• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Linux Socket Filter - Kernel level socket filtering
4  *
5  * Based on the design of the Berkeley Packet Filter. The new
6  * internal format has been designed by PLUMgrid:
7  *
8  *	Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
9  *
10  * Authors:
11  *
12  *	Jay Schulist <jschlst@samba.org>
13  *	Alexei Starovoitov <ast@plumgrid.com>
14  *	Daniel Borkmann <dborkman@redhat.com>
15  *
16  * Andi Kleen - Fix a few bad bugs and races.
17  * Kris Katterjohn - Added many additional checks in bpf_check_classic()
18  */
19 
20 #include <linux/atomic.h>
21 #include <linux/module.h>
22 #include <linux/types.h>
23 #include <linux/mm.h>
24 #include <linux/fcntl.h>
25 #include <linux/socket.h>
26 #include <linux/sock_diag.h>
27 #include <linux/in.h>
28 #include <linux/inet.h>
29 #include <linux/netdevice.h>
30 #include <linux/if_packet.h>
31 #include <linux/if_arp.h>
32 #include <linux/gfp.h>
33 #include <net/inet_common.h>
34 #include <net/ip.h>
35 #include <net/protocol.h>
36 #include <net/netlink.h>
37 #include <linux/skbuff.h>
38 #include <linux/skmsg.h>
39 #include <net/sock.h>
40 #include <net/flow_dissector.h>
41 #include <linux/errno.h>
42 #include <linux/timer.h>
43 #include <linux/uaccess.h>
44 #include <asm/unaligned.h>
45 #include <linux/filter.h>
46 #include <linux/ratelimit.h>
47 #include <linux/seccomp.h>
48 #include <linux/if_vlan.h>
49 #include <linux/bpf.h>
50 #include <linux/btf.h>
51 #include <net/sch_generic.h>
52 #include <net/cls_cgroup.h>
53 #include <net/dst_metadata.h>
54 #include <net/dst.h>
55 #include <net/sock_reuseport.h>
56 #include <net/busy_poll.h>
57 #include <net/tcp.h>
58 #include <net/xfrm.h>
59 #include <net/udp.h>
60 #include <linux/bpf_trace.h>
61 #include <net/xdp_sock.h>
62 #include <linux/inetdevice.h>
63 #include <net/inet_hashtables.h>
64 #include <net/inet6_hashtables.h>
65 #include <net/ip_fib.h>
66 #include <net/nexthop.h>
67 #include <net/flow.h>
68 #include <net/arp.h>
69 #include <net/ipv6.h>
70 #include <net/net_namespace.h>
71 #include <linux/seg6_local.h>
72 #include <net/seg6.h>
73 #include <net/seg6_local.h>
74 #include <net/lwtunnel.h>
75 #include <net/ipv6_stubs.h>
76 #include <net/bpf_sk_storage.h>
77 #include <net/transp_v6.h>
78 #include <linux/btf_ids.h>
79 #include <net/tls.h>
80 #include <net/xdp.h>
81 
82 static const struct bpf_func_proto *
83 bpf_sk_base_func_proto(enum bpf_func_id func_id);
84 
copy_bpf_fprog_from_user(struct sock_fprog * dst,sockptr_t src,int len)85 int copy_bpf_fprog_from_user(struct sock_fprog *dst, sockptr_t src, int len)
86 {
87 	if (in_compat_syscall()) {
88 		struct compat_sock_fprog f32;
89 
90 		if (len != sizeof(f32))
91 			return -EINVAL;
92 		if (copy_from_sockptr(&f32, src, sizeof(f32)))
93 			return -EFAULT;
94 		memset(dst, 0, sizeof(*dst));
95 		dst->len = f32.len;
96 		dst->filter = compat_ptr(f32.filter);
97 	} else {
98 		if (len != sizeof(*dst))
99 			return -EINVAL;
100 		if (copy_from_sockptr(dst, src, sizeof(*dst)))
101 			return -EFAULT;
102 	}
103 
104 	return 0;
105 }
106 EXPORT_SYMBOL_GPL(copy_bpf_fprog_from_user);
107 
108 /**
109  *	sk_filter_trim_cap - run a packet through a socket filter
110  *	@sk: sock associated with &sk_buff
111  *	@skb: buffer to filter
112  *	@cap: limit on how short the eBPF program may trim the packet
113  *
114  * Run the eBPF program and then cut skb->data to correct size returned by
115  * the program. If pkt_len is 0 we toss packet. If skb->len is smaller
116  * than pkt_len we keep whole skb->data. This is the socket level
117  * wrapper to bpf_prog_run. It returns 0 if the packet should
118  * be accepted or -EPERM if the packet should be tossed.
