1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Hardware monitoring driver for PMBus devices
4 *
5 * Copyright (c) 2010, 2011 Ericsson AB.
6 * Copyright (c) 2012 Guenter Roeck
7 */
8
9 #include <linux/debugfs.h>
10 #include <linux/kernel.h>
11 #include <linux/math64.h>
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/err.h>
15 #include <linux/slab.h>
16 #include <linux/i2c.h>
17 #include <linux/hwmon.h>
18 #include <linux/hwmon-sysfs.h>
19 #include <linux/pmbus.h>
20 #include <linux/regulator/driver.h>
21 #include <linux/regulator/machine.h>
22 #include "pmbus.h"
23
24 /*
25 * Number of additional attribute pointers to allocate
26 * with each call to krealloc
27 */
28 #define PMBUS_ATTR_ALLOC_SIZE 32
29 #define PMBUS_NAME_SIZE 24
30
31 struct pmbus_sensor {
32 struct pmbus_sensor *next;
33 char name[PMBUS_NAME_SIZE]; /* sysfs sensor name */
34 struct device_attribute attribute;
35 u8 page; /* page number */
36 u8 phase; /* phase number, 0xff for all phases */
37 u16 reg; /* register */
38 enum pmbus_sensor_classes class; /* sensor class */
39 bool update; /* runtime sensor update needed */
40 bool convert; /* Whether or not to apply linear/vid/direct */
41 int data; /* Sensor data.
42 Negative if there was a read error */
43 };
44 #define to_pmbus_sensor(_attr) \
45 container_of(_attr, struct pmbus_sensor, attribute)
46
47 struct pmbus_boolean {
48 char name[PMBUS_NAME_SIZE]; /* sysfs boolean name */
49 struct sensor_device_attribute attribute;
50 struct pmbus_sensor *s1;
51 struct pmbus_sensor *s2;
52 };
53 #define to_pmbus_boolean(_attr) \
54 container_of(_attr, struct pmbus_boolean, attribute)
55
56 struct pmbus_label {
57 char name[PMBUS_NAME_SIZE]; /* sysfs label name */
58 struct device_attribute attribute;
59 char label[PMBUS_NAME_SIZE]; /* label */
60 };
61 #define to_pmbus_label(_attr) \
62 container_of(_attr, struct pmbus_label, attribute)
63
64 /* Macros for converting between sensor index and register/page/status mask */
65
66 #define PB_STATUS_MASK 0xffff
67 #define PB_REG_SHIFT 16
68 #define PB_REG_MASK 0x3ff
69 #define PB_PAGE_SHIFT 26
70 #define PB_PAGE_MASK 0x3f
71
72 #define pb_reg_to_index(page, reg, mask) (((page) << PB_PAGE_SHIFT) | \
73 ((reg) << PB_REG_SHIFT) | (mask))
74
75 #define pb_index_to_page(index) (((index) >> PB_PAGE_SHIFT) & PB_PAGE_MASK)
76 #define pb_index_to_reg(index) (((index) >> PB_REG_SHIFT) & PB_REG_MASK)
77 #define pb_index_to_mask(index) ((index) & PB_STATUS_MASK)
78
79 struct pmbus_data {
80 struct device *dev;
81 struct device *hwmon_dev;
82
83 u32 flags; /* from platform data */
84
85 int exponent[PMBUS_PAGES];
86 /* linear mode: exponent for output voltages */
87
88 const struct pmbus_driver_info *info;
89
90 int max_attributes;
91 int num_attributes;
92 struct attribute_group group;
93 const struct attribute_group **groups;
94 struct dentry *debugfs; /* debugfs device directory */
95
96 struct pmbus_sensor *sensors;
97
98 struct mutex update_lock;
99
100 bool has_status_word; /* device uses STATUS_WORD register */
101 int (*read_status)(struct i2c_client *client, int page);
102
103 s16 currpage; /* current page, -1 for unknown/unset */
104 s16 currphase; /* current phase, 0xff for all, -1 for unknown/unset */
105 };
106
107 struct pmbus_debugfs_entry {
108 struct i2c_client *client;
109 u8 page;
110 u8 reg;
111 };
112
113 static const int pmbus_fan_rpm_mask[] = {
114 PB_FAN_1_RPM,
115 PB_FAN_2_RPM,
116 PB_FAN_1_RPM,
117 PB_FAN_2_RPM,
118 };
119
120 static const int pmbus_fan_config_registers[] = {
121 PMBUS_FAN_CONFIG_12,
122 PMBUS_FAN_CONFIG_12,
123 PMBUS_FAN_CONFIG_34,
124 PMBUS_FAN_CONFIG_34
125 };
126
127 static const int pmbus_fan_command_registers[] = {
128 PMBUS_FAN_COMMAND_1,
129 PMBUS_FAN_COMMAND_2,
130 PMBUS_FAN_COMMAND_3,
131 PMBUS_FAN_COMMAND_4,
132 };
133
pmbus_clear_cache(struct i2c_client * client)134 void pmbus_clear_cache(struct i2c_client *client)
135 {
136 struct pmbus_data *data = i2c_get_clientdata(client);
137 struct pmbus_sensor *sensor;
138
139 for (sensor = data->sensors; sensor; sensor = sensor->next)
140 sensor->data = -ENODATA;
141 }
142 EXPORT_SYMBOL_NS_GPL(pmbus_clear_cache, PMBUS);
143
pmbus_set_update(struct i2c_client * client,u8 reg,bool update)144 void pmbus_set_update(struct i2c_client *client, u8 reg, bool update)
145 {
146 struct pmbus_data *data = i2c_get_clientdata(client);
147 struct pmbus_sensor *sensor;
148
149 for (sensor = data->sensors; sensor; sensor = sensor->next)
150 if (sensor->reg == reg)
151 sensor->update = update;
152 }
153 EXPORT_SYMBOL_NS_GPL(pmbus_set_update, PMBUS);
154
pmbus_set_page(struct i2c_client * client,int page,int phase)155 int pmbus_set_page(struct i2c_client *client, int page, int phase)
156 {
157 struct pmbus_data *data = i2c_get_clientdata(client);
158 int rv;
159
160 if (page < 0)
161 return 0;
162
163 if (!(data->info->func[page] & PMBUS_PAGE_VIRTUAL) &&
164 data->info->pages > 1 && page != data->currpage) {
165 rv = i2c_smbus_write_byte_data(client, PMBUS_PAGE, page);
166 if (rv < 0)
167 return rv;
168
169 rv = i2c_smbus_read_byte_data(client, PMBUS_PAGE);
170 if (rv < 0)
171 return rv;
172
173 if (rv != page)
174 return -EIO;
175 }
176 data->currpage = page;
177
178 if (data->info->phases[page] && data->currphase != phase &&
179 !(data->info->func[page] & PMBUS_PHASE_VIRTUAL)) {
180 rv = i2c_smbus_write_byte_data(client, PMBUS_PHASE,
181 phase);
182 if (rv)
183 return rv;
184 }
185 data->currphase = phase;
186
187 return 0;
188 }
189 EXPORT_SYMBOL_NS_GPL(pmbus_set_page, PMBUS);
190
pmbus_write_byte(struct i2c_client * client,int page,u8 value)191 int pmbus_write_byte(struct i2c_client *client, int page, u8 value)
192 {
193 int rv;
194
195 rv = pmbus_set_page(client, page, 0xff);
196 if (rv < 0)
197 return rv;
198
199 return i2c_smbus_write_byte(client, value);
200 }
201 EXPORT_SYMBOL_NS_GPL(pmbus_write_byte, PMBUS);
202
203 /*
204 * _pmbus_write_byte() is similar to pmbus_write_byte(), but checks if
205 * a device specific mapping function exists and calls it if necessary.
206 */
_pmbus_write_byte(struct i2c_client * client,int page,u8 value)207 static int _pmbus_write_byte(struct i2c_client *client, int page, u8 value)
208 {
209 struct pmbus_data *data = i2c_get_clientdata(client);
210 const struct pmbus_driver_info *info = data->info;
211 int status;
212
213 if (info->write_byte) {
214 status = info->write_byte(client, page, value);
215 if (status != -ENODATA)
216 return status;
217 }
218 return pmbus_write_byte(client, page, value);
219 }
220
pmbus_write_word_data(struct i2c_client * client,int page,u8 reg,u16 word)221 int pmbus_write_word_data(struct i2c_client *client, int page, u8 reg,
222 u16 word)
223 {
224 int rv;
225
226 rv = pmbus_set_page(client, page, 0xff);
227 if (rv < 0)
228 return rv;
229
230 return i2c_smbus_write_word_data(client, reg, word);
231 }
232 EXPORT_SYMBOL_NS_GPL(pmbus_write_word_data, PMBUS);
233
234
pmbus_write_virt_reg(struct i2c_client * client,int page,int reg,u16 word)235 static int pmbus_write_virt_reg(struct i2c_client *client, int page, int reg,
236 u16 word)
237 {
238 int bit;
239 int id;
240 int rv;
241
242 switch (reg) {
243 case PMBUS_VIRT_FAN_TARGET_1 ... PMBUS_VIRT_FAN_TARGET_4:
244 id = reg - PMBUS_VIRT_FAN_TARGET_1;
245 bit = pmbus_fan_rpm_mask[id];
246 rv = pmbus_update_fan(client, page, id, bit, bit, word);
247 break;
248 default:
249 rv = -ENXIO;
250 break;
251 }
252
253 return rv;
254 }
255
256 /*
257 * _pmbus_write_word_data() is similar to pmbus_write_word_data(), but checks if
258 * a device specific mapping function exists and calls it if necessary.
259 */
_pmbus_write_word_data(struct i2c_client * client,int page,int reg,u16 word)260 static int _pmbus_write_word_data(struct i2c_client *client, int page, int reg,
261 u16 word)
262 {
263 struct pmbus_data *data = i2c_get_clientdata(client);
264 const struct pmbus_driver_info *info = data->info;
265 int status;
266
267 if (info->write_word_data) {
268 status = info->write_word_data(client, page, reg, word);
269 if (status != -ENODATA)
270 return status;
271 }
272
273 if (reg >= PMBUS_VIRT_BASE)
274 return pmbus_write_virt_reg(client, page, reg, word);
275
276 return pmbus_write_word_data(client, page, reg, word);
277 }
278
pmbus_update_fan(struct i2c_client * client,int page,int id,u8 config,u8 mask,u16 command)279 int pmbus_update_fan(struct i2c_client *client, int page, int id,
280 u8 config, u8 mask, u16 command)
281 {
282 int from;
283 int rv;
284 u8 to;
285
286 from = pmbus_read_byte_data(client, page,
287 pmbus_fan_config_registers[id]);
288 if (from < 0)
289 return from;
290
291 to = (from & ~mask) | (config & mask);
292 if (to != from) {
293 rv = pmbus_write_byte_data(client, page,
294 pmbus_fan_config_registers[id], to);
295 if (rv < 0)
296 return rv;
297 }
298
299 return _pmbus_write_word_data(client, page,
300 pmbus_fan_command_registers[id], command);
301 }
302 EXPORT_SYMBOL_NS_GPL(pmbus_update_fan, PMBUS);
303
pmbus_read_word_data(struct i2c_client * client,int page,int phase,u8 reg)304 int pmbus_read_word_data(struct i2c_client *client, int page, int phase, u8 reg)
305 {
306 int rv;
307
308 rv = pmbus_set_page(client, page, phase);
309 if (rv < 0)
310 return rv;
311
312 return i2c_smbus_read_word_data(client, reg);
313 }
314 EXPORT_SYMBOL_NS_GPL(pmbus_read_word_data, PMBUS);
315
pmbus_read_virt_reg(struct i2c_client * client,int page,int reg)316 static int pmbus_read_virt_reg(struct i2c_client *client, int page, int reg)
317 {
318 int rv;
319 int id;
320
321 switch (reg) {
322 case PMBUS_VIRT_FAN_TARGET_1 ... PMBUS_VIRT_FAN_TARGET_4:
323 id = reg - PMBUS_VIRT_FAN_TARGET_1;
324 rv = pmbus_get_fan_rate_device(client, page, id, rpm);
325 break;
326 default:
327 rv = -ENXIO;
328 break;
329 }
330
331 return rv;
332 }
333
334 /*
335 * _pmbus_read_word_data() is similar to pmbus_read_word_data(), but checks if
336 * a device specific mapping function exists and calls it if necessary.
337 */
_pmbus_read_word_data(struct i2c_client * client,int page,int phase,int reg)338 static int _pmbus_read_word_data(struct i2c_client *client, int page,
339 int phase, int reg)
340 {
341 struct pmbus_data *data = i2c_get_clientdata(client);
342 const struct pmbus_driver_info *info = data->info;
343 int status;
344
345 if (info->read_word_data) {
346 status = info->read_word_data(client, page, phase, reg);
347 if (status != -ENODATA)
348 return status;
349 }
350
351 if (reg >= PMBUS_VIRT_BASE)
352 return pmbus_read_virt_reg(client, page, reg);
353
354 return pmbus_read_word_data(client, page, phase, reg);
355 }
356
357 /* Same as above, but without phase parameter, for use in check functions */
__pmbus_read_word_data(struct i2c_client * client,int page,int reg)358 static int __pmbus_read_word_data(struct i2c_client *client, int page, int reg)
359 {
360 return _pmbus_read_word_data(client, page, 0xff, reg);
361 }
362
pmbus_read_byte_data(struct i2c_client * client,int page,u8 reg)363 int pmbus_read_byte_data(struct i2c_client *client, int page, u8 reg)
364 {
365 int rv;
366
367 rv = pmbus_set_page(client, page, 0xff);
368 if (rv < 0)
369 return rv;
370
371 return i2c_smbus_read_byte_data(client, reg);
372 }
373 EXPORT_SYMBOL_NS_GPL(pmbus_read_byte_data, PMBUS);
374
pmbus_write_byte_data(struct i2c_client * client,int page,u8 reg,u8 value)375 int pmbus_write_byte_data(struct i2c_client *client, int page, u8 reg, u8 value)
376 {
377 int rv;
378
379 rv = pmbus_set_page(client, page, 0xff);
380 if (rv < 0)
381 return rv;
382
383 return i2c_smbus_write_byte_data(client, reg, value);
384 }
385 EXPORT_SYMBOL_NS_GPL(pmbus_write_byte_data, PMBUS);
386
pmbus_update_byte_data(struct i2c_client * client,int page,u8 reg,u8 mask,u8 value)387 int pmbus_update_byte_data(struct i2c_client *client, int page, u8 reg,
388 u8 mask, u8 value)
389 {
390 unsigned int tmp;
391 int rv;
392
393 rv = pmbus_read_byte_data(client, page, reg);
394 if (rv < 0)
395 return rv;
396
397 tmp = (rv & ~mask) | (value & mask);
398
399 if (tmp != rv)
400 rv = pmbus_write_byte_data(client, page, reg, tmp);
401
402 return rv;
403 }
404 EXPORT_SYMBOL_NS_GPL(pmbus_update_byte_data, PMBUS);
405
406 /*
407 * _pmbus_read_byte_data() is similar to pmbus_read_byte_data(), but checks if
408 * a device specific mapping function exists and calls it if necessary.
