• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Performance events core code:
4  *
5  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
7  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
8  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9  */
10 
11 #include <linux/fs.h>
12 #include <linux/mm.h>
13 #include <linux/cpu.h>
14 #include <linux/smp.h>
15 #include <linux/idr.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/slab.h>
19 #include <linux/hash.h>
20 #include <linux/tick.h>
21 #include <linux/sysfs.h>
22 #include <linux/dcache.h>
23 #include <linux/percpu.h>
24 #include <linux/ptrace.h>
25 #include <linux/reboot.h>
26 #include <linux/vmstat.h>
27 #include <linux/device.h>
28 #include <linux/export.h>
29 #include <linux/vmalloc.h>
30 #include <linux/hardirq.h>
31 #include <linux/hugetlb.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
49 #include <linux/sched/clock.h>
50 #include <linux/sched/mm.h>
51 #include <linux/proc_ns.h>
52 #include <linux/mount.h>
53 #include <linux/min_heap.h>
54 #include <linux/highmem.h>
55 #include <linux/pgtable.h>
56 #include <linux/buildid.h>
57 #include <linux/task_work.h>
58 
59 #include "internal.h"
60 
61 #include <asm/irq_regs.h>
62 
63 typedef int (*remote_function_f)(void *);
64 
65 struct remote_function_call {
66 	struct task_struct	*p;
67 	remote_function_f	func;
68 	void			*info;
69 	int			ret;
70 };
71 
remote_function(void * data)72 static void remote_function(void *data)
73 {
74 	struct remote_function_call *tfc = data;
75 	struct task_struct *p = tfc->p;
76 
77 	if (p) {
78 		/* -EAGAIN */
79 		if (task_cpu(p) != smp_processor_id())
80 			return;
81 
82 		/*
83 		 * Now that we're on right CPU with IRQs disabled, we can test
84 		 * if we hit the right task without races.
85 		 */
86 
87 		tfc->ret = -ESRCH; /* No such (running) process */
88 		if (p != current)
89 			return;
90 	}
91 
92 	tfc->ret = tfc->func(tfc->info);
93 }
94 
95 /**
96  * task_function_call - call a function on the cpu on which a task runs
97  * @p:		the task to evaluate
98  * @func:	the function to be called
99  * @info:	the function call argument
100  *
101  * Calls the function @func when the task is currently running. This might
102  * be on the current CPU, which just calls the function directly.  This will
103  * retry due to any failures in smp_call_function_single(), such as if the
104  * task_cpu() goes offline concurrently.
105  *
106  * returns @func return value or -ESRCH or -ENXIO when the process isn't running
107  */
108 static int
task_function_call(struct task_struct * p,remote_function_f func,void * info)109 task_function_call(struct task_struct *p, remote_function_f func, void *info)
110 {
111 	struct remote_function_call data = {
112 		.p	= p,
113 		.func	= func,
114 		.info	= info,
115 		.ret	= -EAGAIN,
116 	};
117 	int ret;
118 
119 	for (;;) {
120 		ret = smp_call_function_single(task_cpu(p), remote_function,
121 					       &data, 1);
122 		if (!ret)
123 			ret = data.ret;
124 
125 		if (ret != -EAGAIN)
126 			break;
127 
128 		cond_resched();
129 	}
130 
131 	return ret;
132 }
133 
134 /**
135  * cpu_function_call - call a function on the cpu
136  * @cpu:	target cpu to queue this function
137  * @func:	the function to be called
138  * @info:	the function call argument
139  *
140  * Calls the function @func on the remote cpu.
141  *
142  * returns: @func return value or -ENXIO when the cpu is offline
143  */
cpu_function_call(int cpu,remote_function_f func,void * info)144 static int cpu_function_call(int cpu, remote_function_f func, void *info)
145 {
146 	struct remote_function_call data = {
147 		.p	= NULL,
148 		.func	= func,
149 		.info	= info,
150 		.ret	= -ENXIO, /* No such CPU */
151 	};
152 
153 	smp_call_function_single(cpu, remote_function, &data, 1);
154 
155 	return data.ret;
156 }
157 
158 static inline struct perf_cpu_context *
__get_cpu_context(struct perf_event_context * ctx)159 __get_cpu_context(struct perf_event_context *ctx)
160 {
161 	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
162 }
163 
perf_ctx_lock(struct perf_cpu_context * cpuctx,struct perf_event_context * ctx)164 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
165 			  struct perf_event_context *ctx)
166 {
167 	raw_spin_lock(&cpuctx->ctx.lock);
168 	if (ctx)
169 		raw_spin_lock(&ctx->lock);
170 }
171 
perf_ctx_unlock(struct perf_cpu_context * cpuctx,struct perf_event_context * ctx)172 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
173 			    struct perf_event_context *ctx)
174 {
175 	if (ctx)
176 		raw_spin_unlock(&ctx->lock);
177 	raw_spin_unlock(&cpuctx->ctx.lock);
178 }
179 
180 #define TASK_TOMBSTONE ((void *)-1L)
181 
is_kernel_event(struct perf_event * event)182 static bool is_kernel_event(struct perf_event *event)
183 {
184 	return READ_ONCE(event->owner) == TASK_TOMBSTONE;
185 }
186 
187 /*
188  * On task ctx scheduling...
189  *
190  * When !ctx->nr_events a task context will not be scheduled. This means
191  * we can disable the scheduler hooks (for performance) without leaving
192  * pending task ctx state.
193  *
194  * This however results in two special cases:
195  *
196  *  - removing the last event from a task ctx; this is relatively straight
197  *    forward and is done in __perf_remove_from_context.
198  *
199  *  - adding the first event to a task ctx; this is tricky because we cannot
200  *    rely on ctx->is_active and therefore cannot use event_function_call().
201  *    See perf_install_in_context().
202  *
203  * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
204  */
205 
206 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
207 			struct perf_event_context *, void *);
208 
209 struct event_function_struct {
210 	struct perf_event *event;
211 	event_f func;
212 	void *data;
213 };
214 
event_function(void * info)215 static int event_function(void *info)
216 {
217 	struct event_function_struct *efs = info;
218 	struct perf_event *event = efs->event;
219 	struct perf_event_context *ctx = event->ctx;
220 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
221 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
222 	int ret = 0;
223 
224 	lockdep_assert_irqs_disabled();
225 
226 	perf_ctx_lock(cpuctx, task_ctx);
227 	/*
228 	 * Since we do the IPI call without holding ctx->lock things can have
229 	 * changed, double check we hit the task we set out to hit.
230 	 */
231 	if (ctx->task) {
232 		if (ctx->task != current) {
233 			ret = -ESRCH;
234 			goto unlock;
235 		}
236 
237 		/*
238 		 * We only use event_function_call() on established contexts,
239 		 * and event_function() is only ever called when active (or
240 		 * rather, we'll have bailed in task_function_call() or the
241 		 * above ctx->task != current test), therefore we must have
242 		 * ctx->is_active here.
243 		 */
244 		WARN_ON_ONCE(!ctx->is_active);
245 		/*
246 		 * And since we have ctx->is_active, cpuctx->task_ctx must
247 		 * match.
248 		 */
249 		WARN_ON_ONCE(task_ctx != ctx);
250 	} else {
251 		WARN_ON_ONCE(&cpuctx->ctx != ctx);
252 	}
253 
254 	efs->func(event, cpuctx, ctx, efs->data);
255 unlock:
256 	perf_ctx_unlock(cpuctx, task_ctx);
257 
258 	return ret;
259 }
260 
event_function_call(struct perf_event * event,event_f func,void * data)261 static void event_function_call(struct perf_event *event, event_f func, void *data)
262 {
263 	struct perf_event_context *ctx = event->ctx;
264 	struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
265 	struct event_function_struct efs = {
266 		.event = event,
267 		.func = func,
268 		.data = data,
269 	};
270 
271 	if (!event->parent) {
272 		/*
273 		 * If this is a !child event, we must hold ctx::mutex to
274 		 * stabilize the event->ctx relation. See
275 		 * perf_event_ctx_lock().
276 		 */
277 		lockdep_assert_held(&ctx->mutex);
278 	}
279 
280 	if (!task) {
281 		cpu_function_call(event->cpu, event_function, &efs);
282 		return;
283 	}
284 
285 	if (task == TASK_TOMBSTONE)
286 		return;
287 
288 again:
289 	if (!task_function_call(task, event_function, &efs))
290 		return;
291 
292 	raw_spin_lock_irq(&ctx->lock);
293 	/*
294 	 * Reload the task pointer, it might have been changed by
295 	 * a concurrent perf_event_context_sched_out().
296 	 */
297 	task = ctx->task;
298 	if (task == TASK_TOMBSTONE) {
299 		raw_spin_unlock_irq(&ctx->lock);
300 		return;
301 	}
302 	if (ctx->is_active) {
303 		raw_spin_unlock_irq(&ctx->lock);
304 		goto again;
305 	}
306 	func(event, NULL, ctx, data);
307 	raw_spin_unlock_irq(&ctx->lock);
308 }
309 
310 /*
311  * Similar to event_function_call() + event_function(), but hard assumes IRQs
312  * are already disabled and we're on the right CPU.
313  */
event_function_local(struct perf_event * event,event_f func,void * data)314 static void event_function_local(struct perf_event *event, event_f func, void *data)
315 {
316 	struct perf_event_context *ctx = event->ctx;
317 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
318 	struct task_struct *task = READ_ONCE(ctx->task);
319 	struct perf_event_context *task_ctx = NULL;
320 
321 	lockdep_assert_irqs_disabled();
322 
323 	if (task) {
324 		if (task == TASK_TOMBSTONE)
325 			return;
326 
327 		task_ctx = ctx;
328 	}
329 
330 	perf_ctx_lock(cpuctx, task_ctx);
331 
332 	task = ctx->task;
333 	if (task == TASK_TOMBSTONE)
334 		goto unlock;
335 
336 	if (task) {
337 		/*
338 		 * We must be either inactive or active and the right task,
339 		 * otherwise we're screwed, since we cannot IPI to somewhere
340 		 * else.
341 		 */
342 		if (ctx->is_active) {
343 			if (WARN_ON_ONCE(task != current))
344 				goto unlock;
345 
346 			if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
347 				goto unlock;
348 		}
349 	} else {
350 		WARN_ON_ONCE(&cpuctx->ctx != ctx);
351 	}
352 
353 	func(event, cpuctx, ctx, data);
354 unlock:
355 	perf_ctx_unlock(cpuctx, task_ctx);
356 }
357 
358 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
359 		       PERF_FLAG_FD_OUTPUT  |\
360 		       PERF_FLAG_PID_CGROUP |\
361 		       PERF_FLAG_FD_CLOEXEC)
362 
363 /*
364  * branch priv levels that need permission checks
365  */
366 #define PERF_SAMPLE_BRANCH_PERM_PLM \
367 	(PERF_SAMPLE_BRANCH_KERNEL |\
368 	 PERF_SAMPLE_BRANCH_HV)
369 
370 enum event_type_t {
371 	EVENT_FLEXIBLE = 0x1,
372 	EVENT_PINNED = 0x2,
373 	EVENT_TIME = 0x4,
374 	/* see ctx_resched() for details */
375 	EVENT_CPU = 0x8,
376 	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
377 };
378 
379 /*
380  * perf_sched_events : >0 events exist
381  * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
382  */
383 
384 static void perf_sched_delayed(struct work_struct *work);
385 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
386 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
387 static DEFINE_MUTEX(perf_sched_mutex);
388 static atomic_t perf_sched_count;
389 
390 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
391 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
392 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
393 
394 static atomic_t nr_mmap_events __read_mostly;
395 static atomic_t nr_comm_events __read_mostly;
396 static atomic_t nr_namespaces_events __read_mostly;
397 static atomic_t nr_task_events __read_mostly;
398 static atomic_t nr_freq_events __read_mostly;
399 static atomic_t nr_switch_events __read_mostly;
400 static atomic_t nr_ksymbol_events __read_mostly;
401 static atomic_t nr_bpf_events __read_mostly;
402 static atomic_t nr_cgroup_events __read_mostly;
403 static atomic_t nr_text_poke_events __read_mostly;
404 static atomic_t nr_build_id_events __read_mostly;
405 
406 static LIST_HEAD(pmus);
407 static DEFINE_MUTEX(pmus_lock);
408 static struct srcu_struct pmus_srcu;
409 static cpumask_var_t perf_online_mask;
410 static struct kmem_cache *perf_event_cache;
411 
412 /*
413  * perf event paranoia level:
414  *  -1 - not paranoid at all
415  *   0 - disallow raw tracepoint access for unpriv
416  *   1 - disallow cpu events for unpriv
417  *   2 - disallow kernel profiling for unpriv
418  */
419 int sysctl_perf_event_paranoid __read_mostly = 2;
420 
421 /* Minimum for 512 kiB + 1 user control page */
422 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
423 
424 /*
425  * max perf event sample rate
426  */
427 #define DEFAULT_MAX_SAMPLE_RATE		100000
428 #define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
429 #define DEFAULT_CPU_TIME_MAX_PERCENT	25
430 
431 int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;
432 
433 static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
434 static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;
435 
436 static int perf_sample_allowed_ns __read_mostly =
437 	DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
438 
update_perf_cpu_limits(void)439 static void update_perf_cpu_limits(void)
440 {
441 	u64 tmp = perf_sample_period_ns;
442 
443 	tmp *= sysctl_perf_cpu_time_max_percent;
444 	tmp = div_u64(tmp, 100);
445 	if (!tmp)
446 		tmp = 1;
447 
448 	WRITE_ONCE(perf_sample_allowed_ns, tmp);
449 }
450 
451 static bool perf_rotate_context(struct perf_cpu_context *cpuctx);
452 
perf_proc_update_handler(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)453 int perf_proc_update_handler(struct ctl_table *table, int write,
454 		void *buffer, size_t *lenp, loff_t *ppos)
455 {
456 	int ret;
457 	int perf_cpu = sysctl_perf_cpu_time_max_percent;
458 	/*
459 	 * If throttling is disabled don't allow the write:
460 	 */
461 	if (write && (perf_cpu == 100 || perf_cpu == 0))
462 		return -EINVAL;
463 
464 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
465 	if (ret || !write)
466 		return ret;
467 
468 	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
469 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
470 	update_perf_cpu_limits();
471 
472 	return 0;
473 }
474 
475 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
476 
perf_cpu_time_max_percent_handler(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)477 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
478 		void *buffer, size_t *lenp, loff_t *ppos)
479 {
480 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
481 
482 	if (ret || !write)
483 		return ret;
484 
485 	if (sysctl_perf_cpu_time_max_percent == 100 ||
486 	    sysctl_perf_cpu_time_max_percent == 0) {
487 		printk(KERN_WARNING
488 		       "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
489 		WRITE_ONCE(perf_sample_allowed_ns, 0);
490 	} else {
491 		update_perf_cpu_limits();
492 	}
493 
494 	return 0;
495 }
496 
497 /*
498  * perf samples are done in some very critical code paths (NMIs).
499  * If they take too much CPU time, the system can lock up and not
500  * get any real work done.  This will drop the sample rate when
501  * we detect that events are taking too long.
502  */
503 #define NR_ACCUMULATED_SAMPLES 128
504 static DEFINE_PER_CPU(u64, running_sample_length);
505 
506 static u64 __report_avg;
507 static u64 __report_allowed;
508 
perf_duration_warn(struct irq_work * w)509 static void perf_duration_warn(struct irq_work *w)
510 {
511 	printk_ratelimited(KERN_INFO
512 		"perf: interrupt took too long (%lld > %lld), lowering "
513 		"kernel.perf_event_max_sample_rate to %d\n",
514 		__report_avg, __report_allowed,
515 		sysctl_perf_event_sample_rate);
516 }
517 
518 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
519 
perf_sample_event_took(u64 sample_len_ns)520 void perf_sample_event_took(u64 sample_len_ns)
521 {
522 	u64 max_len = READ_ONCE(perf_sample_allowed_ns);
523 	u64 running_len;
524 	u64 avg_len;
525 	u32 max;
526 
527 	if (max_len == 0)
528 		return;
529 
530 	/* Decay the counter by 1 average sample. */
531 	running_len = __this_cpu_read(running_sample_length);
532 	running_len -= running_len/NR_ACCUMULATED_SAMPLES;
533 	running_len += sample_len_ns;
534 	__this_cpu_write(running_sample_length, running_len);
535 
536 	/*
537 	 * Note: this will be biased artifically low until we have
538 	 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
539 	 * from having to maintain a count.
540 	 */
541 	avg_len = running_len/NR_ACCUMULATED_SAMPLES;
542 	if (avg_len <= max_len)
543 		return;
544 
545 	__report_avg = avg_len;
546 	__report_allowed = max_len;
547 
548 	/*
549 	 * Compute a throttle threshold 25% below the current duration.
550 	 */
551 	avg_len += avg_len / 4;
552 	max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
553 	if (avg_len < max)
554 		max /= (u32)avg_len;
555 	else
556 		max = 1;
557 
558 	WRITE_ONCE(perf_sample_allowed_ns, avg_len);
559 	WRITE_ONCE(max_samples_per_tick, max);
560 
561 	sysctl_perf_event_sample_rate = max * HZ;
562 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
563 
564 	if (!irq_work_queue(&perf_duration_work)) {
565 		early_printk("perf: interrupt took too long (%lld > %lld), lowering "
566 			     "kernel.perf_event_max_sample_rate to %d\n",
567 			     __report_avg, __report_allowed,
568 			     sysctl_perf_event_sample_rate);
569 	}
570 }
571 
572 static atomic64_t perf_event_id;
573 
574 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
575 			      enum event_type_t event_type);
576 
577 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
578 			     enum event_type_t event_type,
579 			     struct task_struct *task);
580 
581 static void update_context_time(struct perf_event_context *ctx);
582 static u64 perf_event_time(struct perf_event *event);
583 
perf_event_print_debug(void)584 void __weak perf_event_print_debug(void)	{ }
585 
perf_clock(void)586 static inline u64 perf_clock(void)
587 {
588 	return local_clock();
589 }
590 
perf_event_clock(struct perf_event * event)591 static inline u64 perf_event_clock(struct perf_event *event)
592 {
593 	return event->clock();
594 }
595 
596 /*
597  * State based event timekeeping...
598  *
599  * The basic idea is to use event->state to determine which (if any) time
600  * fields to increment with the current delta. This means we only need to
601  * update timestamps when we change state or when they are explicitly requested
602  * (read).
603  *
604  * Event groups make things a little more complicated, but not terribly so. The
605  * rules for a group are that if the group leader is OFF the entire group is
606  * OFF, irrespecive of what the group member states are. This results in
607  * __perf_effective_state().
608  *
609  * A futher ramification is that when a group leader flips between OFF and
610  * !OFF, we need to update all group member times.
611  *
612  *
613  * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we
614  * need to make sure the relevant context time is updated before we try and
615  * update our timestamps.
616  */
617 
618 static __always_inline enum perf_event_state
__perf_effective_state(struct perf_event * event)619 __perf_effective_state(struct perf_event *event)
620 {
621 	struct perf_event *leader = event->group_leader;
622 
623 	if (leader->state <= PERF_EVENT_STATE_OFF)
624 		return leader->state;
625 
626 	return event->state;
627 }
628 
629 static __always_inline void
__perf_update_times(struct perf_event * event,u64 now,u64 * enabled,u64 * running)630 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running)
631 {
632 	enum perf_event_state state = __perf_effective_state(event);
633 	u64 delta = now - event->tstamp;
634 
635 	*enabled = event->total_time_enabled;
636 	if (state >= PERF_EVENT_STATE_INACTIVE)
637 		*enabled += delta;
638 
639 	*running = event->total_time_running;
640 	if (state >= PERF_EVENT_STATE_ACTIVE)
641 		*running += delta;
642 }
643 
perf_event_update_time(struct perf_event * event)644 static void perf_event_update_time(struct perf_event *event)
645 {
646 	u64 now = perf_event_time(event);
647 
648 	__perf_update_times(event, now, &event->total_time_enabled,
649 					&event->total_time_running);
650 	event->tstamp = now;
651 }
652 
perf_event_update_sibling_time(struct perf_event * leader)653 static void perf_event_update_sibling_time(struct perf_event *leader)
654 {
655 	struct perf_event *sibling;
656 
657 	for_each_sibling_event(sibling, leader)
658 		perf_event_update_time(sibling);
659 }
660 
661 static void
perf_event_set_state(struct perf_event * event,enum perf_event_state state)662 perf_event_set_state(struct perf_event *event, enum perf_event_state state)
663 {
664 	if (event->state == state)
665 		return;
666 
667 	perf_event_update_time(event);
668 	/*
669 	 * If a group leader gets enabled/disabled all its siblings
670 	 * are affected too.
671 	 */
672 	if ((event->state < 0) ^ (state < 0))
673 		perf_event_update_sibling_time(event);
674 
675 	WRITE_ONCE(event->state, state);
676 }
677 
678 /*
679  * UP store-release, load-acquire
680  */
681 
682 #define __store_release(ptr, val)					\
683 do {									\
684 	barrier();							\
685 	WRITE_ONCE(*(ptr), (val));					\
686 } while (0)
687 
688 #define __load_acquire(ptr)						\
689 ({									\
690 	__unqual_scalar_typeof(*(ptr)) ___p = READ_ONCE(*(ptr));	\
691 	barrier();							\
692 	___p;								\
693 })
694 
695 #ifdef CONFIG_CGROUP_PERF
696 
697 static inline bool
perf_cgroup_match(struct perf_event * event)698 perf_cgroup_match(struct perf_event *event)
699 {
700 	struct perf_event_context *ctx = event->ctx;
701 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
702 
703 	/* @event doesn't care about cgroup */
704 	if (!event->cgrp)
705 		return true;
706 
707 	/* wants specific cgroup scope but @cpuctx isn't associated with any */
708 	if (!cpuctx->cgrp)
709 		return false;
710 
711 	/*
712 	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
713 	 * also enabled for all its descendant cgroups.  If @cpuctx's
714 	 * cgroup is a descendant of @event's (the test covers identity
715 	 * case), it's a match.
716 	 */
717 	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
718 				    event->cgrp->css.cgroup);
719 }
720 
perf_detach_cgroup(struct perf_event * event)721 static inline void perf_detach_cgroup(struct perf_event *event)
722 {
723 	css_put(&event->cgrp->css);
724 	event->cgrp = NULL;
725 }
726 
is_cgroup_event(struct perf_event * event)727 static inline int is_cgroup_event(struct perf_event *event)
728 {
729 	return event->cgrp != NULL;
730 }
731 
perf_cgroup_event_time(struct perf_event * event)732 static inline u64 perf_cgroup_event_time(struct perf_event *event)
733 {
734 	struct perf_cgroup_info *t;
735 
736 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
737 	return t->time;
738 }
739 
perf_cgroup_event_time_now(struct perf_event * event,u64 now)740 static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now)
741 {
742 	struct perf_cgroup_info *t;
743 
744 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
745 	if (!__load_acquire(&t->active))
746 		return t->time;
747 	now += READ_ONCE(t->timeoffset);
748 	return now;
749 }
750 
__update_cgrp_time(struct perf_cgroup_info * info,u64 now,bool adv)751 static inline void __update_cgrp_time(struct perf_cgroup_info *info, u64 now, bool adv)
752 {
753 	if (adv)
754 		info->time += now - info->timestamp;
755 	info->timestamp = now;
756 	/*
757 	 * see update_context_time()
758 	 */
759 	WRITE_ONCE(info->timeoffset, info->time - info->timestamp);
760 }
761 
update_cgrp_time_from_cpuctx(struct perf_cpu_context * cpuctx,bool final)762 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx, bool final)
763 {
764 	struct perf_cgroup *cgrp = cpuctx->cgrp;
765 	struct cgroup_subsys_state *css;
766 	struct perf_cgroup_info *info;
767 
768 	if (cgrp) {
769 		u64 now = perf_clock();
770 
771 		for (css = &cgrp->css; css; css = css->parent) {
772 			cgrp = container_of(css, struct perf_cgroup, css);
773 			info = this_cpu_ptr(cgrp->info);
774 
775 			__update_cgrp_time(info, now, true);
776 			if (final)
777 				__store_release(&info->active, 0);
778 		}
779 	}
780 }
781 
update_cgrp_time_from_event(struct perf_event * event)782 static inline void update_cgrp_time_from_event(struct perf_event *event)
783 {
784 	struct perf_cgroup_info *info;
785 	struct perf_cgroup *cgrp;
786 
787 	/*
788 	 * ensure we access cgroup data only when needed and
789 	 * when we know the cgroup is pinned (css_get)
790 	 */
791 	if (!is_cgroup_event(event))
792 		return;
793 
794 	cgrp = perf_cgroup_from_task(current, event->ctx);
795 	/*
796 	 * Do not update time when cgroup is not active
797 	 */
798 	if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup)) {
799 		info = this_cpu_ptr(event->cgrp->info);
800 		__update_cgrp_time(info, perf_clock(), true);
801 	}
802 }
803 
804 static inline void
perf_cgroup_set_timestamp(struct task_struct * task,struct perf_event_context * ctx)805 perf_cgroup_set_timestamp(struct task_struct *task,
806 			  struct perf_event_context *ctx)
807 {
808 	struct perf_cgroup *cgrp;
809 	struct perf_cgroup_info *info;
810 	struct cgroup_subsys_state *css;
811 
812 	/*
813 	 * ctx->lock held by caller
814 	 * ensure we do not access cgroup data
815 	 * unless we have the cgroup pinned (css_get)
816 	 */
817 	if (!task || !ctx->nr_cgroups)
818 		return;
819 
820 	cgrp = perf_cgroup_from_task(task, ctx);
821 
822 	for (css = &cgrp->css; css; css = css->parent) {
823 		cgrp = container_of(css, struct perf_cgroup, css);
824 		info = this_cpu_ptr(cgrp->info);
825 		__update_cgrp_time(info, ctx->timestamp, false);
826 		__store_release(&info->active, 1);
827 	}
828 }
829 
830 static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list);
831 
832 #define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
833 #define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */
834 
835 /*
836  * reschedule events based on the cgroup constraint of task.
837  *
838  * mode SWOUT : schedule out everything
839  * mode SWIN : schedule in based on cgroup for next
840  */
perf_cgroup_switch(struct task_struct * task,int mode)841 static void perf_cgroup_switch(struct task_struct *task, int mode)
842 {
843 	struct perf_cpu_context *cpuctx, *tmp;
844 	struct list_head *list;
845 	unsigned long flags;
846 
847 	/*
848 	 * Disable interrupts and preemption to avoid this CPU's
849 	 * cgrp_cpuctx_entry to change under us.
850 	 */
851 	local_irq_save(flags);
852 
853 	list = this_cpu_ptr(&cgrp_cpuctx_list);
854 	list_for_each_entry_safe(cpuctx, tmp, list, cgrp_cpuctx_entry) {
855 		WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
856 
857 		perf_ctx_lock(cpuctx, cpuctx->task_ctx);
858 		perf_pmu_disable(cpuctx->ctx.pmu);
859 
860 		if (mode & PERF_CGROUP_SWOUT) {
861 			cpu_ctx_sched_out(cpuctx, EVENT_ALL);
862 			/*
863 			 * must not be done before ctxswout due
864 			 * to event_filter_match() in event_sched_out()
865 			 */
866 			cpuctx->cgrp = NULL;
867 		}
868 
869 		if (mode & PERF_CGROUP_SWIN) {
870 			WARN_ON_ONCE(cpuctx->cgrp);
871 			/*
872 			 * set cgrp before ctxsw in to allow
873 			 * event_filter_match() to not have to pass
874 			 * task around
875 			 * we pass the cpuctx->ctx to perf_cgroup_from_task()
876 			 * because cgorup events are only per-cpu
877 			 */
878 			cpuctx->cgrp = perf_cgroup_from_task(task,
879 							     &cpuctx->ctx);
880 			cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
881 		}
882 		perf_pmu_enable(cpuctx->ctx.pmu);
883 		perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
884 	}
885 
886 	local_irq_restore(flags);
887 }
888 
perf_cgroup_sched_out(struct task_struct * task,struct task_struct * next)889 static inline void perf_cgroup_sched_out(struct task_struct *task,
890 					 struct task_struct *next)
891 {
892 	struct perf_cgroup *cgrp1;
893 	struct perf_cgroup *cgrp2 = NULL;
894 
895 	rcu_read_lock();
896 	/*
897 	 * we come here when we know perf_cgroup_events > 0
898 	 * we do not need to pass the ctx here because we know
899 	 * we are holding the rcu lock
900 	 */
901 	cgrp1 = perf_cgroup_from_task(task, NULL);
902 	cgrp2 = perf_cgroup_from_task(next, NULL);
903 
904 	/*
905 	 * only schedule out current cgroup events if we know
906 	 * that we are switching to a different cgroup. Otherwise,
907 	 * do no touch the cgroup events.
908 	 */
909 	if (cgrp1 != cgrp2)
910 		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
911 
912 	rcu_read_unlock();
913 }
914 
perf_cgroup_sched_in(struct task_struct * prev,struct task_struct * task)915 static inline void perf_cgroup_sched_in(struct task_struct *prev,
916 					struct task_struct *task)
917 {
918 	struct perf_cgroup *cgrp1;
919 	struct perf_cgroup *cgrp2 = NULL;
920 
921 	rcu_read_lock();
922 	/*
923 	 * we come here when we know perf_cgroup_events > 0
924 	 * we do not need to pass the ctx here because we know
925 	 * we are holding the rcu lock
926 	 */
927 	cgrp1 = perf_cgroup_from_task(task, NULL);
928 	cgrp2 = perf_cgroup_from_task(prev, NULL);
929 
930 	/*
931 	 * only need to schedule in cgroup events if we are changing
932 	 * cgroup during ctxsw. Cgroup events were not scheduled
933 	 * out of ctxsw out if that was not the case.
934 	 */
935 	if (cgrp1 != cgrp2)
936 		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
937 
938 	rcu_read_unlock();
939 }
940 
perf_cgroup_ensure_storage(struct perf_event * event,struct cgroup_subsys_state * css)941 static int perf_cgroup_ensure_storage(struct perf_event *event,
942 				struct cgroup_subsys_state *css)
943 {
944 	struct perf_cpu_context *cpuctx;
945 	struct perf_event **storage;
946 	int cpu, heap_size, ret = 0;
947 
948 	/*
949 	 * Allow storage to have sufficent space for an iterator for each
950 	 * possibly nested cgroup plus an iterator for events with no cgroup.
951 	 */
952 	for (heap_size = 1; css; css = css->parent)
953 		heap_size++;
954 
955 	for_each_possible_cpu(cpu) {
956 		cpuctx = per_cpu_ptr(event->pmu->pmu_cpu_context, cpu);
957 		if (heap_size <= cpuctx->heap_size)
958 			continue;
959 
960 		storage = kmalloc_node(heap_size * sizeof(struct perf_event *),
961 				       GFP_KERNEL, cpu_to_node(cpu));
962 		if (!storage) {
963 			ret = -ENOMEM;
964 			break;
965 		}
966 
967 		raw_spin_lock_irq(&cpuctx->ctx.lock);
968 		if (cpuctx->heap_size < heap_size) {
969 			swap(cpuctx->heap, storage);
970 			if (storage == cpuctx->heap_default)
971 				storage = NULL;
972 			cpuctx->heap_size = heap_size;
973 		}
974 		raw_spin_unlock_irq(&cpuctx->ctx.lock);
975 
976 		kfree(storage);
977 	}
978 
979 	return ret;
980 }
981 
perf_cgroup_connect(int fd,struct perf_event * event,struct perf_event_attr * attr,struct perf_event * group_leader)982 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
983 				      struct perf_event_attr *attr,
984 				      struct perf_event *group_leader)
985 {
986 	struct perf_cgroup *cgrp;
987 	struct cgroup_subsys_state *css;
988 	struct fd f = fdget(fd);
989 	int ret = 0;
990 
991 	if (!f.file)
992 		return -EBADF;
993 
994 	css = css_tryget_online_from_dir(f.file->f_path.dentry,
995 					 &perf_event_cgrp_subsys);
996 	if (IS_ERR(css)) {
997 		ret = PTR_ERR(css);
998 		goto out;
999 	}
1000 
1001 	ret = perf_cgroup_ensure_storage(event, css);
1002 	if (ret)
1003 		goto out;
1004 
1005 	cgrp = container_of(css, struct perf_cgroup, css);
1006 	event->cgrp = cgrp;
1007 
1008 	/*
1009 	 * all events in a group must monitor
1010 	 * the same cgroup because a task belongs
1011 	 * to only one perf cgroup at a time
1012 	 */
1013 	if (group_leader && group_leader->cgrp != cgrp) {
1014 		perf_detach_cgroup(event);
1015 		ret = -EINVAL;
1016 	}
1017 out:
1018 	fdput(f);
1019 	return ret;
1020 }
1021 
1022 static inline void
perf_cgroup_event_enable(struct perf_event * event,struct perf_event_context * ctx)1023 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
1024 {
1025 	struct perf_cpu_context *cpuctx;
1026 
1027 	if (!is_cgroup_event(event))
1028 		return;
1029 
1030 	/*
1031 	 * Because cgroup events are always per-cpu events,
1032 	 * @ctx == &cpuctx->ctx.
1033 	 */
1034 	cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
1035 
1036 	/*
1037 	 * Since setting cpuctx->cgrp is conditional on the current @cgrp
1038 	 * matching the event's cgroup, we must do this for every new event,
1039 	 * because if the first would mismatch, the second would not try again
1040 	 * and we would leave cpuctx->cgrp unset.
1041 	 */
1042 	if (ctx->is_active && !cpuctx->cgrp) {
1043 		struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
1044 
1045 		if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
1046 			cpuctx->cgrp = cgrp;
1047 	}
1048 
1049 	if (ctx->nr_cgroups++)
1050 		return;
1051 
1052 	list_add(&cpuctx->cgrp_cpuctx_entry,
1053 			per_cpu_ptr(&cgrp_cpuctx_list, event->cpu));
1054 }
1055 
1056 static inline void
perf_cgroup_event_disable(struct perf_event * event,struct perf_event_context * ctx)1057 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
1058 {
1059 	struct perf_cpu_context *cpuctx;
1060 
1061 	if (!is_cgroup_event(event))
1062 		return;
1063 
1064 	/*
1065 	 * Because cgroup events are always per-cpu events,
1066 	 * @ctx == &cpuctx->ctx.
1067 	 */
1068 	cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
1069 
1070 	if (--ctx->nr_cgroups)
1071 		return;
1072 
1073 	if (ctx->is_active && cpuctx->cgrp)
1074 		cpuctx->cgrp = NULL;
1075 
1076 	list_del(&cpuctx->cgrp_cpuctx_entry);
1077 }
1078 
1079 #else /* !CONFIG_CGROUP_PERF */
1080 
1081 static inline bool
perf_cgroup_match(struct perf_event * event)1082 perf_cgroup_match(struct perf_event *event)
1083 {
1084 	return true;
1085 }
1086 
perf_detach_cgroup(struct perf_event * event)1087 static inline void perf_detach_cgroup(struct perf_event *event)
1088 {}
1089 
is_cgroup_event(struct perf_event * event)1090 static inline int is_cgroup_event(struct perf_event *event)
1091 {
1092 	return 0;
1093 }
1094 
update_cgrp_time_from_event(struct perf_event * event)1095 static inline void update_cgrp_time_from_event(struct perf_event *event)
1096 {
1097 }
1098 
update_cgrp_time_from_cpuctx(struct perf_cpu_context * cpuctx,bool final)1099 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx,
1100 						bool final)
1101 {
1102 }
1103 
perf_cgroup_sched_out(struct task_struct * task,struct task_struct * next)1104 static inline void perf_cgroup_sched_out(struct task_struct *task,
1105 					 struct task_struct *next)
1106 {
1107 }
1108 
perf_cgroup_sched_in(struct task_struct * prev,struct task_struct * task)1109 static inline void perf_cgroup_sched_in(struct task_struct *prev,
1110 					struct task_struct *task)
1111 {
1112 }
1113 
perf_cgroup_connect(pid_t pid,struct perf_event * event,struct perf_event_attr * attr,struct perf_event * group_leader)1114 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
1115 				      struct perf_event_attr *attr,
1116 				      struct perf_event *group_leader)
1117 {
1118 	return -EINVAL;
1119 }
1120 
1121 static inline void
perf_cgroup_set_timestamp(struct task_struct * task,struct perf_event_context * ctx)1122 perf_cgroup_set_timestamp(struct task_struct *task,
1123 			  struct perf_event_context *ctx)
1124 {
1125 }
1126 
1127 static inline void
perf_cgroup_switch(struct task_struct * task,struct task_struct * next)1128 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
1129 {
1130 }
1131 
perf_cgroup_event_time(struct perf_event * event)1132 static inline u64 perf_cgroup_event_time(struct perf_event *event)
1133 {
1134 	return 0;
1135 }
1136 
perf_cgroup_event_time_now(struct perf_event * event,u64 now)1137 static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now)
1138 {
1139 	return 0;
1140 }
1141 
1142 static inline void
perf_cgroup_event_enable(struct perf_event * event,struct perf_event_context * ctx)1143 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
1144 {
1145 }
1146 
1147 static inline void
perf_cgroup_event_disable(struct perf_event * event,struct perf_event_context * ctx)1148 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
1149 {
1150 }
1151 #endif
1152 
1153 /*
1154  * set default to be dependent on timer tick just
1155  * like original code
1156  */
1157 #define PERF_CPU_HRTIMER (1000 / HZ)
1158 /*
1159  * function must be called with interrupts disabled
1160  */
perf_mux_hrtimer_handler(struct hrtimer * hr)1161 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1162 {
1163 	struct perf_cpu_context *cpuctx;
1164 	bool rotations;
1165 
1166 	lockdep_assert_irqs_disabled();
1167 
1168 	cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
1169 	rotations = perf_rotate_context(cpuctx);
1170 
1171 	raw_spin_lock(&cpuctx->hrtimer_lock);
1172 	if (rotations)
1173 		hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
1174 	else
1175 		cpuctx->hrtimer_active = 0;
1176 	raw_spin_unlock(&cpuctx->hrtimer_lock);
1177 
1178 	return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1179 }
1180 
__perf_mux_hrtimer_init(struct perf_cpu_context * cpuctx,int cpu)1181 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
1182 {
1183 	struct hrtimer *timer = &cpuctx->hrtimer;
1184 	struct pmu *pmu = cpuctx->ctx.pmu;
1185 	u64 interval;
1186 
1187 	/* no multiplexing needed for SW PMU */
1188 	if (pmu->task_ctx_nr == perf_sw_context)
1189 		return;
1190 
1191 	/*
1192 	 * check default is sane, if not set then force to
1193 	 * default interval (1/tick)
1194 	 */
1195 	interval = pmu->hrtimer_interval_ms;
1196 	if (interval < 1)
1197 		interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1198 
1199 	cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1200 
1201 	raw_spin_lock_init(&cpuctx->hrtimer_lock);
1202 	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED_HARD);
1203 	timer->function = perf_mux_hrtimer_handler;
1204 }
1205 
perf_mux_hrtimer_restart(struct perf_cpu_context * cpuctx)1206 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
1207 {
1208 	struct hrtimer *timer = &cpuctx->hrtimer;
1209 	struct pmu *pmu = cpuctx->ctx.pmu;
1210 	unsigned long flags;
1211 
1212 	/* not for SW PMU */
1213 	if (pmu->task_ctx_nr == perf_sw_context)
1214 		return 0;
1215 
1216 	raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1217 	if (!cpuctx->hrtimer_active) {
1218 		cpuctx->hrtimer_active = 1;
1219 		hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1220 		hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD);
1221 	}
1222 	raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
1223 
1224 	return 0;
1225 }
1226 
perf_mux_hrtimer_restart_ipi(void * arg)1227 static int perf_mux_hrtimer_restart_ipi(void *arg)
1228 {
1229 	return perf_mux_hrtimer_restart(arg);
1230 }
1231 
perf_pmu_disable(struct pmu * pmu)1232 void perf_pmu_disable(struct pmu *pmu)
1233 {
1234 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
1235 	if (!(*count)++)
1236 		pmu->pmu_disable(pmu);
1237 }
1238 
perf_pmu_enable(struct pmu * pmu)1239 void perf_pmu_enable(struct pmu *pmu)
1240 {
1241 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
1242 	if (!--(*count))
1243 		pmu->pmu_enable(pmu);
1244 }
1245 
1246 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1247 
1248 /*
1249  * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1250  * perf_event_task_tick() are fully serialized because they're strictly cpu
1251  * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1252  * disabled, while perf_event_task_tick is called from IRQ context.
1253  */
perf_event_ctx_activate(struct perf_event_context * ctx)1254 static void perf_event_ctx_activate(struct perf_event_context *ctx)
1255 {
1256 	struct list_head *head = this_cpu_ptr(&active_ctx_list);
1257 
1258 	lockdep_assert_irqs_disabled();
1259 
1260 	WARN_ON(!list_empty(&ctx->active_ctx_list));
1261 
1262 	list_add(&ctx->active_ctx_list, head);
1263 }
1264 
perf_event_ctx_deactivate(struct perf_event_context * ctx)1265 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1266 {
1267 	lockdep_assert_irqs_disabled();
1268 
1269 	WARN_ON(list_empty(&ctx->active_ctx_list));
1270 
1271 	list_del_init(&ctx->active_ctx_list);
1272 }
1273 
get_ctx(struct perf_event_context * ctx)1274 static void get_ctx(struct perf_event_context *ctx)
1275 {
1276 	refcount_inc(&ctx->refcount);
1277 }
1278 
alloc_task_ctx_data(struct pmu * pmu)1279 static void *alloc_task_ctx_data(struct pmu *pmu)
1280 {
1281 	if (pmu->task_ctx_cache)
1282 		return kmem_cache_zalloc(pmu->task_ctx_cache, GFP_KERNEL);
1283 
1284 	return NULL;
1285 }
1286 
free_task_ctx_data(struct pmu * pmu,void * task_ctx_data)1287 static void free_task_ctx_data(struct pmu *pmu, void *task_ctx_data)
1288 {
1289 	if (pmu->task_ctx_cache && task_ctx_data)
1290 		kmem_cache_free(pmu->task_ctx_cache, task_ctx_data);
1291 }
1292 
free_ctx(struct rcu_head * head)1293 static void free_ctx(struct rcu_head *head)
1294 {
1295 	struct perf_event_context *ctx;
1296 
1297 	ctx = container_of(head, struct perf_event_context, rcu_head);
1298 	free_task_ctx_data(ctx->pmu, ctx->task_ctx_data);
1299 	kfree(ctx);
1300 }
1301 
put_ctx(struct perf_event_context * ctx)1302 static void put_ctx(struct perf_event_context *ctx)
1303 {
1304 	if (refcount_dec_and_test(&ctx->refcount)) {
1305 		if (ctx->parent_ctx)
1306 			put_ctx(ctx->parent_ctx);
1307 		if (ctx->task && ctx->task != TASK_TOMBSTONE)
1308 			put_task_struct(ctx->task);
1309 		call_rcu(&ctx->rcu_head, free_ctx);
1310 	}
1311 }
1312 
1313 /*
1314  * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1315  * perf_pmu_migrate_context() we need some magic.
1316  *
1317  * Those places that change perf_event::ctx will hold both
1318  * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1319  *
1320  * Lock ordering is by mutex address. There are two other sites where
1321  * perf_event_context::mutex nests and those are:
1322  *
1323  *  - perf_event_exit_task_context()	[ child , 0 ]
1324  *      perf_event_exit_event()
1325  *        put_event()			[ parent, 1 ]
1326  *
1327  *  - perf_event_init_context()		[ parent, 0 ]
1328  *      inherit_task_group()
1329  *        inherit_group()
1330  *          inherit_event()
1331  *            perf_event_alloc()
1332  *              perf_init_event()
1333  *                perf_try_init_event()	[ child , 1 ]
1334  *
1335  * While it appears there is an obvious deadlock here -- the parent and child
1336  * nesting levels are inverted between the two. This is in fact safe because
1337  * life-time rules separate them. That is an exiting task cannot fork, and a
1338  * spawning task cannot (yet) exit.
1339  *
1340  * But remember that these are parent<->child context relations, and
1341  * migration does not affect children, therefore these two orderings should not
1342  * interact.
1343  *
1344  * The change in perf_event::ctx does not affect children (as claimed above)
1345  * because the sys_perf_event_open() case will install a new event and break
1346  * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1347  * concerned with cpuctx and that doesn't have children.
1348  *
1349  * The places that change perf_event::ctx will issue:
1350  *
1351  *   perf_remove_from_context();
1352  *   synchronize_rcu();
1353  *   perf_install_in_context();
1354  *
1355  * to affect the change. The remove_from_context() + synchronize_rcu() should
1356  * quiesce the event, after which we can install it in the new location. This
1357  * means that only external vectors (perf_fops, prctl) can perturb the event
1358  * while in transit. Therefore all such accessors should also acquire
1359  * perf_event_context::mutex to serialize against this.
1360  *
1361  * However; because event->ctx can change while we're waiting to acquire
1362  * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1363  * function.
1364  *
1365  * Lock order:
1366  *    exec_update_lock
1367  *	task_struct::perf_event_mutex
1368  *	  perf_event_context::mutex
1369  *	    perf_event::child_mutex;
1370  *	      perf_event_context::lock
1371  *	    perf_event::mmap_mutex
1372  *	    mmap_lock
1373  *	      perf_addr_filters_head::lock
1374  *
1375  *    cpu_hotplug_lock
1376  *      pmus_lock
1377  *	  cpuctx->mutex / perf_event_context::mutex
1378  */
1379 static struct perf_event_context *
perf_event_ctx_lock_nested(struct perf_event * event,int nesting)1380 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1381 {
1382 	struct perf_event_context *ctx;
1383 
1384 again:
1385 	rcu_read_lock();
1386 	ctx = READ_ONCE(event->ctx);
1387 	if (!refcount_inc_not_zero(&ctx->refcount)) {
1388 		rcu_read_unlock();
1389 		goto again;
1390 	}
1391 	rcu_read_unlock();
1392 
1393 	mutex_lock_nested(&ctx->mutex, nesting);
1394 	if (event->ctx != ctx) {
1395 		mutex_unlock(&ctx->mutex);
1396 		put_ctx(ctx);
1397 		goto again;
1398 	}
1399 
1400 	return ctx;
1401 }
1402 
1403 static inline struct perf_event_context *
perf_event_ctx_lock(struct perf_event * event)1404 perf_event_ctx_lock(struct perf_event *event)
1405 {
1406 	return perf_event_ctx_lock_nested(event, 0);
1407 }
1408 
perf_event_ctx_unlock(struct perf_event * event,struct perf_event_context * ctx)1409 static void perf_event_ctx_unlock(struct perf_event *event,
1410 				  struct perf_event_context *ctx)
1411 {
1412 	mutex_unlock(&ctx->mutex);
1413 	put_ctx(ctx);
1414 }
1415 
1416 /*
1417  * This must be done under the ctx->lock, such as to serialize against
1418  * context_equiv(), therefore we cannot call put_ctx() since that might end up
1419  * calling scheduler related locks and ctx->lock nests inside those.
1420  */
1421 static __must_check struct perf_event_context *
unclone_ctx(struct perf_event_context * ctx)1422 unclone_ctx(struct perf_event_context *ctx)
1423 {
1424 	struct perf_event_context *parent_ctx = ctx->parent_ctx;
1425 
1426 	lockdep_assert_held(&ctx->lock);
1427 
1428 	if (parent_ctx)
1429 		ctx->parent_ctx = NULL;
1430 	ctx->generation++;
1431 
1432 	return parent_ctx;
1433 }
1434 
perf_event_pid_type(struct perf_event * event,struct task_struct * p,enum pid_type type)1435 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1436 				enum pid_type type)
1437 {
1438 	u32 nr;
1439 	/*
1440 	 * only top level events have the pid namespace they were created in
1441 	 */
1442 	if (event->parent)
1443 		event = event->parent;
1444 
1445 	nr = __task_pid_nr_ns(p, type, event->ns);
1446 	/* avoid -1 if it is idle thread or runs in another ns */
1447 	if (!nr && !pid_alive(p))
1448 		nr = -1;
1449 	return nr;
1450 }
1451 
perf_event_pid(struct perf_event * event,struct task_struct * p)1452 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1453 {
1454 	return perf_event_pid_type(event, p, PIDTYPE_TGID);
1455 }
1456 
perf_event_tid(struct perf_event * event,struct task_struct * p)1457 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1458 {
1459 	return perf_event_pid_type(event, p, PIDTYPE_PID);
1460 }
1461 
1462 /*
1463  * If we inherit events we want to return the parent event id
1464  * to userspace.
1465  */
primary_event_id(struct perf_event * event)1466 static u64 primary_event_id(struct perf_event *event)
1467 {
1468 	u64 id = event->id;
1469 
1470 	if (event->parent)
1471 		id = event->parent->id;
1472 
1473 	return id;
1474 }
1475 
1476 /*
1477  * Get the perf_event_context for a task and lock it.
1478  *
1479  * This has to cope with the fact that until it is locked,
1480  * the context could get moved to another task.
1481  */
1482 static struct perf_event_context *
perf_lock_task_context(struct task_struct * task,int ctxn,unsigned long * flags)1483 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1484 {
1485 	struct perf_event_context *ctx;
1486 
1487 retry:
1488 	/*
1489 	 * One of the few rules of preemptible RCU is that one cannot do
1490 	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1491 	 * part of the read side critical section was irqs-enabled -- see
1492 	 * rcu_read_unlock_special().
1493 	 *
1494 	 * Since ctx->lock nests under rq->lock we must ensure the entire read
1495 	 * side critical section has interrupts disabled.
1496 	 */
1497 	local_irq_save(*flags);
1498 	rcu_read_lock();
1499 	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1500 	if (ctx) {
1501 		/*
1502 		 * If this context is a clone of another, it might
1503 		 * get swapped for another underneath us by
1504 		 * perf_event_task_sched_out, though the
1505 		 * rcu_read_lock() protects us from any context
1506 		 * getting freed.  Lock the context and check if it
1507 		 * got swapped before we could get the lock, and retry
1508 		 * if so.  If we locked the right context, then it
1509 		 * can't get swapped on us any more.
1510 		 */
1511 		raw_spin_lock(&ctx->lock);
1512 		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1513 			raw_spin_unlock(&ctx->lock);
1514 			rcu_read_unlock();
1515 			local_irq_restore(*flags);
1516 			goto retry;
1517 		}
1518 
1519 		if (ctx->task == TASK_TOMBSTONE ||
1520 		    !refcount_inc_not_zero(&ctx->refcount)) {
1521 			raw_spin_unlock(&ctx->lock);
1522 			ctx = NULL;
1523 		} else {
1524 			WARN_ON_ONCE(ctx->task != task);
1525 		}
1526 	}
1527 	rcu_read_unlock();
1528 	if (!ctx)
1529 		local_irq_restore(*flags);
1530 	return ctx;
1531 }
1532 
1533 /*
1534  * Get the context for a task and increment its pin_count so it
1535  * can't get swapped to another task.  This also increments its
1536  * reference count so that the context can't get freed.
1537  */
1538 static struct perf_event_context *
perf_pin_task_context(struct task_struct * task,int ctxn)1539 perf_pin_task_context(struct task_struct *task, int ctxn)
1540 {
1541 	struct perf_event_context *ctx;
1542 	unsigned long flags;
1543 
1544 	ctx = perf_lock_task_context(task, ctxn, &flags);
1545 	if (ctx) {
1546 		++ctx->pin_count;
1547 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
1548 	}
1549 	return ctx;
1550 }
1551 
perf_unpin_context(struct perf_event_context * ctx)1552 static void perf_unpin_context(struct perf_event_context *ctx)
1553 {
1554 	unsigned long flags;
1555 
1556 	raw_spin_lock_irqsave(&ctx->lock, flags);
1557 	--ctx->pin_count;
1558 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1559 }
1560 
1561 /*
1562  * Update the record of the current time in a context.
1563  */
__update_context_time(struct perf_event_context * ctx,bool adv)1564 static void __update_context_time(struct perf_event_context *ctx, bool adv)
1565 {
1566 	u64 now = perf_clock();
1567 
1568 	if (adv)
1569 		ctx->time += now - ctx->timestamp;
1570 	ctx->timestamp = now;
1571 
1572 	/*
1573 	 * The above: time' = time + (now - timestamp), can be re-arranged
1574 	 * into: time` = now + (time - timestamp), which gives a single value
1575 	 * offset to compute future time without locks on.
1576 	 *
1577 	 * See perf_event_time_now(), which can be used from NMI context where
1578 	 * it's (obviously) not possible to acquire ctx->lock in order to read
1579 	 * both the above values in a consistent manner.
1580 	 */
1581 	WRITE_ONCE(ctx->timeoffset, ctx->time - ctx->timestamp);
1582 }
1583 
update_context_time(struct perf_event_context * ctx)1584 static void update_context_time(struct perf_event_context *ctx)
1585 {
1586 	__update_context_time(ctx, true);
1587 }
1588 
perf_event_time(struct perf_event * event)1589 static u64 perf_event_time(struct perf_event *event)
1590 {
1591 	struct perf_event_context *ctx = event->ctx;
1592 
1593 	if (unlikely(!ctx))
1594 		return 0;
1595 
1596 	if (is_cgroup_event(event))
1597 		return perf_cgroup_event_time(event);
1598 
1599 	return ctx->time;
1600 }
1601 
perf_event_time_now(struct perf_event * event,u64 now)1602 static u64 perf_event_time_now(struct perf_event *event, u64 now)
1603 {
1604 	struct perf_event_context *ctx = event->ctx;
1605 
1606 	if (unlikely(!ctx))
1607 		return 0;
1608 
1609 	if (is_cgroup_event(event))
1610 		return perf_cgroup_event_time_now(event, now);
1611 
1612 	if (!(__load_acquire(&ctx->is_active) & EVENT_TIME))
1613 		return ctx->time;
1614 
1615 	now += READ_ONCE(ctx->timeoffset);
1616 	return now;
1617 }
1618 
get_event_type(struct perf_event * event)1619 static enum event_type_t get_event_type(struct perf_event *event)
1620 {
1621 	struct perf_event_context *ctx = event->ctx;
1622 	enum event_type_t event_type;
1623 
1624 	lockdep_assert_held(&ctx->lock);
1625 
1626 	/*
1627 	 * It's 'group type', really, because if our group leader is
1628 	 * pinned, so are we.
1629 	 */
1630 	if (event->group_leader != event)
1631 		event = event->group_leader;
1632 
1633 	event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1634 	if (!ctx->task)
1635 		event_type |= EVENT_CPU;
1636 
1637 	return event_type;
1638 }
1639 
1640 /*
1641  * Helper function to initialize event group nodes.
1642  */
init_event_group(struct perf_event * event)1643 static void init_event_group(struct perf_event *event)
1644 {
1645 	RB_CLEAR_NODE(&event->group_node);
1646 	event->group_index = 0;
1647 }
1648 
1649 /*
1650  * Extract pinned or flexible groups from the context
1651  * based on event attrs bits.
1652  */
1653 static struct perf_event_groups *
get_event_groups(struct perf_event * event,struct perf_event_context * ctx)1654 get_event_groups(struct perf_event *event, struct perf_event_context *ctx)
1655 {
1656 	if (event->attr.pinned)
1657 		return &ctx->pinned_groups;
1658 	else
1659 		return &ctx->flexible_groups;
1660 }
1661 
1662 /*
1663  * Helper function to initializes perf_event_group trees.
1664  */
perf_event_groups_init(struct perf_event_groups * groups)1665 static void perf_event_groups_init(struct perf_event_groups *groups)
1666 {
1667 	groups->tree = RB_ROOT;
1668 	groups->index = 0;
1669 }
1670 
event_cgroup(const struct perf_event * event)1671 static inline struct cgroup *event_cgroup(const struct perf_event *event)
1672 {
1673 	struct cgroup *cgroup = NULL;
1674 
1675 #ifdef CONFIG_CGROUP_PERF
1676 	if (event->cgrp)
1677 		cgroup = event->cgrp->css.cgroup;
1678 #endif
1679 
1680 	return cgroup;
1681 }
1682 
1683 /*
1684  * Compare function for event groups;
1685  *
1686  * Implements complex key that first sorts by CPU and then by virtual index
1687  * which provides ordering when rotating groups for the same CPU.
1688  */
1689 static __always_inline int
perf_event_groups_cmp(const int left_cpu,const struct cgroup * left_cgroup,const u64 left_group_index,const struct perf_event * right)1690 perf_event_groups_cmp(const int left_cpu, const struct cgroup *left_cgroup,
1691 		      const u64 left_group_index, const struct perf_event *right)
1692 {
1693 	if (left_cpu < right->cpu)
1694 		return -1;
1695 	if (left_cpu > right->cpu)
1696 		return 1;
1697 
1698 #ifdef CONFIG_CGROUP_PERF
1699 	{
1700 		const struct cgroup *right_cgroup = event_cgroup(right);
1701 
1702 		if (left_cgroup != right_cgroup) {
1703 			if (!left_cgroup) {
1704 				/*
1705 				 * Left has no cgroup but right does, no
1706 				 * cgroups come first.
1707 				 */
1708 				return -1;
1709 			}
1710 			if (!right_cgroup) {
1711 				/*
1712 				 * Right has no cgroup but left does, no
1713 				 * cgroups come first.
1714 				 */
1715 				return 1;
1716 			}
1717 			/* Two dissimilar cgroups, order by id. */
1718 			if (cgroup_id(left_cgroup) < cgroup_id(right_cgroup))
1719 				return -1;
1720 
1721 			return 1;
1722 		}
1723 	}
1724 #endif
1725 
1726 	if (left_group_index < right->group_index)
1727 		return -1;
1728 	if (left_group_index > right->group_index)
1729 		return 1;
1730 
1731 	return 0;
1732 }
1733 
1734 #define __node_2_pe(node) \
1735 	rb_entry((node), struct perf_event, group_node)
1736 
__group_less(struct rb_node * a,const struct rb_node * b)1737 static inline bool __group_less(struct rb_node *a, const struct rb_node *b)
1738 {
1739 	struct perf_event *e = __node_2_pe(a);
1740 	return perf_event_groups_cmp(e->cpu, event_cgroup(e), e->group_index,
1741 				     __node_2_pe(b)) < 0;
1742 }
1743 
1744 struct __group_key {
1745 	int cpu;
1746 	struct cgroup *cgroup;
1747 };
1748 
__group_cmp(const void * key,const struct rb_node * node)1749 static inline int __group_cmp(const void *key, const struct rb_node *node)
1750 {
1751 	const struct __group_key *a = key;
1752 	const struct perf_event *b = __node_2_pe(node);
1753 
1754 	/* partial/subtree match: @cpu, @cgroup; ignore: @group_index */
1755 	return perf_event_groups_cmp(a->cpu, a->cgroup, b->group_index, b);
1756 }
1757 
1758 /*
1759  * Insert @event into @groups' tree; using {@event->cpu, ++@groups->index} for
1760  * key (see perf_event_groups_less). This places it last inside the CPU
1761  * subtree.
1762  */
1763 static void
perf_event_groups_insert(struct perf_event_groups * groups,struct perf_event * event)1764 perf_event_groups_insert(struct perf_event_groups *groups,
1765 			 struct perf_event *event)
1766 {
1767 	event->group_index = ++groups->index;
1768 
1769 	rb_add(&event->group_node, &groups->tree, __group_less);
1770 }
1771 
1772 /*
1773  * Helper function to insert event into the pinned or flexible groups.
1774  */
1775 static void
add_event_to_groups(struct perf_event * event,struct perf_event_context * ctx)1776 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx)
1777 {
1778 	struct perf_event_groups *groups;
1779 
1780 	groups = get_event_groups(event, ctx);
1781 	perf_event_groups_insert(groups, event);
1782 }
1783 
1784 /*
1785  * Delete a group from a tree.
1786  */
1787 static void
perf_event_groups_delete(struct perf_event_groups * groups,struct perf_event * event)1788 perf_event_groups_delete(struct perf_event_groups *groups,
1789 			 struct perf_event *event)
1790 {
1791 	WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) ||
1792 		     RB_EMPTY_ROOT(&groups->tree));
1793 
1794 	rb_erase(&event->group_node, &groups->tree);
1795 	init_event_group(event);
1796 }
1797 
1798 /*
1799  * Helper function to delete event from its groups.
