1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Dummy soundcard
4 * Copyright (c) by Jaroslav Kysela <perex@perex.cz>
5 */
6
7 #include <linux/init.h>
8 #include <linux/err.h>
9 #include <linux/platform_device.h>
10 #include <linux/jiffies.h>
11 #include <linux/slab.h>
12 #include <linux/time.h>
13 #include <linux/wait.h>
14 #include <linux/hrtimer.h>
15 #include <linux/math64.h>
16 #include <linux/module.h>
17 #include <sound/core.h>
18 #include <sound/control.h>
19 #include <sound/tlv.h>
20 #include <sound/pcm.h>
21 #include <sound/rawmidi.h>
22 #include <sound/info.h>
23 #include <sound/initval.h>
24
25 MODULE_AUTHOR("Jaroslav Kysela <perex@perex.cz>");
26 MODULE_DESCRIPTION("Dummy soundcard (/dev/null)");
27 MODULE_LICENSE("GPL");
28
29 #define MAX_PCM_DEVICES 4
30 #define MAX_PCM_SUBSTREAMS 128
31 #define MAX_MIDI_DEVICES 2
32
33 /* defaults */
34 #define MAX_BUFFER_SIZE (64*1024)
35 #define MIN_PERIOD_SIZE 64
36 #define MAX_PERIOD_SIZE MAX_BUFFER_SIZE
37 #define USE_FORMATS (SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE)
38 #define USE_RATE SNDRV_PCM_RATE_CONTINUOUS | SNDRV_PCM_RATE_8000_48000
39 #define USE_RATE_MIN 5500
40 #define USE_RATE_MAX 48000
41 #define USE_CHANNELS_MIN 1
42 #define USE_CHANNELS_MAX 2
43 #define USE_PERIODS_MIN 1
44 #define USE_PERIODS_MAX 1024
45
46 static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX; /* Index 0-MAX */
47 static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR; /* ID for this card */
48 static bool enable[SNDRV_CARDS] = {1, [1 ... (SNDRV_CARDS - 1)] = 0};
49 static char *model[SNDRV_CARDS] = {[0 ... (SNDRV_CARDS - 1)] = NULL};
50 static int pcm_devs[SNDRV_CARDS] = {[0 ... (SNDRV_CARDS - 1)] = 1};
51 static int pcm_substreams[SNDRV_CARDS] = {[0 ... (SNDRV_CARDS - 1)] = 8};
52 //static int midi_devs[SNDRV_CARDS] = {[0 ... (SNDRV_CARDS - 1)] = 2};
53 #ifdef CONFIG_HIGH_RES_TIMERS
54 static bool hrtimer = 1;
55 #endif
56 static bool fake_buffer = 1;
57
58 module_param_array(index, int, NULL, 0444);
59 MODULE_PARM_DESC(index, "Index value for dummy soundcard.");
60 module_param_array(id, charp, NULL, 0444);
61 MODULE_PARM_DESC(id, "ID string for dummy soundcard.");
62 module_param_array(enable, bool, NULL, 0444);
63 MODULE_PARM_DESC(enable, "Enable this dummy soundcard.");
64 module_param_array(model, charp, NULL, 0444);
65 MODULE_PARM_DESC(model, "Soundcard model.");
66 module_param_array(pcm_devs, int, NULL, 0444);
67 MODULE_PARM_DESC(pcm_devs, "PCM devices # (0-4) for dummy driver.");
68 module_param_array(pcm_substreams, int, NULL, 0444);
69 MODULE_PARM_DESC(pcm_substreams, "PCM substreams # (1-128) for dummy driver.");
70 //module_param_array(midi_devs, int, NULL, 0444);
71 //MODULE_PARM_DESC(midi_devs, "MIDI devices # (0-2) for dummy driver.");
72 module_param(fake_buffer, bool, 0444);
73 MODULE_PARM_DESC(fake_buffer, "Fake buffer allocations.");
74 #ifdef CONFIG_HIGH_RES_TIMERS
75 module_param(hrtimer, bool, 0644);
76 MODULE_PARM_DESC(hrtimer, "Use hrtimer as the timer source.");
77 #endif
78
79 static struct platform_device *devices[SNDRV_CARDS];
80
81 #define MIXER_ADDR_MASTER 0
82 #define MIXER_ADDR_LINE 1
83 #define MIXER_ADDR_MIC 2
84 #define MIXER_ADDR_SYNTH 3
85 #define MIXER_ADDR_CD 4
86 #define MIXER_ADDR_LAST 4
87
88 struct dummy_timer_ops {
89 int (*create)(struct snd_pcm_substream *);
90 void (*free)(struct snd_pcm_substream *);
91 int (*prepare)(struct snd_pcm_substream *);
92 int (*start)(struct snd_pcm_substream *);
93 int (*stop)(struct snd_pcm_substream *);
94 snd_pcm_uframes_t (*pointer)(struct snd_pcm_substream *);
95 };
96
97 #define get_dummy_ops(substream) \
98 (*(const struct dummy_timer_ops **)(substream)->runtime->private_data)
99
100 struct dummy_model {
101 const char *name;
102 int (*playback_constraints)(struct snd_pcm_runtime *runtime);
103 int (*capture_constraints)(struct snd_pcm_runtime *runtime);
104 u64 formats;
105 size_t buffer_bytes_max;
106 size_t period_bytes_min;
107 size_t period_bytes_max;
108 unsigned int periods_min;
109 unsigned int periods_max;
110 unsigned int rates;
111 unsigned int rate_min;
112 unsigned int rate_max;
113 unsigned int channels_min;
114 unsigned int channels_max;
115 };
116
117 struct snd_dummy {
118 struct snd_card *card;
119 const struct dummy_model *model;
120 struct snd_pcm *pcm;
121 struct snd_pcm_hardware pcm_hw;
122 spinlock_t mixer_lock;
123 int mixer_volume[MIXER_ADDR_LAST+1][2];
124 int capture_source[MIXER_ADDR_LAST+1][2];
125 int iobox;
126 struct snd_kcontrol *cd_volume_ctl;
127 struct snd_kcontrol *cd_switch_ctl;
128 };
129
130 /*
131 * card models
132 */
133
emu10k1_playback_constraints(struct snd_pcm_runtime * runtime)134 static int emu10k1_playback_constraints(struct snd_pcm_runtime *runtime)
135 {
136 int err;