409 */
_pmbus_read_byte_data(struct i2c_client * client,int page,int reg)410 static int _pmbus_read_byte_data(struct i2c_client *client, int page, int reg)
411 {
412 struct pmbus_data *data = i2c_get_clientdata(client);
413 const struct pmbus_driver_info *info = data->info;
414 int status;
415
416 if (info->read_byte_data) {
417 status = info->read_byte_data(client, page, reg);
418 if (status != -ENODATA)
419 return status;
420 }
421 return pmbus_read_byte_data(client, page, reg);
422 }
423
pmbus_find_sensor(struct pmbus_data * data,int page,int reg)424 static struct pmbus_sensor *pmbus_find_sensor(struct pmbus_data *data, int page,
425 int reg)
426 {
427 struct pmbus_sensor *sensor;
428
429 for (sensor = data->sensors; sensor; sensor = sensor->next) {
430 if (sensor->page == page && sensor->reg == reg)
431 return sensor;
432 }
433
434 return ERR_PTR(-EINVAL);
435 }
436
pmbus_get_fan_rate(struct i2c_client * client,int page,int id,enum pmbus_fan_mode mode,bool from_cache)437 static int pmbus_get_fan_rate(struct i2c_client *client, int page, int id,
438 enum pmbus_fan_mode mode,
439 bool from_cache)
440 {
441 struct pmbus_data *data = i2c_get_clientdata(client);
442 bool want_rpm, have_rpm;
443 struct pmbus_sensor *s;
444 int config;
445 int reg;
446
447 want_rpm = (mode == rpm);
448
449 if (from_cache) {
450 reg = want_rpm ? PMBUS_VIRT_FAN_TARGET_1 : PMBUS_VIRT_PWM_1;
451 s = pmbus_find_sensor(data, page, reg + id);
452 if (IS_ERR(s))
453 return PTR_ERR(s);
454
455 return s->data;
456 }
457
458 config = pmbus_read_byte_data(client, page,
459 pmbus_fan_config_registers[id]);
460 if (config < 0)
461 return config;
462
463 have_rpm = !!(config & pmbus_fan_rpm_mask[id]);
464 if (want_rpm == have_rpm)
465 return pmbus_read_word_data(client, page, 0xff,
466 pmbus_fan_command_registers[id]);
467
468 /* Can't sensibly map between RPM and PWM, just return zero */
469 return 0;
470 }
471
pmbus_get_fan_rate_device(struct i2c_client * client,int page,int id,enum pmbus_fan_mode mode)472 int pmbus_get_fan_rate_device(struct i2c_client *client, int page, int id,
473 enum pmbus_fan_mode mode)
474 {
475 return pmbus_get_fan_rate(client, page, id, mode, false);
476 }
477 EXPORT_SYMBOL_NS_GPL(pmbus_get_fan_rate_device, PMBUS);
478
pmbus_get_fan_rate_cached(struct i2c_client * client,int page,int id,enum pmbus_fan_mode mode)479 int pmbus_get_fan_rate_cached(struct i2c_client *client, int page, int id,
480 enum pmbus_fan_mode mode)
481 {
482 return pmbus_get_fan_rate(client, page, id, mode, true);
483 }
484 EXPORT_SYMBOL_NS_GPL(pmbus_get_fan_rate_cached, PMBUS);
485
pmbus_clear_fault_page(struct i2c_client * client,int page)486 static void pmbus_clear_fault_page(struct i2c_client *client, int page)
487 {
488 _pmbus_write_byte(client, page, PMBUS_CLEAR_FAULTS);
489 }
490
pmbus_clear_faults(struct i2c_client * client)491 void pmbus_clear_faults(struct i2c_client *client)
492 {
493 struct pmbus_data *data = i2c_get_clientdata(client);
494 int i;
495
496 for (i = 0; i < data->info->pages; i++)
497 pmbus_clear_fault_page(client, i);
498 }
499 EXPORT_SYMBOL_NS_GPL(pmbus_clear_faults, PMBUS);
500
pmbus_check_status_cml(struct i2c_client * client)501 static int pmbus_check_status_cml(struct i2c_client *client)
502 {
503 struct pmbus_data *data = i2c_get_clientdata(client);
504 int status, status2;
505
506 status = data->read_status(client, -1);
507 if (status < 0 || (status & PB_STATUS_CML)) {
508 status2 = _pmbus_read_byte_data(client, -1, PMBUS_STATUS_CML);
509 if (status2 < 0 || (status2 & PB_CML_FAULT_INVALID_COMMAND))
510 return -EIO;
511 }
512 return 0;
513 }
514
pmbus_check_register(struct i2c_client * client,int (* func)(struct i2c_client * client,int page,int reg),int page,int reg)515 static bool pmbus_check_register(struct i2c_client *client,
516 int (*func)(struct i2c_client *client,
517 int page, int reg),
518 int page, int reg)
519 {
520 int rv;
521 struct pmbus_data *data = i2c_get_clientdata(client);
522
523 rv = func(client, page, reg);
524 if (rv >= 0 && !(data->flags & PMBUS_SKIP_STATUS_CHECK))
525 rv = pmbus_check_status_cml(client);
526 if (rv < 0 && (data->flags & PMBUS_READ_STATUS_AFTER_FAILED_CHECK))
527 data->read_status(client, -1);
528 pmbus_clear_fault_page(client, -1);
529 return rv >= 0;
530 }
531
pmbus_check_status_register(struct i2c_client * client,int page)532 static bool pmbus_check_status_register(struct i2c_client *client, int page)
533 {
534 int status;
535 struct pmbus_data *data = i2c_get_clientdata(client);
536
537 status = data->read_status(client, page);
538 if (status >= 0 && !(data->flags & PMBUS_SKIP_STATUS_CHECK) &&
539 (status & PB_STATUS_CML)) {
540 status = _pmbus_read_byte_data(client, -1, PMBUS_STATUS_CML);
541 if (status < 0 || (status & PB_CML_FAULT_INVALID_COMMAND))
542 status = -EIO;
543 }
544
545 pmbus_clear_fault_page(client, -1);
546 return status >= 0;
547 }
548
pmbus_check_byte_register(struct i2c_client * client,int page,int reg)549 bool pmbus_check_byte_register(struct i2c_client *client, int page, int reg)
550 {
551 return pmbus_check_register(client, _pmbus_read_byte_data, page, reg);
552 }
553 EXPORT_SYMBOL_NS_GPL(pmbus_check_byte_register, PMBUS);
554
pmbus_check_word_register(struct i2c_client * client,int page,int reg)555 bool pmbus_check_word_register(struct i2c_client *client, int page, int reg)
556 {
557 return pmbus_check_register(client, __pmbus_read_word_data, page, reg);
558 }
559 EXPORT_SYMBOL_NS_GPL(pmbus_check_word_register, PMBUS);
560
pmbus_get_driver_info(struct i2c_client * client)561 const struct pmbus_driver_info *pmbus_get_driver_info(struct i2c_client *client)
562 {
563 struct pmbus_data *data = i2c_get_clientdata(client);
564
565 return data->info;
566 }
567 EXPORT_SYMBOL_NS_GPL(pmbus_get_driver_info, PMBUS);
568
pmbus_get_status(struct i2c_client * client,int page,int reg)569 static int pmbus_get_status(struct i2c_client *client, int page, int reg)
570 {
571 struct pmbus_data *data = i2c_get_clientdata(client);
572 int status;
573
574 switch (reg) {
575 case PMBUS_STATUS_WORD:
576 status = data->read_status(client, page);
577 break;
578 default:
579 status = _pmbus_read_byte_data(client, page, reg);
580 break;
581 }
582 if (status < 0)
583 pmbus_clear_faults(client);
584 return status;
585 }
586
pmbus_update_sensor_data(struct i2c_client * client,struct pmbus_sensor * sensor)587 static void pmbus_update_sensor_data(struct i2c_client *client, struct pmbus_sensor *sensor)
588 {
589 if (sensor->data < 0 || sensor->update)
590 sensor->data = _pmbus_read_word_data(client, sensor->page,
591 sensor->phase, sensor->reg);
592 }
593
594 /*
595 * Convert linear sensor values to milli- or micro-units
596 * depending on sensor type.
597 */
pmbus_reg2data_linear(struct pmbus_data * data,struct pmbus_sensor * sensor)598 static s64 pmbus_reg2data_linear(struct pmbus_data *data,
599 struct pmbus_sensor *sensor)
600 {
601 s16 exponent;
602 s32 mantissa;
603 s64 val;
604
605 if (sensor->class == PSC_VOLTAGE_OUT) { /* LINEAR16 */
606 exponent = data->exponent[sensor->page];
607 mantissa = (u16) sensor->data;
608 } else { /* LINEAR11 */
609 exponent = ((s16)sensor->data) >> 11;
610 mantissa = ((s16)((sensor->data & 0x7ff) << 5)) >> 5;
611 }
612
613 val = mantissa;
614
615 /* scale result to milli-units for all sensors except fans */
616 if (sensor->class != PSC_FAN)
617 val = val * 1000LL;
618
619 /* scale result to micro-units for power sensors */
620 if (sensor->class == PSC_POWER)
621 val = val * 1000LL;
622
623 if (exponent >= 0)
624 val <<= exponent;
625 else
626 val >>= -exponent;
627
628 return val;
629 }
630
631 /*
632 * Convert direct sensor values to milli- or micro-units
633 * depending on sensor type.
634 */
pmbus_reg2data_direct(struct pmbus_data * data,struct pmbus_sensor * sensor)635 static s64 pmbus_reg2data_direct(struct pmbus_data *data,
636 struct pmbus_sensor *sensor)
637 {
638 s64 b, val = (s16)sensor->data;
639 s32 m, R;
640
641 m = data->info->m[sensor->class];
642 b = data->info->b[sensor->class];
643 R = data->info->R[sensor->class];
644
645 if (m == 0)
646 return 0;
647
648 /* X = 1/m * (Y * 10^-R - b) */
649 R = -R;
650 /* scale result to milli-units for everything but fans */
651 if (!(sensor->class == PSC_FAN || sensor->class == PSC_PWM)) {
652 R += 3;
653 b *= 1000;
654 }
655
656 /* scale result to micro-units for power sensors */
657 if (sensor->class == PSC_POWER) {
658 R += 3;
659 b *= 1000;
660 }
661
662 while (R > 0) {
663 val *= 10;
664 R--;
665 }
666 while (R < 0) {
667 val = div_s64(val + 5LL, 10L); /* round closest */
668 R++;
669 }
670
671 val = div_s64(val - b, m);
672 return val;
673 }
674
675 /*
676 * Convert VID sensor values to milli- or micro-units
677 * depending on sensor type.
678 */
pmbus_reg2data_vid(struct pmbus_data * data,struct pmbus_sensor * sensor)679 static s64 pmbus_reg2data_vid(struct pmbus_data *data,
680 struct pmbus_sensor *sensor)
681 {
682 long val = sensor->data;
683 long rv = 0;
684
685 switch (data->info->vrm_version[sensor->page]) {
686 case vr11:
687 if (val >= 0x02 && val <= 0xb2)
688 rv = DIV_ROUND_CLOSEST(160000 - (val - 2) * 625, 100);
689 break;
690 case vr12:
691 if (val >= 0x01)
692 rv = 250 + (val - 1) * 5;
693 break;
694 case vr13:
695 if (val >= 0x01)
696 rv = 500 + (val - 1) * 10;
697 break;
698 case imvp9:
699 if (val >= 0x01)
700 rv = 200 + (val - 1) * 10;
701 break;
702 case amd625mv:
703 if (val >= 0x0 && val <= 0xd8)
704 rv = DIV_ROUND_CLOSEST(155000 - val * 625, 100);
705 break;
706 }
707 return rv;
708 }
709
pmbus_reg2data(struct pmbus_data * data,struct pmbus_sensor * sensor)710 static s64 pmbus_reg2data(struct pmbus_data *data, struct pmbus_sensor *sensor)
711 {
712 s64 val;
713
714 if (!sensor->convert)
715 return sensor->data;
716
717 switch (data->info->format[sensor->class]) {
718 case direct:
719 val = pmbus_reg2data_direct(data, sensor);
720 break;
721 case vid:
722 val = pmbus_reg2data_vid(data, sensor);
723 break;
724 case linear:
725 default:
726 val = pmbus_reg2data_linear(data, sensor);
727 break;
728 }
729 return val;
730 }
731
732 #define MAX_MANTISSA (1023 * 1000)
733 #define MIN_MANTISSA (511 * 1000)
734
pmbus_data2reg_linear(struct pmbus_data * data,struct pmbus_sensor * sensor,s64 val)735 static u16 pmbus_data2reg_linear(struct pmbus_data *data,
736 struct pmbus_sensor *sensor, s64 val)
737 {
738 s16 exponent = 0, mantissa;
739 bool negative = false;
740
741 /* simple case */
742 if (val == 0)
743 return 0;
744
745 if (sensor->class == PSC_VOLTAGE_OUT) {
746 /* LINEAR16 does not support negative voltages */
747 if (val < 0)
748 return 0;
749
750 /*
751 * For a static exponents, we don't have a choice
752 * but to adjust the value to it.