1800  */
1801 static void
del_event_from_groups(struct perf_event * event,struct perf_event_context * ctx)1802 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx)
1803 {
1804 	struct perf_event_groups *groups;
1805 
1806 	groups = get_event_groups(event, ctx);
1807 	perf_event_groups_delete(groups, event);
1808 }
1809 
1810 /*
1811  * Get the leftmost event in the cpu/cgroup subtree.
1812  */
1813 static struct perf_event *
perf_event_groups_first(struct perf_event_groups * groups,int cpu,struct cgroup * cgrp)1814 perf_event_groups_first(struct perf_event_groups *groups, int cpu,
1815 			struct cgroup *cgrp)
1816 {
1817 	struct __group_key key = {
1818 		.cpu = cpu,
1819 		.cgroup = cgrp,
1820 	};
1821 	struct rb_node *node;
1822 
1823 	node = rb_find_first(&key, &groups->tree, __group_cmp);
1824 	if (node)
1825 		return __node_2_pe(node);
1826 
1827 	return NULL;
1828 }
1829 
1830 /*
1831  * Like rb_entry_next_safe() for the @cpu subtree.
1832  */
1833 static struct perf_event *
perf_event_groups_next(struct perf_event * event)1834 perf_event_groups_next(struct perf_event *event)
1835 {
1836 	struct __group_key key = {
1837 		.cpu = event->cpu,
1838 		.cgroup = event_cgroup(event),
1839 	};
1840 	struct rb_node *next;
1841 
1842 	next = rb_next_match(&key, &event->group_node, __group_cmp);
1843 	if (next)
1844 		return __node_2_pe(next);
1845 
1846 	return NULL;
1847 }
1848 
1849 /*
1850  * Iterate through the whole groups tree.
1851  */
1852 #define perf_event_groups_for_each(event, groups)			\
1853 	for (event = rb_entry_safe(rb_first(&((groups)->tree)),		\
1854 				typeof(*event), group_node); event;	\
1855 		event = rb_entry_safe(rb_next(&event->group_node),	\
1856 				typeof(*event), group_node))
1857 
1858 /*
1859  * Add an event from the lists for its context.
1860  * Must be called with ctx->mutex and ctx->lock held.
1861  */
1862 static void
list_add_event(struct perf_event * event,struct perf_event_context * ctx)1863 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1864 {
1865 	lockdep_assert_held(&ctx->lock);
1866 
1867 	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1868 	event->attach_state |= PERF_ATTACH_CONTEXT;
1869 
1870 	event->tstamp = perf_event_time(event);
1871 
1872 	/*
1873 	 * If we're a stand alone event or group leader, we go to the context
1874 	 * list, group events are kept attached to the group so that
1875 	 * perf_group_detach can, at all times, locate all siblings.
1876 	 */
1877 	if (event->group_leader == event) {
1878 		event->group_caps = event->event_caps;
1879 		add_event_to_groups(event, ctx);
1880 	}
1881 
1882 	list_add_rcu(&event->event_entry, &ctx->event_list);
1883 	ctx->nr_events++;
1884 	if (event->attr.inherit_stat)
1885 		ctx->nr_stat++;
1886 
1887 	if (event->state > PERF_EVENT_STATE_OFF)
1888 		perf_cgroup_event_enable(event, ctx);
1889 
1890 	ctx->generation++;
1891 }
1892 
1893 /*
1894  * Initialize event state based on the perf_event_attr::disabled.
1895  */
perf_event__state_init(struct perf_event * event)1896 static inline void perf_event__state_init(struct perf_event *event)
1897 {
1898 	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1899 					      PERF_EVENT_STATE_INACTIVE;
1900 }
1901 
__perf_event_read_size(u64 read_format,int nr_siblings)1902 static int __perf_event_read_size(u64 read_format, int nr_siblings)
1903 {
1904 	int entry = sizeof(u64); /* value */
1905 	int size = 0;
1906 	int nr = 1;
1907 
1908 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1909 		size += sizeof(u64);
1910 
1911 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1912 		size += sizeof(u64);
1913 
1914 	if (read_format & PERF_FORMAT_ID)
1915 		entry += sizeof(u64);
1916 
1917 	if (read_format & PERF_FORMAT_GROUP) {
1918 		nr += nr_siblings;
1919 		size += sizeof(u64);
1920 	}
1921 
1922 	/*
1923 	 * Since perf_event_validate_size() limits this to 16k and inhibits
1924 	 * adding more siblings, this will never overflow.
1925 	 */
1926 	return size + nr * entry;
1927 }
1928 
__perf_event_header_size(struct perf_event * event,u64 sample_type)1929 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1930 {
1931 	struct perf_sample_data *data;
1932 	u16 size = 0;
1933 
1934 	if (sample_type & PERF_SAMPLE_IP)
1935 		size += sizeof(data->ip);
1936 
1937 	if (sample_type & PERF_SAMPLE_ADDR)
1938 		size += sizeof(data->addr);
1939 
1940 	if (sample_type & PERF_SAMPLE_PERIOD)
1941 		size += sizeof(data->period);
1942 
1943 	if (sample_type & PERF_SAMPLE_WEIGHT_TYPE)
1944 		size += sizeof(data->weight.full);
1945 
1946 	if (sample_type & PERF_SAMPLE_READ)
1947 		size += event->read_size;
1948 
1949 	if (sample_type & PERF_SAMPLE_DATA_SRC)
1950 		size += sizeof(data->data_src.val);
1951 
1952 	if (sample_type & PERF_SAMPLE_TRANSACTION)
1953 		size += sizeof(data->txn);
1954 
1955 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1956 		size += sizeof(data->phys_addr);
1957 
1958 	if (sample_type & PERF_SAMPLE_CGROUP)
1959 		size += sizeof(data->cgroup);
1960 
1961 	if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
1962 		size += sizeof(data->data_page_size);
1963 
1964 	if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
1965 		size += sizeof(data->code_page_size);
1966 
1967 	event->header_size = size;
1968 }
1969 
1970 /*
1971  * Called at perf_event creation and when events are attached/detached from a
1972  * group.
1973  */
perf_event__header_size(struct perf_event * event)1974 static void perf_event__header_size(struct perf_event *event)
1975 {
1976 	event->read_size =
1977 		__perf_event_read_size(event->attr.read_format,
1978 				       event->group_leader->nr_siblings);
1979 	__perf_event_header_size(event, event->attr.sample_type);
1980 }
1981 
perf_event__id_header_size(struct perf_event * event)1982 static void perf_event__id_header_size(struct perf_event *event)
1983 {
1984 	struct perf_sample_data *data;
1985 	u64 sample_type = event->attr.sample_type;
1986 	u16 size = 0;
1987 
1988 	if (sample_type & PERF_SAMPLE_TID)
1989 		size += sizeof(data->tid_entry);
1990 
1991 	if (sample_type & PERF_SAMPLE_TIME)
1992 		size += sizeof(data->time);
1993 
1994 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
1995 		size += sizeof(data->id);
1996 
1997 	if (sample_type & PERF_SAMPLE_ID)
1998 		size += sizeof(data->id);
1999 
2000 	if (sample_type & PERF_SAMPLE_STREAM_ID)
2001 		size += sizeof(data->stream_id);
2002 
2003 	if (sample_type & PERF_SAMPLE_CPU)
2004 		size += sizeof(data->cpu_entry);
2005 
2006 	event->id_header_size = size;
2007 }
2008 
2009 /*
2010  * Check that adding an event to the group does not result in anybody
2011  * overflowing the 64k event limit imposed by the output buffer.
2012  *
2013  * Specifically, check that the read_size for the event does not exceed 16k,
2014  * read_size being the one term that grows with groups size. Since read_size
2015  * depends on per-event read_format, also (re)check the existing events.
2016  *
2017  * This leaves 48k for the constant size fields and things like callchains,
2018  * branch stacks and register sets.
2019  */
perf_event_validate_size(struct perf_event * event)2020 static bool perf_event_validate_size(struct perf_event *event)
2021 {
2022 	struct perf_event *sibling, *group_leader = event->group_leader;
2023 
2024 	if (__perf_event_read_size(event->attr.read_format,
2025 				   group_leader->nr_siblings + 1) > 16*1024)
2026 		return false;
2027 
2028 	if (__perf_event_read_size(group_leader->attr.read_format,
2029 				   group_leader->nr_siblings + 1) > 16*1024)
2030 		return false;
2031 
2032 	for_each_sibling_event(sibling, group_leader) {
2033 		if (__perf_event_read_size(sibling->attr.read_format,
2034 					   group_leader->nr_siblings + 1) > 16*1024)
2035 			return false;
2036 	}
2037 
2038 	return true;
2039 }
2040 
perf_group_attach(struct perf_event * event)2041 static void perf_group_attach(struct perf_event *event)
2042 {
2043 	struct perf_event *group_leader = event->group_leader, *pos;
2044 
2045 	lockdep_assert_held(&event->ctx->lock);
2046 
2047 	/*
2048 	 * We can have double attach due to group movement in perf_event_open.
2049 	 */
2050 	if (event->attach_state & PERF_ATTACH_GROUP)
2051 		return;
2052 
2053 	event->attach_state |= PERF_ATTACH_GROUP;
2054 
2055 	if (group_leader == event)
2056 		return;
2057 
2058 	WARN_ON_ONCE(group_leader->ctx != event->ctx);
2059 
2060 	group_leader->group_caps &= event->event_caps;
2061 
2062 	list_add_tail(&event->sibling_list, &group_leader->sibling_list);
2063 	group_leader->nr_siblings++;
2064 	group_leader->group_generation++;
2065 
2066 	perf_event__header_size(group_leader);
2067 
2068 	for_each_sibling_event(pos, group_leader)
2069 		perf_event__header_size(pos);
2070 }
2071 
2072 /*
2073  * Remove an event from the lists for its context.
2074  * Must be called with ctx->mutex and ctx->lock held.
2075  */
2076 static void
list_del_event(struct perf_event * event,struct perf_event_context * ctx)2077 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
2078 {
2079 	WARN_ON_ONCE(event->ctx != ctx);
2080 	lockdep_assert_held(&ctx->lock);
2081 
2082 	/*
2083 	 * We can have double detach due to exit/hot-unplug + close.
2084 	 */
2085 	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
2086 		return;
2087 
2088 	event->attach_state &= ~PERF_ATTACH_CONTEXT;
2089 
2090 	ctx->nr_events--;
2091 	if (event->attr.inherit_stat)
2092 		ctx->nr_stat--;
2093 
2094 	list_del_rcu(&event->event_entry);
2095 
2096 	if (event->group_leader == event)
2097 		del_event_from_groups(event, ctx);
2098 
2099 	/*
2100 	 * If event was in error state, then keep it
2101 	 * that way, otherwise bogus counts will be
2102 	 * returned on read(). The only way to get out
2103 	 * of error state is by explicit re-enabling
2104 	 * of the event
2105 	 */
2106 	if (event->state > PERF_EVENT_STATE_OFF) {
2107 		perf_cgroup_event_disable(event, ctx);
2108 		perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2109 	}
2110 
2111 	ctx->generation++;
2112 }
2113 
2114 static int
perf_aux_output_match(struct perf_event * event,struct perf_event * aux_event)2115 perf_aux_output_match(struct perf_event *event, struct perf_event *aux_event)
2116 {
2117 	if (!has_aux(aux_event))
2118 		return 0;
2119 
2120 	if (!event->pmu->aux_output_match)
2121 		return 0;
2122 
2123 	return event->pmu->aux_output_match(aux_event);
2124 }
2125 
2126 static void put_event(struct perf_event *event);
2127 static void event_sched_out(struct perf_event *event,
2128 			    struct perf_cpu_context *cpuctx,
2129 			    struct perf_event_context *ctx);
2130 
perf_put_aux_event(struct perf_event * event)2131 static void perf_put_aux_event(struct perf_event *event)
2132 {
2133 	struct perf_event_context *ctx = event->ctx;
2134 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2135 	struct perf_event *iter;
2136 
2137 	/*
2138 	 * If event uses aux_event tear down the link
2139 	 */
2140 	if (event->aux_event) {
2141 		iter = event->aux_event;
2142 		event->aux_event = NULL;
2143 		put_event(iter);
2144 		return;
2145 	}
2146 
2147 	/*
2148 	 * If the event is an aux_event, tear down all links to
2149 	 * it from other events.
2150 	 */
2151 	for_each_sibling_event(iter, event->group_leader) {
2152 		if (iter->aux_event != event)
2153 			continue;
2154 
2155 		iter->aux_event = NULL;
2156 		put_event(event);
2157 
2158 		/*
2159 		 * If it's ACTIVE, schedule it out and put it into ERROR
2160 		 * state so that we don't try to schedule it again. Note
2161 		 * that perf_event_enable() will clear the ERROR status.
2162 		 */
2163 		event_sched_out(iter, cpuctx, ctx);
2164 		perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
2165 	}
2166 }
2167 
perf_need_aux_event(struct perf_event * event)2168 static bool perf_need_aux_event(struct perf_event *event)
2169 {
2170 	return !!event->attr.aux_output || !!event->attr.aux_sample_size;
2171 }
2172 
perf_get_aux_event(struct perf_event * event,struct perf_event * group_leader)2173 static int perf_get_aux_event(struct perf_event *event,
2174 			      struct perf_event *group_leader)
2175 {
2176 	/*
2177 	 * Our group leader must be an aux event if we want to be
2178 	 * an aux_output. This way, the aux event will precede its
2179 	 * aux_output events in the group, and therefore will always
2180 	 * schedule first.
2181 	 */
2182 	if (!group_leader)
2183 		return 0;
2184 
2185 	/*
2186 	 * aux_output and aux_sample_size are mutually exclusive.
2187 	 */
2188 	if (event->attr.aux_output && event->attr.aux_sample_size)
2189 		return 0;
2190 
2191 	if (event->attr.aux_output &&
2192 	    !perf_aux_output_match(event, group_leader))
2193 		return 0;
2194 
2195 	if (event->attr.aux_sample_size && !group_leader->pmu->snapshot_aux)
2196 		return 0;
2197 
2198 	if (!atomic_long_inc_not_zero(&group_leader->refcount))
2199 		return 0;
2200 
2201 	/*
2202 	 * Link aux_outputs to their aux event; this is undone in
2203 	 * perf_group_detach() by perf_put_aux_event(). When the
2204 	 * group in torn down, the aux_output events loose their
2205 	 * link to the aux_event and can't schedule any more.
2206 	 */
2207 	event->aux_event = group_leader;
2208 
2209 	return 1;
2210 }
2211 
get_event_list(struct perf_event * event)2212 static inline struct list_head *get_event_list(struct perf_event *event)
2213 {
2214 	struct perf_event_context *ctx = event->ctx;
2215 	return event->attr.pinned ? &ctx->pinned_active : &ctx->flexible_active;
2216 }
2217 
2218 /*
2219  * Events that have PERF_EV_CAP_SIBLING require being part of a group and
2220  * cannot exist on their own, schedule them out and move them into the ERROR
2221  * state. Also see _perf_event_enable(), it will not be able to recover
2222  * this ERROR state.
2223  */
perf_remove_sibling_event(struct perf_event * event)2224 static inline void perf_remove_sibling_event(struct perf_event *event)
2225 {
2226 	struct perf_event_context *ctx = event->ctx;
2227 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2228 
2229 	event_sched_out(event, cpuctx, ctx);
2230 	perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
2231 }
2232 
perf_group_detach(struct perf_event * event)2233 static void perf_group_detach(struct perf_event *event)
2234 {
2235 	struct perf_event *leader = event->group_leader;
2236 	struct perf_event *sibling, *tmp;
2237 	struct perf_event_context *ctx = event->ctx;
2238 
2239 	lockdep_assert_held(&ctx->lock);
2240 
2241 	/*
2242 	 * We can have double detach due to exit/hot-unplug + close.
2243 	 */
2244 	if (!(event->attach_state & PERF_ATTACH_GROUP))
2245 		return;
2246 
2247 	event->attach_state &= ~PERF_ATTACH_GROUP;
2248 
2249 	perf_put_aux_event(event);
2250 
2251 	/*
2252 	 * If this is a sibling, remove it from its group.
2253 	 */
2254 	if (leader != event) {
2255 		list_del_init(&event->sibling_list);
2256 		event->group_leader->nr_siblings--;
2257 		event->group_leader->group_generation++;
2258 		goto out;
2259 	}
2260 
2261 	/*
2262 	 * If this was a group event with sibling events then
2263 	 * upgrade the siblings to singleton events by adding them
2264 	 * to whatever list we are on.
2265 	 */
2266 	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) {
2267 
2268 		if (sibling->event_caps & PERF_EV_CAP_SIBLING)
2269 			perf_remove_sibling_event(sibling);
2270 
2271 		sibling->group_leader = sibling;
2272 		list_del_init(&sibling->sibling_list);
2273 
2274 		/* Inherit group flags from the previous leader */
2275 		sibling->group_caps = event->group_caps;
2276 
2277 		if (sibling->attach_state & PERF_ATTACH_CONTEXT) {
2278 			add_event_to_groups(sibling, event->ctx);
2279 
2280 			if (sibling->state == PERF_EVENT_STATE_ACTIVE)
2281 				list_add_tail(&sibling->active_list, get_event_list(sibling));
2282 		}
2283 
2284 		WARN_ON_ONCE(sibling->ctx != event->ctx);
2285 	}
2286 
2287 out:
2288 	for_each_sibling_event(tmp, leader)
2289 		perf_event__header_size(tmp);
2290 
2291 	perf_event__header_size(leader);
2292 }
2293 
2294 static void sync_child_event(struct perf_event *child_event);
2295 
perf_child_detach(struct perf_event * event)2296 static void perf_child_detach(struct perf_event *event)
2297 {
2298 	struct perf_event *parent_event = event->parent;
2299 
2300 	if (!(event->attach_state & PERF_ATTACH_CHILD))
2301 		return;
2302 
2303 	event->attach_state &= ~PERF_ATTACH_CHILD;
2304 
2305 	if (WARN_ON_ONCE(!parent_event))
2306 		return;
2307 
2308 	lockdep_assert_held(&parent_event->child_mutex);
2309 
2310 	sync_child_event(event);
2311 	list_del_init(&event->child_list);
2312 }
2313 
is_orphaned_event(struct perf_event * event)2314 static bool is_orphaned_event(struct perf_event *event)
2315 {
2316 	return event->state == PERF_EVENT_STATE_DEAD;
2317 }
2318 
__pmu_filter_match(struct perf_event * event)2319 static inline int __pmu_filter_match(struct perf_event *event)
2320 {
2321 	struct pmu *pmu = event->pmu;
2322 	return pmu->filter_match ? pmu->filter_match(event) : 1;
2323 }
2324 
2325 /*
2326  * Check whether we should attempt to schedule an event group based on
2327  * PMU-specific filtering. An event group can consist of HW and SW events,
2328  * potentially with a SW leader, so we must check all the filters, to
2329  * determine whether a group is schedulable:
2330  */
pmu_filter_match(struct perf_event * event)2331 static inline int pmu_filter_match(struct perf_event *event)
2332 {
2333 	struct perf_event *sibling;
2334 
2335 	if (!__pmu_filter_match(event))
2336 		return 0;
2337 
2338 	for_each_sibling_event(sibling, event) {
2339 		if (!__pmu_filter_match(sibling))
2340 			return 0;
2341 	}
2342 
2343 	return 1;
2344 }
2345 
2346 static inline int
event_filter_match(struct perf_event * event)2347 event_filter_match(struct perf_event *event)
2348 {
2349 	return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
2350 	       perf_cgroup_match(event) && pmu_filter_match(event);
2351 }
2352 
2353 static void
event_sched_out(struct perf_event * event,struct perf_cpu_context * cpuctx,struct perf_event_context * ctx)2354 event_sched_out(struct perf_event *event,
2355 		  struct perf_cpu_context *cpuctx,
2356 		  struct perf_event_context *ctx)
2357 {
2358 	enum perf_event_state state = PERF_EVENT_STATE_INACTIVE;
2359 
2360 	WARN_ON_ONCE(event->ctx != ctx);
2361 	lockdep_assert_held(&ctx->lock);
2362 
2363 	if (event->state != PERF_EVENT_STATE_ACTIVE)
2364 		return;
2365 
2366 	/*
2367 	 * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but
2368 	 * we can schedule events _OUT_ individually through things like
2369 	 * __perf_remove_from_context().
2370 	 */
2371 	list_del_init(&event->active_list);
2372 
2373 	perf_pmu_disable(event->pmu);
2374 
2375 	event->pmu->del(event, 0);
2376 	event->oncpu = -1;
2377 
2378 	if (event->pending_disable) {
2379 		event->pending_disable = 0;
2380 		perf_cgroup_event_disable(event, ctx);
2381 		state = PERF_EVENT_STATE_OFF;
2382 	}
2383 
2384 	if (event->pending_sigtrap) {
2385 		bool dec = true;
2386 
2387 		event->pending_sigtrap = 0;
2388 		if (state != PERF_EVENT_STATE_OFF &&
2389 		    !event->pending_work) {
2390 			event->pending_work = 1;
2391 			dec = false;
2392 			WARN_ON_ONCE(!atomic_long_inc_not_zero(&event->refcount));
2393 			task_work_add(current, &event->pending_task, TWA_RESUME);
2394 		}
2395 		if (dec)
2396 			local_dec(&event->ctx->nr_pending);
2397 	}
2398 
2399 	perf_event_set_state(event, state);
2400 
2401 	if (!is_software_event(event))
2402 		cpuctx->active_oncpu--;
2403 	if (!--ctx->nr_active)
2404 		perf_event_ctx_deactivate(ctx);
2405 	if (event->attr.freq && event->attr.sample_freq)
2406 		ctx->nr_freq--;
2407 	if (event->attr.exclusive || !cpuctx->active_oncpu)
2408 		cpuctx->exclusive = 0;
2409 
2410 	perf_pmu_enable(event->pmu);
2411 }
2412 
2413 static void
group_sched_out(struct perf_event * group_event,struct perf_cpu_context * cpuctx,struct perf_event_context * ctx)2414 group_sched_out(struct perf_event *group_event,
2415 		struct perf_cpu_context *cpuctx,
2416 		struct perf_event_context *ctx)
2417 {
2418 	struct perf_event *event;
2419 
2420 	if (group_event->state != PERF_EVENT_STATE_ACTIVE)
2421 		return;
2422 
2423 	perf_pmu_disable(ctx->pmu);
2424 
2425 	event_sched_out(group_event, cpuctx, ctx);
2426 
2427 	/*
2428 	 * Schedule out siblings (if any):
2429 	 */
2430 	for_each_sibling_event(event, group_event)
2431 		event_sched_out(event, cpuctx, ctx);
2432 
2433 	perf_pmu_enable(ctx->pmu);
2434 }
2435 
2436 #define DETACH_GROUP	0x01UL
2437 #define DETACH_CHILD	0x02UL
2438 #define DETACH_DEAD	0x04UL
2439 
2440 /*
2441  * Cross CPU call to remove a performance event
2442  *
2443  * We disable the event on the hardware level first. After that we
2444  * remove it from the context list.
2445  */
2446 static void
__perf_remove_from_context(struct perf_event * event,struct perf_cpu_context * cpuctx,struct perf_event_context * ctx,void * info)2447 __perf_remove_from_context(struct perf_event *event,
2448 			   struct perf_cpu_context *cpuctx,
2449 			   struct perf_event_context *ctx,
2450 			   void *info)
2451 {
2452 	unsigned long flags = (unsigned long)info;
2453 
2454 	if (ctx->is_active & EVENT_TIME) {
2455 		update_context_time(ctx);
2456 		update_cgrp_time_from_cpuctx(cpuctx, false);
2457 	}
2458 
2459 	/*
2460 	 * Ensure event_sched_out() switches to OFF, at the very least
2461 	 * this avoids raising perf_pending_task() at this time.
2462 	 */
2463 	if (flags & DETACH_DEAD)
2464 		event->pending_disable = 1;
2465 	event_sched_out(event, cpuctx, ctx);
2466 	if (flags & DETACH_GROUP)
2467 		perf_group_detach(event);
2468 	if (flags & DETACH_CHILD)
2469 		perf_child_detach(event);
2470 	list_del_event(event, ctx);
2471 	if (flags & DETACH_DEAD)
2472 		event->state = PERF_EVENT_STATE_DEAD;
2473 
2474 	if (!ctx->nr_events && ctx->is_active) {
2475 		if (ctx == &cpuctx->ctx)
2476 			update_cgrp_time_from_cpuctx(cpuctx, true);
2477 
2478 		ctx->is_active = 0;
2479 		ctx->rotate_necessary = 0;
2480 		if (ctx->task) {
2481 			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2482 			cpuctx->task_ctx = NULL;
2483 		}
2484 	}
2485 }
2486 
2487 /*
2488  * Remove the event from a task's (or a CPU's) list of events.
2489  *
2490  * If event->ctx is a cloned context, callers must make sure that
2491  * every task struct that event->ctx->task could possibly point to
2492  * remains valid.  This is OK when called from perf_release since
2493  * that only calls us on the top-level context, which can't be a clone.
2494  * When called from perf_event_exit_task, it's OK because the
2495  * context has been detached from its task.
2496  */
perf_remove_from_context(struct perf_event * event,unsigned long flags)2497 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
2498 {
2499 	struct perf_event_context *ctx = event->ctx;
2500 
2501 	lockdep_assert_held(&ctx->mutex);
2502 
2503 	/*
2504 	 * Because of perf_event_exit_task(), perf_remove_from_context() ought
2505 	 * to work in the face of TASK_TOMBSTONE, unlike every other
2506 	 * event_function_call() user.
2507 	 */
2508 	raw_spin_lock_irq(&ctx->lock);
2509 	/*
2510 	 * Cgroup events are per-cpu events, and must IPI because of
2511 	 * cgrp_cpuctx_list.
2512 	 */
2513 	if (!ctx->is_active && !is_cgroup_event(event)) {
2514 		__perf_remove_from_context(event, __get_cpu_context(ctx),
2515 					   ctx, (void *)flags);
2516 		raw_spin_unlock_irq(&ctx->lock);
2517 		return;
2518 	}
2519 	raw_spin_unlock_irq(&ctx->lock);
2520 
2521 	event_function_call(event, __perf_remove_from_context, (void *)flags);
2522 }
2523 
2524 /*
2525  * Cross CPU call to disable a performance event
2526  */
__perf_event_disable(struct perf_event * event,struct perf_cpu_context * cpuctx,struct perf_event_context * ctx,void * info)2527 static void __perf_event_disable(struct perf_event *event,
2528 				 struct perf_cpu_context *cpuctx,
2529 				 struct perf_event_context *ctx,
2530 				 void *info)
2531 {
2532 	if (event->state < PERF_EVENT_STATE_INACTIVE)
2533 		return;
2534 
2535 	if (ctx->is_active & EVENT_TIME) {
2536 		update_context_time(ctx);
2537 		update_cgrp_time_from_event(event);
2538 	}
2539 
2540 	if (event == event->group_leader)
2541 		group_sched_out(event, cpuctx, ctx);
2542 	else
2543 		event_sched_out(event, cpuctx, ctx);
2544 
2545 	perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2546 	perf_cgroup_event_disable(event, ctx);
2547 }
2548 
2549 /*
2550  * Disable an event.
2551  *
2552  * If event->ctx is a cloned context, callers must make sure that
2553  * every task struct that event->ctx->task could possibly point to
2554  * remains valid.  This condition is satisfied when called through
2555  * perf_event_for_each_child or perf_event_for_each because they
2556  * hold the top-level event's child_mutex, so any descendant that
2557  * goes to exit will block in perf_event_exit_event().
2558  *
2559  * When called from perf_pending_irq it's OK because event->ctx
2560  * is the current context on this CPU and preemption is disabled,
2561  * hence we can't get into perf_event_task_sched_out for this context.
2562  */
_perf_event_disable(struct perf_event * event)2563 static void _perf_event_disable(struct perf_event *event)
2564 {
2565 	struct perf_event_context *ctx = event->ctx;
2566 
2567 	raw_spin_lock_irq(&ctx->lock);
2568 	if (event->state <= PERF_EVENT_STATE_OFF) {
2569 		raw_spin_unlock_irq(&ctx->lock);
2570 		return;
2571 	}
2572 	raw_spin_unlock_irq(&ctx->lock);
2573 
2574 	event_function_call(event, __perf_event_disable, NULL);
2575 }
2576 
perf_event_disable_local(struct perf_event * event)2577 void perf_event_disable_local(struct perf_event *event)
2578 {
2579 	event_function_local(event, __perf_event_disable, NULL);
2580 }
2581 
2582 /*
2583  * Strictly speaking kernel users cannot create groups and therefore this
2584  * interface does not need the perf_event_ctx_lock() magic.
2585  */
perf_event_disable(struct perf_event * event)2586 void perf_event_disable(struct perf_event *event)
2587 {
2588 	struct perf_event_context *ctx;
2589 
2590 	ctx = perf_event_ctx_lock(event);
2591 	_perf_event_disable(event);
2592 	perf_event_ctx_unlock(event, ctx);
2593 }
2594 EXPORT_SYMBOL_GPL(perf_event_disable);
2595 
perf_event_disable_inatomic(struct perf_event * event)2596 void perf_event_disable_inatomic(struct perf_event *event)
2597 {
2598 	event->pending_disable = 1;
2599 	irq_work_queue(&event->pending_irq);
2600 }
2601 
2602 #define MAX_INTERRUPTS (~0ULL)
2603 
2604 static void perf_log_throttle(struct perf_event *event, int enable);
2605 static void perf_log_itrace_start(struct perf_event *event);
2606 
2607 static int
event_sched_in(struct perf_event * event,struct perf_cpu_context * cpuctx,struct perf_event_context * ctx)2608 event_sched_in(struct perf_event *event,
2609 		 struct perf_cpu_context *cpuctx,
2610 		 struct perf_event_context *ctx)
2611 {
2612 	int ret = 0;
2613 
2614 	WARN_ON_ONCE(event->ctx != ctx);
2615 
2616 	lockdep_assert_held(&ctx->lock);
2617 
2618 	if (event->state <= PERF_EVENT_STATE_OFF)
2619 		return 0;
2620 
2621 	WRITE_ONCE(event->oncpu, smp_processor_id());
2622 	/*
2623 	 * Order event::oncpu write to happen before the ACTIVE state is
2624 	 * visible. This allows perf_event_{stop,read}() to observe the correct
2625 	 * ->oncpu if it sees ACTIVE.
2626 	 */
2627 	smp_wmb();
2628 	perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE);
2629 
2630 	/*
2631 	 * Unthrottle events, since we scheduled we might have missed several
2632 	 * ticks already, also for a heavily scheduling task there is little
2633 	 * guarantee it'll get a tick in a timely manner.
2634 	 */
2635 	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2636 		perf_log_throttle(event, 1);
2637 		event->hw.interrupts = 0;
2638 	}
2639 
2640 	perf_pmu_disable(event->pmu);
2641 
2642 	perf_log_itrace_start(event);
2643 
2644 	if (event->pmu->add(event, PERF_EF_START)) {
2645 		perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2646 		event->oncpu = -1;
2647 		ret = -EAGAIN;
2648 		goto out;
2649 	}
2650 
2651 	if (!is_software_event(event))
2652 		cpuctx->active_oncpu++;
2653 	if (!ctx->nr_active++)
2654 		perf_event_ctx_activate(ctx);
2655 	if (event->attr.freq && event->attr.sample_freq)
2656 		ctx->nr_freq++;
2657 
2658 	if (event->attr.exclusive)
2659 		cpuctx->exclusive = 1;
2660 
2661 out:
2662 	perf_pmu_enable(event->pmu);
2663 
2664 	return ret;
2665 }
2666 
2667 static int
group_sched_in(struct perf_event * group_event,struct perf_cpu_context * cpuctx,struct perf_event_context * ctx)2668 group_sched_in(struct perf_event *group_event,
2669 	       struct perf_cpu_context *cpuctx,
2670 	       struct perf_event_context *ctx)
2671 {
2672 	struct perf_event *event, *partial_group = NULL;
2673 	struct pmu *pmu = ctx->pmu;
2674 
2675 	if (group_event->state == PERF_EVENT_STATE_OFF)
2676 		return 0;
2677 
2678 	pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2679 
2680 	if (event_sched_in(group_event, cpuctx, ctx))
2681 		goto error;
2682 
2683 	/*
2684 	 * Schedule in siblings as one group (if any):
2685 	 */
2686 	for_each_sibling_event(event, group_event) {
2687 		if (event_sched_in(event, cpuctx, ctx)) {
2688 			partial_group = event;
2689 			goto group_error;
2690 		}
2691 	}
2692 
2693 	if (!pmu->commit_txn(pmu))
2694 		return 0;
2695 
2696 group_error:
2697 	/*
2698 	 * Groups can be scheduled in as one unit only, so undo any
2699 	 * partial group before returning:
2700 	 * The events up to the failed event are scheduled out normally.
2701 	 */
2702 	for_each_sibling_event(event, group_event) {
2703 		if (event == partial_group)
2704 			break;
2705 
2706 		event_sched_out(event, cpuctx, ctx);
2707 	}
2708 	event_sched_out(group_event, cpuctx, ctx);
2709 
2710 error:
2711 	pmu->cancel_txn(pmu);
2712 	return -EAGAIN;
2713 }
2714 
2715 /*
2716  * Work out whether we can put this event group on the CPU now.
2717  */
group_can_go_on(struct perf_event * event,struct perf_cpu_context * cpuctx,int can_add_hw)2718 static int group_can_go_on(struct perf_event *event,
2719 			   struct perf_cpu_context *cpuctx,
2720 			   int can_add_hw)
2721 {
2722 	/*
2723 	 * Groups consisting entirely of software events can always go on.
2724 	 */
2725 	if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2726 		return 1;
2727 	/*
2728 	 * If an exclusive group is already on, no other hardware
2729 	 * events can go on.
2730 	 */
2731 	if (cpuctx->exclusive)
2732 		return 0;
2733 	/*
2734 	 * If this group is exclusive and there are already
2735 	 * events on the CPU, it can't go on.
2736 	 */
2737 	if (event->attr.exclusive && !list_empty(get_event_list(event)))
2738 		return 0;
2739 	/*
2740 	 * Otherwise, try to add it if all previous groups were able
2741 	 * to go on.
2742 	 */
2743 	return can_add_hw;
2744 }
2745 
add_event_to_ctx(struct perf_event * event,struct perf_event_context * ctx)2746 static void add_event_to_ctx(struct perf_event *event,
2747 			       struct perf_event_context *ctx)
2748 {
2749 	list_add_event(event, ctx);
2750 	perf_group_attach(event);
2751 }
2752 
2753 static void ctx_sched_out(struct perf_event_context *ctx,
2754 			  struct perf_cpu_context *cpuctx,
2755 			  enum event_type_t event_type);
2756 static void
2757 ctx_sched_in(struct perf_event_context *ctx,
2758 	     struct perf_cpu_context *cpuctx,
2759 	     enum event_type_t event_type,
2760 	     struct task_struct *task);
2761 
task_ctx_sched_out(struct perf_cpu_context * cpuctx,struct perf_event_context * ctx,enum event_type_t event_type)2762 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2763 			       struct perf_event_context *ctx,
2764 			       enum event_type_t event_type)
2765 {
2766 	if (!cpuctx->task_ctx)
2767 		return;
2768 
2769 	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2770 		return;
2771 
2772 	ctx_sched_out(ctx, cpuctx, event_type);
2773 }
2774 
perf_event_sched_in(struct perf_cpu_context * cpuctx,struct perf_event_context * ctx,struct task_struct * task)2775 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2776 				struct perf_event_context *ctx,
2777 				struct task_struct *task)
2778 {
2779 	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2780 	if (ctx)
2781 		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2782 	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2783 	if (ctx)
2784 		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2785 }
2786 
2787 /*
2788  * We want to maintain the following priority of scheduling:
2789  *  - CPU pinned (EVENT_CPU | EVENT_PINNED)
2790  *  - task pinned (EVENT_PINNED)
2791  *  - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2792  *  - task flexible (EVENT_FLEXIBLE).
2793  *
2794  * In order to avoid unscheduling and scheduling back in everything every
2795  * time an event is added, only do it for the groups of equal priority and
2796  * below.
2797  *
2798  * This can be called after a batch operation on task events, in which case
2799  * event_type is a bit mask of the types of events involved. For CPU events,
2800  * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2801  */
ctx_resched(struct perf_cpu_context * cpuctx,struct perf_event_context * task_ctx,enum event_type_t event_type)2802 static void ctx_resched(struct perf_cpu_context *cpuctx,
2803 			struct perf_event_context *task_ctx,
2804 			enum event_type_t event_type)
2805 {
2806 	enum event_type_t ctx_event_type;
2807 	bool cpu_event = !!(event_type & EVENT_CPU);
2808 
2809 	/*
2810 	 * If pinned groups are involved, flexible groups also need to be
2811 	 * scheduled out.
2812 	 */
2813 	if (event_type & EVENT_PINNED)
2814 		event_type |= EVENT_FLEXIBLE;
2815 
2816 	ctx_event_type = event_type & EVENT_ALL;
2817 
2818 	perf_pmu_disable(cpuctx->ctx.pmu);
2819 	if (task_ctx)
2820 		task_ctx_sched_out(cpuctx, task_ctx, event_type);
2821 
2822 	/*
2823 	 * Decide which cpu ctx groups to schedule out based on the types
2824 	 * of events that caused rescheduling:
2825 	 *  - EVENT_CPU: schedule out corresponding groups;
2826 	 *  - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2827 	 *  - otherwise, do nothing more.
2828 	 */
2829 	if (cpu_event)
2830 		cpu_ctx_sched_out(cpuctx, ctx_event_type);
2831 	else if (ctx_event_type & EVENT_PINNED)
2832 		cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2833 
2834 	perf_event_sched_in(cpuctx, task_ctx, current);
2835 	perf_pmu_enable(cpuctx->ctx.pmu);
2836 }
2837 
perf_pmu_resched(struct pmu * pmu)2838 void perf_pmu_resched(struct pmu *pmu)
2839 {
2840 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2841 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
2842 
2843 	perf_ctx_lock(cpuctx, task_ctx);
2844 	ctx_resched(cpuctx, task_ctx, EVENT_ALL|EVENT_CPU);
2845 	perf_ctx_unlock(cpuctx, task_ctx);
2846 }
2847 
2848 /*
2849  * Cross CPU call to install and enable a performance event
2850  *
2851  * Very similar to remote_function() + event_function() but cannot assume that
2852  * things like ctx->is_active and cpuctx->task_ctx are set.
2853  */
__perf_install_in_context(void * info)2854 static int  __perf_install_in_context(void *info)
2855 {
2856 	struct perf_event *event = info;
2857 	struct perf_event_context *ctx = event->ctx;
2858 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2859 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
2860 	bool reprogram = true;
2861 	int ret = 0;
2862 
2863 	raw_spin_lock(&cpuctx->ctx.lock);
2864 	if (ctx->task) {
2865 		raw_spin_lock(&ctx->lock);
2866 		task_ctx = ctx;
2867 
2868 		reprogram = (ctx->task == current);
2869 
2870 		/*
2871 		 * If the task is running, it must be running on this CPU,
2872 		 * otherwise we cannot reprogram things.
2873 		 *
2874 		 * If its not running, we don't care, ctx->lock will
2875 		 * serialize against it becoming runnable.
2876 		 */
2877 		if (task_curr(ctx->task) && !reprogram) {
2878 			ret = -ESRCH;
2879 			goto unlock;
2880 		}
2881 
2882 		WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2883 	} else if (task_ctx) {
2884 		raw_spin_lock(&task_ctx->lock);
2885 	}
2886 
2887 #ifdef CONFIG_CGROUP_PERF
2888 	if (event->state > PERF_EVENT_STATE_OFF && is_cgroup_event(event)) {
2889 		/*
2890 		 * If the current cgroup doesn't match the event's
2891 		 * cgroup, we should not try to schedule it.
2892 		 */
2893 		struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
2894 		reprogram = cgroup_is_descendant(cgrp->css.cgroup,
2895 					event->cgrp->css.cgroup);
2896 	}
2897 #endif
2898 
2899 	if (reprogram) {
2900 		ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2901 		add_event_to_ctx(event, ctx);
2902 		ctx_resched(cpuctx, task_ctx, get_event_type(event));
2903 	} else {
2904 		add_event_to_ctx(event, ctx);
2905 	}
2906 
2907 unlock:
2908 	perf_ctx_unlock(cpuctx, task_ctx);
2909 
2910 	return ret;
2911 }
2912 
2913 static bool exclusive_event_installable(struct perf_event *event,
2914 					struct perf_event_context *ctx);
2915 
2916 /*
2917  * Attach a performance event to a context.
2918  *
2919  * Very similar to event_function_call, see comment there.
2920  */
2921 static void
perf_install_in_context(struct perf_event_context * ctx,struct perf_event * event,int cpu)2922 perf_install_in_context(struct perf_event_context *ctx,
2923 			struct perf_event *event,
2924 			int cpu)
2925 {
2926 	struct task_struct *task = READ_ONCE(ctx->task);
2927 
2928 	lockdep_assert_held(&ctx->mutex);
2929 
2930 	WARN_ON_ONCE(!exclusive_event_installable(event, ctx));
2931 
2932 	if (event->cpu != -1)
2933 		event->cpu = cpu;
2934 
2935 	/*
2936 	 * Ensures that if we can observe event->ctx, both the event and ctx
2937 	 * will be 'complete'. See perf_iterate_sb_cpu().
2938 	 */
2939 	smp_store_release(&event->ctx, ctx);
2940 
2941 	/*
2942 	 * perf_event_attr::disabled events will not run and can be initialized
2943 	 * without IPI. Except when this is the first event for the context, in
2944 	 * that case we need the magic of the IPI to set ctx->is_active.
2945 	 * Similarly, cgroup events for the context also needs the IPI to
2946 	 * manipulate the cgrp_cpuctx_list.
2947 	 *
2948 	 * The IOC_ENABLE that is sure to follow the creation of a disabled
2949 	 * event will issue the IPI and reprogram the hardware.
2950 	 */
2951 	if (__perf_effective_state(event) == PERF_EVENT_STATE_OFF &&
2952 	    ctx->nr_events && !is_cgroup_event(event)) {
2953 		raw_spin_lock_irq(&ctx->lock);
2954 		if (ctx->task == TASK_TOMBSTONE) {
2955 			raw_spin_unlock_irq(&ctx->lock);
2956 			return;
2957 		}
2958 		add_event_to_ctx(event, ctx);
2959 		raw_spin_unlock_irq(&ctx->lock);
2960 		return;
2961 	}
2962 
2963 	if (!task) {
2964 		cpu_function_call(cpu, __perf_install_in_context, event);
2965 		return;
2966 	}
2967 
2968 	/*
2969 	 * Should not happen, we validate the ctx is still alive before calling.
2970 	 */
2971 	if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2972 		return;
2973 
2974 	/*
2975 	 * Installing events is tricky because we cannot rely on ctx->is_active
2976 	 * to be set in case this is the nr_events 0 -> 1 transition.
2977 	 *
2978 	 * Instead we use task_curr(), which tells us if the task is running.
2979 	 * However, since we use task_curr() outside of rq::lock, we can race
2980 	 * against the actual state. This means the result can be wrong.
2981 	 *
2982 	 * If we get a false positive, we retry, this is harmless.
2983 	 *
2984 	 * If we get a false negative, things are complicated. If we are after
2985 	 * perf_event_context_sched_in() ctx::lock will serialize us, and the
2986 	 * value must be correct. If we're before, it doesn't matter since
2987 	 * perf_event_context_sched_in() will program the counter.
2988 	 *
2989 	 * However, this hinges on the remote context switch having observed
2990 	 * our task->perf_event_ctxp[] store, such that it will in fact take
2991 	 * ctx::lock in perf_event_context_sched_in().
2992 	 *
2993 	 * We do this by task_function_call(), if the IPI fails to hit the task
2994 	 * we know any future context switch of task must see the
2995 	 * perf_event_ctpx[] store.
2996 	 */
2997 
2998 	/*
2999 	 * This smp_mb() orders the task->perf_event_ctxp[] store with the
3000 	 * task_cpu() load, such that if the IPI then does not find the task
3001 	 * running, a future context switch of that task must observe the
3002 	 * store.
3003 	 */
3004 	smp_mb();
3005 again:
3006 	if (!task_function_call(task, __perf_install_in_context, event))
3007 		return;
3008 
3009 	raw_spin_lock_irq(&ctx->lock);
3010 	task = ctx->task;
3011 	if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
3012 		/*
3013 		 * Cannot happen because we already checked above (which also
3014 		 * cannot happen), and we hold ctx->mutex, which serializes us
3015 		 * against perf_event_exit_task_context().
3016 		 */
3017 		raw_spin_unlock_irq(&ctx->lock);
3018 		return;
3019 	}
3020 	/*
3021 	 * If the task is not running, ctx->lock will avoid it becoming so,
3022 	 * thus we can safely install the event.
3023 	 */
3024 	if (task_curr(task)) {
3025 		raw_spin_unlock_irq(&ctx->lock);
3026 		goto again;
3027 	}
3028 	add_event_to_ctx(event, ctx);
3029 	raw_spin_unlock_irq(&ctx->lock);
3030 }
3031 
3032 /*
3033  * Cross CPU call to enable a performance event
3034  */
__perf_event_enable(struct perf_event * event,struct perf_cpu_context * cpuctx,struct perf_event_context * ctx,void * info)3035 static void __perf_event_enable(struct perf_event *event,
3036 				struct perf_cpu_context *cpuctx,
3037 				struct perf_event_context *ctx,
3038 				void *info)
3039 {
3040 	struct perf_event *leader = event->group_leader;
3041 	struct perf_event_context *task_ctx;
3042 
3043 	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
3044 	    event->state <= PERF_EVENT_STATE_ERROR)
3045 		return;
3046 
3047 	if (ctx->is_active)
3048 		ctx_sched_out(ctx, cpuctx, EVENT_TIME);
3049 
3050 	perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
3051 	perf_cgroup_event_enable(event, ctx);
3052 
3053 	if (!ctx->is_active)
3054 		return;
3055 
3056 	if (!event_filter_match(event)) {
3057 		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
3058 		return;
3059 	}
3060 
3061 	/*
3062 	 * If the event is in a group and isn't the group leader,
3063 	 * then don't put it on unless the group is on.
3064 	 */
3065 	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
3066 		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
3067 		return;
3068 	}
3069 
3070 	task_ctx = cpuctx->task_ctx;
3071 	if (ctx->task)
3072 		WARN_ON_ONCE(task_ctx != ctx);
3073 
3074 	ctx_resched(cpuctx, task_ctx, get_event_type(event));
3075 }
3076 
3077 /*
3078  * Enable an event.
3079  *
3080  * If event->ctx is a cloned context, callers must make sure that
3081  * every task struct that event->ctx->task could possibly point to
3082  * remains valid.  This condition is satisfied when called through
3083  * perf_event_for_each_child or perf_event_for_each as described
3084  * for perf_event_disable.
3085  */
_perf_event_enable(struct perf_event * event)3086 static void _perf_event_enable(struct perf_event *event)
3087 {
3088 	struct perf_event_context *ctx = event->ctx;
3089 
3090 	raw_spin_lock_irq(&ctx->lock);
3091 	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
3092 	    event->state <  PERF_EVENT_STATE_ERROR) {
3093 out:
3094 		raw_spin_unlock_irq(&ctx->lock);
3095 		return;
3096 	}
3097 
3098 	/*
3099 	 * If the event is in error state, clear that first.
3100 	 *
3101 	 * That way, if we see the event in error state below, we know that it
3102 	 * has gone back into error state, as distinct from the task having
3103 	 * been scheduled away before the cross-call arrived.
3104 	 */
3105 	if (event->state == PERF_EVENT_STATE_ERROR) {
3106 		/*
3107 		 * Detached SIBLING events cannot leave ERROR state.
3108 		 */
3109 		if (event->event_caps & PERF_EV_CAP_SIBLING &&
3110 		    event->group_leader == event)
3111 			goto out;
3112 
3113 		event->state = PERF_EVENT_STATE_OFF;
3114 	}
3115 	raw_spin_unlock_irq(&ctx->lock);
3116 
3117 	event_function_call(event, __perf_event_enable, NULL);
3118 }
3119 
3120 /*
3121  * See perf_event_disable();
3122  */
perf_event_enable(struct perf_event * event)3123 void perf_event_enable(struct perf_event *event)
3124 {
3125 	struct perf_event_context *ctx;
3126 
3127 	ctx = perf_event_ctx_lock(event);
3128 	_perf_event_enable(event);
3129 	perf_event_ctx_unlock(event, ctx);
3130 }
3131 EXPORT_SYMBOL_GPL(perf_event_enable);
3132 
3133 struct stop_event_data {
3134 	struct perf_event	*event;
3135 	unsigned int		restart;
3136 };
3137 
__perf_event_stop(void * info)3138 static int __perf_event_stop(void *info)
3139 {
3140 	struct stop_event_data *sd = info;
3141 	struct perf_event *event = sd->event;
3142 
3143 	/* if it's already INACTIVE, do nothing */
3144 	if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3145 		return 0;
3146 
3147 	/* matches smp_wmb() in event_sched_in() */
3148 	smp_rmb();
3149 
3150 	/*
3151 	 * There is a window with interrupts enabled before we get here,
3152 	 * so we need to check again lest we try to stop another CPU's event.
3153 	 */
3154 	if (READ_ONCE(event->oncpu) != smp_processor_id())
3155 		return -EAGAIN;
3156 
3157 	event->pmu->stop(event, PERF_EF_UPDATE);
3158 
3159 	/*
3160 	 * May race with the actual stop (through perf_pmu_output_stop()),
3161 	 * but it is only used for events with AUX ring buffer, and such
3162 	 * events will refuse to restart because of rb::aux_mmap_count==0,
3163 	 * see comments in perf_aux_output_begin().
3164 	 *
3165 	 * Since this is happening on an event-local CPU, no trace is lost
3166 	 * while restarting.
3167 	 */
3168 	if (sd->restart)
3169 		event->pmu->start(event, 0);
3170 
3171 	return 0;
3172 }
3173 
perf_event_stop(struct perf_event * event,int restart)3174 static int perf_event_stop(struct perf_event *event, int restart)
3175 {
3176 	struct stop_event_data sd = {
3177 		.event		= event,
3178 		.restart	= restart,
3179 	};
3180 	int ret = 0;
3181 
3182 	do {
3183 		if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3184 			return 0;
3185 
3186 		/* matches smp_wmb() in event_sched_in() */
3187 		smp_rmb();
3188 
3189 		/*
3190 		 * We only want to restart ACTIVE events, so if the event goes
3191 		 * inactive here (event->oncpu==-1), there's nothing more to do;
3192 		 * fall through with ret==-ENXIO.
3193 		 */
3194 		ret = cpu_function_call(READ_ONCE(event->oncpu),
3195 					__perf_event_stop, &sd);
3196 	} while (ret == -EAGAIN);
3197 
3198 	return ret;
3199 }
3200 
3201 /*
3202  * In order to contain the amount of racy and tricky in the address filter
3203  * configuration management, it is a two part process:
3204  *
3205  * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
3206  *      we update the addresses of corresponding vmas in
3207  *	event::addr_filter_ranges array and bump the event::addr_filters_gen;
3208  * (p2) when an event is scheduled in (pmu::add), it calls
3209  *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
3210  *      if the generation has changed since the previous call.
3211  *
3212  * If (p1) happens while the event is active, we restart it to force (p2).
3213  *
3214  * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
3215  *     pre-existing mappings, called once when new filters arrive via SET_FILTER
3216  *     ioctl;
3217  * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
3218  *     registered mapping, called for every new mmap(), with mm::mmap_lock down
3219  *     for reading;
3220  * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
3221  *     of exec.
3222  */
perf_event_addr_filters_sync(struct perf_event * event)3223 void perf_event_addr_filters_sync(struct perf_event *event)
3224 {
3225 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
3226 
3227 	if (!has_addr_filter(event))
3228 		return;
3229 
3230 	raw_spin_lock(&ifh->lock);
3231 	if (event->addr_filters_gen != event->hw.addr_filters_gen) {
3232 		event->pmu->addr_filters_sync(event);
3233 		event->hw.addr_filters_gen = event->addr_filters_gen;
3234 	}
3235 	raw_spin_unlock(&ifh->lock);
3236 }
3237 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
3238 
_perf_event_refresh(struct perf_event * event,int refresh)3239 static int _perf_event_refresh(struct perf_event *event, int refresh)
3240 {
3241 	/*
3242 	 * not supported on inherited events
3243 	 */
3244 	if (event->attr.inherit || !is_sampling_event(event))
3245 		return -EINVAL;
3246 
3247 	atomic_add(refresh, &event->event_limit);
3248 	_perf_event_enable(event);
3249 
3250 	return 0;
3251 }
3252 
3253 /*
3254  * See perf_event_disable()
3255  */
perf_event_refresh(struct perf_event * event,int refresh)3256 int perf_event_refresh(struct perf_event *event, int refresh)
3257 {
3258 	struct perf_event_context *ctx;
3259 	int ret;
3260 
3261 	ctx = perf_event_ctx_lock(event);
3262 	ret = _perf_event_refresh(event, refresh);
3263 	perf_event_ctx_unlock(event, ctx);
3264 
3265 	return ret;
3266 }
3267 EXPORT_SYMBOL_GPL(perf_event_refresh);
3268 
perf_event_modify_breakpoint(struct perf_event * bp,struct perf_event_attr * attr)3269 static int perf_event_modify_breakpoint(struct perf_event *bp,
3270 					 struct perf_event_attr *attr)
3271 {
3272 	int err;
3273 
3274 	_perf_event_disable(bp);
3275 
3276 	err = modify_user_hw_breakpoint_check(bp, attr, true);
3277 
3278 	if (!bp->attr.disabled)
3279 		_perf_event_enable(bp);
3280 
3281 	return err;
3282 }
3283 
3284 /*
3285  * Copy event-type-independent attributes that may be modified.
3286  */
perf_event_modify_copy_attr(struct perf_event_attr * to,const struct perf_event_attr * from)3287 static void perf_event_modify_copy_attr(struct perf_event_attr *to,
3288 					const struct perf_event_attr *from)
3289 {
3290 	to->sig_data = from->sig_data;
3291 }
3292 
perf_event_modify_attr(struct perf_event * event,struct perf_event_attr * attr)3293 static int perf_event_modify_attr(struct perf_event *event,
3294 				  struct perf_event_attr *attr)
3295 {
3296 	int (*func)(struct perf_event *, struct perf_event_attr *);
3297 	struct perf_event *child;
3298 	int err;
3299 
3300 	if (event->attr.type != attr->type)
3301 		return -EINVAL;
3302 
3303 	switch (event->attr.type) {
3304 	case PERF_TYPE_BREAKPOINT:
3305 		func = perf_event_modify_breakpoint;
3306 		break;
3307 	default:
3308 		/* Place holder for future additions. */
3309 		return -EOPNOTSUPP;
3310 	}
3311 
3312 	WARN_ON_ONCE(event->ctx->parent_ctx);
3313 
3314 	mutex_lock(&event->child_mutex);
3315 	/*
3316 	 * Event-type-independent attributes must be copied before event-type
3317 	 * modification, which will validate that final attributes match the
3318 	 * source attributes after all relevant attributes have been copied.
3319 	 */
3320 	perf_event_modify_copy_attr(&event->attr, attr);
3321 	err = func(event, attr);
3322 	if (err)
3323 		goto out;
3324 	list_for_each_entry(child, &event->child_list, child_list) {
3325 		perf_event_modify_copy_attr(&child->attr, attr);
3326 		err = func(child, attr);
3327 		if (err)
3328 			goto out;
3329 	}
3330 out:
3331 	mutex_unlock(&event->child_mutex);
3332 	return err;
3333 }
3334 
ctx_sched_out(struct perf_event_context * ctx,struct perf_cpu_context * cpuctx,enum event_type_t event_type)3335 static void ctx_sched_out(struct perf_event_context *ctx,
3336 			  struct perf_cpu_context *cpuctx,
3337 			  enum event_type_t event_type)
3338 {
3339 	struct perf_event *event, *tmp;
3340 	int is_active = ctx->is_active;
3341 
3342 	lockdep_assert_held(&ctx->lock);
3343 
3344 	if (likely(!ctx->nr_events)) {
3345 		/*
3346 		 * See __perf_remove_from_context().
3347 		 */
3348 		WARN_ON_ONCE(ctx->is_active);
3349 		if (ctx->task)
3350 			WARN_ON_ONCE(cpuctx->task_ctx);
3351 		return;
3352 	}
3353 
3354 	/*
3355 	 * Always update time if it was set; not only when it changes.
3356 	 * Otherwise we can 'forget' to update time for any but the last
3357 	 * context we sched out. For example:
3358 	 *
3359 	 *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
3360 	 *   ctx_sched_out(.event_type = EVENT_PINNED)
3361 	 *
3362 	 * would only update time for the pinned events.
3363 	 */
3364 	if (is_active & EVENT_TIME) {
3365 		/* update (and stop) ctx time */
3366 		update_context_time(ctx);
3367 		update_cgrp_time_from_cpuctx(cpuctx, ctx == &cpuctx->ctx);
3368 		/*
3369 		 * CPU-release for the below ->is_active store,
3370 		 * see __load_acquire() in perf_event_time_now()
3371 		 */
3372 		barrier();
3373 	}
3374 
3375 	ctx->is_active &= ~event_type;
3376 	if (!(ctx->is_active & EVENT_ALL))
3377 		ctx->is_active = 0;
3378 
3379 	if (ctx->task) {
3380 		WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3381 		if (!ctx->is_active)
3382 			cpuctx->task_ctx = NULL;
3383 	}
3384 
3385 	is_active ^= ctx->is_active; /* changed bits */
3386 
3387 	if (!ctx->nr_active || !(is_active & EVENT_ALL))
3388 		return;
3389 
3390 	perf_pmu_disable(ctx->pmu);
3391 	if (is_active & EVENT_PINNED) {
3392 		list_for_each_entry_safe(event, tmp, &ctx->pinned_active, active_list)
3393 			group_sched_out(event, cpuctx, ctx);
3394 	}
3395 
3396 	if (is_active & EVENT_FLEXIBLE) {
3397 		list_for_each_entry_safe(event, tmp, &ctx->flexible_active, active_list)
3398 			group_sched_out(event, cpuctx, ctx);
3399 
3400 		/*
3401 		 * Since we cleared EVENT_FLEXIBLE, also clear
3402 		 * rotate_necessary, is will be reset by
3403 		 * ctx_flexible_sched_in() when needed.
3404 		 */
3405 		ctx->rotate_necessary = 0;
3406 	}
3407 	perf_pmu_enable(ctx->pmu);
3408 }
3409 
3410 /*
3411  * Test whether two contexts are equivalent, i.e. whether they have both been
3412  * cloned from the same version of the same context.
3413  *
3414  * Equivalence is measured using a generation number in the context that is
3415  * incremented on each modification to it; see unclone_ctx(), list_add_event()
3416  * and list_del_event().
3417  */
context_equiv(struct perf_event_context * ctx1,struct perf_event_context * ctx2)3418 static int context_equiv(struct perf_event_context *ctx1,
3419 			 struct perf_event_context *ctx2)
3420 {
3421 	lockdep_assert_held(&ctx1->lock);
3422 	lockdep_assert_held(&ctx2->lock);
3423 
3424 	/* Pinning disables the swap optimization */
3425 	if (ctx1->pin_count || ctx2->pin_count)
3426 		return 0;
3427 
3428 	/* If ctx1 is the parent of ctx2 */
3429 	if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
3430 		return 1;
3431 
3432 	/* If ctx2 is the parent of ctx1 */
3433 	if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
3434 		return 1;
3435 
3436 	/*
3437 	 * If ctx1 and ctx2 have the same parent; we flatten the parent
3438 	 * hierarchy, see perf_event_init_context().