119  *
120  */
sk_filter_trim_cap(struct sock * sk,struct sk_buff * skb,unsigned int cap)121 int sk_filter_trim_cap(struct sock *sk, struct sk_buff *skb, unsigned int cap)
122 {
123 	int err;
124 	struct sk_filter *filter;
125 
126 	/*
127 	 * If the skb was allocated from pfmemalloc reserves, only
128 	 * allow SOCK_MEMALLOC sockets to use it as this socket is
129 	 * helping free memory
130 	 */
131 	if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC)) {
132 		NET_INC_STATS(sock_net(sk), LINUX_MIB_PFMEMALLOCDROP);
133 		return -ENOMEM;
134 	}
135 	err = BPF_CGROUP_RUN_PROG_INET_INGRESS(sk, skb);
136 	if (err)
137 		return err;
138 
139 	err = security_sock_rcv_skb(sk, skb);
140 	if (err)
141 		return err;
142 
143 	rcu_read_lock();
144 	filter = rcu_dereference(sk->sk_filter);
145 	if (filter) {
146 		struct sock *save_sk = skb->sk;
147 		unsigned int pkt_len;
148 
149 		skb->sk = sk;
150 		pkt_len = bpf_prog_run_save_cb(filter->prog, skb);
151 		skb->sk = save_sk;
152 		err = pkt_len ? pskb_trim(skb, max(cap, pkt_len)) : -EPERM;
153 	}
154 	rcu_read_unlock();
155 
156 	return err;
157 }
158 EXPORT_SYMBOL(sk_filter_trim_cap);
159 
BPF_CALL_1(bpf_skb_get_pay_offset,struct sk_buff *,skb)160 BPF_CALL_1(bpf_skb_get_pay_offset, struct sk_buff *, skb)
161 {
162 	return skb_get_poff(skb);
163 }
164 
BPF_CALL_3(bpf_skb_get_nlattr,struct sk_buff *,skb,u32,a,u32,x)165 BPF_CALL_3(bpf_skb_get_nlattr, struct sk_buff *, skb, u32, a, u32, x)
166 {
167 	struct nlattr *nla;
168 
169 	if (skb_is_nonlinear(skb))
170 		return 0;
171 
172 	if (skb->len < sizeof(struct nlattr))
173 		return 0;
174 
175 	if (a > skb->len - sizeof(struct nlattr))
176 		return 0;
177 
178 	nla = nla_find((struct nlattr *) &skb->data[a], skb->len - a, x);
179 	if (nla)
180 		return (void *) nla - (void *) skb->data;
181 
182 	return 0;
183 }
184 
BPF_CALL_3(bpf_skb_get_nlattr_nest,struct sk_buff *,skb,u32,a,u32,x)185 BPF_CALL_3(bpf_skb_get_nlattr_nest, struct sk_buff *, skb, u32, a, u32, x)
186 {
187 	struct nlattr *nla;
188 
189 	if (skb_is_nonlinear(skb))
190 		return 0;
191 
192 	if (skb->len < sizeof(struct nlattr))
193 		return 0;
194 
195 	if (a > skb->len - sizeof(struct nlattr))
196 		return 0;
197 
198 	nla = (struct nlattr *) &skb->data[a];
199 	if (nla->nla_len > skb->len - a)
200 		return 0;
201 
202 	nla = nla_find_nested(nla, x);
203 	if (nla)
204 		return (void *) nla - (void *) skb->data;
205 
206 	return 0;
207 }
208 
BPF_CALL_4(bpf_skb_load_helper_8,const struct sk_buff *,skb,const void *,data,int,headlen,int,offset)209 BPF_CALL_4(bpf_skb_load_helper_8, const struct sk_buff *, skb, const void *,
210 	   data, int, headlen, int, offset)
211 {
212 	u8 tmp, *ptr;
213 	const int len = sizeof(tmp);
214 
215 	if (offset >= 0) {
216 		if (headlen - offset >= len)
217 			return *(u8 *)(data + offset);
218 		if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
219 			return tmp;
220 	} else {
221 		ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
222 		if (likely(ptr))
223 			return *(u8 *)ptr;
224 	}
225 
226 	return -EFAULT;
227 }
228 
BPF_CALL_2(bpf_skb_load_helper_8_no_cache,const struct sk_buff *,skb,int,offset)229 BPF_CALL_2(bpf_skb_load_helper_8_no_cache, const struct sk_buff *, skb,
230 	   int, offset)
231 {
232 	return ____bpf_skb_load_helper_8(skb, skb->data, skb->len - skb->data_len,
233 					 offset);
234 }
235 
BPF_CALL_4(bpf_skb_load_helper_16,const struct sk_buff *,skb,const void *,data,int,headlen,int,offset)236 BPF_CALL_4(bpf_skb_load_helper_16, const struct sk_buff *, skb, const void *,