753 */
754 if (data->exponent[sensor->page] < 0)
755 val <<= -data->exponent[sensor->page];
756 else
757 val >>= data->exponent[sensor->page];
758 val = DIV_ROUND_CLOSEST_ULL(val, 1000);
759 return clamp_val(val, 0, 0xffff);
760 }
761
762 if (val < 0) {
763 negative = true;
764 val = -val;
765 }
766
767 /* Power is in uW. Convert to mW before converting. */
768 if (sensor->class == PSC_POWER)
769 val = DIV_ROUND_CLOSEST_ULL(val, 1000);
770
771 /*
772 * For simplicity, convert fan data to milli-units
773 * before calculating the exponent.
774 */
775 if (sensor->class == PSC_FAN)
776 val = val * 1000LL;
777
778 /* Reduce large mantissa until it fits into 10 bit */
779 while (val >= MAX_MANTISSA && exponent < 15) {
780 exponent++;
781 val >>= 1;
782 }
783 /* Increase small mantissa to improve precision */
784 while (val < MIN_MANTISSA && exponent > -15) {
785 exponent--;
786 val <<= 1;
787 }
788
789 /* Convert mantissa from milli-units to units */
790 mantissa = clamp_val(DIV_ROUND_CLOSEST_ULL(val, 1000), 0, 0x3ff);
791
792 /* restore sign */
793 if (negative)
794 mantissa = -mantissa;
795
796 /* Convert to 5 bit exponent, 11 bit mantissa */
797 return (mantissa & 0x7ff) | ((exponent << 11) & 0xf800);
798 }
799
pmbus_data2reg_direct(struct pmbus_data * data,struct pmbus_sensor * sensor,s64 val)800 static u16 pmbus_data2reg_direct(struct pmbus_data *data,
801 struct pmbus_sensor *sensor, s64 val)
802 {
803 s64 b;
804 s32 m, R;
805
806 m = data->info->m[sensor->class];
807 b = data->info->b[sensor->class];
808 R = data->info->R[sensor->class];
809
810 /* Power is in uW. Adjust R and b. */
811 if (sensor->class == PSC_POWER) {
812 R -= 3;
813 b *= 1000;
814 }
815
816 /* Calculate Y = (m * X + b) * 10^R */
817 if (!(sensor->class == PSC_FAN || sensor->class == PSC_PWM)) {
818 R -= 3; /* Adjust R and b for data in milli-units */
819 b *= 1000;
820 }
821 val = val * m + b;
822
823 while (R > 0) {
824 val *= 10;
825 R--;
826 }
827 while (R < 0) {
828 val = div_s64(val + 5LL, 10L); /* round closest */
829 R++;
830 }
831
832 return (u16)clamp_val(val, S16_MIN, S16_MAX);
833 }
834
pmbus_data2reg_vid(struct pmbus_data * data,struct pmbus_sensor * sensor,s64 val)835 static u16 pmbus_data2reg_vid(struct pmbus_data *data,
836 struct pmbus_sensor *sensor, s64 val)
837 {
838 val = clamp_val(val, 500, 1600);
839
840 return 2 + DIV_ROUND_CLOSEST_ULL((1600LL - val) * 100LL, 625);
841 }
842
pmbus_data2reg(struct pmbus_data * data,struct pmbus_sensor * sensor,s64 val)843 static u16 pmbus_data2reg(struct pmbus_data *data,
844 struct pmbus_sensor *sensor, s64 val)
845 {
846 u16 regval;
847
848 if (!sensor->convert)
849 return val;
850
851 switch (data->info->format[sensor->class]) {
852 case direct:
853 regval = pmbus_data2reg_direct(data, sensor, val);
854 break;
855 case vid:
856 regval = pmbus_data2reg_vid(data, sensor, val);
857 break;
858 case linear:
859 default:
860 regval = pmbus_data2reg_linear(data, sensor, val);
861 break;
862 }
863 return regval;
864 }
865
866 /*
867 * Return boolean calculated from converted data.
868 * <index> defines a status register index and mask.
869 * The mask is in the lower 8 bits, the register index is in bits 8..23.
870 *
871 * The associated pmbus_boolean structure contains optional pointers to two
872 * sensor attributes. If specified, those attributes are compared against each
873 * other to determine if a limit has been exceeded.
874 *
875 * If the sensor attribute pointers are NULL, the function returns true if
876 * (status[reg] & mask) is true.
877 *
878 * If sensor attribute pointers are provided, a comparison against a specified
879 * limit has to be performed to determine the boolean result.
880 * In this case, the function returns true if v1 >= v2 (where v1 and v2 are
881 * sensor values referenced by sensor attribute pointers s1 and s2).
882 *
883 * To determine if an object exceeds upper limits, specify <s1,s2> = <v,limit>.
884 * To determine if an object exceeds lower limits, specify <s1,s2> = <limit,v>.
885 *
886 * If a negative value is stored in any of the referenced registers, this value
887 * reflects an error code which will be returned.
888 */
pmbus_get_boolean(struct i2c_client * client,struct pmbus_boolean * b,int index)889 static int pmbus_get_boolean(struct i2c_client *client, struct pmbus_boolean *b,
890 int index)
891 {
892 struct pmbus_data *data = i2c_get_clientdata(client);
893 struct pmbus_sensor *s1 = b->s1;
894 struct pmbus_sensor *s2 = b->s2;
895 u16 mask = pb_index_to_mask(index);
896 u8 page = pb_index_to_page(index);
897 u16 reg = pb_index_to_reg(index);
898 int ret, status;
899 u16 regval;
900
901 mutex_lock(&data->update_lock);
902 status = pmbus_get_status(client, page, reg);
903 if (status < 0) {
904 ret = status;
905 goto unlock;
906 }
907
908 if (s1)
909 pmbus_update_sensor_data(client, s1);
910 if (s2)
911 pmbus_update_sensor_data(client, s2);
912
913 regval = status & mask;
914 if (regval) {
915 ret = pmbus_write_byte_data(client, page, reg, regval);
916 if (ret)
917 goto unlock;
918 }
919 if (s1 && s2) {
920 s64 v1, v2;
921
922 if (s1->data < 0) {
923 ret = s1->data;
924 goto unlock;
925 }
926 if (s2->data < 0) {
927 ret = s2->data;
928 goto unlock;
929 }
930
931 v1 = pmbus_reg2data(data, s1);
932 v2 = pmbus_reg2data(data, s2);
933 ret = !!(regval && v1 >= v2);
934 } else {
935 ret = !!regval;
936 }
937 unlock:
938 mutex_unlock(&data->update_lock);
939 return ret;
940 }
941
pmbus_show_boolean(struct device * dev,struct device_attribute * da,char * buf)942 static ssize_t pmbus_show_boolean(struct device *dev,
943 struct device_attribute *da, char *buf)
944 {
945 struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
946 struct pmbus_boolean *boolean = to_pmbus_boolean(attr);
947 struct i2c_client *client = to_i2c_client(dev->parent);
948 int val;
949
950 val = pmbus_get_boolean(client, boolean, attr->index);
951 if (val < 0)
952 return val;
953 return sysfs_emit(buf, "%d\n", val);
954 }
955
pmbus_show_sensor(struct device * dev,struct device_attribute * devattr,char * buf)956 static ssize_t pmbus_show_sensor(struct device *dev,
957 struct device_attribute *devattr, char *buf)
958 {
959 struct i2c_client *client = to_i2c_client(dev->parent);
960 struct pmbus_sensor *sensor = to_pmbus_sensor(devattr);
961 struct pmbus_data *data = i2c_get_clientdata(client);
962 ssize_t ret;
963
964 mutex_lock(&data->update_lock);
965 pmbus_update_sensor_data(client, sensor);
966 if (sensor->data < 0)
967 ret = sensor->data;
968 else
969 ret = sysfs_emit(buf, "%lld\n", pmbus_reg2data(data, sensor));
970 mutex_unlock(&data->update_lock);
971 return ret;
972 }
973
pmbus_set_sensor(struct device * dev,struct device_attribute * devattr,const char * buf,size_t count)974 static ssize_t pmbus_set_sensor(struct device *dev,
975 struct device_attribute *devattr,
976 const char *buf, size_t count)
977 {
978 struct i2c_client *client = to_i2c_client(dev->parent);
979 struct pmbus_data *data = i2c_get_clientdata(client);
980 struct pmbus_sensor *sensor = to_pmbus_sensor(devattr);
981 ssize_t rv = count;
982 s64 val;
983 int ret;
984 u16 regval;
985
986 if (kstrtos64(buf, 10, &val) < 0)
987 return -EINVAL;
988
989 mutex_lock(&data->update_lock);
990 regval = pmbus_data2reg(data, sensor, val);
991 ret = _pmbus_write_word_data(client, sensor->page, sensor->reg, regval);
992 if (ret < 0)
993 rv = ret;
994 else
995 sensor->data = -ENODATA;
996 mutex_unlock(&data->update_lock);
997 return rv;
998 }
999
pmbus_show_label(struct device * dev,struct device_attribute * da,char * buf)1000 static ssize_t pmbus_show_label(struct device *dev,
1001 struct device_attribute *da, char *buf)
1002 {
1003 struct pmbus_label *label = to_pmbus_label(da);
1004
1005 return sysfs_emit(buf, "%s\n", label->label);
1006 }
1007
pmbus_add_attribute(struct pmbus_data * data,struct attribute * attr)1008 static int pmbus_add_attribute(struct pmbus_data *data, struct attribute *attr)
1009 {
1010 if (data->num_attributes >= data->max_attributes - 1) {
1011 int new_max_attrs = data->max_attributes + PMBUS_ATTR_ALLOC_SIZE;
1012 void *new_attrs = devm_krealloc(data->dev, data->group.attrs,
1013 new_max_attrs * sizeof(void *),
1014 GFP_KERNEL);
1015 if (!new_attrs)
1016 return -ENOMEM;
1017 data->group.attrs = new_attrs;
1018 data->max_attributes = new_max_attrs;
1019 }
1020
1021 data->group.attrs[data->num_attributes++] = attr;
1022 data->group.attrs[data->num_attributes] = NULL;
1023 return 0;
1024 }
1025
pmbus_dev_attr_init(struct device_attribute * dev_attr,const char * name,umode_t mode,ssize_t (* show)(struct device * dev,struct device_attribute * attr,char * buf),ssize_t (* store)(struct device * dev,struct device_attribute * attr,const char * buf,size_t count))1026 static void pmbus_dev_attr_init(struct device_attribute *dev_attr,
1027 const char *name,
1028 umode_t mode,
1029 ssize_t (*show)(struct device *dev,
1030 struct device_attribute *attr,
1031 char *buf),
1032 ssize_t (*store)(struct device *dev,
1033 struct device_attribute *attr,
1034 const char *buf, size_t count))
1035 {
1036 sysfs_attr_init(&dev_attr->attr);
1037 dev_attr->attr.name = name;
1038 dev_attr->attr.mode = mode;
1039 dev_attr->show = show;
1040 dev_attr->store = store;
1041 }
1042
pmbus_attr_init(struct sensor_device_attribute * a,const char * name,umode_t mode,ssize_t (* show)(struct device * dev,struct device_attribute * attr,char * buf),ssize_t (* store)(struct device * dev,struct device_attribute * attr,const char * buf,size_t count),int idx)1043 static void pmbus_attr_init(struct sensor_device_attribute *a,
1044 const char *name,
1045 umode_t mode,
1046 ssize_t (*show)(struct device *dev,
1047 struct device_attribute *attr,
1048 char *buf),
1049 ssize_t (*store)(struct device *dev,
1050 struct device_attribute *attr,
1051 const char *buf, size_t count),
1052 int idx)
1053 {
1054 pmbus_dev_attr_init(&a->dev_attr, name, mode, show, store);
1055 a->index = idx;
1056 }
1057
pmbus_add_boolean(struct pmbus_data * data,const char * name,const char * type,int seq,struct pmbus_sensor * s1,struct pmbus_sensor * s2,u8 page,u16 reg,u16 mask)1058 static int pmbus_add_boolean(struct pmbus_data *data,
1059 const char *name, const char *type, int seq,
1060 struct pmbus_sensor *s1,
1061 struct pmbus_sensor *s2,
1062 u8 page, u16 reg, u16 mask)
1063 {
1064 struct pmbus_boolean *boolean;
1065 struct sensor_device_attribute *a;
1066
1067 if (WARN((s1 && !s2) || (!s1 && s2), "Bad s1/s2 parameters\n"))
1068 return -EINVAL;
1069
1070 boolean = devm_kzalloc(data->dev, sizeof(*boolean), GFP_KERNEL);
1071 if (!boolean)
1072 return -ENOMEM;
1073
1074 a = &boolean->attribute;
1075
1076 snprintf(boolean->name, sizeof(boolean->name), "%s%d_%s",
1077 name, seq, type);
1078 boolean->s1 = s1;
1079 boolean->s2 = s2;
1080 pmbus_attr_init(a, boolean->name, 0444, pmbus_show_boolean, NULL,
1081 pb_reg_to_index(page, reg, mask));
1082
1083 return pmbus_add_attribute(data, &a->dev_attr.attr);
1084 }
1085
pmbus_add_sensor(struct pmbus_data * data,const char * name,const char * type,int seq,int page,int phase,int reg,enum pmbus_sensor_classes class,bool update,bool readonly,bool convert)1086 static struct pmbus_sensor *pmbus_add_sensor(struct pmbus_data *data,
1087 const char *name, const char *type,
1088 int seq, int page, int phase,
1089 int reg,
1090 enum pmbus_sensor_classes class,
1091 bool update, bool readonly,
1092 bool convert)
1093 {
1094 struct pmbus_sensor *sensor;
1095 struct device_attribute *a;
1096
1097 sensor = devm_kzalloc(data->dev, sizeof(*sensor), GFP_KERNEL);
1098 if (!sensor)
1099 return NULL;
1100 a = &sensor->attribute;
1101
1102 if (type)
1103 snprintf(sensor->name, sizeof(sensor->name), "%s%d_%s",
1104 name, seq, type);
1105 else
1106 snprintf(sensor->name, sizeof(sensor->name), "%s%d",
1107 name, seq);
1108
1109 if (data->flags & PMBUS_WRITE_PROTECTED)
1110 readonly = true;
1111
1112 sensor->page = page;
1113 sensor->phase = phase;
1114 sensor->reg = reg;
1115 sensor->class = class;
1116 sensor->update = update;
1117 sensor->convert = convert;
1118 sensor->data = -ENODATA;
1119 pmbus_dev_attr_init(a, sensor->name,
1120 readonly ? 0444 : 0644,
1121 pmbus_show_sensor, pmbus_set_sensor);
1122
1123 if (pmbus_add_attribute(data, &a->attr))
1124 return NULL;
1125
1126 sensor->next = data->sensors;
1127 data->sensors = sensor;
1128
1129 return sensor;
1130 }
1131
pmbus_add_label(struct pmbus_data * data,const char * name,int seq,const char * lstring,int index,int phase)1132 static int pmbus_add_label(struct pmbus_data *data,
1133 const char *name, int seq,
1134 const char *lstring, int index, int phase)
1135 {
1136 struct pmbus_label *label;
1137 struct device_attribute *a;
1138
1139 label = devm_kzalloc(data->dev, sizeof(*label), GFP_KERNEL);
1140 if (!label)
1141 return -ENOMEM;
1142
1143 a = &label->attribute;
1144
1145 snprintf(label->name, sizeof(label->name), "%s%d_label", name, seq);
1146 if (!index) {
1147 if (phase == 0xff)
1148 strncpy(label->label, lstring,
1149 sizeof(label->label) - 1);
1150 else
1151 snprintf(label->label, sizeof(label->label), "%s.%d",
1152 lstring, phase);
1153 } else {
1154 if (phase == 0xff)
1155 snprintf(label->label, sizeof(label->label), "%s%d",
1156 lstring, index);
1157 else
1158 snprintf(label->label, sizeof(label->label), "%s%d.%d",
1159 lstring, index, phase);
1160 }
1161
1162 pmbus_dev_attr_init(a, label->name, 0444, pmbus_show_label, NULL);
1163 return pmbus_add_attribute(data, &a->attr);
1164 }
1165
1166 /*
1167 * Search for attributes. Allocate sensors, booleans, and labels as needed.