3439 	 */
3440 	if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
3441 			ctx1->parent_gen == ctx2->parent_gen)
3442 		return 1;
3443 
3444 	/* Unmatched */
3445 	return 0;
3446 }
3447 
__perf_event_sync_stat(struct perf_event * event,struct perf_event * next_event)3448 static void __perf_event_sync_stat(struct perf_event *event,
3449 				     struct perf_event *next_event)
3450 {
3451 	u64 value;
3452 
3453 	if (!event->attr.inherit_stat)
3454 		return;
3455 
3456 	/*
3457 	 * Update the event value, we cannot use perf_event_read()
3458 	 * because we're in the middle of a context switch and have IRQs
3459 	 * disabled, which upsets smp_call_function_single(), however
3460 	 * we know the event must be on the current CPU, therefore we
3461 	 * don't need to use it.
3462 	 */
3463 	if (event->state == PERF_EVENT_STATE_ACTIVE)
3464 		event->pmu->read(event);
3465 
3466 	perf_event_update_time(event);
3467 
3468 	/*
3469 	 * In order to keep per-task stats reliable we need to flip the event
3470 	 * values when we flip the contexts.
3471 	 */
3472 	value = local64_read(&next_event->count);
3473 	value = local64_xchg(&event->count, value);
3474 	local64_set(&next_event->count, value);
3475 
3476 	swap(event->total_time_enabled, next_event->total_time_enabled);
3477 	swap(event->total_time_running, next_event->total_time_running);
3478 
3479 	/*
3480 	 * Since we swizzled the values, update the user visible data too.
3481 	 */
3482 	perf_event_update_userpage(event);
3483 	perf_event_update_userpage(next_event);
3484 }
3485 
perf_event_sync_stat(struct perf_event_context * ctx,struct perf_event_context * next_ctx)3486 static void perf_event_sync_stat(struct perf_event_context *ctx,
3487 				   struct perf_event_context *next_ctx)
3488 {
3489 	struct perf_event *event, *next_event;
3490 
3491 	if (!ctx->nr_stat)
3492 		return;
3493 
3494 	update_context_time(ctx);
3495 
3496 	event = list_first_entry(&ctx->event_list,
3497 				   struct perf_event, event_entry);
3498 
3499 	next_event = list_first_entry(&next_ctx->event_list,
3500 					struct perf_event, event_entry);
3501 
3502 	while (&event->event_entry != &ctx->event_list &&
3503 	       &next_event->event_entry != &next_ctx->event_list) {
3504 
3505 		__perf_event_sync_stat(event, next_event);
3506 
3507 		event = list_next_entry(event, event_entry);
3508 		next_event = list_next_entry(next_event, event_entry);
3509 	}
3510 }
3511 
perf_event_context_sched_out(struct task_struct * task,int ctxn,struct task_struct * next)3512 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
3513 					 struct task_struct *next)
3514 {
3515 	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
3516 	struct perf_event_context *next_ctx;
3517 	struct perf_event_context *parent, *next_parent;
3518 	struct perf_cpu_context *cpuctx;
3519 	int do_switch = 1;
3520 	struct pmu *pmu;
3521 
3522 	if (likely(!ctx))
3523 		return;
3524 
3525 	pmu = ctx->pmu;
3526 	cpuctx = __get_cpu_context(ctx);
3527 	if (!cpuctx->task_ctx)
3528 		return;
3529 
3530 	rcu_read_lock();
3531 	next_ctx = next->perf_event_ctxp[ctxn];
3532 	if (!next_ctx)
3533 		goto unlock;
3534 
3535 	parent = rcu_dereference(ctx->parent_ctx);
3536 	next_parent = rcu_dereference(next_ctx->parent_ctx);
3537 
3538 	/* If neither context have a parent context; they cannot be clones. */
3539 	if (!parent && !next_parent)
3540 		goto unlock;
3541 
3542 	if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
3543 		/*
3544 		 * Looks like the two contexts are clones, so we might be
3545 		 * able to optimize the context switch.  We lock both
3546 		 * contexts and check that they are clones under the
3547 		 * lock (including re-checking that neither has been
3548 		 * uncloned in the meantime).  It doesn't matter which
3549 		 * order we take the locks because no other cpu could
3550 		 * be trying to lock both of these tasks.
3551 		 */
3552 		raw_spin_lock(&ctx->lock);
3553 		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
3554 		if (context_equiv(ctx, next_ctx)) {
3555 
3556 			perf_pmu_disable(pmu);
3557 
3558 			/* PMIs are disabled; ctx->nr_pending is stable. */
3559 			if (local_read(&ctx->nr_pending) ||
3560 			    local_read(&next_ctx->nr_pending)) {
3561 				/*
3562 				 * Must not swap out ctx when there's pending
3563 				 * events that rely on the ctx->task relation.
3564 				 */
3565 				raw_spin_unlock(&next_ctx->lock);
3566 				rcu_read_unlock();
3567 				goto inside_switch;
3568 			}
3569 
3570 			WRITE_ONCE(ctx->task, next);
3571 			WRITE_ONCE(next_ctx->task, task);
3572 
3573 			if (cpuctx->sched_cb_usage && pmu->sched_task)
3574 				pmu->sched_task(ctx, false);
3575 
3576 			/*
3577 			 * PMU specific parts of task perf context can require
3578 			 * additional synchronization. As an example of such
3579 			 * synchronization see implementation details of Intel
3580 			 * LBR call stack data profiling;
3581 			 */
3582 			if (pmu->swap_task_ctx)
3583 				pmu->swap_task_ctx(ctx, next_ctx);
3584 			else
3585 				swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
3586 
3587 			perf_pmu_enable(pmu);
3588 
3589 			/*
3590 			 * RCU_INIT_POINTER here is safe because we've not
3591 			 * modified the ctx and the above modification of
3592 			 * ctx->task and ctx->task_ctx_data are immaterial
3593 			 * since those values are always verified under
3594 			 * ctx->lock which we're now holding.
3595 			 */
3596 			RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
3597 			RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
3598 
3599 			do_switch = 0;
3600 
3601 			perf_event_sync_stat(ctx, next_ctx);
3602 		}
3603 		raw_spin_unlock(&next_ctx->lock);
3604 		raw_spin_unlock(&ctx->lock);
3605 	}
3606 unlock:
3607 	rcu_read_unlock();
3608 
3609 	if (do_switch) {
3610 		raw_spin_lock(&ctx->lock);
3611 		perf_pmu_disable(pmu);
3612 
3613 inside_switch:
3614 		if (cpuctx->sched_cb_usage && pmu->sched_task)
3615 			pmu->sched_task(ctx, false);
3616 		task_ctx_sched_out(cpuctx, ctx, EVENT_ALL);
3617 
3618 		perf_pmu_enable(pmu);
3619 		raw_spin_unlock(&ctx->lock);
3620 	}
3621 }
3622 
3623 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
3624 
perf_sched_cb_dec(struct pmu * pmu)3625 void perf_sched_cb_dec(struct pmu *pmu)
3626 {
3627 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3628 
3629 	this_cpu_dec(perf_sched_cb_usages);
3630 
3631 	if (!--cpuctx->sched_cb_usage)
3632 		list_del(&cpuctx->sched_cb_entry);
3633 }
3634 
3635 
perf_sched_cb_inc(struct pmu * pmu)3636 void perf_sched_cb_inc(struct pmu *pmu)
3637 {
3638 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3639 
3640 	if (!cpuctx->sched_cb_usage++)
3641 		list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
3642 
3643 	this_cpu_inc(perf_sched_cb_usages);
3644 }
3645 
3646 /*
3647  * This function provides the context switch callback to the lower code
3648  * layer. It is invoked ONLY when the context switch callback is enabled.
3649  *
3650  * This callback is relevant even to per-cpu events; for example multi event
3651  * PEBS requires this to provide PID/TID information. This requires we flush
3652  * all queued PEBS records before we context switch to a new task.
3653  */
__perf_pmu_sched_task(struct perf_cpu_context * cpuctx,bool sched_in)3654 static void __perf_pmu_sched_task(struct perf_cpu_context *cpuctx, bool sched_in)
3655 {
3656 	struct pmu *pmu;
3657 
3658 	pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */
3659 
3660 	if (WARN_ON_ONCE(!pmu->sched_task))
3661 		return;
3662 
3663 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3664 	perf_pmu_disable(pmu);
3665 
3666 	pmu->sched_task(cpuctx->task_ctx, sched_in);
3667 
3668 	perf_pmu_enable(pmu);
3669 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3670 }
3671 
perf_pmu_sched_task(struct task_struct * prev,struct task_struct * next,bool sched_in)3672 static void perf_pmu_sched_task(struct task_struct *prev,
3673 				struct task_struct *next,
3674 				bool sched_in)
3675 {
3676 	struct perf_cpu_context *cpuctx;
3677 
3678 	if (prev == next)
3679 		return;
3680 
3681 	list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
3682 		/* will be handled in perf_event_context_sched_in/out */
3683 		if (cpuctx->task_ctx)
3684 			continue;
3685 
3686 		__perf_pmu_sched_task(cpuctx, sched_in);
3687 	}
3688 }
3689 
3690 static void perf_event_switch(struct task_struct *task,
3691 			      struct task_struct *next_prev, bool sched_in);
3692 
3693 #define for_each_task_context_nr(ctxn)					\
3694 	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
3695 
3696 /*
3697  * Called from scheduler to remove the events of the current task,
3698  * with interrupts disabled.
3699  *
3700  * We stop each event and update the event value in event->count.
3701  *
3702  * This does not protect us against NMI, but disable()
3703  * sets the disabled bit in the control field of event _before_
3704  * accessing the event control register. If a NMI hits, then it will
3705  * not restart the event.
3706  */
__perf_event_task_sched_out(struct task_struct * task,struct task_struct * next)3707 void __perf_event_task_sched_out(struct task_struct *task,
3708 				 struct task_struct *next)
3709 {
3710 	int ctxn;
3711 
3712 	if (__this_cpu_read(perf_sched_cb_usages))
3713 		perf_pmu_sched_task(task, next, false);
3714 
3715 	if (atomic_read(&nr_switch_events))
3716 		perf_event_switch(task, next, false);
3717 
3718 	for_each_task_context_nr(ctxn)
3719 		perf_event_context_sched_out(task, ctxn, next);
3720 
3721 	/*
3722 	 * if cgroup events exist on this CPU, then we need
3723 	 * to check if we have to switch out PMU state.
3724 	 * cgroup event are system-wide mode only
3725 	 */
3726 	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3727 		perf_cgroup_sched_out(task, next);
3728 }
3729 
3730 /*
3731  * Called with IRQs disabled
3732  */
cpu_ctx_sched_out(struct perf_cpu_context * cpuctx,enum event_type_t event_type)3733 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
3734 			      enum event_type_t event_type)
3735 {
3736 	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
3737 }
3738 
perf_less_group_idx(const void * l,const void * r)3739 static bool perf_less_group_idx(const void *l, const void *r)
3740 {
3741 	const struct perf_event *le = *(const struct perf_event **)l;
3742 	const struct perf_event *re = *(const struct perf_event **)r;
3743 
3744 	return le->group_index < re->group_index;
3745 }
3746 
swap_ptr(void * l,void * r)3747 static void swap_ptr(void *l, void *r)
3748 {
3749 	void **lp = l, **rp = r;
3750 
3751 	swap(*lp, *rp);
3752 }
3753 
3754 static const struct min_heap_callbacks perf_min_heap = {
3755 	.elem_size = sizeof(struct perf_event *),
3756 	.less = perf_less_group_idx,
3757 	.swp = swap_ptr,
3758 };
3759 
__heap_add(struct min_heap * heap,struct perf_event * event)3760 static void __heap_add(struct min_heap *heap, struct perf_event *event)
3761 {
3762 	struct perf_event **itrs = heap->data;
3763 
3764 	if (event) {
3765 		itrs[heap->nr] = event;
3766 		heap->nr++;
3767 	}
3768 }
3769 
visit_groups_merge(struct perf_cpu_context * cpuctx,struct perf_event_groups * groups,int cpu,int (* func)(struct perf_event *,void *),void * data)3770 static noinline int visit_groups_merge(struct perf_cpu_context *cpuctx,
3771 				struct perf_event_groups *groups, int cpu,
3772 				int (*func)(struct perf_event *, void *),
3773 				void *data)
3774 {
3775 #ifdef CONFIG_CGROUP_PERF
3776 	struct cgroup_subsys_state *css = NULL;
3777 #endif
3778 	/* Space for per CPU and/or any CPU event iterators. */
3779 	struct perf_event *itrs[2];
3780 	struct min_heap event_heap;
3781 	struct perf_event **evt;
3782 	int ret;
3783 
3784 	if (cpuctx) {
3785 		event_heap = (struct min_heap){
3786 			.data = cpuctx->heap,
3787 			.nr = 0,
3788 			.size = cpuctx->heap_size,
3789 		};
3790 
3791 		lockdep_assert_held(&cpuctx->ctx.lock);
3792 
3793 #ifdef CONFIG_CGROUP_PERF
3794 		if (cpuctx->cgrp)
3795 			css = &cpuctx->cgrp->css;
3796 #endif
3797 	} else {
3798 		event_heap = (struct min_heap){
3799 			.data = itrs,
3800 			.nr = 0,
3801 			.size = ARRAY_SIZE(itrs),
3802 		};
3803 		/* Events not within a CPU context may be on any CPU. */
3804 		__heap_add(&event_heap, perf_event_groups_first(groups, -1, NULL));
3805 	}
3806 	evt = event_heap.data;
3807 
3808 	__heap_add(&event_heap, perf_event_groups_first(groups, cpu, NULL));
3809 
3810 #ifdef CONFIG_CGROUP_PERF
3811 	for (; css; css = css->parent)
3812 		__heap_add(&event_heap, perf_event_groups_first(groups, cpu, css->cgroup));
3813 #endif
3814 
3815 	min_heapify_all(&event_heap, &perf_min_heap);
3816 
3817 	while (event_heap.nr) {
3818 		ret = func(*evt, data);
3819 		if (ret)
3820 			return ret;
3821 
3822 		*evt = perf_event_groups_next(*evt);
3823 		if (*evt)
3824 			min_heapify(&event_heap, 0, &perf_min_heap);
3825 		else
3826 			min_heap_pop(&event_heap, &perf_min_heap);
3827 	}
3828 
3829 	return 0;
3830 }
3831 
3832 /*
3833  * Because the userpage is strictly per-event (there is no concept of context,
3834  * so there cannot be a context indirection), every userpage must be updated
3835  * when context time starts :-(
3836  *
3837  * IOW, we must not miss EVENT_TIME edges.
3838  */
event_update_userpage(struct perf_event * event)3839 static inline bool event_update_userpage(struct perf_event *event)
3840 {
3841 	if (likely(!atomic_read(&event->mmap_count)))
3842 		return false;
3843 
3844 	perf_event_update_time(event);
3845 	perf_event_update_userpage(event);
3846 
3847 	return true;
3848 }
3849 
group_update_userpage(struct perf_event * group_event)3850 static inline void group_update_userpage(struct perf_event *group_event)
3851 {
3852 	struct perf_event *event;
3853 
3854 	if (!event_update_userpage(group_event))
3855 		return;
3856 
3857 	for_each_sibling_event(event, group_event)
3858 		event_update_userpage(event);
3859 }
3860 
merge_sched_in(struct perf_event * event,void * data)3861 static int merge_sched_in(struct perf_event *event, void *data)
3862 {
3863 	struct perf_event_context *ctx = event->ctx;
3864 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3865 	int *can_add_hw = data;
3866 
3867 	if (event->state <= PERF_EVENT_STATE_OFF)
3868 		return 0;
3869 
3870 	if (!event_filter_match(event))
3871 		return 0;
3872 
3873 	if (group_can_go_on(event, cpuctx, *can_add_hw)) {
3874 		if (!group_sched_in(event, cpuctx, ctx))
3875 			list_add_tail(&event->active_list, get_event_list(event));
3876 	}
3877 
3878 	if (event->state == PERF_EVENT_STATE_INACTIVE) {
3879 		*can_add_hw = 0;
3880 		if (event->attr.pinned) {
3881 			perf_cgroup_event_disable(event, ctx);
3882 			perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
3883 		} else {
3884 			ctx->rotate_necessary = 1;
3885 			perf_mux_hrtimer_restart(cpuctx);
3886 			group_update_userpage(event);
3887 		}
3888 	}
3889 
3890 	return 0;
3891 }
3892 
3893 static void
ctx_pinned_sched_in(struct perf_event_context * ctx,struct perf_cpu_context * cpuctx)3894 ctx_pinned_sched_in(struct perf_event_context *ctx,
3895 		    struct perf_cpu_context *cpuctx)
3896 {
3897 	int can_add_hw = 1;
3898 
3899 	if (ctx != &cpuctx->ctx)
3900 		cpuctx = NULL;
3901 
3902 	visit_groups_merge(cpuctx, &ctx->pinned_groups,
3903 			   smp_processor_id(),
3904 			   merge_sched_in, &can_add_hw);
3905 }
3906 
3907 static void
ctx_flexible_sched_in(struct perf_event_context * ctx,struct perf_cpu_context * cpuctx)3908 ctx_flexible_sched_in(struct perf_event_context *ctx,
3909 		      struct perf_cpu_context *cpuctx)
3910 {
3911 	int can_add_hw = 1;
3912 
3913 	if (ctx != &cpuctx->ctx)
3914 		cpuctx = NULL;
3915 
3916 	visit_groups_merge(cpuctx, &ctx->flexible_groups,
3917 			   smp_processor_id(),
3918 			   merge_sched_in, &can_add_hw);
3919 }
3920 
3921 static void
ctx_sched_in(struct perf_event_context * ctx,struct perf_cpu_context * cpuctx,enum event_type_t event_type,struct task_struct * task)3922 ctx_sched_in(struct perf_event_context *ctx,
3923 	     struct perf_cpu_context *cpuctx,
3924 	     enum event_type_t event_type,
3925 	     struct task_struct *task)
3926 {
3927 	int is_active = ctx->is_active;
3928 
3929 	lockdep_assert_held(&ctx->lock);
3930 
3931 	if (likely(!ctx->nr_events))
3932 		return;
3933 
3934 	if (!(is_active & EVENT_TIME)) {
3935 		/* start ctx time */
3936 		__update_context_time(ctx, false);
3937 		perf_cgroup_set_timestamp(task, ctx);
3938 		/*
3939 		 * CPU-release for the below ->is_active store,
3940 		 * see __load_acquire() in perf_event_time_now()
3941 		 */
3942 		barrier();
3943 	}
3944 
3945 	ctx->is_active |= (event_type | EVENT_TIME);
3946 	if (ctx->task) {
3947 		if (!is_active)
3948 			cpuctx->task_ctx = ctx;
3949 		else
3950 			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3951 	}
3952 
3953 	is_active ^= ctx->is_active; /* changed bits */
3954 
3955 	/*
3956 	 * First go through the list and put on any pinned groups
3957 	 * in order to give them the best chance of going on.
3958 	 */
3959 	if (is_active & EVENT_PINNED)
3960 		ctx_pinned_sched_in(ctx, cpuctx);
3961 
3962 	/* Then walk through the lower prio flexible groups */
3963 	if (is_active & EVENT_FLEXIBLE)
3964 		ctx_flexible_sched_in(ctx, cpuctx);
3965 }
3966 
cpu_ctx_sched_in(struct perf_cpu_context * cpuctx,enum event_type_t event_type,struct task_struct * task)3967 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
3968 			     enum event_type_t event_type,
3969 			     struct task_struct *task)
3970 {
3971 	struct perf_event_context *ctx = &cpuctx->ctx;
3972 
3973 	ctx_sched_in(ctx, cpuctx, event_type, task);
3974 }
3975 
perf_event_context_sched_in(struct perf_event_context * ctx,struct task_struct * task)3976 static void perf_event_context_sched_in(struct perf_event_context *ctx,
3977 					struct task_struct *task)
3978 {
3979 	struct perf_cpu_context *cpuctx;
3980 	struct pmu *pmu;
3981 
3982 	cpuctx = __get_cpu_context(ctx);
3983 
3984 	/*
3985 	 * HACK: for HETEROGENEOUS the task context might have switched to a
3986 	 * different PMU, force (re)set the context,
3987 	 */
3988 	pmu = ctx->pmu = cpuctx->ctx.pmu;
3989 
3990 	if (cpuctx->task_ctx == ctx) {
3991 		if (cpuctx->sched_cb_usage)
3992 			__perf_pmu_sched_task(cpuctx, true);
3993 		return;
3994 	}
3995 
3996 	perf_ctx_lock(cpuctx, ctx);
3997 	/*
3998 	 * We must check ctx->nr_events while holding ctx->lock, such
3999 	 * that we serialize against perf_install_in_context().
4000 	 */
4001 	if (!ctx->nr_events)
4002 		goto unlock;
4003 
4004 	perf_pmu_disable(pmu);
4005 	/*
4006 	 * We want to keep the following priority order:
4007 	 * cpu pinned (that don't need to move), task pinned,
4008 	 * cpu flexible, task flexible.
4009 	 *
4010 	 * However, if task's ctx is not carrying any pinned
4011 	 * events, no need to flip the cpuctx's events around.
4012 	 */
4013 	if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree))
4014 		cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
4015 	perf_event_sched_in(cpuctx, ctx, task);
4016 
4017 	if (cpuctx->sched_cb_usage && pmu->sched_task)
4018 		pmu->sched_task(cpuctx->task_ctx, true);
4019 
4020 	perf_pmu_enable(pmu);
4021 
4022 unlock:
4023 	perf_ctx_unlock(cpuctx, ctx);
4024 }
4025 
4026 /*
4027  * Called from scheduler to add the events of the current task
4028  * with interrupts disabled.
4029  *
4030  * We restore the event value and then enable it.
4031  *
4032  * This does not protect us against NMI, but enable()
4033  * sets the enabled bit in the control field of event _before_
4034  * accessing the event control register. If a NMI hits, then it will
4035  * keep the event running.
4036  */
__perf_event_task_sched_in(struct task_struct * prev,struct task_struct * task)4037 void __perf_event_task_sched_in(struct task_struct *prev,
4038 				struct task_struct *task)
4039 {
4040 	struct perf_event_context *ctx;
4041 	int ctxn;
4042 
4043 	/*
4044 	 * If cgroup events exist on this CPU, then we need to check if we have
4045 	 * to switch in PMU state; cgroup event are system-wide mode only.
4046 	 *
4047 	 * Since cgroup events are CPU events, we must schedule these in before
4048 	 * we schedule in the task events.
4049 	 */
4050 	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
4051 		perf_cgroup_sched_in(prev, task);
4052 
4053 	for_each_task_context_nr(ctxn) {
4054 		ctx = task->perf_event_ctxp[ctxn];
4055 		if (likely(!ctx))
4056 			continue;
4057 
4058 		perf_event_context_sched_in(ctx, task);
4059 	}
4060 
4061 	if (atomic_read(&nr_switch_events))
4062 		perf_event_switch(task, prev, true);
4063 
4064 	if (__this_cpu_read(perf_sched_cb_usages))
4065 		perf_pmu_sched_task(prev, task, true);
4066 }
4067 
perf_calculate_period(struct perf_event * event,u64 nsec,u64 count)4068 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
4069 {
4070 	u64 frequency = event->attr.sample_freq;
4071 	u64 sec = NSEC_PER_SEC;
4072 	u64 divisor, dividend;
4073 
4074 	int count_fls, nsec_fls, frequency_fls, sec_fls;
4075 
4076 	count_fls = fls64(count);
4077 	nsec_fls = fls64(nsec);
4078 	frequency_fls = fls64(frequency);
4079 	sec_fls = 30;
4080 
4081 	/*
4082 	 * We got @count in @nsec, with a target of sample_freq HZ
4083 	 * the target period becomes:
4084 	 *
4085 	 *             @count * 10^9
4086 	 * period = -------------------
4087 	 *          @nsec * sample_freq
4088 	 *
4089 	 */
4090 
4091 	/*
4092 	 * Reduce accuracy by one bit such that @a and @b converge
4093 	 * to a similar magnitude.
4094 	 */
4095 #define REDUCE_FLS(a, b)		\
4096 do {					\
4097 	if (a##_fls > b##_fls) {	\
4098 		a >>= 1;		\
4099 		a##_fls--;		\
4100 	} else {			\
4101 		b >>= 1;		\
4102 		b##_fls--;		\
4103 	}				\
4104 } while (0)
4105 
4106 	/*
4107 	 * Reduce accuracy until either term fits in a u64, then proceed with
4108 	 * the other, so that finally we can do a u64/u64 division.
4109 	 */
4110 	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
4111 		REDUCE_FLS(nsec, frequency);
4112 		REDUCE_FLS(sec, count);
4113 	}
4114 
4115 	if (count_fls + sec_fls > 64) {
4116 		divisor = nsec * frequency;
4117 
4118 		while (count_fls + sec_fls > 64) {
4119 			REDUCE_FLS(count, sec);
4120 			divisor >>= 1;
4121 		}
4122 
4123 		dividend = count * sec;
4124 	} else {
4125 		dividend = count * sec;
4126 
4127 		while (nsec_fls + frequency_fls > 64) {
4128 			REDUCE_FLS(nsec, frequency);
4129 			dividend >>= 1;
4130 		}
4131 
4132 		divisor = nsec * frequency;
4133 	}
4134 
4135 	if (!divisor)
4136 		return dividend;
4137 
4138 	return div64_u64(dividend, divisor);
4139 }
4140 
4141 static DEFINE_PER_CPU(int, perf_throttled_count);
4142 static DEFINE_PER_CPU(u64, perf_throttled_seq);
4143 
perf_adjust_period(struct perf_event * event,u64 nsec,u64 count,bool disable)4144 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
4145 {
4146 	struct hw_perf_event *hwc = &event->hw;
4147 	s64 period, sample_period;
4148 	s64 delta;
4149 
4150 	period = perf_calculate_period(event, nsec, count);
4151 
4152 	delta = (s64)(period - hwc->sample_period);
4153 	delta = (delta + 7) / 8; /* low pass filter */
4154 
4155 	sample_period = hwc->sample_period + delta;
4156 
4157 	if (!sample_period)
4158 		sample_period = 1;
4159 
4160 	hwc->sample_period = sample_period;
4161 
4162 	if (local64_read(&hwc->period_left) > 8*sample_period) {
4163 		if (disable)
4164 			event->pmu->stop(event, PERF_EF_UPDATE);
4165 
4166 		local64_set(&hwc->period_left, 0);
4167 
4168 		if (disable)
4169 			event->pmu->start(event, PERF_EF_RELOAD);
4170 	}
4171 }
4172 
4173 /*
4174  * combine freq adjustment with unthrottling to avoid two passes over the
4175  * events. At the same time, make sure, having freq events does not change
4176  * the rate of unthrottling as that would introduce bias.
4177  */
perf_adjust_freq_unthr_context(struct perf_event_context * ctx,int needs_unthr)4178 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
4179 					   int needs_unthr)
4180 {
4181 	struct perf_event *event;
4182 	struct hw_perf_event *hwc;
4183 	u64 now, period = TICK_NSEC;
4184 	s64 delta;
4185 
4186 	/*
4187 	 * only need to iterate over all events iff:
4188 	 * - context have events in frequency mode (needs freq adjust)
4189 	 * - there are events to unthrottle on this cpu
4190 	 */
4191 	if (!(ctx->nr_freq || needs_unthr))
4192 		return;
4193 
4194 	raw_spin_lock(&ctx->lock);
4195 	perf_pmu_disable(ctx->pmu);
4196 
4197 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4198 		if (event->state != PERF_EVENT_STATE_ACTIVE)
4199 			continue;
4200 
4201 		if (!event_filter_match(event))
4202 			continue;
4203 
4204 		perf_pmu_disable(event->pmu);
4205 
4206 		hwc = &event->hw;
4207 
4208 		if (hwc->interrupts == MAX_INTERRUPTS) {
4209 			hwc->interrupts = 0;
4210 			perf_log_throttle(event, 1);
4211 			event->pmu->start(event, 0);
4212 		}
4213 
4214 		if (!event->attr.freq || !event->attr.sample_freq)
4215 			goto next;
4216 
4217 		/*
4218 		 * stop the event and update event->count
4219 		 */
4220 		event->pmu->stop(event, PERF_EF_UPDATE);
4221 
4222 		now = local64_read(&event->count);
4223 		delta = now - hwc->freq_count_stamp;
4224 		hwc->freq_count_stamp = now;
4225 
4226 		/*
4227 		 * restart the event
4228 		 * reload only if value has changed
4229 		 * we have stopped the event so tell that
4230 		 * to perf_adjust_period() to avoid stopping it
4231 		 * twice.
4232 		 */
4233 		if (delta > 0)
4234 			perf_adjust_period(event, period, delta, false);
4235 
4236 		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
4237 	next:
4238 		perf_pmu_enable(event->pmu);
4239 	}
4240 
4241 	perf_pmu_enable(ctx->pmu);
4242 	raw_spin_unlock(&ctx->lock);
4243 }
4244 
4245 /*
4246  * Move @event to the tail of the @ctx's elegible events.
4247  */
rotate_ctx(struct perf_event_context * ctx,struct perf_event * event)4248 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event)
4249 {
4250 	/*
4251 	 * Rotate the first entry last of non-pinned groups. Rotation might be
4252 	 * disabled by the inheritance code.
4253 	 */
4254 	if (ctx->rotate_disable)
4255 		return;
4256 
4257 	perf_event_groups_delete(&ctx->flexible_groups, event);
4258 	perf_event_groups_insert(&ctx->flexible_groups, event);
4259 }
4260 
4261 /* pick an event from the flexible_groups to rotate */
4262 static inline struct perf_event *
ctx_event_to_rotate(struct perf_event_context * ctx)4263 ctx_event_to_rotate(struct perf_event_context *ctx)
4264 {
4265 	struct perf_event *event;
4266 
4267 	/* pick the first active flexible event */
4268 	event = list_first_entry_or_null(&ctx->flexible_active,
4269 					 struct perf_event, active_list);
4270 
4271 	/* if no active flexible event, pick the first event */
4272 	if (!event) {
4273 		event = rb_entry_safe(rb_first(&ctx->flexible_groups.tree),
4274 				      typeof(*event), group_node);
4275 	}
4276 
4277 	/*
4278 	 * Unconditionally clear rotate_necessary; if ctx_flexible_sched_in()
4279 	 * finds there are unschedulable events, it will set it again.
4280 	 */
4281 	ctx->rotate_necessary = 0;
4282 
4283 	return event;
4284 }
4285 
perf_rotate_context(struct perf_cpu_context * cpuctx)4286 static bool perf_rotate_context(struct perf_cpu_context *cpuctx)
4287 {
4288 	struct perf_event *cpu_event = NULL, *task_event = NULL;
4289 	struct perf_event_context *task_ctx = NULL;
4290 	int cpu_rotate, task_rotate;
4291 
4292 	/*
4293 	 * Since we run this from IRQ context, nobody can install new
4294 	 * events, thus the event count values are stable.
4295 	 */
4296 
4297 	cpu_rotate = cpuctx->ctx.rotate_necessary;
4298 	task_ctx = cpuctx->task_ctx;
4299 	task_rotate = task_ctx ? task_ctx->rotate_necessary : 0;
4300 
4301 	if (!(cpu_rotate || task_rotate))
4302 		return false;
4303 
4304 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
4305 	perf_pmu_disable(cpuctx->ctx.pmu);
4306 
4307 	if (task_rotate)
4308 		task_event = ctx_event_to_rotate(task_ctx);
4309 	if (cpu_rotate)
4310 		cpu_event = ctx_event_to_rotate(&cpuctx->ctx);
4311 
4312 	/*
4313 	 * As per the order given at ctx_resched() first 'pop' task flexible
4314 	 * and then, if needed CPU flexible.
4315 	 */
4316 	if (task_event || (task_ctx && cpu_event))
4317 		ctx_sched_out(task_ctx, cpuctx, EVENT_FLEXIBLE);
4318 	if (cpu_event)
4319 		cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
4320 
4321 	if (task_event)
4322 		rotate_ctx(task_ctx, task_event);
4323 	if (cpu_event)
4324 		rotate_ctx(&cpuctx->ctx, cpu_event);
4325 
4326 	perf_event_sched_in(cpuctx, task_ctx, current);
4327 
4328 	perf_pmu_enable(cpuctx->ctx.pmu);
4329 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
4330 
4331 	return true;
4332 }
4333 
perf_event_task_tick(void)4334 void perf_event_task_tick(void)
4335 {
4336 	struct list_head *head = this_cpu_ptr(&active_ctx_list);
4337 	struct perf_event_context *ctx, *tmp;
4338 	int throttled;
4339 
4340 	lockdep_assert_irqs_disabled();
4341 
4342 	__this_cpu_inc(perf_throttled_seq);
4343 	throttled = __this_cpu_xchg(perf_throttled_count, 0);
4344 	tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
4345 
4346 	list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
4347 		perf_adjust_freq_unthr_context(ctx, throttled);
4348 }
4349 
event_enable_on_exec(struct perf_event * event,struct perf_event_context * ctx)4350 static int event_enable_on_exec(struct perf_event *event,
4351 				struct perf_event_context *ctx)
4352 {
4353 	if (!event->attr.enable_on_exec)
4354 		return 0;
4355 
4356 	event->attr.enable_on_exec = 0;
4357 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
4358 		return 0;
4359 
4360 	perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
4361 
4362 	return 1;
4363 }
4364 
4365 /*
4366  * Enable all of a task's events that have been marked enable-on-exec.
4367  * This expects task == current.
4368  */
perf_event_enable_on_exec(int ctxn)4369 static void perf_event_enable_on_exec(int ctxn)
4370 {
4371 	struct perf_event_context *ctx, *clone_ctx = NULL;
4372 	enum event_type_t event_type = 0;
4373 	struct perf_cpu_context *cpuctx;
4374 	struct perf_event *event;
4375 	unsigned long flags;
4376 	int enabled = 0;
4377 
4378 	local_irq_save(flags);
4379 	ctx = current->perf_event_ctxp[ctxn];
4380 	if (!ctx || !ctx->nr_events)
4381 		goto out;
4382 
4383 	cpuctx = __get_cpu_context(ctx);
4384 	perf_ctx_lock(cpuctx, ctx);
4385 	ctx_sched_out(ctx, cpuctx, EVENT_TIME);
4386 	list_for_each_entry(event, &ctx->event_list, event_entry) {
4387 		enabled |= event_enable_on_exec(event, ctx);
4388 		event_type |= get_event_type(event);
4389 	}
4390 
4391 	/*
4392 	 * Unclone and reschedule this context if we enabled any event.
4393 	 */
4394 	if (enabled) {
4395 		clone_ctx = unclone_ctx(ctx);
4396 		ctx_resched(cpuctx, ctx, event_type);
4397 	} else {
4398 		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
4399 	}
4400 	perf_ctx_unlock(cpuctx, ctx);
4401 
4402 out:
4403 	local_irq_restore(flags);
4404 
4405 	if (clone_ctx)
4406 		put_ctx(clone_ctx);
4407 }
4408 
4409 static void perf_remove_from_owner(struct perf_event *event);
4410 static void perf_event_exit_event(struct perf_event *event,
4411 				  struct perf_event_context *ctx);
4412 
4413 /*
4414  * Removes all events from the current task that have been marked
4415  * remove-on-exec, and feeds their values back to parent events.
4416  */
perf_event_remove_on_exec(int ctxn)4417 static void perf_event_remove_on_exec(int ctxn)
4418 {
4419 	struct perf_event_context *ctx, *clone_ctx = NULL;
4420 	struct perf_event *event, *next;
4421 	LIST_HEAD(free_list);
4422 	unsigned long flags;
4423 	bool modified = false;
4424 
4425 	ctx = perf_pin_task_context(current, ctxn);
4426 	if (!ctx)
4427 		return;
4428 
4429 	mutex_lock(&ctx->mutex);
4430 
4431 	if (WARN_ON_ONCE(ctx->task != current))
4432 		goto unlock;
4433 
4434 	list_for_each_entry_safe(event, next, &ctx->event_list, event_entry) {
4435 		if (!event->attr.remove_on_exec)
4436 			continue;
4437 
4438 		if (!is_kernel_event(event))
4439 			perf_remove_from_owner(event);
4440 
4441 		modified = true;
4442 
4443 		perf_event_exit_event(event, ctx);
4444 	}
4445 
4446 	raw_spin_lock_irqsave(&ctx->lock, flags);
4447 	if (modified)
4448 		clone_ctx = unclone_ctx(ctx);
4449 	--ctx->pin_count;
4450 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
4451 
4452 unlock:
4453 	mutex_unlock(&ctx->mutex);
4454 
4455 	put_ctx(ctx);
4456 	if (clone_ctx)
4457 		put_ctx(clone_ctx);
4458 }
4459 
4460 struct perf_read_data {
4461 	struct perf_event *event;
4462 	bool group;
4463 	int ret;
4464 };
4465 
__perf_event_read_cpu(struct perf_event * event,int event_cpu)4466 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
4467 {
4468 	u16 local_pkg, event_pkg;
4469 
4470 	if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
4471 		int local_cpu = smp_processor_id();
4472 
4473 		event_pkg = topology_physical_package_id(event_cpu);
4474 		local_pkg = topology_physical_package_id(local_cpu);
4475 
4476 		if (event_pkg == local_pkg)
4477 			return local_cpu;
4478 	}
4479 
4480 	return event_cpu;
4481 }
4482 
4483 /*
4484  * Cross CPU call to read the hardware event
4485  */
__perf_event_read(void * info)4486 static void __perf_event_read(void *info)
4487 {
4488 	struct perf_read_data *data = info;
4489 	struct perf_event *sub, *event = data->event;
4490 	struct perf_event_context *ctx = event->ctx;
4491 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
4492 	struct pmu *pmu = event->pmu;
4493 
4494 	/*
4495 	 * If this is a task context, we need to check whether it is
4496 	 * the current task context of this cpu.  If not it has been
4497 	 * scheduled out before the smp call arrived.  In that case
4498 	 * event->count would have been updated to a recent sample
4499 	 * when the event was scheduled out.
4500 	 */
4501 	if (ctx->task && cpuctx->task_ctx != ctx)
4502 		return;
4503 
4504 	raw_spin_lock(&ctx->lock);
4505 	if (ctx->is_active & EVENT_TIME) {
4506 		update_context_time(ctx);
4507 		update_cgrp_time_from_event(event);
4508 	}
4509 
4510 	perf_event_update_time(event);
4511 	if (data->group)
4512 		perf_event_update_sibling_time(event);
4513 
4514 	if (event->state != PERF_EVENT_STATE_ACTIVE)
4515 		goto unlock;
4516 
4517 	if (!data->group) {
4518 		pmu->read(event);
4519 		data->ret = 0;
4520 		goto unlock;
4521 	}
4522 
4523 	pmu->start_txn(pmu, PERF_PMU_TXN_READ);
4524 
4525 	pmu->read(event);
4526 
4527 	for_each_sibling_event(sub, event) {
4528 		if (sub->state == PERF_EVENT_STATE_ACTIVE) {
4529 			/*
4530 			 * Use sibling's PMU rather than @event's since
4531 			 * sibling could be on different (eg: software) PMU.
4532 			 */
4533 			sub->pmu->read(sub);
4534 		}
4535 	}
4536 
4537 	data->ret = pmu->commit_txn(pmu);
4538 
4539 unlock:
4540 	raw_spin_unlock(&ctx->lock);
4541 }
4542 
perf_event_count(struct perf_event * event)4543 static inline u64 perf_event_count(struct perf_event *event)
4544 {
4545 	return local64_read(&event->count) + atomic64_read(&event->child_count);
4546 }
4547 
calc_timer_values(struct perf_event * event,u64 * now,u64 * enabled,u64 * running)4548 static void calc_timer_values(struct perf_event *event,
4549 				u64 *now,
4550 				u64 *enabled,
4551 				u64 *running)
4552 {
4553 	u64 ctx_time;
4554 
4555 	*now = perf_clock();
4556 	ctx_time = perf_event_time_now(event, *now);
4557 	__perf_update_times(event, ctx_time, enabled, running);
4558 }
4559 
4560 /*
4561  * NMI-safe method to read a local event, that is an event that
4562  * is:
4563  *   - either for the current task, or for this CPU
4564  *   - does not have inherit set, for inherited task events
4565  *     will not be local and we cannot read them atomically
4566  *   - must not have a pmu::count method
4567  */
perf_event_read_local(struct perf_event * event,u64 * value,u64 * enabled,u64 * running)4568 int perf_event_read_local(struct perf_event *event, u64 *value,
4569 			  u64 *enabled, u64 *running)
4570 {
4571 	unsigned long flags;
4572 	int ret = 0;
4573 
4574 	/*
4575 	 * Disabling interrupts avoids all counter scheduling (context
4576 	 * switches, timer based rotation and IPIs).
4577 	 */
4578 	local_irq_save(flags);
4579 
4580 	/*
4581 	 * It must not be an event with inherit set, we cannot read
4582 	 * all child counters from atomic context.
4583 	 */
4584 	if (event->attr.inherit) {
4585 		ret = -EOPNOTSUPP;
4586 		goto out;
4587 	}
4588 
4589 	/* If this is a per-task event, it must be for current */
4590 	if ((event->attach_state & PERF_ATTACH_TASK) &&
4591 	    event->hw.target != current) {
4592 		ret = -EINVAL;
4593 		goto out;
4594 	}
4595 
4596 	/* If this is a per-CPU event, it must be for this CPU */
4597 	if (!(event->attach_state & PERF_ATTACH_TASK) &&
4598 	    event->cpu != smp_processor_id()) {
4599 		ret = -EINVAL;
4600 		goto out;
4601 	}
4602 
4603 	/* If this is a pinned event it must be running on this CPU */
4604 	if (event->attr.pinned && event->oncpu != smp_processor_id()) {
4605 		ret = -EBUSY;
4606 		goto out;
4607 	}
4608 
4609 	/*
4610 	 * If the event is currently on this CPU, its either a per-task event,
4611 	 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
4612 	 * oncpu == -1).
4613 	 */
4614 	if (event->oncpu == smp_processor_id())
4615 		event->pmu->read(event);
4616 
4617 	*value = local64_read(&event->count);
4618 	if (enabled || running) {
4619 		u64 __enabled, __running, __now;;
4620 
4621 		calc_timer_values(event, &__now, &__enabled, &__running);
4622 		if (enabled)
4623 			*enabled = __enabled;
4624 		if (running)
4625 			*running = __running;
4626 	}
4627 out:
4628 	local_irq_restore(flags);
4629 
4630 	return ret;
4631 }
4632 EXPORT_SYMBOL_GPL(perf_event_read_local);
4633 
perf_event_read(struct perf_event * event,bool group)4634 static int perf_event_read(struct perf_event *event, bool group)
4635 {
4636 	enum perf_event_state state = READ_ONCE(event->state);
4637 	int event_cpu, ret = 0;
4638 
4639 	/*
4640 	 * If event is enabled and currently active on a CPU, update the
4641 	 * value in the event structure:
4642 	 */
4643 again:
4644 	if (state == PERF_EVENT_STATE_ACTIVE) {
4645 		struct perf_read_data data;
4646 
4647 		/*
4648 		 * Orders the ->state and ->oncpu loads such that if we see
4649 		 * ACTIVE we must also see the right ->oncpu.
4650 		 *
4651 		 * Matches the smp_wmb() from event_sched_in().
4652 		 */
4653 		smp_rmb();
4654 
4655 		event_cpu = READ_ONCE(event->oncpu);
4656 		if ((unsigned)event_cpu >= nr_cpu_ids)
4657 			return 0;
4658 
4659 		data = (struct perf_read_data){
4660 			.event = event,
4661 			.group = group,
4662 			.ret = 0,
4663 		};
4664 
4665 		preempt_disable();
4666 		event_cpu = __perf_event_read_cpu(event, event_cpu);
4667 
4668 		/*
4669 		 * Purposely ignore the smp_call_function_single() return
4670 		 * value.
4671 		 *
4672 		 * If event_cpu isn't a valid CPU it means the event got
4673 		 * scheduled out and that will have updated the event count.
4674 		 *
4675 		 * Therefore, either way, we'll have an up-to-date event count
4676 		 * after this.
4677 		 */
4678 		(void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
4679 		preempt_enable();
4680 		ret = data.ret;
4681 
4682 	} else if (state == PERF_EVENT_STATE_INACTIVE) {
4683 		struct perf_event_context *ctx = event->ctx;
4684 		unsigned long flags;
4685 
4686 		raw_spin_lock_irqsave(&ctx->lock, flags);
4687 		state = event->state;
4688 		if (state != PERF_EVENT_STATE_INACTIVE) {
4689 			raw_spin_unlock_irqrestore(&ctx->lock, flags);
4690 			goto again;
4691 		}
4692 
4693 		/*
4694 		 * May read while context is not active (e.g., thread is
4695 		 * blocked), in that case we cannot update context time
4696 		 */
4697 		if (ctx->is_active & EVENT_TIME) {
4698 			update_context_time(ctx);
4699 			update_cgrp_time_from_event(event);
4700 		}
4701 
4702 		perf_event_update_time(event);
4703 		if (group)
4704 			perf_event_update_sibling_time(event);
4705 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
4706 	}
4707 
4708 	return ret;
4709 }
4710 
4711 /*
4712  * Initialize the perf_event context in a task_struct:
4713  */
__perf_event_init_context(struct perf_event_context * ctx)4714 static void __perf_event_init_context(struct perf_event_context *ctx)
4715 {
4716 	raw_spin_lock_init(&ctx->lock);
4717 	mutex_init(&ctx->mutex);
4718 	INIT_LIST_HEAD(&ctx->active_ctx_list);
4719 	perf_event_groups_init(&ctx->pinned_groups);
4720 	perf_event_groups_init(&ctx->flexible_groups);
4721 	INIT_LIST_HEAD(&ctx->event_list);
4722 	INIT_LIST_HEAD(&ctx->pinned_active);
4723 	INIT_LIST_HEAD(&ctx->flexible_active);
4724 	refcount_set(&ctx->refcount, 1);
4725 }
4726 
4727 static struct perf_event_context *
alloc_perf_context(struct pmu * pmu,struct task_struct * task)4728 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
4729 {
4730 	struct perf_event_context *ctx;
4731 
4732 	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
4733 	if (!ctx)
4734 		return NULL;
4735 
4736 	__perf_event_init_context(ctx);
4737 	if (task)
4738 		ctx->task = get_task_struct(task);
4739 	ctx->pmu = pmu;
4740 
4741 	return ctx;
4742 }
4743 
4744 static struct task_struct *
find_lively_task_by_vpid(pid_t vpid)4745 find_lively_task_by_vpid(pid_t vpid)
4746 {
4747 	struct task_struct *task;
4748 
4749 	rcu_read_lock();
4750 	if (!vpid)
4751 		task = current;
4752 	else
4753 		task = find_task_by_vpid(vpid);
4754 	if (task)
4755 		get_task_struct(task);
4756 	rcu_read_unlock();
4757 
4758 	if (!task)
4759 		return ERR_PTR(-ESRCH);
4760 
4761 	return task;
4762 }
4763 
4764 /*
4765  * Returns a matching context with refcount and pincount.
4766  */
4767 static struct perf_event_context *
find_get_context(struct pmu * pmu,struct task_struct * task,struct perf_event * event)4768 find_get_context(struct pmu *pmu, struct task_struct *task,
4769 		struct perf_event *event)
4770 {
4771 	struct perf_event_context *ctx, *clone_ctx = NULL;
4772 	struct perf_cpu_context *cpuctx;
4773 	void *task_ctx_data = NULL;
4774 	unsigned long flags;
4775 	int ctxn, err;
4776 	int cpu = event->cpu;
4777 
4778 	if (!task) {
4779 		/* Must be root to operate on a CPU event: */
4780 		err = perf_allow_cpu(&event->attr);
4781 		if (err)
4782 			return ERR_PTR(err);
4783 
4784 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
4785 		ctx = &cpuctx->ctx;
4786 		get_ctx(ctx);
4787 		raw_spin_lock_irqsave(&ctx->lock, flags);
4788 		++ctx->pin_count;
4789 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
4790 
4791 		return ctx;
4792 	}
4793 
4794 	err = -EINVAL;
4795 	ctxn = pmu->task_ctx_nr;
4796 	if (ctxn < 0)
4797 		goto errout;
4798 
4799 	if (event->attach_state & PERF_ATTACH_TASK_DATA) {
4800 		task_ctx_data = alloc_task_ctx_data(pmu);
4801 		if (!task_ctx_data) {
4802 			err = -ENOMEM;
4803 			goto errout;
4804 		}
4805 	}
4806 
4807 retry:
4808 	ctx = perf_lock_task_context(task, ctxn, &flags);
4809 	if (ctx) {
4810 		clone_ctx = unclone_ctx(ctx);
4811 		++ctx->pin_count;
4812 
4813 		if (task_ctx_data && !ctx->task_ctx_data) {
4814 			ctx->task_ctx_data = task_ctx_data;
4815 			task_ctx_data = NULL;
4816 		}
4817 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
4818 
4819 		if (clone_ctx)
4820 			put_ctx(clone_ctx);
4821 	} else {
4822 		ctx = alloc_perf_context(pmu, task);
4823 		err = -ENOMEM;
4824 		if (!ctx)
4825 			goto errout;
4826 
4827 		if (task_ctx_data) {
4828 			ctx->task_ctx_data = task_ctx_data;
4829 			task_ctx_data = NULL;
4830 		}
4831 
4832 		err = 0;
4833 		mutex_lock(&task->perf_event_mutex);
4834 		/*
4835 		 * If it has already passed perf_event_exit_task().
4836 		 * we must see PF_EXITING, it takes this mutex too.
4837 		 */
4838 		if (task->flags & PF_EXITING)
4839 			err = -ESRCH;
4840 		else if (task->perf_event_ctxp[ctxn])
4841 			err = -EAGAIN;
4842 		else {
4843 			get_ctx(ctx);
4844 			++ctx->pin_count;
4845 			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
4846 		}
4847 		mutex_unlock(&task->perf_event_mutex);
4848 
4849 		if (unlikely(err)) {
4850 			put_ctx(ctx);
4851 
4852 			if (err == -EAGAIN)
4853 				goto retry;
4854 			goto errout;
4855 		}
4856 	}
4857 
4858 	free_task_ctx_data(pmu, task_ctx_data);
4859 	return ctx;
4860 
4861 errout:
4862 	free_task_ctx_data(pmu, task_ctx_data);
4863 	return ERR_PTR(err);
4864 }
4865 
4866 static void perf_event_free_filter(struct perf_event *event);
4867 
free_event_rcu(struct rcu_head * head)4868 static void free_event_rcu(struct rcu_head *head)
4869 {
4870 	struct perf_event *event;
4871 
4872 	event = container_of(head, struct perf_event, rcu_head);
4873 	if (event->ns)
4874 		put_pid_ns(event->ns);
4875 	perf_event_free_filter(event);
4876 	kmem_cache_free(perf_event_cache, event);
4877 }
4878 
4879 static void ring_buffer_attach(struct perf_event *event,
4880 			       struct perf_buffer *rb);
4881 
detach_sb_event(struct perf_event * event)4882 static void detach_sb_event(struct perf_event *event)
4883 {
4884 	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
4885 
4886 	raw_spin_lock(&pel->lock);
4887 	list_del_rcu(&event->sb_list);
4888 	raw_spin_unlock(&pel->lock);
4889 }
4890 
is_sb_event(struct perf_event * event)4891 static bool is_sb_event(struct perf_event *event)
4892 {
4893 	struct perf_event_attr *attr = &event->attr;
4894 
4895 	if (event->parent)
4896 		return false;
4897 
4898 	if (event->attach_state & PERF_ATTACH_TASK)
4899 		return false;
4900 
4901 	if (attr->mmap || attr->mmap_data || attr->mmap2 ||
4902 	    attr->comm || attr->comm_exec ||
4903 	    attr->task || attr->ksymbol ||
4904 	    attr->context_switch || attr->text_poke ||
4905 	    attr->bpf_event)
4906 		return true;
4907 	return false;
4908 }
4909 
unaccount_pmu_sb_event(struct perf_event * event)4910 static void unaccount_pmu_sb_event(struct perf_event *event)
4911 {
4912 	if (is_sb_event(event))
4913 		detach_sb_event(event);
4914 }
4915 
unaccount_event_cpu(struct perf_event * event,int cpu)4916 static void unaccount_event_cpu(struct perf_event *event, int cpu)
4917 {
4918 	if (event->parent)
4919 		return;
4920 
4921 	if (is_cgroup_event(event))
4922 		atomic_dec(&per_cpu(perf_cgroup_events, cpu));
4923 }
4924 
4925 #ifdef CONFIG_NO_HZ_FULL
4926 static DEFINE_SPINLOCK(nr_freq_lock);
4927 #endif
4928 
unaccount_freq_event_nohz(void)4929 static void unaccount_freq_event_nohz(void)
4930 {
4931 #ifdef CONFIG_NO_HZ_FULL
4932 	spin_lock(&nr_freq_lock);
4933 	if (atomic_dec_and_test(&nr_freq_events))
4934 		tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
4935 	spin_unlock(&nr_freq_lock);
4936 #endif
4937 }
4938 
unaccount_freq_event(void)4939 static void unaccount_freq_event(void)
4940 {
4941 	if (tick_nohz_full_enabled())
4942 		unaccount_freq_event_nohz();
4943 	else
4944 		atomic_dec(&nr_freq_events);
4945 }
4946 
unaccount_event(struct perf_event * event)4947 static void unaccount_event(struct perf_event *event)
4948 {
4949 	bool dec = false;
4950 
4951 	if (event->parent)
4952 		return;
4953 
4954 	if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB))
4955 		dec = true;
4956 	if (event->attr.mmap || event->attr.mmap_data)
4957 		atomic_dec(&nr_mmap_events);
4958 	if (event->attr.build_id)
4959 		atomic_dec(&nr_build_id_events);
4960 	if (event->attr.comm)
4961 		atomic_dec(&nr_comm_events);
4962 	if (event->attr.namespaces)
4963 		atomic_dec(&nr_namespaces_events);
4964 	if (event->attr.cgroup)
4965 		atomic_dec(&nr_cgroup_events);
4966 	if (event->attr.task)
4967 		atomic_dec(&nr_task_events);
4968 	if (event->attr.freq)
4969 		unaccount_freq_event();
4970 	if (event->attr.context_switch) {
4971 		dec = true;
4972 		atomic_dec(&nr_switch_events);
4973 	}
4974 	if (is_cgroup_event(event))
4975 		dec = true;
4976 	if (has_branch_stack(event))
4977 		dec = true;
4978 	if (event->attr.ksymbol)
4979 		atomic_dec(&nr_ksymbol_events);
4980 	if (event->attr.bpf_event)
4981 		atomic_dec(&nr_bpf_events);
4982 	if (event->attr.text_poke)
4983 		atomic_dec(&nr_text_poke_events);
4984 
4985 	if (dec) {
4986 		if (!atomic_add_unless(&perf_sched_count, -1, 1))
4987 			schedule_delayed_work(&perf_sched_work, HZ);
4988 	}
4989 
4990 	unaccount_event_cpu(event, event->cpu);
4991 
4992 	unaccount_pmu_sb_event(event);
4993 }
4994 
perf_sched_delayed(struct work_struct * work)4995 static void perf_sched_delayed(struct work_struct *work)
4996 {
4997 	mutex_lock(&perf_sched_mutex);
4998 	if (atomic_dec_and_test(&perf_sched_count))
4999 		static_branch_disable(&perf_sched_events);
5000 	mutex_unlock(&perf_sched_mutex);
5001 }
5002 
5003 /*
5004  * The following implement mutual exclusion of events on "exclusive" pmus
5005  * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
5006  * at a time, so we disallow creating events that might conflict, namely:
5007  *
5008  *  1) cpu-wide events in the presence of per-task events,
5009  *  2) per-task events in the presence of cpu-wide events,
5010  *  3) two matching events on the same context.
5011  *
5012  * The former two cases are handled in the allocation path (perf_event_alloc(),
5013  * _free_event()), the latter -- before the first perf_install_in_context().
5014  */
exclusive_event_init(struct perf_event * event)5015 static int exclusive_event_init(struct perf_event *event)
5016 {
5017 	struct pmu *pmu = event->pmu;
5018 
5019 	if (!is_exclusive_pmu(pmu))
5020 		return 0;
5021 
5022 	/*
5023 	 * Prevent co-existence of per-task and cpu-wide events on the
5024 	 * same exclusive pmu.
5025 	 *
5026 	 * Negative pmu::exclusive_cnt means there are cpu-wide
5027 	 * events on this "exclusive" pmu, positive means there are
5028 	 * per-task events.
5029 	 *
5030 	 * Since this is called in perf_event_alloc() path, event::ctx
5031 	 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
5032 	 * to mean "per-task event", because unlike other attach states it
5033 	 * never gets cleared.
5034 	 */
5035 	if (event->attach_state & PERF_ATTACH_TASK) {
5036 		if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
5037 			return -EBUSY;
5038 	} else {
5039 		if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
5040 			return -EBUSY;
5041 	}
5042 
5043 	return 0;
5044 }
5045 
exclusive_event_destroy(struct perf_event * event)5046 static void exclusive_event_destroy(struct perf_event *event)
5047 {
5048 	struct pmu *pmu = event->pmu;
5049 
5050 	if (!is_exclusive_pmu(pmu))
5051 		return;
5052 
5053 	/* see comment in exclusive_event_init() */
5054 	if (event->attach_state & PERF_ATTACH_TASK)
5055 		atomic_dec(&pmu->exclusive_cnt);
5056 	else
5057 		atomic_inc(&pmu->exclusive_cnt);
5058 }
5059 
exclusive_event_match(struct perf_event * e1,struct perf_event * e2)5060 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
5061 {
5062 	if ((e1->pmu == e2->pmu) &&
5063 	    (e1->cpu == e2->cpu ||
5064 	     e1->cpu == -1 ||
5065 	     e2->cpu == -1))
5066 		return true;
5067 	return false;
5068 }
5069 
exclusive_event_installable(struct perf_event * event,struct perf_event_context * ctx)5070 static bool exclusive_event_installable(struct perf_event *event,
5071 					struct perf_event_context *ctx)
5072 {
5073 	struct perf_event *iter_event;
5074 	struct pmu *pmu = event->pmu;
5075 
5076 	lockdep_assert_held(&ctx->mutex);
5077 
5078 	if (!is_exclusive_pmu(pmu))
5079 		return true;
5080 
5081 	list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
5082 		if (exclusive_event_match(iter_event, event))
5083 			return false;
5084 	}
5085 
5086 	return true;
5087 }
5088 
5089 static void perf_addr_filters_splice(struct perf_event *event,
5090 				       struct list_head *head);
5091 
_free_event(struct perf_event * event)5092 static void _free_event(struct perf_event *event)
5093 {
5094 	irq_work_sync(&event->pending_irq);
5095 
5096 	unaccount_event(event);
5097 
5098 	security_perf_event_free(event);
5099 
5100 	if (event->rb) {
5101 		/*
5102 		 * Can happen when we close an event with re-directed output.
5103 		 *
5104 		 * Since we have a 0 refcount, perf_mmap_close() will skip
5105 		 * over us; possibly making our ring_buffer_put() the last.
5106 		 */
5107 		mutex_lock(&event->mmap_mutex);
5108 		ring_buffer_attach(event, NULL);
5109 		mutex_unlock(&event->mmap_mutex);
5110 	}
5111 
5112 	if (is_cgroup_event(event))
5113 		perf_detach_cgroup(event);
5114 
5115 	if (!event->parent) {
5116 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
5117 			put_callchain_buffers();
5118 	}
5119 
5120 	perf_event_free_bpf_prog(event);
5121 	perf_addr_filters_splice(event, NULL);
5122 	kfree(event->addr_filter_ranges);
5123 
5124 	if (event->destroy)
5125 		event->destroy(event);
5126 
5127 	/*
5128 	 * Must be after ->destroy(), due to uprobe_perf_close() using
5129 	 * hw.target.
5130 	 */
5131 	if (event->hw.target)
5132 		put_task_struct(event->hw.target);
5133 
5134 	/*
5135 	 * perf_event_free_task() relies on put_ctx() being 'last', in particular
5136 	 * all task references must be cleaned up.