137 err = snd_pcm_hw_constraint_integer(runtime, SNDRV_PCM_HW_PARAM_PERIODS);
138 if (err < 0)
139 return err;
140 err = snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_BYTES, 256, UINT_MAX);
141 if (err < 0)
142 return err;
143 return 0;
144 }
145
146 static const struct dummy_model model_emu10k1 = {
147 .name = "emu10k1",
148 .playback_constraints = emu10k1_playback_constraints,
149 .buffer_bytes_max = 128 * 1024,
150 };
151
152 static const struct dummy_model model_rme9652 = {
153 .name = "rme9652",
154 .buffer_bytes_max = 26 * 64 * 1024,
155 .formats = SNDRV_PCM_FMTBIT_S32_LE,
156 .channels_min = 26,
157 .channels_max = 26,
158 .periods_min = 2,
159 .periods_max = 2,
160 };
161
162 static const struct dummy_model model_ice1712 = {
163 .name = "ice1712",
164 .buffer_bytes_max = 256 * 1024,
165 .formats = SNDRV_PCM_FMTBIT_S32_LE,
166 .channels_min = 10,
167 .channels_max = 10,
168 .periods_min = 1,
169 .periods_max = 1024,
170 };
171
172 static const struct dummy_model model_uda1341 = {
173 .name = "uda1341",
174 .buffer_bytes_max = 16380,
175 .formats = SNDRV_PCM_FMTBIT_S16_LE,
176 .channels_min = 2,
177 .channels_max = 2,
178 .periods_min = 2,
179 .periods_max = 255,
180 };
181
182 static const struct dummy_model model_ac97 = {
183 .name = "ac97",
184 .formats = SNDRV_PCM_FMTBIT_S16_LE,
185 .channels_min = 2,
186 .channels_max = 2,
187 .rates = SNDRV_PCM_RATE_48000,
188 .rate_min = 48000,
189 .rate_max = 48000,
190 };
191
192 static const struct dummy_model model_ca0106 = {
193 .name = "ca0106",
194 .formats = SNDRV_PCM_FMTBIT_S16_LE,
195 .buffer_bytes_max = ((65536-64)*8),
196 .period_bytes_max = (65536-64),
197 .periods_min = 2,
198 .periods_max = 8,
199 .channels_min = 2,
200 .channels_max = 2,
201 .rates = SNDRV_PCM_RATE_48000|SNDRV_PCM_RATE_96000|SNDRV_PCM_RATE_192000,
202 .rate_min = 48000,
203 .rate_max = 192000,
204 };
205
206 static const struct dummy_model *dummy_models[] = {
207 &model_emu10k1,
208 &model_rme9652,
209 &model_ice1712,
210 &model_uda1341,
211 &model_ac97,
212 &model_ca0106,
213 NULL
214 };
215
216 /*
217 * system timer interface
218 */
219
220 struct dummy_systimer_pcm {
221 /* ops must be the first item */
222 const struct dummy_timer_ops *timer_ops;
223 spinlock_t lock;
224 struct timer_list timer;
225 unsigned long base_time;
226 unsigned int frac_pos; /* fractional sample position (based HZ) */
227 unsigned int frac_period_rest;
228 unsigned int frac_buffer_size; /* buffer_size * HZ */
229 unsigned int frac_period_size; /* period_size * HZ */
230 unsigned int rate;
231 int elapsed;
232 struct snd_pcm_substream *substream;
233 };
234
dummy_systimer_rearm(struct dummy_systimer_pcm * dpcm)235 static void dummy_systimer_rearm(struct dummy_systimer_pcm *dpcm)
236 {
237 mod_timer(&dpcm->timer, jiffies +
238 DIV_ROUND_UP(dpcm->frac_period_rest, dpcm->rate));
239 }
240
dummy_systimer_update(struct dummy_systimer_pcm * dpcm)241 static void dummy_systimer_update(struct dummy_systimer_pcm *dpcm)
242 {
243 unsigned long delta;
244
245 delta = jiffies - dpcm->base_time;
246 if (!delta)
247 return;
248 dpcm->base_time += delta;
249 delta *= dpcm->rate;
250 dpcm->frac_pos += delta;
251 while (dpcm->frac_pos >= dpcm->frac_buffer_size)
252 dpcm->frac_pos -= dpcm->frac_buffer_size;
253 while (dpcm->frac_period_rest <= delta) {
254 dpcm->elapsed++;
255 dpcm->frac_period_rest += dpcm->frac_period_size;
256 }
257 dpcm->frac_period_rest -= delta;
258 }
259
dummy_systimer_start(struct snd_pcm_substream * substream)260 static int dummy_systimer_start(struct snd_pcm_substream *substream)
261 {
262 struct dummy_systimer_pcm *dpcm = substream->runtime->private_data;
263 spin_lock(&dpcm->lock);
264 dpcm->base_time = jiffies;
265 dummy_systimer_rearm(dpcm);
266 spin_unlock(&dpcm->lock);
267 return 0;
268 }
269
dummy_systimer_stop(struct snd_pcm_substream * substream)270 static int dummy_systimer_stop(struct snd_pcm_substream *substream)
271 {
272 struct dummy_systimer_pcm *dpcm = substream->runtime->private_data;
273 spin_lock(&dpcm->lock);
274 del_timer(&dpcm->timer);
275 spin_unlock(&dpcm->lock);
276 return 0;
277 }
278
dummy_systimer_prepare(struct snd_pcm_substream * substream)279 static int dummy_systimer_prepare(struct snd_pcm_substream *substream)
280 {
281 struct snd_pcm_runtime *runtime = substream->runtime;
282 struct dummy_systimer_pcm *dpcm = runtime->private_data;
283
284 dpcm->frac_pos = 0;
285 dpcm->rate = runtime->rate;
286 dpcm->frac_buffer_size = runtime->buffer_size * HZ;
287 dpcm->frac_period_size = runtime->period_size * HZ;
288 dpcm->frac_period_rest = dpcm->frac_period_size;
289 dpcm->elapsed = 0;
290
291 return 0;
292 }
293
dummy_systimer_callback(struct timer_list * t)294 static void dummy_systimer_callback(struct timer_list *t)
295 {