1168 */
1169
1170 /*
1171 * The pmbus_limit_attr structure describes a single limit attribute
1172 * and its associated alarm attribute.
1173 */
1174 struct pmbus_limit_attr {
1175 u16 reg; /* Limit register */
1176 u16 sbit; /* Alarm attribute status bit */
1177 bool update; /* True if register needs updates */
1178 bool low; /* True if low limit; for limits with compare
1179 functions only */
1180 const char *attr; /* Attribute name */
1181 const char *alarm; /* Alarm attribute name */
1182 };
1183
1184 /*
1185 * The pmbus_sensor_attr structure describes one sensor attribute. This
1186 * description includes a reference to the associated limit attributes.
1187 */
1188 struct pmbus_sensor_attr {
1189 u16 reg; /* sensor register */
1190 u16 gbit; /* generic status bit */
1191 u8 nlimit; /* # of limit registers */
1192 enum pmbus_sensor_classes class;/* sensor class */
1193 const char *label; /* sensor label */
1194 bool paged; /* true if paged sensor */
1195 bool update; /* true if update needed */
1196 bool compare; /* true if compare function needed */
1197 u32 func; /* sensor mask */
1198 u32 sfunc; /* sensor status mask */
1199 int sreg; /* status register */
1200 const struct pmbus_limit_attr *limit;/* limit registers */
1201 };
1202
1203 /*
1204 * Add a set of limit attributes and, if supported, the associated
1205 * alarm attributes.
1206 * returns 0 if no alarm register found, 1 if an alarm register was found,
1207 * < 0 on errors.
1208 */
pmbus_add_limit_attrs(struct i2c_client * client,struct pmbus_data * data,const struct pmbus_driver_info * info,const char * name,int index,int page,struct pmbus_sensor * base,const struct pmbus_sensor_attr * attr)1209 static int pmbus_add_limit_attrs(struct i2c_client *client,
1210 struct pmbus_data *data,
1211 const struct pmbus_driver_info *info,
1212 const char *name, int index, int page,
1213 struct pmbus_sensor *base,
1214 const struct pmbus_sensor_attr *attr)
1215 {
1216 const struct pmbus_limit_attr *l = attr->limit;
1217 int nlimit = attr->nlimit;
1218 int have_alarm = 0;
1219 int i, ret;
1220 struct pmbus_sensor *curr;
1221
1222 for (i = 0; i < nlimit; i++) {
1223 if (pmbus_check_word_register(client, page, l->reg)) {
1224 curr = pmbus_add_sensor(data, name, l->attr, index,
1225 page, 0xff, l->reg, attr->class,
1226 attr->update || l->update,
1227 false, true);
1228 if (!curr)
1229 return -ENOMEM;
1230 if (l->sbit && (info->func[page] & attr->sfunc)) {
1231 ret = pmbus_add_boolean(data, name,
1232 l->alarm, index,
1233 attr->compare ? l->low ? curr : base
1234 : NULL,
1235 attr->compare ? l->low ? base : curr
1236 : NULL,
1237 page, attr->sreg, l->sbit);
1238 if (ret)
1239 return ret;
1240 have_alarm = 1;
1241 }
1242 }
1243 l++;
1244 }
1245 return have_alarm;
1246 }
1247
pmbus_add_sensor_attrs_one(struct i2c_client * client,struct pmbus_data * data,const struct pmbus_driver_info * info,const char * name,int index,int page,int phase,const struct pmbus_sensor_attr * attr,bool paged)1248 static int pmbus_add_sensor_attrs_one(struct i2c_client *client,
1249 struct pmbus_data *data,
1250 const struct pmbus_driver_info *info,
1251 const char *name,
1252 int index, int page, int phase,
1253 const struct pmbus_sensor_attr *attr,
1254 bool paged)
1255 {
1256 struct pmbus_sensor *base;
1257 bool upper = !!(attr->gbit & 0xff00); /* need to check STATUS_WORD */
1258 int ret;
1259
1260 if (attr->label) {
1261 ret = pmbus_add_label(data, name, index, attr->label,
1262 paged ? page + 1 : 0, phase);
1263 if (ret)
1264 return ret;
1265 }
1266 base = pmbus_add_sensor(data, name, "input", index, page, phase,
1267 attr->reg, attr->class, true, true, true);
1268 if (!base)
1269 return -ENOMEM;
1270 /* No limit and alarm attributes for phase specific sensors */
1271 if (attr->sfunc && phase == 0xff) {
1272 ret = pmbus_add_limit_attrs(client, data, info, name,
1273 index, page, base, attr);
1274 if (ret < 0)
1275 return ret;
1276 /*
1277 * Add generic alarm attribute only if there are no individual
1278 * alarm attributes, if there is a global alarm bit, and if
1279 * the generic status register (word or byte, depending on
1280 * which global bit is set) for this page is accessible.
1281 */
1282 if (!ret && attr->gbit &&
1283 (!upper || data->has_status_word) &&
1284 pmbus_check_status_register(client, page)) {
1285 ret = pmbus_add_boolean(data, name, "alarm", index,
1286 NULL, NULL,
1287 page, PMBUS_STATUS_WORD,
1288 attr->gbit);
1289 if (ret)
1290 return ret;
1291 }
1292 }
1293 return 0;
1294 }
1295
pmbus_sensor_is_paged(const struct pmbus_driver_info * info,const struct pmbus_sensor_attr * attr)1296 static bool pmbus_sensor_is_paged(const struct pmbus_driver_info *info,
1297 const struct pmbus_sensor_attr *attr)
1298 {
1299 int p;
1300
1301 if (attr->paged)
1302 return true;
1303
1304 /*
1305 * Some attributes may be present on more than one page despite
1306 * not being marked with the paged attribute. If that is the case,
1307 * then treat the sensor as being paged and add the page suffix to the
1308 * attribute name.
1309 * We don't just add the paged attribute to all such attributes, in
1310 * order to maintain the un-suffixed labels in the case where the
1311 * attribute is only on page 0.
1312 */
1313 for (p = 1; p < info->pages; p++) {
1314 if (info->func[p] & attr->func)
1315 return true;
1316 }
1317 return false;
1318 }
1319
pmbus_add_sensor_attrs(struct i2c_client * client,struct pmbus_data * data,const char * name,const struct pmbus_sensor_attr * attrs,int nattrs)1320 static int pmbus_add_sensor_attrs(struct i2c_client *client,
1321 struct pmbus_data *data,
1322 const char *name,
1323 const struct pmbus_sensor_attr *attrs,
1324 int nattrs)
1325 {
1326 const struct pmbus_driver_info *info = data->info;
1327 int index, i;
1328 int ret;
1329
1330 index = 1;
1331 for (i = 0; i < nattrs; i++) {
1332 int page, pages;
1333 bool paged = pmbus_sensor_is_paged(info, attrs);
1334
1335 pages = paged ? info->pages : 1;
1336 for (page = 0; page < pages; page++) {
1337 if (info->func[page] & attrs->func) {
1338 ret = pmbus_add_sensor_attrs_one(client, data, info,
1339 name, index, page,
1340 0xff, attrs, paged);
1341 if (ret)
1342 return ret;
1343 index++;
1344 }
1345 if (info->phases[page]) {
1346 int phase;
1347
1348 for (phase = 0; phase < info->phases[page];
1349 phase++) {
1350 if (!(info->pfunc[phase] & attrs->func))
1351 continue;
1352 ret = pmbus_add_sensor_attrs_one(client,
1353 data, info, name, index, page,
1354 phase, attrs, paged);
1355 if (ret)
1356 return ret;
1357 index++;
1358 }
1359 }
1360 }
1361 attrs++;
1362 }
1363 return 0;
1364 }
1365
1366 static const struct pmbus_limit_attr vin_limit_attrs[] = {
1367 {
1368 .reg = PMBUS_VIN_UV_WARN_LIMIT,
1369 .attr = "min",
1370 .alarm = "min_alarm",
1371 .sbit = PB_VOLTAGE_UV_WARNING,
1372 }, {
1373 .reg = PMBUS_VIN_UV_FAULT_LIMIT,
1374 .attr = "lcrit",
1375 .alarm = "lcrit_alarm",
1376 .sbit = PB_VOLTAGE_UV_FAULT | PB_VOLTAGE_VIN_OFF,
1377 }, {
1378 .reg = PMBUS_VIN_OV_WARN_LIMIT,
1379 .attr = "max",
1380 .alarm = "max_alarm",
1381 .sbit = PB_VOLTAGE_OV_WARNING,
1382 }, {
1383 .reg = PMBUS_VIN_OV_FAULT_LIMIT,
1384 .attr = "crit",
1385 .alarm = "crit_alarm",
1386 .sbit = PB_VOLTAGE_OV_FAULT,
1387 }, {
1388 .reg = PMBUS_VIRT_READ_VIN_AVG,
1389 .update = true,
1390 .attr = "average",
1391 }, {
1392 .reg = PMBUS_VIRT_READ_VIN_MIN,
1393 .update = true,
1394 .attr = "lowest",
1395 }, {
1396 .reg = PMBUS_VIRT_READ_VIN_MAX,
1397 .update = true,
1398 .attr = "highest",
1399 }, {
1400 .reg = PMBUS_VIRT_RESET_VIN_HISTORY,
1401 .attr = "reset_history",
1402 }, {
1403 .reg = PMBUS_MFR_VIN_MIN,
1404 .attr = "rated_min",
1405 }, {
1406 .reg = PMBUS_MFR_VIN_MAX,
1407 .attr = "rated_max",
1408 },
1409 };
1410
1411 static const struct pmbus_limit_attr vmon_limit_attrs[] = {
1412 {
1413 .reg = PMBUS_VIRT_VMON_UV_WARN_LIMIT,
1414 .attr = "min",
1415 .alarm = "min_alarm",
1416 .sbit = PB_VOLTAGE_UV_WARNING,
1417 }, {
1418 .reg = PMBUS_VIRT_VMON_UV_FAULT_LIMIT,
1419 .attr = "lcrit",
1420 .alarm = "lcrit_alarm",
1421 .sbit = PB_VOLTAGE_UV_FAULT,
1422 }, {
1423 .reg = PMBUS_VIRT_VMON_OV_WARN_LIMIT,
1424 .attr = "max",
1425 .alarm = "max_alarm",
1426 .sbit = PB_VOLTAGE_OV_WARNING,
1427 }, {
1428 .reg = PMBUS_VIRT_VMON_OV_FAULT_LIMIT,
1429 .attr = "crit",
1430 .alarm = "crit_alarm",
1431 .sbit = PB_VOLTAGE_OV_FAULT,
1432 }
1433 };
1434
1435 static const struct pmbus_limit_attr vout_limit_attrs[] = {
1436 {
1437 .reg = PMBUS_VOUT_UV_WARN_LIMIT,
1438 .attr = "min",
1439 .alarm = "min_alarm",
1440 .sbit = PB_VOLTAGE_UV_WARNING,
1441 }, {
1442 .reg = PMBUS_VOUT_UV_FAULT_LIMIT,
1443 .attr = "lcrit",
1444 .alarm = "lcrit_alarm",
1445 .sbit = PB_VOLTAGE_UV_FAULT,
1446 }, {
1447 .reg = PMBUS_VOUT_OV_WARN_LIMIT,
1448 .attr = "max",
1449 .alarm = "max_alarm",
1450 .sbit = PB_VOLTAGE_OV_WARNING,
1451 }, {
1452 .reg = PMBUS_VOUT_OV_FAULT_LIMIT,
1453 .attr = "crit",
1454 .alarm = "crit_alarm",
1455 .sbit = PB_VOLTAGE_OV_FAULT,
1456 }, {
1457 .reg = PMBUS_VIRT_READ_VOUT_AVG,
1458 .update = true,
1459 .attr = "average",
1460 }, {
1461 .reg = PMBUS_VIRT_READ_VOUT_MIN,
1462 .update = true,
1463 .attr = "lowest",
1464 }, {
1465 .reg = PMBUS_VIRT_READ_VOUT_MAX,