5137 	 */
5138 	if (event->ctx)
5139 		put_ctx(event->ctx);
5140 
5141 	exclusive_event_destroy(event);
5142 	module_put(event->pmu->module);
5143 
5144 	call_rcu(&event->rcu_head, free_event_rcu);
5145 }
5146 
5147 /*
5148  * Used to free events which have a known refcount of 1, such as in error paths
5149  * where the event isn't exposed yet and inherited events.
5150  */
free_event(struct perf_event * event)5151 static void free_event(struct perf_event *event)
5152 {
5153 	if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
5154 				"unexpected event refcount: %ld; ptr=%p\n",
5155 				atomic_long_read(&event->refcount), event)) {
5156 		/* leak to avoid use-after-free */
5157 		return;
5158 	}
5159 
5160 	_free_event(event);
5161 }
5162 
5163 /*
5164  * Remove user event from the owner task.
5165  */
perf_remove_from_owner(struct perf_event * event)5166 static void perf_remove_from_owner(struct perf_event *event)
5167 {
5168 	struct task_struct *owner;
5169 
5170 	rcu_read_lock();
5171 	/*
5172 	 * Matches the smp_store_release() in perf_event_exit_task(). If we
5173 	 * observe !owner it means the list deletion is complete and we can
5174 	 * indeed free this event, otherwise we need to serialize on
5175 	 * owner->perf_event_mutex.
5176 	 */
5177 	owner = READ_ONCE(event->owner);
5178 	if (owner) {
5179 		/*
5180 		 * Since delayed_put_task_struct() also drops the last
5181 		 * task reference we can safely take a new reference
5182 		 * while holding the rcu_read_lock().
5183 		 */
5184 		get_task_struct(owner);
5185 	}
5186 	rcu_read_unlock();
5187 
5188 	if (owner) {
5189 		/*
5190 		 * If we're here through perf_event_exit_task() we're already
5191 		 * holding ctx->mutex which would be an inversion wrt. the
5192 		 * normal lock order.
5193 		 *
5194 		 * However we can safely take this lock because its the child
5195 		 * ctx->mutex.
5196 		 */
5197 		mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
5198 
5199 		/*
5200 		 * We have to re-check the event->owner field, if it is cleared
5201 		 * we raced with perf_event_exit_task(), acquiring the mutex
5202 		 * ensured they're done, and we can proceed with freeing the
5203 		 * event.
5204 		 */
5205 		if (event->owner) {
5206 			list_del_init(&event->owner_entry);
5207 			smp_store_release(&event->owner, NULL);
5208 		}
5209 		mutex_unlock(&owner->perf_event_mutex);
5210 		put_task_struct(owner);
5211 	}
5212 }
5213 
put_event(struct perf_event * event)5214 static void put_event(struct perf_event *event)
5215 {
5216 	if (!atomic_long_dec_and_test(&event->refcount))
5217 		return;
5218 
5219 	_free_event(event);
5220 }
5221 
5222 /*
5223  * Kill an event dead; while event:refcount will preserve the event
5224  * object, it will not preserve its functionality. Once the last 'user'
5225  * gives up the object, we'll destroy the thing.
5226  */
perf_event_release_kernel(struct perf_event * event)5227 int perf_event_release_kernel(struct perf_event *event)
5228 {
5229 	struct perf_event_context *ctx = event->ctx;
5230 	struct perf_event *child, *tmp;
5231 	LIST_HEAD(free_list);
5232 
5233 	/*
5234 	 * If we got here through err_file: fput(event_file); we will not have
5235 	 * attached to a context yet.
5236 	 */
5237 	if (!ctx) {
5238 		WARN_ON_ONCE(event->attach_state &
5239 				(PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
5240 		goto no_ctx;
5241 	}
5242 
5243 	if (!is_kernel_event(event))
5244 		perf_remove_from_owner(event);
5245 
5246 	ctx = perf_event_ctx_lock(event);
5247 	WARN_ON_ONCE(ctx->parent_ctx);
5248 
5249 	/*
5250 	 * Mark this event as STATE_DEAD, there is no external reference to it
5251 	 * anymore.
5252 	 *
5253 	 * Anybody acquiring event->child_mutex after the below loop _must_
5254 	 * also see this, most importantly inherit_event() which will avoid
5255 	 * placing more children on the list.
5256 	 *
5257 	 * Thus this guarantees that we will in fact observe and kill _ALL_
5258 	 * child events.
5259 	 */
5260 	perf_remove_from_context(event, DETACH_GROUP|DETACH_DEAD);
5261 
5262 	perf_event_ctx_unlock(event, ctx);
5263 
5264 again:
5265 	mutex_lock(&event->child_mutex);
5266 	list_for_each_entry(child, &event->child_list, child_list) {
5267 
5268 		/*
5269 		 * Cannot change, child events are not migrated, see the
5270 		 * comment with perf_event_ctx_lock_nested().
5271 		 */
5272 		ctx = READ_ONCE(child->ctx);
5273 		/*
5274 		 * Since child_mutex nests inside ctx::mutex, we must jump
5275 		 * through hoops. We start by grabbing a reference on the ctx.
5276 		 *
5277 		 * Since the event cannot get freed while we hold the
5278 		 * child_mutex, the context must also exist and have a !0
5279 		 * reference count.
5280 		 */
5281 		get_ctx(ctx);
5282 
5283 		/*
5284 		 * Now that we have a ctx ref, we can drop child_mutex, and
5285 		 * acquire ctx::mutex without fear of it going away. Then we
5286 		 * can re-acquire child_mutex.
5287 		 */
5288 		mutex_unlock(&event->child_mutex);
5289 		mutex_lock(&ctx->mutex);
5290 		mutex_lock(&event->child_mutex);
5291 
5292 		/*
5293 		 * Now that we hold ctx::mutex and child_mutex, revalidate our
5294 		 * state, if child is still the first entry, it didn't get freed
5295 		 * and we can continue doing so.
5296 		 */
5297 		tmp = list_first_entry_or_null(&event->child_list,
5298 					       struct perf_event, child_list);
5299 		if (tmp == child) {
5300 			perf_remove_from_context(child, DETACH_GROUP);
5301 			list_move(&child->child_list, &free_list);
5302 			/*
5303 			 * This matches the refcount bump in inherit_event();
5304 			 * this can't be the last reference.
5305 			 */
5306 			put_event(event);
5307 		}
5308 
5309 		mutex_unlock(&event->child_mutex);
5310 		mutex_unlock(&ctx->mutex);
5311 		put_ctx(ctx);
5312 		goto again;
5313 	}
5314 	mutex_unlock(&event->child_mutex);
5315 
5316 	list_for_each_entry_safe(child, tmp, &free_list, child_list) {
5317 		void *var = &child->ctx->refcount;
5318 
5319 		list_del(&child->child_list);
5320 		free_event(child);
5321 
5322 		/*
5323 		 * Wake any perf_event_free_task() waiting for this event to be
5324 		 * freed.
5325 		 */
5326 		smp_mb(); /* pairs with wait_var_event() */
5327 		wake_up_var(var);
5328 	}
5329 
5330 no_ctx:
5331 	put_event(event); /* Must be the 'last' reference */
5332 	return 0;
5333 }
5334 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
5335 
5336 /*
5337  * Called when the last reference to the file is gone.
5338  */
perf_release(struct inode * inode,struct file * file)5339 static int perf_release(struct inode *inode, struct file *file)
5340 {
5341 	perf_event_release_kernel(file->private_data);
5342 	return 0;
5343 }
5344 
__perf_event_read_value(struct perf_event * event,u64 * enabled,u64 * running)5345 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5346 {
5347 	struct perf_event *child;
5348 	u64 total = 0;
5349 
5350 	*enabled = 0;
5351 	*running = 0;
5352 
5353 	mutex_lock(&event->child_mutex);
5354 
5355 	(void)perf_event_read(event, false);
5356 	total += perf_event_count(event);
5357 
5358 	*enabled += event->total_time_enabled +
5359 			atomic64_read(&event->child_total_time_enabled);
5360 	*running += event->total_time_running +
5361 			atomic64_read(&event->child_total_time_running);
5362 
5363 	list_for_each_entry(child, &event->child_list, child_list) {
5364 		(void)perf_event_read(child, false);
5365 		total += perf_event_count(child);
5366 		*enabled += child->total_time_enabled;
5367 		*running += child->total_time_running;
5368 	}
5369 	mutex_unlock(&event->child_mutex);
5370 
5371 	return total;
5372 }
5373 
perf_event_read_value(struct perf_event * event,u64 * enabled,u64 * running)5374 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5375 {
5376 	struct perf_event_context *ctx;
5377 	u64 count;
5378 
5379 	ctx = perf_event_ctx_lock(event);
5380 	count = __perf_event_read_value(event, enabled, running);
5381 	perf_event_ctx_unlock(event, ctx);
5382 
5383 	return count;
5384 }
5385 EXPORT_SYMBOL_GPL(perf_event_read_value);
5386 
__perf_read_group_add(struct perf_event * leader,u64 read_format,u64 * values)5387 static int __perf_read_group_add(struct perf_event *leader,
5388 					u64 read_format, u64 *values)
5389 {
5390 	struct perf_event_context *ctx = leader->ctx;
5391 	struct perf_event *sub, *parent;
5392 	unsigned long flags;
5393 	int n = 1; /* skip @nr */
5394 	int ret;
5395 
5396 	ret = perf_event_read(leader, true);
5397 	if (ret)
5398 		return ret;
5399 
5400 	raw_spin_lock_irqsave(&ctx->lock, flags);
5401 	/*
5402 	 * Verify the grouping between the parent and child (inherited)
5403 	 * events is still in tact.
5404 	 *
5405 	 * Specifically:
5406 	 *  - leader->ctx->lock pins leader->sibling_list
5407 	 *  - parent->child_mutex pins parent->child_list
5408 	 *  - parent->ctx->mutex pins parent->sibling_list
5409 	 *
5410 	 * Because parent->ctx != leader->ctx (and child_list nests inside
5411 	 * ctx->mutex), group destruction is not atomic between children, also
5412 	 * see perf_event_release_kernel(). Additionally, parent can grow the
5413 	 * group.
5414 	 *
5415 	 * Therefore it is possible to have parent and child groups in a
5416 	 * different configuration and summing over such a beast makes no sense
5417 	 * what so ever.
5418 	 *
5419 	 * Reject this.
5420 	 */
5421 	parent = leader->parent;
5422 	if (parent &&
5423 	    (parent->group_generation != leader->group_generation ||
5424 	     parent->nr_siblings != leader->nr_siblings)) {
5425 		ret = -ECHILD;
5426 		goto unlock;
5427 	}
5428 
5429 	/*
5430 	 * Since we co-schedule groups, {enabled,running} times of siblings
5431 	 * will be identical to those of the leader, so we only publish one
5432 	 * set.
5433 	 */
5434 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5435 		values[n++] += leader->total_time_enabled +
5436 			atomic64_read(&leader->child_total_time_enabled);
5437 	}
5438 
5439 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5440 		values[n++] += leader->total_time_running +
5441 			atomic64_read(&leader->child_total_time_running);
5442 	}
5443 
5444 	/*
5445 	 * Write {count,id} tuples for every sibling.
5446 	 */
5447 	values[n++] += perf_event_count(leader);
5448 	if (read_format & PERF_FORMAT_ID)
5449 		values[n++] = primary_event_id(leader);
5450 
5451 	for_each_sibling_event(sub, leader) {
5452 		values[n++] += perf_event_count(sub);
5453 		if (read_format & PERF_FORMAT_ID)
5454 			values[n++] = primary_event_id(sub);
5455 	}
5456 
5457 unlock:
5458 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
5459 	return ret;
5460 }
5461 
perf_read_group(struct perf_event * event,u64 read_format,char __user * buf)5462 static int perf_read_group(struct perf_event *event,
5463 				   u64 read_format, char __user *buf)
5464 {
5465 	struct perf_event *leader = event->group_leader, *child;
5466 	struct perf_event_context *ctx = leader->ctx;
5467 	int ret;
5468 	u64 *values;
5469 
5470 	lockdep_assert_held(&ctx->mutex);
5471 
5472 	values = kzalloc(event->read_size, GFP_KERNEL);
5473 	if (!values)
5474 		return -ENOMEM;
5475 
5476 	values[0] = 1 + leader->nr_siblings;
5477 
5478 	mutex_lock(&leader->child_mutex);
5479 
5480 	ret = __perf_read_group_add(leader, read_format, values);
5481 	if (ret)
5482 		goto unlock;
5483 
5484 	list_for_each_entry(child, &leader->child_list, child_list) {
5485 		ret = __perf_read_group_add(child, read_format, values);
5486 		if (ret)
5487 			goto unlock;
5488 	}
5489 
5490 	mutex_unlock(&leader->child_mutex);
5491 
5492 	ret = event->read_size;
5493 	if (copy_to_user(buf, values, event->read_size))
5494 		ret = -EFAULT;
5495 	goto out;
5496 
5497 unlock:
5498 	mutex_unlock(&leader->child_mutex);
5499 out:
5500 	kfree(values);
5501 	return ret;
5502 }
5503 
perf_read_one(struct perf_event * event,u64 read_format,char __user * buf)5504 static int perf_read_one(struct perf_event *event,
5505 				 u64 read_format, char __user *buf)
5506 {
5507 	u64 enabled, running;
5508 	u64 values[4];
5509 	int n = 0;
5510 
5511 	values[n++] = __perf_event_read_value(event, &enabled, &running);
5512 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5513 		values[n++] = enabled;
5514 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5515 		values[n++] = running;
5516 	if (read_format & PERF_FORMAT_ID)
5517 		values[n++] = primary_event_id(event);
5518 
5519 	if (copy_to_user(buf, values, n * sizeof(u64)))
5520 		return -EFAULT;
5521 
5522 	return n * sizeof(u64);
5523 }
5524 
is_event_hup(struct perf_event * event)5525 static bool is_event_hup(struct perf_event *event)
5526 {
5527 	bool no_children;
5528 
5529 	if (event->state > PERF_EVENT_STATE_EXIT)
5530 		return false;
5531 
5532 	mutex_lock(&event->child_mutex);
5533 	no_children = list_empty(&event->child_list);
5534 	mutex_unlock(&event->child_mutex);
5535 	return no_children;
5536 }
5537 
5538 /*
5539  * Read the performance event - simple non blocking version for now
5540  */
5541 static ssize_t
__perf_read(struct perf_event * event,char __user * buf,size_t count)5542 __perf_read(struct perf_event *event, char __user *buf, size_t count)
5543 {
5544 	u64 read_format = event->attr.read_format;
5545 	int ret;
5546 
5547 	/*
5548 	 * Return end-of-file for a read on an event that is in
5549 	 * error state (i.e. because it was pinned but it couldn't be
5550 	 * scheduled on to the CPU at some point).
5551 	 */
5552 	if (event->state == PERF_EVENT_STATE_ERROR)
5553 		return 0;
5554 
5555 	if (count < event->read_size)
5556 		return -ENOSPC;
5557 
5558 	WARN_ON_ONCE(event->ctx->parent_ctx);
5559 	if (read_format & PERF_FORMAT_GROUP)
5560 		ret = perf_read_group(event, read_format, buf);
5561 	else
5562 		ret = perf_read_one(event, read_format, buf);
5563 
5564 	return ret;
5565 }
5566 
5567 static ssize_t
perf_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)5568 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
5569 {
5570 	struct perf_event *event = file->private_data;
5571 	struct perf_event_context *ctx;
5572 	int ret;
5573 
5574 	ret = security_perf_event_read(event);
5575 	if (ret)
5576 		return ret;
5577 
5578 	ctx = perf_event_ctx_lock(event);
5579 	ret = __perf_read(event, buf, count);
5580 	perf_event_ctx_unlock(event, ctx);
5581 
5582 	return ret;
5583 }
5584 
perf_poll(struct file * file,poll_table * wait)5585 static __poll_t perf_poll(struct file *file, poll_table *wait)
5586 {
5587 	struct perf_event *event = file->private_data;
5588 	struct perf_buffer *rb;
5589 	__poll_t events = EPOLLHUP;
5590 
5591 	poll_wait(file, &event->waitq, wait);
5592 
5593 	if (is_event_hup(event))
5594 		return events;
5595 
5596 	/*
5597 	 * Pin the event->rb by taking event->mmap_mutex; otherwise
5598 	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
5599 	 */
5600 	mutex_lock(&event->mmap_mutex);
5601 	rb = event->rb;
5602 	if (rb)
5603 		events = atomic_xchg(&rb->poll, 0);
5604 	mutex_unlock(&event->mmap_mutex);
5605 	return events;
5606 }
5607 
_perf_event_reset(struct perf_event * event)5608 static void _perf_event_reset(struct perf_event *event)
5609 {
5610 	(void)perf_event_read(event, false);
5611 	local64_set(&event->count, 0);
5612 	perf_event_update_userpage(event);
5613 }
5614 
5615 /* Assume it's not an event with inherit set. */
perf_event_pause(struct perf_event * event,bool reset)5616 u64 perf_event_pause(struct perf_event *event, bool reset)
5617 {
5618 	struct perf_event_context *ctx;
5619 	u64 count;
5620 
5621 	ctx = perf_event_ctx_lock(event);
5622 	WARN_ON_ONCE(event->attr.inherit);
5623 	_perf_event_disable(event);
5624 	count = local64_read(&event->count);
5625 	if (reset)
5626 		local64_set(&event->count, 0);
5627 	perf_event_ctx_unlock(event, ctx);
5628 
5629 	return count;
5630 }
5631 EXPORT_SYMBOL_GPL(perf_event_pause);
5632 
5633 /*
5634  * Holding the top-level event's child_mutex means that any
5635  * descendant process that has inherited this event will block
5636  * in perf_event_exit_event() if it goes to exit, thus satisfying the
5637  * task existence requirements of perf_event_enable/disable.
5638  */
perf_event_for_each_child(struct perf_event * event,void (* func)(struct perf_event *))5639 static void perf_event_for_each_child(struct perf_event *event,
5640 					void (*func)(struct perf_event *))
5641 {
5642 	struct perf_event *child;
5643 
5644 	WARN_ON_ONCE(event->ctx->parent_ctx);
5645 
5646 	mutex_lock(&event->child_mutex);
5647 	func(event);
5648 	list_for_each_entry(child, &event->child_list, child_list)
5649 		func(child);
5650 	mutex_unlock(&event->child_mutex);
5651 }
5652 
perf_event_for_each(struct perf_event * event,void (* func)(struct perf_event *))5653 static void perf_event_for_each(struct perf_event *event,
5654 				  void (*func)(struct perf_event *))
5655 {
5656 	struct perf_event_context *ctx = event->ctx;
5657 	struct perf_event *sibling;
5658 
5659 	lockdep_assert_held(&ctx->mutex);
5660 
5661 	event = event->group_leader;
5662 
5663 	perf_event_for_each_child(event, func);
5664 	for_each_sibling_event(sibling, event)
5665 		perf_event_for_each_child(sibling, func);
5666 }
5667 
__perf_event_period(struct perf_event * event,struct perf_cpu_context * cpuctx,struct perf_event_context * ctx,void * info)5668 static void __perf_event_period(struct perf_event *event,
5669 				struct perf_cpu_context *cpuctx,
5670 				struct perf_event_context *ctx,
5671 				void *info)
5672 {
5673 	u64 value = *((u64 *)info);
5674 	bool active;
5675 
5676 	if (event->attr.freq) {
5677 		event->attr.sample_freq = value;
5678 	} else {
5679 		event->attr.sample_period = value;
5680 		event->hw.sample_period = value;
5681 	}
5682 
5683 	active = (event->state == PERF_EVENT_STATE_ACTIVE);
5684 	if (active) {
5685 		perf_pmu_disable(ctx->pmu);
5686 		/*
5687 		 * We could be throttled; unthrottle now to avoid the tick
5688 		 * trying to unthrottle while we already re-started the event.
5689 		 */
5690 		if (event->hw.interrupts == MAX_INTERRUPTS) {
5691 			event->hw.interrupts = 0;
5692 			perf_log_throttle(event, 1);
5693 		}
5694 		event->pmu->stop(event, PERF_EF_UPDATE);
5695 	}
5696 
5697 	local64_set(&event->hw.period_left, 0);
5698 
5699 	if (active) {
5700 		event->pmu->start(event, PERF_EF_RELOAD);
5701 		perf_pmu_enable(ctx->pmu);
5702 	}
5703 }
5704 
perf_event_check_period(struct perf_event * event,u64 value)5705 static int perf_event_check_period(struct perf_event *event, u64 value)
5706 {
5707 	return event->pmu->check_period(event, value);
5708 }
5709 
_perf_event_period(struct perf_event * event,u64 value)5710 static int _perf_event_period(struct perf_event *event, u64 value)
5711 {
5712 	if (!is_sampling_event(event))
5713 		return -EINVAL;
5714 
5715 	if (!value)
5716 		return -EINVAL;
5717 
5718 	if (event->attr.freq && value > sysctl_perf_event_sample_rate)
5719 		return -EINVAL;
5720 
5721 	if (perf_event_check_period(event, value))
5722 		return -EINVAL;
5723 
5724 	if (!event->attr.freq && (value & (1ULL << 63)))
5725 		return -EINVAL;
5726 
5727 	event_function_call(event, __perf_event_period, &value);
5728 
5729 	return 0;
5730 }
5731 
perf_event_period(struct perf_event * event,u64 value)5732 int perf_event_period(struct perf_event *event, u64 value)
5733 {
5734 	struct perf_event_context *ctx;
5735 	int ret;
5736 
5737 	ctx = perf_event_ctx_lock(event);
5738 	ret = _perf_event_period(event, value);
5739 	perf_event_ctx_unlock(event, ctx);
5740 
5741 	return ret;
5742 }
5743 EXPORT_SYMBOL_GPL(perf_event_period);
5744 
5745 static const struct file_operations perf_fops;
5746 
perf_fget_light(int fd,struct fd * p)5747 static inline int perf_fget_light(int fd, struct fd *p)
5748 {
5749 	struct fd f = fdget(fd);
5750 	if (!f.file)
5751 		return -EBADF;
5752 
5753 	if (f.file->f_op != &perf_fops) {
5754 		fdput(f);
5755 		return -EBADF;
5756 	}
5757 	*p = f;
5758 	return 0;
5759 }
5760 
5761 static int perf_event_set_output(struct perf_event *event,
5762 				 struct perf_event *output_event);
5763 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
5764 static int perf_copy_attr(struct perf_event_attr __user *uattr,
5765 			  struct perf_event_attr *attr);
5766 
_perf_ioctl(struct perf_event * event,unsigned int cmd,unsigned long arg)5767 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
5768 {
5769 	void (*func)(struct perf_event *);
5770 	u32 flags = arg;
5771 
5772 	switch (cmd) {
5773 	case PERF_EVENT_IOC_ENABLE:
5774 		func = _perf_event_enable;
5775 		break;
5776 	case PERF_EVENT_IOC_DISABLE:
5777 		func = _perf_event_disable;
5778 		break;
5779 	case PERF_EVENT_IOC_RESET:
5780 		func = _perf_event_reset;
5781 		break;
5782 
5783 	case PERF_EVENT_IOC_REFRESH:
5784 		return _perf_event_refresh(event, arg);
5785 
5786 	case PERF_EVENT_IOC_PERIOD:
5787 	{
5788 		u64 value;
5789 
5790 		if (copy_from_user(&value, (u64 __user *)arg, sizeof(value)))
5791 			return -EFAULT;
5792 
5793 		return _perf_event_period(event, value);
5794 	}
5795 	case PERF_EVENT_IOC_ID:
5796 	{
5797 		u64 id = primary_event_id(event);
5798 
5799 		if (copy_to_user((void __user *)arg, &id, sizeof(id)))
5800 			return -EFAULT;
5801 		return 0;
5802 	}
5803 
5804 	case PERF_EVENT_IOC_SET_OUTPUT:
5805 	{
5806 		int ret;
5807 		if (arg != -1) {
5808 			struct perf_event *output_event;
5809 			struct fd output;
5810 			ret = perf_fget_light(arg, &output);
5811 			if (ret)
5812 				return ret;
5813 			output_event = output.file->private_data;
5814 			ret = perf_event_set_output(event, output_event);
5815 			fdput(output);
5816 		} else {
5817 			ret = perf_event_set_output(event, NULL);
5818 		}
5819 		return ret;
5820 	}
5821 
5822 	case PERF_EVENT_IOC_SET_FILTER:
5823 		return perf_event_set_filter(event, (void __user *)arg);
5824 
5825 	case PERF_EVENT_IOC_SET_BPF:
5826 	{
5827 		struct bpf_prog *prog;
5828 		int err;
5829 
5830 		prog = bpf_prog_get(arg);
5831 		if (IS_ERR(prog))
5832 			return PTR_ERR(prog);
5833 
5834 		err = perf_event_set_bpf_prog(event, prog, 0);
5835 		if (err) {
5836 			bpf_prog_put(prog);
5837 			return err;
5838 		}
5839 
5840 		return 0;
5841 	}
5842 
5843 	case PERF_EVENT_IOC_PAUSE_OUTPUT: {
5844 		struct perf_buffer *rb;
5845 
5846 		rcu_read_lock();
5847 		rb = rcu_dereference(event->rb);
5848 		if (!rb || !rb->nr_pages) {
5849 			rcu_read_unlock();
5850 			return -EINVAL;
5851 		}
5852 		rb_toggle_paused(rb, !!arg);
5853 		rcu_read_unlock();
5854 		return 0;
5855 	}
5856 
5857 	case PERF_EVENT_IOC_QUERY_BPF:
5858 		return perf_event_query_prog_array(event, (void __user *)arg);
5859 
5860 	case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: {
5861 		struct perf_event_attr new_attr;
5862 		int err = perf_copy_attr((struct perf_event_attr __user *)arg,
5863 					 &new_attr);
5864 
5865 		if (err)
5866 			return err;
5867 
5868 		return perf_event_modify_attr(event,  &new_attr);
5869 	}
5870 	default:
5871 		return -ENOTTY;
5872 	}
5873 
5874 	if (flags & PERF_IOC_FLAG_GROUP)
5875 		perf_event_for_each(event, func);
5876 	else
5877 		perf_event_for_each_child(event, func);
5878 
5879 	return 0;
5880 }
5881 
perf_ioctl(struct file * file,unsigned int cmd,unsigned long arg)5882 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5883 {
5884 	struct perf_event *event = file->private_data;
5885 	struct perf_event_context *ctx;
5886 	long ret;
5887 
5888 	/* Treat ioctl like writes as it is likely a mutating operation. */
5889 	ret = security_perf_event_write(event);
5890 	if (ret)
5891 		return ret;
5892 
5893 	ctx = perf_event_ctx_lock(event);
5894 	ret = _perf_ioctl(event, cmd, arg);
5895 	perf_event_ctx_unlock(event, ctx);
5896 
5897 	return ret;
5898 }
5899 
5900 #ifdef CONFIG_COMPAT
perf_compat_ioctl(struct file * file,unsigned int cmd,unsigned long arg)5901 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
5902 				unsigned long arg)
5903 {
5904 	switch (_IOC_NR(cmd)) {
5905 	case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
5906 	case _IOC_NR(PERF_EVENT_IOC_ID):
5907 	case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF):
5908 	case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES):
5909 		/* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
5910 		if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
5911 			cmd &= ~IOCSIZE_MASK;
5912 			cmd |= sizeof(void *) << IOCSIZE_SHIFT;
5913 		}
5914 		break;
5915 	}
5916 	return perf_ioctl(file, cmd, arg);
5917 }
5918 #else
5919 # define perf_compat_ioctl NULL
5920 #endif
5921 
perf_event_task_enable(void)5922 int perf_event_task_enable(void)
5923 {
5924 	struct perf_event_context *ctx;
5925 	struct perf_event *event;
5926 
5927 	mutex_lock(&current->perf_event_mutex);
5928 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5929 		ctx = perf_event_ctx_lock(event);
5930 		perf_event_for_each_child(event, _perf_event_enable);
5931 		perf_event_ctx_unlock(event, ctx);
5932 	}
5933 	mutex_unlock(&current->perf_event_mutex);
5934 
5935 	return 0;
5936 }
5937 
perf_event_task_disable(void)5938 int perf_event_task_disable(void)
5939 {
5940 	struct perf_event_context *ctx;
5941 	struct perf_event *event;
5942 
5943 	mutex_lock(&current->perf_event_mutex);
5944 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5945 		ctx = perf_event_ctx_lock(event);
5946 		perf_event_for_each_child(event, _perf_event_disable);
5947 		perf_event_ctx_unlock(event, ctx);
5948 	}
5949 	mutex_unlock(&current->perf_event_mutex);
5950 
5951 	return 0;
5952 }
5953 
perf_event_index(struct perf_event * event)5954 static int perf_event_index(struct perf_event *event)
5955 {
5956 	if (event->hw.state & PERF_HES_STOPPED)
5957 		return 0;
5958 
5959 	if (event->state != PERF_EVENT_STATE_ACTIVE)
5960 		return 0;
5961 
5962 	return event->pmu->event_idx(event);
5963 }
5964 
perf_event_init_userpage(struct perf_event * event)5965 static void perf_event_init_userpage(struct perf_event *event)
5966 {
5967 	struct perf_event_mmap_page *userpg;
5968 	struct perf_buffer *rb;
5969 
5970 	rcu_read_lock();
5971 	rb = rcu_dereference(event->rb);
5972 	if (!rb)
5973 		goto unlock;
5974 
5975 	userpg = rb->user_page;
5976 
5977 	/* Allow new userspace to detect that bit 0 is deprecated */
5978 	userpg->cap_bit0_is_deprecated = 1;
5979 	userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
5980 	userpg->data_offset = PAGE_SIZE;
5981 	userpg->data_size = perf_data_size(rb);
5982 
5983 unlock:
5984 	rcu_read_unlock();
5985 }
5986 
arch_perf_update_userpage(struct perf_event * event,struct perf_event_mmap_page * userpg,u64 now)5987 void __weak arch_perf_update_userpage(
5988 	struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
5989 {
5990 }
5991 
5992 /*
5993  * Callers need to ensure there can be no nesting of this function, otherwise
5994  * the seqlock logic goes bad. We can not serialize this because the arch
5995  * code calls this from NMI context.
5996  */
perf_event_update_userpage(struct perf_event * event)5997 void perf_event_update_userpage(struct perf_event *event)
5998 {
5999 	struct perf_event_mmap_page *userpg;
6000 	struct perf_buffer *rb;
6001 	u64 enabled, running, now;
6002 
6003 	rcu_read_lock();
6004 	rb = rcu_dereference(event->rb);
6005 	if (!rb)
6006 		goto unlock;
6007 
6008 	/*
6009 	 * compute total_time_enabled, total_time_running
6010 	 * based on snapshot values taken when the event
6011 	 * was last scheduled in.
6012 	 *
6013 	 * we cannot simply called update_context_time()
6014 	 * because of locking issue as we can be called in
6015 	 * NMI context
6016 	 */
6017 	calc_timer_values(event, &now, &enabled, &running);
6018 
6019 	userpg = rb->user_page;
6020 	/*
6021 	 * Disable preemption to guarantee consistent time stamps are stored to
6022 	 * the user page.
6023 	 */
6024 	preempt_disable();
6025 	++userpg->lock;
6026 	barrier();
6027 	userpg->index = perf_event_index(event);
6028 	userpg->offset = perf_event_count(event);
6029 	if (userpg->index)
6030 		userpg->offset -= local64_read(&event->hw.prev_count);
6031 
6032 	userpg->time_enabled = enabled +
6033 			atomic64_read(&event->child_total_time_enabled);
6034 
6035 	userpg->time_running = running +
6036 			atomic64_read(&event->child_total_time_running);
6037 
6038 	arch_perf_update_userpage(event, userpg, now);
6039 
6040 	barrier();
6041 	++userpg->lock;
6042 	preempt_enable();
6043 unlock:
6044 	rcu_read_unlock();
6045 }
6046 EXPORT_SYMBOL_GPL(perf_event_update_userpage);
6047 
perf_mmap_fault(struct vm_fault * vmf)6048 static vm_fault_t perf_mmap_fault(struct vm_fault *vmf)
6049 {
6050 	struct perf_event *event = vmf->vma->vm_file->private_data;
6051 	struct perf_buffer *rb;
6052 	vm_fault_t ret = VM_FAULT_SIGBUS;
6053 
6054 	if (vmf->flags & FAULT_FLAG_MKWRITE) {
6055 		if (vmf->pgoff == 0)
6056 			ret = 0;
6057 		return ret;
6058 	}
6059 
6060 	rcu_read_lock();
6061 	rb = rcu_dereference(event->rb);
6062 	if (!rb)
6063 		goto unlock;
6064 
6065 	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
6066 		goto unlock;
6067 
6068 	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
6069 	if (!vmf->page)
6070 		goto unlock;
6071 
6072 	get_page(vmf->page);
6073 	vmf->page->mapping = vmf->vma->vm_file->f_mapping;
6074 	vmf->page->index   = vmf->pgoff;
6075 
6076 	ret = 0;
6077 unlock:
6078 	rcu_read_unlock();
6079 
6080 	return ret;
6081 }
6082 
ring_buffer_attach(struct perf_event * event,struct perf_buffer * rb)6083 static void ring_buffer_attach(struct perf_event *event,
6084 			       struct perf_buffer *rb)
6085 {
6086 	struct perf_buffer *old_rb = NULL;
6087 	unsigned long flags;
6088 
6089 	WARN_ON_ONCE(event->parent);
6090 
6091 	if (event->rb) {
6092 		/*
6093 		 * Should be impossible, we set this when removing
6094 		 * event->rb_entry and wait/clear when adding event->rb_entry.
6095 		 */
6096 		WARN_ON_ONCE(event->rcu_pending);
6097 
6098 		old_rb = event->rb;
6099 		spin_lock_irqsave(&old_rb->event_lock, flags);
6100 		list_del_rcu(&event->rb_entry);
6101 		spin_unlock_irqrestore(&old_rb->event_lock, flags);
6102 
6103 		event->rcu_batches = get_state_synchronize_rcu();
6104 		event->rcu_pending = 1;
6105 	}
6106 
6107 	if (rb) {
6108 		if (event->rcu_pending) {
6109 			cond_synchronize_rcu(event->rcu_batches);
6110 			event->rcu_pending = 0;
6111 		}
6112 
6113 		spin_lock_irqsave(&rb->event_lock, flags);
6114 		list_add_rcu(&event->rb_entry, &rb->event_list);
6115 		spin_unlock_irqrestore(&rb->event_lock, flags);
6116 	}
6117 
6118 	/*
6119 	 * Avoid racing with perf_mmap_close(AUX): stop the event
6120 	 * before swizzling the event::rb pointer; if it's getting
6121 	 * unmapped, its aux_mmap_count will be 0 and it won't
6122 	 * restart. See the comment in __perf_pmu_output_stop().
6123 	 *
6124 	 * Data will inevitably be lost when set_output is done in
6125 	 * mid-air, but then again, whoever does it like this is
6126 	 * not in for the data anyway.
6127 	 */
6128 	if (has_aux(event))
6129 		perf_event_stop(event, 0);
6130 
6131 	rcu_assign_pointer(event->rb, rb);
6132 
6133 	if (old_rb) {
6134 		ring_buffer_put(old_rb);
6135 		/*
6136 		 * Since we detached before setting the new rb, so that we
6137 		 * could attach the new rb, we could have missed a wakeup.
6138 		 * Provide it now.
6139 		 */
6140 		wake_up_all(&event->waitq);
6141 	}
6142 }
6143 
ring_buffer_wakeup(struct perf_event * event)6144 static void ring_buffer_wakeup(struct perf_event *event)
6145 {
6146 	struct perf_buffer *rb;
6147 
6148 	if (event->parent)
6149 		event = event->parent;
6150 
6151 	rcu_read_lock();
6152 	rb = rcu_dereference(event->rb);
6153 	if (rb) {
6154 		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
6155 			wake_up_all(&event->waitq);
6156 	}
6157 	rcu_read_unlock();
6158 }
6159 
ring_buffer_get(struct perf_event * event)6160 struct perf_buffer *ring_buffer_get(struct perf_event *event)
6161 {
6162 	struct perf_buffer *rb;
6163 
6164 	if (event->parent)
6165 		event = event->parent;
6166 
6167 	rcu_read_lock();
6168 	rb = rcu_dereference(event->rb);
6169 	if (rb) {
6170 		if (!refcount_inc_not_zero(&rb->refcount))
6171 			rb = NULL;
6172 	}
6173 	rcu_read_unlock();
6174 
6175 	return rb;
6176 }
6177 
ring_buffer_put(struct perf_buffer * rb)6178 void ring_buffer_put(struct perf_buffer *rb)
6179 {
6180 	if (!refcount_dec_and_test(&rb->refcount))
6181 		return;
6182 
6183 	WARN_ON_ONCE(!list_empty(&rb->event_list));
6184 
6185 	call_rcu(&rb->rcu_head, rb_free_rcu);
6186 }
6187 
perf_mmap_open(struct vm_area_struct * vma)6188 static void perf_mmap_open(struct vm_area_struct *vma)
6189 {
6190 	struct perf_event *event = vma->vm_file->private_data;
6191 
6192 	atomic_inc(&event->mmap_count);
6193 	atomic_inc(&event->rb->mmap_count);
6194 
6195 	if (vma->vm_pgoff)
6196 		atomic_inc(&event->rb->aux_mmap_count);
6197 
6198 	if (event->pmu->event_mapped)
6199 		event->pmu->event_mapped(event, vma->vm_mm);
6200 }
6201 
6202 static void perf_pmu_output_stop(struct perf_event *event);
6203 
6204 /*
6205  * A buffer can be mmap()ed multiple times; either directly through the same
6206  * event, or through other events by use of perf_event_set_output().
6207  *
6208  * In order to undo the VM accounting done by perf_mmap() we need to destroy
6209  * the buffer here, where we still have a VM context. This means we need
6210  * to detach all events redirecting to us.
6211  */
perf_mmap_close(struct vm_area_struct * vma)6212 static void perf_mmap_close(struct vm_area_struct *vma)
6213 {
6214 	struct perf_event *event = vma->vm_file->private_data;
6215 	struct perf_buffer *rb = ring_buffer_get(event);
6216 	struct user_struct *mmap_user = rb->mmap_user;
6217 	int mmap_locked = rb->mmap_locked;
6218 	unsigned long size = perf_data_size(rb);
6219 	bool detach_rest = false;
6220 
6221 	if (event->pmu->event_unmapped)
6222 		event->pmu->event_unmapped(event, vma->vm_mm);
6223 
6224 	/*
6225 	 * rb->aux_mmap_count will always drop before rb->mmap_count and
6226 	 * event->mmap_count, so it is ok to use event->mmap_mutex to
6227 	 * serialize with perf_mmap here.
6228 	 */
6229 	if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
6230 	    atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
6231 		/*
6232 		 * Stop all AUX events that are writing to this buffer,
6233 		 * so that we can free its AUX pages and corresponding PMU
6234 		 * data. Note that after rb::aux_mmap_count dropped to zero,
6235 		 * they won't start any more (see perf_aux_output_begin()).
6236 		 */
6237 		perf_pmu_output_stop(event);
6238 
6239 		/* now it's safe to free the pages */
6240 		atomic_long_sub(rb->aux_nr_pages - rb->aux_mmap_locked, &mmap_user->locked_vm);
6241 		atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm);
6242 
6243 		/* this has to be the last one */
6244 		rb_free_aux(rb);
6245 		WARN_ON_ONCE(refcount_read(&rb->aux_refcount));
6246 
6247 		mutex_unlock(&event->mmap_mutex);
6248 	}
6249 
6250 	if (atomic_dec_and_test(&rb->mmap_count))
6251 		detach_rest = true;
6252 
6253 	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
6254 		goto out_put;
6255 
6256 	ring_buffer_attach(event, NULL);
6257 	mutex_unlock(&event->mmap_mutex);
6258 
6259 	/* If there's still other mmap()s of this buffer, we're done. */
6260 	if (!detach_rest)
6261 		goto out_put;
6262 
6263 	/*
6264 	 * No other mmap()s, detach from all other events that might redirect
6265 	 * into the now unreachable buffer. Somewhat complicated by the
6266 	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
6267 	 */
6268 again:
6269 	rcu_read_lock();
6270 	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
6271 		if (!atomic_long_inc_not_zero(&event->refcount)) {
6272 			/*
6273 			 * This event is en-route to free_event() which will
6274 			 * detach it and remove it from the list.
6275 			 */
6276 			continue;
6277 		}
6278 		rcu_read_unlock();
6279 
6280 		mutex_lock(&event->mmap_mutex);
6281 		/*
6282 		 * Check we didn't race with perf_event_set_output() which can
6283 		 * swizzle the rb from under us while we were waiting to
6284 		 * acquire mmap_mutex.
6285 		 *
6286 		 * If we find a different rb; ignore this event, a next
6287 		 * iteration will no longer find it on the list. We have to
6288 		 * still restart the iteration to make sure we're not now
6289 		 * iterating the wrong list.
6290 		 */
6291 		if (event->rb == rb)
6292 			ring_buffer_attach(event, NULL);
6293 
6294 		mutex_unlock(&event->mmap_mutex);
6295 		put_event(event);
6296 
6297 		/*
6298 		 * Restart the iteration; either we're on the wrong list or
6299 		 * destroyed its integrity by doing a deletion.
6300 		 */
6301 		goto again;
6302 	}
6303 	rcu_read_unlock();
6304 
6305 	/*
6306 	 * It could be there's still a few 0-ref events on the list; they'll
6307 	 * get cleaned up by free_event() -- they'll also still have their
6308 	 * ref on the rb and will free it whenever they are done with it.
6309 	 *
6310 	 * Aside from that, this buffer is 'fully' detached and unmapped,
6311 	 * undo the VM accounting.
6312 	 */
6313 
6314 	atomic_long_sub((size >> PAGE_SHIFT) + 1 - mmap_locked,
6315 			&mmap_user->locked_vm);
6316 	atomic64_sub(mmap_locked, &vma->vm_mm->pinned_vm);
6317 	free_uid(mmap_user);
6318 
6319 out_put:
6320 	ring_buffer_put(rb); /* could be last */
6321 }
6322 
6323 static const struct vm_operations_struct perf_mmap_vmops = {
6324 	.open		= perf_mmap_open,
6325 	.close		= perf_mmap_close, /* non mergeable */
6326 	.fault		= perf_mmap_fault,
6327 	.page_mkwrite	= perf_mmap_fault,
6328 };
6329 
perf_mmap(struct file * file,struct vm_area_struct * vma)6330 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
6331 {
6332 	struct perf_event *event = file->private_data;
6333 	unsigned long user_locked, user_lock_limit;
6334 	struct user_struct *user = current_user();
6335 	struct perf_buffer *rb = NULL;
6336 	unsigned long locked, lock_limit;
6337 	unsigned long vma_size;
6338 	unsigned long nr_pages;
6339 	long user_extra = 0, extra = 0;
6340 	int ret = 0, flags = 0;
6341 
6342 	/*
6343 	 * Don't allow mmap() of inherited per-task counters. This would
6344 	 * create a performance issue due to all children writing to the
6345 	 * same rb.
6346 	 */
6347 	if (event->cpu == -1 && event->attr.inherit)
6348 		return -EINVAL;
6349 
6350 	if (!(vma->vm_flags & VM_SHARED))
6351 		return -EINVAL;
6352 
6353 	ret = security_perf_event_read(event);
6354 	if (ret)
6355 		return ret;
6356 
6357 	vma_size = vma->vm_end - vma->vm_start;
6358 
6359 	if (vma->vm_pgoff == 0) {
6360 		nr_pages = (vma_size / PAGE_SIZE) - 1;
6361 	} else {
6362 		/*
6363 		 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
6364 		 * mapped, all subsequent mappings should have the same size
6365 		 * and offset. Must be above the normal perf buffer.
6366 		 */
6367 		u64 aux_offset, aux_size;
6368 
6369 		if (!event->rb)
6370 			return -EINVAL;
6371 
6372 		nr_pages = vma_size / PAGE_SIZE;
6373 
6374 		mutex_lock(&event->mmap_mutex);
6375 		ret = -EINVAL;
6376 
6377 		rb = event->rb;
6378 		if (!rb)
6379 			goto aux_unlock;
6380 
6381 		aux_offset = READ_ONCE(rb->user_page->aux_offset);
6382 		aux_size = READ_ONCE(rb->user_page->aux_size);
6383 
6384 		if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
6385 			goto aux_unlock;
6386 
6387 		if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
6388 			goto aux_unlock;
6389 
6390 		/* already mapped with a different offset */
6391 		if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
6392 			goto aux_unlock;
6393 
6394 		if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
6395 			goto aux_unlock;
6396 
6397 		/* already mapped with a different size */
6398 		if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
6399 			goto aux_unlock;
6400 
6401 		if (!is_power_of_2(nr_pages))
6402 			goto aux_unlock;
6403 
6404 		if (!atomic_inc_not_zero(&rb->mmap_count))
6405 			goto aux_unlock;
6406 
6407 		if (rb_has_aux(rb)) {
6408 			atomic_inc(&rb->aux_mmap_count);
6409 			ret = 0;
6410 			goto unlock;
6411 		}
6412 
6413 		atomic_set(&rb->aux_mmap_count, 1);
6414 		user_extra = nr_pages;
6415 
6416 		goto accounting;
6417 	}
6418 
6419 	/*
6420 	 * If we have rb pages ensure they're a power-of-two number, so we
6421 	 * can do bitmasks instead of modulo.
6422 	 */
6423 	if (nr_pages != 0 && !is_power_of_2(nr_pages))
6424 		return -EINVAL;
6425 
6426 	if (vma_size != PAGE_SIZE * (1 + nr_pages))
6427 		return -EINVAL;
6428 
6429 	WARN_ON_ONCE(event->ctx->parent_ctx);
6430 again:
6431 	mutex_lock(&event->mmap_mutex);
6432 	if (event->rb) {
6433 		if (data_page_nr(event->rb) != nr_pages) {
6434 			ret = -EINVAL;
6435 			goto unlock;
6436 		}
6437 
6438 		if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
6439 			/*
6440 			 * Raced against perf_mmap_close(); remove the
6441 			 * event and try again.
6442 			 */
6443 			ring_buffer_attach(event, NULL);
6444 			mutex_unlock(&event->mmap_mutex);
6445 			goto again;
6446 		}
6447 
6448 		goto unlock;
6449 	}
6450 
6451 	user_extra = nr_pages + 1;
6452 
6453 accounting:
6454 	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
6455 
6456 	/*
6457 	 * Increase the limit linearly with more CPUs:
6458 	 */
6459 	user_lock_limit *= num_online_cpus();
6460 
6461 	user_locked = atomic_long_read(&user->locked_vm);
6462 
6463 	/*
6464 	 * sysctl_perf_event_mlock may have changed, so that
6465 	 *     user->locked_vm > user_lock_limit
6466 	 */
6467 	if (user_locked > user_lock_limit)
6468 		user_locked = user_lock_limit;
6469 	user_locked += user_extra;
6470 
6471 	if (user_locked > user_lock_limit) {
6472 		/*
6473 		 * charge locked_vm until it hits user_lock_limit;
6474 		 * charge the rest from pinned_vm
6475 		 */
6476 		extra = user_locked - user_lock_limit;
6477 		user_extra -= extra;
6478 	}
6479 
6480 	lock_limit = rlimit(RLIMIT_MEMLOCK);
6481 	lock_limit >>= PAGE_SHIFT;
6482 	locked = atomic64_read(&vma->vm_mm->pinned_vm) + extra;
6483 
6484 	if ((locked > lock_limit) && perf_is_paranoid() &&
6485 		!capable(CAP_IPC_LOCK)) {
6486 		ret = -EPERM;
6487 		goto unlock;
6488 	}
6489 
6490 	WARN_ON(!rb && event->rb);
6491 
6492 	if (vma->vm_flags & VM_WRITE)
6493 		flags |= RING_BUFFER_WRITABLE;
6494 
6495 	if (!rb) {
6496 		rb = rb_alloc(nr_pages,
6497 			      event->attr.watermark ? event->attr.wakeup_watermark : 0,
6498 			      event->cpu, flags);
6499 
6500 		if (!rb) {
6501 			ret = -ENOMEM;
6502 			goto unlock;
6503 		}
6504 
6505 		atomic_set(&rb->mmap_count, 1);
6506 		rb->mmap_user = get_current_user();
6507 		rb->mmap_locked = extra;
6508 
6509 		ring_buffer_attach(event, rb);
6510 
6511 		perf_event_update_time(event);
6512 		perf_event_init_userpage(event);
6513 		perf_event_update_userpage(event);
6514 	} else {
6515 		ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
6516 				   event->attr.aux_watermark, flags);
6517 		if (!ret)
6518 			rb->aux_mmap_locked = extra;
6519 	}
6520 
6521 unlock:
6522 	if (!ret) {
6523 		atomic_long_add(user_extra, &user->locked_vm);
6524 		atomic64_add(extra, &vma->vm_mm->pinned_vm);
6525 
6526 		atomic_inc(&event->mmap_count);
6527 	} else if (rb) {
6528 		atomic_dec(&rb->mmap_count);
6529 	}
6530 aux_unlock:
6531 	mutex_unlock(&event->mmap_mutex);
6532 
6533 	/*
6534 	 * Since pinned accounting is per vm we cannot allow fork() to copy our
6535 	 * vma.
6536 	 */
6537 	vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
6538 	vma->vm_ops = &perf_mmap_vmops;
6539 
6540 	if (event->pmu->event_mapped)
6541 		event->pmu->event_mapped(event, vma->vm_mm);
6542 
6543 	return ret;
6544 }
6545 
perf_fasync(int fd,struct file * filp,int on)6546 static int perf_fasync(int fd, struct file *filp, int on)
6547 {
6548 	struct inode *inode = file_inode(filp);
6549 	struct perf_event *event = filp->private_data;
6550 	int retval;
6551 
6552 	inode_lock(inode);
6553 	retval = fasync_helper(fd, filp, on, &event->fasync);
6554 	inode_unlock(inode);
6555 
6556 	if (retval < 0)
6557 		return retval;
6558 
6559 	return 0;
6560 }
6561 
6562 static const struct file_operations perf_fops = {
6563 	.llseek			= no_llseek,
6564 	.release		= perf_release,
6565 	.read			= perf_read,
6566 	.poll			= perf_poll,
6567 	.unlocked_ioctl		= perf_ioctl,
6568 	.compat_ioctl		= perf_compat_ioctl,
6569 	.mmap			= perf_mmap,
6570 	.fasync			= perf_fasync,
6571 };
6572 
6573 /*
6574  * Perf event wakeup
6575  *
6576  * If there's data, ensure we set the poll() state and publish everything
6577  * to user-space before waking everybody up.
6578  */
6579 
perf_event_fasync(struct perf_event * event)6580 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
6581 {
6582 	/* only the parent has fasync state */
6583 	if (event->parent)
6584 		event = event->parent;
6585 	return &event->fasync;
6586 }
6587 
perf_event_wakeup(struct perf_event * event)6588 void perf_event_wakeup(struct perf_event *event)
6589 {
6590 	ring_buffer_wakeup(event);
6591 
6592 	if (event->pending_kill) {
6593 		kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
6594 		event->pending_kill = 0;
6595 	}
6596 }
6597 
perf_sigtrap(struct perf_event * event)6598 static void perf_sigtrap(struct perf_event *event)
6599 {
6600 	/*
6601 	 * We'd expect this to only occur if the irq_work is delayed and either
6602 	 * ctx->task or current has changed in the meantime. This can be the
6603 	 * case on architectures that do not implement arch_irq_work_raise().
6604 	 */
6605 	if (WARN_ON_ONCE(event->ctx->task != current))
6606 		return;
6607 
6608 	/*
6609 	 * Both perf_pending_task() and perf_pending_irq() can race with the
6610 	 * task exiting.
6611 	 */
6612 	if (current->flags & PF_EXITING)
6613 		return;
6614 
6615 	send_sig_perf((void __user *)event->pending_addr,
6616 		      event->attr.type, event->attr.sig_data);
6617 }
6618 
6619 /*
6620  * Deliver the pending work in-event-context or follow the context.
6621  */
__perf_pending_irq(struct perf_event * event)6622 static void __perf_pending_irq(struct perf_event *event)
6623 {
6624 	int cpu = READ_ONCE(event->oncpu);
6625 
6626 	/*
6627 	 * If the event isn't running; we done. event_sched_out() will have
6628 	 * taken care of things.
6629 	 */
6630 	if (cpu < 0)
6631 		return;
6632 
6633 	/*
6634 	 * Yay, we hit home and are in the context of the event.
6635 	 */
6636 	if (cpu == smp_processor_id()) {
6637 		if (event->pending_sigtrap) {
6638 			event->pending_sigtrap = 0;
6639 			perf_sigtrap(event);
6640 			local_dec(&event->ctx->nr_pending);
6641 		}
6642 		if (event->pending_disable) {
6643 			event->pending_disable = 0;
6644 			perf_event_disable_local(event);
6645 		}
6646 		return;
6647 	}
6648 
6649 	/*
6650 	 *  CPU-A			CPU-B
6651 	 *
6652 	 *  perf_event_disable_inatomic()
6653 	 *    @pending_disable = CPU-A;
6654 	 *    irq_work_queue();
6655 	 *
6656 	 *  sched-out
6657 	 *    @pending_disable = -1;
6658 	 *
6659 	 *				sched-in
6660 	 *				perf_event_disable_inatomic()
6661 	 *				  @pending_disable = CPU-B;
6662 	 *				  irq_work_queue(); // FAILS
6663 	 *
6664 	 *  irq_work_run()
6665 	 *    perf_pending_irq()
6666 	 *
6667 	 * But the event runs on CPU-B and wants disabling there.
6668 	 */
6669 	irq_work_queue_on(&event->pending_irq, cpu);
6670 }
6671 
perf_pending_irq(struct irq_work * entry)6672 static void perf_pending_irq(struct irq_work *entry)
6673 {
6674 	struct perf_event *event = container_of(entry, struct perf_event, pending_irq);
6675 	int rctx;
6676 
6677 	/*
6678 	 * If we 'fail' here, that's OK, it means recursion is already disabled
6679 	 * and we won't recurse 'further'.
6680 	 */
6681 	rctx = perf_swevent_get_recursion_context();
6682 
6683 	/*
6684 	 * The wakeup isn't bound to the context of the event -- it can happen
6685 	 * irrespective of where the event is.
6686 	 */
6687 	if (event->pending_wakeup) {
6688 		event->pending_wakeup = 0;
6689 		perf_event_wakeup(event);
6690 	}
6691 
6692 	__perf_pending_irq(event);
6693 
6694 	if (rctx >= 0)
6695 		perf_swevent_put_recursion_context(rctx);
6696 }
6697 
perf_pending_task(struct callback_head * head)6698 static void perf_pending_task(struct callback_head *head)
6699 {
6700 	struct perf_event *event = container_of(head, struct perf_event, pending_task);
6701 	int rctx;
6702 
6703 	/*
6704 	 * If we 'fail' here, that's OK, it means recursion is already disabled
6705 	 * and we won't recurse 'further'.
6706 	 */
6707 	preempt_disable_notrace();
6708 	rctx = perf_swevent_get_recursion_context();
6709 
6710 	if (event->pending_work) {
6711 		event->pending_work = 0;
6712 		perf_sigtrap(event);
6713 		local_dec(&event->ctx->nr_pending);
6714 	}
6715 
6716 	if (rctx >= 0)
6717 		perf_swevent_put_recursion_context(rctx);
6718 	preempt_enable_notrace();
6719 
6720 	put_event(event);
6721 }
6722 
6723 #ifdef CONFIG_GUEST_PERF_EVENTS
6724 /*
6725  * We assume there is only KVM supporting the callbacks.
6726  * Later on, we might change it to a list if there is
6727  * another virtualization implementation supporting the callbacks.
6728  */
6729 struct perf_guest_info_callbacks __rcu *perf_guest_cbs;
6730 
perf_register_guest_info_callbacks(struct perf_guest_info_callbacks * cbs)6731 void perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6732 {
6733 	if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs)))
6734 		return;
6735 
6736 	rcu_assign_pointer(perf_guest_cbs, cbs);
6737 }
6738 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
6739 
perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks * cbs)6740 void perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6741 {
6742 	if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs) != cbs))
6743 		return;
6744 
6745 	rcu_assign_pointer(perf_guest_cbs, NULL);
6746 	synchronize_rcu();
6747 }
6748 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
6749 #endif
6750 
6751 static void
perf_output_sample_regs(struct perf_output_handle * handle,struct pt_regs * regs,u64 mask)6752 perf_output_sample_regs(struct perf_output_handle *handle,
6753 			struct pt_regs *regs, u64 mask)
6754 {
6755 	int bit;
6756 	DECLARE_BITMAP(_mask, 64);
6757 
6758 	bitmap_from_u64(_mask, mask);
6759 	for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
6760 		u64 val;
6761 
6762 		val = perf_reg_value(regs, bit);
6763 		perf_output_put(handle, val);
6764 	}
6765 }
6766 
perf_sample_regs_user(struct perf_regs * regs_user,struct pt_regs * regs)6767 static void perf_sample_regs_user(struct perf_regs *regs_user,
6768 				  struct pt_regs *regs)
6769 {
6770 	if (user_mode(regs)) {
6771 		regs_user->abi = perf_reg_abi(current);
6772 		regs_user->regs = regs;
6773 	} else if (!(current->flags & PF_KTHREAD)) {
6774 		perf_get_regs_user(regs_user, regs);
6775 	} else {
6776 		regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
6777 		regs_user->regs = NULL;
6778 	}
6779 }
6780 
perf_sample_regs_intr(struct perf_regs * regs_intr,struct pt_regs * regs)6781 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
6782 				  struct pt_regs *regs)
6783 {
6784 	regs_intr->regs = regs;
6785 	regs_intr->abi  = perf_reg_abi(current);
6786 }
6787 
6788 
6789 /*
6790  * Get remaining task size from user stack pointer.
6791  *
6792  * It'd be better to take stack vma map and limit this more
6793  * precisely, but there's no way to get it safely under interrupt,
6794  * so using TASK_SIZE as limit.
6795  */
perf_ustack_task_size(struct pt_regs * regs)6796 static u64 perf_ustack_task_size(struct pt_regs *regs)
6797 {
6798 	unsigned long addr = perf_user_stack_pointer(regs);
6799 
6800 	if (!addr || addr >= TASK_SIZE)
6801 		return 0;
6802 
6803 	return TASK_SIZE - addr;
6804 }
6805 
6806 static u16
perf_sample_ustack_size(u16 stack_size,u16 header_size,struct pt_regs * regs)6807 perf_sample_ustack_size(u16 stack_size, u16 header_size,
6808 			struct pt_regs *regs)
6809 {
6810 	u64 task_size;
6811 
6812 	/* No regs, no stack pointer, no dump. */
6813 	if (!regs)
6814 		return 0;
6815 
6816 	/*
6817 	 * Check if we fit in with the requested stack size into the:
6818 	 * - TASK_SIZE
6819 	 *   If we don't, we limit the size to the TASK_SIZE.
6820 	 *
6821 	 * - remaining sample size
6822 	 *   If we don't, we customize the stack size to
6823 	 *   fit in to the remaining sample size.
6824 	 */
6825 
6826 	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
6827 	stack_size = min(stack_size, (u16) task_size);
6828 
6829 	/* Current header size plus static size and dynamic size. */
6830 	header_size += 2 * sizeof(u64);
6831 
6832 	/* Do we fit in with the current stack dump size? */
6833 	if ((u16) (header_size + stack_size) < header_size) {
6834 		/*
6835 		 * If we overflow the maximum size for the sample,
6836 		 * we customize the stack dump size to fit in.