296 struct dummy_systimer_pcm *dpcm = from_timer(dpcm, t, timer);
297 unsigned long flags;
298 int elapsed = 0;
299
300 spin_lock_irqsave(&dpcm->lock, flags);
301 dummy_systimer_update(dpcm);
302 dummy_systimer_rearm(dpcm);
303 elapsed = dpcm->elapsed;
304 dpcm->elapsed = 0;
305 spin_unlock_irqrestore(&dpcm->lock, flags);
306 if (elapsed)
307 snd_pcm_period_elapsed(dpcm->substream);
308 }
309
310 static snd_pcm_uframes_t
dummy_systimer_pointer(struct snd_pcm_substream * substream)311 dummy_systimer_pointer(struct snd_pcm_substream *substream)
312 {
313 struct dummy_systimer_pcm *dpcm = substream->runtime->private_data;
314 snd_pcm_uframes_t pos;
315
316 spin_lock(&dpcm->lock);
317 dummy_systimer_update(dpcm);
318 pos = dpcm->frac_pos / HZ;
319 spin_unlock(&dpcm->lock);
320 return pos;
321 }
322
dummy_systimer_create(struct snd_pcm_substream * substream)323 static int dummy_systimer_create(struct snd_pcm_substream *substream)
324 {
325 struct dummy_systimer_pcm *dpcm;
326
327 dpcm = kzalloc(sizeof(*dpcm), GFP_KERNEL);
328 if (!dpcm)
329 return -ENOMEM;
330 substream->runtime->private_data = dpcm;
331 timer_setup(&dpcm->timer, dummy_systimer_callback, 0);
332 spin_lock_init(&dpcm->lock);
333 dpcm->substream = substream;
334 return 0;
335 }
336
dummy_systimer_free(struct snd_pcm_substream * substream)337 static void dummy_systimer_free(struct snd_pcm_substream *substream)
338 {
339 kfree(substream->runtime->private_data);
340 }
341
342 static const struct dummy_timer_ops dummy_systimer_ops = {
343 .create = dummy_systimer_create,
344 .free = dummy_systimer_free,
345 .prepare = dummy_systimer_prepare,
346 .start = dummy_systimer_start,
347 .stop = dummy_systimer_stop,
348 .pointer = dummy_systimer_pointer,
349 };
350
351 #ifdef CONFIG_HIGH_RES_TIMERS
352 /*
353 * hrtimer interface
354 */
355
356 struct dummy_hrtimer_pcm {
357 /* ops must be the first item */
358 const struct dummy_timer_ops *timer_ops;
359 ktime_t base_time;
360 ktime_t period_time;
361 atomic_t running;
362 struct hrtimer timer;
363 struct snd_pcm_substream *substream;
364 };
365
dummy_hrtimer_callback(struct hrtimer * timer)366 static enum hrtimer_restart dummy_hrtimer_callback(struct hrtimer *timer)
367 {
368 struct dummy_hrtimer_pcm *dpcm;
369
370 dpcm = container_of(timer, struct dummy_hrtimer_pcm, timer);
371 if (!atomic_read(&dpcm->running))
372 return HRTIMER_NORESTART;
373 /*
374 * In cases of XRUN and draining, this calls .trigger to stop PCM
375 * substream.
376 */
377 snd_pcm_period_elapsed(dpcm->substream);
378 if (!atomic_read(&dpcm->running))
379 return HRTIMER_NORESTART;
380
381 hrtimer_forward_now(timer, dpcm->period_time);
382 return HRTIMER_RESTART;
383 }
384
dummy_hrtimer_start(struct snd_pcm_substream * substream)385 static int dummy_hrtimer_start(struct snd_pcm_substream *substream)
386 {
387 struct dummy_hrtimer_pcm *dpcm = substream->runtime->private_data;
388
389 dpcm->base_time = hrtimer_cb_get_time(&dpcm->timer);
390 hrtimer_start(&dpcm->timer, dpcm->period_time, HRTIMER_MODE_REL_SOFT);
391 atomic_set(&dpcm->running, 1);
392 return 0;
393 }
394
dummy_hrtimer_stop(struct snd_pcm_substream * substream)395 static int dummy_hrtimer_stop(struct snd_pcm_substream *substream)
396 {
397 struct dummy_hrtimer_pcm *dpcm = substream->runtime->private_data;
398
399 atomic_set(&dpcm->running, 0);
400 if (!hrtimer_callback_running(&dpcm->timer))
401 hrtimer_cancel(&dpcm->timer);
402 return 0;
403 }
404
dummy_hrtimer_sync(struct dummy_hrtimer_pcm * dpcm)405 static inline void dummy_hrtimer_sync(struct dummy_hrtimer_pcm *dpcm)
406 {
407 hrtimer_cancel(&dpcm->timer);
408 }
409
410 static snd_pcm_uframes_t
dummy_hrtimer_pointer(struct snd_pcm_substream * substream)411 dummy_hrtimer_pointer(struct snd_pcm_substream *substream)
412 {
413 struct snd_pcm_runtime *runtime = substream->runtime;
414 struct dummy_hrtimer_pcm *dpcm = runtime->private_data;
415 u64 delta;
416 u32 pos;
417
418 delta = ktime_us_delta(hrtimer_cb_get_time(&dpcm->timer),
419 dpcm->base_time);
420 delta = div_u64(delta * runtime->rate + 999999, 1000000);
421 div_u64_rem(delta, runtime->buffer_size, &pos);
422 return pos;
423 }
424
dummy_hrtimer_prepare(struct snd_pcm_substream * substream)425 static int dummy_hrtimer_prepare(struct snd_pcm_substream *substream)
426 {
427 struct snd_pcm_runtime *runtime = substream->runtime;
428 struct dummy_hrtimer_pcm *dpcm = runtime->private_data;
429 unsigned int period, rate;
430 long sec;
431 unsigned long nsecs;
432
433 dummy_hrtimer_sync(dpcm);
434 period = runtime->period_size;
435 rate = runtime->rate;
436 sec = period / rate;
437 period %= rate;
438 nsecs = div_u64((u64)period * 1000000000UL + rate - 1, rate);
439 dpcm->period_time = ktime_set(sec, nsecs);
440
441 return 0;
442 }
443
