• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Performance events ring-buffer code:
4  *
5  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
7  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
8  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9  */
10 
11 #include <linux/perf_event.h>
12 #include <linux/vmalloc.h>
13 #include <linux/slab.h>
14 #include <linux/circ_buf.h>
15 #include <linux/poll.h>
16 #include <linux/nospec.h>
17 
18 #include "internal.h"
19 
perf_output_wakeup(struct perf_output_handle * handle)20 static void perf_output_wakeup(struct perf_output_handle *handle)
21 {
22 	atomic_set(&handle->rb->poll, EPOLLIN);
23 
24 	handle->event->pending_wakeup = 1;
25 	irq_work_queue(&handle->event->pending_irq);
26 }
27 
28 /*
29  * We need to ensure a later event_id doesn't publish a head when a former
30  * event isn't done writing. However since we need to deal with NMIs we
31  * cannot fully serialize things.
32  *
33  * We only publish the head (and generate a wakeup) when the outer-most
34  * event completes.
35  */
perf_output_get_handle(struct perf_output_handle * handle)36 static void perf_output_get_handle(struct perf_output_handle *handle)
37 {
38 	struct perf_buffer *rb = handle->rb;
39 
40 	preempt_disable();
41 
42 	/*
43 	 * Avoid an explicit LOAD/STORE such that architectures with memops
44 	 * can use them.
45 	 */
46 	(*(volatile unsigned int *)&rb->nest)++;
47 	handle->wakeup = local_read(&rb->wakeup);
48 }
49 
perf_output_put_handle(struct perf_output_handle * handle)50 static void perf_output_put_handle(struct perf_output_handle *handle)
51 {
52 	struct perf_buffer *rb = handle->rb;
53 	unsigned long head;
54 	unsigned int nest;
55 
56 	/*
57 	 * If this isn't the outermost nesting, we don't have to update
58 	 * @rb->user_page->data_head.
59 	 */
60 	nest = READ_ONCE(rb->nest);
61 	if (nest > 1) {
62 		WRITE_ONCE(rb->nest, nest - 1);
63 		goto out;
64 	}
65 
66 again:
67 	/*
68 	 * In order to avoid publishing a head value that goes backwards,
69 	 * we must ensure the load of @rb->head happens after we've
70 	 * incremented @rb->nest.
71 	 *
72 	 * Otherwise we can observe a @rb->head value before one published
73 	 * by an IRQ/NMI happening between the load and the increment.
74 	 */
75 	barrier();
76 	head = local_read(&rb->head);
77 
78 	/*
79 	 * IRQ/NMI can happen here and advance @rb->head, causing our
80 	 * load above to be stale.
81 	 */
82 
83 	/*
84 	 * Since the mmap() consumer (userspace) can run on a different CPU:
85 	 *
86 	 *   kernel				user
87 	 *
88 	 *   if (LOAD ->data_tail) {		LOAD ->data_head
89 	 *			(A)		smp_rmb()	(C)
90 	 *	STORE $data			LOAD $data
91 	 *	smp_wmb()	(B)		smp_mb()	(D)
92 	 *	STORE ->data_head		STORE ->data_tail
93 	 *   }
94 	 *
95 	 * Where A pairs with D, and B pairs with C.
96 	 *
97 	 * In our case (A) is a control dependency that separates the load of
98 	 * the ->data_tail and the stores of $data. In case ->data_tail
99 	 * indicates there is no room in the buffer to store $data we do not.
100 	 *
101 	 * D needs to be a full barrier since it separates the data READ
102 	 * from the tail WRITE.
103 	 *
104 	 * For B a WMB is sufficient since it separates two WRITEs, and for C
105 	 * an RMB is sufficient since it separates two READs.
106 	 *
107 	 * See perf_output_begin().
108 	 */
109 	smp_wmb(); /* B, matches C */
110 	WRITE_ONCE(rb->user_page->data_head, head);
111 
112 	/*
113 	 * We must publish the head before decrementing the nest count,
114 	 * otherwise an IRQ/NMI can publish a more recent head value and our
115 	 * write will (temporarily) publish a stale value.
116 	 */
117 	barrier();
118 	WRITE_ONCE(rb->nest, 0);
119 
120 	/*
121 	 * Ensure we decrement @rb->nest before we validate the @rb->head.
122 	 * Otherwise we cannot be sure we caught the 'last' nested update.