6837 		 */
6838 		stack_size = USHRT_MAX - header_size - sizeof(u64);
6839 		stack_size = round_up(stack_size, sizeof(u64));
6840 	}
6841 
6842 	return stack_size;
6843 }
6844 
6845 static void
perf_output_sample_ustack(struct perf_output_handle * handle,u64 dump_size,struct pt_regs * regs)6846 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
6847 			  struct pt_regs *regs)
6848 {
6849 	/* Case of a kernel thread, nothing to dump */
6850 	if (!regs) {
6851 		u64 size = 0;
6852 		perf_output_put(handle, size);
6853 	} else {
6854 		unsigned long sp;
6855 		unsigned int rem;
6856 		u64 dyn_size;
6857 		mm_segment_t fs;
6858 
6859 		/*
6860 		 * We dump:
6861 		 * static size
6862 		 *   - the size requested by user or the best one we can fit
6863 		 *     in to the sample max size
6864 		 * data
6865 		 *   - user stack dump data
6866 		 * dynamic size
6867 		 *   - the actual dumped size
6868 		 */
6869 
6870 		/* Static size. */
6871 		perf_output_put(handle, dump_size);
6872 
6873 		/* Data. */
6874 		sp = perf_user_stack_pointer(regs);
6875 		fs = force_uaccess_begin();
6876 		rem = __output_copy_user(handle, (void *) sp, dump_size);
6877 		force_uaccess_end(fs);
6878 		dyn_size = dump_size - rem;
6879 
6880 		perf_output_skip(handle, rem);
6881 
6882 		/* Dynamic size. */
6883 		perf_output_put(handle, dyn_size);
6884 	}
6885 }
6886 
perf_prepare_sample_aux(struct perf_event * event,struct perf_sample_data * data,size_t size)6887 static unsigned long perf_prepare_sample_aux(struct perf_event *event,
6888 					  struct perf_sample_data *data,
6889 					  size_t size)
6890 {
6891 	struct perf_event *sampler = event->aux_event;
6892 	struct perf_buffer *rb;
6893 
6894 	data->aux_size = 0;
6895 
6896 	if (!sampler)
6897 		goto out;
6898 
6899 	if (WARN_ON_ONCE(READ_ONCE(sampler->state) != PERF_EVENT_STATE_ACTIVE))
6900 		goto out;
6901 
6902 	if (WARN_ON_ONCE(READ_ONCE(sampler->oncpu) != smp_processor_id()))
6903 		goto out;
6904 
6905 	rb = ring_buffer_get(sampler);
6906 	if (!rb)
6907 		goto out;
6908 
6909 	/*
6910 	 * If this is an NMI hit inside sampling code, don't take
6911 	 * the sample. See also perf_aux_sample_output().
6912 	 */
6913 	if (READ_ONCE(rb->aux_in_sampling)) {
6914 		data->aux_size = 0;
6915 	} else {
6916 		size = min_t(size_t, size, perf_aux_size(rb));
6917 		data->aux_size = ALIGN(size, sizeof(u64));
6918 	}
6919 	ring_buffer_put(rb);
6920 
6921 out:
6922 	return data->aux_size;
6923 }
6924 
perf_pmu_snapshot_aux(struct perf_buffer * rb,struct perf_event * event,struct perf_output_handle * handle,unsigned long size)6925 static long perf_pmu_snapshot_aux(struct perf_buffer *rb,
6926                                  struct perf_event *event,
6927                                  struct perf_output_handle *handle,
6928                                  unsigned long size)
6929 {
6930 	unsigned long flags;
6931 	long ret;
6932 
6933 	/*
6934 	 * Normal ->start()/->stop() callbacks run in IRQ mode in scheduler
6935 	 * paths. If we start calling them in NMI context, they may race with
6936 	 * the IRQ ones, that is, for example, re-starting an event that's just
6937 	 * been stopped, which is why we're using a separate callback that
6938 	 * doesn't change the event state.
6939 	 *
6940 	 * IRQs need to be disabled to prevent IPIs from racing with us.
6941 	 */
6942 	local_irq_save(flags);
6943 	/*
6944 	 * Guard against NMI hits inside the critical section;
6945 	 * see also perf_prepare_sample_aux().
6946 	 */
6947 	WRITE_ONCE(rb->aux_in_sampling, 1);
6948 	barrier();
6949 
6950 	ret = event->pmu->snapshot_aux(event, handle, size);
6951 
6952 	barrier();
6953 	WRITE_ONCE(rb->aux_in_sampling, 0);
6954 	local_irq_restore(flags);
6955 
6956 	return ret;
6957 }
6958 
perf_aux_sample_output(struct perf_event * event,struct perf_output_handle * handle,struct perf_sample_data * data)6959 static void perf_aux_sample_output(struct perf_event *event,
6960 				   struct perf_output_handle *handle,
6961 				   struct perf_sample_data *data)
6962 {
6963 	struct perf_event *sampler = event->aux_event;
6964 	struct perf_buffer *rb;
6965 	unsigned long pad;
6966 	long size;
6967 
6968 	if (WARN_ON_ONCE(!sampler || !data->aux_size))
6969 		return;
6970 
6971 	rb = ring_buffer_get(sampler);
6972 	if (!rb)
6973 		return;
6974 
6975 	size = perf_pmu_snapshot_aux(rb, sampler, handle, data->aux_size);
6976 
6977 	/*
6978 	 * An error here means that perf_output_copy() failed (returned a
6979 	 * non-zero surplus that it didn't copy), which in its current
6980 	 * enlightened implementation is not possible. If that changes, we'd
6981 	 * like to know.
6982 	 */
6983 	if (WARN_ON_ONCE(size < 0))
6984 		goto out_put;
6985 
6986 	/*
6987 	 * The pad comes from ALIGN()ing data->aux_size up to u64 in
6988 	 * perf_prepare_sample_aux(), so should not be more than that.
6989 	 */
6990 	pad = data->aux_size - size;
6991 	if (WARN_ON_ONCE(pad >= sizeof(u64)))
6992 		pad = 8;
6993 
6994 	if (pad) {
6995 		u64 zero = 0;
6996 		perf_output_copy(handle, &zero, pad);
6997 	}
6998 
6999 out_put:
7000 	ring_buffer_put(rb);
7001 }
7002 
__perf_event_header__init_id(struct perf_event_header * header,struct perf_sample_data * data,struct perf_event * event)7003 static void __perf_event_header__init_id(struct perf_event_header *header,
7004 					 struct perf_sample_data *data,
7005 					 struct perf_event *event)
7006 {
7007 	u64 sample_type = event->attr.sample_type;
7008 
7009 	data->type = sample_type;
7010 	header->size += event->id_header_size;
7011 
7012 	if (sample_type & PERF_SAMPLE_TID) {
7013 		/* namespace issues */
7014 		data->tid_entry.pid = perf_event_pid(event, current);
7015 		data->tid_entry.tid = perf_event_tid(event, current);
7016 	}
7017 
7018 	if (sample_type & PERF_SAMPLE_TIME)
7019 		data->time = perf_event_clock(event);
7020 
7021 	if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
7022 		data->id = primary_event_id(event);
7023 
7024 	if (sample_type & PERF_SAMPLE_STREAM_ID)
7025 		data->stream_id = event->id;
7026 
7027 	if (sample_type & PERF_SAMPLE_CPU) {
7028 		data->cpu_entry.cpu	 = raw_smp_processor_id();
7029 		data->cpu_entry.reserved = 0;
7030 	}
7031 }
7032 
perf_event_header__init_id(struct perf_event_header * header,struct perf_sample_data * data,struct perf_event * event)7033 void perf_event_header__init_id(struct perf_event_header *header,
7034 				struct perf_sample_data *data,
7035 				struct perf_event *event)
7036 {
7037 	if (event->attr.sample_id_all)
7038 		__perf_event_header__init_id(header, data, event);
7039 }
7040 
__perf_event__output_id_sample(struct perf_output_handle * handle,struct perf_sample_data * data)7041 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
7042 					   struct perf_sample_data *data)
7043 {
7044 	u64 sample_type = data->type;
7045 
7046 	if (sample_type & PERF_SAMPLE_TID)
7047 		perf_output_put(handle, data->tid_entry);
7048 
7049 	if (sample_type & PERF_SAMPLE_TIME)
7050 		perf_output_put(handle, data->time);
7051 
7052 	if (sample_type & PERF_SAMPLE_ID)
7053 		perf_output_put(handle, data->id);
7054 
7055 	if (sample_type & PERF_SAMPLE_STREAM_ID)
7056 		perf_output_put(handle, data->stream_id);
7057 
7058 	if (sample_type & PERF_SAMPLE_CPU)
7059 		perf_output_put(handle, data->cpu_entry);
7060 
7061 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
7062 		perf_output_put(handle, data->id);
7063 }
7064 
perf_event__output_id_sample(struct perf_event * event,struct perf_output_handle * handle,struct perf_sample_data * sample)7065 void perf_event__output_id_sample(struct perf_event *event,
7066 				  struct perf_output_handle *handle,
7067 				  struct perf_sample_data *sample)
7068 {
7069 	if (event->attr.sample_id_all)
7070 		__perf_event__output_id_sample(handle, sample);
7071 }
7072 
perf_output_read_one(struct perf_output_handle * handle,struct perf_event * event,u64 enabled,u64 running)7073 static void perf_output_read_one(struct perf_output_handle *handle,
7074 				 struct perf_event *event,
7075 				 u64 enabled, u64 running)
7076 {
7077 	u64 read_format = event->attr.read_format;
7078 	u64 values[4];
7079 	int n = 0;
7080 
7081 	values[n++] = perf_event_count(event);
7082 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
7083 		values[n++] = enabled +
7084 			atomic64_read(&event->child_total_time_enabled);
7085 	}
7086 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
7087 		values[n++] = running +
7088 			atomic64_read(&event->child_total_time_running);
7089 	}
7090 	if (read_format & PERF_FORMAT_ID)
7091 		values[n++] = primary_event_id(event);
7092 
7093 	__output_copy(handle, values, n * sizeof(u64));
7094 }
7095 
perf_output_read_group(struct perf_output_handle * handle,struct perf_event * event,u64 enabled,u64 running)7096 static void perf_output_read_group(struct perf_output_handle *handle,
7097 			    struct perf_event *event,
7098 			    u64 enabled, u64 running)
7099 {
7100 	struct perf_event *leader = event->group_leader, *sub;
7101 	u64 read_format = event->attr.read_format;
7102 	u64 values[5];
7103 	int n = 0;
7104 
7105 	values[n++] = 1 + leader->nr_siblings;
7106 
7107 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
7108 		values[n++] = enabled;
7109 
7110 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
7111 		values[n++] = running;
7112 
7113 	if ((leader != event) &&
7114 	    (leader->state == PERF_EVENT_STATE_ACTIVE))
7115 		leader->pmu->read(leader);
7116 
7117 	values[n++] = perf_event_count(leader);
7118 	if (read_format & PERF_FORMAT_ID)
7119 		values[n++] = primary_event_id(leader);
7120 
7121 	__output_copy(handle, values, n * sizeof(u64));
7122 
7123 	for_each_sibling_event(sub, leader) {
7124 		n = 0;
7125 
7126 		if ((sub != event) &&
7127 		    (sub->state == PERF_EVENT_STATE_ACTIVE))
7128 			sub->pmu->read(sub);
7129 
7130 		values[n++] = perf_event_count(sub);
7131 		if (read_format & PERF_FORMAT_ID)
7132 			values[n++] = primary_event_id(sub);
7133 
7134 		__output_copy(handle, values, n * sizeof(u64));
7135 	}
7136 }
7137 
7138 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
7139 				 PERF_FORMAT_TOTAL_TIME_RUNNING)
7140 
7141 /*
7142  * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
7143  *
7144  * The problem is that its both hard and excessively expensive to iterate the
7145  * child list, not to mention that its impossible to IPI the children running
7146  * on another CPU, from interrupt/NMI context.
7147  */
perf_output_read(struct perf_output_handle * handle,struct perf_event * event)7148 static void perf_output_read(struct perf_output_handle *handle,
7149 			     struct perf_event *event)
7150 {
7151 	u64 enabled = 0, running = 0, now;
7152 	u64 read_format = event->attr.read_format;
7153 
7154 	/*
7155 	 * compute total_time_enabled, total_time_running
7156 	 * based on snapshot values taken when the event
7157 	 * was last scheduled in.
7158 	 *
7159 	 * we cannot simply called update_context_time()
7160 	 * because of locking issue as we are called in
7161 	 * NMI context
7162 	 */
7163 	if (read_format & PERF_FORMAT_TOTAL_TIMES)
7164 		calc_timer_values(event, &now, &enabled, &running);
7165 
7166 	if (event->attr.read_format & PERF_FORMAT_GROUP)
7167 		perf_output_read_group(handle, event, enabled, running);
7168 	else
7169 		perf_output_read_one(handle, event, enabled, running);
7170 }
7171 
perf_sample_save_hw_index(struct perf_event * event)7172 static inline bool perf_sample_save_hw_index(struct perf_event *event)
7173 {
7174 	return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_HW_INDEX;
7175 }
7176 
perf_output_sample(struct perf_output_handle * handle,struct perf_event_header * header,struct perf_sample_data * data,struct perf_event * event)7177 void perf_output_sample(struct perf_output_handle *handle,
7178 			struct perf_event_header *header,
7179 			struct perf_sample_data *data,
7180 			struct perf_event *event)
7181 {
7182 	u64 sample_type = data->type;
7183 
7184 	perf_output_put(handle, *header);
7185 
7186 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
7187 		perf_output_put(handle, data->id);
7188 
7189 	if (sample_type & PERF_SAMPLE_IP)
7190 		perf_output_put(handle, data->ip);
7191 
7192 	if (sample_type & PERF_SAMPLE_TID)
7193 		perf_output_put(handle, data->tid_entry);
7194 
7195 	if (sample_type & PERF_SAMPLE_TIME)
7196 		perf_output_put(handle, data->time);
7197 
7198 	if (sample_type & PERF_SAMPLE_ADDR)
7199 		perf_output_put(handle, data->addr);
7200 
7201 	if (sample_type & PERF_SAMPLE_ID)
7202 		perf_output_put(handle, data->id);
7203 
7204 	if (sample_type & PERF_SAMPLE_STREAM_ID)
7205 		perf_output_put(handle, data->stream_id);
7206 
7207 	if (sample_type & PERF_SAMPLE_CPU)
7208 		perf_output_put(handle, data->cpu_entry);
7209 
7210 	if (sample_type & PERF_SAMPLE_PERIOD)
7211 		perf_output_put(handle, data->period);
7212 
7213 	if (sample_type & PERF_SAMPLE_READ)
7214 		perf_output_read(handle, event);
7215 
7216 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
7217 		int size = 1;
7218 
7219 		size += data->callchain->nr;
7220 		size *= sizeof(u64);
7221 		__output_copy(handle, data->callchain, size);
7222 	}
7223 
7224 	if (sample_type & PERF_SAMPLE_RAW) {
7225 		struct perf_raw_record *raw = data->raw;
7226 
7227 		if (raw) {
7228 			struct perf_raw_frag *frag = &raw->frag;
7229 
7230 			perf_output_put(handle, raw->size);
7231 			do {
7232 				if (frag->copy) {
7233 					__output_custom(handle, frag->copy,
7234 							frag->data, frag->size);
7235 				} else {
7236 					__output_copy(handle, frag->data,
7237 						      frag->size);
7238 				}
7239 				if (perf_raw_frag_last(frag))
7240 					break;
7241 				frag = frag->next;
7242 			} while (1);
7243 			if (frag->pad)
7244 				__output_skip(handle, NULL, frag->pad);
7245 		} else {
7246 			struct {
7247 				u32	size;
7248 				u32	data;
7249 			} raw = {
7250 				.size = sizeof(u32),
7251 				.data = 0,
7252 			};
7253 			perf_output_put(handle, raw);
7254 		}
7255 	}
7256 
7257 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
7258 		if (data->br_stack) {
7259 			size_t size;
7260 
7261 			size = data->br_stack->nr
7262 			     * sizeof(struct perf_branch_entry);
7263 
7264 			perf_output_put(handle, data->br_stack->nr);
7265 			if (perf_sample_save_hw_index(event))
7266 				perf_output_put(handle, data->br_stack->hw_idx);
7267 			perf_output_copy(handle, data->br_stack->entries, size);
7268 		} else {
7269 			/*
7270 			 * we always store at least the value of nr
7271 			 */
7272 			u64 nr = 0;
7273 			perf_output_put(handle, nr);
7274 		}
7275 	}
7276 
7277 	if (sample_type & PERF_SAMPLE_REGS_USER) {
7278 		u64 abi = data->regs_user.abi;
7279 
7280 		/*
7281 		 * If there are no regs to dump, notice it through
7282 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
7283 		 */
7284 		perf_output_put(handle, abi);
7285 
7286 		if (abi) {
7287 			u64 mask = event->attr.sample_regs_user;
7288 			perf_output_sample_regs(handle,
7289 						data->regs_user.regs,
7290 						mask);
7291 		}
7292 	}
7293 
7294 	if (sample_type & PERF_SAMPLE_STACK_USER) {
7295 		perf_output_sample_ustack(handle,
7296 					  data->stack_user_size,
7297 					  data->regs_user.regs);
7298 	}
7299 
7300 	if (sample_type & PERF_SAMPLE_WEIGHT_TYPE)
7301 		perf_output_put(handle, data->weight.full);
7302 
7303 	if (sample_type & PERF_SAMPLE_DATA_SRC)
7304 		perf_output_put(handle, data->data_src.val);
7305 
7306 	if (sample_type & PERF_SAMPLE_TRANSACTION)
7307 		perf_output_put(handle, data->txn);
7308 
7309 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
7310 		u64 abi = data->regs_intr.abi;
7311 		/*
7312 		 * If there are no regs to dump, notice it through
7313 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
7314 		 */
7315 		perf_output_put(handle, abi);
7316 
7317 		if (abi) {
7318 			u64 mask = event->attr.sample_regs_intr;
7319 
7320 			perf_output_sample_regs(handle,
7321 						data->regs_intr.regs,
7322 						mask);
7323 		}
7324 	}
7325 
7326 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
7327 		perf_output_put(handle, data->phys_addr);
7328 
7329 	if (sample_type & PERF_SAMPLE_CGROUP)
7330 		perf_output_put(handle, data->cgroup);
7331 
7332 	if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
7333 		perf_output_put(handle, data->data_page_size);
7334 
7335 	if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
7336 		perf_output_put(handle, data->code_page_size);
7337 
7338 	if (sample_type & PERF_SAMPLE_AUX) {
7339 		perf_output_put(handle, data->aux_size);
7340 
7341 		if (data->aux_size)
7342 			perf_aux_sample_output(event, handle, data);
7343 	}
7344 
7345 	if (!event->attr.watermark) {
7346 		int wakeup_events = event->attr.wakeup_events;
7347 
7348 		if (wakeup_events) {
7349 			struct perf_buffer *rb = handle->rb;
7350 			int events = local_inc_return(&rb->events);
7351 
7352 			if (events >= wakeup_events) {
7353 				local_sub(wakeup_events, &rb->events);
7354 				local_inc(&rb->wakeup);
7355 			}
7356 		}
7357 	}
7358 }
7359 
perf_virt_to_phys(u64 virt)7360 static u64 perf_virt_to_phys(u64 virt)
7361 {
7362 	u64 phys_addr = 0;
7363 
7364 	if (!virt)
7365 		return 0;
7366 
7367 	if (virt >= TASK_SIZE) {
7368 		/* If it's vmalloc()d memory, leave phys_addr as 0 */
7369 		if (virt_addr_valid((void *)(uintptr_t)virt) &&
7370 		    !(virt >= VMALLOC_START && virt < VMALLOC_END))
7371 			phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
7372 	} else {
7373 		/*
7374 		 * Walking the pages tables for user address.
7375 		 * Interrupts are disabled, so it prevents any tear down
7376 		 * of the page tables.
7377 		 * Try IRQ-safe get_user_page_fast_only first.
7378 		 * If failed, leave phys_addr as 0.
7379 		 */
7380 		if (current->mm != NULL) {
7381 			struct page *p;
7382 
7383 			pagefault_disable();
7384 			if (get_user_page_fast_only(virt, 0, &p)) {
7385 				phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
7386 				put_page(p);
7387 			}
7388 			pagefault_enable();
7389 		}
7390 	}
7391 
7392 	return phys_addr;
7393 }
7394 
7395 /*
7396  * Return the pagetable size of a given virtual address.
7397  */
perf_get_pgtable_size(struct mm_struct * mm,unsigned long addr)7398 static u64 perf_get_pgtable_size(struct mm_struct *mm, unsigned long addr)
7399 {
7400 	u64 size = 0;
7401 
7402 #ifdef CONFIG_HAVE_FAST_GUP
7403 	pgd_t *pgdp, pgd;
7404 	p4d_t *p4dp, p4d;
7405 	pud_t *pudp, pud;
7406 	pmd_t *pmdp, pmd;
7407 	pte_t *ptep, pte;
7408 
7409 	pgdp = pgd_offset(mm, addr);
7410 	pgd = READ_ONCE(*pgdp);
7411 	if (pgd_none(pgd))
7412 		return 0;
7413 
7414 	if (pgd_leaf(pgd))
7415 		return pgd_leaf_size(pgd);
7416 
7417 	p4dp = p4d_offset_lockless(pgdp, pgd, addr);
7418 	p4d = READ_ONCE(*p4dp);
7419 	if (!p4d_present(p4d))
7420 		return 0;
7421 
7422 	if (p4d_leaf(p4d))
7423 		return p4d_leaf_size(p4d);
7424 
7425 	pudp = pud_offset_lockless(p4dp, p4d, addr);
7426 	pud = READ_ONCE(*pudp);
7427 	if (!pud_present(pud))
7428 		return 0;
7429 
7430 	if (pud_leaf(pud))
7431 		return pud_leaf_size(pud);
7432 
7433 	pmdp = pmd_offset_lockless(pudp, pud, addr);
7434 	pmd = READ_ONCE(*pmdp);
7435 	if (!pmd_present(pmd))
7436 		return 0;
7437 
7438 	if (pmd_leaf(pmd))
7439 		return pmd_leaf_size(pmd);
7440 
7441 	ptep = pte_offset_map(&pmd, addr);
7442 	pte = ptep_get_lockless(ptep);
7443 	if (pte_present(pte))
7444 		size = pte_leaf_size(pte);
7445 	pte_unmap(ptep);
7446 #endif /* CONFIG_HAVE_FAST_GUP */
7447 
7448 	return size;
7449 }
7450 
perf_get_page_size(unsigned long addr)7451 static u64 perf_get_page_size(unsigned long addr)
7452 {
7453 	struct mm_struct *mm;
7454 	unsigned long flags;
7455 	u64 size;
7456 
7457 	if (!addr)
7458 		return 0;
7459 
7460 	/*
7461 	 * Software page-table walkers must disable IRQs,
7462 	 * which prevents any tear down of the page tables.
7463 	 */
7464 	local_irq_save(flags);
7465 
7466 	mm = current->mm;
7467 	if (!mm) {
7468 		/*
7469 		 * For kernel threads and the like, use init_mm so that
7470 		 * we can find kernel memory.
7471 		 */
7472 		mm = &init_mm;
7473 	}
7474 
7475 	size = perf_get_pgtable_size(mm, addr);
7476 
7477 	local_irq_restore(flags);
7478 
7479 	return size;
7480 }
7481 
7482 static struct perf_callchain_entry __empty_callchain = { .nr = 0, };
7483 
7484 struct perf_callchain_entry *
perf_callchain(struct perf_event * event,struct pt_regs * regs)7485 perf_callchain(struct perf_event *event, struct pt_regs *regs)
7486 {
7487 	bool kernel = !event->attr.exclude_callchain_kernel;
7488 	bool user   = !event->attr.exclude_callchain_user;
7489 	/* Disallow cross-task user callchains. */
7490 	bool crosstask = event->ctx->task && event->ctx->task != current;
7491 	const u32 max_stack = event->attr.sample_max_stack;
7492 	struct perf_callchain_entry *callchain;
7493 
7494 	if (!kernel && !user)
7495 		return &__empty_callchain;
7496 
7497 	callchain = get_perf_callchain(regs, 0, kernel, user,
7498 				       max_stack, crosstask, true);
7499 	return callchain ?: &__empty_callchain;
7500 }
7501 
perf_prepare_sample(struct perf_event_header * header,struct perf_sample_data * data,struct perf_event * event,struct pt_regs * regs)7502 void perf_prepare_sample(struct perf_event_header *header,
7503 			 struct perf_sample_data *data,
7504 			 struct perf_event *event,
7505 			 struct pt_regs *regs)
7506 {
7507 	u64 sample_type = event->attr.sample_type;
7508 
7509 	header->type = PERF_RECORD_SAMPLE;
7510 	header->size = sizeof(*header) + event->header_size;
7511 
7512 	header->misc = 0;
7513 	header->misc |= perf_misc_flags(regs);
7514 
7515 	__perf_event_header__init_id(header, data, event);
7516 
7517 	if (sample_type & (PERF_SAMPLE_IP | PERF_SAMPLE_CODE_PAGE_SIZE))
7518 		data->ip = perf_instruction_pointer(regs);
7519 
7520 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
7521 		int size = 1;
7522 
7523 		if (!(sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY))
7524 			data->callchain = perf_callchain(event, regs);
7525 
7526 		size += data->callchain->nr;
7527 
7528 		header->size += size * sizeof(u64);
7529 	}
7530 
7531 	if (sample_type & PERF_SAMPLE_RAW) {
7532 		struct perf_raw_record *raw = data->raw;
7533 		int size;
7534 
7535 		if (raw) {
7536 			struct perf_raw_frag *frag = &raw->frag;
7537 			u32 sum = 0;
7538 
7539 			do {
7540 				sum += frag->size;
7541 				if (perf_raw_frag_last(frag))
7542 					break;
7543 				frag = frag->next;
7544 			} while (1);
7545 
7546 			size = round_up(sum + sizeof(u32), sizeof(u64));
7547 			raw->size = size - sizeof(u32);
7548 			frag->pad = raw->size - sum;
7549 		} else {
7550 			size = sizeof(u64);
7551 		}
7552 
7553 		header->size += size;
7554 	}
7555 
7556 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
7557 		int size = sizeof(u64); /* nr */
7558 		if (data->br_stack) {
7559 			if (perf_sample_save_hw_index(event))
7560 				size += sizeof(u64);
7561 
7562 			size += data->br_stack->nr
7563 			      * sizeof(struct perf_branch_entry);
7564 		}
7565 		header->size += size;
7566 	}
7567 
7568 	if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
7569 		perf_sample_regs_user(&data->regs_user, regs);
7570 
7571 	if (sample_type & PERF_SAMPLE_REGS_USER) {
7572 		/* regs dump ABI info */
7573 		int size = sizeof(u64);
7574 
7575 		if (data->regs_user.regs) {
7576 			u64 mask = event->attr.sample_regs_user;
7577 			size += hweight64(mask) * sizeof(u64);
7578 		}
7579 
7580 		header->size += size;
7581 	}
7582 
7583 	if (sample_type & PERF_SAMPLE_STACK_USER) {
7584 		/*
7585 		 * Either we need PERF_SAMPLE_STACK_USER bit to be always
7586 		 * processed as the last one or have additional check added
7587 		 * in case new sample type is added, because we could eat
7588 		 * up the rest of the sample size.
7589 		 */
7590 		u16 stack_size = event->attr.sample_stack_user;
7591 		u16 size = sizeof(u64);
7592 
7593 		stack_size = perf_sample_ustack_size(stack_size, header->size,
7594 						     data->regs_user.regs);
7595 
7596 		/*
7597 		 * If there is something to dump, add space for the dump
7598 		 * itself and for the field that tells the dynamic size,
7599 		 * which is how many have been actually dumped.
7600 		 */
7601 		if (stack_size)
7602 			size += sizeof(u64) + stack_size;
7603 
7604 		data->stack_user_size = stack_size;
7605 		header->size += size;
7606 	}
7607 
7608 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
7609 		/* regs dump ABI info */
7610 		int size = sizeof(u64);
7611 
7612 		perf_sample_regs_intr(&data->regs_intr, regs);
7613 
7614 		if (data->regs_intr.regs) {
7615 			u64 mask = event->attr.sample_regs_intr;
7616 
7617 			size += hweight64(mask) * sizeof(u64);
7618 		}
7619 
7620 		header->size += size;
7621 	}
7622 
7623 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
7624 		data->phys_addr = perf_virt_to_phys(data->addr);
7625 
7626 #ifdef CONFIG_CGROUP_PERF
7627 	if (sample_type & PERF_SAMPLE_CGROUP) {
7628 		struct cgroup *cgrp;
7629 
7630 		/* protected by RCU */
7631 		cgrp = task_css_check(current, perf_event_cgrp_id, 1)->cgroup;
7632 		data->cgroup = cgroup_id(cgrp);
7633 	}
7634 #endif
7635 
7636 	/*
7637 	 * PERF_DATA_PAGE_SIZE requires PERF_SAMPLE_ADDR. If the user doesn't
7638 	 * require PERF_SAMPLE_ADDR, kernel implicitly retrieve the data->addr,
7639 	 * but the value will not dump to the userspace.
7640 	 */
7641 	if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
7642 		data->data_page_size = perf_get_page_size(data->addr);
7643 
7644 	if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
7645 		data->code_page_size = perf_get_page_size(data->ip);
7646 
7647 	if (sample_type & PERF_SAMPLE_AUX) {
7648 		u64 size;
7649 
7650 		header->size += sizeof(u64); /* size */
7651 
7652 		/*
7653 		 * Given the 16bit nature of header::size, an AUX sample can
7654 		 * easily overflow it, what with all the preceding sample bits.
7655 		 * Make sure this doesn't happen by using up to U16_MAX bytes
7656 		 * per sample in total (rounded down to 8 byte boundary).
7657 		 */
7658 		size = min_t(size_t, U16_MAX - header->size,
7659 			     event->attr.aux_sample_size);
7660 		size = rounddown(size, 8);
7661 		size = perf_prepare_sample_aux(event, data, size);
7662 
7663 		WARN_ON_ONCE(size + header->size > U16_MAX);
7664 		header->size += size;
7665 	}
7666 	/*
7667 	 * If you're adding more sample types here, you likely need to do
7668 	 * something about the overflowing header::size, like repurpose the
7669 	 * lowest 3 bits of size, which should be always zero at the moment.
7670 	 * This raises a more important question, do we really need 512k sized
7671 	 * samples and why, so good argumentation is in order for whatever you
7672 	 * do here next.
7673 	 */
7674 	WARN_ON_ONCE(header->size & 7);
7675 }
7676 
7677 static __always_inline int
__perf_event_output(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs,int (* output_begin)(struct perf_output_handle *,struct perf_sample_data *,struct perf_event *,unsigned int))7678 __perf_event_output(struct perf_event *event,
7679 		    struct perf_sample_data *data,
7680 		    struct pt_regs *regs,
7681 		    int (*output_begin)(struct perf_output_handle *,
7682 					struct perf_sample_data *,
7683 					struct perf_event *,
7684 					unsigned int))
7685 {
7686 	struct perf_output_handle handle;
7687 	struct perf_event_header header;
7688 	int err;
7689 
7690 	/* protect the callchain buffers */
7691 	rcu_read_lock();
7692 
7693 	perf_prepare_sample(&header, data, event, regs);
7694 
7695 	err = output_begin(&handle, data, event, header.size);
7696 	if (err)
7697 		goto exit;
7698 
7699 	perf_output_sample(&handle, &header, data, event);
7700 
7701 	perf_output_end(&handle);
7702 
7703 exit:
7704 	rcu_read_unlock();
7705 	return err;
7706 }
7707 
7708 void
perf_event_output_forward(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs)7709 perf_event_output_forward(struct perf_event *event,
7710 			 struct perf_sample_data *data,
7711 			 struct pt_regs *regs)
7712 {
7713 	__perf_event_output(event, data, regs, perf_output_begin_forward);
7714 }
7715 
7716 void
perf_event_output_backward(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs)7717 perf_event_output_backward(struct perf_event *event,
7718 			   struct perf_sample_data *data,
7719 			   struct pt_regs *regs)
7720 {
7721 	__perf_event_output(event, data, regs, perf_output_begin_backward);
7722 }
7723 
7724 int
perf_event_output(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs)7725 perf_event_output(struct perf_event *event,
7726 		  struct perf_sample_data *data,
7727 		  struct pt_regs *regs)
7728 {
7729 	return __perf_event_output(event, data, regs, perf_output_begin);
7730 }
7731 
7732 /*
7733  * read event_id
7734  */
7735 
7736 struct perf_read_event {
7737 	struct perf_event_header	header;
7738 
7739 	u32				pid;
7740 	u32				tid;
7741 };
7742 
7743 static void
perf_event_read_event(struct perf_event * event,struct task_struct * task)7744 perf_event_read_event(struct perf_event *event,
7745 			struct task_struct *task)
7746 {
7747 	struct perf_output_handle handle;
7748 	struct perf_sample_data sample;
7749 	struct perf_read_event read_event = {
7750 		.header = {
7751 			.type = PERF_RECORD_READ,
7752 			.misc = 0,
7753 			.size = sizeof(read_event) + event->read_size,
7754 		},
7755 		.pid = perf_event_pid(event, task),
7756 		.tid = perf_event_tid(event, task),
7757 	};
7758 	int ret;
7759 
7760 	perf_event_header__init_id(&read_event.header, &sample, event);
7761 	ret = perf_output_begin(&handle, &sample, event, read_event.header.size);
7762 	if (ret)
7763 		return;
7764 
7765 	perf_output_put(&handle, read_event);
7766 	perf_output_read(&handle, event);
7767 	perf_event__output_id_sample(event, &handle, &sample);
7768 
7769 	perf_output_end(&handle);
7770 }
7771 
7772 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
7773 
7774 static void
perf_iterate_ctx(struct perf_event_context * ctx,perf_iterate_f output,void * data,bool all)7775 perf_iterate_ctx(struct perf_event_context *ctx,
7776 		   perf_iterate_f output,
7777 		   void *data, bool all)
7778 {
7779 	struct perf_event *event;
7780 
7781 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
7782 		if (!all) {
7783 			if (event->state < PERF_EVENT_STATE_INACTIVE)
7784 				continue;
7785 			if (!event_filter_match(event))
7786 				continue;
7787 		}
7788 
7789 		output(event, data);
7790 	}
7791 }
7792 
perf_iterate_sb_cpu(perf_iterate_f output,void * data)7793 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
7794 {
7795 	struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
7796 	struct perf_event *event;
7797 
7798 	list_for_each_entry_rcu(event, &pel->list, sb_list) {
7799 		/*
7800 		 * Skip events that are not fully formed yet; ensure that
7801 		 * if we observe event->ctx, both event and ctx will be
7802 		 * complete enough. See perf_install_in_context().
7803 		 */
7804 		if (!smp_load_acquire(&event->ctx))
7805 			continue;
7806 
7807 		if (event->state < PERF_EVENT_STATE_INACTIVE)
7808 			continue;
7809 		if (!event_filter_match(event))
7810 			continue;
7811 		output(event, data);
7812 	}
7813 }
7814 
7815 /*
7816  * Iterate all events that need to receive side-band events.
7817  *
7818  * For new callers; ensure that account_pmu_sb_event() includes
7819  * your event, otherwise it might not get delivered.
7820  */
7821 static void
perf_iterate_sb(perf_iterate_f output,void * data,struct perf_event_context * task_ctx)7822 perf_iterate_sb(perf_iterate_f output, void *data,
7823 	       struct perf_event_context *task_ctx)
7824 {
7825 	struct perf_event_context *ctx;
7826 	int ctxn;
7827 
7828 	rcu_read_lock();
7829 	preempt_disable();
7830 
7831 	/*
7832 	 * If we have task_ctx != NULL we only notify the task context itself.
7833 	 * The task_ctx is set only for EXIT events before releasing task
7834 	 * context.
7835 	 */
7836 	if (task_ctx) {
7837 		perf_iterate_ctx(task_ctx, output, data, false);
7838 		goto done;
7839 	}
7840 
7841 	perf_iterate_sb_cpu(output, data);
7842 
7843 	for_each_task_context_nr(ctxn) {
7844 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7845 		if (ctx)
7846 			perf_iterate_ctx(ctx, output, data, false);
7847 	}
7848 done:
7849 	preempt_enable();
7850 	rcu_read_unlock();
7851 }
7852 
7853 /*
7854  * Clear all file-based filters at exec, they'll have to be
7855  * re-instated when/if these objects are mmapped again.
7856  */
perf_event_addr_filters_exec(struct perf_event * event,void * data)7857 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
7858 {
7859 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
7860 	struct perf_addr_filter *filter;
7861 	unsigned int restart = 0, count = 0;
7862 	unsigned long flags;
7863 
7864 	if (!has_addr_filter(event))
7865 		return;
7866 
7867 	raw_spin_lock_irqsave(&ifh->lock, flags);
7868 	list_for_each_entry(filter, &ifh->list, entry) {
7869 		if (filter->path.dentry) {
7870 			event->addr_filter_ranges[count].start = 0;
7871 			event->addr_filter_ranges[count].size = 0;
7872 			restart++;
7873 		}
7874 
7875 		count++;
7876 	}
7877 
7878 	if (restart)
7879 		event->addr_filters_gen++;
7880 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
7881 
7882 	if (restart)
7883 		perf_event_stop(event, 1);
7884 }
7885 
perf_event_exec(void)7886 void perf_event_exec(void)
7887 {
7888 	struct perf_event_context *ctx;
7889 	int ctxn;
7890 
7891 	for_each_task_context_nr(ctxn) {
7892 		perf_event_enable_on_exec(ctxn);
7893 		perf_event_remove_on_exec(ctxn);
7894 
7895 		rcu_read_lock();
7896 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7897 		if (ctx) {
7898 			perf_iterate_ctx(ctx, perf_event_addr_filters_exec,
7899 					 NULL, true);
7900 		}
7901 		rcu_read_unlock();
7902 	}
7903 }
7904 
7905 struct remote_output {
7906 	struct perf_buffer	*rb;
7907 	int			err;
7908 };
7909 
__perf_event_output_stop(struct perf_event * event,void * data)7910 static void __perf_event_output_stop(struct perf_event *event, void *data)
7911 {
7912 	struct perf_event *parent = event->parent;
7913 	struct remote_output *ro = data;
7914 	struct perf_buffer *rb = ro->rb;
7915 	struct stop_event_data sd = {
7916 		.event	= event,
7917 	};
7918 
7919 	if (!has_aux(event))
7920 		return;
7921 
7922 	if (!parent)
7923 		parent = event;
7924 
7925 	/*
7926 	 * In case of inheritance, it will be the parent that links to the
7927 	 * ring-buffer, but it will be the child that's actually using it.
7928 	 *
7929 	 * We are using event::rb to determine if the event should be stopped,
7930 	 * however this may race with ring_buffer_attach() (through set_output),
7931 	 * which will make us skip the event that actually needs to be stopped.
7932 	 * So ring_buffer_attach() has to stop an aux event before re-assigning
7933 	 * its rb pointer.
7934 	 */
7935 	if (rcu_dereference(parent->rb) == rb)
7936 		ro->err = __perf_event_stop(&sd);
7937 }
7938 
__perf_pmu_output_stop(void * info)7939 static int __perf_pmu_output_stop(void *info)
7940 {
7941 	struct perf_event *event = info;
7942 	struct pmu *pmu = event->ctx->pmu;
7943 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
7944 	struct remote_output ro = {
7945 		.rb	= event->rb,
7946 	};
7947 
7948 	rcu_read_lock();
7949 	perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
7950 	if (cpuctx->task_ctx)
7951 		perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
7952 				   &ro, false);
7953 	rcu_read_unlock();
7954 
7955 	return ro.err;
7956 }
7957 
perf_pmu_output_stop(struct perf_event * event)7958 static void perf_pmu_output_stop(struct perf_event *event)
7959 {
7960 	struct perf_event *iter;
7961 	int err, cpu;
7962 
7963 restart:
7964 	rcu_read_lock();
7965 	list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
7966 		/*
7967 		 * For per-CPU events, we need to make sure that neither they
7968 		 * nor their children are running; for cpu==-1 events it's
7969 		 * sufficient to stop the event itself if it's active, since
7970 		 * it can't have children.
7971 		 */
7972 		cpu = iter->cpu;
7973 		if (cpu == -1)
7974 			cpu = READ_ONCE(iter->oncpu);
7975 
7976 		if (cpu == -1)
7977 			continue;
7978 
7979 		err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
7980 		if (err == -EAGAIN) {
7981 			rcu_read_unlock();
7982 			goto restart;
7983 		}
7984 	}
7985 	rcu_read_unlock();
7986 }
7987 
7988 /*
7989  * task tracking -- fork/exit
7990  *
7991  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
7992  */
7993 
7994 struct perf_task_event {
7995 	struct task_struct		*task;
7996 	struct perf_event_context	*task_ctx;
7997 
7998 	struct {
7999 		struct perf_event_header	header;
8000 
8001 		u32				pid;
8002 		u32				ppid;
8003 		u32				tid;
8004 		u32				ptid;
8005 		u64				time;
8006 	} event_id;
8007 };
8008 
perf_event_task_match(struct perf_event * event)8009 static int perf_event_task_match(struct perf_event *event)
8010 {
8011 	return event->attr.comm  || event->attr.mmap ||
8012 	       event->attr.mmap2 || event->attr.mmap_data ||
8013 	       event->attr.task;
8014 }
8015 
perf_event_task_output(struct perf_event * event,void * data)8016 static void perf_event_task_output(struct perf_event *event,
8017 				   void *data)
8018 {
8019 	struct perf_task_event *task_event = data;
8020 	struct perf_output_handle handle;
8021 	struct perf_sample_data	sample;
8022 	struct task_struct *task = task_event->task;
8023 	int ret, size = task_event->event_id.header.size;
8024 
8025 	if (!perf_event_task_match(event))
8026 		return;
8027 
8028 	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
8029 
8030 	ret = perf_output_begin(&handle, &sample, event,
8031 				task_event->event_id.header.size);
8032 	if (ret)
8033 		goto out;
8034 
8035 	task_event->event_id.pid = perf_event_pid(event, task);
8036 	task_event->event_id.tid = perf_event_tid(event, task);
8037 
8038 	if (task_event->event_id.header.type == PERF_RECORD_EXIT) {
8039 		task_event->event_id.ppid = perf_event_pid(event,
8040 							task->real_parent);
8041 		task_event->event_id.ptid = perf_event_pid(event,
8042 							task->real_parent);
8043 	} else {  /* PERF_RECORD_FORK */
8044 		task_event->event_id.ppid = perf_event_pid(event, current);
8045 		task_event->event_id.ptid = perf_event_tid(event, current);
8046 	}
8047 
8048 	task_event->event_id.time = perf_event_clock(event);
8049 
8050 	perf_output_put(&handle, task_event->event_id);
8051 
8052 	perf_event__output_id_sample(event, &handle, &sample);
8053 
8054 	perf_output_end(&handle);
8055 out:
8056 	task_event->event_id.header.size = size;
8057 }
8058 
perf_event_task(struct task_struct * task,struct perf_event_context * task_ctx,int new)8059 static void perf_event_task(struct task_struct *task,
8060 			      struct perf_event_context *task_ctx,
8061 			      int new)
8062 {
8063 	struct perf_task_event task_event;
8064 
8065 	if (!atomic_read(&nr_comm_events) &&
8066 	    !atomic_read(&nr_mmap_events) &&
8067 	    !atomic_read(&nr_task_events))
8068 		return;
8069 
8070 	task_event = (struct perf_task_event){
8071 		.task	  = task,
8072 		.task_ctx = task_ctx,
8073 		.event_id    = {
8074 			.header = {
8075 				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
8076 				.misc = 0,
8077 				.size = sizeof(task_event.event_id),
8078 			},
8079 			/* .pid  */
8080 			/* .ppid */
8081 			/* .tid  */
8082 			/* .ptid */
8083 			/* .time */
8084 		},
8085 	};
8086 
8087 	perf_iterate_sb(perf_event_task_output,
8088 		       &task_event,
8089 		       task_ctx);
8090 }
8091 
perf_event_fork(struct task_struct * task)8092 void perf_event_fork(struct task_struct *task)
8093 {
8094 	perf_event_task(task, NULL, 1);
8095 	perf_event_namespaces(task);
8096 }
8097 
8098 /*
8099  * comm tracking
8100  */
8101 
8102 struct perf_comm_event {
8103 	struct task_struct	*task;
8104 	char			*comm;
8105 	int			comm_size;
8106 
8107 	struct {
8108 		struct perf_event_header	header;
8109 
8110 		u32				pid;
8111 		u32				tid;
8112 	} event_id;
8113 };
8114 
perf_event_comm_match(struct perf_event * event)8115 static int perf_event_comm_match(struct perf_event *event)
8116 {
8117 	return event->attr.comm;
8118 }
8119 
perf_event_comm_output(struct perf_event * event,void * data)8120 static void perf_event_comm_output(struct perf_event *event,
8121 				   void *data)
8122 {
8123 	struct perf_comm_event *comm_event = data;
8124 	struct perf_output_handle handle;
8125 	struct perf_sample_data sample;
8126 	int size = comm_event->event_id.header.size;
8127 	int ret;
8128 
8129 	if (!perf_event_comm_match(event))
8130 		return;
8131 
8132 	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
8133 	ret = perf_output_begin(&handle, &sample, event,
8134 				comm_event->event_id.header.size);
8135 
8136 	if (ret)
8137 		goto out;
8138 
8139 	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
8140 	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
8141 
8142 	perf_output_put(&handle, comm_event->event_id);
8143 	__output_copy(&handle, comm_event->comm,
8144 				   comm_event->comm_size);
8145 
8146 	perf_event__output_id_sample(event, &handle, &sample);
8147 
8148 	perf_output_end(&handle);
8149 out:
8150 	comm_event->event_id.header.size = size;
8151 }
8152 
perf_event_comm_event(struct perf_comm_event * comm_event)8153 static void perf_event_comm_event(struct perf_comm_event *comm_event)
8154 {
8155 	char comm[TASK_COMM_LEN];
8156 	unsigned int size;
8157 
8158 	memset(comm, 0, sizeof(comm));
8159 	strlcpy(comm, comm_event->task->comm, sizeof(comm));
8160 	size = ALIGN(strlen(comm)+1, sizeof(u64));
8161 
8162 	comm_event->comm = comm;
8163 	comm_event->comm_size = size;
8164 
8165 	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
8166 
8167 	perf_iterate_sb(perf_event_comm_output,
8168 		       comm_event,
8169 		       NULL);
8170 }
8171 
perf_event_comm(struct task_struct * task,bool exec)8172 void perf_event_comm(struct task_struct *task, bool exec)
8173 {
8174 	struct perf_comm_event comm_event;
8175 
8176 	if (!atomic_read(&nr_comm_events))
8177 		return;
8178 
8179 	comm_event = (struct perf_comm_event){
8180 		.task	= task,
8181 		/* .comm      */
8182 		/* .comm_size */
8183 		.event_id  = {
8184 			.header = {
8185 				.type = PERF_RECORD_COMM,
8186 				.misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
8187 				/* .size */
8188 			},
8189 			/* .pid */
8190 			/* .tid */
8191 		},
8192 	};
8193 
8194 	perf_event_comm_event(&comm_event);
8195 }
8196 
8197 /*
8198  * namespaces tracking
8199  */
8200 
8201 struct perf_namespaces_event {
8202 	struct task_struct		*task;
8203 
8204 	struct {
8205 		struct perf_event_header	header;
8206 
8207 		u32				pid;
8208 		u32				tid;
8209 		u64				nr_namespaces;
8210 		struct perf_ns_link_info	link_info[NR_NAMESPACES];
8211 	} event_id;
8212 };
8213 
perf_event_namespaces_match(struct perf_event * event)8214 static int perf_event_namespaces_match(struct perf_event *event)
8215 {
8216 	return event->attr.namespaces;
8217 }
8218 
perf_event_namespaces_output(struct perf_event * event,void * data)8219 static void perf_event_namespaces_output(struct perf_event *event,
8220 					 void *data)
8221 {
8222 	struct perf_namespaces_event *namespaces_event = data;
8223 	struct perf_output_handle handle;
8224 	struct perf_sample_data sample;
8225 	u16 header_size = namespaces_event->event_id.header.size;
8226 	int ret;
8227 
8228 	if (!perf_event_namespaces_match(event))
8229 		return;
8230 
8231 	perf_event_header__init_id(&namespaces_event->event_id.header,
8232 				   &sample, event);
8233 	ret = perf_output_begin(&handle, &sample, event,
8234 				namespaces_event->event_id.header.size);
8235 	if (ret)
8236 		goto out;
8237 
8238 	namespaces_event->event_id.pid = perf_event_pid(event,
8239 							namespaces_event->task);
8240 	namespaces_event->event_id.tid = perf_event_tid(event,
8241 							namespaces_event->task);
8242 
8243 	perf_output_put(&handle, namespaces_event->event_id);
8244 
8245 	perf_event__output_id_sample(event, &handle, &sample);
8246 
8247 	perf_output_end(&handle);
8248 out:
8249 	namespaces_event->event_id.header.size = header_size;
8250 }
8251 
perf_fill_ns_link_info(struct perf_ns_link_info * ns_link_info,struct task_struct * task,const struct proc_ns_operations * ns_ops)8252 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
8253 				   struct task_struct *task,
8254 				   const struct proc_ns_operations *ns_ops)
8255 {
8256 	struct path ns_path;
8257 	struct inode *ns_inode;
8258 	int error;
8259 
8260 	error = ns_get_path(&ns_path, task, ns_ops);
8261 	if (!error) {
8262 		ns_inode = ns_path.dentry->d_inode;
8263 		ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
8264 		ns_link_info->ino = ns_inode->i_ino;
8265 		path_put(&ns_path);
8266 	}
8267 }
8268 
perf_event_namespaces(struct task_struct * task)8269 void perf_event_namespaces(struct task_struct *task)
8270 {
8271 	struct perf_namespaces_event namespaces_event;
8272 	struct perf_ns_link_info *ns_link_info;
8273 
8274 	if (!atomic_read(&nr_namespaces_events))
8275 		return;
8276 
8277 	namespaces_event = (struct perf_namespaces_event){
8278 		.task	= task,
8279 		.event_id  = {
8280 			.header = {
8281 				.type = PERF_RECORD_NAMESPACES,
8282 				.misc = 0,
8283 				.size = sizeof(namespaces_event.event_id),
8284 			},
8285 			/* .pid */
8286 			/* .tid */
8287 			.nr_namespaces = NR_NAMESPACES,
8288 			/* .link_info[NR_NAMESPACES] */
8289 		},
8290 	};
8291 
8292 	ns_link_info = namespaces_event.event_id.link_info;
8293 
8294 	perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
8295 			       task, &mntns_operations);
8296 
8297 #ifdef CONFIG_USER_NS
8298 	perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
8299 			       task, &userns_operations);
8300 #endif
8301 #ifdef CONFIG_NET_NS
8302 	perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
8303 			       task, &netns_operations);
8304 #endif
8305 #ifdef CONFIG_UTS_NS
8306 	perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
8307 			       task, &utsns_operations);
8308 #endif
8309 #ifdef CONFIG_IPC_NS
8310 	perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
8311 			       task, &ipcns_operations);
8312 #endif
8313 #ifdef CONFIG_PID_NS
8314 	perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
8315 			       task, &pidns_operations);
8316 #endif
8317 #ifdef CONFIG_CGROUPS
8318 	perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
8319 			       task, &cgroupns_operations);
8320 #endif
8321 
8322 	perf_iterate_sb(perf_event_namespaces_output,
8323 			&namespaces_event,
8324 			NULL);
8325 }
8326 
8327 /*
8328  * cgroup tracking
8329  */
8330 #ifdef CONFIG_CGROUP_PERF
8331 
8332 struct perf_cgroup_event {
8333 	char				*path;
8334 	int				path_size;
8335 	struct {
8336 		struct perf_event_header	header;
8337 		u64				id;
8338 		char				path[];
8339 	} event_id;
8340 };
8341 
perf_event_cgroup_match(struct perf_event * event)8342 static int perf_event_cgroup_match(struct perf_event *event)
8343 {
8344 	return event->attr.cgroup;
8345 }
8346 
perf_event_cgroup_output(struct perf_event * event,void * data)8347 static void perf_event_cgroup_output(struct perf_event *event, void *data)
8348 {
8349 	struct perf_cgroup_event *cgroup_event = data;
8350 	struct perf_output_handle handle;
8351 	struct perf_sample_data sample;
8352 	u16 header_size = cgroup_event->event_id.header.size;
8353 	int ret;
8354 
8355 	if (!perf_event_cgroup_match(event))
8356 		return;
8357 
8358 	perf_event_header__init_id(&cgroup_event->event_id.header,
8359 				   &sample, event);
8360 	ret = perf_output_begin(&handle, &sample, event,
8361 				cgroup_event->event_id.header.size);
8362 	if (ret)
8363 		goto out;
8364 
8365 	perf_output_put(&handle, cgroup_event->event_id);
8366 	__output_copy(&handle, cgroup_event->path, cgroup_event->path_size);
8367 
8368 	perf_event__output_id_sample(event, &handle, &sample);
8369 
8370 	perf_output_end(&handle);
8371 out:
8372 	cgroup_event->event_id.header.size = header_size;
8373 }
8374 
perf_event_cgroup(struct cgroup * cgrp)8375 static void perf_event_cgroup(struct cgroup *cgrp)
8376 {
8377 	struct perf_cgroup_event cgroup_event;
8378 	char path_enomem[16] = "//enomem";
8379 	char *pathname;
8380 	size_t size;
8381 
8382 	if (!atomic_read(&nr_cgroup_events))
8383 		return;
8384 
8385 	cgroup_event = (struct perf_cgroup_event){
8386 		.event_id  = {
8387 			.header = {
8388 				.type = PERF_RECORD_CGROUP,
8389 				.misc = 0,
8390 				.size = sizeof(cgroup_event.event_id),
8391 			},
8392 			.id = cgroup_id(cgrp),
8393 		},
8394 	};
8395 
8396 	pathname = kmalloc(PATH_MAX, GFP_KERNEL);
8397 	if (pathname == NULL) {
8398 		cgroup_event.path = path_enomem;
8399 	} else {
8400 		/* just to be sure to have enough space for alignment */
8401 		cgroup_path(cgrp, pathname, PATH_MAX - sizeof(u64));
8402 		cgroup_event.path = pathname;
8403 	}
8404 
8405 	/*
8406 	 * Since our buffer works in 8 byte units we need to align our string
8407 	 * size to a multiple of 8. However, we must guarantee the tail end is
8408 	 * zero'd out to avoid leaking random bits to userspace.
8409 	 */
8410 	size = strlen(cgroup_event.path) + 1;
8411 	while (!IS_ALIGNED(size, sizeof(u64)))
8412 		cgroup_event.path[size++] = '\0';
8413 
8414 	cgroup_event.event_id.header.size += size;
8415 	cgroup_event.path_size = size;
8416 
8417 	perf_iterate_sb(perf_event_cgroup_output,
8418 			&cgroup_event,
8419 			NULL);
8420 
8421 	kfree(pathname);
8422 }
8423 
8424 #endif
8425 
8426 /*
8427  * mmap tracking
8428  */
8429 
8430 struct perf_mmap_event {
8431 	struct vm_area_struct	*vma;
8432 
8433 	const char		*file_name;
8434 	int			file_size;
8435 	int			maj, min;
8436 	u64			ino;
8437 	u64			ino_generation;
8438 	u32			prot, flags;
8439 	u8			build_id[BUILD_ID_SIZE_MAX];
8440 	u32			build_id_size;
8441 
8442 	struct {
8443 		struct perf_event_header	header;
8444 
8445 		u32				pid;
8446 		u32				tid;
8447 		u64				start;
8448 		u64				len;
8449 		u64				pgoff;
8450 	} event_id;
8451 };
8452 
perf_event_mmap_match(struct perf_event * event,void * data)8453 static int perf_event_mmap_match(struct perf_event *event,
8454 				 void *data)
8455 {
8456 	struct perf_mmap_event *mmap_event = data;
8457 	struct vm_area_struct *vma = mmap_event->vma;
8458 	int executable = vma->vm_flags & VM_EXEC;
8459 
8460 	return (!executable && event->attr.mmap_data) ||
8461 	       (executable && (event->attr.mmap || event->attr.mmap2));
8462 }
8463 
perf_event_mmap_output(struct perf_event * event,void * data)8464 static void perf_event_mmap_output(struct perf_event *event,
8465 				   void *data)
8466 {
8467 	struct perf_mmap_event *mmap_event = data;
8468 	struct perf_output_handle handle;
8469 	struct perf_sample_data sample;
8470 	int size = mmap_event->event_id.header.size;
8471 	u32 type = mmap_event->event_id.header.type;
8472 	bool use_build_id;
8473 	int ret;
8474 
8475 	if (!perf_event_mmap_match(event, data))
8476 		return;
8477 
8478 	if (event->attr.mmap2) {
8479 		mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
8480 		mmap_event->event_id.header.size += sizeof(mmap_event->maj);
8481 		mmap_event->event_id.header.size += sizeof(mmap_event->min);
8482 		mmap_event->event_id.header.size += sizeof(mmap_event->ino);
8483 		mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
8484 		mmap_event->event_id.header.size += sizeof(mmap_event->prot);
8485 		mmap_event->event_id.header.size += sizeof(mmap_event->flags);
8486 	}
8487 
8488 	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
8489 	ret = perf_output_begin(&handle, &sample, event,
8490 				mmap_event->event_id.header.size);
8491 	if (ret)
8492 		goto out;
8493 
8494 	mmap_event->event_id.pid = perf_event_pid(event, current);
8495 	mmap_event->event_id.tid = perf_event_tid(event, current);
8496 
8497 	use_build_id = event->attr.build_id && mmap_event->build_id_size;
8498 
8499 	if (event->attr.mmap2 && use_build_id)
8500 		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_BUILD_ID;
8501 
8502 	perf_output_put(&handle, mmap_event->event_id);
8503 
8504 	if (event->attr.mmap2) {
8505 		if (use_build_id) {
8506 			u8 size[4] = { (u8) mmap_event->build_id_size, 0, 0, 0 };
8507 
8508 			__output_copy(&handle, size, 4);
8509 			__output_copy(&handle, mmap_event->build_id, BUILD_ID_SIZE_MAX);
8510 		} else {
8511 			perf_output_put(&handle, mmap_event->maj);
8512 			perf_output_put(&handle, mmap_event->min);
8513 			perf_output_put(&handle, mmap_event->ino);
8514 			perf_output_put(&handle, mmap_event->ino_generation);
8515 		}
8516 		perf_output_put(&handle, mmap_event->prot);
8517 		perf_output_put(&handle, mmap_event->flags);
8518 	}
8519 
8520 	__output_copy(&handle, mmap_event->file_name,
8521 				   mmap_event->file_size);
8522 
8523 	perf_event__output_id_sample(event, &handle, &sample);
8524 
8525 	perf_output_end(&handle);
8526 out:
8527 	mmap_event->event_id.header.size = size;
8528 	mmap_event->event_id.header.type = type;
8529 }
8530 
perf_event_mmap_event(struct perf_mmap_event * mmap_event)8531 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
8532 {
8533 	struct vm_area_struct *vma = mmap_event->vma;
8534 	struct file *file = vma->vm_file;
8535 	int maj = 0, min = 0;
8536 	u64 ino = 0, gen = 0;
8537 	u32 prot = 0, flags = 0;
8538 	unsigned int size;
8539 	char tmp[16];
8540 	char *buf = NULL;
8541 	char *name;
8542 
8543 	if (vma->vm_flags & VM_READ)
8544 		prot |= PROT_READ;
8545 	if (vma->vm_flags & VM_WRITE)
8546 		prot |= PROT_WRITE;
8547 	if (vma->vm_flags & VM_EXEC)
8548 		prot |= PROT_EXEC;
8549 
8550 	if (vma->vm_flags & VM_MAYSHARE)
8551 		flags = MAP_SHARED;
8552 	else
8553 		flags = MAP_PRIVATE;
8554 
8555 	if (vma->vm_flags & VM_LOCKED)
8556 		flags |= MAP_LOCKED;
8557 	if (is_vm_hugetlb_page(vma))
8558 		flags |= MAP_HUGETLB;
8559 
8560 	if (file) {
8561 		struct inode *inode;
8562 		dev_t dev;
8563 
8564 		buf = kmalloc(PATH_MAX, GFP_KERNEL);
8565 		if (!buf) {
8566 			name = "//enomem";
8567 			goto cpy_name;
8568 		}
8569 		/*
8570 		 * d_path() works from the end of the rb backwards, so we
8571 		 * need to add enough zero bytes after the string to handle
8572 		 * the 64bit alignment we do later.