dummy_hrtimer_create(struct snd_pcm_substream * substream)444 static int dummy_hrtimer_create(struct snd_pcm_substream *substream)
445 {
446 struct dummy_hrtimer_pcm *dpcm;
447
448 dpcm = kzalloc(sizeof(*dpcm), GFP_KERNEL);
449 if (!dpcm)
450 return -ENOMEM;
451 substream->runtime->private_data = dpcm;
452 hrtimer_init(&dpcm->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_SOFT);
453 dpcm->timer.function = dummy_hrtimer_callback;
454 dpcm->substream = substream;
455 atomic_set(&dpcm->running, 0);
456 return 0;
457 }
458
dummy_hrtimer_free(struct snd_pcm_substream * substream)459 static void dummy_hrtimer_free(struct snd_pcm_substream *substream)
460 {
461 struct dummy_hrtimer_pcm *dpcm = substream->runtime->private_data;
462 dummy_hrtimer_sync(dpcm);
463 kfree(dpcm);
464 }
465
466 static const struct dummy_timer_ops dummy_hrtimer_ops = {
467 .create = dummy_hrtimer_create,
468 .free = dummy_hrtimer_free,
469 .prepare = dummy_hrtimer_prepare,
470 .start = dummy_hrtimer_start,
471 .stop = dummy_hrtimer_stop,
472 .pointer = dummy_hrtimer_pointer,
473 };
474
475 #endif /* CONFIG_HIGH_RES_TIMERS */
476
477 /*
478 * PCM interface
479 */
480
dummy_pcm_trigger(struct snd_pcm_substream * substream,int cmd)481 static int dummy_pcm_trigger(struct snd_pcm_substream *substream, int cmd)
482 {
483 switch (cmd) {
484 case SNDRV_PCM_TRIGGER_START:
485 case SNDRV_PCM_TRIGGER_RESUME:
486 return get_dummy_ops(substream)->start(substream);
487 case SNDRV_PCM_TRIGGER_STOP:
488 case SNDRV_PCM_TRIGGER_SUSPEND:
489 return get_dummy_ops(substream)->stop(substream);
490 }
491 return -EINVAL;
492 }
493
dummy_pcm_prepare(struct snd_pcm_substream * substream)494 static int dummy_pcm_prepare(struct snd_pcm_substream *substream)
495 {
496 return get_dummy_ops(substream)->prepare(substream);
497 }
498
dummy_pcm_pointer(struct snd_pcm_substream * substream)499 static snd_pcm_uframes_t dummy_pcm_pointer(struct snd_pcm_substream *substream)
500 {
501 return get_dummy_ops(substream)->pointer(substream);
502 }
503
504 static const struct snd_pcm_hardware dummy_pcm_hardware = {
505 .info = (SNDRV_PCM_INFO_MMAP |
506 SNDRV_PCM_INFO_INTERLEAVED |
507 SNDRV_PCM_INFO_RESUME |
508 SNDRV_PCM_INFO_MMAP_VALID),
509 .formats = USE_FORMATS,
510 .rates = USE_RATE,
511 .rate_min = USE_RATE_MIN,
512 .rate_max = USE_RATE_MAX,
513 .channels_min = USE_CHANNELS_MIN,
514 .channels_max = USE_CHANNELS_MAX,
515 .buffer_bytes_max = MAX_BUFFER_SIZE,
516 .period_bytes_min = MIN_PERIOD_SIZE,
517 .period_bytes_max = MAX_PERIOD_SIZE,
518 .periods_min = USE_PERIODS_MIN,
519 .periods_max = USE_PERIODS_MAX,
520 .fifo_size = 0,
521 };
522
dummy_pcm_hw_params(struct snd_pcm_substream * substream,struct snd_pcm_hw_params * hw_params)523 static int dummy_pcm_hw_params(struct snd_pcm_substream *substream,
524 struct snd_pcm_hw_params *hw_params)
525 {
526 if (fake_buffer) {
527 /* runtime->dma_bytes has to be set manually to allow mmap */
528 substream->runtime->dma_bytes = params_buffer_bytes(hw_params);
529 return 0;
530 }
531 return 0;
532 }
533
dummy_pcm_open(struct snd_pcm_substream * substream)534 static int dummy_pcm_open(struct snd_pcm_substream *substream)
535 {
536 struct snd_dummy *dummy = snd_pcm_substream_chip(substream);
537 const struct dummy_model *model = dummy->model;
538 struct snd_pcm_runtime *runtime = substream->runtime;
539 const struct dummy_timer_ops *ops;
540 int err;
541
542 ops = &dummy_systimer_ops;
543 #ifdef CONFIG_HIGH_RES_TIMERS
544 if (hrtimer)
545 ops = &dummy_hrtimer_ops;
546 #endif
547
548 err = ops->create(substream);
549 if (err < 0)
550 return err;
551 get_dummy_ops(substream) = ops;
552
553 runtime->hw = dummy->pcm_hw;
554 if (substream->pcm->device & 1) {
555 runtime->hw.info &= ~SNDRV_PCM_INFO_INTERLEAVED;
556 runtime->hw.info |= SNDRV_PCM_INFO_NONINTERLEAVED;
557 }
558 if (substream->pcm->device & 2)
559 runtime->hw.info &= ~(SNDRV_PCM_INFO_MMAP |
560 SNDRV_PCM_INFO_MMAP_VALID);
561
562 if (model == NULL)
563 return 0;
564
565 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
566 if (model->playback_constraints)
567 err = model->playback_constraints(substream->runtime);
568 } else {
569 if (model->capture_constraints)
570 err = model->capture_constraints(substream->runtime);
571 }
572 if (err < 0) {
573 get_dummy_ops(substream)->free(substream);
574 return err;
575 }
576 return 0;
577 }
578
dummy_pcm_close(struct snd_pcm_substream * substream)579 static int dummy_pcm_close(struct snd_pcm_substream *substream)
580 {
581 get_dummy_ops(substream)->free(substream);
582 return 0;
583 }
584
585 /*
586 * dummy buffer handling
587 */
588
589 static void *dummy_page[2];
590
free_fake_buffer(void)591 static void free_fake_buffer(void)
592 {
593 if (fake_buffer) {
594 int i;
595 for (i = 0; i < 2; i++)
596 if (dummy_page[i]) {