237 	   data, int, headlen, int, offset)
238 {
239 	u16 tmp, *ptr;
240 	const int len = sizeof(tmp);
241 
242 	if (offset >= 0) {
243 		if (headlen - offset >= len)
244 			return get_unaligned_be16(data + offset);
245 		if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
246 			return be16_to_cpu(tmp);
247 	} else {
248 		ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
249 		if (likely(ptr))
250 			return get_unaligned_be16(ptr);
251 	}
252 
253 	return -EFAULT;
254 }
255 
BPF_CALL_2(bpf_skb_load_helper_16_no_cache,const struct sk_buff *,skb,int,offset)256 BPF_CALL_2(bpf_skb_load_helper_16_no_cache, const struct sk_buff *, skb,
257 	   int, offset)
258 {
259 	return ____bpf_skb_load_helper_16(skb, skb->data, skb->len - skb->data_len,
260 					  offset);
261 }
262 
BPF_CALL_4(bpf_skb_load_helper_32,const struct sk_buff *,skb,const void *,data,int,headlen,int,offset)263 BPF_CALL_4(bpf_skb_load_helper_32, const struct sk_buff *, skb, const void *,
264 	   data, int, headlen, int, offset)
265 {
266 	u32 tmp, *ptr;
267 	const int len = sizeof(tmp);
268 
269 	if (likely(offset >= 0)) {
270 		if (headlen - offset >= len)
271 			return get_unaligned_be32(data + offset);
272 		if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
273 			return be32_to_cpu(tmp);
274 	} else {
275 		ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
276 		if (likely(ptr))
277 			return get_unaligned_be32(ptr);
278 	}
279 
280 	return -EFAULT;
281 }
282 
BPF_CALL_2(bpf_skb_load_helper_32_no_cache,const struct sk_buff *,skb,int,offset)283 BPF_CALL_2(bpf_skb_load_helper_32_no_cache, const struct sk_buff *, skb,
284 	   int, offset)
285 {
286 	return ____bpf_skb_load_helper_32(skb, skb->data, skb->len - skb->data_len,
287 					  offset);
288 }
289 
convert_skb_access(int skb_field,int dst_reg,int src_reg,struct bpf_insn * insn_buf)290 static u32 convert_skb_access(int skb_field, int dst_reg, int src_reg,
291 			      struct bpf_insn *insn_buf)
292 {
293 	struct bpf_insn *insn = insn_buf;
294 
295 	switch (skb_field) {
296 	case SKF_AD_MARK:
297 		BUILD_BUG_ON(sizeof_field(struct sk_buff, mark) != 4);
298 
299 		*insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
300 				      offsetof(struct sk_buff, mark));
301 		break;
302 
303 	case SKF_AD_PKTTYPE:
304 		*insn++ = BPF_LDX_MEM(BPF_B, dst_reg, src_reg, PKT_TYPE_OFFSET());
305 		*insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, PKT_TYPE_MAX);
306 #ifdef __BIG_ENDIAN_BITFIELD
307 		*insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, 5);
308 #endif
309 		break;
310 
311 	case SKF_AD_QUEUE:
312 		BUILD_BUG_ON(sizeof_field(struct sk_buff, queue_mapping) != 2);
313 
314 		*insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
315 				      offsetof(struct sk_buff, queue_mapping));
316 		break;
317 
318 	case SKF_AD_VLAN_TAG:
319 		BUILD_BUG_ON(sizeof_field(struct sk_buff, vlan_tci) != 2);
320 
321 		/* dst_reg = *(u16 *) (src_reg + offsetof(vlan_tci)) */
322 		*insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
323 				      offsetof(struct sk_buff, vlan_tci));
324 		break;
325 	case SKF_AD_VLAN_TAG_PRESENT:
326 		*insn++ = BPF_LDX_MEM(BPF_B, dst_reg, src_reg, PKT_VLAN_PRESENT_OFFSET());
327 		if (PKT_VLAN_PRESENT_BIT)
328 			*insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, PKT_VLAN_PRESENT_BIT);
329 		if (PKT_VLAN_PRESENT_BIT < 7)
330 			*insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, 1);
331 		break;
332 	}