8573 		 */
8574 		name = file_path(file, buf, PATH_MAX - sizeof(u64));
8575 		if (IS_ERR(name)) {
8576 			name = "//toolong";
8577 			goto cpy_name;
8578 		}
8579 		inode = file_inode(vma->vm_file);
8580 		dev = inode->i_sb->s_dev;
8581 		ino = inode->i_ino;
8582 		gen = inode->i_generation;
8583 		maj = MAJOR(dev);
8584 		min = MINOR(dev);
8585 
8586 		goto got_name;
8587 	} else {
8588 		if (vma->vm_ops && vma->vm_ops->name) {
8589 			name = (char *) vma->vm_ops->name(vma);
8590 			if (name)
8591 				goto cpy_name;
8592 		}
8593 
8594 		name = (char *)arch_vma_name(vma);
8595 		if (name)
8596 			goto cpy_name;
8597 
8598 		if (vma->vm_start <= vma->vm_mm->start_brk &&
8599 				vma->vm_end >= vma->vm_mm->brk) {
8600 			name = "[heap]";
8601 			goto cpy_name;
8602 		}
8603 		if (vma->vm_start <= vma->vm_mm->start_stack &&
8604 				vma->vm_end >= vma->vm_mm->start_stack) {
8605 			name = "[stack]";
8606 			goto cpy_name;
8607 		}
8608 
8609 		name = "//anon";
8610 		goto cpy_name;
8611 	}
8612 
8613 cpy_name:
8614 	strlcpy(tmp, name, sizeof(tmp));
8615 	name = tmp;
8616 got_name:
8617 	/*
8618 	 * Since our buffer works in 8 byte units we need to align our string
8619 	 * size to a multiple of 8. However, we must guarantee the tail end is
8620 	 * zero'd out to avoid leaking random bits to userspace.
8621 	 */
8622 	size = strlen(name)+1;
8623 	while (!IS_ALIGNED(size, sizeof(u64)))
8624 		name[size++] = '\0';
8625 
8626 	mmap_event->file_name = name;
8627 	mmap_event->file_size = size;
8628 	mmap_event->maj = maj;
8629 	mmap_event->min = min;
8630 	mmap_event->ino = ino;
8631 	mmap_event->ino_generation = gen;
8632 	mmap_event->prot = prot;
8633 	mmap_event->flags = flags;
8634 
8635 	if (!(vma->vm_flags & VM_EXEC))
8636 		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
8637 
8638 	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
8639 
8640 	if (atomic_read(&nr_build_id_events))
8641 		build_id_parse(vma, mmap_event->build_id, &mmap_event->build_id_size);
8642 
8643 	perf_iterate_sb(perf_event_mmap_output,
8644 		       mmap_event,
8645 		       NULL);
8646 
8647 	kfree(buf);
8648 }
8649 
8650 /*
8651  * Check whether inode and address range match filter criteria.
8652  */
perf_addr_filter_match(struct perf_addr_filter * filter,struct file * file,unsigned long offset,unsigned long size)8653 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
8654 				     struct file *file, unsigned long offset,
8655 				     unsigned long size)
8656 {
8657 	/* d_inode(NULL) won't be equal to any mapped user-space file */
8658 	if (!filter->path.dentry)
8659 		return false;
8660 
8661 	if (d_inode(filter->path.dentry) != file_inode(file))
8662 		return false;
8663 
8664 	if (filter->offset > offset + size)
8665 		return false;
8666 
8667 	if (filter->offset + filter->size < offset)
8668 		return false;
8669 
8670 	return true;
8671 }
8672 
perf_addr_filter_vma_adjust(struct perf_addr_filter * filter,struct vm_area_struct * vma,struct perf_addr_filter_range * fr)8673 static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter,
8674 					struct vm_area_struct *vma,
8675 					struct perf_addr_filter_range *fr)
8676 {
8677 	unsigned long vma_size = vma->vm_end - vma->vm_start;
8678 	unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
8679 	struct file *file = vma->vm_file;
8680 
8681 	if (!perf_addr_filter_match(filter, file, off, vma_size))
8682 		return false;
8683 
8684 	if (filter->offset < off) {
8685 		fr->start = vma->vm_start;
8686 		fr->size = min(vma_size, filter->size - (off - filter->offset));
8687 	} else {
8688 		fr->start = vma->vm_start + filter->offset - off;
8689 		fr->size = min(vma->vm_end - fr->start, filter->size);
8690 	}
8691 
8692 	return true;
8693 }
8694 
__perf_addr_filters_adjust(struct perf_event * event,void * data)8695 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
8696 {
8697 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8698 	struct vm_area_struct *vma = data;
8699 	struct perf_addr_filter *filter;
8700 	unsigned int restart = 0, count = 0;
8701 	unsigned long flags;
8702 
8703 	if (!has_addr_filter(event))
8704 		return;
8705 
8706 	if (!vma->vm_file)
8707 		return;
8708 
8709 	raw_spin_lock_irqsave(&ifh->lock, flags);
8710 	list_for_each_entry(filter, &ifh->list, entry) {
8711 		if (perf_addr_filter_vma_adjust(filter, vma,
8712 						&event->addr_filter_ranges[count]))
8713 			restart++;
8714 
8715 		count++;
8716 	}
8717 
8718 	if (restart)
8719 		event->addr_filters_gen++;
8720 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
8721 
8722 	if (restart)
8723 		perf_event_stop(event, 1);
8724 }
8725 
8726 /*
8727  * Adjust all task's events' filters to the new vma
8728  */
perf_addr_filters_adjust(struct vm_area_struct * vma)8729 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
8730 {
8731 	struct perf_event_context *ctx;
8732 	int ctxn;
8733 
8734 	/*
8735 	 * Data tracing isn't supported yet and as such there is no need
8736 	 * to keep track of anything that isn't related to executable code:
8737 	 */
8738 	if (!(vma->vm_flags & VM_EXEC))
8739 		return;
8740 
8741 	rcu_read_lock();
8742 	for_each_task_context_nr(ctxn) {
8743 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
8744 		if (!ctx)
8745 			continue;
8746 
8747 		perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
8748 	}
8749 	rcu_read_unlock();
8750 }
8751 
perf_event_mmap(struct vm_area_struct * vma)8752 void perf_event_mmap(struct vm_area_struct *vma)
8753 {
8754 	struct perf_mmap_event mmap_event;
8755 
8756 	if (!atomic_read(&nr_mmap_events))
8757 		return;
8758 
8759 	mmap_event = (struct perf_mmap_event){
8760 		.vma	= vma,
8761 		/* .file_name */
8762 		/* .file_size */
8763 		.event_id  = {
8764 			.header = {
8765 				.type = PERF_RECORD_MMAP,
8766 				.misc = PERF_RECORD_MISC_USER,
8767 				/* .size */
8768 			},
8769 			/* .pid */
8770 			/* .tid */
8771 			.start  = vma->vm_start,
8772 			.len    = vma->vm_end - vma->vm_start,
8773 			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
8774 		},
8775 		/* .maj (attr_mmap2 only) */
8776 		/* .min (attr_mmap2 only) */
8777 		/* .ino (attr_mmap2 only) */
8778 		/* .ino_generation (attr_mmap2 only) */
8779 		/* .prot (attr_mmap2 only) */
8780 		/* .flags (attr_mmap2 only) */
8781 	};
8782 
8783 	perf_addr_filters_adjust(vma);
8784 	perf_event_mmap_event(&mmap_event);
8785 }
8786 
perf_event_aux_event(struct perf_event * event,unsigned long head,unsigned long size,u64 flags)8787 void perf_event_aux_event(struct perf_event *event, unsigned long head,
8788 			  unsigned long size, u64 flags)
8789 {
8790 	struct perf_output_handle handle;
8791 	struct perf_sample_data sample;
8792 	struct perf_aux_event {
8793 		struct perf_event_header	header;
8794 		u64				offset;
8795 		u64				size;
8796 		u64				flags;
8797 	} rec = {
8798 		.header = {
8799 			.type = PERF_RECORD_AUX,
8800 			.misc = 0,
8801 			.size = sizeof(rec),
8802 		},
8803 		.offset		= head,
8804 		.size		= size,
8805 		.flags		= flags,
8806 	};
8807 	int ret;
8808 
8809 	perf_event_header__init_id(&rec.header, &sample, event);
8810 	ret = perf_output_begin(&handle, &sample, event, rec.header.size);
8811 
8812 	if (ret)
8813 		return;
8814 
8815 	perf_output_put(&handle, rec);
8816 	perf_event__output_id_sample(event, &handle, &sample);
8817 
8818 	perf_output_end(&handle);
8819 }
8820 
8821 /*
8822  * Lost/dropped samples logging
8823  */
perf_log_lost_samples(struct perf_event * event,u64 lost)8824 void perf_log_lost_samples(struct perf_event *event, u64 lost)
8825 {
8826 	struct perf_output_handle handle;
8827 	struct perf_sample_data sample;
8828 	int ret;
8829 
8830 	struct {
8831 		struct perf_event_header	header;
8832 		u64				lost;
8833 	} lost_samples_event = {
8834 		.header = {
8835 			.type = PERF_RECORD_LOST_SAMPLES,
8836 			.misc = 0,
8837 			.size = sizeof(lost_samples_event),
8838 		},
8839 		.lost		= lost,
8840 	};
8841 
8842 	perf_event_header__init_id(&lost_samples_event.header, &sample, event);
8843 
8844 	ret = perf_output_begin(&handle, &sample, event,
8845 				lost_samples_event.header.size);
8846 	if (ret)
8847 		return;
8848 
8849 	perf_output_put(&handle, lost_samples_event);
8850 	perf_event__output_id_sample(event, &handle, &sample);
8851 	perf_output_end(&handle);
8852 }
8853 
8854 /*
8855  * context_switch tracking
8856  */
8857 
8858 struct perf_switch_event {
8859 	struct task_struct	*task;
8860 	struct task_struct	*next_prev;
8861 
8862 	struct {
8863 		struct perf_event_header	header;
8864 		u32				next_prev_pid;
8865 		u32				next_prev_tid;
8866 	} event_id;
8867 };
8868 
perf_event_switch_match(struct perf_event * event)8869 static int perf_event_switch_match(struct perf_event *event)
8870 {
8871 	return event->attr.context_switch;
8872 }
8873 
perf_event_switch_output(struct perf_event * event,void * data)8874 static void perf_event_switch_output(struct perf_event *event, void *data)
8875 {
8876 	struct perf_switch_event *se = data;
8877 	struct perf_output_handle handle;
8878 	struct perf_sample_data sample;
8879 	int ret;
8880 
8881 	if (!perf_event_switch_match(event))
8882 		return;
8883 
8884 	/* Only CPU-wide events are allowed to see next/prev pid/tid */
8885 	if (event->ctx->task) {
8886 		se->event_id.header.type = PERF_RECORD_SWITCH;
8887 		se->event_id.header.size = sizeof(se->event_id.header);
8888 	} else {
8889 		se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
8890 		se->event_id.header.size = sizeof(se->event_id);
8891 		se->event_id.next_prev_pid =
8892 					perf_event_pid(event, se->next_prev);
8893 		se->event_id.next_prev_tid =
8894 					perf_event_tid(event, se->next_prev);
8895 	}
8896 
8897 	perf_event_header__init_id(&se->event_id.header, &sample, event);
8898 
8899 	ret = perf_output_begin(&handle, &sample, event, se->event_id.header.size);
8900 	if (ret)
8901 		return;
8902 
8903 	if (event->ctx->task)
8904 		perf_output_put(&handle, se->event_id.header);
8905 	else
8906 		perf_output_put(&handle, se->event_id);
8907 
8908 	perf_event__output_id_sample(event, &handle, &sample);
8909 
8910 	perf_output_end(&handle);
8911 }
8912 
perf_event_switch(struct task_struct * task,struct task_struct * next_prev,bool sched_in)8913 static void perf_event_switch(struct task_struct *task,
8914 			      struct task_struct *next_prev, bool sched_in)
8915 {
8916 	struct perf_switch_event switch_event;
8917 
8918 	/* N.B. caller checks nr_switch_events != 0 */
8919 
8920 	switch_event = (struct perf_switch_event){
8921 		.task		= task,
8922 		.next_prev	= next_prev,
8923 		.event_id	= {
8924 			.header = {
8925 				/* .type */
8926 				.misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
8927 				/* .size */
8928 			},
8929 			/* .next_prev_pid */
8930 			/* .next_prev_tid */
8931 		},
8932 	};
8933 
8934 	if (!sched_in && task->on_rq) {
8935 		switch_event.event_id.header.misc |=
8936 				PERF_RECORD_MISC_SWITCH_OUT_PREEMPT;
8937 	}
8938 
8939 	perf_iterate_sb(perf_event_switch_output, &switch_event, NULL);
8940 }
8941 
8942 /*
8943  * IRQ throttle logging
8944  */
8945 
perf_log_throttle(struct perf_event * event,int enable)8946 static void perf_log_throttle(struct perf_event *event, int enable)
8947 {
8948 	struct perf_output_handle handle;
8949 	struct perf_sample_data sample;
8950 	int ret;
8951 
8952 	struct {
8953 		struct perf_event_header	header;
8954 		u64				time;
8955 		u64				id;
8956 		u64				stream_id;
8957 	} throttle_event = {
8958 		.header = {
8959 			.type = PERF_RECORD_THROTTLE,
8960 			.misc = 0,
8961 			.size = sizeof(throttle_event),
8962 		},
8963 		.time		= perf_event_clock(event),
8964 		.id		= primary_event_id(event),
8965 		.stream_id	= event->id,
8966 	};
8967 
8968 	if (enable)
8969 		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
8970 
8971 	perf_event_header__init_id(&throttle_event.header, &sample, event);
8972 
8973 	ret = perf_output_begin(&handle, &sample, event,
8974 				throttle_event.header.size);
8975 	if (ret)
8976 		return;
8977 
8978 	perf_output_put(&handle, throttle_event);
8979 	perf_event__output_id_sample(event, &handle, &sample);
8980 	perf_output_end(&handle);
8981 }
8982 
8983 /*
8984  * ksymbol register/unregister tracking
8985  */
8986 
8987 struct perf_ksymbol_event {
8988 	const char	*name;
8989 	int		name_len;
8990 	struct {
8991 		struct perf_event_header        header;
8992 		u64				addr;
8993 		u32				len;
8994 		u16				ksym_type;
8995 		u16				flags;
8996 	} event_id;
8997 };
8998 
perf_event_ksymbol_match(struct perf_event * event)8999 static int perf_event_ksymbol_match(struct perf_event *event)
9000 {
9001 	return event->attr.ksymbol;
9002 }
9003 
perf_event_ksymbol_output(struct perf_event * event,void * data)9004 static void perf_event_ksymbol_output(struct perf_event *event, void *data)
9005 {
9006 	struct perf_ksymbol_event *ksymbol_event = data;
9007 	struct perf_output_handle handle;
9008 	struct perf_sample_data sample;
9009 	int ret;
9010 
9011 	if (!perf_event_ksymbol_match(event))
9012 		return;
9013 
9014 	perf_event_header__init_id(&ksymbol_event->event_id.header,
9015 				   &sample, event);
9016 	ret = perf_output_begin(&handle, &sample, event,
9017 				ksymbol_event->event_id.header.size);
9018 	if (ret)
9019 		return;
9020 
9021 	perf_output_put(&handle, ksymbol_event->event_id);
9022 	__output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len);
9023 	perf_event__output_id_sample(event, &handle, &sample);
9024 
9025 	perf_output_end(&handle);
9026 }
9027 
perf_event_ksymbol(u16 ksym_type,u64 addr,u32 len,bool unregister,const char * sym)9028 void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister,
9029 			const char *sym)
9030 {
9031 	struct perf_ksymbol_event ksymbol_event;
9032 	char name[KSYM_NAME_LEN];
9033 	u16 flags = 0;
9034 	int name_len;
9035 
9036 	if (!atomic_read(&nr_ksymbol_events))
9037 		return;
9038 
9039 	if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX ||
9040 	    ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN)
9041 		goto err;
9042 
9043 	strlcpy(name, sym, KSYM_NAME_LEN);
9044 	name_len = strlen(name) + 1;
9045 	while (!IS_ALIGNED(name_len, sizeof(u64)))
9046 		name[name_len++] = '\0';
9047 	BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64));
9048 
9049 	if (unregister)
9050 		flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER;
9051 
9052 	ksymbol_event = (struct perf_ksymbol_event){
9053 		.name = name,
9054 		.name_len = name_len,
9055 		.event_id = {
9056 			.header = {
9057 				.type = PERF_RECORD_KSYMBOL,
9058 				.size = sizeof(ksymbol_event.event_id) +
9059 					name_len,
9060 			},
9061 			.addr = addr,
9062 			.len = len,
9063 			.ksym_type = ksym_type,
9064 			.flags = flags,
9065 		},
9066 	};
9067 
9068 	perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL);
9069 	return;
9070 err:
9071 	WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type);
9072 }
9073 
9074 /*
9075  * bpf program load/unload tracking
9076  */
9077 
9078 struct perf_bpf_event {
9079 	struct bpf_prog	*prog;
9080 	struct {
9081 		struct perf_event_header        header;
9082 		u16				type;
9083 		u16				flags;
9084 		u32				id;
9085 		u8				tag[BPF_TAG_SIZE];
9086 	} event_id;
9087 };
9088 
perf_event_bpf_match(struct perf_event * event)9089 static int perf_event_bpf_match(struct perf_event *event)
9090 {
9091 	return event->attr.bpf_event;
9092 }
9093 
perf_event_bpf_output(struct perf_event * event,void * data)9094 static void perf_event_bpf_output(struct perf_event *event, void *data)
9095 {
9096 	struct perf_bpf_event *bpf_event = data;
9097 	struct perf_output_handle handle;
9098 	struct perf_sample_data sample;
9099 	int ret;
9100 
9101 	if (!perf_event_bpf_match(event))
9102 		return;
9103 
9104 	perf_event_header__init_id(&bpf_event->event_id.header,
9105 				   &sample, event);
9106 	ret = perf_output_begin(&handle, &sample, event,
9107 				bpf_event->event_id.header.size);
9108 	if (ret)
9109 		return;
9110 
9111 	perf_output_put(&handle, bpf_event->event_id);
9112 	perf_event__output_id_sample(event, &handle, &sample);
9113 
9114 	perf_output_end(&handle);
9115 }
9116 
perf_event_bpf_emit_ksymbols(struct bpf_prog * prog,enum perf_bpf_event_type type)9117 static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog,
9118 					 enum perf_bpf_event_type type)
9119 {
9120 	bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD;
9121 	int i;
9122 
9123 	if (prog->aux->func_cnt == 0) {
9124 		perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF,
9125 				   (u64)(unsigned long)prog->bpf_func,
9126 				   prog->jited_len, unregister,
9127 				   prog->aux->ksym.name);
9128 	} else {
9129 		for (i = 0; i < prog->aux->func_cnt; i++) {
9130 			struct bpf_prog *subprog = prog->aux->func[i];
9131 
9132 			perf_event_ksymbol(
9133 				PERF_RECORD_KSYMBOL_TYPE_BPF,
9134 				(u64)(unsigned long)subprog->bpf_func,
9135 				subprog->jited_len, unregister,
9136 				subprog->aux->ksym.name);
9137 		}
9138 	}
9139 }
9140 
perf_event_bpf_event(struct bpf_prog * prog,enum perf_bpf_event_type type,u16 flags)9141 void perf_event_bpf_event(struct bpf_prog *prog,
9142 			  enum perf_bpf_event_type type,
9143 			  u16 flags)
9144 {
9145 	struct perf_bpf_event bpf_event;
9146 
9147 	if (type <= PERF_BPF_EVENT_UNKNOWN ||
9148 	    type >= PERF_BPF_EVENT_MAX)
9149 		return;
9150 
9151 	switch (type) {
9152 	case PERF_BPF_EVENT_PROG_LOAD:
9153 	case PERF_BPF_EVENT_PROG_UNLOAD:
9154 		if (atomic_read(&nr_ksymbol_events))
9155 			perf_event_bpf_emit_ksymbols(prog, type);
9156 		break;
9157 	default:
9158 		break;
9159 	}
9160 
9161 	if (!atomic_read(&nr_bpf_events))
9162 		return;
9163 
9164 	bpf_event = (struct perf_bpf_event){
9165 		.prog = prog,
9166 		.event_id = {
9167 			.header = {
9168 				.type = PERF_RECORD_BPF_EVENT,
9169 				.size = sizeof(bpf_event.event_id),
9170 			},
9171 			.type = type,
9172 			.flags = flags,
9173 			.id = prog->aux->id,
9174 		},
9175 	};
9176 
9177 	BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64));
9178 
9179 	memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE);
9180 	perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL);
9181 }
9182 
9183 struct perf_text_poke_event {
9184 	const void		*old_bytes;
9185 	const void		*new_bytes;
9186 	size_t			pad;
9187 	u16			old_len;
9188 	u16			new_len;
9189 
9190 	struct {
9191 		struct perf_event_header	header;
9192 
9193 		u64				addr;
9194 	} event_id;
9195 };
9196 
perf_event_text_poke_match(struct perf_event * event)9197 static int perf_event_text_poke_match(struct perf_event *event)
9198 {
9199 	return event->attr.text_poke;
9200 }
9201 
perf_event_text_poke_output(struct perf_event * event,void * data)9202 static void perf_event_text_poke_output(struct perf_event *event, void *data)
9203 {
9204 	struct perf_text_poke_event *text_poke_event = data;
9205 	struct perf_output_handle handle;
9206 	struct perf_sample_data sample;
9207 	u64 padding = 0;
9208 	int ret;
9209 
9210 	if (!perf_event_text_poke_match(event))
9211 		return;
9212 
9213 	perf_event_header__init_id(&text_poke_event->event_id.header, &sample, event);
9214 
9215 	ret = perf_output_begin(&handle, &sample, event,
9216 				text_poke_event->event_id.header.size);
9217 	if (ret)
9218 		return;
9219 
9220 	perf_output_put(&handle, text_poke_event->event_id);
9221 	perf_output_put(&handle, text_poke_event->old_len);
9222 	perf_output_put(&handle, text_poke_event->new_len);
9223 
9224 	__output_copy(&handle, text_poke_event->old_bytes, text_poke_event->old_len);
9225 	__output_copy(&handle, text_poke_event->new_bytes, text_poke_event->new_len);
9226 
9227 	if (text_poke_event->pad)
9228 		__output_copy(&handle, &padding, text_poke_event->pad);
9229 
9230 	perf_event__output_id_sample(event, &handle, &sample);
9231 
9232 	perf_output_end(&handle);
9233 }
9234 
perf_event_text_poke(const void * addr,const void * old_bytes,size_t old_len,const void * new_bytes,size_t new_len)9235 void perf_event_text_poke(const void *addr, const void *old_bytes,
9236 			  size_t old_len, const void *new_bytes, size_t new_len)
9237 {
9238 	struct perf_text_poke_event text_poke_event;
9239 	size_t tot, pad;
9240 
9241 	if (!atomic_read(&nr_text_poke_events))
9242 		return;
9243 
9244 	tot  = sizeof(text_poke_event.old_len) + old_len;
9245 	tot += sizeof(text_poke_event.new_len) + new_len;
9246 	pad  = ALIGN(tot, sizeof(u64)) - tot;
9247 
9248 	text_poke_event = (struct perf_text_poke_event){
9249 		.old_bytes    = old_bytes,
9250 		.new_bytes    = new_bytes,
9251 		.pad          = pad,
9252 		.old_len      = old_len,
9253 		.new_len      = new_len,
9254 		.event_id  = {
9255 			.header = {
9256 				.type = PERF_RECORD_TEXT_POKE,
9257 				.misc = PERF_RECORD_MISC_KERNEL,
9258 				.size = sizeof(text_poke_event.event_id) + tot + pad,
9259 			},
9260 			.addr = (unsigned long)addr,
9261 		},
9262 	};
9263 
9264 	perf_iterate_sb(perf_event_text_poke_output, &text_poke_event, NULL);
9265 }
9266 
perf_event_itrace_started(struct perf_event * event)9267 void perf_event_itrace_started(struct perf_event *event)
9268 {
9269 	event->attach_state |= PERF_ATTACH_ITRACE;
9270 }
9271 
perf_log_itrace_start(struct perf_event * event)9272 static void perf_log_itrace_start(struct perf_event *event)
9273 {
9274 	struct perf_output_handle handle;
9275 	struct perf_sample_data sample;
9276 	struct perf_aux_event {
9277 		struct perf_event_header        header;
9278 		u32				pid;
9279 		u32				tid;
9280 	} rec;
9281 	int ret;
9282 
9283 	if (event->parent)
9284 		event = event->parent;
9285 
9286 	if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
9287 	    event->attach_state & PERF_ATTACH_ITRACE)
9288 		return;
9289 
9290 	rec.header.type	= PERF_RECORD_ITRACE_START;
9291 	rec.header.misc	= 0;
9292 	rec.header.size	= sizeof(rec);
9293 	rec.pid	= perf_event_pid(event, current);
9294 	rec.tid	= perf_event_tid(event, current);
9295 
9296 	perf_event_header__init_id(&rec.header, &sample, event);
9297 	ret = perf_output_begin(&handle, &sample, event, rec.header.size);
9298 
9299 	if (ret)
9300 		return;
9301 
9302 	perf_output_put(&handle, rec);
9303 	perf_event__output_id_sample(event, &handle, &sample);
9304 
9305 	perf_output_end(&handle);
9306 }
9307 
9308 static int
__perf_event_account_interrupt(struct perf_event * event,int throttle)9309 __perf_event_account_interrupt(struct perf_event *event, int throttle)
9310 {
9311 	struct hw_perf_event *hwc = &event->hw;
9312 	int ret = 0;
9313 	u64 seq;
9314 
9315 	seq = __this_cpu_read(perf_throttled_seq);
9316 	if (seq != hwc->interrupts_seq) {
9317 		hwc->interrupts_seq = seq;
9318 		hwc->interrupts = 1;
9319 	} else {
9320 		hwc->interrupts++;
9321 		if (unlikely(throttle &&
9322 			     hwc->interrupts > max_samples_per_tick)) {
9323 			__this_cpu_inc(perf_throttled_count);
9324 			tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
9325 			hwc->interrupts = MAX_INTERRUPTS;
9326 			perf_log_throttle(event, 0);
9327 			ret = 1;
9328 		}
9329 	}
9330 
9331 	if (event->attr.freq) {
9332 		u64 now = perf_clock();
9333 		s64 delta = now - hwc->freq_time_stamp;
9334 
9335 		hwc->freq_time_stamp = now;
9336 
9337 		if (delta > 0 && delta < 2*TICK_NSEC)
9338 			perf_adjust_period(event, delta, hwc->last_period, true);
9339 	}
9340 
9341 	return ret;
9342 }
9343 
perf_event_account_interrupt(struct perf_event * event)9344 int perf_event_account_interrupt(struct perf_event *event)
9345 {
9346 	return __perf_event_account_interrupt(event, 1);
9347 }
9348 
9349 /*
9350  * Generic event overflow handling, sampling.
9351  */
9352 
__perf_event_overflow(struct perf_event * event,int throttle,struct perf_sample_data * data,struct pt_regs * regs)9353 static int __perf_event_overflow(struct perf_event *event,
9354 				 int throttle, struct perf_sample_data *data,
9355 				 struct pt_regs *regs)
9356 {
9357 	int events = atomic_read(&event->event_limit);
9358 	int ret = 0;
9359 
9360 	/*
9361 	 * Non-sampling counters might still use the PMI to fold short
9362 	 * hardware counters, ignore those.
9363 	 */
9364 	if (unlikely(!is_sampling_event(event)))
9365 		return 0;
9366 
9367 	ret = __perf_event_account_interrupt(event, throttle);
9368 
9369 	/*
9370 	 * XXX event_limit might not quite work as expected on inherited
9371 	 * events
9372 	 */
9373 
9374 	event->pending_kill = POLL_IN;
9375 	if (events && atomic_dec_and_test(&event->event_limit)) {
9376 		ret = 1;
9377 		event->pending_kill = POLL_HUP;
9378 		perf_event_disable_inatomic(event);
9379 	}
9380 
9381 	if (event->attr.sigtrap) {
9382 		unsigned int pending_id = 1;
9383 
9384 		if (regs)
9385 			pending_id = hash32_ptr((void *)instruction_pointer(regs)) ?: 1;
9386 		if (!event->pending_sigtrap) {
9387 			event->pending_sigtrap = pending_id;
9388 			local_inc(&event->ctx->nr_pending);
9389 		} else if (event->attr.exclude_kernel) {
9390 			/*
9391 			 * Should not be able to return to user space without
9392 			 * consuming pending_sigtrap; with exceptions:
9393 			 *
9394 			 *  1. Where !exclude_kernel, events can overflow again
9395 			 *     in the kernel without returning to user space.
9396 			 *
9397 			 *  2. Events that can overflow again before the IRQ-
9398 			 *     work without user space progress (e.g. hrtimer).
9399 			 *     To approximate progress (with false negatives),
9400 			 *     check 32-bit hash of the current IP.
9401 			 */
9402 			WARN_ON_ONCE(event->pending_sigtrap != pending_id);
9403 		}
9404 		event->pending_addr = data->addr;
9405 		irq_work_queue(&event->pending_irq);
9406 	}
9407 
9408 	READ_ONCE(event->overflow_handler)(event, data, regs);
9409 
9410 	if (*perf_event_fasync(event) && event->pending_kill) {
9411 		event->pending_wakeup = 1;
9412 		irq_work_queue(&event->pending_irq);
9413 	}
9414 
9415 	return ret;
9416 }
9417 
perf_event_overflow(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs)9418 int perf_event_overflow(struct perf_event *event,
9419 			struct perf_sample_data *data,
9420 			struct pt_regs *regs)
9421 {
9422 	return __perf_event_overflow(event, 1, data, regs);
9423 }
9424 
9425 /*
9426  * Generic software event infrastructure
9427  */
9428 
9429 struct swevent_htable {
9430 	struct swevent_hlist		*swevent_hlist;
9431 	struct mutex			hlist_mutex;
9432 	int				hlist_refcount;
9433 
9434 	/* Recursion avoidance in each contexts */
9435 	int				recursion[PERF_NR_CONTEXTS];
9436 };
9437 
9438 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
9439 
9440 /*
9441  * We directly increment event->count and keep a second value in
9442  * event->hw.period_left to count intervals. This period event
9443  * is kept in the range [-sample_period, 0] so that we can use the
9444  * sign as trigger.
9445  */
9446 
perf_swevent_set_period(struct perf_event * event)9447 u64 perf_swevent_set_period(struct perf_event *event)
9448 {
9449 	struct hw_perf_event *hwc = &event->hw;
9450 	u64 period = hwc->last_period;
9451 	u64 nr, offset;
9452 	s64 old, val;
9453 
9454 	hwc->last_period = hwc->sample_period;
9455 
9456 again:
9457 	old = val = local64_read(&hwc->period_left);
9458 	if (val < 0)
9459 		return 0;
9460 
9461 	nr = div64_u64(period + val, period);
9462 	offset = nr * period;
9463 	val -= offset;
9464 	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
9465 		goto again;
9466 
9467 	return nr;
9468 }
9469 
perf_swevent_overflow(struct perf_event * event,u64 overflow,struct perf_sample_data * data,struct pt_regs * regs)9470 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
9471 				    struct perf_sample_data *data,
9472 				    struct pt_regs *regs)
9473 {
9474 	struct hw_perf_event *hwc = &event->hw;
9475 	int throttle = 0;
9476 
9477 	if (!overflow)
9478 		overflow = perf_swevent_set_period(event);
9479 
9480 	if (hwc->interrupts == MAX_INTERRUPTS)
9481 		return;
9482 
9483 	for (; overflow; overflow--) {
9484 		if (__perf_event_overflow(event, throttle,
9485 					    data, regs)) {
9486 			/*
9487 			 * We inhibit the overflow from happening when
9488 			 * hwc->interrupts == MAX_INTERRUPTS.
9489 			 */
9490 			break;
9491 		}
9492 		throttle = 1;
9493 	}
9494 }
9495 
perf_swevent_event(struct perf_event * event,u64 nr,struct perf_sample_data * data,struct pt_regs * regs)9496 static void perf_swevent_event(struct perf_event *event, u64 nr,
9497 			       struct perf_sample_data *data,
9498 			       struct pt_regs *regs)
9499 {
9500 	struct hw_perf_event *hwc = &event->hw;
9501 
9502 	local64_add(nr, &event->count);
9503 
9504 	if (!regs)
9505 		return;
9506 
9507 	if (!is_sampling_event(event))
9508 		return;
9509 
9510 	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
9511 		data->period = nr;
9512 		return perf_swevent_overflow(event, 1, data, regs);
9513 	} else
9514 		data->period = event->hw.last_period;
9515 
9516 	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
9517 		return perf_swevent_overflow(event, 1, data, regs);
9518 
9519 	if (local64_add_negative(nr, &hwc->period_left))
9520 		return;
9521 
9522 	perf_swevent_overflow(event, 0, data, regs);
9523 }
9524 
perf_exclude_event(struct perf_event * event,struct pt_regs * regs)9525 static int perf_exclude_event(struct perf_event *event,
9526 			      struct pt_regs *regs)
9527 {
9528 	if (event->hw.state & PERF_HES_STOPPED)
9529 		return 1;
9530 
9531 	if (regs) {
9532 		if (event->attr.exclude_user && user_mode(regs))
9533 			return 1;
9534 
9535 		if (event->attr.exclude_kernel && !user_mode(regs))
9536 			return 1;
9537 	}
9538 
9539 	return 0;
9540 }
9541 
perf_swevent_match(struct perf_event * event,enum perf_type_id type,u32 event_id,struct perf_sample_data * data,struct pt_regs * regs)9542 static int perf_swevent_match(struct perf_event *event,
9543 				enum perf_type_id type,
9544 				u32 event_id,
9545 				struct perf_sample_data *data,
9546 				struct pt_regs *regs)
9547 {
9548 	if (event->attr.type != type)
9549 		return 0;
9550 
9551 	if (event->attr.config != event_id)
9552 		return 0;
9553 
9554 	if (perf_exclude_event(event, regs))
9555 		return 0;
9556 
9557 	return 1;
9558 }
9559 
swevent_hash(u64 type,u32 event_id)9560 static inline u64 swevent_hash(u64 type, u32 event_id)
9561 {
9562 	u64 val = event_id | (type << 32);
9563 
9564 	return hash_64(val, SWEVENT_HLIST_BITS);
9565 }
9566 
9567 static inline struct hlist_head *
__find_swevent_head(struct swevent_hlist * hlist,u64 type,u32 event_id)9568 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
9569 {
9570 	u64 hash = swevent_hash(type, event_id);
9571 
9572 	return &hlist->heads[hash];
9573 }
9574 
9575 /* For the read side: events when they trigger */
9576 static inline struct hlist_head *
find_swevent_head_rcu(struct swevent_htable * swhash,u64 type,u32 event_id)9577 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
9578 {
9579 	struct swevent_hlist *hlist;
9580 
9581 	hlist = rcu_dereference(swhash->swevent_hlist);
9582 	if (!hlist)
9583 		return NULL;
9584 
9585 	return __find_swevent_head(hlist, type, event_id);
9586 }
9587 
9588 /* For the event head insertion and removal in the hlist */
9589 static inline struct hlist_head *
find_swevent_head(struct swevent_htable * swhash,struct perf_event * event)9590 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
9591 {
9592 	struct swevent_hlist *hlist;
9593 	u32 event_id = event->attr.config;
9594 	u64 type = event->attr.type;
9595 
9596 	/*
9597 	 * Event scheduling is always serialized against hlist allocation
9598 	 * and release. Which makes the protected version suitable here.
9599 	 * The context lock guarantees that.
9600 	 */
9601 	hlist = rcu_dereference_protected(swhash->swevent_hlist,
9602 					  lockdep_is_held(&event->ctx->lock));
9603 	if (!hlist)
9604 		return NULL;
9605 
9606 	return __find_swevent_head(hlist, type, event_id);
9607 }
9608 
do_perf_sw_event(enum perf_type_id type,u32 event_id,u64 nr,struct perf_sample_data * data,struct pt_regs * regs)9609 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
9610 				    u64 nr,
9611 				    struct perf_sample_data *data,
9612 				    struct pt_regs *regs)
9613 {
9614 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9615 	struct perf_event *event;
9616 	struct hlist_head *head;
9617 
9618 	rcu_read_lock();
9619 	head = find_swevent_head_rcu(swhash, type, event_id);
9620 	if (!head)
9621 		goto end;
9622 
9623 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
9624 		if (perf_swevent_match(event, type, event_id, data, regs))
9625 			perf_swevent_event(event, nr, data, regs);
9626 	}
9627 end:
9628 	rcu_read_unlock();
9629 }
9630 
9631 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
9632 
perf_swevent_get_recursion_context(void)9633 int perf_swevent_get_recursion_context(void)
9634 {
9635 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9636 
9637 	return get_recursion_context(swhash->recursion);
9638 }
9639 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
9640 
perf_swevent_put_recursion_context(int rctx)9641 void perf_swevent_put_recursion_context(int rctx)
9642 {
9643 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9644 
9645 	put_recursion_context(swhash->recursion, rctx);
9646 }
9647 
___perf_sw_event(u32 event_id,u64 nr,struct pt_regs * regs,u64 addr)9648 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
9649 {
9650 	struct perf_sample_data data;
9651 
9652 	if (WARN_ON_ONCE(!regs))
9653 		return;
9654 
9655 	perf_sample_data_init(&data, addr, 0);
9656 	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
9657 }
9658 
__perf_sw_event(u32 event_id,u64 nr,struct pt_regs * regs,u64 addr)9659 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
9660 {
9661 	int rctx;
9662 
9663 	preempt_disable_notrace();
9664 	rctx = perf_swevent_get_recursion_context();
9665 	if (unlikely(rctx < 0))
9666 		goto fail;
9667 
9668 	___perf_sw_event(event_id, nr, regs, addr);
9669 
9670 	perf_swevent_put_recursion_context(rctx);
9671 fail:
9672 	preempt_enable_notrace();
9673 }
9674 
perf_swevent_read(struct perf_event * event)9675 static void perf_swevent_read(struct perf_event *event)
9676 {
9677 }
9678 
perf_swevent_add(struct perf_event * event,int flags)9679 static int perf_swevent_add(struct perf_event *event, int flags)
9680 {
9681 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9682 	struct hw_perf_event *hwc = &event->hw;
9683 	struct hlist_head *head;
9684 
9685 	if (is_sampling_event(event)) {
9686 		hwc->last_period = hwc->sample_period;
9687 		perf_swevent_set_period(event);
9688 	}
9689 
9690 	hwc->state = !(flags & PERF_EF_START);
9691 
9692 	head = find_swevent_head(swhash, event);
9693 	if (WARN_ON_ONCE(!head))
9694 		return -EINVAL;
9695 
9696 	hlist_add_head_rcu(&event->hlist_entry, head);
9697 	perf_event_update_userpage(event);
9698 
9699 	return 0;
9700 }
9701 
perf_swevent_del(struct perf_event * event,int flags)9702 static void perf_swevent_del(struct perf_event *event, int flags)
9703 {
9704 	hlist_del_rcu(&event->hlist_entry);
9705 }
9706 
perf_swevent_start(struct perf_event * event,int flags)9707 static void perf_swevent_start(struct perf_event *event, int flags)
9708 {
9709 	event->hw.state = 0;
9710 }
9711 
perf_swevent_stop(struct perf_event * event,int flags)9712 static void perf_swevent_stop(struct perf_event *event, int flags)
9713 {
9714 	event->hw.state = PERF_HES_STOPPED;
9715 }
9716 
9717 /* Deref the hlist from the update side */
9718 static inline struct swevent_hlist *
swevent_hlist_deref(struct swevent_htable * swhash)9719 swevent_hlist_deref(struct swevent_htable *swhash)
9720 {
9721 	return rcu_dereference_protected(swhash->swevent_hlist,
9722 					 lockdep_is_held(&swhash->hlist_mutex));
9723 }
9724 
swevent_hlist_release(struct swevent_htable * swhash)9725 static void swevent_hlist_release(struct swevent_htable *swhash)
9726 {
9727 	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
9728 
9729 	if (!hlist)
9730 		return;
9731 
9732 	RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
9733 	kfree_rcu(hlist, rcu_head);
9734 }
9735 
swevent_hlist_put_cpu(int cpu)9736 static void swevent_hlist_put_cpu(int cpu)
9737 {
9738 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
9739 
9740 	mutex_lock(&swhash->hlist_mutex);
9741 
9742 	if (!--swhash->hlist_refcount)
9743 		swevent_hlist_release(swhash);
9744 
9745 	mutex_unlock(&swhash->hlist_mutex);
9746 }
9747 
swevent_hlist_put(void)9748 static void swevent_hlist_put(void)
9749 {
9750 	int cpu;
9751 
9752 	for_each_possible_cpu(cpu)
9753 		swevent_hlist_put_cpu(cpu);
9754 }
9755 
swevent_hlist_get_cpu(int cpu)9756 static int swevent_hlist_get_cpu(int cpu)
9757 {
9758 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
9759 	int err = 0;
9760 
9761 	mutex_lock(&swhash->hlist_mutex);
9762 	if (!swevent_hlist_deref(swhash) &&
9763 	    cpumask_test_cpu(cpu, perf_online_mask)) {
9764 		struct swevent_hlist *hlist;
9765 
9766 		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
9767 		if (!hlist) {
9768 			err = -ENOMEM;
9769 			goto exit;
9770 		}
9771 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
9772 	}
9773 	swhash->hlist_refcount++;
9774 exit:
9775 	mutex_unlock(&swhash->hlist_mutex);
9776 
9777 	return err;
9778 }
9779 
swevent_hlist_get(void)9780 static int swevent_hlist_get(void)
9781 {
9782 	int err, cpu, failed_cpu;
9783 
9784 	mutex_lock(&pmus_lock);
9785 	for_each_possible_cpu(cpu) {
9786 		err = swevent_hlist_get_cpu(cpu);
9787 		if (err) {
9788 			failed_cpu = cpu;
9789 			goto fail;
9790 		}
9791 	}
9792 	mutex_unlock(&pmus_lock);
9793 	return 0;
9794 fail:
9795 	for_each_possible_cpu(cpu) {
9796 		if (cpu == failed_cpu)
9797 			break;
9798 		swevent_hlist_put_cpu(cpu);
9799 	}
9800 	mutex_unlock(&pmus_lock);
9801 	return err;
9802 }
9803 
9804 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
9805 
sw_perf_event_destroy(struct perf_event * event)9806 static void sw_perf_event_destroy(struct perf_event *event)
9807 {
9808 	u64 event_id = event->attr.config;
9809 
9810 	WARN_ON(event->parent);
9811 
9812 	static_key_slow_dec(&perf_swevent_enabled[event_id]);
9813 	swevent_hlist_put();
9814 }
9815 
perf_swevent_init(struct perf_event * event)9816 static int perf_swevent_init(struct perf_event *event)
9817 {
9818 	u64 event_id = event->attr.config;
9819 
9820 	if (event->attr.type != PERF_TYPE_SOFTWARE)
9821 		return -ENOENT;
9822 
9823 	/*
9824 	 * no branch sampling for software events
9825 	 */
9826 	if (has_branch_stack(event))
9827 		return -EOPNOTSUPP;
9828 
9829 	switch (event_id) {
9830 	case PERF_COUNT_SW_CPU_CLOCK:
9831 	case PERF_COUNT_SW_TASK_CLOCK:
9832 		return -ENOENT;
9833 
9834 	default:
9835 		break;
9836 	}
9837 
9838 	if (event_id >= PERF_COUNT_SW_MAX)
9839 		return -ENOENT;
9840 
9841 	if (!event->parent) {
9842 		int err;
9843 
9844 		err = swevent_hlist_get();
9845 		if (err)
9846 			return err;
9847 
9848 		static_key_slow_inc(&perf_swevent_enabled[event_id]);
9849 		event->destroy = sw_perf_event_destroy;
9850 	}
9851 
9852 	return 0;
9853 }
9854 
9855 static struct pmu perf_swevent = {
9856 	.task_ctx_nr	= perf_sw_context,
9857 
9858 	.capabilities	= PERF_PMU_CAP_NO_NMI,
9859 
9860 	.event_init	= perf_swevent_init,
9861 	.add		= perf_swevent_add,
9862 	.del		= perf_swevent_del,
9863 	.start		= perf_swevent_start,
9864 	.stop		= perf_swevent_stop,
9865 	.read		= perf_swevent_read,
9866 };
9867 
9868 #ifdef CONFIG_EVENT_TRACING
9869 
perf_tp_filter_match(struct perf_event * event,struct perf_sample_data * data)9870 static int perf_tp_filter_match(struct perf_event *event,
9871 				struct perf_sample_data *data)
9872 {
9873 	void *record = data->raw->frag.data;
9874 
9875 	/* only top level events have filters set */
9876 	if (event->parent)
9877 		event = event->parent;
9878 
9879 	if (likely(!event->filter) || filter_match_preds(event->filter, record))
9880 		return 1;
9881 	return 0;
9882 }
9883 
perf_tp_event_match(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs)9884 static int perf_tp_event_match(struct perf_event *event,
9885 				struct perf_sample_data *data,
9886 				struct pt_regs *regs)
9887 {
9888 	if (event->hw.state & PERF_HES_STOPPED)
9889 		return 0;
9890 	/*
9891 	 * If exclude_kernel, only trace user-space tracepoints (uprobes)
9892 	 */
9893 	if (event->attr.exclude_kernel && !user_mode(regs))
9894 		return 0;
9895 
9896 	if (!perf_tp_filter_match(event, data))
9897 		return 0;
9898 
9899 	return 1;
9900 }
9901 
perf_trace_run_bpf_submit(void * raw_data,int size,int rctx,struct trace_event_call * call,u64 count,struct pt_regs * regs,struct hlist_head * head,struct task_struct * task)9902 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
9903 			       struct trace_event_call *call, u64 count,
9904 			       struct pt_regs *regs, struct hlist_head *head,
9905 			       struct task_struct *task)
9906 {
9907 	if (bpf_prog_array_valid(call)) {
9908 		*(struct pt_regs **)raw_data = regs;
9909 		if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) {
9910 			perf_swevent_put_recursion_context(rctx);
9911 			return;
9912 		}
9913 	}
9914 	perf_tp_event(call->event.type, count, raw_data, size, regs, head,
9915 		      rctx, task);
9916 }
9917 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
9918 
perf_tp_event(u16 event_type,u64 count,void * record,int entry_size,struct pt_regs * regs,struct hlist_head * head,int rctx,struct task_struct * task)9919 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
9920 		   struct pt_regs *regs, struct hlist_head *head, int rctx,
9921 		   struct task_struct *task)
9922 {
9923 	struct perf_sample_data data;
9924 	struct perf_event *event;
9925 
9926 	struct perf_raw_record raw = {
9927 		.frag = {
9928 			.size = entry_size,
9929 			.data = record,
9930 		},
9931 	};
9932 
9933 	perf_sample_data_init(&data, 0, 0);
9934 	data.raw = &raw;
9935 
9936 	perf_trace_buf_update(record, event_type);
9937 
9938 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
9939 		if (perf_tp_event_match(event, &data, regs))
9940 			perf_swevent_event(event, count, &data, regs);
9941 	}
9942 
9943 	/*
9944 	 * If we got specified a target task, also iterate its context and
9945 	 * deliver this event there too.
9946 	 */
9947 	if (task && task != current) {
9948 		struct perf_event_context *ctx;
9949 		struct trace_entry *entry = record;
9950 
9951 		rcu_read_lock();
9952 		ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
9953 		if (!ctx)
9954 			goto unlock;
9955 
9956 		list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
9957 			if (event->cpu != smp_processor_id())
9958 				continue;
9959 			if (event->attr.type != PERF_TYPE_TRACEPOINT)
9960 				continue;
9961 			if (event->attr.config != entry->type)
9962 				continue;
9963 			/* Cannot deliver synchronous signal to other task. */
9964 			if (event->attr.sigtrap)
9965 				continue;
9966 			if (perf_tp_event_match(event, &data, regs))
9967 				perf_swevent_event(event, count, &data, regs);
9968 		}
9969 unlock:
9970 		rcu_read_unlock();
9971 	}
9972 
9973 	perf_swevent_put_recursion_context(rctx);
9974 }
9975 EXPORT_SYMBOL_GPL(perf_tp_event);
9976 
tp_perf_event_destroy(struct perf_event * event)9977 static void tp_perf_event_destroy(struct perf_event *event)
9978 {
9979 	perf_trace_destroy(event);
9980 }
9981 
perf_tp_event_init(struct perf_event * event)9982 static int perf_tp_event_init(struct perf_event *event)
9983 {
9984 	int err;
9985 
9986 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
9987 		return -ENOENT;
9988 
9989 	/*
9990 	 * no branch sampling for tracepoint events
9991 	 */
9992 	if (has_branch_stack(event))
9993 		return -EOPNOTSUPP;
9994 
9995 	err = perf_trace_init(event);
9996 	if (err)
9997 		return err;
9998 
9999 	event->destroy = tp_perf_event_destroy;
10000 
10001 	return 0;
10002 }
10003 
10004 static struct pmu perf_tracepoint = {
10005 	.task_ctx_nr	= perf_sw_context,
10006 
10007 	.event_init	= perf_tp_event_init,
10008 	.add		= perf_trace_add,
10009 	.del		= perf_trace_del,
10010 	.start		= perf_swevent_start,
10011 	.stop		= perf_swevent_stop,
10012 	.read		= perf_swevent_read,
10013 };
10014 
10015 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS)
10016 /*
10017  * Flags in config, used by dynamic PMU kprobe and uprobe
10018  * The flags should match following PMU_FORMAT_ATTR().
10019  *
10020  * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe
10021  *                               if not set, create kprobe/uprobe
10022  *
10023  * The following values specify a reference counter (or semaphore in the
10024  * terminology of tools like dtrace, systemtap, etc.) Userspace Statically
10025  * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset.
10026  *
10027  * PERF_UPROBE_REF_CTR_OFFSET_BITS	# of bits in config as th offset
10028  * PERF_UPROBE_REF_CTR_OFFSET_SHIFT	# of bits to shift left
10029  */
10030 enum perf_probe_config {
10031 	PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0,  /* [k,u]retprobe */
10032 	PERF_UPROBE_REF_CTR_OFFSET_BITS = 32,
10033 	PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS,
10034 };
10035 
10036 PMU_FORMAT_ATTR(retprobe, "config:0");
10037 #endif
10038 
10039 #ifdef CONFIG_KPROBE_EVENTS
10040 static struct attribute *kprobe_attrs[] = {
10041 	&format_attr_retprobe.attr,
10042 	NULL,
10043 };
10044 
10045 static struct attribute_group kprobe_format_group = {
10046 	.name = "format",
10047 	.attrs = kprobe_attrs,
10048 };
10049 
10050 static const struct attribute_group *kprobe_attr_groups[] = {
10051 	&kprobe_format_group,
10052 	NULL,
10053 };
10054 
10055 static int perf_kprobe_event_init(struct perf_event *event);
10056 static struct pmu perf_kprobe = {
10057 	.task_ctx_nr	= perf_sw_context,
10058 	.event_init	= perf_kprobe_event_init,
10059 	.add		= perf_trace_add,
10060 	.del		= perf_trace_del,
10061 	.start		= perf_swevent_start,
10062 	.stop		= perf_swevent_stop,
10063 	.read		= perf_swevent_read,
10064 	.attr_groups	= kprobe_attr_groups,
10065 };
10066 
perf_kprobe_event_init(struct perf_event * event)10067 static int perf_kprobe_event_init(struct perf_event *event)
10068 {
10069 	int err;
10070 	bool is_retprobe;
10071 
10072 	if (event->attr.type != perf_kprobe.type)
10073 		return -ENOENT;
10074 
10075 	if (!perfmon_capable())
10076 		return -EACCES;
10077 
10078 	/*
10079 	 * no branch sampling for probe events
10080 	 */
10081 	if (has_branch_stack(event))
10082 		return -EOPNOTSUPP;
10083 
10084 	is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
10085 	err = perf_kprobe_init(event, is_retprobe);
10086 	if (err)
10087 		return err;
10088 
10089 	event->destroy = perf_kprobe_destroy;
10090 
10091 	return 0;
10092 }
10093 #endif /* CONFIG_KPROBE_EVENTS */
10094 
10095 #ifdef CONFIG_UPROBE_EVENTS
10096 PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63");
10097 
10098 static struct attribute *uprobe_attrs[] = {
10099 	&format_attr_retprobe.attr,
10100 	&format_attr_ref_ctr_offset.attr,
10101 	NULL,
10102 };
10103 
10104 static struct attribute_group uprobe_format_group = {
10105 	.name = "format",
10106 	.attrs = uprobe_attrs,
10107 };
10108 
10109 static const struct attribute_group *uprobe_attr_groups[] = {
10110 	&uprobe_format_group,
10111 	NULL,
10112 };
10113 
10114 static int perf_uprobe_event_init(struct perf_event *event);
10115 static struct pmu perf_uprobe = {
10116 	.task_ctx_nr	= perf_sw_context,
10117 	.event_init	= perf_uprobe_event_init,
10118 	.add		= perf_trace_add,
10119 	.del		= perf_trace_del,
10120 	.start		= perf_swevent_start,
10121 	.stop		= perf_swevent_stop,
10122 	.read		= perf_swevent_read,
10123 	.attr_groups	= uprobe_attr_groups,
10124 };
10125 
perf_uprobe_event_init(struct perf_event * event)10126 static int perf_uprobe_event_init(struct perf_event *event)
10127 {
10128 	int err;
10129 	unsigned long ref_ctr_offset;
10130 	bool is_retprobe;
10131 
10132 	if (event->attr.type != perf_uprobe.type)
10133 		return -ENOENT;
10134 
10135 	if (!perfmon_capable())
10136 		return -EACCES;
10137 
10138 	/*
10139 	 * no branch sampling for probe events
10140 	 */
10141 	if (has_branch_stack(event))
10142 		return -EOPNOTSUPP;
10143 
10144 	is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
10145 	ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT;
10146 	err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe);
10147 	if (err)
10148 		return err;
10149 
10150 	event->destroy = perf_uprobe_destroy;
10151 
10152 	return 0;
10153 }
10154 #endif /* CONFIG_UPROBE_EVENTS */
10155 
perf_tp_register(void)10156 static inline void perf_tp_register(void)
10157 {
10158 	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
10159 #ifdef CONFIG_KPROBE_EVENTS
10160 	perf_pmu_register(&perf_kprobe, "kprobe", -1);
10161 #endif
10162 #ifdef CONFIG_UPROBE_EVENTS
10163 	perf_pmu_register(&perf_uprobe, "uprobe", -1);
10164 #endif
10165 }
10166 
perf_event_free_filter(struct perf_event * event)10167 static void perf_event_free_filter(struct perf_event *event)
10168 {
10169 	ftrace_profile_free_filter(event);
10170 }
10171 
10172 #ifdef CONFIG_BPF_SYSCALL
bpf_overflow_handler(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs)10173 static void bpf_overflow_handler(struct perf_event *event,
10174 				 struct perf_sample_data *data,
10175 				 struct pt_regs *regs)
10176 {
10177 	struct bpf_perf_event_data_kern ctx = {
10178 		.data = data,
10179 		.event = event,
10180 	};
10181 	struct bpf_prog *prog;
10182 	int ret = 0;
10183 
10184 	ctx.regs = perf_arch_bpf_user_pt_regs(regs);
10185 	if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
10186 		goto out;
10187 	rcu_read_lock();
10188 	prog = READ_ONCE(event->prog);
10189 	if (prog)
10190 		ret = bpf_prog_run(prog, &ctx);
10191 	rcu_read_unlock();
10192 out:
10193 	__this_cpu_dec(bpf_prog_active);
10194 	if (!ret)
10195 		return;
10196 
10197 	event->orig_overflow_handler(event, data, regs);
10198 }
10199 
perf_event_set_bpf_handler(struct perf_event * event,struct bpf_prog * prog,u64 bpf_cookie)10200 static int perf_event_set_bpf_handler(struct perf_event *event,
10201 				      struct bpf_prog *prog,
10202 				      u64 bpf_cookie)
10203 {
10204 	if (event->overflow_handler_context)
10205 		/* hw breakpoint or kernel counter */
10206 		return -EINVAL;
10207 
10208 	if (event->prog)
10209 		return -EEXIST;
10210 
10211 	if (prog->type != BPF_PROG_TYPE_PERF_EVENT)
10212 		return -EINVAL;
10213 
10214 	if (event->attr.precise_ip &&
10215 	    prog->call_get_stack &&
10216 	    (!(event->attr.sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY) ||
10217 	     event->attr.exclude_callchain_kernel ||
10218 	     event->attr.exclude_callchain_user)) {
10219 		/*
10220 		 * On perf_event with precise_ip, calling bpf_get_stack()
10221 		 * may trigger unwinder warnings and occasional crashes.
10222 		 * bpf_get_[stack|stackid] works around this issue by using
10223 		 * callchain attached to perf_sample_data. If the
10224 		 * perf_event does not full (kernel and user) callchain
10225 		 * attached to perf_sample_data, do not allow attaching BPF
10226 		 * program that calls bpf_get_[stack|stackid].