597 free_page((unsigned long)dummy_page[i]);
598 dummy_page[i] = NULL;
599 }
600 }
601 }
602
alloc_fake_buffer(void)603 static int alloc_fake_buffer(void)
604 {
605 int i;
606
607 if (!fake_buffer)
608 return 0;
609 for (i = 0; i < 2; i++) {
610 dummy_page[i] = (void *)get_zeroed_page(GFP_KERNEL);
611 if (!dummy_page[i]) {
612 free_fake_buffer();
613 return -ENOMEM;
614 }
615 }
616 return 0;
617 }
618
dummy_pcm_copy(struct snd_pcm_substream * substream,int channel,unsigned long pos,void __user * dst,unsigned long bytes)619 static int dummy_pcm_copy(struct snd_pcm_substream *substream,
620 int channel, unsigned long pos,
621 void __user *dst, unsigned long bytes)
622 {
623 return 0; /* do nothing */
624 }
625
dummy_pcm_copy_kernel(struct snd_pcm_substream * substream,int channel,unsigned long pos,void * dst,unsigned long bytes)626 static int dummy_pcm_copy_kernel(struct snd_pcm_substream *substream,
627 int channel, unsigned long pos,
628 void *dst, unsigned long bytes)
629 {
630 return 0; /* do nothing */
631 }
632
dummy_pcm_silence(struct snd_pcm_substream * substream,int channel,unsigned long pos,unsigned long bytes)633 static int dummy_pcm_silence(struct snd_pcm_substream *substream,
634 int channel, unsigned long pos,
635 unsigned long bytes)
636 {
637 return 0; /* do nothing */
638 }
639
dummy_pcm_page(struct snd_pcm_substream * substream,unsigned long offset)640 static struct page *dummy_pcm_page(struct snd_pcm_substream *substream,
641 unsigned long offset)
642 {
643 return virt_to_page(dummy_page[substream->stream]); /* the same page */
644 }
645
646 static const struct snd_pcm_ops dummy_pcm_ops = {
647 .open = dummy_pcm_open,
648 .close = dummy_pcm_close,
649 .hw_params = dummy_pcm_hw_params,
650 .prepare = dummy_pcm_prepare,
651 .trigger = dummy_pcm_trigger,
652 .pointer = dummy_pcm_pointer,
653 };
654
655 static const struct snd_pcm_ops dummy_pcm_ops_no_buf = {
656 .open = dummy_pcm_open,
657 .close = dummy_pcm_close,
658 .hw_params = dummy_pcm_hw_params,
659 .prepare = dummy_pcm_prepare,
660 .trigger = dummy_pcm_trigger,
661 .pointer = dummy_pcm_pointer,
662 .copy_user = dummy_pcm_copy,
663 .copy_kernel = dummy_pcm_copy_kernel,
664 .fill_silence = dummy_pcm_silence,
665 .page = dummy_pcm_page,
666 };
667
snd_card_dummy_pcm(struct snd_dummy * dummy,int device,int substreams)668 static int snd_card_dummy_pcm(struct snd_dummy *dummy, int device,
669 int substreams)
670 {
671 struct snd_pcm *pcm;
672 const struct snd_pcm_ops *ops;
673 int err;
674
675 err = snd_pcm_new(dummy->card, "Dummy PCM", device,
676 substreams, substreams, &pcm);
677 if (err < 0)
678 return err;
679 dummy->pcm = pcm;
680 if (fake_buffer)
681 ops = &dummy_pcm_ops_no_buf;
682 else
683 ops = &dummy_pcm_ops;
684 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, ops);
685 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, ops);
686 pcm->private_data = dummy;
687 pcm->info_flags = 0;
688 strcpy(pcm->name, "Dummy PCM");
689 if (!fake_buffer) {
690 snd_pcm_set_managed_buffer_all(pcm,
691 SNDRV_DMA_TYPE_CONTINUOUS,
692 NULL,
693 0, 64*1024);
694 }
695 return 0;
696 }
697
698 /*
699 * mixer interface
700 */
701
702 #define DUMMY_VOLUME(xname, xindex, addr) \
703 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
704 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE | SNDRV_CTL_ELEM_ACCESS_TLV_READ, \
705 .name = xname, .index = xindex, \
706 .info = snd_dummy_volume_info, \
707 .get = snd_dummy_volume_get, .put = snd_dummy_volume_put, \
708 .private_value = addr, \
709 .tlv = { .p = db_scale_dummy } }
710
snd_dummy_volume_info(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_info * uinfo)711 static int snd_dummy_volume_info(struct snd_kcontrol *kcontrol,
712 struct snd_ctl_elem_info *uinfo)
713 {
714 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
715 uinfo->count = 2;
716 uinfo->value.integer.min = -50;
717 uinfo->value.integer.max = 100;
718 return 0;
719 }
720
snd_dummy_volume_get(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)721 static int snd_dummy_volume_get(struct snd_kcontrol *kcontrol,
722 struct snd_ctl_elem_value *ucontrol)
723 {
724 struct snd_dummy *dummy = snd_kcontrol_chip(kcontrol);
725 int addr = kcontrol->private_value;
726
727 spin_lock_irq(&dummy->mixer_lock);
728 ucontrol->value.integer.value[0] = dummy->mixer_volume[addr][0];
729 ucontrol->value.integer.value[1] = dummy->mixer_volume[addr][1];
730 spin_unlock_irq(&dummy->mixer_lock);
731 return 0;
732 }
733
snd_dummy_volume_put(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)734 static int snd_dummy_volume_put(struct snd_kcontrol *kcontrol,
735 struct snd_ctl_elem_value *ucontrol)
736 {
737 struct snd_dummy *dummy = snd_kcontrol_chip(kcontrol);
738 int change, addr = kcontrol->private_value;