123 	 */
124 	barrier();
125 	if (unlikely(head != local_read(&rb->head))) {
126 		WRITE_ONCE(rb->nest, 1);
127 		goto again;
128 	}
129 
130 	if (handle->wakeup != local_read(&rb->wakeup))
131 		perf_output_wakeup(handle);
132 
133 out:
134 	preempt_enable();
135 }
136 
137 static __always_inline bool
ring_buffer_has_space(unsigned long head,unsigned long tail,unsigned long data_size,unsigned int size,bool backward)138 ring_buffer_has_space(unsigned long head, unsigned long tail,
139 		      unsigned long data_size, unsigned int size,
140 		      bool backward)
141 {
142 	if (!backward)
143 		return CIRC_SPACE(head, tail, data_size) >= size;
144 	else
145 		return CIRC_SPACE(tail, head, data_size) >= size;
146 }
147 
148 static __always_inline int
__perf_output_begin(struct perf_output_handle * handle,struct perf_sample_data * data,struct perf_event * event,unsigned int size,bool backward)149 __perf_output_begin(struct perf_output_handle *handle,
150 		    struct perf_sample_data *data,
151 		    struct perf_event *event, unsigned int size,
152 		    bool backward)
153 {
154 	struct perf_buffer *rb;
155 	unsigned long tail, offset, head;
156 	int have_lost, page_shift;
157 	struct {
158 		struct perf_event_header header;
159 		u64			 id;
160 		u64			 lost;
161 	} lost_event;
162 
163 	rcu_read_lock();
164 	/*
165 	 * For inherited events we send all the output towards the parent.
166 	 */
167 	if (event->parent)
168 		event = event->parent;
169 
170 	rb = rcu_dereference(event->rb);
171 	if (unlikely(!rb))
172 		goto out;
173 
174 	if (unlikely(rb->paused)) {
175 		if (rb->nr_pages)
176 			local_inc(&rb->lost);
177 		goto out;
178 	}
179 
180 	handle->rb    = rb;
181 	handle->event = event;
182 
183 	have_lost = local_read(&rb->lost);
184 	if (unlikely(have_lost)) {
185 		size += sizeof(lost_event);
186 		if (event->attr.sample_id_all)
187 			size += event->id_header_size;
188 	}
189 
190 	perf_output_get_handle(handle);
191 
192 	do {
193 		tail = READ_ONCE(rb->user_page->data_tail);
194 		offset = head = local_read(&rb->head);
195 		if (!rb->overwrite) {
196 			if (unlikely(!ring_buffer_has_space(head, tail,
197 							    perf_data_size(rb),
198 							    size, backward)))
199 				goto fail;
200 		}
201 
202 		/*
203 		 * The above forms a control dependency barrier separating the
204 		 * @tail load above from the data stores below. Since the @tail
205 		 * load is required to compute the branch to fail below.
206 		 *
207 		 * A, matches D; the full memory barrier userspace SHOULD issue
208 		 * after reading the data and before storing the new tail
209 		 * position.
210 		 *
211 		 * See perf_output_put_handle().
212 		 */
213 
214 		if (!backward)
215 			head += size;
216 		else
217 			head -= size;
218 	} while (local_cmpxchg(&rb->head, offset, head) != offset);
219 
220 	if (backward) {
221 		offset = head;
222 		head = (u64)(-head);
223 	}
224 
225 	/*
226 	 * We rely on the implied barrier() by local_cmpxchg() to ensure
227 	 * none of the data stores below can be lifted up by the compiler.