333 
334 	return insn - insn_buf;
335 }
336 
convert_bpf_extensions(struct sock_filter * fp,struct bpf_insn ** insnp)337 static bool convert_bpf_extensions(struct sock_filter *fp,
338 				   struct bpf_insn **insnp)
339 {
340 	struct bpf_insn *insn = *insnp;
341 	u32 cnt;
342 
343 	switch (fp->k) {
344 	case SKF_AD_OFF + SKF_AD_PROTOCOL:
345 		BUILD_BUG_ON(sizeof_field(struct sk_buff, protocol) != 2);
346 
347 		/* A = *(u16 *) (CTX + offsetof(protocol)) */
348 		*insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
349 				      offsetof(struct sk_buff, protocol));
350 		/* A = ntohs(A) [emitting a nop or swap16] */
351 		*insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
352 		break;
353 
354 	case SKF_AD_OFF + SKF_AD_PKTTYPE:
355 		cnt = convert_skb_access(SKF_AD_PKTTYPE, BPF_REG_A, BPF_REG_CTX, insn);
356 		insn += cnt - 1;
357 		break;
358 
359 	case SKF_AD_OFF + SKF_AD_IFINDEX:
360 	case SKF_AD_OFF + SKF_AD_HATYPE:
361 		BUILD_BUG_ON(sizeof_field(struct net_device, ifindex) != 4);
362 		BUILD_BUG_ON(sizeof_field(struct net_device, type) != 2);
363 
364 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
365 				      BPF_REG_TMP, BPF_REG_CTX,
366 				      offsetof(struct sk_buff, dev));
367 		/* if (tmp != 0) goto pc + 1 */
368 		*insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_TMP, 0, 1);
369 		*insn++ = BPF_EXIT_INSN();
370 		if (fp->k == SKF_AD_OFF + SKF_AD_IFINDEX)
371 			*insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_TMP,
372 					    offsetof(struct net_device, ifindex));
373 		else
374 			*insn = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_TMP,
375 					    offsetof(struct net_device, type));
376 		break;
377 
378 	case SKF_AD_OFF + SKF_AD_MARK:
379 		cnt = convert_skb_access(SKF_AD_MARK, BPF_REG_A, BPF_REG_CTX, insn);
380 		insn += cnt - 1;
381 		break;
382 
383 	case SKF_AD_OFF + SKF_AD_RXHASH:
384 		BUILD_BUG_ON(sizeof_field(struct sk_buff, hash) != 4);
385 
386 		*insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX,
387 				    offsetof(struct sk_buff, hash));
388 		break;
389 
390 	case SKF_AD_OFF + SKF_AD_QUEUE:
391 		cnt = convert_skb_access(SKF_AD_QUEUE, BPF_REG_A, BPF_REG_CTX, insn);
392 		insn += cnt - 1;
393 		break;
394 
395 	case SKF_AD_OFF + SKF_AD_VLAN_TAG:
396 		cnt = convert_skb_access(SKF_AD_VLAN_TAG,
397 					 BPF_REG_A, BPF_REG_CTX, insn);
398 		insn += cnt - 1;
399 		break;
400 
401 	case SKF_AD_OFF + SKF_AD_VLAN_TAG_PRESENT:
402 		cnt = convert_skb_access(SKF_AD_VLAN_TAG_PRESENT,
403 					 BPF_REG_A, BPF_REG_CTX, insn);
404 		insn += cnt - 1;
405 		break;
406 
407 	case SKF_AD_OFF + SKF_AD_VLAN_TPID:
408 		BUILD_BUG_ON(sizeof_field(struct sk_buff, vlan_proto) != 2);
409 
410 		/* A = *(u16 *) (CTX + offsetof(vlan_proto)) */
411 		*insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
412 				      offsetof(struct sk_buff, vlan_proto));
413 		/* A = ntohs(A) [emitting a nop or swap16] */
414 		*insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
415 		break;
416 
417 	case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
418 	case SKF_AD_OFF + SKF_AD_NLATTR:
419 	case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
420 	case SKF_AD_OFF + SKF_AD_CPU:
421 	case SKF_AD_OFF + SKF_AD_RANDOM:
422 		/* arg1 = CTX */
423 		*insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
424 		/* arg2 = A */
425 		*insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_A);
426 		/* arg3 = X */
427 		*insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_X);