1466 .update = true,
1467 .attr = "highest",
1468 }, {
1469 .reg = PMBUS_VIRT_RESET_VOUT_HISTORY,
1470 .attr = "reset_history",
1471 }, {
1472 .reg = PMBUS_MFR_VOUT_MIN,
1473 .attr = "rated_min",
1474 }, {
1475 .reg = PMBUS_MFR_VOUT_MAX,
1476 .attr = "rated_max",
1477 },
1478 };
1479
1480 static const struct pmbus_sensor_attr voltage_attributes[] = {
1481 {
1482 .reg = PMBUS_READ_VIN,
1483 .class = PSC_VOLTAGE_IN,
1484 .label = "vin",
1485 .func = PMBUS_HAVE_VIN,
1486 .sfunc = PMBUS_HAVE_STATUS_INPUT,
1487 .sreg = PMBUS_STATUS_INPUT,
1488 .gbit = PB_STATUS_VIN_UV,
1489 .limit = vin_limit_attrs,
1490 .nlimit = ARRAY_SIZE(vin_limit_attrs),
1491 }, {
1492 .reg = PMBUS_VIRT_READ_VMON,
1493 .class = PSC_VOLTAGE_IN,
1494 .label = "vmon",
1495 .func = PMBUS_HAVE_VMON,
1496 .sfunc = PMBUS_HAVE_STATUS_VMON,
1497 .sreg = PMBUS_VIRT_STATUS_VMON,
1498 .limit = vmon_limit_attrs,
1499 .nlimit = ARRAY_SIZE(vmon_limit_attrs),
1500 }, {
1501 .reg = PMBUS_READ_VCAP,
1502 .class = PSC_VOLTAGE_IN,
1503 .label = "vcap",
1504 .func = PMBUS_HAVE_VCAP,
1505 }, {
1506 .reg = PMBUS_READ_VOUT,
1507 .class = PSC_VOLTAGE_OUT,
1508 .label = "vout",
1509 .paged = true,
1510 .func = PMBUS_HAVE_VOUT,
1511 .sfunc = PMBUS_HAVE_STATUS_VOUT,
1512 .sreg = PMBUS_STATUS_VOUT,
1513 .gbit = PB_STATUS_VOUT_OV,
1514 .limit = vout_limit_attrs,
1515 .nlimit = ARRAY_SIZE(vout_limit_attrs),
1516 }
1517 };
1518
1519 /* Current attributes */
1520
1521 static const struct pmbus_limit_attr iin_limit_attrs[] = {
1522 {
1523 .reg = PMBUS_IIN_OC_WARN_LIMIT,
1524 .attr = "max",
1525 .alarm = "max_alarm",
1526 .sbit = PB_IIN_OC_WARNING,
1527 }, {
1528 .reg = PMBUS_IIN_OC_FAULT_LIMIT,
1529 .attr = "crit",
1530 .alarm = "crit_alarm",
1531 .sbit = PB_IIN_OC_FAULT,
1532 }, {
1533 .reg = PMBUS_VIRT_READ_IIN_AVG,
1534 .update = true,
1535 .attr = "average",
1536 }, {
1537 .reg = PMBUS_VIRT_READ_IIN_MIN,
1538 .update = true,
1539 .attr = "lowest",
1540 }, {
1541 .reg = PMBUS_VIRT_READ_IIN_MAX,
1542 .update = true,
1543 .attr = "highest",
1544 }, {
1545 .reg = PMBUS_VIRT_RESET_IIN_HISTORY,
1546 .attr = "reset_history",
1547 }, {
1548 .reg = PMBUS_MFR_IIN_MAX,
1549 .attr = "rated_max",
1550 },
1551 };
1552
1553 static const struct pmbus_limit_attr iout_limit_attrs[] = {
1554 {
1555 .reg = PMBUS_IOUT_OC_WARN_LIMIT,
1556 .attr = "max",
1557 .alarm = "max_alarm",
1558 .sbit = PB_IOUT_OC_WARNING,
1559 }, {
1560 .reg = PMBUS_IOUT_UC_FAULT_LIMIT,
1561 .attr = "lcrit",
1562 .alarm = "lcrit_alarm",
1563 .sbit = PB_IOUT_UC_FAULT,
1564 }, {
1565 .reg = PMBUS_IOUT_OC_FAULT_LIMIT,
1566 .attr = "crit",
1567 .alarm = "crit_alarm",
1568 .sbit = PB_IOUT_OC_FAULT,
1569 }, {
1570 .reg = PMBUS_VIRT_READ_IOUT_AVG,
1571 .update = true,
1572 .attr = "average",
1573 }, {
1574 .reg = PMBUS_VIRT_READ_IOUT_MIN,
1575 .update = true,
1576 .attr = "lowest",
1577 }, {
1578 .reg = PMBUS_VIRT_READ_IOUT_MAX,
1579 .update = true,
1580 .attr = "highest",
1581 }, {
1582 .reg = PMBUS_VIRT_RESET_IOUT_HISTORY,
1583 .attr = "reset_history",
1584 }, {
1585 .reg = PMBUS_MFR_IOUT_MAX,
1586 .attr = "rated_max",
1587 },
1588 };
1589
1590 static const struct pmbus_sensor_attr current_attributes[] = {
1591 {
1592 .reg = PMBUS_READ_IIN,
1593 .class = PSC_CURRENT_IN,
1594 .label = "iin",
1595 .func = PMBUS_HAVE_IIN,
1596 .sfunc = PMBUS_HAVE_STATUS_INPUT,
1597 .sreg = PMBUS_STATUS_INPUT,
1598 .gbit = PB_STATUS_INPUT,
1599 .limit = iin_limit_attrs,
1600 .nlimit = ARRAY_SIZE(iin_limit_attrs),
1601 }, {
1602 .reg = PMBUS_READ_IOUT,
1603 .class = PSC_CURRENT_OUT,
1604 .label = "iout",
1605 .paged = true,
1606 .func = PMBUS_HAVE_IOUT,
1607 .sfunc = PMBUS_HAVE_STATUS_IOUT,
1608 .sreg = PMBUS_STATUS_IOUT,
1609 .gbit = PB_STATUS_IOUT_OC,
1610 .limit = iout_limit_attrs,
1611 .nlimit = ARRAY_SIZE(iout_limit_attrs),
1612 }
1613 };
1614
1615 /* Power attributes */
1616
1617 static const struct pmbus_limit_attr pin_limit_attrs[] = {
1618 {
1619 .reg = PMBUS_PIN_OP_WARN_LIMIT,
1620 .attr = "max",
1621 .alarm = "alarm",
1622 .sbit = PB_PIN_OP_WARNING,
1623 }, {
1624 .reg = PMBUS_VIRT_READ_PIN_AVG,
1625 .update = true,
1626 .attr = "average",
1627 }, {
1628 .reg = PMBUS_VIRT_READ_PIN_MIN,
1629 .update = true,
1630 .attr = "input_lowest",
1631 }, {
1632 .reg = PMBUS_VIRT_READ_PIN_MAX,
1633 .update = true,
1634 .attr = "input_highest",
1635 }, {
1636 .reg = PMBUS_VIRT_RESET_PIN_HISTORY,
1637 .attr = "reset_history",
1638 }, {
1639 .reg = PMBUS_MFR_PIN_MAX,
1640 .attr = "rated_max",
1641 },
1642 };
1643
1644 static const struct pmbus_limit_attr pout_limit_attrs[] = {
1645 {
1646 .reg = PMBUS_POUT_MAX,
1647 .attr = "cap",
1648 .alarm = "cap_alarm",
1649 .sbit = PB_POWER_LIMITING,
1650 }, {
1651 .reg = PMBUS_POUT_OP_WARN_LIMIT,
1652 .attr = "max",
1653 .alarm = "max_alarm",
1654 .sbit = PB_POUT_OP_WARNING,
1655 }, {
1656 .reg = PMBUS_POUT_OP_FAULT_LIMIT,
1657 .attr = "crit",
1658 .alarm = "crit_alarm",
1659 .sbit = PB_POUT_OP_FAULT,
1660 }, {
1661 .reg = PMBUS_VIRT_READ_POUT_AVG,
1662 .update = true,
1663 .attr = "average",
1664 }, {
1665 .reg = PMBUS_VIRT_READ_POUT_MIN,
1666 .update = true,
1667 .attr = "input_lowest",
1668 }, {
1669 .reg = PMBUS_VIRT_READ_POUT_MAX,
1670 .update = true,
1671 .attr = "input_highest",
1672 }, {
1673 .reg = PMBUS_VIRT_RESET_POUT_HISTORY,
1674 .attr = "reset_history",
1675 }, {
1676 .reg = PMBUS_MFR_POUT_MAX,
1677 .attr = "rated_max",
1678 },
1679 };
1680
1681 static const struct pmbus_sensor_attr power_attributes[] = {
1682 {
1683 .reg = PMBUS_READ_PIN,
1684 .class = PSC_POWER,
1685 .label = "pin",
1686 .func = PMBUS_HAVE_PIN,
1687 .sfunc = PMBUS_HAVE_STATUS_INPUT,
1688 .sreg = PMBUS_STATUS_INPUT,
1689 .gbit = PB_STATUS_INPUT,
1690 .limit = pin_limit_attrs,
1691 .nlimit = ARRAY_SIZE(pin_limit_attrs),
1692 }, {
1693 .reg = PMBUS_READ_POUT,
1694 .class = PSC_POWER,
1695 .label = "pout",
1696 .paged = true,
1697 .func = PMBUS_HAVE_POUT,
1698 .sfunc = PMBUS_HAVE_STATUS_IOUT,
1699 .sreg = PMBUS_STATUS_IOUT,
1700 .limit = pout_limit_attrs,
1701 .nlimit = ARRAY_SIZE(pout_limit_attrs),
1702 }
1703 };
1704
1705 /* Temperature atributes */
1706
1707 static const struct pmbus_limit_attr temp_limit_attrs[] = {
1708 {
1709 .reg = PMBUS_UT_WARN_LIMIT,
1710 .low = true,
1711 .attr = "min",
1712 .alarm = "min_alarm",
1713 .sbit = PB_TEMP_UT_WARNING,
1714 }, {
1715 .reg = PMBUS_UT_FAULT_LIMIT,
1716 .low = true,
1717 .attr = "lcrit",
1718 .alarm = "lcrit_alarm",
1719 .sbit = PB_TEMP_UT_FAULT,
1720 }, {
1721 .reg = PMBUS_OT_WARN_LIMIT,
1722 .attr = "max",
1723 .alarm = "max_alarm",
1724 .sbit = PB_TEMP_OT_WARNING,
1725 }, {
1726 .reg = PMBUS_OT_FAULT_LIMIT,
1727 .attr = "crit",
1728 .alarm = "crit_alarm",
1729 .sbit = PB_TEMP_OT_FAULT,
1730 }, {
1731 .reg = PMBUS_VIRT_READ_TEMP_MIN,
1732 .attr = "lowest",
1733 }, {
1734 .reg = PMBUS_VIRT_READ_TEMP_AVG,
1735 .attr = "average",
1736 }, {
1737 .reg = PMBUS_VIRT_READ_TEMP_MAX,
1738 .attr = "highest",
1739 }, {
1740 .reg = PMBUS_VIRT_RESET_TEMP_HISTORY,
1741 .attr = "reset_history",
1742 }, {
1743 .reg = PMBUS_MFR_MAX_TEMP_1,
1744 .attr = "rated_max",
1745 },
1746 };
1747
1748 static const struct pmbus_limit_attr temp_limit_attrs2[] = {
1749 {
1750 .reg = PMBUS_UT_WARN_LIMIT,
1751 .low = true,
1752 .attr = "min",
1753 .alarm = "min_alarm",
1754 .sbit = PB_TEMP_UT_WARNING,
1755 }, {
1756 .reg = PMBUS_UT_FAULT_LIMIT,
1757 .low = true,
1758 .attr = "lcrit",
1759 .alarm = "lcrit_alarm",
1760 .sbit = PB_TEMP_UT_FAULT,
1761 }, {
1762 .reg = PMBUS_OT_WARN_LIMIT,
1763 .attr = "max",
1764 .alarm = "max_alarm",
1765 .sbit = PB_TEMP_OT_WARNING,
1766 }, {
1767 .reg = PMBUS_OT_FAULT_LIMIT,
1768 .attr = "crit",
1769 .alarm = "crit_alarm",
1770 .sbit = PB_TEMP_OT_FAULT,
1771 }, {
1772 .reg = PMBUS_VIRT_READ_TEMP2_MIN,
1773 .attr = "lowest",
1774 }, {
1775 .reg = PMBUS_VIRT_READ_TEMP2_AVG,
1776 .attr = "average",
1777 }, {
1778 .reg = PMBUS_VIRT_READ_TEMP2_MAX,
1779 .attr = "highest",
1780 }, {
1781 .reg = PMBUS_VIRT_RESET_TEMP2_HISTORY,
1782 .attr = "reset_history",
1783 }, {
1784 .reg = PMBUS_MFR_MAX_TEMP_2,
1785 .attr = "rated_max",
1786 },
1787 };
1788
1789 static const struct pmbus_limit_attr temp_limit_attrs3[] = {
1790 {
1791 .reg = PMBUS_UT_WARN_LIMIT,
1792 .low = true,
1793 .attr = "min",
1794 .alarm = "min_alarm",
1795 .sbit = PB_TEMP_UT_WARNING,
1796 }, {
1797 .reg = PMBUS_UT_FAULT_LIMIT,
1798 .low = true,
1799 .attr = "lcrit",
1800 .alarm = "lcrit_alarm",
1801 .sbit = PB_TEMP_UT_FAULT,
1802 }, {
1803 .reg = PMBUS_OT_WARN_LIMIT,
1804 .attr = "max",
1805 .alarm = "max_alarm",
1806 .sbit = PB_TEMP_OT_WARNING,
1807 }, {
1808 .reg = PMBUS_OT_FAULT_LIMIT,
1809 .attr = "crit",
1810 .alarm = "crit_alarm",
1811 .sbit = PB_TEMP_OT_FAULT,
1812 }, {
1813 .reg = PMBUS_MFR_MAX_TEMP_3,
1814 .attr = "rated_max",
1815 },
1816 };
1817
1818 static const struct pmbus_sensor_attr temp_attributes[] = {
1819 {
1820 .reg = PMBUS_READ_TEMPERATURE_1,
1821 .class = PSC_TEMPERATURE,
1822 .paged = true,
1823 .update = true,
1824 .compare = true,
1825 .func = PMBUS_HAVE_TEMP,
1826 .sfunc = PMBUS_HAVE_STATUS_TEMP,
1827 .sreg = PMBUS_STATUS_TEMPERATURE,
1828 .gbit = PB_STATUS_TEMPERATURE,
1829 .limit = temp_limit_attrs,
1830 .nlimit = ARRAY_SIZE(temp_limit_attrs),
1831 }, {
1832 .reg = PMBUS_READ_TEMPERATURE_2,