228 	 */
229 
230 	if (unlikely(head - local_read(&rb->wakeup) > rb->watermark))
231 		local_add(rb->watermark, &rb->wakeup);
232 
233 	page_shift = PAGE_SHIFT + page_order(rb);
234 
235 	handle->page = (offset >> page_shift) & (rb->nr_pages - 1);
236 	offset &= (1UL << page_shift) - 1;
237 	handle->addr = rb->data_pages[handle->page] + offset;
238 	handle->size = (1UL << page_shift) - offset;
239 
240 	if (unlikely(have_lost)) {
241 		lost_event.header.size = sizeof(lost_event);
242 		lost_event.header.type = PERF_RECORD_LOST;
243 		lost_event.header.misc = 0;
244 		lost_event.id          = event->id;
245 		lost_event.lost        = local_xchg(&rb->lost, 0);
246 
247 		/* XXX mostly redundant; @data is already fully initializes */
248 		perf_event_header__init_id(&lost_event.header, data, event);
249 		perf_output_put(handle, lost_event);
250 		perf_event__output_id_sample(event, handle, data);
251 	}
252 
253 	return 0;
254 
255 fail:
256 	local_inc(&rb->lost);
257 	perf_output_put_handle(handle);
258 out:
259 	rcu_read_unlock();
260 
261 	return -ENOSPC;
262 }
263 
perf_output_begin_forward(struct perf_output_handle * handle,struct perf_sample_data * data,struct perf_event * event,unsigned int size)264 int perf_output_begin_forward(struct perf_output_handle *handle,
265 			      struct perf_sample_data *data,
266 			      struct perf_event *event, unsigned int size)
267 {
268 	return __perf_output_begin(handle, data, event, size, false);
269 }
270 
perf_output_begin_backward(struct perf_output_handle * handle,struct perf_sample_data * data,struct perf_event * event,unsigned int size)271 int perf_output_begin_backward(struct perf_output_handle *handle,
272 			       struct perf_sample_data *data,
273 			       struct perf_event *event, unsigned int size)
274 {
275 	return __perf_output_begin(handle, data, event, size, true);
276 }
277 
perf_output_begin(struct perf_output_handle * handle,struct perf_sample_data * data,struct perf_event * event,unsigned int size)278 int perf_output_begin(struct perf_output_handle *handle,
279 		      struct perf_sample_data *data,
280 		      struct perf_event *event, unsigned int size)
281 {
282 
283 	return __perf_output_begin(handle, data, event, size,
284 				   unlikely(is_write_backward(event)));
285 }
286 
perf_output_copy(struct perf_output_handle * handle,const void * buf,unsigned int len)287 unsigned int perf_output_copy(struct perf_output_handle *handle,
288 		      const void *buf, unsigned int len)
289 {
290 	return __output_copy(handle, buf, len);
291 }
292 
perf_output_skip(struct perf_output_handle * handle,unsigned int len)293 unsigned int perf_output_skip(struct perf_output_handle *handle,
294 			      unsigned int len)
295 {
296 	return __output_skip(handle, NULL, len);
297 }
298 
perf_output_end(struct perf_output_handle * handle)299 void perf_output_end(struct perf_output_handle *handle)
300 {
301 	perf_output_put_handle(handle);
302 	rcu_read_unlock();
303 }
304 
305 static void
ring_buffer_init(struct perf_buffer * rb,long watermark,int flags)306 ring_buffer_init(struct perf_buffer *rb, long watermark, int flags)
307 {
308 	long max_size = perf_data_size(rb);
309 
310 	if (watermark)
311 		rb->watermark = min(max_size, watermark);
312 
313 	if (!rb->watermark)
314 		rb->watermark = max_size / 2;
315 
316 	if (flags & RING_BUFFER_WRITABLE)
317 		rb->overwrite = 0;
318 	else
319 		rb->overwrite = 1;
320 
321 	refcount_set(&rb->refcount, 1);
322 
323 	INIT_LIST_HEAD(&rb->event_list);
324 	spin_lock_init(&rb->event_lock);
325 
326 	/*
327 	 * perf_output_begin() only checks rb->paused, therefore
328 	 * rb->paused must be true if we have no pages for output.
329 	 */
330 	if (!rb->nr_pages)
331 		rb->paused = 1;
332 }
333 
perf_aux_output_flag(struct perf_output_handle * handle,u64 flags)334 void perf_aux_output_flag(struct perf_output_handle *handle, u64 flags)
335 {
336 	/*
337 	 * OVERWRITE is determined by perf_aux_output_end() and can't
338 	 * be passed in directly.
339 	 */
340 	if (WARN_ON_ONCE(flags & PERF_AUX_FLAG_OVERWRITE))
341 		return;
342 
343 	handle->aux_flags |= flags;
344 }
345 EXPORT_SYMBOL_GPL(perf_aux_output_flag);
346 
347 /*
348  * This is called before hardware starts writing to the AUX area to
349  * obtain an output handle and make sure there's room in the buffer.
350  * When the capture completes, call perf_aux_output_end() to commit
351  * the recorded data to the buffer.
352  *
353  * The ordering is similar to that of perf_output_{begin,end}, with
354  * the exception of (B), which should be taken care of by the pmu
355  * driver, since ordering rules will differ depending on hardware.
356  *
357  * Call this from pmu::start(); see the comment in perf_aux_output_end()
358  * about its use in pmu callbacks. Both can also be called from the PMI
359  * handler if needed.