10227 		 */
10228 		return -EPROTO;
10229 	}
10230 
10231 	event->prog = prog;
10232 	event->bpf_cookie = bpf_cookie;
10233 	event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
10234 	WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
10235 	return 0;
10236 }
10237 
perf_event_free_bpf_handler(struct perf_event * event)10238 static void perf_event_free_bpf_handler(struct perf_event *event)
10239 {
10240 	struct bpf_prog *prog = event->prog;
10241 
10242 	if (!prog)
10243 		return;
10244 
10245 	WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
10246 	event->prog = NULL;
10247 	bpf_prog_put(prog);
10248 }
10249 #else
perf_event_set_bpf_handler(struct perf_event * event,struct bpf_prog * prog,u64 bpf_cookie)10250 static int perf_event_set_bpf_handler(struct perf_event *event,
10251 				      struct bpf_prog *prog,
10252 				      u64 bpf_cookie)
10253 {
10254 	return -EOPNOTSUPP;
10255 }
perf_event_free_bpf_handler(struct perf_event * event)10256 static void perf_event_free_bpf_handler(struct perf_event *event)
10257 {
10258 }
10259 #endif
10260 
10261 /*
10262  * returns true if the event is a tracepoint, or a kprobe/upprobe created
10263  * with perf_event_open()
10264  */
perf_event_is_tracing(struct perf_event * event)10265 static inline bool perf_event_is_tracing(struct perf_event *event)
10266 {
10267 	if (event->pmu == &perf_tracepoint)
10268 		return true;
10269 #ifdef CONFIG_KPROBE_EVENTS
10270 	if (event->pmu == &perf_kprobe)
10271 		return true;
10272 #endif
10273 #ifdef CONFIG_UPROBE_EVENTS
10274 	if (event->pmu == &perf_uprobe)
10275 		return true;
10276 #endif
10277 	return false;
10278 }
10279 
perf_event_set_bpf_prog(struct perf_event * event,struct bpf_prog * prog,u64 bpf_cookie)10280 int perf_event_set_bpf_prog(struct perf_event *event, struct bpf_prog *prog,
10281 			    u64 bpf_cookie)
10282 {
10283 	bool is_kprobe, is_tracepoint, is_syscall_tp;
10284 
10285 	if (!perf_event_is_tracing(event))
10286 		return perf_event_set_bpf_handler(event, prog, bpf_cookie);
10287 
10288 	is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
10289 	is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
10290 	is_syscall_tp = is_syscall_trace_event(event->tp_event);
10291 	if (!is_kprobe && !is_tracepoint && !is_syscall_tp)
10292 		/* bpf programs can only be attached to u/kprobe or tracepoint */
10293 		return -EINVAL;
10294 
10295 	if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
10296 	    (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
10297 	    (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT))
10298 		return -EINVAL;
10299 
10300 	/* Kprobe override only works for kprobes, not uprobes. */
10301 	if (prog->kprobe_override &&
10302 	    !(event->tp_event->flags & TRACE_EVENT_FL_KPROBE))
10303 		return -EINVAL;
10304 
10305 	if (is_tracepoint || is_syscall_tp) {
10306 		int off = trace_event_get_offsets(event->tp_event);
10307 
10308 		if (prog->aux->max_ctx_offset > off)
10309 			return -EACCES;
10310 	}
10311 
10312 	return perf_event_attach_bpf_prog(event, prog, bpf_cookie);
10313 }
10314 
perf_event_free_bpf_prog(struct perf_event * event)10315 void perf_event_free_bpf_prog(struct perf_event *event)
10316 {
10317 	if (!perf_event_is_tracing(event)) {
10318 		perf_event_free_bpf_handler(event);
10319 		return;
10320 	}
10321 	perf_event_detach_bpf_prog(event);
10322 }
10323 
10324 #else
10325 
perf_tp_register(void)10326 static inline void perf_tp_register(void)
10327 {
10328 }
10329 
perf_event_free_filter(struct perf_event * event)10330 static void perf_event_free_filter(struct perf_event *event)
10331 {
10332 }
10333 
perf_event_set_bpf_prog(struct perf_event * event,struct bpf_prog * prog,u64 bpf_cookie)10334 int perf_event_set_bpf_prog(struct perf_event *event, struct bpf_prog *prog,
10335 			    u64 bpf_cookie)
10336 {
10337 	return -ENOENT;
10338 }
10339 
perf_event_free_bpf_prog(struct perf_event * event)10340 void perf_event_free_bpf_prog(struct perf_event *event)
10341 {
10342 }
10343 #endif /* CONFIG_EVENT_TRACING */
10344 
10345 #ifdef CONFIG_HAVE_HW_BREAKPOINT
perf_bp_event(struct perf_event * bp,void * data)10346 void perf_bp_event(struct perf_event *bp, void *data)
10347 {
10348 	struct perf_sample_data sample;
10349 	struct pt_regs *regs = data;
10350 
10351 	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
10352 
10353 	if (!bp->hw.state && !perf_exclude_event(bp, regs))
10354 		perf_swevent_event(bp, 1, &sample, regs);
10355 }
10356 #endif
10357 
10358 /*
10359  * Allocate a new address filter
10360  */
10361 static struct perf_addr_filter *
perf_addr_filter_new(struct perf_event * event,struct list_head * filters)10362 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
10363 {
10364 	int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
10365 	struct perf_addr_filter *filter;
10366 
10367 	filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
10368 	if (!filter)
10369 		return NULL;
10370 
10371 	INIT_LIST_HEAD(&filter->entry);
10372 	list_add_tail(&filter->entry, filters);
10373 
10374 	return filter;
10375 }
10376 
free_filters_list(struct list_head * filters)10377 static void free_filters_list(struct list_head *filters)
10378 {
10379 	struct perf_addr_filter *filter, *iter;
10380 
10381 	list_for_each_entry_safe(filter, iter, filters, entry) {
10382 		path_put(&filter->path);
10383 		list_del(&filter->entry);
10384 		kfree(filter);
10385 	}
10386 }
10387 
10388 /*
10389  * Free existing address filters and optionally install new ones
10390  */
perf_addr_filters_splice(struct perf_event * event,struct list_head * head)10391 static void perf_addr_filters_splice(struct perf_event *event,
10392 				     struct list_head *head)
10393 {
10394 	unsigned long flags;
10395 	LIST_HEAD(list);
10396 
10397 	if (!has_addr_filter(event))
10398 		return;
10399 
10400 	/* don't bother with children, they don't have their own filters */
10401 	if (event->parent)
10402 		return;
10403 
10404 	raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
10405 
10406 	list_splice_init(&event->addr_filters.list, &list);
10407 	if (head)
10408 		list_splice(head, &event->addr_filters.list);
10409 
10410 	raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
10411 
10412 	free_filters_list(&list);
10413 }
10414 
10415 /*
10416  * Scan through mm's vmas and see if one of them matches the
10417  * @filter; if so, adjust filter's address range.
10418  * Called with mm::mmap_lock down for reading.
10419  */
perf_addr_filter_apply(struct perf_addr_filter * filter,struct mm_struct * mm,struct perf_addr_filter_range * fr)10420 static void perf_addr_filter_apply(struct perf_addr_filter *filter,
10421 				   struct mm_struct *mm,
10422 				   struct perf_addr_filter_range *fr)
10423 {
10424 	struct vm_area_struct *vma;
10425 
10426 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
10427 		if (!vma->vm_file)
10428 			continue;
10429 
10430 		if (perf_addr_filter_vma_adjust(filter, vma, fr))
10431 			return;
10432 	}
10433 }
10434 
10435 /*
10436  * Update event's address range filters based on the
10437  * task's existing mappings, if any.
10438  */
perf_event_addr_filters_apply(struct perf_event * event)10439 static void perf_event_addr_filters_apply(struct perf_event *event)
10440 {
10441 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
10442 	struct task_struct *task = READ_ONCE(event->ctx->task);
10443 	struct perf_addr_filter *filter;
10444 	struct mm_struct *mm = NULL;
10445 	unsigned int count = 0;
10446 	unsigned long flags;
10447 
10448 	/*
10449 	 * We may observe TASK_TOMBSTONE, which means that the event tear-down
10450 	 * will stop on the parent's child_mutex that our caller is also holding
10451 	 */
10452 	if (task == TASK_TOMBSTONE)
10453 		return;
10454 
10455 	if (ifh->nr_file_filters) {
10456 		mm = get_task_mm(task);
10457 		if (!mm)
10458 			goto restart;
10459 
10460 		mmap_read_lock(mm);
10461 	}
10462 
10463 	raw_spin_lock_irqsave(&ifh->lock, flags);
10464 	list_for_each_entry(filter, &ifh->list, entry) {
10465 		if (filter->path.dentry) {
10466 			/*
10467 			 * Adjust base offset if the filter is associated to a
10468 			 * binary that needs to be mapped:
10469 			 */
10470 			event->addr_filter_ranges[count].start = 0;
10471 			event->addr_filter_ranges[count].size = 0;
10472 
10473 			perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]);
10474 		} else {
10475 			event->addr_filter_ranges[count].start = filter->offset;
10476 			event->addr_filter_ranges[count].size  = filter->size;
10477 		}
10478 
10479 		count++;
10480 	}
10481 
10482 	event->addr_filters_gen++;
10483 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
10484 
10485 	if (ifh->nr_file_filters) {
10486 		mmap_read_unlock(mm);
10487 
10488 		mmput(mm);
10489 	}
10490 
10491 restart:
10492 	perf_event_stop(event, 1);
10493 }
10494 
10495 /*
10496  * Address range filtering: limiting the data to certain
10497  * instruction address ranges. Filters are ioctl()ed to us from
10498  * userspace as ascii strings.
10499  *
10500  * Filter string format:
10501  *
10502  * ACTION RANGE_SPEC
10503  * where ACTION is one of the
10504  *  * "filter": limit the trace to this region
10505  *  * "start": start tracing from this address
10506  *  * "stop": stop tracing at this address/region;
10507  * RANGE_SPEC is
10508  *  * for kernel addresses: <start address>[/<size>]
10509  *  * for object files:     <start address>[/<size>]@</path/to/object/file>
10510  *
10511  * if <size> is not specified or is zero, the range is treated as a single
10512  * address; not valid for ACTION=="filter".
10513  */
10514 enum {
10515 	IF_ACT_NONE = -1,
10516 	IF_ACT_FILTER,
10517 	IF_ACT_START,
10518 	IF_ACT_STOP,
10519 	IF_SRC_FILE,
10520 	IF_SRC_KERNEL,
10521 	IF_SRC_FILEADDR,
10522 	IF_SRC_KERNELADDR,
10523 };
10524 
10525 enum {
10526 	IF_STATE_ACTION = 0,
10527 	IF_STATE_SOURCE,
10528 	IF_STATE_END,
10529 };
10530 
10531 static const match_table_t if_tokens = {
10532 	{ IF_ACT_FILTER,	"filter" },
10533 	{ IF_ACT_START,		"start" },
10534 	{ IF_ACT_STOP,		"stop" },
10535 	{ IF_SRC_FILE,		"%u/%u@%s" },
10536 	{ IF_SRC_KERNEL,	"%u/%u" },
10537 	{ IF_SRC_FILEADDR,	"%u@%s" },
10538 	{ IF_SRC_KERNELADDR,	"%u" },
10539 	{ IF_ACT_NONE,		NULL },
10540 };
10541 
10542 /*
10543  * Address filter string parser
10544  */
10545 static int
perf_event_parse_addr_filter(struct perf_event * event,char * fstr,struct list_head * filters)10546 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
10547 			     struct list_head *filters)
10548 {
10549 	struct perf_addr_filter *filter = NULL;
10550 	char *start, *orig, *filename = NULL;
10551 	substring_t args[MAX_OPT_ARGS];
10552 	int state = IF_STATE_ACTION, token;
10553 	unsigned int kernel = 0;
10554 	int ret = -EINVAL;
10555 
10556 	orig = fstr = kstrdup(fstr, GFP_KERNEL);
10557 	if (!fstr)
10558 		return -ENOMEM;
10559 
10560 	while ((start = strsep(&fstr, " ,\n")) != NULL) {
10561 		static const enum perf_addr_filter_action_t actions[] = {
10562 			[IF_ACT_FILTER]	= PERF_ADDR_FILTER_ACTION_FILTER,
10563 			[IF_ACT_START]	= PERF_ADDR_FILTER_ACTION_START,
10564 			[IF_ACT_STOP]	= PERF_ADDR_FILTER_ACTION_STOP,
10565 		};
10566 		ret = -EINVAL;
10567 
10568 		if (!*start)
10569 			continue;
10570 
10571 		/* filter definition begins */
10572 		if (state == IF_STATE_ACTION) {
10573 			filter = perf_addr_filter_new(event, filters);
10574 			if (!filter)
10575 				goto fail;
10576 		}
10577 
10578 		token = match_token(start, if_tokens, args);
10579 		switch (token) {
10580 		case IF_ACT_FILTER:
10581 		case IF_ACT_START:
10582 		case IF_ACT_STOP:
10583 			if (state != IF_STATE_ACTION)
10584 				goto fail;
10585 
10586 			filter->action = actions[token];
10587 			state = IF_STATE_SOURCE;
10588 			break;
10589 
10590 		case IF_SRC_KERNELADDR:
10591 		case IF_SRC_KERNEL:
10592 			kernel = 1;
10593 			fallthrough;
10594 
10595 		case IF_SRC_FILEADDR:
10596 		case IF_SRC_FILE:
10597 			if (state != IF_STATE_SOURCE)
10598 				goto fail;
10599 
10600 			*args[0].to = 0;
10601 			ret = kstrtoul(args[0].from, 0, &filter->offset);
10602 			if (ret)
10603 				goto fail;
10604 
10605 			if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) {
10606 				*args[1].to = 0;
10607 				ret = kstrtoul(args[1].from, 0, &filter->size);
10608 				if (ret)
10609 					goto fail;
10610 			}
10611 
10612 			if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
10613 				int fpos = token == IF_SRC_FILE ? 2 : 1;
10614 
10615 				kfree(filename);
10616 				filename = match_strdup(&args[fpos]);
10617 				if (!filename) {
10618 					ret = -ENOMEM;
10619 					goto fail;
10620 				}
10621 			}
10622 
10623 			state = IF_STATE_END;
10624 			break;
10625 
10626 		default:
10627 			goto fail;
10628 		}
10629 
10630 		/*
10631 		 * Filter definition is fully parsed, validate and install it.
10632 		 * Make sure that it doesn't contradict itself or the event's
10633 		 * attribute.
10634 		 */
10635 		if (state == IF_STATE_END) {
10636 			ret = -EINVAL;
10637 			if (kernel && event->attr.exclude_kernel)
10638 				goto fail;
10639 
10640 			/*
10641 			 * ACTION "filter" must have a non-zero length region
10642 			 * specified.
10643 			 */
10644 			if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER &&
10645 			    !filter->size)
10646 				goto fail;
10647 
10648 			if (!kernel) {
10649 				if (!filename)
10650 					goto fail;
10651 
10652 				/*
10653 				 * For now, we only support file-based filters
10654 				 * in per-task events; doing so for CPU-wide
10655 				 * events requires additional context switching
10656 				 * trickery, since same object code will be
10657 				 * mapped at different virtual addresses in
10658 				 * different processes.
10659 				 */
10660 				ret = -EOPNOTSUPP;
10661 				if (!event->ctx->task)
10662 					goto fail;
10663 
10664 				/* look up the path and grab its inode */
10665 				ret = kern_path(filename, LOOKUP_FOLLOW,
10666 						&filter->path);
10667 				if (ret)
10668 					goto fail;
10669 
10670 				ret = -EINVAL;
10671 				if (!filter->path.dentry ||
10672 				    !S_ISREG(d_inode(filter->path.dentry)
10673 					     ->i_mode))
10674 					goto fail;
10675 
10676 				event->addr_filters.nr_file_filters++;
10677 			}
10678 
10679 			/* ready to consume more filters */
10680 			kfree(filename);
10681 			filename = NULL;
10682 			state = IF_STATE_ACTION;
10683 			filter = NULL;
10684 			kernel = 0;
10685 		}
10686 	}
10687 
10688 	if (state != IF_STATE_ACTION)
10689 		goto fail;
10690 
10691 	kfree(filename);
10692 	kfree(orig);
10693 
10694 	return 0;
10695 
10696 fail:
10697 	kfree(filename);
10698 	free_filters_list(filters);
10699 	kfree(orig);
10700 
10701 	return ret;
10702 }
10703 
10704 static int
perf_event_set_addr_filter(struct perf_event * event,char * filter_str)10705 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
10706 {
10707 	LIST_HEAD(filters);
10708 	int ret;
10709 
10710 	/*
10711 	 * Since this is called in perf_ioctl() path, we're already holding
10712 	 * ctx::mutex.
10713 	 */
10714 	lockdep_assert_held(&event->ctx->mutex);
10715 
10716 	if (WARN_ON_ONCE(event->parent))
10717 		return -EINVAL;
10718 
10719 	ret = perf_event_parse_addr_filter(event, filter_str, &filters);
10720 	if (ret)
10721 		goto fail_clear_files;
10722 
10723 	ret = event->pmu->addr_filters_validate(&filters);
10724 	if (ret)
10725 		goto fail_free_filters;
10726 
10727 	/* remove existing filters, if any */
10728 	perf_addr_filters_splice(event, &filters);
10729 
10730 	/* install new filters */
10731 	perf_event_for_each_child(event, perf_event_addr_filters_apply);
10732 
10733 	return ret;
10734 
10735 fail_free_filters:
10736 	free_filters_list(&filters);
10737 
10738 fail_clear_files:
10739 	event->addr_filters.nr_file_filters = 0;
10740 
10741 	return ret;
10742 }
10743 
perf_event_set_filter(struct perf_event * event,void __user * arg)10744 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
10745 {
10746 	int ret = -EINVAL;
10747 	char *filter_str;
10748 
10749 	filter_str = strndup_user(arg, PAGE_SIZE);
10750 	if (IS_ERR(filter_str))
10751 		return PTR_ERR(filter_str);
10752 
10753 #ifdef CONFIG_EVENT_TRACING
10754 	if (perf_event_is_tracing(event)) {
10755 		struct perf_event_context *ctx = event->ctx;
10756 
10757 		/*
10758 		 * Beware, here be dragons!!
10759 		 *
10760 		 * the tracepoint muck will deadlock against ctx->mutex, but
10761 		 * the tracepoint stuff does not actually need it. So
10762 		 * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we
10763 		 * already have a reference on ctx.
10764 		 *
10765 		 * This can result in event getting moved to a different ctx,
10766 		 * but that does not affect the tracepoint state.
10767 		 */
10768 		mutex_unlock(&ctx->mutex);
10769 		ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
10770 		mutex_lock(&ctx->mutex);
10771 	} else
10772 #endif
10773 	if (has_addr_filter(event))
10774 		ret = perf_event_set_addr_filter(event, filter_str);
10775 
10776 	kfree(filter_str);
10777 	return ret;
10778 }
10779 
10780 /*
10781  * hrtimer based swevent callback
10782  */
10783 
perf_swevent_hrtimer(struct hrtimer * hrtimer)10784 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
10785 {
10786 	enum hrtimer_restart ret = HRTIMER_RESTART;
10787 	struct perf_sample_data data;
10788 	struct pt_regs *regs;
10789 	struct perf_event *event;
10790 	u64 period;
10791 
10792 	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
10793 
10794 	if (event->state != PERF_EVENT_STATE_ACTIVE)
10795 		return HRTIMER_NORESTART;
10796 
10797 	event->pmu->read(event);
10798 
10799 	perf_sample_data_init(&data, 0, event->hw.last_period);
10800 	regs = get_irq_regs();
10801 
10802 	if (regs && !perf_exclude_event(event, regs)) {
10803 		if (!(event->attr.exclude_idle && is_idle_task(current)))
10804 			if (__perf_event_overflow(event, 1, &data, regs))
10805 				ret = HRTIMER_NORESTART;
10806 	}
10807 
10808 	period = max_t(u64, 10000, event->hw.sample_period);
10809 	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
10810 
10811 	return ret;
10812 }
10813 
perf_swevent_start_hrtimer(struct perf_event * event)10814 static void perf_swevent_start_hrtimer(struct perf_event *event)
10815 {
10816 	struct hw_perf_event *hwc = &event->hw;
10817 	s64 period;
10818 
10819 	if (!is_sampling_event(event))
10820 		return;
10821 
10822 	period = local64_read(&hwc->period_left);
10823 	if (period) {
10824 		if (period < 0)
10825 			period = 10000;
10826 
10827 		local64_set(&hwc->period_left, 0);
10828 	} else {
10829 		period = max_t(u64, 10000, hwc->sample_period);
10830 	}
10831 	hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
10832 		      HRTIMER_MODE_REL_PINNED_HARD);
10833 }
10834 
perf_swevent_cancel_hrtimer(struct perf_event * event)10835 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
10836 {
10837 	struct hw_perf_event *hwc = &event->hw;
10838 
10839 	if (is_sampling_event(event)) {
10840 		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
10841 		local64_set(&hwc->period_left, ktime_to_ns(remaining));
10842 
10843 		hrtimer_cancel(&hwc->hrtimer);
10844 	}
10845 }
10846 
perf_swevent_init_hrtimer(struct perf_event * event)10847 static void perf_swevent_init_hrtimer(struct perf_event *event)
10848 {
10849 	struct hw_perf_event *hwc = &event->hw;
10850 
10851 	if (!is_sampling_event(event))
10852 		return;
10853 
10854 	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
10855 	hwc->hrtimer.function = perf_swevent_hrtimer;
10856 
10857 	/*
10858 	 * Since hrtimers have a fixed rate, we can do a static freq->period
10859 	 * mapping and avoid the whole period adjust feedback stuff.
10860 	 */
10861 	if (event->attr.freq) {
10862 		long freq = event->attr.sample_freq;
10863 
10864 		event->attr.sample_period = NSEC_PER_SEC / freq;
10865 		hwc->sample_period = event->attr.sample_period;
10866 		local64_set(&hwc->period_left, hwc->sample_period);
10867 		hwc->last_period = hwc->sample_period;
10868 		event->attr.freq = 0;
10869 	}
10870 }
10871 
10872 /*
10873  * Software event: cpu wall time clock
10874  */
10875 
cpu_clock_event_update(struct perf_event * event)10876 static void cpu_clock_event_update(struct perf_event *event)
10877 {
10878 	s64 prev;
10879 	u64 now;
10880 
10881 	now = local_clock();
10882 	prev = local64_xchg(&event->hw.prev_count, now);
10883 	local64_add(now - prev, &event->count);
10884 }
10885 
cpu_clock_event_start(struct perf_event * event,int flags)10886 static void cpu_clock_event_start(struct perf_event *event, int flags)
10887 {
10888 	local64_set(&event->hw.prev_count, local_clock());
10889 	perf_swevent_start_hrtimer(event);
10890 }
10891 
cpu_clock_event_stop(struct perf_event * event,int flags)10892 static void cpu_clock_event_stop(struct perf_event *event, int flags)
10893 {
10894 	perf_swevent_cancel_hrtimer(event);
10895 	cpu_clock_event_update(event);
10896 }
10897 
cpu_clock_event_add(struct perf_event * event,int flags)10898 static int cpu_clock_event_add(struct perf_event *event, int flags)
10899 {
10900 	if (flags & PERF_EF_START)
10901 		cpu_clock_event_start(event, flags);
10902 	perf_event_update_userpage(event);
10903 
10904 	return 0;
10905 }
10906 
cpu_clock_event_del(struct perf_event * event,int flags)10907 static void cpu_clock_event_del(struct perf_event *event, int flags)
10908 {
10909 	cpu_clock_event_stop(event, flags);
10910 }
10911 
cpu_clock_event_read(struct perf_event * event)10912 static void cpu_clock_event_read(struct perf_event *event)
10913 {
10914 	cpu_clock_event_update(event);
10915 }
10916 
cpu_clock_event_init(struct perf_event * event)10917 static int cpu_clock_event_init(struct perf_event *event)
10918 {
10919 	if (event->attr.type != PERF_TYPE_SOFTWARE)
10920 		return -ENOENT;
10921 
10922 	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
10923 		return -ENOENT;
10924 
10925 	/*
10926 	 * no branch sampling for software events
10927 	 */
10928 	if (has_branch_stack(event))
10929 		return -EOPNOTSUPP;
10930 
10931 	perf_swevent_init_hrtimer(event);
10932 
10933 	return 0;
10934 }
10935 
10936 static struct pmu perf_cpu_clock = {
10937 	.task_ctx_nr	= perf_sw_context,
10938 
10939 	.capabilities	= PERF_PMU_CAP_NO_NMI,
10940 
10941 	.event_init	= cpu_clock_event_init,
10942 	.add		= cpu_clock_event_add,
10943 	.del		= cpu_clock_event_del,
10944 	.start		= cpu_clock_event_start,
10945 	.stop		= cpu_clock_event_stop,
10946 	.read		= cpu_clock_event_read,
10947 };
10948 
10949 /*
10950  * Software event: task time clock
10951  */
10952 
task_clock_event_update(struct perf_event * event,u64 now)10953 static void task_clock_event_update(struct perf_event *event, u64 now)
10954 {
10955 	u64 prev;
10956 	s64 delta;
10957 
10958 	prev = local64_xchg(&event->hw.prev_count, now);
10959 	delta = now - prev;
10960 	local64_add(delta, &event->count);
10961 }
10962 
task_clock_event_start(struct perf_event * event,int flags)10963 static void task_clock_event_start(struct perf_event *event, int flags)
10964 {
10965 	local64_set(&event->hw.prev_count, event->ctx->time);
10966 	perf_swevent_start_hrtimer(event);
10967 }
10968 
task_clock_event_stop(struct perf_event * event,int flags)10969 static void task_clock_event_stop(struct perf_event *event, int flags)
10970 {
10971 	perf_swevent_cancel_hrtimer(event);
10972 	task_clock_event_update(event, event->ctx->time);
10973 }
10974 
task_clock_event_add(struct perf_event * event,int flags)10975 static int task_clock_event_add(struct perf_event *event, int flags)
10976 {
10977 	if (flags & PERF_EF_START)
10978 		task_clock_event_start(event, flags);
10979 	perf_event_update_userpage(event);
10980 
10981 	return 0;
10982 }
10983 
task_clock_event_del(struct perf_event * event,int flags)10984 static void task_clock_event_del(struct perf_event *event, int flags)
10985 {
10986 	task_clock_event_stop(event, PERF_EF_UPDATE);
10987 }
10988 
task_clock_event_read(struct perf_event * event)10989 static void task_clock_event_read(struct perf_event *event)
10990 {
10991 	u64 now = perf_clock();
10992 	u64 delta = now - event->ctx->timestamp;
10993 	u64 time = event->ctx->time + delta;
10994 
10995 	task_clock_event_update(event, time);
10996 }
10997 
task_clock_event_init(struct perf_event * event)10998 static int task_clock_event_init(struct perf_event *event)
10999 {
11000 	if (event->attr.type != PERF_TYPE_SOFTWARE)
11001 		return -ENOENT;
11002 
11003 	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
11004 		return -ENOENT;
11005 
11006 	/*
11007 	 * no branch sampling for software events
11008 	 */
11009 	if (has_branch_stack(event))
11010 		return -EOPNOTSUPP;
11011 
11012 	perf_swevent_init_hrtimer(event);
11013 
11014 	return 0;
11015 }
11016 
11017 static struct pmu perf_task_clock = {
11018 	.task_ctx_nr	= perf_sw_context,
11019 
11020 	.capabilities	= PERF_PMU_CAP_NO_NMI,
11021 
11022 	.event_init	= task_clock_event_init,
11023 	.add		= task_clock_event_add,
11024 	.del		= task_clock_event_del,
11025 	.start		= task_clock_event_start,
11026 	.stop		= task_clock_event_stop,
11027 	.read		= task_clock_event_read,
11028 };
11029 
perf_pmu_nop_void(struct pmu * pmu)11030 static void perf_pmu_nop_void(struct pmu *pmu)
11031 {
11032 }
11033 
perf_pmu_nop_txn(struct pmu * pmu,unsigned int flags)11034 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
11035 {
11036 }
11037 
perf_pmu_nop_int(struct pmu * pmu)11038 static int perf_pmu_nop_int(struct pmu *pmu)
11039 {
11040 	return 0;
11041 }
11042 
perf_event_nop_int(struct perf_event * event,u64 value)11043 static int perf_event_nop_int(struct perf_event *event, u64 value)
11044 {
11045 	return 0;
11046 }
11047 
11048 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
11049 
perf_pmu_start_txn(struct pmu * pmu,unsigned int flags)11050 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
11051 {
11052 	__this_cpu_write(nop_txn_flags, flags);
11053 
11054 	if (flags & ~PERF_PMU_TXN_ADD)
11055 		return;
11056 
11057 	perf_pmu_disable(pmu);
11058 }
11059 
perf_pmu_commit_txn(struct pmu * pmu)11060 static int perf_pmu_commit_txn(struct pmu *pmu)
11061 {
11062 	unsigned int flags = __this_cpu_read(nop_txn_flags);
11063 
11064 	__this_cpu_write(nop_txn_flags, 0);
11065 
11066 	if (flags & ~PERF_PMU_TXN_ADD)
11067 		return 0;
11068 
11069 	perf_pmu_enable(pmu);
11070 	return 0;
11071 }
11072 
perf_pmu_cancel_txn(struct pmu * pmu)11073 static void perf_pmu_cancel_txn(struct pmu *pmu)
11074 {
11075 	unsigned int flags =  __this_cpu_read(nop_txn_flags);
11076 
11077 	__this_cpu_write(nop_txn_flags, 0);
11078 
11079 	if (flags & ~PERF_PMU_TXN_ADD)
11080 		return;
11081 
11082 	perf_pmu_enable(pmu);
11083 }
11084 
perf_event_idx_default(struct perf_event * event)11085 static int perf_event_idx_default(struct perf_event *event)
11086 {
11087 	return 0;
11088 }
11089 
11090 /*
11091  * Ensures all contexts with the same task_ctx_nr have the same
11092  * pmu_cpu_context too.
11093  */
find_pmu_context(int ctxn)11094 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
11095 {
11096 	struct pmu *pmu;
11097 
11098 	if (ctxn < 0)
11099 		return NULL;
11100 
11101 	list_for_each_entry(pmu, &pmus, entry) {
11102 		if (pmu->task_ctx_nr == ctxn)
11103 			return pmu->pmu_cpu_context;
11104 	}
11105 
11106 	return NULL;
11107 }
11108 
free_pmu_context(struct pmu * pmu)11109 static void free_pmu_context(struct pmu *pmu)
11110 {
11111 	/*
11112 	 * Static contexts such as perf_sw_context have a global lifetime
11113 	 * and may be shared between different PMUs. Avoid freeing them
11114 	 * when a single PMU is going away.
11115 	 */
11116 	if (pmu->task_ctx_nr > perf_invalid_context)
11117 		return;
11118 
11119 	free_percpu(pmu->pmu_cpu_context);
11120 }
11121 
11122 /*
11123  * Let userspace know that this PMU supports address range filtering:
11124  */
nr_addr_filters_show(struct device * dev,struct device_attribute * attr,char * page)11125 static ssize_t nr_addr_filters_show(struct device *dev,
11126 				    struct device_attribute *attr,
11127 				    char *page)
11128 {
11129 	struct pmu *pmu = dev_get_drvdata(dev);
11130 
11131 	return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
11132 }
11133 DEVICE_ATTR_RO(nr_addr_filters);
11134 
11135 static struct idr pmu_idr;
11136 
11137 static ssize_t
type_show(struct device * dev,struct device_attribute * attr,char * page)11138 type_show(struct device *dev, struct device_attribute *attr, char *page)
11139 {
11140 	struct pmu *pmu = dev_get_drvdata(dev);
11141 
11142 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
11143 }
11144 static DEVICE_ATTR_RO(type);
11145 
11146 static ssize_t
perf_event_mux_interval_ms_show(struct device * dev,struct device_attribute * attr,char * page)11147 perf_event_mux_interval_ms_show(struct device *dev,
11148 				struct device_attribute *attr,
11149 				char *page)
11150 {
11151 	struct pmu *pmu = dev_get_drvdata(dev);
11152 
11153 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
11154 }
11155 
11156 static DEFINE_MUTEX(mux_interval_mutex);
11157 
11158 static ssize_t
perf_event_mux_interval_ms_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)11159 perf_event_mux_interval_ms_store(struct device *dev,
11160 				 struct device_attribute *attr,
11161 				 const char *buf, size_t count)
11162 {
11163 	struct pmu *pmu = dev_get_drvdata(dev);
11164 	int timer, cpu, ret;
11165 
11166 	ret = kstrtoint(buf, 0, &timer);
11167 	if (ret)
11168 		return ret;
11169 
11170 	if (timer < 1)
11171 		return -EINVAL;
11172 
11173 	/* same value, noting to do */
11174 	if (timer == pmu->hrtimer_interval_ms)
11175 		return count;
11176 
11177 	mutex_lock(&mux_interval_mutex);
11178 	pmu->hrtimer_interval_ms = timer;
11179 
11180 	/* update all cpuctx for this PMU */
11181 	cpus_read_lock();
11182 	for_each_online_cpu(cpu) {
11183 		struct perf_cpu_context *cpuctx;
11184 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11185 		cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
11186 
11187 		cpu_function_call(cpu, perf_mux_hrtimer_restart_ipi, cpuctx);
11188 	}
11189 	cpus_read_unlock();
11190 	mutex_unlock(&mux_interval_mutex);
11191 
11192 	return count;
11193 }
11194 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
11195 
11196 static struct attribute *pmu_dev_attrs[] = {
11197 	&dev_attr_type.attr,
11198 	&dev_attr_perf_event_mux_interval_ms.attr,
11199 	&dev_attr_nr_addr_filters.attr,
11200 	NULL,
11201 };
11202 
pmu_dev_is_visible(struct kobject * kobj,struct attribute * a,int n)11203 static umode_t pmu_dev_is_visible(struct kobject *kobj, struct attribute *a, int n)
11204 {
11205 	struct device *dev = kobj_to_dev(kobj);
11206 	struct pmu *pmu = dev_get_drvdata(dev);
11207 
11208 	if (n == 2 && !pmu->nr_addr_filters)
11209 		return 0;
11210 
11211 	return a->mode;
11212 }
11213 
11214 static struct attribute_group pmu_dev_attr_group = {
11215 	.is_visible = pmu_dev_is_visible,
11216 	.attrs = pmu_dev_attrs,
11217 };
11218 
11219 static const struct attribute_group *pmu_dev_groups[] = {
11220 	&pmu_dev_attr_group,
11221 	NULL,
11222 };
11223 
11224 static int pmu_bus_running;
11225 static struct bus_type pmu_bus = {
11226 	.name		= "event_source",
11227 	.dev_groups	= pmu_dev_groups,
11228 };
11229 
pmu_dev_release(struct device * dev)11230 static void pmu_dev_release(struct device *dev)
11231 {
11232 	kfree(dev);
11233 }
11234 
pmu_dev_alloc(struct pmu * pmu)11235 static int pmu_dev_alloc(struct pmu *pmu)
11236 {
11237 	int ret = -ENOMEM;
11238 
11239 	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
11240 	if (!pmu->dev)
11241 		goto out;
11242 
11243 	pmu->dev->groups = pmu->attr_groups;
11244 	device_initialize(pmu->dev);
11245 
11246 	dev_set_drvdata(pmu->dev, pmu);
11247 	pmu->dev->bus = &pmu_bus;
11248 	pmu->dev->release = pmu_dev_release;
11249 
11250 	ret = dev_set_name(pmu->dev, "%s", pmu->name);
11251 	if (ret)
11252 		goto free_dev;
11253 
11254 	ret = device_add(pmu->dev);
11255 	if (ret)
11256 		goto free_dev;
11257 
11258 	if (pmu->attr_update) {
11259 		ret = sysfs_update_groups(&pmu->dev->kobj, pmu->attr_update);
11260 		if (ret)
11261 			goto del_dev;
11262 	}
11263 
11264 out:
11265 	return ret;
11266 
11267 del_dev:
11268 	device_del(pmu->dev);
11269 
11270 free_dev:
11271 	put_device(pmu->dev);
11272 	goto out;
11273 }
11274 
11275 static struct lock_class_key cpuctx_mutex;
11276 static struct lock_class_key cpuctx_lock;
11277 
perf_pmu_register(struct pmu * pmu,const char * name,int type)11278 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
11279 {
11280 	int cpu, ret, max = PERF_TYPE_MAX;
11281 
11282 	mutex_lock(&pmus_lock);
11283 	ret = -ENOMEM;
11284 	pmu->pmu_disable_count = alloc_percpu(int);
11285 	if (!pmu->pmu_disable_count)
11286 		goto unlock;
11287 
11288 	pmu->type = -1;
11289 	if (!name)
11290 		goto skip_type;
11291 	pmu->name = name;
11292 
11293 	if (type != PERF_TYPE_SOFTWARE) {
11294 		if (type >= 0)
11295 			max = type;
11296 
11297 		ret = idr_alloc(&pmu_idr, pmu, max, 0, GFP_KERNEL);
11298 		if (ret < 0)
11299 			goto free_pdc;
11300 
11301 		WARN_ON(type >= 0 && ret != type);
11302 
11303 		type = ret;
11304 	}
11305 	pmu->type = type;
11306 
11307 	if (pmu_bus_running) {
11308 		ret = pmu_dev_alloc(pmu);
11309 		if (ret)
11310 			goto free_idr;
11311 	}
11312 
11313 skip_type:
11314 	if (pmu->task_ctx_nr == perf_hw_context) {
11315 		static int hw_context_taken = 0;
11316 
11317 		/*
11318 		 * Other than systems with heterogeneous CPUs, it never makes
11319 		 * sense for two PMUs to share perf_hw_context. PMUs which are
11320 		 * uncore must use perf_invalid_context.
11321 		 */
11322 		if (WARN_ON_ONCE(hw_context_taken &&
11323 		    !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
11324 			pmu->task_ctx_nr = perf_invalid_context;
11325 
11326 		hw_context_taken = 1;
11327 	}
11328 
11329 	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
11330 	if (pmu->pmu_cpu_context)
11331 		goto got_cpu_context;
11332 
11333 	ret = -ENOMEM;
11334 	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
11335 	if (!pmu->pmu_cpu_context)
11336 		goto free_dev;
11337 
11338 	for_each_possible_cpu(cpu) {
11339 		struct perf_cpu_context *cpuctx;
11340 
11341 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11342 		__perf_event_init_context(&cpuctx->ctx);
11343 		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
11344 		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
11345 		cpuctx->ctx.pmu = pmu;
11346 		cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
11347 
11348 		__perf_mux_hrtimer_init(cpuctx, cpu);
11349 
11350 		cpuctx->heap_size = ARRAY_SIZE(cpuctx->heap_default);
11351 		cpuctx->heap = cpuctx->heap_default;
11352 	}
11353 
11354 got_cpu_context:
11355 	if (!pmu->start_txn) {
11356 		if (pmu->pmu_enable) {
11357 			/*
11358 			 * If we have pmu_enable/pmu_disable calls, install
11359 			 * transaction stubs that use that to try and batch
11360 			 * hardware accesses.
11361 			 */
11362 			pmu->start_txn  = perf_pmu_start_txn;
11363 			pmu->commit_txn = perf_pmu_commit_txn;
11364 			pmu->cancel_txn = perf_pmu_cancel_txn;
11365 		} else {
11366 			pmu->start_txn  = perf_pmu_nop_txn;
11367 			pmu->commit_txn = perf_pmu_nop_int;
11368 			pmu->cancel_txn = perf_pmu_nop_void;
11369 		}
11370 	}
11371 
11372 	if (!pmu->pmu_enable) {
11373 		pmu->pmu_enable  = perf_pmu_nop_void;
11374 		pmu->pmu_disable = perf_pmu_nop_void;
11375 	}
11376 
11377 	if (!pmu->check_period)
11378 		pmu->check_period = perf_event_nop_int;
11379 
11380 	if (!pmu->event_idx)
11381 		pmu->event_idx = perf_event_idx_default;
11382 
11383 	/*
11384 	 * Ensure the TYPE_SOFTWARE PMUs are at the head of the list,
11385 	 * since these cannot be in the IDR. This way the linear search
11386 	 * is fast, provided a valid software event is provided.
11387 	 */
11388 	if (type == PERF_TYPE_SOFTWARE || !name)
11389 		list_add_rcu(&pmu->entry, &pmus);
11390 	else
11391 		list_add_tail_rcu(&pmu->entry, &pmus);
11392 
11393 	atomic_set(&pmu->exclusive_cnt, 0);
11394 	ret = 0;
11395 unlock:
11396 	mutex_unlock(&pmus_lock);
11397 
11398 	return ret;
11399 
11400 free_dev:
11401 	device_del(pmu->dev);
11402 	put_device(pmu->dev);
11403 
11404 free_idr:
11405 	if (pmu->type != PERF_TYPE_SOFTWARE)
11406 		idr_remove(&pmu_idr, pmu->type);
11407 
11408 free_pdc:
11409 	free_percpu(pmu->pmu_disable_count);
11410 	goto unlock;
11411 }
11412 EXPORT_SYMBOL_GPL(perf_pmu_register);
11413 
perf_pmu_unregister(struct pmu * pmu)11414 void perf_pmu_unregister(struct pmu *pmu)
11415 {
11416 	mutex_lock(&pmus_lock);
11417 	list_del_rcu(&pmu->entry);
11418 
11419 	/*
11420 	 * We dereference the pmu list under both SRCU and regular RCU, so
11421 	 * synchronize against both of those.
11422 	 */
11423 	synchronize_srcu(&pmus_srcu);
11424 	synchronize_rcu();
11425 
11426 	free_percpu(pmu->pmu_disable_count);
11427 	if (pmu->type != PERF_TYPE_SOFTWARE)
11428 		idr_remove(&pmu_idr, pmu->type);
11429 	if (pmu_bus_running) {
11430 		if (pmu->nr_addr_filters)
11431 			device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
11432 		device_del(pmu->dev);
11433 		put_device(pmu->dev);
11434 	}
11435 	free_pmu_context(pmu);
11436 	mutex_unlock(&pmus_lock);
11437 }
11438 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
11439 
has_extended_regs(struct perf_event * event)11440 static inline bool has_extended_regs(struct perf_event *event)
11441 {
11442 	return (event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK) ||
11443 	       (event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK);
11444 }
11445 
perf_try_init_event(struct pmu * pmu,struct perf_event * event)11446 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
11447 {
11448 	struct perf_event_context *ctx = NULL;
11449 	int ret;
11450 
11451 	if (!try_module_get(pmu->module))
11452 		return -ENODEV;
11453 
11454 	/*
11455 	 * A number of pmu->event_init() methods iterate the sibling_list to,
11456 	 * for example, validate if the group fits on the PMU. Therefore,
11457 	 * if this is a sibling event, acquire the ctx->mutex to protect
11458 	 * the sibling_list.
11459 	 */
11460 	if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) {
11461 		/*
11462 		 * This ctx->mutex can nest when we're called through
11463 		 * inheritance. See the perf_event_ctx_lock_nested() comment.
11464 		 */
11465 		ctx = perf_event_ctx_lock_nested(event->group_leader,
11466 						 SINGLE_DEPTH_NESTING);
11467 		BUG_ON(!ctx);
11468 	}
11469 
11470 	event->pmu = pmu;
11471 	ret = pmu->event_init(event);
11472 
11473 	if (ctx)
11474 		perf_event_ctx_unlock(event->group_leader, ctx);
11475 
11476 	if (!ret) {
11477 		if (!(pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS) &&
11478 		    has_extended_regs(event))
11479 			ret = -EOPNOTSUPP;
11480 
11481 		if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE &&
11482 		    event_has_any_exclude_flag(event))
11483 			ret = -EINVAL;
11484 
11485 		if (ret && event->destroy)
11486 			event->destroy(event);
11487 	}
11488 
11489 	if (ret)
11490 		module_put(pmu->module);
11491 
11492 	return ret;
11493 }
11494 
perf_init_event(struct perf_event * event)11495 static struct pmu *perf_init_event(struct perf_event *event)
11496 {
11497 	bool extended_type = false;
11498 	int idx, type, ret;
11499 	struct pmu *pmu;
11500 
11501 	idx = srcu_read_lock(&pmus_srcu);
11502 
11503 	/* Try parent's PMU first: */
11504 	if (event->parent && event->parent->pmu) {
11505 		pmu = event->parent->pmu;
11506 		ret = perf_try_init_event(pmu, event);
11507 		if (!ret)
11508 			goto unlock;
11509 	}
11510 
11511 	/*
11512 	 * PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE
11513 	 * are often aliases for PERF_TYPE_RAW.
11514 	 */
11515 	type = event->attr.type;
11516 	if (type == PERF_TYPE_HARDWARE || type == PERF_TYPE_HW_CACHE) {
11517 		type = event->attr.config >> PERF_PMU_TYPE_SHIFT;
11518 		if (!type) {
11519 			type = PERF_TYPE_RAW;
11520 		} else {
11521 			extended_type = true;
11522 			event->attr.config &= PERF_HW_EVENT_MASK;
11523 		}
11524 	}
11525 
11526 again:
11527 	rcu_read_lock();
11528 	pmu = idr_find(&pmu_idr, type);
11529 	rcu_read_unlock();
11530 	if (pmu) {
11531 		if (event->attr.type != type && type != PERF_TYPE_RAW &&
11532 		    !(pmu->capabilities & PERF_PMU_CAP_EXTENDED_HW_TYPE))
11533 			goto fail;
11534 
11535 		ret = perf_try_init_event(pmu, event);
11536 		if (ret == -ENOENT && event->attr.type != type && !extended_type) {
11537 			type = event->attr.type;
11538 			goto again;
11539 		}
11540 
11541 		if (ret)
11542 			pmu = ERR_PTR(ret);
11543 
11544 		goto unlock;
11545 	}
11546 
11547 	list_for_each_entry_rcu(pmu, &pmus, entry, lockdep_is_held(&pmus_srcu)) {
11548 		ret = perf_try_init_event(pmu, event);
11549 		if (!ret)
11550 			goto unlock;
11551 
11552 		if (ret != -ENOENT) {
11553 			pmu = ERR_PTR(ret);
11554 			goto unlock;
11555 		}
11556 	}
11557 fail:
11558 	pmu = ERR_PTR(-ENOENT);
11559 unlock:
11560 	srcu_read_unlock(&pmus_srcu, idx);
11561 
11562 	return pmu;
11563 }
11564 
attach_sb_event(struct perf_event * event)11565 static void attach_sb_event(struct perf_event *event)
11566 {
11567 	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
11568 
11569 	raw_spin_lock(&pel->lock);
11570 	list_add_rcu(&event->sb_list, &pel->list);
11571 	raw_spin_unlock(&pel->lock);
11572 }
11573 
11574 /*
11575  * We keep a list of all !task (and therefore per-cpu) events
11576  * that need to receive side-band records.
11577  *
11578  * This avoids having to scan all the various PMU per-cpu contexts
11579  * looking for them.
11580  */
account_pmu_sb_event(struct perf_event * event)11581 static void account_pmu_sb_event(struct perf_event *event)
11582 {
11583 	if (is_sb_event(event))
11584 		attach_sb_event(event);
11585 }
11586 
account_event_cpu(struct perf_event * event,int cpu)11587 static void account_event_cpu(struct perf_event *event, int cpu)
11588 {
11589 	if (event->parent)
11590 		return;
11591 
11592 	if (is_cgroup_event(event))
11593 		atomic_inc(&per_cpu(perf_cgroup_events, cpu));
11594 }
11595 
11596 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
account_freq_event_nohz(void)11597 static void account_freq_event_nohz(void)
11598 {
11599 #ifdef CONFIG_NO_HZ_FULL
11600 	/* Lock so we don't race with concurrent unaccount */
11601 	spin_lock(&nr_freq_lock);
11602 	if (atomic_inc_return(&nr_freq_events) == 1)
11603 		tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
11604 	spin_unlock(&nr_freq_lock);
11605 #endif
11606 }
11607 
account_freq_event(void)11608 static void account_freq_event(void)
11609 {
11610 	if (tick_nohz_full_enabled())
11611 		account_freq_event_nohz();
11612 	else
11613 		atomic_inc(&nr_freq_events);
11614 }
11615 
11616 
account_event(struct perf_event * event)11617 static void account_event(struct perf_event *event)
11618 {
11619 	bool inc = false;
11620 
11621 	if (event->parent)
11622 		return;
11623 
11624 	if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB))
11625 		inc = true;
11626 	if (event->attr.mmap || event->attr.mmap_data)
11627 		atomic_inc(&nr_mmap_events);
11628 	if (event->attr.build_id)
11629 		atomic_inc(&nr_build_id_events);
11630 	if (event->attr.comm)
11631 		atomic_inc(&nr_comm_events);
11632 	if (event->attr.namespaces)
11633 		atomic_inc(&nr_namespaces_events);
11634 	if (event->attr.cgroup)
11635 		atomic_inc(&nr_cgroup_events);
11636 	if (event->attr.task)
11637 		atomic_inc(&nr_task_events);
11638 	if (event->attr.freq)
11639 		account_freq_event();
11640 	if (event->attr.context_switch) {
11641 		atomic_inc(&nr_switch_events);
11642 		inc = true;
11643 	}
11644 	if (has_branch_stack(event))
11645 		inc = true;
11646 	if (is_cgroup_event(event))
11647 		inc = true;
11648 	if (event->attr.ksymbol)
11649 		atomic_inc(&nr_ksymbol_events);
11650 	if (event->attr.bpf_event)
11651 		atomic_inc(&nr_bpf_events);
11652 	if (event->attr.text_poke)
11653 		atomic_inc(&nr_text_poke_events);
11654 
11655 	if (inc) {
11656 		/*
11657 		 * We need the mutex here because static_branch_enable()
11658 		 * must complete *before* the perf_sched_count increment
11659 		 * becomes visible.
11660 		 */
11661 		if (atomic_inc_not_zero(&perf_sched_count))
11662 			goto enabled;
11663 
11664 		mutex_lock(&perf_sched_mutex);
11665 		if (!atomic_read(&perf_sched_count)) {
11666 			static_branch_enable(&perf_sched_events);
11667 			/*
11668 			 * Guarantee that all CPUs observe they key change and
11669 			 * call the perf scheduling hooks before proceeding to
11670 			 * install events that need them.
11671 			 */
11672 			synchronize_rcu();
11673 		}
11674 		/*
11675 		 * Now that we have waited for the sync_sched(), allow further
11676 		 * increments to by-pass the mutex.
11677 		 */
11678 		atomic_inc(&perf_sched_count);
11679 		mutex_unlock(&perf_sched_mutex);
11680 	}
11681 enabled:
11682 
11683 	account_event_cpu(event, event->cpu);
11684 
11685 	account_pmu_sb_event(event);
11686 }
11687 
11688 /*
11689  * Allocate and initialize an event structure
11690  */
11691 static struct perf_event *
perf_event_alloc(struct perf_event_attr * attr,int cpu,struct task_struct * task,struct perf_event * group_leader,struct perf_event * parent_event,perf_overflow_handler_t overflow_handler,void * context,int cgroup_fd)11692 perf_event_alloc(struct perf_event_attr *attr, int cpu,
11693 		 struct task_struct *task,
11694 		 struct perf_event *group_leader,
11695 		 struct perf_event *parent_event,
11696 		 perf_overflow_handler_t overflow_handler,
11697 		 void *context, int cgroup_fd)
11698 {
11699 	struct pmu *pmu;
11700 	struct perf_event *event;
11701 	struct hw_perf_event *hwc;
11702 	long err = -EINVAL;
11703 	int node;
11704 
11705 	if ((unsigned)cpu >= nr_cpu_ids) {
11706 		if (!task || cpu != -1)
11707 			return ERR_PTR(-EINVAL);
11708 	}
11709 	if (attr->sigtrap && !task) {
11710 		/* Requires a task: avoid signalling random tasks. */
11711 		return ERR_PTR(-EINVAL);
11712 	}
11713 
11714 	node = (cpu >= 0) ? cpu_to_node(cpu) : -1;
11715 	event = kmem_cache_alloc_node(perf_event_cache, GFP_KERNEL | __GFP_ZERO,
11716 				      node);
11717 	if (!event)
11718 		return ERR_PTR(-ENOMEM);
11719 
11720 	/*
11721 	 * Single events are their own group leaders, with an
11722 	 * empty sibling list:
11723 	 */
11724 	if (!group_leader)
11725 		group_leader = event;
11726 
11727 	mutex_init(&event->child_mutex);
11728 	INIT_LIST_HEAD(&event->child_list);
11729 
11730 	INIT_LIST_HEAD(&event->event_entry);
11731 	INIT_LIST_HEAD(&event->sibling_list);
11732 	INIT_LIST_HEAD(&event->active_list);
11733 	init_event_group(event);
11734 	INIT_LIST_HEAD(&event->rb_entry);
11735 	INIT_LIST_HEAD(&event->active_entry);
11736 	INIT_LIST_HEAD(&event->addr_filters.list);
11737 	INIT_HLIST_NODE(&event->hlist_entry);
11738 
11739 
11740 	init_waitqueue_head(&event->waitq);
11741 	init_irq_work(&event->pending_irq, perf_pending_irq);
11742 	init_task_work(&event->pending_task, perf_pending_task);
11743 
11744 	mutex_init(&event->mmap_mutex);
11745 	raw_spin_lock_init(&event->addr_filters.lock);
11746 
11747 	atomic_long_set(&event->refcount, 1);
11748 	event->cpu		= cpu;
11749 	event->attr		= *attr;
11750 	event->group_leader	= group_leader;
11751 	event->pmu		= NULL;
11752 	event->oncpu		= -1;
11753 
11754 	event->parent		= parent_event;
11755 
11756 	event->ns		= get_pid_ns(task_active_pid_ns(current));
11757 	event->id		= atomic64_inc_return(&perf_event_id);
11758 
11759 	event->state		= PERF_EVENT_STATE_INACTIVE;
11760 
11761 	if (parent_event)
11762 		event->event_caps = parent_event->event_caps;
11763 
11764 	if (task) {
11765 		event->attach_state = PERF_ATTACH_TASK;
11766 		/*
11767 		 * XXX pmu::event_init needs to know what task to account to
11768 		 * and we cannot use the ctx information because we need the
11769 		 * pmu before we get a ctx.
11770 		 */
11771 		event->hw.target = get_task_struct(task);
11772 	}
11773 
11774 	event->clock = &local_clock;
11775 	if (parent_event)
11776 		event->clock = parent_event->clock;
11777 
11778 	if (!overflow_handler && parent_event) {
11779 		overflow_handler = parent_event->overflow_handler;
11780 		context = parent_event->overflow_handler_context;
11781 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
11782 		if (overflow_handler == bpf_overflow_handler) {
11783 			struct bpf_prog *prog = parent_event->prog;
11784 
11785 			bpf_prog_inc(prog);
11786 			event->prog = prog;
11787 			event->orig_overflow_handler =
11788 				parent_event->orig_overflow_handler;
11789 		}
11790 #endif
11791 	}
11792 
11793 	if (overflow_handler) {
11794 		event->overflow_handler	= overflow_handler;
11795 		event->overflow_handler_context = context;
11796 	} else if (is_write_backward(event)){
11797 		event->overflow_handler = perf_event_output_backward;
11798 		event->overflow_handler_context = NULL;
11799 	} else {
11800 		event->overflow_handler = perf_event_output_forward;
11801 		event->overflow_handler_context = NULL;
11802 	}
11803 
11804 	perf_event__state_init(event);
11805 
11806 	pmu = NULL;
11807 
11808 	hwc = &event->hw;
11809 	hwc->sample_period = attr->sample_period;
11810 	if (attr->freq && attr->sample_freq)
11811 		hwc->sample_period = 1;
11812 	hwc->last_period = hwc->sample_period;
11813 
11814 	local64_set(&hwc->period_left, hwc->sample_period);
11815 
11816 	/*
11817 	 * We currently do not support PERF_SAMPLE_READ on inherited events.
11818 	 * See perf_output_read().
11819 	 */
11820 	if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
11821 		goto err_ns;
11822 
11823 	if (!has_branch_stack(event))
11824 		event->attr.branch_sample_type = 0;
11825 
11826 	pmu = perf_init_event(event);
11827 	if (IS_ERR(pmu)) {
11828 		err = PTR_ERR(pmu);
11829 		goto err_ns;
11830 	}
11831 
11832 	/*
11833 	 * Disallow uncore-cgroup events, they don't make sense as the cgroup will
11834 	 * be different on other CPUs in the uncore mask.
11835 	 */
11836 	if (pmu->task_ctx_nr == perf_invalid_context && cgroup_fd != -1) {
11837 		err = -EINVAL;
11838 		goto err_pmu;
11839 	}
11840 
11841 	if (event->attr.aux_output &&
11842 	    !(pmu->capabilities & PERF_PMU_CAP_AUX_OUTPUT)) {
11843 		err = -EOPNOTSUPP;
11844 		goto err_pmu;
11845 	}
11846 
11847 	if (cgroup_fd != -1) {
11848 		err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
11849 		if (err)
11850 			goto err_pmu;
11851 	}
11852 
11853 	err = exclusive_event_init(event);
11854 	if (err)
11855 		goto err_pmu;
11856 
11857 	if (has_addr_filter(event)) {
11858 		event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters,
11859 						    sizeof(struct perf_addr_filter_range),
11860 						    GFP_KERNEL);
11861 		if (!event->addr_filter_ranges) {
11862 			err = -ENOMEM;
11863 			goto err_per_task;
11864 		}
11865 
11866 		/*
11867 		 * Clone the parent's vma offsets: they are valid until exec()
11868 		 * even if the mm is not shared with the parent.
11869 		 */
11870 		if (event->parent) {
11871 			struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
11872 
11873 			raw_spin_lock_irq(&ifh->lock);
11874 			memcpy(event->addr_filter_ranges,
11875 			       event->parent->addr_filter_ranges,
11876 			       pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range));
11877 			raw_spin_unlock_irq(&ifh->lock);
11878 		}
11879 
11880 		/* force hw sync on the address filters */
11881 		event->addr_filters_gen = 1;
11882 	}
11883 
11884 	if (!event->parent) {
11885 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
11886 			err = get_callchain_buffers(attr->sample_max_stack);
11887 			if (err)
11888 				goto err_addr_filters;
11889 		}
11890 	}
11891 
11892 	err = security_perf_event_alloc(event);
11893 	if (err)
11894 		goto err_callchain_buffer;
11895 
11896 	/* symmetric to unaccount_event() in _free_event() */
11897 	account_event(event);
11898 
11899 	return event;
11900 
11901 err_callchain_buffer:
11902 	if (!event->parent) {
11903 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
11904 			put_callchain_buffers();
11905 	}
11906 err_addr_filters:
11907 	kfree(event->addr_filter_ranges);
11908 
11909 err_per_task:
11910 	exclusive_event_destroy(event);
11911 
11912 err_pmu:
11913 	if (is_cgroup_event(event))
11914 		perf_detach_cgroup(event);
11915 	if (event->destroy)
11916 		event->destroy(event);
11917 	module_put(pmu->module);
11918 err_ns:
11919 	if (event->ns)
11920 		put_pid_ns(event->ns);
11921 	if (event->hw.target)
11922 		put_task_struct(event->hw.target);
11923 	kmem_cache_free(perf_event_cache, event);
11924 
11925 	return ERR_PTR(err);
11926 }
11927 
perf_copy_attr(struct perf_event_attr __user * uattr,struct perf_event_attr * attr)11928 static int perf_copy_attr(struct perf_event_attr __user *uattr,
11929 			  struct perf_event_attr *attr)
11930 {
11931 	u32 size;
11932 	int ret;
11933 
11934 	/* Zero the full structure, so that a short copy will be nice. */
11935 	memset(attr, 0, sizeof(*attr));
11936 
11937 	ret = get_user(size, &uattr->size);
11938 	if (ret)
11939 		return ret;
11940 
11941 	/* ABI compatibility quirk: */
11942 	if (!size)
11943 		size = PERF_ATTR_SIZE_VER0;
11944 	if (size < PERF_ATTR_SIZE_VER0 || size > PAGE_SIZE)
11945 		goto err_size;
11946 
11947 	ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
11948 	if (ret) {
11949 		if (ret == -E2BIG)
11950 			goto err_size;
11951 		return ret;
11952 	}
11953 
11954 	attr->size = size;
11955 
11956 	if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3)
11957 		return -EINVAL;
11958 
11959 	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
11960 		return -EINVAL;
11961 
11962 	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
11963 		return -EINVAL;
11964 
11965 	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
11966 		u64 mask = attr->branch_sample_type;
11967 
11968 		/* only using defined bits */
11969 		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
11970 			return -EINVAL;
11971 
11972 		/* at least one branch bit must be set */
11973 		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
11974 			return -EINVAL;
11975 
11976 		/* propagate priv level, when not set for branch */
11977 		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
11978 
11979 			/* exclude_kernel checked on syscall entry */
11980 			if (!attr->exclude_kernel)
11981 				mask |= PERF_SAMPLE_BRANCH_KERNEL;
11982 
11983 			if (!attr->exclude_user)
11984 				mask |= PERF_SAMPLE_BRANCH_USER;
11985 
11986 			if (!attr->exclude_hv)
11987 				mask |= PERF_SAMPLE_BRANCH_HV;
11988 			/*
11989 			 * adjust user setting (for HW filter setup)
11990 			 */
11991 			attr->branch_sample_type = mask;
11992 		}
11993 		/* privileged levels capture (kernel, hv): check permissions */
11994 		if (mask & PERF_SAMPLE_BRANCH_PERM_PLM) {
11995 			ret = perf_allow_kernel(attr);
11996 			if (ret)
11997 				return ret;
11998 		}
11999 	}
12000 
12001 	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
12002 		ret = perf_reg_validate(attr->sample_regs_user);
12003 		if (ret)
12004 			return ret;
12005 	}
12006 
12007 	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
12008 		if (!arch_perf_have_user_stack_dump())
12009 			return -ENOSYS;
12010 
12011 		/*
12012 		 * We have __u32 type for the size, but so far
12013 		 * we can only use __u16 as maximum due to the
12014 		 * __u16 sample size limit.