1833 .class = PSC_TEMPERATURE,
1834 .paged = true,
1835 .update = true,
1836 .compare = true,
1837 .func = PMBUS_HAVE_TEMP2,
1838 .sfunc = PMBUS_HAVE_STATUS_TEMP,
1839 .sreg = PMBUS_STATUS_TEMPERATURE,
1840 .gbit = PB_STATUS_TEMPERATURE,
1841 .limit = temp_limit_attrs2,
1842 .nlimit = ARRAY_SIZE(temp_limit_attrs2),
1843 }, {
1844 .reg = PMBUS_READ_TEMPERATURE_3,
1845 .class = PSC_TEMPERATURE,
1846 .paged = true,
1847 .update = true,
1848 .compare = true,
1849 .func = PMBUS_HAVE_TEMP3,
1850 .sfunc = PMBUS_HAVE_STATUS_TEMP,
1851 .sreg = PMBUS_STATUS_TEMPERATURE,
1852 .gbit = PB_STATUS_TEMPERATURE,
1853 .limit = temp_limit_attrs3,
1854 .nlimit = ARRAY_SIZE(temp_limit_attrs3),
1855 }
1856 };
1857
1858 static const int pmbus_fan_registers[] = {
1859 PMBUS_READ_FAN_SPEED_1,
1860 PMBUS_READ_FAN_SPEED_2,
1861 PMBUS_READ_FAN_SPEED_3,
1862 PMBUS_READ_FAN_SPEED_4
1863 };
1864
1865 static const int pmbus_fan_status_registers[] = {
1866 PMBUS_STATUS_FAN_12,
1867 PMBUS_STATUS_FAN_12,
1868 PMBUS_STATUS_FAN_34,
1869 PMBUS_STATUS_FAN_34
1870 };
1871
1872 static const u32 pmbus_fan_flags[] = {
1873 PMBUS_HAVE_FAN12,
1874 PMBUS_HAVE_FAN12,
1875 PMBUS_HAVE_FAN34,
1876 PMBUS_HAVE_FAN34
1877 };
1878
1879 static const u32 pmbus_fan_status_flags[] = {
1880 PMBUS_HAVE_STATUS_FAN12,
1881 PMBUS_HAVE_STATUS_FAN12,
1882 PMBUS_HAVE_STATUS_FAN34,
1883 PMBUS_HAVE_STATUS_FAN34
1884 };
1885
1886 /* Fans */
1887
1888 /* Precondition: FAN_CONFIG_x_y and FAN_COMMAND_x must exist for the fan ID */
pmbus_add_fan_ctrl(struct i2c_client * client,struct pmbus_data * data,int index,int page,int id,u8 config)1889 static int pmbus_add_fan_ctrl(struct i2c_client *client,
1890 struct pmbus_data *data, int index, int page, int id,
1891 u8 config)
1892 {
1893 struct pmbus_sensor *sensor;
1894
1895 sensor = pmbus_add_sensor(data, "fan", "target", index, page,
1896 0xff, PMBUS_VIRT_FAN_TARGET_1 + id, PSC_FAN,
1897 false, false, true);
1898
1899 if (!sensor)
1900 return -ENOMEM;
1901
1902 if (!((data->info->func[page] & PMBUS_HAVE_PWM12) ||
1903 (data->info->func[page] & PMBUS_HAVE_PWM34)))
1904 return 0;
1905
1906 sensor = pmbus_add_sensor(data, "pwm", NULL, index, page,
1907 0xff, PMBUS_VIRT_PWM_1 + id, PSC_PWM,
1908 false, false, true);
1909
1910 if (!sensor)
1911 return -ENOMEM;
1912
1913 sensor = pmbus_add_sensor(data, "pwm", "enable", index, page,
1914 0xff, PMBUS_VIRT_PWM_ENABLE_1 + id, PSC_PWM,
1915 true, false, false);
1916
1917 if (!sensor)
1918 return -ENOMEM;
1919
1920 return 0;
1921 }
1922
pmbus_add_fan_attributes(struct i2c_client * client,struct pmbus_data * data)1923 static int pmbus_add_fan_attributes(struct i2c_client *client,
1924 struct pmbus_data *data)
1925 {
1926 const struct pmbus_driver_info *info = data->info;
1927 int index = 1;
1928 int page;
1929 int ret;
1930
1931 for (page = 0; page < info->pages; page++) {
1932 int f;
1933
1934 for (f = 0; f < ARRAY_SIZE(pmbus_fan_registers); f++) {
1935 int regval;
1936
1937 if (!(info->func[page] & pmbus_fan_flags[f]))
1938 break;
1939
1940 if (!pmbus_check_word_register(client, page,
1941 pmbus_fan_registers[f]))
1942 break;
1943
1944 /*
1945 * Skip fan if not installed.
1946 * Each fan configuration register covers multiple fans,
1947 * so we have to do some magic.
1948 */
1949 regval = _pmbus_read_byte_data(client, page,
1950 pmbus_fan_config_registers[f]);
1951 if (regval < 0 ||
1952 (!(regval & (PB_FAN_1_INSTALLED >> ((f & 1) * 4)))))
1953 continue;
1954
1955 if (pmbus_add_sensor(data, "fan", "input", index,
1956 page, 0xff, pmbus_fan_registers[f],
1957 PSC_FAN, true, true, true) == NULL)
1958 return -ENOMEM;
1959
1960 /* Fan control */
1961 if (pmbus_check_word_register(client, page,
1962 pmbus_fan_command_registers[f])) {
1963 ret = pmbus_add_fan_ctrl(client, data, index,
1964 page, f, regval);
1965 if (ret < 0)
1966 return ret;
1967 }
1968
1969 /*
1970 * Each fan status register covers multiple fans,
1971 * so we have to do some magic.
1972 */
1973 if ((info->func[page] & pmbus_fan_status_flags[f]) &&
1974 pmbus_check_byte_register(client,
1975 page, pmbus_fan_status_registers[f])) {
1976 int reg;
1977
1978 if (f > 1) /* fan 3, 4 */
1979 reg = PMBUS_STATUS_FAN_34;
1980 else
1981 reg = PMBUS_STATUS_FAN_12;
1982 ret = pmbus_add_boolean(data, "fan",
1983 "alarm", index, NULL, NULL, page, reg,
1984 PB_FAN_FAN1_WARNING >> (f & 1));
1985 if (ret)
1986 return ret;
1987 ret = pmbus_add_boolean(data, "fan",
1988 "fault", index, NULL, NULL, page, reg,
1989 PB_FAN_FAN1_FAULT >> (f & 1));
1990 if (ret)
1991 return ret;
1992 }
1993 index++;
1994 }
1995 }
1996 return 0;
1997 }
1998
1999 struct pmbus_samples_attr {
2000 int reg;
2001 char *name;
2002 };
2003
2004 struct pmbus_samples_reg {
2005 int page;
2006 struct pmbus_samples_attr *attr;
2007 struct device_attribute dev_attr;
2008 };
2009
2010 static struct pmbus_samples_attr pmbus_samples_registers[] = {
2011 {
2012 .reg = PMBUS_VIRT_SAMPLES,
2013 .name = "samples",
2014 }, {
2015 .reg = PMBUS_VIRT_IN_SAMPLES,
2016 .name = "in_samples",
2017 }, {
2018 .reg = PMBUS_VIRT_CURR_SAMPLES,
2019 .name = "curr_samples",
2020 }, {
2021 .reg = PMBUS_VIRT_POWER_SAMPLES,
2022 .name = "power_samples",
2023 }, {
2024 .reg = PMBUS_VIRT_TEMP_SAMPLES,
2025 .name = "temp_samples",
2026 }
2027 };
2028
2029 #define to_samples_reg(x) container_of(x, struct pmbus_samples_reg, dev_attr)
2030
pmbus_show_samples(struct device * dev,struct device_attribute * devattr,char * buf)2031 static ssize_t pmbus_show_samples(struct device *dev,
2032 struct device_attribute *devattr, char *buf)
2033 {
2034 int val;
2035 struct i2c_client *client = to_i2c_client(dev->parent);
2036 struct pmbus_samples_reg *reg = to_samples_reg(devattr);
2037 struct pmbus_data *data = i2c_get_clientdata(client);
2038
2039 mutex_lock(&data->update_lock);
2040 val = _pmbus_read_word_data(client, reg->page, 0xff, reg->attr->reg);
2041 mutex_unlock(&data->update_lock);
2042 if (val < 0)
2043 return val;
2044
2045 return sysfs_emit(buf, "%d\n", val);
2046 }
2047
pmbus_set_samples(struct device * dev,struct device_attribute * devattr,const char * buf,size_t count)2048 static ssize_t pmbus_set_samples(struct device *dev,
2049 struct device_attribute *devattr,
2050 const char *buf, size_t count)
2051 {
2052 int ret;
2053 long val;
2054 struct i2c_client *client = to_i2c_client(dev->parent);
2055 struct pmbus_samples_reg *reg = to_samples_reg(devattr);
2056 struct pmbus_data *data = i2c_get_clientdata(client);
2057
2058 if (kstrtol(buf, 0, &val) < 0)
2059 return -EINVAL;
2060
2061 mutex_lock(&data->update_lock);
2062 ret = _pmbus_write_word_data(client, reg->page, reg->attr->reg, val);
2063 mutex_unlock(&data->update_lock);
2064
2065 return ret ? : count;
2066 }
2067
pmbus_add_samples_attr(struct pmbus_data * data,int page,struct pmbus_samples_attr * attr)2068 static int pmbus_add_samples_attr(struct pmbus_data *data, int page,
2069 struct pmbus_samples_attr *attr)
2070 {
2071 struct pmbus_samples_reg *reg;
2072
2073 reg = devm_kzalloc(data->dev, sizeof(*reg), GFP_KERNEL);
2074 if (!reg)
2075 return -ENOMEM;
2076
2077 reg->attr = attr;
2078 reg->page = page;
2079
2080 pmbus_dev_attr_init(®->dev_attr, attr->name, 0644,
2081 pmbus_show_samples, pmbus_set_samples);
2082
2083 return pmbus_add_attribute(data, ®->dev_attr.attr);
2084 }
2085
pmbus_add_samples_attributes(struct i2c_client * client,struct pmbus_data * data)2086 static int pmbus_add_samples_attributes(struct i2c_client *client,
2087 struct pmbus_data *data)
2088 {
2089 const struct pmbus_driver_info *info = data->info;
2090 int s;
2091
2092 if (!(info->func[0] & PMBUS_HAVE_SAMPLES))
2093 return 0;
2094
2095 for (s = 0; s < ARRAY_SIZE(pmbus_samples_registers); s++) {
2096 struct pmbus_samples_attr *attr;
2097 int ret;
2098
2099 attr = &pmbus_samples_registers[s];
2100 if (!pmbus_check_word_register(client, 0, attr->reg))
2101 continue;
2102
2103 ret = pmbus_add_samples_attr(data, 0, attr);
2104 if (ret)
2105 return ret;
2106 }
2107
2108 return 0;
2109 }
2110
pmbus_find_attributes(struct i2c_client * client,struct pmbus_data * data)2111 static int pmbus_find_attributes(struct i2c_client *client,
2112 struct pmbus_data *data)
2113 {
2114 int ret;
2115
2116 /* Voltage sensors */
2117 ret = pmbus_add_sensor_attrs(client, data, "in", voltage_attributes,
2118 ARRAY_SIZE(voltage_attributes));
2119 if (ret)
2120 return ret;
2121
2122 /* Current sensors */
2123 ret = pmbus_add_sensor_attrs(client, data, "curr", current_attributes,
2124 ARRAY_SIZE(current_attributes));
2125 if (ret)
2126 return ret;
2127
2128 /* Power sensors */
2129 ret = pmbus_add_sensor_attrs(client, data, "power", power_attributes,
2130 ARRAY_SIZE(power_attributes));
2131 if (ret)
2132 return ret;
2133
2134 /* Temperature sensors */
2135 ret = pmbus_add_sensor_attrs(client, data, "temp", temp_attributes,
2136 ARRAY_SIZE(temp_attributes));
2137 if (ret)
2138 return ret;
2139
2140 /* Fans */
2141 ret = pmbus_add_fan_attributes(client, data);
2142 if (ret)
2143 return ret;
2144
2145 ret = pmbus_add_samples_attributes(client, data);
2146 return ret;
2147 }
2148
2149 /*
2150 * The pmbus_class_attr_map structure maps one sensor class to
2151 * it's corresponding sensor attributes array.