360  */
perf_aux_output_begin(struct perf_output_handle * handle,struct perf_event * event)361 void *perf_aux_output_begin(struct perf_output_handle *handle,
362 			    struct perf_event *event)
363 {
364 	struct perf_event *output_event = event;
365 	unsigned long aux_head, aux_tail;
366 	struct perf_buffer *rb;
367 	unsigned int nest;
368 
369 	if (output_event->parent)
370 		output_event = output_event->parent;
371 
372 	/*
373 	 * Since this will typically be open across pmu::add/pmu::del, we
374 	 * grab ring_buffer's refcount instead of holding rcu read lock
375 	 * to make sure it doesn't disappear under us.
376 	 */
377 	rb = ring_buffer_get(output_event);
378 	if (!rb)
379 		return NULL;
380 
381 	if (!rb_has_aux(rb))
382 		goto err;
383 
384 	/*
385 	 * If aux_mmap_count is zero, the aux buffer is in perf_mmap_close(),
386 	 * about to get freed, so we leave immediately.
387 	 *
388 	 * Checking rb::aux_mmap_count and rb::refcount has to be done in
389 	 * the same order, see perf_mmap_close. Otherwise we end up freeing
390 	 * aux pages in this path, which is a bug, because in_atomic().
391 	 */
392 	if (!atomic_read(&rb->aux_mmap_count))
393 		goto err;
394 
395 	if (!refcount_inc_not_zero(&rb->aux_refcount))
396 		goto err;
397 
398 	nest = READ_ONCE(rb->aux_nest);
399 	/*
400 	 * Nesting is not supported for AUX area, make sure nested
401 	 * writers are caught early
402 	 */
403 	if (WARN_ON_ONCE(nest))
404 		goto err_put;
405 
406 	WRITE_ONCE(rb->aux_nest, nest + 1);
407 
408 	aux_head = rb->aux_head;
409 
410 	handle->rb = rb;
411 	handle->event = event;
412 	handle->head = aux_head;
413 	handle->size = 0;
414 	handle->aux_flags = 0;
415 
416 	/*
417 	 * In overwrite mode, AUX data stores do not depend on aux_tail,
418 	 * therefore (A) control dependency barrier does not exist. The
419 	 * (B) <-> (C) ordering is still observed by the pmu driver.
420 	 */
421 	if (!rb->aux_overwrite) {
422 		aux_tail = READ_ONCE(rb->user_page->aux_tail);
423 		handle->wakeup = rb->aux_wakeup + rb->aux_watermark;
424 		if (aux_head - aux_tail < perf_aux_size(rb))
425 			handle->size = CIRC_SPACE(aux_head, aux_tail, perf_aux_size(rb));
426 
427 		/*
428 		 * handle->size computation depends on aux_tail load; this forms a
429 		 * control dependency barrier separating aux_tail load from aux data
430 		 * store that will be enabled on successful return
431 		 */
432 		if (!handle->size) { /* A, matches D */
433 			event->pending_disable = smp_processor_id();
434 			perf_output_wakeup(handle);
435 			WRITE_ONCE(rb->aux_nest, 0);
436 			goto err_put;
437 		}
438 	}
439 
440 	return handle->rb->aux_priv;
441 
442 err_put:
443 	/* can't be last */
444 	rb_free_aux(rb);
445 
446 err:
447 	ring_buffer_put(rb);
448 	handle->event = NULL;
449 
450 	return NULL;
451 }
452 EXPORT_SYMBOL_GPL(perf_aux_output_begin);
453 
rb_need_aux_wakeup(struct perf_buffer * rb)454 static __always_inline bool rb_need_aux_wakeup(struct perf_buffer *rb)
455 {
456 	if (rb->aux_overwrite)
457 		return false;
458 
459 	if (rb->aux_head - rb->aux_wakeup >= rb->aux_watermark) {
460 		rb->aux_wakeup = rounddown(rb->aux_head, rb->aux_watermark);
461 		return true;
462 	}
463 
464 	return false;
465 }
466 
467 /*
468  * Commit the data written by hardware into the ring buffer by adjusting
469  * aux_head and posting a PERF_RECORD_AUX into the perf buffer. It is the
470  * pmu driver's responsibility to observe ordering rules of the hardware,
471  * so that all the data is externally visible before this is called.
472  *
473  * Note: this has to be called from pmu::stop() callback, as the assumption
474  * of the AUX buffer management code is that after pmu::stop(), the AUX
475  * transaction must be stopped and therefore drop the AUX reference count.
