "nodomains")) {
6790 				pci_no_domains();
6791 			} else if (!strncmp(str, "noari", 5)) {
6792 				pcie_ari_disabled = true;
6793 			} else if (!strncmp(str, "cbiosize=", 9)) {
6794 				pci_cardbus_io_size = memparse(str + 9, &str);
6795 			} else if (!strncmp(str, "cbmemsize=", 10)) {
6796 				pci_cardbus_mem_size = memparse(str + 10, &str);
6797 			} else if (!strncmp(str, "resource_alignment=", 19)) {
6798 				resource_alignment_param = str + 19;
6799 			} else if (!strncmp(str, "ecrc=", 5)) {
6800 				pcie_ecrc_get_policy(str + 5);
6801 			} else if (!strncmp(str, "hpiosize=", 9)) {
6802 				pci_hotplug_io_size = memparse(str + 9, &str);
6803 			} else if (!strncmp(str, "hpmmiosize=", 11)) {
6804 				pci_hotplug_mmio_size = memparse(str + 11, &str);
6805 			} else if (!strncmp(str, "hpmmioprefsize=", 15)) {
6806 				pci_hotplug_mmio_pref_size = memparse(str + 15, &str);
6807 			} else if (!strncmp(str, "hpmemsize=", 10)) {
6808 				pci_hotplug_mmio_size = memparse(str + 10, &str);
6809 				pci_hotplug_mmio_pref_size = pci_hotplug_mmio_size;
6810 			} else if (!strncmp(str, "hpbussize=", 10)) {
6811 				pci_hotplug_bus_size =
6812 					simple_strtoul(str + 10, &str, 0);
6813 				if (pci_hotplug_bus_size > 0xff)
6814 					pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
6815 			} else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
6816 				pcie_bus_config = PCIE_BUS_TUNE_OFF;
6817 			} else if (!strncmp(str, "pcie_bus_safe", 13)) {
6818 				pcie_bus_config = PCIE_BUS_SAFE;
6819 			} else if (!strncmp(str, "pcie_bus_perf", 13)) {
6820 				pcie_bus_config = PCIE_BUS_PERFORMANCE;
6821 			} else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
6822 				pcie_bus_config = PCIE_BUS_PEER2PEER;
6823 			} else if (!strncmp(str, "pcie_scan_all", 13)) {
6824 				pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
6825 			} else if (!strncmp(str, "disable_acs_redir=", 18)) {
6826 				disable_acs_redir_param = str + 18;
6827 			} else {
6828 				pr_err("PCI: Unknown option `%s'\n", str);
6829 			}
6830 		}
6831 		str = k;
6832 	}
6833 	return 0;
6834 }
6835 early_param("pci", pci_setup);
6836 
6837 /*
6838  * 'resource_alignment_param' and 'disable_acs_redir_param' are initialized
6839  * in pci_setup(), above, to point to data in the __initdata section which
6840  * will be freed after the init sequence is complete. We can't allocate memory
6841  * in pci_setup() because some architectures do not have any memory allocation
6842  * service available during an early_param() call. So we allocate memory and
6843  * copy the variable here before the init section is freed.
6844  *
6845  */
pci_realloc_setup_params(void)6846 static int __init pci_realloc_setup_params(void)
6847 {
6848 	resource_alignment_param = kstrdup(resource_alignment_param,
6849 					   GFP_KERNEL);
6850 	disable_acs_redir_param = kstrdup(disable_acs_redir_param, GFP_KERNEL);
6851 
6852 	return 0;
6853 }
6854 pure_initcall(pci_realloc_setup_params);
6855