2152 */
2153 struct pmbus_class_attr_map {
2154 enum pmbus_sensor_classes class;
2155 int nattr;
2156 const struct pmbus_sensor_attr *attr;
2157 };
2158
2159 static const struct pmbus_class_attr_map class_attr_map[] = {
2160 {
2161 .class = PSC_VOLTAGE_IN,
2162 .attr = voltage_attributes,
2163 .nattr = ARRAY_SIZE(voltage_attributes),
2164 }, {
2165 .class = PSC_VOLTAGE_OUT,
2166 .attr = voltage_attributes,
2167 .nattr = ARRAY_SIZE(voltage_attributes),
2168 }, {
2169 .class = PSC_CURRENT_IN,
2170 .attr = current_attributes,
2171 .nattr = ARRAY_SIZE(current_attributes),
2172 }, {
2173 .class = PSC_CURRENT_OUT,
2174 .attr = current_attributes,
2175 .nattr = ARRAY_SIZE(current_attributes),
2176 }, {
2177 .class = PSC_POWER,
2178 .attr = power_attributes,
2179 .nattr = ARRAY_SIZE(power_attributes),
2180 }, {
2181 .class = PSC_TEMPERATURE,
2182 .attr = temp_attributes,
2183 .nattr = ARRAY_SIZE(temp_attributes),
2184 }
2185 };
2186
2187 /*
2188 * Read the coefficients for direct mode.
2189 */
pmbus_read_coefficients(struct i2c_client * client,struct pmbus_driver_info * info,const struct pmbus_sensor_attr * attr)2190 static int pmbus_read_coefficients(struct i2c_client *client,
2191 struct pmbus_driver_info *info,
2192 const struct pmbus_sensor_attr *attr)
2193 {
2194 int rv;
2195 union i2c_smbus_data data;
2196 enum pmbus_sensor_classes class = attr->class;
2197 s8 R;
2198 s16 m, b;
2199
2200 data.block[0] = 2;
2201 data.block[1] = attr->reg;
2202 data.block[2] = 0x01;
2203
2204 rv = i2c_smbus_xfer(client->adapter, client->addr, client->flags,
2205 I2C_SMBUS_WRITE, PMBUS_COEFFICIENTS,
2206 I2C_SMBUS_BLOCK_PROC_CALL, &data);
2207
2208 if (rv < 0)
2209 return rv;
2210
2211 if (data.block[0] != 5)
2212 return -EIO;
2213
2214 m = data.block[1] | (data.block[2] << 8);
2215 b = data.block[3] | (data.block[4] << 8);
2216 R = data.block[5];
2217 info->m[class] = m;
2218 info->b[class] = b;
2219 info->R[class] = R;
2220
2221 return rv;
2222 }
2223
pmbus_init_coefficients(struct i2c_client * client,struct pmbus_driver_info * info)2224 static int pmbus_init_coefficients(struct i2c_client *client,
2225 struct pmbus_driver_info *info)
2226 {
2227 int i, n, ret = -EINVAL;
2228 const struct pmbus_class_attr_map *map;
2229 const struct pmbus_sensor_attr *attr;
2230
2231 for (i = 0; i < ARRAY_SIZE(class_attr_map); i++) {
2232 map = &class_attr_map[i];
2233 if (info->format[map->class] != direct)
2234 continue;
2235 for (n = 0; n < map->nattr; n++) {
2236 attr = &map->attr[n];
2237 if (map->class != attr->class)
2238 continue;
2239 ret = pmbus_read_coefficients(client, info, attr);
2240 if (ret >= 0)
2241 break;
2242 }
2243 if (ret < 0) {
2244 dev_err(&client->dev,
2245 "No coefficients found for sensor class %d\n",
2246 map->class);
2247 return -EINVAL;
2248 }
2249 }
2250
2251 return 0;
2252 }
2253
2254 /*
2255 * Identify chip parameters.
2256 * This function is called for all chips.
2257 */
pmbus_identify_common(struct i2c_client * client,struct pmbus_data * data,int page)2258 static int pmbus_identify_common(struct i2c_client *client,
2259 struct pmbus_data *data, int page)
2260 {
2261 int vout_mode = -1;
2262
2263 if (pmbus_check_byte_register(client, page, PMBUS_VOUT_MODE))
2264 vout_mode = _pmbus_read_byte_data(client, page,
2265 PMBUS_VOUT_MODE);
2266 if (vout_mode >= 0 && vout_mode != 0xff) {
2267 /*
2268 * Not all chips support the VOUT_MODE command,
2269 * so a failure to read it is not an error.
2270 */
2271 switch (vout_mode >> 5) {
2272 case 0: /* linear mode */
2273 if (data->info->format[PSC_VOLTAGE_OUT] != linear)
2274 return -ENODEV;
2275
2276 data->exponent[page] = ((s8)(vout_mode << 3)) >> 3;
2277 break;
2278 case 1: /* VID mode */
2279 if (data->info->format[PSC_VOLTAGE_OUT] != vid)
2280 return -ENODEV;
2281 break;
2282 case 2: /* direct mode */
2283 if (data->info->format[PSC_VOLTAGE_OUT] != direct)
2284 return -ENODEV;
2285 break;
2286 default:
2287 return -ENODEV;
2288 }
2289 }
2290
2291 pmbus_clear_fault_page(client, page);
2292 return 0;
2293 }
2294
pmbus_read_status_byte(struct i2c_client * client,int page)2295 static int pmbus_read_status_byte(struct i2c_client *client, int page)
2296 {
2297 return _pmbus_read_byte_data(client, page, PMBUS_STATUS_BYTE);
2298 }
2299
pmbus_read_status_word(struct i2c_client * client,int page)2300 static int pmbus_read_status_word(struct i2c_client *client, int page)
2301 {
2302 return _pmbus_read_word_data(client, page, 0xff, PMBUS_STATUS_WORD);
2303 }
2304
pmbus_init_common(struct i2c_client * client,struct pmbus_data * data,struct pmbus_driver_info * info)2305 static int pmbus_init_common(struct i2c_client *client, struct pmbus_data *data,
2306 struct pmbus_driver_info *info)
2307 {
2308 struct device *dev = &client->dev;
2309 int page, ret;
2310
2311 /*
2312 * Figure out if PEC is enabled before accessing any other register.
2313 * Make sure PEC is disabled, will be enabled later if needed.
2314 */
2315 client->flags &= ~I2C_CLIENT_PEC;
2316
2317 /* Enable PEC if the controller and bus supports it */
2318 if (!(data->flags & PMBUS_NO_CAPABILITY)) {
2319 ret = i2c_smbus_read_byte_data(client, PMBUS_CAPABILITY);
2320 if (ret >= 0 && (ret & PB_CAPABILITY_ERROR_CHECK)) {
2321 if (i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_PEC))
2322 client->flags |= I2C_CLIENT_PEC;
2323 }
2324 }
2325
2326 /*
2327 * Some PMBus chips don't support PMBUS_STATUS_WORD, so try
2328 * to use PMBUS_STATUS_BYTE instead if that is the case.
2329 * Bail out if both registers are not supported.
2330 */
2331 data->read_status = pmbus_read_status_word;
2332 ret = i2c_smbus_read_word_data(client, PMBUS_STATUS_WORD);
2333 if (ret < 0 || ret == 0xffff) {
2334 data->read_status = pmbus_read_status_byte;
2335 ret = i2c_smbus_read_byte_data(client, PMBUS_STATUS_BYTE);
2336 if (ret < 0 || ret == 0xff) {
2337 dev_err(dev, "PMBus status register not found\n");
2338 return -ENODEV;
2339 }
2340 } else {
2341 data->has_status_word = true;
2342 }
2343
2344 /*
2345 * Check if the chip is write protected. If it is, we can not clear
2346 * faults, and we should not try it. Also, in that case, writes into
2347 * limit registers need to be disabled.
2348 */
2349 if (!(data->flags & PMBUS_NO_WRITE_PROTECT)) {
2350 ret = i2c_smbus_read_byte_data(client, PMBUS_WRITE_PROTECT);
2351 if (ret > 0 && (ret & PB_WP_ANY))
2352 data->flags |= PMBUS_WRITE_PROTECTED | PMBUS_SKIP_STATUS_CHECK;
2353 }
2354
2355 if (data->info->pages)
2356 pmbus_clear_faults(client);
2357 else
2358 pmbus_clear_fault_page(client, -1);
2359
2360 if (info->identify) {
2361 ret = (*info->identify)(client, info);
2362 if (ret < 0) {
2363 dev_err(dev, "Chip identification failed\n");
2364 return ret;
2365 }
2366 }
2367
2368 if (info->pages <= 0 || info->pages > PMBUS_PAGES) {
2369 dev_err(dev, "Bad number of PMBus pages: %d\n", info->pages);
2370 return -ENODEV;
2371 }
2372
2373 for (page = 0; page < info->pages; page++) {
2374 ret = pmbus_identify_common(client, data, page);
2375 if (ret < 0) {
2376 dev_err(dev, "Failed to identify chip capabilities\n");
2377 return ret;
2378 }
2379 }
2380
2381 if (data->flags & PMBUS_USE_COEFFICIENTS_CMD) {
2382 if (!i2c_check_functionality(client->adapter,
2383 I2C_FUNC_SMBUS_BLOCK_PROC_CALL))
2384 return -ENODEV;
2385
2386 ret = pmbus_init_coefficients(client, info);
2387 if (ret < 0)
2388 return ret;
2389 }
2390
2391 return 0;
2392 }
2393
2394 #if IS_ENABLED(CONFIG_REGULATOR)
pmbus_regulator_is_enabled(struct regulator_dev * rdev)2395 static int pmbus_regulator_is_enabled(struct regulator_dev *rdev)
2396 {
2397 struct device *dev = rdev_get_dev(rdev);
2398 struct i2c_client *client = to_i2c_client(dev->parent);
2399 struct pmbus_data *data = i2c_get_clientdata(client);
2400 u8 page = rdev_get_id(rdev);
2401 int ret;
2402
2403 mutex_lock(&data->update_lock);
2404 ret = pmbus_read_byte_data(client, page, PMBUS_OPERATION);
2405 mutex_unlock(&data->update_lock);
2406
2407 if (ret < 0)
2408 return ret;
2409
2410 return !!(ret & PB_OPERATION_CONTROL_ON);
2411 }
2412
_pmbus_regulator_on_off(struct regulator_dev * rdev,bool enable)2413 static int _pmbus_regulator_on_off(struct regulator_dev *rdev, bool enable)
2414 {
2415 struct device *dev = rdev_get_dev(rdev);
2416 struct i2c_client *client = to_i2c_client(dev->parent);
2417 struct pmbus_data *data = i2c_get_clientdata(client);
2418 u8 page = rdev_get_id(rdev);
2419 int ret;
2420
2421 mutex_lock(&data->update_lock);
2422 ret = pmbus_update_byte_data(client, page, PMBUS_OPERATION,
2423 PB_OPERATION_CONTROL_ON,
2424 enable ? PB_OPERATION_CONTROL_ON : 0);
2425 mutex_unlock(&data->update_lock);
2426
2427 return ret;
2428 }
2429
pmbus_regulator_enable(struct regulator_dev * rdev)2430 static int pmbus_regulator_enable(struct regulator_dev *rdev)
2431 {
2432 return _pmbus_regulator_on_off(rdev, 1);
2433 }
2434
pmbus_regulator_disable(struct regulator_dev * rdev)2435 static int pmbus_regulator_disable(struct regulator_dev *rdev)
2436 {
2437 return _pmbus_regulator_on_off(rdev, 0);
2438 }
2439
2440 const struct regulator_ops pmbus_regulator_ops = {
2441 .enable = pmbus_regulator_enable,
2442 .disable = pmbus_regulator_disable,
2443 .is_enabled = pmbus_regulator_is_enabled,
2444 };
2445 EXPORT_SYMBOL_NS_GPL(pmbus_regulator_ops, PMBUS);
2446
pmbus_regulator_register(struct pmbus_data * data)2447 static int pmbus_regulator_register(struct pmbus_data *data)
2448 {
2449 struct device *dev = data->dev;
2450 const struct pmbus_driver_info *info = data->info;
2451 const struct pmbus_platform_data *pdata = dev_get_platdata(dev);
2452 struct regulator_dev *rdev;
2453 int i;
2454
2455 for (i = 0; i < info->num_regulators; i++) {
2456 struct regulator_config config = { };
2457
2458 config.dev = dev;
2459 config.driver_data = data;
2460
2461 if (pdata && pdata->reg_init_data)
2462 config.init_data = &pdata->reg_init_data[i];
2463
2464 rdev = devm_regulator_register(dev, &info->reg_desc[i],
2465 &config);
2466 if (IS_ERR(rdev)) {
2467 dev_err(dev, "Failed to register %s regulator\n",
2468 info->reg_desc[i].name);
2469 return PTR_ERR(rdev);
2470 }
2471 }
2472
2473 return 0;
2474 }
2475 #else
pmbus_regulator_register(struct pmbus_data * data)2476 static int pmbus_regulator_register(struct pmbus_data *data)
2477 {
2478 return 0;
2479 }
2480 #endif
2481
2482 static struct dentry *pmbus_debugfs_dir; /* pmbus debugfs directory */
2483
2484 #if IS_ENABLED(CONFIG_DEBUG_FS)
pmbus_debugfs_get(void * data,u64 * val)2485 static int pmbus_debugfs_get(void *data, u64 *val)
2486 {
2487 int rc;
2488 struct pmbus_debugfs_entry *entry = data;
2489
2490 rc = _pmbus_read_byte_data(entry->client, entry->page, entry->reg);
2491 if (rc < 0)
2492 return rc;
2493
2494 *val = rc;
2495
2496 return 0;
2497 }
2498 DEFINE_DEBUGFS_ATTRIBUTE(pmbus_debugfs_ops, pmbus_debugfs_get, NULL,
2499 "0x%02llx\n");
2500
pmbus_debugfs_get_status(void * data,u64 * val)2501 static int pmbus_debugfs_get_status(void *data, u64 *val)
2502 {
2503 int rc;
2504 struct pmbus_debugfs_entry *entry = data;
2505 struct pmbus_data *pdata = i2c_get_clientdata(entry->client);
2506
2507 rc = pdata->read_status(entry->client, entry->page);
2508 if (rc < 0)
2509 return rc;
2510
2511 *val = rc;
2512
2513 return 0;
2514 }
2515 DEFINE_DEBUGFS_ATTRIBUTE(pmbus_debugfs_ops_status, pmbus_debugfs_get_status,
2516 NULL, "0x%04llx\n");
2517
pmbus_debugfs_get_pec(void * data,u64 * val)2518 static int pmbus_debugfs_get_pec(void *data, u64 *val)
2519 {
2520 struct i2c_client *client = data;
2521
2522 *val = !!(client->flags & I2C_CLIENT_PEC);
2523
2524 return 0;
2525 }
2526
pmbus_debugfs_set_pec(void * data,u64 val)2527 static int pmbus_debugfs_set_pec(void *data, u64 val)
2528 {
2529 int rc;
2530 struct i2c_client *client = data;
2531
2532 if (!val) {
2533 client->flags &= ~I2C_CLIENT_PEC;
2534 return 0;
2535 }
2536
2537 if (val != 1)
2538 return -EINVAL;
2539
2540 rc = i2c_smbus_read_byte_data(client, PMBUS_CAPABILITY);
2541 if (rc < 0)
2542 return rc;
2543
2544 if (!(rc & PB_CAPABILITY_ERROR_CHECK))
2545 return -EOPNOTSUPP;
2546
2547 client->flags |= I2C_CLIENT_PEC;
2548
2549 return 0;
2550 }
2551 DEFINE_DEBUGFS_ATTRIBUTE(pmbus_debugfs_ops_pec, pmbus_debugfs_get_pec,
2552 pmbus_debugfs_set_pec, "%llu\n");
2553
pmbus_remove_debugfs(void * data)2554 static void pmbus_remove_debugfs(void *data)
2555 {
2556 struct dentry *entry = data;
2557
2558 debugfs_remove_recursive(entry);
2559 }
2560
pmbus_init_debugfs(struct i2c_client * client,struct pmbus_data * data)2561 static int pmbus_init_debugfs(struct i2c_client *client,
2562 struct pmbus_data *data)
2563 {
2564 int i, idx = 0;
2565 char name[PMBUS_NAME_SIZE];
2566 struct pmbus_debugfs_entry *entries;
2567
2568 if (!pmbus_debugfs_dir)
2569 return -ENODEV;
2570
2571 /*
2572 * Create the debugfs directory for this device. Use the hwmon device
2573 * name to avoid conflicts (hwmon numbers are globally unique).