476  */
perf_aux_output_end(struct perf_output_handle * handle,unsigned long size)477 void perf_aux_output_end(struct perf_output_handle *handle, unsigned long size)
478 {
479 	bool wakeup = !!(handle->aux_flags & PERF_AUX_FLAG_TRUNCATED);
480 	struct perf_buffer *rb = handle->rb;
481 	unsigned long aux_head;
482 
483 	/* in overwrite mode, driver provides aux_head via handle */
484 	if (rb->aux_overwrite) {
485 		handle->aux_flags |= PERF_AUX_FLAG_OVERWRITE;
486 
487 		aux_head = handle->head;
488 		rb->aux_head = aux_head;
489 	} else {
490 		handle->aux_flags &= ~PERF_AUX_FLAG_OVERWRITE;
491 
492 		aux_head = rb->aux_head;
493 		rb->aux_head += size;
494 	}
495 
496 	/*
497 	 * Only send RECORD_AUX if we have something useful to communicate
498 	 *
499 	 * Note: the OVERWRITE records by themselves are not considered
500 	 * useful, as they don't communicate any *new* information,
501 	 * aside from the short-lived offset, that becomes history at
502 	 * the next event sched-in and therefore isn't useful.
503 	 * The userspace that needs to copy out AUX data in overwrite
504 	 * mode should know to use user_page::aux_head for the actual
505 	 * offset. So, from now on we don't output AUX records that
506 	 * have *only* OVERWRITE flag set.
507 	 */
508 	if (size || (handle->aux_flags & ~(u64)PERF_AUX_FLAG_OVERWRITE))
509 		perf_event_aux_event(handle->event, aux_head, size,
510 				     handle->aux_flags);
511 
512 	WRITE_ONCE(rb->user_page->aux_head, rb->aux_head);
513 	if (rb_need_aux_wakeup(rb))
514 		wakeup = true;
515 
516 	if (wakeup) {
517 		if (handle->aux_flags & PERF_AUX_FLAG_TRUNCATED)
518 			handle->event->pending_disable = smp_processor_id();
519 		perf_output_wakeup(handle);
520 	}
521 
522 	handle->event = NULL;
523 
524 	WRITE_ONCE(rb->aux_nest, 0);
525 	/* can't be last */
526 	rb_free_aux(rb);
527 	ring_buffer_put(rb);
528 }
529 EXPORT_SYMBOL_GPL(perf_aux_output_end);
530 
531 /*
532  * Skip over a given number of bytes in the AUX buffer, due to, for example,
533  * hardware's alignment constraints.
534  */
perf_aux_output_skip(struct perf_output_handle * handle,unsigned long size)535 int perf_aux_output_skip(struct perf_output_handle *handle, unsigned long size)
536 {
537 	struct perf_buffer *rb = handle->rb;
538 
539 	if (size > handle->size)
540 		return -ENOSPC;
541 
542 	rb->aux_head += size;
543 
544 	WRITE_ONCE(rb->user_page->aux_head, rb->aux_head);
545 	if (rb_need_aux_wakeup(rb)) {
546 		perf_output_wakeup(handle);
547 		handle->wakeup = rb->aux_wakeup + rb->aux_watermark;
548 	}
549 
550 	handle->head = rb->aux_head;
551 	handle->size -= size;
552 
553 	return 0;
554 }
555 EXPORT_SYMBOL_GPL(perf_aux_output_skip);
556 
perf_get_aux(struct perf_output_handle * handle)557 void *perf_get_aux(struct perf_output_handle *handle)
558 {
559 	/* this is only valid between perf_aux_output_begin and *_end */
560 	if (!handle->event)
561 		return NULL;
562 
563 	return handle->rb->aux_priv;
564 }
565 EXPORT_SYMBOL_GPL(perf_get_aux);
566 
567 /*
568  * Copy out AUX data from an AUX handle.