739 int left, right;
740
741 left = ucontrol->value.integer.value[0];
742 if (left < -50)
743 left = -50;
744 if (left > 100)
745 left = 100;
746 right = ucontrol->value.integer.value[1];
747 if (right < -50)
748 right = -50;
749 if (right > 100)
750 right = 100;
751 spin_lock_irq(&dummy->mixer_lock);
752 change = dummy->mixer_volume[addr][0] != left ||
753 dummy->mixer_volume[addr][1] != right;
754 dummy->mixer_volume[addr][0] = left;
755 dummy->mixer_volume[addr][1] = right;
756 spin_unlock_irq(&dummy->mixer_lock);
757 return change;
758 }
759
760 static const DECLARE_TLV_DB_SCALE(db_scale_dummy, -4500, 30, 0);
761
762 #define DUMMY_CAPSRC(xname, xindex, addr) \
763 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, .index = xindex, \
764 .info = snd_dummy_capsrc_info, \
765 .get = snd_dummy_capsrc_get, .put = snd_dummy_capsrc_put, \
766 .private_value = addr }
767
768 #define snd_dummy_capsrc_info snd_ctl_boolean_stereo_info
769
snd_dummy_capsrc_get(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)770 static int snd_dummy_capsrc_get(struct snd_kcontrol *kcontrol,
771 struct snd_ctl_elem_value *ucontrol)
772 {
773 struct snd_dummy *dummy = snd_kcontrol_chip(kcontrol);
774 int addr = kcontrol->private_value;
775
776 spin_lock_irq(&dummy->mixer_lock);
777 ucontrol->value.integer.value[0] = dummy->capture_source[addr][0];
778 ucontrol->value.integer.value[1] = dummy->capture_source[addr][1];
779 spin_unlock_irq(&dummy->mixer_lock);
780 return 0;
781 }
782
snd_dummy_capsrc_put(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)783 static int snd_dummy_capsrc_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
784 {
785 struct snd_dummy *dummy = snd_kcontrol_chip(kcontrol);
786 int change, addr = kcontrol->private_value;
787 int left, right;
788
789 left = ucontrol->value.integer.value[0] & 1;
790 right = ucontrol->value.integer.value[1] & 1;
791 spin_lock_irq(&dummy->mixer_lock);
792 change = dummy->capture_source[addr][0] != left &&
793 dummy->capture_source[addr][1] != right;
794 dummy->capture_source[addr][0] = left;
795 dummy->capture_source[addr][1] = right;
796 spin_unlock_irq(&dummy->mixer_lock);
797 return change;
798 }
799
snd_dummy_iobox_info(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_info * info)800 static int snd_dummy_iobox_info(struct snd_kcontrol *kcontrol,
801 struct snd_ctl_elem_info *info)
802 {
803 static const char *const names[] = { "None", "CD Player" };
804
805 return snd_ctl_enum_info(info, 1, 2, names);
806 }
807
snd_dummy_iobox_get(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * value)808 static int snd_dummy_iobox_get(struct snd_kcontrol *kcontrol,
809 struct snd_ctl_elem_value *value)
810 {
811 struct snd_dummy *dummy = snd_kcontrol_chip(kcontrol);
812
813 value->value.enumerated.item[0] = dummy->iobox;
814 return 0;
815 }
816
snd_dummy_iobox_put(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * value)817 static int snd_dummy_iobox_put(struct snd_kcontrol *kcontrol,
818 struct snd_ctl_elem_value *value)
819 {
820 struct snd_dummy *dummy = snd_kcontrol_chip(kcontrol);
821 int changed;
822
823 if (value->value.enumerated.item[0] > 1)
824 return -EINVAL;
825
826 changed = value->value.enumerated.item[0] != dummy->iobox;
827 if (changed) {
828 dummy->iobox = value->value.enumerated.item[0];
829
830 if (dummy->iobox) {
831 dummy->cd_volume_ctl->vd[0].access &=
832 ~SNDRV_CTL_ELEM_ACCESS_INACTIVE;
833 dummy->cd_switch_ctl->vd[0].access &=
834 ~SNDRV_CTL_ELEM_ACCESS_INACTIVE;
835 } else {
836 dummy->cd_volume_ctl->vd[0].access |=
837 SNDRV_CTL_ELEM_ACCESS_INACTIVE;
838 dummy->cd_switch_ctl->vd[0].access |=
839 SNDRV_CTL_ELEM_ACCESS_INACTIVE;
840 }
841
842 snd_ctl_notify(dummy->card, SNDRV_CTL_EVENT_MASK_INFO,
843 &dummy->cd_volume_ctl->id);
844 snd_ctl_notify(dummy->card, SNDRV_CTL_EVENT_MASK_INFO,
845 &dummy->cd_switch_ctl->id);
846 }
847
848 return changed;
849 }
850
851 static const struct snd_kcontrol_new snd_dummy_controls[] = {
852 DUMMY_VOLUME("Master Volume", 0, MIXER_ADDR_MASTER),
853 DUMMY_CAPSRC("Master Capture Switch", 0, MIXER_ADDR_MASTER),
854 DUMMY_VOLUME("Synth Volume", 0, MIXER_ADDR_SYNTH),
855 DUMMY_CAPSRC("Synth Capture Switch", 0, MIXER_ADDR_SYNTH),
856 DUMMY_VOLUME("Line Volume", 0, MIXER_ADDR_LINE),
857 DUMMY_CAPSRC("Line Capture Switch", 0, MIXER_ADDR_LINE),
858 DUMMY_VOLUME("Mic Volume", 0, MIXER_ADDR_MIC),
859 DUMMY_CAPSRC("Mic Capture Switch", 0, MIXER_ADDR_MIC),
860 DUMMY_VOLUME("CD Volume", 0, MIXER_ADDR_CD),
861 DUMMY_CAPSRC("CD Capture Switch", 0, MIXER_ADDR_CD),
862 {
863 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
864 .name = "External I/O Box",
865 .info = snd_dummy_iobox_info,
866 .get = snd_dummy_iobox_get,
867 .put = snd_dummy_iobox_put,
868 },
869 };
870