2574 */
2575 data->debugfs = debugfs_create_dir(dev_name(data->hwmon_dev),
2576 pmbus_debugfs_dir);
2577 if (IS_ERR_OR_NULL(data->debugfs)) {
2578 data->debugfs = NULL;
2579 return -ENODEV;
2580 }
2581
2582 /* Allocate the max possible entries we need. */
2583 entries = devm_kcalloc(data->dev,
2584 data->info->pages * 10, sizeof(*entries),
2585 GFP_KERNEL);
2586 if (!entries)
2587 return -ENOMEM;
2588
2589 debugfs_create_file("pec", 0664, data->debugfs, client,
2590 &pmbus_debugfs_ops_pec);
2591
2592 for (i = 0; i < data->info->pages; ++i) {
2593 /* Check accessibility of status register if it's not page 0 */
2594 if (!i || pmbus_check_status_register(client, i)) {
2595 /* No need to set reg as we have special read op. */
2596 entries[idx].client = client;
2597 entries[idx].page = i;
2598 scnprintf(name, PMBUS_NAME_SIZE, "status%d", i);
2599 debugfs_create_file(name, 0444, data->debugfs,
2600 &entries[idx++],
2601 &pmbus_debugfs_ops_status);
2602 }
2603
2604 if (data->info->func[i] & PMBUS_HAVE_STATUS_VOUT) {
2605 entries[idx].client = client;
2606 entries[idx].page = i;
2607 entries[idx].reg = PMBUS_STATUS_VOUT;
2608 scnprintf(name, PMBUS_NAME_SIZE, "status%d_vout", i);
2609 debugfs_create_file(name, 0444, data->debugfs,
2610 &entries[idx++],
2611 &pmbus_debugfs_ops);
2612 }
2613
2614 if (data->info->func[i] & PMBUS_HAVE_STATUS_IOUT) {
2615 entries[idx].client = client;
2616 entries[idx].page = i;
2617 entries[idx].reg = PMBUS_STATUS_IOUT;
2618 scnprintf(name, PMBUS_NAME_SIZE, "status%d_iout", i);
2619 debugfs_create_file(name, 0444, data->debugfs,
2620 &entries[idx++],
2621 &pmbus_debugfs_ops);
2622 }
2623
2624 if (data->info->func[i] & PMBUS_HAVE_STATUS_INPUT) {
2625 entries[idx].client = client;
2626 entries[idx].page = i;
2627 entries[idx].reg = PMBUS_STATUS_INPUT;
2628 scnprintf(name, PMBUS_NAME_SIZE, "status%d_input", i);
2629 debugfs_create_file(name, 0444, data->debugfs,
2630 &entries[idx++],
2631 &pmbus_debugfs_ops);
2632 }
2633
2634 if (data->info->func[i] & PMBUS_HAVE_STATUS_TEMP) {
2635 entries[idx].client = client;
2636 entries[idx].page = i;
2637 entries[idx].reg = PMBUS_STATUS_TEMPERATURE;
2638 scnprintf(name, PMBUS_NAME_SIZE, "status%d_temp", i);
2639 debugfs_create_file(name, 0444, data->debugfs,
2640 &entries[idx++],
2641 &pmbus_debugfs_ops);
2642 }
2643
2644 if (pmbus_check_byte_register(client, i, PMBUS_STATUS_CML)) {
2645 entries[idx].client = client;
2646 entries[idx].page = i;
2647 entries[idx].reg = PMBUS_STATUS_CML;
2648 scnprintf(name, PMBUS_NAME_SIZE, "status%d_cml", i);
2649 debugfs_create_file(name, 0444, data->debugfs,
2650 &entries[idx++],
2651 &pmbus_debugfs_ops);
2652 }
2653
2654 if (pmbus_check_byte_register(client, i, PMBUS_STATUS_OTHER)) {
2655 entries[idx].client = client;
2656 entries[idx].page = i;
2657 entries[idx].reg = PMBUS_STATUS_OTHER;
2658 scnprintf(name, PMBUS_NAME_SIZE, "status%d_other", i);
2659 debugfs_create_file(name, 0444, data->debugfs,
2660 &entries[idx++],
2661 &pmbus_debugfs_ops);
2662 }
2663
2664 if (pmbus_check_byte_register(client, i,
2665 PMBUS_STATUS_MFR_SPECIFIC)) {
2666 entries[idx].client = client;
2667 entries[idx].page = i;
2668 entries[idx].reg = PMBUS_STATUS_MFR_SPECIFIC;
2669 scnprintf(name, PMBUS_NAME_SIZE, "status%d_mfr", i);
2670 debugfs_create_file(name, 0444, data->debugfs,
2671 &entries[idx++],
2672 &pmbus_debugfs_ops);
2673 }
2674
2675 if (data->info->func[i] & PMBUS_HAVE_STATUS_FAN12) {
2676 entries[idx].client = client;
2677 entries[idx].page = i;
2678 entries[idx].reg = PMBUS_STATUS_FAN_12;
2679 scnprintf(name, PMBUS_NAME_SIZE, "status%d_fan12", i);
2680 debugfs_create_file(name, 0444, data->debugfs,
2681 &entries[idx++],
2682 &pmbus_debugfs_ops);
2683 }
2684
2685 if (data->info->func[i] & PMBUS_HAVE_STATUS_FAN34) {
2686 entries[idx].client = client;
2687 entries[idx].page = i;
2688 entries[idx].reg = PMBUS_STATUS_FAN_34;
2689 scnprintf(name, PMBUS_NAME_SIZE, "status%d_fan34", i);
2690 debugfs_create_file(name, 0444, data->debugfs,
2691 &entries[idx++],
2692 &pmbus_debugfs_ops);
2693 }
2694 }
2695
2696 return devm_add_action_or_reset(data->dev,
2697 pmbus_remove_debugfs, data->debugfs);
2698 }
2699 #else
pmbus_init_debugfs(struct i2c_client * client,struct pmbus_data * data)2700 static int pmbus_init_debugfs(struct i2c_client *client,
2701 struct pmbus_data *data)
2702 {
2703 return 0;
2704 }
2705 #endif /* IS_ENABLED(CONFIG_DEBUG_FS) */
2706
pmbus_do_probe(struct i2c_client * client,struct pmbus_driver_info * info)2707 int pmbus_do_probe(struct i2c_client *client, struct pmbus_driver_info *info)
2708 {
2709 struct device *dev = &client->dev;
2710 const struct pmbus_platform_data *pdata = dev_get_platdata(dev);
2711 struct pmbus_data *data;
2712 size_t groups_num = 0;
2713 int ret;
2714 char *name;
2715
2716 if (!info)
2717 return -ENODEV;
2718
2719 if (!i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_WRITE_BYTE
2720 | I2C_FUNC_SMBUS_BYTE_DATA
2721 | I2C_FUNC_SMBUS_WORD_DATA))
2722 return -ENODEV;
2723
2724 data = devm_kzalloc(dev, sizeof(*data), GFP_KERNEL);
2725 if (!data)
2726 return -ENOMEM;
2727
2728 if (info->groups)
2729 while (info->groups[groups_num])
2730 groups_num++;
2731
2732 data->groups = devm_kcalloc(dev, groups_num + 2, sizeof(void *),
2733 GFP_KERNEL);
2734 if (!data->groups)
2735 return -ENOMEM;
2736
2737 i2c_set_clientdata(client, data);
2738 mutex_init(&data->update_lock);
2739 data->dev = dev;
2740
2741 if (pdata)
2742 data->flags = pdata->flags;
2743 data->info = info;
2744 data->currpage = -1;
2745 data->currphase = -1;
2746
2747 ret = pmbus_init_common(client, data, info);
2748 if (ret < 0)
2749 return ret;
2750
2751 ret = pmbus_find_attributes(client, data);
2752 if (ret)
2753 return ret;
2754
2755 /*
2756 * If there are no attributes, something is wrong.
2757 * Bail out instead of trying to register nothing.
2758 */
2759 if (!data->num_attributes) {
2760 dev_err(dev, "No attributes found\n");
2761 return -ENODEV;
2762 }
2763
2764 name = devm_kstrdup(dev, client->name, GFP_KERNEL);
2765 if (!name)
2766 return -ENOMEM;
2767 strreplace(name, '-', '_');
2768
2769 data->groups[0] = &data->group;
2770 memcpy(data->groups + 1, info->groups, sizeof(void *) * groups_num);
2771 data->hwmon_dev = devm_hwmon_device_register_with_groups(dev,
2772 name, data, data->groups);
2773 if (IS_ERR(data->hwmon_dev)) {
2774 dev_err(dev, "Failed to register hwmon device\n");
2775 return PTR_ERR(data->hwmon_dev);
2776 }
2777
2778 ret = pmbus_regulator_register(data);
2779 if (ret)
2780 return ret;
2781
2782 ret = pmbus_init_debugfs(client, data);
2783 if (ret)
2784 dev_warn(dev, "Failed to register debugfs\n");
2785
2786 return 0;
2787 }
2788 EXPORT_SYMBOL_NS_GPL(pmbus_do_probe, PMBUS);
2789
pmbus_get_debugfs_dir(struct i2c_client * client)2790 struct dentry *pmbus_get_debugfs_dir(struct i2c_client *client)
2791 {
2792 struct pmbus_data *data = i2c_get_clientdata(client);
2793
2794 return data->debugfs;
2795 }
2796 EXPORT_SYMBOL_NS_GPL(pmbus_get_debugfs_dir, PMBUS);
2797
pmbus_core_init(void)2798 static int __init pmbus_core_init(void)
2799 {
2800 pmbus_debugfs_dir = debugfs_create_dir("pmbus", NULL);
2801 if (IS_ERR(pmbus_debugfs_dir))
2802 pmbus_debugfs_dir = NULL;
2803
2804 return 0;
2805 }
2806
pmbus_core_exit(void)2807 static void __exit pmbus_core_exit(void)
2808 {
2809 debugfs_remove_recursive(pmbus_debugfs_dir);
2810 }
2811
2812 module_init(pmbus_core_init);
2813 module_exit(pmbus_core_exit);
2814
2815 MODULE_AUTHOR("Guenter Roeck");
2816 MODULE_DESCRIPTION("PMBus core driver");
2817 MODULE_LICENSE("GPL");
2818