569  */
perf_output_copy_aux(struct perf_output_handle * aux_handle,struct perf_output_handle * handle,unsigned long from,unsigned long to)570 long perf_output_copy_aux(struct perf_output_handle *aux_handle,
571 			  struct perf_output_handle *handle,
572 			  unsigned long from, unsigned long to)
573 {
574 	struct perf_buffer *rb = aux_handle->rb;
575 	unsigned long tocopy, remainder, len = 0;
576 	void *addr;
577 
578 	from &= (rb->aux_nr_pages << PAGE_SHIFT) - 1;
579 	to &= (rb->aux_nr_pages << PAGE_SHIFT) - 1;
580 
581 	do {
582 		tocopy = PAGE_SIZE - offset_in_page(from);
583 		if (to > from)
584 			tocopy = min(tocopy, to - from);
585 		if (!tocopy)
586 			break;
587 
588 		addr = rb->aux_pages[from >> PAGE_SHIFT];
589 		addr += offset_in_page(from);
590 
591 		remainder = perf_output_copy(handle, addr, tocopy);
592 		if (remainder)
593 			return -EFAULT;
594 
595 		len += tocopy;
596 		from += tocopy;
597 		from &= (rb->aux_nr_pages << PAGE_SHIFT) - 1;
598 	} while (to != from);
599 
600 	return len;
601 }
602 
603 #define PERF_AUX_GFP	(GFP_KERNEL | __GFP_ZERO | __GFP_NOWARN | __GFP_NORETRY)
604 
rb_alloc_aux_page(int node,int order)605 static struct page *rb_alloc_aux_page(int node, int order)
606 {
607 	struct page *page;
608 
609 	if (order > MAX_ORDER)
610 		order = MAX_ORDER;
611 
612 	do {
613 		page = alloc_pages_node(node, PERF_AUX_GFP, order);
614 	} while (!page && order--);
615 
616 	if (page && order) {
617 		/*
618 		 * Communicate the allocation size to the driver:
619 		 * if we managed to secure a high-order allocation,
620 		 * set its first page's private to this order;
621 		 * !PagePrivate(page) means it's just a normal page.
622 		 */
623 		split_page(page, order);
624 		SetPagePrivate(page);
625 		set_page_private(page, order);
626 	}
627 
628 	return page;
629 }
630 
rb_free_aux_page(struct perf_buffer * rb,int idx)631 static void rb_free_aux_page(struct perf_buffer *rb, int idx)
632 {
633 	struct page *page = virt_to_page(rb->aux_pages[idx]);
634 
635 	ClearPagePrivate(page);
636 	page->mapping = NULL;
637 	__free_page(page);
638 }
639 
__rb_free_aux(struct perf_buffer * rb)640 static void __rb_free_aux(struct perf_buffer *rb)
641 {
642 	int pg;
643 
644 	/*
645 	 * Should never happen, the last reference should be dropped from
646 	 * perf_mmap_close() path, which first stops aux transactions (which
647 	 * in turn are the atomic holders of aux_refcount) and then does the
648 	 * last rb_free_aux().
649 	 */
650 	WARN_ON_ONCE(in_atomic());
651 
652 	if (rb->aux_priv) {
653 		rb->free_aux(rb->aux_priv);
654 		rb->free_aux = NULL;
655 		rb->aux_priv = NULL;
656 	}
657 
658 	if (rb->aux_nr_pages) {
659 		for (pg = 0; pg < rb->aux_nr_pages; pg++)
660 			rb_free_aux_page(rb, pg);
661 
662 		kfree(rb->aux_pages);
663 		rb->aux_nr_pages = 0;
664 	}
665 }
666 
rb_alloc_aux(struct perf_buffer * rb,struct perf_event * event,pgoff_t pgoff,int nr_pages,long watermark,int flags)667 int rb_alloc_aux(struct perf_buffer *rb, struct perf_event *event,
668 		 pgoff_t pgoff, int nr_pages, long watermark, int flags)
669 {
670 	bool overwrite = !(flags & RING_BUFFER_WRITABLE);
671 	int node = (event->cpu == -1) ? -1 : cpu_to_node(event->cpu);
672 	int ret = -ENOMEM, max_order;
673 
674 	if (!has_aux(event))
675 		return -EOPNOTSUPP;
676 
677 	if (!overwrite) {
678 		/*
679 		 * Watermark defaults to half the buffer, and so does the
680 		 * max_order, to aid PMU drivers in double buffering.
681 		 */
682 		if (!watermark)
683 			watermark = nr_pages << (PAGE_SHIFT - 1);
684 
685 		/*
686 		 * Use aux_watermark as the basis for chunking to
687 		 * help PMU drivers honor the watermark.
688 		 */
689 		max_order = get_order(watermark);
690 	} else {
691 		/*
692 		 * We need to start with the max_order that fits in nr_pages,
693 		 * not the other way around, hence ilog2() and not get_order.
694 		 */
695 		max_order = ilog2(nr_pages);
696 		watermark = 0;
697 	}
698 
699 	/*
700 	 * kcalloc_node() is unable to allocate buffer if the size is larger
701 	 * than: PAGE_SIZE << MAX_ORDER; directly bail out in this case.