snd_card_dummy_new_mixer(struct snd_dummy * dummy)871 static int snd_card_dummy_new_mixer(struct snd_dummy *dummy)
872 {
873 struct snd_card *card = dummy->card;
874 struct snd_kcontrol *kcontrol;
875 unsigned int idx;
876 int err;
877
878 spin_lock_init(&dummy->mixer_lock);
879 strcpy(card->mixername, "Dummy Mixer");
880 dummy->iobox = 1;
881
882 for (idx = 0; idx < ARRAY_SIZE(snd_dummy_controls); idx++) {
883 kcontrol = snd_ctl_new1(&snd_dummy_controls[idx], dummy);
884 err = snd_ctl_add(card, kcontrol);
885 if (err < 0)
886 return err;
887 if (!strcmp(kcontrol->id.name, "CD Volume"))
888 dummy->cd_volume_ctl = kcontrol;
889 else if (!strcmp(kcontrol->id.name, "CD Capture Switch"))
890 dummy->cd_switch_ctl = kcontrol;
891
892 }
893 return 0;
894 }
895
896 #if defined(CONFIG_SND_DEBUG) && defined(CONFIG_SND_PROC_FS)
897 /*
898 * proc interface
899 */
print_formats(struct snd_dummy * dummy,struct snd_info_buffer * buffer)900 static void print_formats(struct snd_dummy *dummy,
901 struct snd_info_buffer *buffer)
902 {
903 snd_pcm_format_t i;
904
905 pcm_for_each_format(i) {
906 if (dummy->pcm_hw.formats & pcm_format_to_bits(i))
907 snd_iprintf(buffer, " %s", snd_pcm_format_name(i));
908 }
909 }
910
print_rates(struct snd_dummy * dummy,struct snd_info_buffer * buffer)911 static void print_rates(struct snd_dummy *dummy,
912 struct snd_info_buffer *buffer)
913 {
914 static const int rates[] = {
915 5512, 8000, 11025, 16000, 22050, 32000, 44100, 48000,
916 64000, 88200, 96000, 176400, 192000,
917 };
918 int i;
919
920 if (dummy->pcm_hw.rates & SNDRV_PCM_RATE_CONTINUOUS)
921 snd_iprintf(buffer, " continuous");
922 if (dummy->pcm_hw.rates & SNDRV_PCM_RATE_KNOT)
923 snd_iprintf(buffer, " knot");
924 for (i = 0; i < ARRAY_SIZE(rates); i++)
925 if (dummy->pcm_hw.rates & (1 << i))
926 snd_iprintf(buffer, " %d", rates[i]);
927 }
928
929 #define get_dummy_int_ptr(dummy, ofs) \
930 (unsigned int *)((char *)&((dummy)->pcm_hw) + (ofs))
931 #define get_dummy_ll_ptr(dummy, ofs) \
932 (unsigned long long *)((char *)&((dummy)->pcm_hw) + (ofs))
933
934 struct dummy_hw_field {
935 const char *name;
936 const char *format;
937 unsigned int offset;
938 unsigned int size;
939 };
940 #define FIELD_ENTRY(item, fmt) { \
941 .name = #item, \
942 .format = fmt, \
943 .offset = offsetof(struct snd_pcm_hardware, item), \
944 .size = sizeof(dummy_pcm_hardware.item) }
945
946 static const struct dummy_hw_field fields[] = {
947 FIELD_ENTRY(formats, "%#llx"),
948 FIELD_ENTRY(rates, "%#x"),
949 FIELD_ENTRY(rate_min, "%d"),
950 FIELD_ENTRY(rate_max, "%d"),
951 FIELD_ENTRY(channels_min, "%d"),
952 FIELD_ENTRY(channels_max, "%d"),
953 FIELD_ENTRY(buffer_bytes_max, "%ld"),
954 FIELD_ENTRY(period_bytes_min, "%ld"),
955 FIELD_ENTRY(period_bytes_max, "%ld"),
956 FIELD_ENTRY(periods_min, "%d"),
957 FIELD_ENTRY(periods_max, "%d"),
958 };
959
dummy_proc_read(struct snd_info_entry * entry,struct snd_info_buffer * buffer)960 static void dummy_proc_read(struct snd_info_entry *entry,
961 struct snd_info_buffer *buffer)
962 {
963 struct snd_dummy *dummy = entry->private_data;
964 int i;
965
966 for (i = 0; i < ARRAY_SIZE(fields); i++) {
967 snd_iprintf(buffer, "%s ", fields[i].name);
968 if (fields[i].size == sizeof(int))
969 snd_iprintf(buffer, fields[i].format,
970 *get_dummy_int_ptr(dummy, fields[i].offset));
971 else
972 snd_iprintf(buffer, fields[i].format,
973 *get_dummy_ll_ptr(dummy, fields[i].offset));
974 if (!strcmp(fields[i].name, "formats"))
975 print_formats(dummy, buffer);
976 else if (!strcmp(fields[i].name, "rates"))
977 print_rates(dummy, buffer);
978 snd_iprintf(buffer, "\n");
979 }
980 }
981
dummy_proc_write(struct snd_info_entry * entry,struct snd_info_buffer * buffer)982 static void dummy_proc_write(struct snd_info_entry *entry,
983 struct snd_info_buffer *buffer)
984 {
985 struct snd_dummy *dummy = entry->private_data;
986 char line[64];
987
988 while (!snd_info_get_line(buffer, line, sizeof(line))) {
989 char item[20];
990 const char *ptr;
991 unsigned long long val;
992 int i;
993
994 ptr = snd_info_get_str(item, line, sizeof(item));
995 for (i = 0; i < ARRAY_SIZE(fields); i++) {
996 if (!strcmp(item, fields[i].name))
997 break;
998 }
999 if (i >= ARRAY_SIZE(fields))
1000 continue;
1001 snd_info_get_str(item, ptr, sizeof(item));
1002 if (kstrtoull(item, 0, &val))
1003 continue;
1004 if (fields[i].size == sizeof(int))
1005 *get_dummy_int_ptr(dummy, fields[i].offset) = val;
1006 else
1007 *get_dummy_ll_ptr(dummy, fields[i].offset) = val;
1008 }
1009 }
1010
dummy_proc_init(struct snd_dummy * chip)1011 static void dummy_proc_init(struct snd_dummy *chip)
1012 {
1013 snd_card_rw_proc_new(chip->card, "dummy_pcm", chip,
1014 dummy_proc_read, dummy_proc_write);
1015 }
1016 #else
1017 #define dummy_proc_init(x)
1018 #endif /* CONFIG_SND_DEBUG && CONFIG_SND_PROC_FS */