12015 		 */
12016 		if (attr->sample_stack_user >= USHRT_MAX)
12017 			return -EINVAL;
12018 		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
12019 			return -EINVAL;
12020 	}
12021 
12022 	if (!attr->sample_max_stack)
12023 		attr->sample_max_stack = sysctl_perf_event_max_stack;
12024 
12025 	if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
12026 		ret = perf_reg_validate(attr->sample_regs_intr);
12027 
12028 #ifndef CONFIG_CGROUP_PERF
12029 	if (attr->sample_type & PERF_SAMPLE_CGROUP)
12030 		return -EINVAL;
12031 #endif
12032 	if ((attr->sample_type & PERF_SAMPLE_WEIGHT) &&
12033 	    (attr->sample_type & PERF_SAMPLE_WEIGHT_STRUCT))
12034 		return -EINVAL;
12035 
12036 	if (!attr->inherit && attr->inherit_thread)
12037 		return -EINVAL;
12038 
12039 	if (attr->remove_on_exec && attr->enable_on_exec)
12040 		return -EINVAL;
12041 
12042 	if (attr->sigtrap && !attr->remove_on_exec)
12043 		return -EINVAL;
12044 
12045 out:
12046 	return ret;
12047 
12048 err_size:
12049 	put_user(sizeof(*attr), &uattr->size);
12050 	ret = -E2BIG;
12051 	goto out;
12052 }
12053 
mutex_lock_double(struct mutex * a,struct mutex * b)12054 static void mutex_lock_double(struct mutex *a, struct mutex *b)
12055 {
12056 	if (b < a)
12057 		swap(a, b);
12058 
12059 	mutex_lock(a);
12060 	mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
12061 }
12062 
12063 static int
perf_event_set_output(struct perf_event * event,struct perf_event * output_event)12064 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
12065 {
12066 	struct perf_buffer *rb = NULL;
12067 	int ret = -EINVAL;
12068 
12069 	if (!output_event) {
12070 		mutex_lock(&event->mmap_mutex);
12071 		goto set;
12072 	}
12073 
12074 	/* don't allow circular references */
12075 	if (event == output_event)
12076 		goto out;
12077 
12078 	/*
12079 	 * Don't allow cross-cpu buffers
12080 	 */
12081 	if (output_event->cpu != event->cpu)
12082 		goto out;
12083 
12084 	/*
12085 	 * If its not a per-cpu rb, it must be the same task.
12086 	 */
12087 	if (output_event->cpu == -1 && output_event->hw.target != event->hw.target)
12088 		goto out;
12089 
12090 	/*
12091 	 * Mixing clocks in the same buffer is trouble you don't need.
12092 	 */
12093 	if (output_event->clock != event->clock)
12094 		goto out;
12095 
12096 	/*
12097 	 * Either writing ring buffer from beginning or from end.
12098 	 * Mixing is not allowed.
12099 	 */
12100 	if (is_write_backward(output_event) != is_write_backward(event))
12101 		goto out;
12102 
12103 	/*
12104 	 * If both events generate aux data, they must be on the same PMU
12105 	 */
12106 	if (has_aux(event) && has_aux(output_event) &&
12107 	    event->pmu != output_event->pmu)
12108 		goto out;
12109 
12110 	/*
12111 	 * Hold both mmap_mutex to serialize against perf_mmap_close().  Since
12112 	 * output_event is already on rb->event_list, and the list iteration
12113 	 * restarts after every removal, it is guaranteed this new event is
12114 	 * observed *OR* if output_event is already removed, it's guaranteed we
12115 	 * observe !rb->mmap_count.
12116 	 */
12117 	mutex_lock_double(&event->mmap_mutex, &output_event->mmap_mutex);
12118 set:
12119 	/* Can't redirect output if we've got an active mmap() */
12120 	if (atomic_read(&event->mmap_count))
12121 		goto unlock;
12122 
12123 	if (output_event) {
12124 		/* get the rb we want to redirect to */
12125 		rb = ring_buffer_get(output_event);
12126 		if (!rb)
12127 			goto unlock;
12128 
12129 		/* did we race against perf_mmap_close() */
12130 		if (!atomic_read(&rb->mmap_count)) {
12131 			ring_buffer_put(rb);
12132 			goto unlock;
12133 		}
12134 	}
12135 
12136 	ring_buffer_attach(event, rb);
12137 
12138 	ret = 0;
12139 unlock:
12140 	mutex_unlock(&event->mmap_mutex);
12141 	if (output_event)
12142 		mutex_unlock(&output_event->mmap_mutex);
12143 
12144 out:
12145 	return ret;
12146 }
12147 
perf_event_set_clock(struct perf_event * event,clockid_t clk_id)12148 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
12149 {
12150 	bool nmi_safe = false;
12151 
12152 	switch (clk_id) {
12153 	case CLOCK_MONOTONIC:
12154 		event->clock = &ktime_get_mono_fast_ns;
12155 		nmi_safe = true;
12156 		break;
12157 
12158 	case CLOCK_MONOTONIC_RAW:
12159 		event->clock = &ktime_get_raw_fast_ns;
12160 		nmi_safe = true;
12161 		break;
12162 
12163 	case CLOCK_REALTIME:
12164 		event->clock = &ktime_get_real_ns;
12165 		break;
12166 
12167 	case CLOCK_BOOTTIME:
12168 		event->clock = &ktime_get_boottime_ns;
12169 		break;
12170 
12171 	case CLOCK_TAI:
12172 		event->clock = &ktime_get_clocktai_ns;
12173 		break;
12174 
12175 	default:
12176 		return -EINVAL;
12177 	}
12178 
12179 	if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
12180 		return -EINVAL;
12181 
12182 	return 0;
12183 }
12184 
12185 /*
12186  * Variation on perf_event_ctx_lock_nested(), except we take two context
12187  * mutexes.
12188  */
12189 static struct perf_event_context *
__perf_event_ctx_lock_double(struct perf_event * group_leader,struct perf_event_context * ctx)12190 __perf_event_ctx_lock_double(struct perf_event *group_leader,
12191 			     struct perf_event_context *ctx)
12192 {
12193 	struct perf_event_context *gctx;
12194 
12195 again:
12196 	rcu_read_lock();
12197 	gctx = READ_ONCE(group_leader->ctx);
12198 	if (!refcount_inc_not_zero(&gctx->refcount)) {
12199 		rcu_read_unlock();
12200 		goto again;
12201 	}
12202 	rcu_read_unlock();
12203 
12204 	mutex_lock_double(&gctx->mutex, &ctx->mutex);
12205 
12206 	if (group_leader->ctx != gctx) {
12207 		mutex_unlock(&ctx->mutex);
12208 		mutex_unlock(&gctx->mutex);
12209 		put_ctx(gctx);
12210 		goto again;
12211 	}
12212 
12213 	return gctx;
12214 }
12215 
12216 static bool
perf_check_permission(struct perf_event_attr * attr,struct task_struct * task)12217 perf_check_permission(struct perf_event_attr *attr, struct task_struct *task)
12218 {
12219 	unsigned int ptrace_mode = PTRACE_MODE_READ_REALCREDS;
12220 	bool is_capable = perfmon_capable();
12221 
12222 	if (attr->sigtrap) {
12223 		/*
12224 		 * perf_event_attr::sigtrap sends signals to the other task.
12225 		 * Require the current task to also have CAP_KILL.
12226 		 */
12227 		rcu_read_lock();
12228 		is_capable &= ns_capable(__task_cred(task)->user_ns, CAP_KILL);
12229 		rcu_read_unlock();
12230 
12231 		/*
12232 		 * If the required capabilities aren't available, checks for
12233 		 * ptrace permissions: upgrade to ATTACH, since sending signals
12234 		 * can effectively change the target task.
12235 		 */
12236 		ptrace_mode = PTRACE_MODE_ATTACH_REALCREDS;
12237 	}
12238 
12239 	/*
12240 	 * Preserve ptrace permission check for backwards compatibility. The
12241 	 * ptrace check also includes checks that the current task and other
12242 	 * task have matching uids, and is therefore not done here explicitly.
12243 	 */
12244 	return is_capable || ptrace_may_access(task, ptrace_mode);
12245 }
12246 
12247 /**
12248  * sys_perf_event_open - open a performance event, associate it to a task/cpu
12249  *
12250  * @attr_uptr:	event_id type attributes for monitoring/sampling
12251  * @pid:		target pid
12252  * @cpu:		target cpu
12253  * @group_fd:		group leader event fd
12254  * @flags:		perf event open flags
12255  */
SYSCALL_DEFINE5(perf_event_open,struct perf_event_attr __user *,attr_uptr,pid_t,pid,int,cpu,int,group_fd,unsigned long,flags)12256 SYSCALL_DEFINE5(perf_event_open,
12257 		struct perf_event_attr __user *, attr_uptr,
12258 		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
12259 {
12260 	struct perf_event *group_leader = NULL, *output_event = NULL;
12261 	struct perf_event *event, *sibling;
12262 	struct perf_event_attr attr;
12263 	struct perf_event_context *ctx, *gctx;
12264 	struct file *event_file = NULL;
12265 	struct fd group = {NULL, 0};
12266 	struct task_struct *task = NULL;
12267 	struct pmu *pmu;
12268 	int event_fd;
12269 	int move_group = 0;
12270 	int err;
12271 	int f_flags = O_RDWR;
12272 	int cgroup_fd = -1;
12273 
12274 	/* for future expandability... */
12275 	if (flags & ~PERF_FLAG_ALL)
12276 		return -EINVAL;
12277 
12278 	err = perf_copy_attr(attr_uptr, &attr);
12279 	if (err)
12280 		return err;
12281 
12282 	/* Do we allow access to perf_event_open(2) ? */
12283 	err = security_perf_event_open(&attr, PERF_SECURITY_OPEN);
12284 	if (err)
12285 		return err;
12286 
12287 	if (!attr.exclude_kernel) {
12288 		err = perf_allow_kernel(&attr);
12289 		if (err)
12290 			return err;
12291 	}
12292 
12293 	if (attr.namespaces) {
12294 		if (!perfmon_capable())
12295 			return -EACCES;
12296 	}
12297 
12298 	if (attr.freq) {
12299 		if (attr.sample_freq > sysctl_perf_event_sample_rate)
12300 			return -EINVAL;
12301 	} else {
12302 		if (attr.sample_period & (1ULL << 63))
12303 			return -EINVAL;
12304 	}
12305 
12306 	/* Only privileged users can get physical addresses */
12307 	if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR)) {
12308 		err = perf_allow_kernel(&attr);
12309 		if (err)
12310 			return err;
12311 	}
12312 
12313 	/* REGS_INTR can leak data, lockdown must prevent this */
12314 	if (attr.sample_type & PERF_SAMPLE_REGS_INTR) {
12315 		err = security_locked_down(LOCKDOWN_PERF);
12316 		if (err)
12317 			return err;
12318 	}
12319 
12320 	/*
12321 	 * In cgroup mode, the pid argument is used to pass the fd
12322 	 * opened to the cgroup directory in cgroupfs. The cpu argument
12323 	 * designates the cpu on which to monitor threads from that
12324 	 * cgroup.
12325 	 */
12326 	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
12327 		return -EINVAL;
12328 
12329 	if (flags & PERF_FLAG_FD_CLOEXEC)
12330 		f_flags |= O_CLOEXEC;
12331 
12332 	event_fd = get_unused_fd_flags(f_flags);
12333 	if (event_fd < 0)
12334 		return event_fd;
12335 
12336 	if (group_fd != -1) {
12337 		err = perf_fget_light(group_fd, &group);
12338 		if (err)
12339 			goto err_fd;
12340 		group_leader = group.file->private_data;
12341 		if (flags & PERF_FLAG_FD_OUTPUT)
12342 			output_event = group_leader;
12343 		if (flags & PERF_FLAG_FD_NO_GROUP)
12344 			group_leader = NULL;
12345 	}
12346 
12347 	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
12348 		task = find_lively_task_by_vpid(pid);
12349 		if (IS_ERR(task)) {
12350 			err = PTR_ERR(task);
12351 			goto err_group_fd;
12352 		}
12353 	}
12354 
12355 	if (task && group_leader &&
12356 	    group_leader->attr.inherit != attr.inherit) {
12357 		err = -EINVAL;
12358 		goto err_task;
12359 	}
12360 
12361 	if (flags & PERF_FLAG_PID_CGROUP)
12362 		cgroup_fd = pid;
12363 
12364 	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
12365 				 NULL, NULL, cgroup_fd);
12366 	if (IS_ERR(event)) {
12367 		err = PTR_ERR(event);
12368 		goto err_task;
12369 	}
12370 
12371 	if (is_sampling_event(event)) {
12372 		if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
12373 			err = -EOPNOTSUPP;
12374 			goto err_alloc;
12375 		}
12376 	}
12377 
12378 	/*
12379 	 * Special case software events and allow them to be part of
12380 	 * any hardware group.
12381 	 */
12382 	pmu = event->pmu;
12383 
12384 	if (attr.use_clockid) {
12385 		err = perf_event_set_clock(event, attr.clockid);
12386 		if (err)
12387 			goto err_alloc;
12388 	}
12389 
12390 	if (pmu->task_ctx_nr == perf_sw_context)
12391 		event->event_caps |= PERF_EV_CAP_SOFTWARE;
12392 
12393 	if (group_leader) {
12394 		if (is_software_event(event) &&
12395 		    !in_software_context(group_leader)) {
12396 			/*
12397 			 * If the event is a sw event, but the group_leader
12398 			 * is on hw context.
12399 			 *
12400 			 * Allow the addition of software events to hw
12401 			 * groups, this is safe because software events
12402 			 * never fail to schedule.
12403 			 */
12404 			pmu = group_leader->ctx->pmu;
12405 		} else if (!is_software_event(event) &&
12406 			   is_software_event(group_leader) &&
12407 			   (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
12408 			/*
12409 			 * In case the group is a pure software group, and we
12410 			 * try to add a hardware event, move the whole group to
12411 			 * the hardware context.
12412 			 */
12413 			move_group = 1;
12414 		}
12415 	}
12416 
12417 	/*
12418 	 * Get the target context (task or percpu):
12419 	 */
12420 	ctx = find_get_context(pmu, task, event);
12421 	if (IS_ERR(ctx)) {
12422 		err = PTR_ERR(ctx);
12423 		goto err_alloc;
12424 	}
12425 
12426 	/*
12427 	 * Look up the group leader (we will attach this event to it):
12428 	 */
12429 	if (group_leader) {
12430 		err = -EINVAL;
12431 
12432 		/*
12433 		 * Do not allow a recursive hierarchy (this new sibling
12434 		 * becoming part of another group-sibling):
12435 		 */
12436 		if (group_leader->group_leader != group_leader)
12437 			goto err_context;
12438 
12439 		/* All events in a group should have the same clock */
12440 		if (group_leader->clock != event->clock)
12441 			goto err_context;
12442 
12443 		/*
12444 		 * Make sure we're both events for the same CPU;
12445 		 * grouping events for different CPUs is broken; since
12446 		 * you can never concurrently schedule them anyhow.
12447 		 */
12448 		if (group_leader->cpu != event->cpu)
12449 			goto err_context;
12450 
12451 		/*
12452 		 * Make sure we're both on the same task, or both
12453 		 * per-CPU events.
12454 		 */
12455 		if (group_leader->ctx->task != ctx->task)
12456 			goto err_context;
12457 
12458 		/*
12459 		 * Do not allow to attach to a group in a different task
12460 		 * or CPU context. If we're moving SW events, we'll fix
12461 		 * this up later, so allow that.
12462 		 *
12463 		 * Racy, not holding group_leader->ctx->mutex, see comment with
12464 		 * perf_event_ctx_lock().
12465 		 */
12466 		if (!move_group && group_leader->ctx != ctx)
12467 			goto err_context;
12468 
12469 		/*
12470 		 * Only a group leader can be exclusive or pinned
12471 		 */
12472 		if (attr.exclusive || attr.pinned)
12473 			goto err_context;
12474 	}
12475 
12476 	if (output_event) {
12477 		err = perf_event_set_output(event, output_event);
12478 		if (err)
12479 			goto err_context;
12480 	}
12481 
12482 	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
12483 					f_flags);
12484 	if (IS_ERR(event_file)) {
12485 		err = PTR_ERR(event_file);
12486 		event_file = NULL;
12487 		goto err_context;
12488 	}
12489 
12490 	if (task) {
12491 		err = down_read_interruptible(&task->signal->exec_update_lock);
12492 		if (err)
12493 			goto err_file;
12494 
12495 		/*
12496 		 * We must hold exec_update_lock across this and any potential
12497 		 * perf_install_in_context() call for this new event to
12498 		 * serialize against exec() altering our credentials (and the
12499 		 * perf_event_exit_task() that could imply).
12500 		 */
12501 		err = -EACCES;
12502 		if (!perf_check_permission(&attr, task))
12503 			goto err_cred;
12504 	}
12505 
12506 	if (move_group) {
12507 		gctx = __perf_event_ctx_lock_double(group_leader, ctx);
12508 
12509 		if (gctx->task == TASK_TOMBSTONE) {
12510 			err = -ESRCH;
12511 			goto err_locked;
12512 		}
12513 
12514 		/*
12515 		 * Check if we raced against another sys_perf_event_open() call
12516 		 * moving the software group underneath us.
12517 		 */
12518 		if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
12519 			/*
12520 			 * If someone moved the group out from under us, check
12521 			 * if this new event wound up on the same ctx, if so
12522 			 * its the regular !move_group case, otherwise fail.
12523 			 */
12524 			if (gctx != ctx) {
12525 				err = -EINVAL;
12526 				goto err_locked;
12527 			} else {
12528 				perf_event_ctx_unlock(group_leader, gctx);
12529 				move_group = 0;
12530 				goto not_move_group;
12531 			}
12532 		}
12533 
12534 		/*
12535 		 * Failure to create exclusive events returns -EBUSY.
12536 		 */
12537 		err = -EBUSY;
12538 		if (!exclusive_event_installable(group_leader, ctx))
12539 			goto err_locked;
12540 
12541 		for_each_sibling_event(sibling, group_leader) {
12542 			if (!exclusive_event_installable(sibling, ctx))
12543 				goto err_locked;
12544 		}
12545 	} else {
12546 		mutex_lock(&ctx->mutex);
12547 
12548 		/*
12549 		 * Now that we hold ctx->lock, (re)validate group_leader->ctx == ctx,
12550 		 * see the group_leader && !move_group test earlier.
12551 		 */
12552 		if (group_leader && group_leader->ctx != ctx) {
12553 			err = -EINVAL;
12554 			goto err_locked;
12555 		}
12556 	}
12557 not_move_group:
12558 
12559 	if (ctx->task == TASK_TOMBSTONE) {
12560 		err = -ESRCH;
12561 		goto err_locked;
12562 	}
12563 
12564 	if (!perf_event_validate_size(event)) {
12565 		err = -E2BIG;
12566 		goto err_locked;
12567 	}
12568 
12569 	if (!task) {
12570 		/*
12571 		 * Check if the @cpu we're creating an event for is online.
12572 		 *
12573 		 * We use the perf_cpu_context::ctx::mutex to serialize against
12574 		 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
12575 		 */
12576 		struct perf_cpu_context *cpuctx =
12577 			container_of(ctx, struct perf_cpu_context, ctx);
12578 
12579 		if (!cpuctx->online) {
12580 			err = -ENODEV;
12581 			goto err_locked;
12582 		}
12583 	}
12584 
12585 	if (perf_need_aux_event(event) && !perf_get_aux_event(event, group_leader)) {
12586 		err = -EINVAL;
12587 		goto err_locked;
12588 	}
12589 
12590 	/*
12591 	 * Must be under the same ctx::mutex as perf_install_in_context(),
12592 	 * because we need to serialize with concurrent event creation.
12593 	 */
12594 	if (!exclusive_event_installable(event, ctx)) {
12595 		err = -EBUSY;
12596 		goto err_locked;
12597 	}
12598 
12599 	WARN_ON_ONCE(ctx->parent_ctx);
12600 
12601 	/*
12602 	 * This is the point on no return; we cannot fail hereafter. This is
12603 	 * where we start modifying current state.
12604 	 */
12605 
12606 	if (move_group) {
12607 		/*
12608 		 * See perf_event_ctx_lock() for comments on the details
12609 		 * of swizzling perf_event::ctx.
12610 		 */
12611 		perf_remove_from_context(group_leader, 0);
12612 		put_ctx(gctx);
12613 
12614 		for_each_sibling_event(sibling, group_leader) {
12615 			perf_remove_from_context(sibling, 0);
12616 			put_ctx(gctx);
12617 		}
12618 
12619 		/*
12620 		 * Wait for everybody to stop referencing the events through
12621 		 * the old lists, before installing it on new lists.
12622 		 */
12623 		synchronize_rcu();
12624 
12625 		/*
12626 		 * Install the group siblings before the group leader.
12627 		 *
12628 		 * Because a group leader will try and install the entire group
12629 		 * (through the sibling list, which is still in-tact), we can
12630 		 * end up with siblings installed in the wrong context.
12631 		 *
12632 		 * By installing siblings first we NO-OP because they're not
12633 		 * reachable through the group lists.
12634 		 */
12635 		for_each_sibling_event(sibling, group_leader) {
12636 			perf_event__state_init(sibling);
12637 			perf_install_in_context(ctx, sibling, sibling->cpu);
12638 			get_ctx(ctx);
12639 		}
12640 
12641 		/*
12642 		 * Removing from the context ends up with disabled
12643 		 * event. What we want here is event in the initial
12644 		 * startup state, ready to be add into new context.
12645 		 */
12646 		perf_event__state_init(group_leader);
12647 		perf_install_in_context(ctx, group_leader, group_leader->cpu);
12648 		get_ctx(ctx);
12649 	}
12650 
12651 	/*
12652 	 * Precalculate sample_data sizes; do while holding ctx::mutex such
12653 	 * that we're serialized against further additions and before
12654 	 * perf_install_in_context() which is the point the event is active and
12655 	 * can use these values.
12656 	 */
12657 	perf_event__header_size(event);
12658 	perf_event__id_header_size(event);
12659 
12660 	event->owner = current;
12661 
12662 	perf_install_in_context(ctx, event, event->cpu);
12663 	perf_unpin_context(ctx);
12664 
12665 	if (move_group)
12666 		perf_event_ctx_unlock(group_leader, gctx);
12667 	mutex_unlock(&ctx->mutex);
12668 
12669 	if (task) {
12670 		up_read(&task->signal->exec_update_lock);
12671 		put_task_struct(task);
12672 	}
12673 
12674 	mutex_lock(&current->perf_event_mutex);
12675 	list_add_tail(&event->owner_entry, &current->perf_event_list);
12676 	mutex_unlock(&current->perf_event_mutex);
12677 
12678 	/*
12679 	 * Drop the reference on the group_event after placing the
12680 	 * new event on the sibling_list. This ensures destruction
12681 	 * of the group leader will find the pointer to itself in
12682 	 * perf_group_detach().
12683 	 */
12684 	fdput(group);
12685 	fd_install(event_fd, event_file);
12686 	return event_fd;
12687 
12688 err_locked:
12689 	if (move_group)
12690 		perf_event_ctx_unlock(group_leader, gctx);
12691 	mutex_unlock(&ctx->mutex);
12692 err_cred:
12693 	if (task)
12694 		up_read(&task->signal->exec_update_lock);
12695 err_file:
12696 	fput(event_file);
12697 err_context:
12698 	perf_unpin_context(ctx);
12699 	put_ctx(ctx);
12700 err_alloc:
12701 	/*
12702 	 * If event_file is set, the fput() above will have called ->release()
12703 	 * and that will take care of freeing the event.
12704 	 */
12705 	if (!event_file)
12706 		free_event(event);
12707 err_task:
12708 	if (task)
12709 		put_task_struct(task);
12710 err_group_fd:
12711 	fdput(group);
12712 err_fd:
12713 	put_unused_fd(event_fd);
12714 	return err;
12715 }
12716 
12717 /**
12718  * perf_event_create_kernel_counter
12719  *
12720  * @attr: attributes of the counter to create
12721  * @cpu: cpu in which the counter is bound
12722  * @task: task to profile (NULL for percpu)
12723  * @overflow_handler: callback to trigger when we hit the event
12724  * @context: context data could be used in overflow_handler callback
12725  */
12726 struct perf_event *
perf_event_create_kernel_counter(struct perf_event_attr * attr,int cpu,struct task_struct * task,perf_overflow_handler_t overflow_handler,void * context)12727 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
12728 				 struct task_struct *task,
12729 				 perf_overflow_handler_t overflow_handler,
12730 				 void *context)
12731 {
12732 	struct perf_event_context *ctx;
12733 	struct perf_event *event;
12734 	int err;
12735 
12736 	/*
12737 	 * Grouping is not supported for kernel events, neither is 'AUX',
12738 	 * make sure the caller's intentions are adjusted.
12739 	 */
12740 	if (attr->aux_output)
12741 		return ERR_PTR(-EINVAL);
12742 
12743 	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
12744 				 overflow_handler, context, -1);
12745 	if (IS_ERR(event)) {
12746 		err = PTR_ERR(event);
12747 		goto err;
12748 	}
12749 
12750 	/* Mark owner so we could distinguish it from user events. */
12751 	event->owner = TASK_TOMBSTONE;
12752 
12753 	/*
12754 	 * Get the target context (task or percpu):
12755 	 */
12756 	ctx = find_get_context(event->pmu, task, event);
12757 	if (IS_ERR(ctx)) {
12758 		err = PTR_ERR(ctx);
12759 		goto err_free;
12760 	}
12761 
12762 	WARN_ON_ONCE(ctx->parent_ctx);
12763 	mutex_lock(&ctx->mutex);
12764 	if (ctx->task == TASK_TOMBSTONE) {
12765 		err = -ESRCH;
12766 		goto err_unlock;
12767 	}
12768 
12769 	if (!task) {
12770 		/*
12771 		 * Check if the @cpu we're creating an event for is online.
12772 		 *
12773 		 * We use the perf_cpu_context::ctx::mutex to serialize against
12774 		 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
12775 		 */
12776 		struct perf_cpu_context *cpuctx =
12777 			container_of(ctx, struct perf_cpu_context, ctx);
12778 		if (!cpuctx->online) {
12779 			err = -ENODEV;
12780 			goto err_unlock;
12781 		}
12782 	}
12783 
12784 	if (!exclusive_event_installable(event, ctx)) {
12785 		err = -EBUSY;
12786 		goto err_unlock;
12787 	}
12788 
12789 	perf_install_in_context(ctx, event, event->cpu);
12790 	perf_unpin_context(ctx);
12791 	mutex_unlock(&ctx->mutex);
12792 
12793 	return event;
12794 
12795 err_unlock:
12796 	mutex_unlock(&ctx->mutex);
12797 	perf_unpin_context(ctx);
12798 	put_ctx(ctx);
12799 err_free:
12800 	free_event(event);
12801 err:
12802 	return ERR_PTR(err);
12803 }
12804 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
12805 
perf_pmu_migrate_context(struct pmu * pmu,int src_cpu,int dst_cpu)12806 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
12807 {
12808 	struct perf_event_context *src_ctx;
12809 	struct perf_event_context *dst_ctx;
12810 	struct perf_event *event, *tmp;
12811 	LIST_HEAD(events);
12812 
12813 	src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
12814 	dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
12815 
12816 	/*
12817 	 * See perf_event_ctx_lock() for comments on the details
12818 	 * of swizzling perf_event::ctx.
12819 	 */
12820 	mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
12821 	list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
12822 				 event_entry) {
12823 		perf_remove_from_context(event, 0);
12824 		unaccount_event_cpu(event, src_cpu);
12825 		put_ctx(src_ctx);
12826 		list_add(&event->migrate_entry, &events);
12827 	}
12828 
12829 	/*
12830 	 * Wait for the events to quiesce before re-instating them.
12831 	 */
12832 	synchronize_rcu();
12833 
12834 	/*
12835 	 * Re-instate events in 2 passes.
12836 	 *
12837 	 * Skip over group leaders and only install siblings on this first
12838 	 * pass, siblings will not get enabled without a leader, however a
12839 	 * leader will enable its siblings, even if those are still on the old
12840 	 * context.
12841 	 */
12842 	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
12843 		if (event->group_leader == event)
12844 			continue;
12845 
12846 		list_del(&event->migrate_entry);
12847 		if (event->state >= PERF_EVENT_STATE_OFF)
12848 			event->state = PERF_EVENT_STATE_INACTIVE;
12849 		account_event_cpu(event, dst_cpu);
12850 		perf_install_in_context(dst_ctx, event, dst_cpu);
12851 		get_ctx(dst_ctx);
12852 	}
12853 
12854 	/*
12855 	 * Once all the siblings are setup properly, install the group leaders
12856 	 * to make it go.
12857 	 */
12858 	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
12859 		list_del(&event->migrate_entry);
12860 		if (event->state >= PERF_EVENT_STATE_OFF)
12861 			event->state = PERF_EVENT_STATE_INACTIVE;
12862 		account_event_cpu(event, dst_cpu);
12863 		perf_install_in_context(dst_ctx, event, dst_cpu);
12864 		get_ctx(dst_ctx);
12865 	}
12866 	mutex_unlock(&dst_ctx->mutex);
12867 	mutex_unlock(&src_ctx->mutex);
12868 }
12869 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
12870 
sync_child_event(struct perf_event * child_event)12871 static void sync_child_event(struct perf_event *child_event)
12872 {
12873 	struct perf_event *parent_event = child_event->parent;
12874 	u64 child_val;
12875 
12876 	if (child_event->attr.inherit_stat) {
12877 		struct task_struct *task = child_event->ctx->task;
12878 
12879 		if (task && task != TASK_TOMBSTONE)
12880 			perf_event_read_event(child_event, task);
12881 	}
12882 
12883 	child_val = perf_event_count(child_event);
12884 
12885 	/*
12886 	 * Add back the child's count to the parent's count:
12887 	 */
12888 	atomic64_add(child_val, &parent_event->child_count);
12889 	atomic64_add(child_event->total_time_enabled,
12890 		     &parent_event->child_total_time_enabled);
12891 	atomic64_add(child_event->total_time_running,
12892 		     &parent_event->child_total_time_running);
12893 }
12894 
12895 static void
perf_event_exit_event(struct perf_event * event,struct perf_event_context * ctx)12896 perf_event_exit_event(struct perf_event *event, struct perf_event_context *ctx)
12897 {
12898 	struct perf_event *parent_event = event->parent;
12899 	unsigned long detach_flags = 0;
12900 
12901 	if (parent_event) {
12902 		/*
12903 		 * Do not destroy the 'original' grouping; because of the
12904 		 * context switch optimization the original events could've
12905 		 * ended up in a random child task.
12906 		 *
12907 		 * If we were to destroy the original group, all group related
12908 		 * operations would cease to function properly after this
12909 		 * random child dies.
12910 		 *
12911 		 * Do destroy all inherited groups, we don't care about those
12912 		 * and being thorough is better.
12913 		 */
12914 		detach_flags = DETACH_GROUP | DETACH_CHILD;
12915 		mutex_lock(&parent_event->child_mutex);
12916 	}
12917 
12918 	perf_remove_from_context(event, detach_flags);
12919 
12920 	raw_spin_lock_irq(&ctx->lock);
12921 	if (event->state > PERF_EVENT_STATE_EXIT)
12922 		perf_event_set_state(event, PERF_EVENT_STATE_EXIT);
12923 	raw_spin_unlock_irq(&ctx->lock);
12924 
12925 	/*
12926 	 * Child events can be freed.
12927 	 */
12928 	if (parent_event) {
12929 		mutex_unlock(&parent_event->child_mutex);
12930 		/*
12931 		 * Kick perf_poll() for is_event_hup();
12932 		 */
12933 		perf_event_wakeup(parent_event);
12934 		free_event(event);
12935 		put_event(parent_event);
12936 		return;
12937 	}
12938 
12939 	/*
12940 	 * Parent events are governed by their filedesc, retain them.
12941 	 */
12942 	perf_event_wakeup(event);
12943 }
12944 
perf_event_exit_task_context(struct task_struct * child,int ctxn)12945 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
12946 {
12947 	struct perf_event_context *child_ctx, *clone_ctx = NULL;
12948 	struct perf_event *child_event, *next;
12949 
12950 	WARN_ON_ONCE(child != current);
12951 
12952 	child_ctx = perf_pin_task_context(child, ctxn);
12953 	if (!child_ctx)
12954 		return;
12955 
12956 	/*
12957 	 * In order to reduce the amount of tricky in ctx tear-down, we hold
12958 	 * ctx::mutex over the entire thing. This serializes against almost
12959 	 * everything that wants to access the ctx.
12960 	 *
12961 	 * The exception is sys_perf_event_open() /
12962 	 * perf_event_create_kernel_count() which does find_get_context()
12963 	 * without ctx::mutex (it cannot because of the move_group double mutex
12964 	 * lock thing). See the comments in perf_install_in_context().
12965 	 */
12966 	mutex_lock(&child_ctx->mutex);
12967 
12968 	/*
12969 	 * In a single ctx::lock section, de-schedule the events and detach the
12970 	 * context from the task such that we cannot ever get it scheduled back
12971 	 * in.
12972 	 */
12973 	raw_spin_lock_irq(&child_ctx->lock);
12974 	task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL);
12975 
12976 	/*
12977 	 * Now that the context is inactive, destroy the task <-> ctx relation
12978 	 * and mark the context dead.
12979 	 */
12980 	RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
12981 	put_ctx(child_ctx); /* cannot be last */
12982 	WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
12983 	put_task_struct(current); /* cannot be last */
12984 
12985 	clone_ctx = unclone_ctx(child_ctx);
12986 	raw_spin_unlock_irq(&child_ctx->lock);
12987 
12988 	if (clone_ctx)
12989 		put_ctx(clone_ctx);
12990 
12991 	/*
12992 	 * Report the task dead after unscheduling the events so that we
12993 	 * won't get any samples after PERF_RECORD_EXIT. We can however still
12994 	 * get a few PERF_RECORD_READ events.
12995 	 */
12996 	perf_event_task(child, child_ctx, 0);
12997 
12998 	list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
12999 		perf_event_exit_event(child_event, child_ctx);
13000 
13001 	mutex_unlock(&child_ctx->mutex);
13002 
13003 	put_ctx(child_ctx);
13004 }
13005 
13006 /*
13007  * When a child task exits, feed back event values to parent events.
13008  *
13009  * Can be called with exec_update_lock held when called from
13010  * setup_new_exec().
13011  */
perf_event_exit_task(struct task_struct * child)13012 void perf_event_exit_task(struct task_struct *child)
13013 {
13014 	struct perf_event *event, *tmp;
13015 	int ctxn;
13016 
13017 	mutex_lock(&child->perf_event_mutex);
13018 	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
13019 				 owner_entry) {
13020 		list_del_init(&event->owner_entry);
13021 
13022 		/*
13023 		 * Ensure the list deletion is visible before we clear
13024 		 * the owner, closes a race against perf_release() where
13025 		 * we need to serialize on the owner->perf_event_mutex.
13026 		 */
13027 		smp_store_release(&event->owner, NULL);
13028 	}
13029 	mutex_unlock(&child->perf_event_mutex);
13030 
13031 	for_each_task_context_nr(ctxn)
13032 		perf_event_exit_task_context(child, ctxn);
13033 
13034 	/*
13035 	 * The perf_event_exit_task_context calls perf_event_task
13036 	 * with child's task_ctx, which generates EXIT events for
13037 	 * child contexts and sets child->perf_event_ctxp[] to NULL.
13038 	 * At this point we need to send EXIT events to cpu contexts.
13039 	 */
13040 	perf_event_task(child, NULL, 0);
13041 }
13042 
perf_free_event(struct perf_event * event,struct perf_event_context * ctx)13043 static void perf_free_event(struct perf_event *event,
13044 			    struct perf_event_context *ctx)
13045 {
13046 	struct perf_event *parent = event->parent;
13047 
13048 	if (WARN_ON_ONCE(!parent))
13049 		return;
13050 
13051 	mutex_lock(&parent->child_mutex);
13052 	list_del_init(&event->child_list);
13053 	mutex_unlock(&parent->child_mutex);
13054 
13055 	put_event(parent);
13056 
13057 	raw_spin_lock_irq(&ctx->lock);
13058 	perf_group_detach(event);
13059 	list_del_event(event, ctx);
13060 	raw_spin_unlock_irq(&ctx->lock);
13061 	free_event(event);
13062 }
13063 
13064 /*
13065  * Free a context as created by inheritance by perf_event_init_task() below,
13066  * used by fork() in case of fail.
13067  *
13068  * Even though the task has never lived, the context and events have been
13069  * exposed through the child_list, so we must take care tearing it all down.
13070  */
perf_event_free_task(struct task_struct * task)13071 void perf_event_free_task(struct task_struct *task)
13072 {
13073 	struct perf_event_context *ctx;
13074 	struct perf_event *event, *tmp;
13075 	int ctxn;
13076 
13077 	for_each_task_context_nr(ctxn) {
13078 		ctx = task->perf_event_ctxp[ctxn];
13079 		if (!ctx)
13080 			continue;
13081 
13082 		mutex_lock(&ctx->mutex);
13083 		raw_spin_lock_irq(&ctx->lock);
13084 		/*
13085 		 * Destroy the task <-> ctx relation and mark the context dead.
13086 		 *
13087 		 * This is important because even though the task hasn't been
13088 		 * exposed yet the context has been (through child_list).
13089 		 */
13090 		RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL);
13091 		WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
13092 		put_task_struct(task); /* cannot be last */
13093 		raw_spin_unlock_irq(&ctx->lock);
13094 
13095 		list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
13096 			perf_free_event(event, ctx);
13097 
13098 		mutex_unlock(&ctx->mutex);
13099 
13100 		/*
13101 		 * perf_event_release_kernel() could've stolen some of our
13102 		 * child events and still have them on its free_list. In that
13103 		 * case we must wait for these events to have been freed (in
13104 		 * particular all their references to this task must've been
13105 		 * dropped).
13106 		 *
13107 		 * Without this copy_process() will unconditionally free this
13108 		 * task (irrespective of its reference count) and
13109 		 * _free_event()'s put_task_struct(event->hw.target) will be a
13110 		 * use-after-free.
13111 		 *
13112 		 * Wait for all events to drop their context reference.
13113 		 */
13114 		wait_var_event(&ctx->refcount, refcount_read(&ctx->refcount) == 1);
13115 		put_ctx(ctx); /* must be last */
13116 	}
13117 }
13118 
perf_event_delayed_put(struct task_struct * task)13119 void perf_event_delayed_put(struct task_struct *task)
13120 {
13121 	int ctxn;
13122 
13123 	for_each_task_context_nr(ctxn)
13124 		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
13125 }
13126 
perf_event_get(unsigned int fd)13127 struct file *perf_event_get(unsigned int fd)
13128 {
13129 	struct file *file = fget(fd);
13130 	if (!file)
13131 		return ERR_PTR(-EBADF);
13132 
13133 	if (file->f_op != &perf_fops) {
13134 		fput(file);
13135 		return ERR_PTR(-EBADF);
13136 	}
13137 
13138 	return file;
13139 }
13140 
perf_get_event(struct file * file)13141 const struct perf_event *perf_get_event(struct file *file)
13142 {
13143 	if (file->f_op != &perf_fops)
13144 		return ERR_PTR(-EINVAL);
13145 
13146 	return file->private_data;
13147 }
13148 
perf_event_attrs(struct perf_event * event)13149 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
13150 {
13151 	if (!event)
13152 		return ERR_PTR(-EINVAL);
13153 
13154 	return &event->attr;
13155 }
13156 
13157 /*
13158  * Inherit an event from parent task to child task.
13159  *
13160  * Returns:
13161  *  - valid pointer on success
13162  *  - NULL for orphaned events
13163  *  - IS_ERR() on error
13164  */
13165 static struct perf_event *
inherit_event(struct perf_event * parent_event,struct task_struct * parent,struct perf_event_context * parent_ctx,struct task_struct * child,struct perf_event * group_leader,struct perf_event_context * child_ctx)13166 inherit_event(struct perf_event *parent_event,
13167 	      struct task_struct *parent,
13168 	      struct perf_event_context *parent_ctx,
13169 	      struct task_struct *child,
13170 	      struct perf_event *group_leader,
13171 	      struct perf_event_context *child_ctx)
13172 {
13173 	enum perf_event_state parent_state = parent_event->state;
13174 	struct perf_event *child_event;
13175 	unsigned long flags;
13176 
13177 	/*
13178 	 * Instead of creating recursive hierarchies of events,
13179 	 * we link inherited events back to the original parent,
13180 	 * which has a filp for sure, which we use as the reference
13181 	 * count:
13182 	 */
13183 	if (parent_event->parent)
13184 		parent_event = parent_event->parent;
13185 
13186 	child_event = perf_event_alloc(&parent_event->attr,
13187 					   parent_event->cpu,
13188 					   child,
13189 					   group_leader, parent_event,
13190 					   NULL, NULL, -1);
13191 	if (IS_ERR(child_event))
13192 		return child_event;
13193 
13194 
13195 	if ((child_event->attach_state & PERF_ATTACH_TASK_DATA) &&
13196 	    !child_ctx->task_ctx_data) {
13197 		struct pmu *pmu = child_event->pmu;
13198 
13199 		child_ctx->task_ctx_data = alloc_task_ctx_data(pmu);
13200 		if (!child_ctx->task_ctx_data) {
13201 			free_event(child_event);
13202 			return ERR_PTR(-ENOMEM);
13203 		}
13204 	}
13205 
13206 	/*
13207 	 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
13208 	 * must be under the same lock in order to serialize against
13209 	 * perf_event_release_kernel(), such that either we must observe
13210 	 * is_orphaned_event() or they will observe us on the child_list.
13211 	 */
13212 	mutex_lock(&parent_event->child_mutex);
13213 	if (is_orphaned_event(parent_event) ||
13214 	    !atomic_long_inc_not_zero(&parent_event->refcount)) {
13215 		mutex_unlock(&parent_event->child_mutex);
13216 		/* task_ctx_data is freed with child_ctx */
13217 		free_event(child_event);
13218 		return NULL;
13219 	}
13220 
13221 	get_ctx(child_ctx);
13222 
13223 	/*
13224 	 * Make the child state follow the state of the parent event,
13225 	 * not its attr.disabled bit.  We hold the parent's mutex,
13226 	 * so we won't race with perf_event_{en, dis}able_family.
13227 	 */
13228 	if (parent_state >= PERF_EVENT_STATE_INACTIVE)
13229 		child_event->state = PERF_EVENT_STATE_INACTIVE;
13230 	else
13231 		child_event->state = PERF_EVENT_STATE_OFF;
13232 
13233 	if (parent_event->attr.freq) {
13234 		u64 sample_period = parent_event->hw.sample_period;
13235 		struct hw_perf_event *hwc = &child_event->hw;
13236 
13237 		hwc->sample_period = sample_period;
13238 		hwc->last_period   = sample_period;
13239 
13240 		local64_set(&hwc->period_left, sample_period);
13241 	}
13242 
13243 	child_event->ctx = child_ctx;
13244 	child_event->overflow_handler = parent_event->overflow_handler;
13245 	child_event->overflow_handler_context
13246 		= parent_event->overflow_handler_context;
13247 
13248 	/*
13249 	 * Precalculate sample_data sizes
13250 	 */
13251 	perf_event__header_size(child_event);
13252 	perf_event__id_header_size(child_event);
13253 
13254 	/*
13255 	 * Link it up in the child's context:
13256 	 */
13257 	raw_spin_lock_irqsave(&child_ctx->lock, flags);
13258 	add_event_to_ctx(child_event, child_ctx);
13259 	child_event->attach_state |= PERF_ATTACH_CHILD;
13260 	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
13261 
13262 	/*
13263 	 * Link this into the parent event's child list
13264 	 */
13265 	list_add_tail(&child_event->child_list, &parent_event->child_list);
13266 	mutex_unlock(&parent_event->child_mutex);
13267 
13268 	return child_event;
13269 }
13270 
13271 /*
13272  * Inherits an event group.
13273  *
13274  * This will quietly suppress orphaned events; !inherit_event() is not an error.
13275  * This matches with perf_event_release_kernel() removing all child events.
13276  *
13277  * Returns:
13278  *  - 0 on success
13279  *  - <0 on error
13280  */
inherit_group(struct perf_event * parent_event,struct task_struct * parent,struct perf_event_context * parent_ctx,struct task_struct * child,struct perf_event_context * child_ctx)13281 static int inherit_group(struct perf_event *parent_event,
13282 	      struct task_struct *parent,
13283 	      struct perf_event_context *parent_ctx,
13284 	      struct task_struct *child,
13285 	      struct perf_event_context *child_ctx)
13286 {
13287 	struct perf_event *leader;
13288 	struct perf_event *sub;
13289 	struct perf_event *child_ctr;
13290 
13291 	leader = inherit_event(parent_event, parent, parent_ctx,
13292 				 child, NULL, child_ctx);
13293 	if (IS_ERR(leader))
13294 		return PTR_ERR(leader);
13295 	/*
13296 	 * @leader can be NULL here because of is_orphaned_event(). In this
13297 	 * case inherit_event() will create individual events, similar to what
13298 	 * perf_group_detach() would do anyway.
13299 	 */
13300 	for_each_sibling_event(sub, parent_event) {
13301 		child_ctr = inherit_event(sub, parent, parent_ctx,
13302 					    child, leader, child_ctx);
13303 		if (IS_ERR(child_ctr))
13304 			return PTR_ERR(child_ctr);
13305 
13306 		if (sub->aux_event == parent_event && child_ctr &&
13307 		    !perf_get_aux_event(child_ctr, leader))
13308 			return -EINVAL;
13309 	}
13310 	leader->group_generation = parent_event->group_generation;
13311 	return 0;
13312 }
13313 
13314 /*
13315  * Creates the child task context and tries to inherit the event-group.
13316  *
13317  * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
13318  * inherited_all set when we 'fail' to inherit an orphaned event; this is
13319  * consistent with perf_event_release_kernel() removing all child events.
13320  *
13321  * Returns:
13322  *  - 0 on success
13323  *  - <0 on error
13324  */
13325 static int
inherit_task_group(struct perf_event * event,struct task_struct * parent,struct perf_event_context * parent_ctx,struct task_struct * child,int ctxn,u64 clone_flags,int * inherited_all)13326 inherit_task_group(struct perf_event *event, struct task_struct *parent,
13327 		   struct perf_event_context *parent_ctx,
13328 		   struct task_struct *child, int ctxn,
13329 		   u64 clone_flags, int *inherited_all)
13330 {
13331 	int ret;
13332 	struct perf_event_context *child_ctx;
13333 
13334 	if (!event->attr.inherit ||
13335 	    (event->attr.inherit_thread && !(clone_flags & CLONE_THREAD)) ||
13336 	    /* Do not inherit if sigtrap and signal handlers were cleared. */
13337 	    (event->attr.sigtrap && (clone_flags & CLONE_CLEAR_SIGHAND))) {
13338 		*inherited_all = 0;
13339 		return 0;
13340 	}
13341 
13342 	child_ctx = child->perf_event_ctxp[ctxn];
13343 	if (!child_ctx) {
13344 		/*
13345 		 * This is executed from the parent task context, so
13346 		 * inherit events that have been marked for cloning.
13347 		 * First allocate and initialize a context for the
13348 		 * child.
13349 		 */
13350 		child_ctx = alloc_perf_context(parent_ctx->pmu, child);
13351 		if (!child_ctx)
13352 			return -ENOMEM;
13353 
13354 		child->perf_event_ctxp[ctxn] = child_ctx;
13355 	}
13356 
13357 	ret = inherit_group(event, parent, parent_ctx,
13358 			    child, child_ctx);
13359 
13360 	if (ret)
13361 		*inherited_all = 0;
13362 
13363 	return ret;
13364 }
13365 
13366 /*
13367  * Initialize the perf_event context in task_struct
13368  */
perf_event_init_context(struct task_struct * child,int ctxn,u64 clone_flags)13369 static int perf_event_init_context(struct task_struct *child, int ctxn,
13370 				   u64 clone_flags)
13371 {
13372 	struct perf_event_context *child_ctx, *parent_ctx;
13373 	struct perf_event_context *cloned_ctx;
13374 	struct perf_event *event;
13375 	struct task_struct *parent = current;
13376 	int inherited_all = 1;
13377 	unsigned long flags;
13378 	int ret = 0;
13379 
13380 	if (likely(!parent->perf_event_ctxp[ctxn]))
13381 		return 0;
13382 
13383 	/*
13384 	 * If the parent's context is a clone, pin it so it won't get
13385 	 * swapped under us.
13386 	 */
13387 	parent_ctx = perf_pin_task_context(parent, ctxn);
13388 	if (!parent_ctx)
13389 		return 0;
13390 
13391 	/*
13392 	 * No need to check if parent_ctx != NULL here; since we saw
13393 	 * it non-NULL earlier, the only reason for it to become NULL
13394 	 * is if we exit, and since we're currently in the middle of
13395 	 * a fork we can't be exiting at the same time.
13396 	 */
13397 
13398 	/*
13399 	 * Lock the parent list. No need to lock the child - not PID
13400 	 * hashed yet and not running, so nobody can access it.
13401 	 */
13402 	mutex_lock(&parent_ctx->mutex);
13403 
13404 	/*
13405 	 * We dont have to disable NMIs - we are only looking at
13406 	 * the list, not manipulating it:
13407 	 */
13408 	perf_event_groups_for_each(event, &parent_ctx->pinned_groups) {
13409 		ret = inherit_task_group(event, parent, parent_ctx,
13410 					 child, ctxn, clone_flags,
13411 					 &inherited_all);
13412 		if (ret)
13413 			goto out_unlock;
13414 	}
13415 
13416 	/*
13417 	 * We can't hold ctx->lock when iterating the ->flexible_group list due
13418 	 * to allocations, but we need to prevent rotation because
13419 	 * rotate_ctx() will change the list from interrupt context.
13420 	 */
13421 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
13422 	parent_ctx->rotate_disable = 1;
13423 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
13424 
13425 	perf_event_groups_for_each(event, &parent_ctx->flexible_groups) {
13426 		ret = inherit_task_group(event, parent, parent_ctx,
13427 					 child, ctxn, clone_flags,
13428 					 &inherited_all);
13429 		if (ret)
13430 			goto out_unlock;
13431 	}
13432 
13433 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
13434 	parent_ctx->rotate_disable = 0;
13435 
13436 	child_ctx = child->perf_event_ctxp[ctxn];
13437 
13438 	if (child_ctx && inherited_all) {
13439 		/*
13440 		 * Mark the child context as a clone of the parent
13441 		 * context, or of whatever the parent is a clone of.
13442 		 *
13443 		 * Note that if the parent is a clone, the holding of
13444 		 * parent_ctx->lock avoids it from being uncloned.
13445 		 */
13446 		cloned_ctx = parent_ctx->parent_ctx;
13447 		if (cloned_ctx) {
13448 			child_ctx->parent_ctx = cloned_ctx;
13449 			child_ctx->parent_gen = parent_ctx->parent_gen;
13450 		} else {
13451 			child_ctx->parent_ctx = parent_ctx;
13452 			child_ctx->parent_gen = parent_ctx->generation;
13453 		}
13454 		get_ctx(child_ctx->parent_ctx);
13455 	}
13456 
13457 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
13458 out_unlock:
13459 	mutex_unlock(&parent_ctx->mutex);
13460 
13461 	perf_unpin_context(parent_ctx);
13462 	put_ctx(parent_ctx);
13463 
13464 	return ret;
13465 }
13466 
13467 /*
13468  * Initialize the perf_event context in task_struct
13469  */
perf_event_init_task(struct task_struct * child,u64 clone_flags)13470 int perf_event_init_task(struct task_struct *child, u64 clone_flags)
13471 {
13472 	int ctxn, ret;
13473 
13474 	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
13475 	mutex_init(&child->perf_event_mutex);
13476 	INIT_LIST_HEAD(&child->perf_event_list);
13477 
13478 	for_each_task_context_nr(ctxn) {
13479 		ret = perf_event_init_context(child, ctxn, clone_flags);
13480 		if (ret) {
13481 			perf_event_free_task(child);
13482 			return ret;
13483 		}
13484 	}
13485 
13486 	return 0;
13487 }
13488 
perf_event_init_all_cpus(void)13489 static void __init perf_event_init_all_cpus(void)
13490 {
13491 	struct swevent_htable *swhash;
13492 	int cpu;
13493 
13494 	zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
13495 
13496 	for_each_possible_cpu(cpu) {
13497 		swhash = &per_cpu(swevent_htable, cpu);
13498 		mutex_init(&swhash->hlist_mutex);
13499 		INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
13500 
13501 		INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
13502 		raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
13503 
13504 #ifdef CONFIG_CGROUP_PERF
13505 		INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu));
13506 #endif
13507 		INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
13508 	}
13509 }
13510 
perf_swevent_init_cpu(unsigned int cpu)13511 static void perf_swevent_init_cpu(unsigned int cpu)
13512 {
13513 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
13514 
13515 	mutex_lock(&swhash->hlist_mutex);
13516 	if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
13517 		struct swevent_hlist *hlist;
13518 
13519 		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
13520 		WARN_ON(!hlist);
13521 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
13522 	}
13523 	mutex_unlock(&swhash->hlist_mutex);
13524 }
13525 
13526 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
__perf_event_exit_context(void * __info)13527 static void __perf_event_exit_context(void *__info)
13528 {
13529 	struct perf_event_context *ctx = __info;
13530 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
13531 	struct perf_event *event;
13532 
13533 	raw_spin_lock(&ctx->lock);
13534 	ctx_sched_out(ctx, cpuctx, EVENT_TIME);
13535 	list_for_each_entry(event, &ctx->event_list, event_entry)
13536 		__perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
13537 	raw_spin_unlock(&ctx->lock);
13538 }
13539 
perf_event_exit_cpu_context(int cpu)13540 static void perf_event_exit_cpu_context(int cpu)
13541 {
13542 	struct perf_cpu_context *cpuctx;
13543 	struct perf_event_context *ctx;
13544 	struct pmu *pmu;
13545 
13546 	mutex_lock(&pmus_lock);
13547 	list_for_each_entry(pmu, &pmus, entry) {
13548 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
13549 		ctx = &cpuctx->ctx;
13550 
13551 		mutex_lock(&ctx->mutex);
13552 		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
13553 		cpuctx->online = 0;
13554 		mutex_unlock(&ctx->mutex);
13555 	}
13556 	cpumask_clear_cpu(cpu, perf_online_mask);
13557 	mutex_unlock(&pmus_lock);
13558 }
13559 #else
13560 
perf_event_exit_cpu_context(int cpu)13561 static void perf_event_exit_cpu_context(int cpu) { }
13562 
13563 #endif
13564 
perf_event_init_cpu(unsigned int cpu)13565 int perf_event_init_cpu(unsigned int cpu)
13566 {
13567 	struct perf_cpu_context *cpuctx;
13568 	struct perf_event_context *ctx;
13569 	struct pmu *pmu;
13570 
13571 	perf_swevent_init_cpu(cpu);
13572 
13573 	mutex_lock(&pmus_lock);
13574 	cpumask_set_cpu(cpu, perf_online_mask);
13575 	list_for_each_entry(pmu, &pmus, entry) {
13576 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
13577 		ctx = &cpuctx->ctx;
13578 
13579 		mutex_lock(&ctx->mutex);
13580 		cpuctx->online = 1;
13581 		mutex_unlock(&ctx->mutex);
13582 	}
13583 	mutex_unlock(&pmus_lock);
13584 
13585 	return 0;
13586 }
13587 
perf_event_exit_cpu(unsigned int cpu)13588 int perf_event_exit_cpu(unsigned int cpu)
13589 {
13590 	perf_event_exit_cpu_context(cpu);
13591 	return 0;
13592 }
13593 
13594 static int
perf_reboot(struct notifier_block * notifier,unsigned long val,void * v)13595 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
13596 {
13597 	int cpu;
13598 
13599 	for_each_online_cpu(cpu)
13600 		perf_event_exit_cpu(cpu);
13601 
13602 	return NOTIFY_OK;
13603 }
13604 
13605 /*
13606  * Run the perf reboot notifier at the very last possible moment so that
13607  * the generic watchdog code runs as long as possible.
13608  */
13609 static struct notifier_block perf_reboot_notifier = {
13610 	.notifier_call = perf_reboot,
13611 	.priority = INT_MIN,
13612 };
13613 
perf_event_init(void)13614 void __init perf_event_init(void)
13615 {
13616 	int ret;
13617 
13618 	idr_init(&pmu_idr);
13619 
13620 	perf_event_init_all_cpus();
13621 	init_srcu_struct(&pmus_srcu);
13622 	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
13623 	perf_pmu_register(&perf_cpu_clock, NULL, -1);
13624 	perf_pmu_register(&perf_task_clock, NULL, -1);
13625 	perf_tp_register();
13626 	perf_event_init_cpu(smp_processor_id());
13627 	register_reboot_notifier(&perf_reboot_notifier);
13628 
13629 	ret = init_hw_breakpoint();
13630 	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
13631 
13632 	perf_event_cache = KMEM_CACHE(perf_event, SLAB_PANIC);
13633 
13634 	/*
13635 	 * Build time assertion that we keep the data_head at the intended
13636 	 * location.  IOW, validation we got the __reserved[] size right.
13637 	 */
13638 	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
13639 		     != 1024);
13640 }
13641 
perf_event_sysfs_show(struct device * dev,struct device_attribute * attr,char * page)13642 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
13643 			      char *page)
13644 {
13645 	struct perf_pmu_events_attr *pmu_attr =
13646 		container_of(attr, struct perf_pmu_events_attr, attr);
13647 
13648 	if (pmu_attr->event_str)
13649 		return sprintf(page, "%s\n", pmu_attr->event_str);
13650 
13651 	return 0;
13652 }
13653 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
13654 
perf_event_sysfs_init(void)13655 static int __init perf_event_sysfs_init(void)
13656 {
13657 	struct pmu *pmu;
13658 	int ret;
13659 
13660 	mutex_lock(&pmus_lock);
13661 
13662 	ret = bus_register(&pmu_bus);
13663 	if (ret)
13664 		goto unlock;
13665 
13666 	list_for_each_entry(pmu, &pmus, entry) {
13667 		if (!pmu->name || pmu->type < 0)
13668 			continue;
13669 
13670 		ret = pmu_dev_alloc(pmu);
13671 		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
13672 	}
13673 	pmu_bus_running = 1;
13674 	ret = 0;
13675 
13676 unlock:
13677 	mutex_unlock(&pmus_lock);
13678 
13679 	return ret;
13680 }
13681 device_initcall(perf_event_sysfs_init);
13682 
13683 #ifdef CONFIG_CGROUP_PERF
13684 static struct cgroup_subsys_state *
perf_cgroup_css_alloc(struct cgroup_subsys_state * parent_css)13685 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
13686 {
13687 	struct perf_cgroup *jc;
13688 
13689 	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
13690 	if (!jc)
13691 		return ERR_PTR(-ENOMEM);
13692 
13693 	jc->info = alloc_percpu(struct perf_cgroup_info);
13694 	if (!jc->info) {
13695 		kfree(jc);
13696 		return ERR_PTR(-ENOMEM);
13697 	}
13698 
13699 	return &jc->css;
13700 }
13701 
perf_cgroup_css_free(struct cgroup_subsys_state * css)13702 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
13703 {
13704 	struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
13705 
13706 	free_percpu(jc->info);
13707 	kfree(jc);
13708 }
13709 
perf_cgroup_css_online(struct cgroup_subsys_state * css)13710 static int perf_cgroup_css_online(struct cgroup_subsys_state *css)
13711 {
13712 	perf_event_cgroup(css->cgroup);
13713 	return 0;
13714 }
13715 
__perf_cgroup_move(void * info)13716 static int __perf_cgroup_move(void *info)
13717 {
13718 	struct task_struct *task = info;
13719 	rcu_read_lock();
13720 	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
13721 	rcu_read_unlock();
13722 	return 0;
13723 }
13724 
perf_cgroup_attach(struct cgroup_taskset * tset)13725 static void perf_cgroup_attach(struct cgroup_taskset *tset)
13726 {
13727 	struct task_struct *task;
13728 	struct cgroup_subsys_state *css;
13729 
13730 	cgroup_taskset_for_each(task, css, tset)
13731 		task_function_call(task, __perf_cgroup_move, task);
13732 }
13733 
13734 struct cgroup_subsys perf_event_cgrp_subsys = {
13735 	.css_alloc	= perf_cgroup_css_alloc,
13736 	.css_free	= perf_cgroup_css_free,
13737 	.css_online	= perf_cgroup_css_online,
13738 	.attach		= perf_cgroup_attach,
13739 	/*
13740 	 * Implicitly enable on dfl hierarchy so that perf events can
13741 	 * always be filtered by cgroup2 path as long as perf_event
13742 	 * controller is not mounted on a legacy hierarchy.
13743 	 */
13744 	.implicit_on_dfl = true,
13745 	.threaded	= true,
13746 };
13747 #endif /* CONFIG_CGROUP_PERF */
13748