702 	 */
703 	if (get_order((unsigned long)nr_pages * sizeof(void *)) > MAX_ORDER)
704 		return -ENOMEM;
705 	rb->aux_pages = kcalloc_node(nr_pages, sizeof(void *), GFP_KERNEL,
706 				     node);
707 	if (!rb->aux_pages)
708 		return -ENOMEM;
709 
710 	rb->free_aux = event->pmu->free_aux;
711 	for (rb->aux_nr_pages = 0; rb->aux_nr_pages < nr_pages;) {
712 		struct page *page;
713 		int last, order;
714 
715 		order = min(max_order, ilog2(nr_pages - rb->aux_nr_pages));
716 		page = rb_alloc_aux_page(node, order);
717 		if (!page)
718 			goto out;
719 
720 		for (last = rb->aux_nr_pages + (1 << page_private(page));
721 		     last > rb->aux_nr_pages; rb->aux_nr_pages++)
722 			rb->aux_pages[rb->aux_nr_pages] = page_address(page++);
723 	}
724 
725 	/*
726 	 * In overwrite mode, PMUs that don't support SG may not handle more
727 	 * than one contiguous allocation, since they rely on PMI to do double
728 	 * buffering. In this case, the entire buffer has to be one contiguous
729 	 * chunk.
730 	 */
731 	if ((event->pmu->capabilities & PERF_PMU_CAP_AUX_NO_SG) &&
732 	    overwrite) {
733 		struct page *page = virt_to_page(rb->aux_pages[0]);
734 
735 		if (page_private(page) != max_order)
736 			goto out;
737 	}
738 
739 	rb->aux_priv = event->pmu->setup_aux(event, rb->aux_pages, nr_pages,
740 					     overwrite);
741 	if (!rb->aux_priv)
742 		goto out;
743 
744 	ret = 0;
745 
746 	/*
747 	 * aux_pages (and pmu driver's private data, aux_priv) will be
748 	 * referenced in both producer's and consumer's contexts, thus
749 	 * we keep a refcount here to make sure either of the two can
750 	 * reference them safely.
751 	 */
752 	refcount_set(&rb->aux_refcount, 1);
753 
754 	rb->aux_overwrite = overwrite;
755 	rb->aux_watermark = watermark;
756 
757 out:
758 	if (!ret)
759 		rb->aux_pgoff = pgoff;
760 	else
761 		__rb_free_aux(rb);
762 
763 	return ret;
764 }
765 
rb_free_aux(struct perf_buffer * rb)766 void rb_free_aux(struct perf_buffer *rb)
767 {
768 	if (refcount_dec_and_test(&rb->aux_refcount))
769 		__rb_free_aux(rb);
770 }
771 
772 #ifndef CONFIG_PERF_USE_VMALLOC
773 
774 /*
775  * Back perf_mmap() with regular GFP_KERNEL-0 pages.
776  */
777 
778 static struct page *
__perf_mmap_to_page(struct perf_buffer * rb,unsigned long pgoff)779 __perf_mmap_to_page(struct perf_buffer *rb, unsigned long pgoff)
780 {
781 	if (pgoff > rb->nr_pages)
782 		return NULL;
783 
784 	if (pgoff == 0)
785 		return virt_to_page(rb->user_page);
786 
787 	return virt_to_page(rb->data_pages[pgoff - 1]);
788 }
789 
perf_mmap_alloc_page(int cpu)790 static void *perf_mmap_alloc_page(int cpu)
791 {
792 	struct page *page;
793 	int node;
794 
795 	node = (cpu == -1) ? cpu : cpu_to_node(cpu);
796 	page = alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0);
797 	if (!page)
798 		return NULL;
799 
800 	return page_address(page);
801 }
802 
perf_mmap_free_page(void * addr)803 static void perf_mmap_free_page(void *addr)
804 {
805 	struct page *page = virt_to_page(addr);
806 
807 	page->mapping = NULL;
808 	__free_page(page);
809 }
810 
rb_alloc(int nr_pages,long watermark,int cpu,int flags)811 struct perf_buffer *rb_alloc(int nr_pages, long watermark, int cpu, int flags)
812 {
813 	struct perf_buffer *rb;
814 	unsigned long size;
815 	int i, node;
816 
817 	size = sizeof(struct perf_buffer);
818 	size += nr_pages * sizeof(void *);
819 
820 	if (order_base_2(size) >= PAGE_SHIFT+MAX_ORDER)
821 		goto fail;
822 
823 	node = (cpu == -1) ? cpu : cpu_to_node(cpu);
824 	rb = kzalloc_node(size, GFP_KERNEL, node);