1019
snd_dummy_probe(struct platform_device * devptr)1020 static int snd_dummy_probe(struct platform_device *devptr)
1021 {
1022 struct snd_card *card;
1023 struct snd_dummy *dummy;
1024 const struct dummy_model *m = NULL, **mdl;
1025 int idx, err;
1026 int dev = devptr->id;
1027
1028 err = snd_devm_card_new(&devptr->dev, index[dev], id[dev], THIS_MODULE,
1029 sizeof(struct snd_dummy), &card);
1030 if (err < 0)
1031 return err;
1032 dummy = card->private_data;
1033 dummy->card = card;
1034 for (mdl = dummy_models; *mdl && model[dev]; mdl++) {
1035 if (strcmp(model[dev], (*mdl)->name) == 0) {
1036 printk(KERN_INFO
1037 "snd-dummy: Using model '%s' for card %i\n",
1038 (*mdl)->name, card->number);
1039 m = dummy->model = *mdl;
1040 break;
1041 }
1042 }
1043 for (idx = 0; idx < MAX_PCM_DEVICES && idx < pcm_devs[dev]; idx++) {
1044 if (pcm_substreams[dev] < 1)
1045 pcm_substreams[dev] = 1;
1046 if (pcm_substreams[dev] > MAX_PCM_SUBSTREAMS)
1047 pcm_substreams[dev] = MAX_PCM_SUBSTREAMS;
1048 err = snd_card_dummy_pcm(dummy, idx, pcm_substreams[dev]);
1049 if (err < 0)
1050 return err;
1051 }
1052
1053 dummy->pcm_hw = dummy_pcm_hardware;
1054 if (m) {
1055 if (m->formats)
1056 dummy->pcm_hw.formats = m->formats;
1057 if (m->buffer_bytes_max)
1058 dummy->pcm_hw.buffer_bytes_max = m->buffer_bytes_max;
1059 if (m->period_bytes_min)
1060 dummy->pcm_hw.period_bytes_min = m->period_bytes_min;
1061 if (m->period_bytes_max)
1062 dummy->pcm_hw.period_bytes_max = m->period_bytes_max;
1063 if (m->periods_min)
1064 dummy->pcm_hw.periods_min = m->periods_min;
1065 if (m->periods_max)
1066 dummy->pcm_hw.periods_max = m->periods_max;
1067 if (m->rates)
1068 dummy->pcm_hw.rates = m->rates;
1069 if (m->rate_min)
1070 dummy->pcm_hw.rate_min = m->rate_min;
1071 if (m->rate_max)
1072 dummy->pcm_hw.rate_max = m->rate_max;
1073 if (m->channels_min)
1074 dummy->pcm_hw.channels_min = m->channels_min;
1075 if (m->channels_max)
1076 dummy->pcm_hw.channels_max = m->channels_max;
1077 }
1078
1079 err = snd_card_dummy_new_mixer(dummy);
1080 if (err < 0)
1081 return err;
1082 strcpy(card->driver, "Dummy");
1083 strcpy(card->shortname, "Dummy");
1084 sprintf(card->longname, "Dummy %i", dev + 1);
1085
1086 dummy_proc_init(dummy);
1087
1088 err = snd_card_register(card);
1089 if (err < 0)
1090 return err;
1091 platform_set_drvdata(devptr, card);
1092 return 0;
1093 }
1094
1095 #ifdef CONFIG_PM_SLEEP
snd_dummy_suspend(struct device * pdev)1096 static int snd_dummy_suspend(struct device *pdev)
1097 {
1098 struct snd_card *card = dev_get_drvdata(pdev);
1099
1100 snd_power_change_state(card, SNDRV_CTL_POWER_D3hot);
1101 return 0;
1102 }
1103
snd_dummy_resume(struct device * pdev)1104 static int snd_dummy_resume(struct device *pdev)
1105 {
1106 struct snd_card *card = dev_get_drvdata(pdev);
1107
1108 snd_power_change_state(card, SNDRV_CTL_POWER_D0);
1109 return 0;
1110 }
1111
1112 static SIMPLE_DEV_PM_OPS(snd_dummy_pm, snd_dummy_suspend, snd_dummy_resume);
1113 #define SND_DUMMY_PM_OPS &snd_dummy_pm
1114 #else
1115 #define SND_DUMMY_PM_OPS NULL
1116 #endif
1117
1118 #define SND_DUMMY_DRIVER "snd_dummy"
1119
1120 static struct platform_driver snd_dummy_driver = {
1121 .probe = snd_dummy_probe,
1122 .driver = {
1123 .name = SND_DUMMY_DRIVER,
1124 .pm = SND_DUMMY_PM_OPS,
1125 },
1126 };
1127
snd_dummy_unregister_all(void)1128 static void snd_dummy_unregister_all(void)
1129 {
1130 int i;
1131
1132 for (i = 0; i < ARRAY_SIZE(devices); ++i)
1133 platform_device_unregister(devices[i]);
1134 platform_driver_unregister(&snd_dummy_driver);
1135 free_fake_buffer();
1136 }
1137
alsa_card_dummy_init(void)1138 static int __init alsa_card_dummy_init(void)
1139 {
1140 int i, cards, err;
1141
1142 err = platform_driver_register(&snd_dummy_driver);
1143 if (err < 0)
1144 return err;
1145
1146 err = alloc_fake_buffer();
1147 if (err < 0) {
1148 platform_driver_unregister(&snd_dummy_driver);
1149 return err;
1150 }
1151
1152 cards = 0;
1153 for (i = 0; i < SNDRV_CARDS; i++) {
1154 struct platform_device *device;
1155 if (! enable[i])
1156 continue;
1157 device = platform_device_register_simple(SND_DUMMY_DRIVER,
1158 i, NULL, 0);
1159 if (IS_ERR(device))
1160 continue;
1161 if (!platform_get_drvdata(device)) {
1162 platform_device_unregister(device);
1163 continue;
1164 }
1165 devices[i] = device;
1166 cards++;
1167 }
1168 if (!cards) {
1169 #ifdef MODULE
1170 printk(KERN_ERR "Dummy soundcard not found or device busy\n");
1171 #endif
1172 snd_dummy_unregister_all();
1173 return -ENODEV;
1174 }
1175 return 0;
1176 }
1177
alsa_card_dummy_exit(void)1178 static void __exit alsa_card_dummy_exit(void)
1179 {
1180 snd_dummy_unregister_all();
1181 }
1182
1183 module_init(alsa_card_dummy_init)
1184 module_exit(alsa_card_dummy_exit)
1185