825 	if (!rb)
826 		goto fail;
827 
828 	rb->user_page = perf_mmap_alloc_page(cpu);
829 	if (!rb->user_page)
830 		goto fail_user_page;
831 
832 	for (i = 0; i < nr_pages; i++) {
833 		rb->data_pages[i] = perf_mmap_alloc_page(cpu);
834 		if (!rb->data_pages[i])
835 			goto fail_data_pages;
836 	}
837 
838 	rb->nr_pages = nr_pages;
839 
840 	ring_buffer_init(rb, watermark, flags);
841 
842 	return rb;
843 
844 fail_data_pages:
845 	for (i--; i >= 0; i--)
846 		perf_mmap_free_page(rb->data_pages[i]);
847 
848 	perf_mmap_free_page(rb->user_page);
849 
850 fail_user_page:
851 	kfree(rb);
852 
853 fail:
854 	return NULL;
855 }
856 
rb_free(struct perf_buffer * rb)857 void rb_free(struct perf_buffer *rb)
858 {
859 	int i;
860 
861 	perf_mmap_free_page(rb->user_page);
862 	for (i = 0; i < rb->nr_pages; i++)
863 		perf_mmap_free_page(rb->data_pages[i]);
864 	kfree(rb);
865 }
866 
867 #else
868 static struct page *
__perf_mmap_to_page(struct perf_buffer * rb,unsigned long pgoff)869 __perf_mmap_to_page(struct perf_buffer *rb, unsigned long pgoff)
870 {
871 	/* The '>' counts in the user page. */
872 	if (pgoff > data_page_nr(rb))
873 		return NULL;
874 
875 	return vmalloc_to_page((void *)rb->user_page + pgoff * PAGE_SIZE);
876 }
877 
perf_mmap_unmark_page(void * addr)878 static void perf_mmap_unmark_page(void *addr)
879 {
880 	struct page *page = vmalloc_to_page(addr);
881 
882 	page->mapping = NULL;
883 }
884 
rb_free_work(struct work_struct * work)885 static void rb_free_work(struct work_struct *work)
886 {
887 	struct perf_buffer *rb;
888 	void *base;
889 	int i, nr;
890 
891 	rb = container_of(work, struct perf_buffer, work);
892 	nr = data_page_nr(rb);
893 
894 	base = rb->user_page;
895 	/* The '<=' counts in the user page. */
896 	for (i = 0; i <= nr; i++)
897 		perf_mmap_unmark_page(base + (i * PAGE_SIZE));
898 
899 	vfree(base);
900 	kfree(rb);
901 }
902 
rb_free(struct perf_buffer * rb)903 void rb_free(struct perf_buffer *rb)
904 {
905 	schedule_work(&rb->work);
906 }
907 
rb_alloc(int nr_pages,long watermark,int cpu,int flags)908 struct perf_buffer *rb_alloc(int nr_pages, long watermark, int cpu, int flags)
909 {
910 	struct perf_buffer *rb;
911 	unsigned long size;
912 	void *all_buf;
913 	int node;
914 
915 	size = sizeof(struct perf_buffer);
916 	size += sizeof(void *);
917 
918 	node = (cpu == -1) ? cpu : cpu_to_node(cpu);
919 	rb = kzalloc_node(size, GFP_KERNEL, node);
920 	if (!rb)
921 		goto fail;
922 
923 	INIT_WORK(&rb->work, rb_free_work);
924 
925 	all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
926 	if (!all_buf)
927 		goto fail_all_buf;
928 
929 	rb->user_page = all_buf;
930 	rb->data_pages[0] = all_buf + PAGE_SIZE;
931 	if (nr_pages) {
932 		rb->nr_pages = 1;
933 		rb->page_order = ilog2(nr_pages);
934 	}
935 
936 	ring_buffer_init(rb, watermark, flags);
937 
938 	return rb;
939 
940 fail_all_buf:
941 	kfree(rb);
942 
943 fail:
944 	return NULL;
945 }
946 
947 #endif
948 
949 struct page *
perf_mmap_to_page(struct perf_buffer * rb,unsigned long pgoff)950 perf_mmap_to_page(struct perf_buffer *rb, unsigned long pgoff)
951 {
952 	if (rb->aux_nr_pages) {
953 		/* above AUX space */
954 		if (pgoff > rb->aux_pgoff + rb->aux_nr_pages)
955 			return NULL;
956 
957 		/* AUX space */
958 		if (pgoff >= rb->aux_pgoff) {
959 			int aux_pgoff = array_index_nospec(pgoff - rb->aux_pgoff, rb->aux_nr_pages);
960 			return virt_to_page(rb->aux_pages[aux_pgoff]);
961 		}
962 	}
963 
964 	return __perf_mmap_to_page(rb, pgoff);
965 }
966