428 		/* Emit call(arg1=CTX, arg2=A, arg3=X) */
429 		switch (fp->k) {
430 		case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
431 			*insn = BPF_EMIT_CALL(bpf_skb_get_pay_offset);
432 			break;
433 		case SKF_AD_OFF + SKF_AD_NLATTR:
434 			*insn = BPF_EMIT_CALL(bpf_skb_get_nlattr);
435 			break;
436 		case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
437 			*insn = BPF_EMIT_CALL(bpf_skb_get_nlattr_nest);
438 			break;
439 		case SKF_AD_OFF + SKF_AD_CPU:
440 			*insn = BPF_EMIT_CALL(bpf_get_raw_cpu_id);
441 			break;
442 		case SKF_AD_OFF + SKF_AD_RANDOM:
443 			*insn = BPF_EMIT_CALL(bpf_user_rnd_u32);
444 			bpf_user_rnd_init_once();
445 			break;
446 		}
447 		break;
448 
449 	case SKF_AD_OFF + SKF_AD_ALU_XOR_X:
450 		/* A ^= X */
451 		*insn = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_X);
452 		break;
453 
454 	default:
455 		/* This is just a dummy call to avoid letting the compiler
456 		 * evict __bpf_call_base() as an optimization. Placed here
457 		 * where no-one bothers.
458 		 */
459 		BUG_ON(__bpf_call_base(0, 0, 0, 0, 0) != 0);
460 		return false;
461 	}
462 
463 	*insnp = insn;
464 	return true;
465 }
466 
convert_bpf_ld_abs(struct sock_filter * fp,struct bpf_insn ** insnp)467 static bool convert_bpf_ld_abs(struct sock_filter *fp, struct bpf_insn **insnp)
468 {
469 	const bool unaligned_ok = IS_BUILTIN(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS);
470 	int size = bpf_size_to_bytes(BPF_SIZE(fp->code));
471 	bool endian = BPF_SIZE(fp->code) == BPF_H ||
472 		      BPF_SIZE(fp->code) == BPF_W;
473 	bool indirect = BPF_MODE(fp->code) == BPF_IND;
474 	const int ip_align = NET_IP_ALIGN;
475 	struct bpf_insn *insn = *insnp;
476 	int offset = fp->k;
477 
478 	if (!indirect &&
479 	    ((unaligned_ok && offset >= 0) ||
480 	     (!unaligned_ok && offset >= 0 &&
481 	      offset + ip_align >= 0 &&
482 	      offset + ip_align % size == 0))) {
483 		bool ldx_off_ok = offset <= S16_MAX;
484 
485 		*insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_H);
486 		if (offset)
487 			*insn++ = BPF_ALU64_IMM(BPF_SUB, BPF_REG_TMP, offset);
488 		*insn++ = BPF_JMP_IMM(BPF_JSLT, BPF_REG_TMP,
489 				      size, 2 + endian + (!ldx_off_ok * 2));
490 		if (ldx_off_ok) {
491 			*insn++ = BPF_LDX_MEM(BPF_SIZE(fp->code), BPF_REG_A,
492 					      BPF_REG_D, offset);
493 		} else {
494 			*insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_D);
495 			*insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_TMP, offset);
496 			*insn++ = BPF_LDX_MEM(BPF_SIZE(fp->code), BPF_REG_A,
497 					      BPF_REG_TMP, 0);
498 		}
499 		if (endian)
500 			*insn++ = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, size * 8);
501 		*insn++ = BPF_JMP_A(8);
502 	}
503 
504 	*insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
505 	*insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_D);
506 	*insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_H);
507 	if (!indirect) {
508 		*insn++ = BPF_MOV64_IMM(BPF_REG_ARG4, offset);
509 	} else {
510 		*insn++ = BPF_MOV64_REG(BPF_REG_ARG4, BPF_REG_X);
511 		if (fp->k)
512 			*insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_ARG4, offset);
513 	}
514 
515 	switch (BPF_SIZE(fp->code)) {
516 	case BPF_B:
517 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_8);
518 		break;
519 	case BPF_H:
520 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_16);
521 		break;
522 	case BPF_W:
523 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_32);
524 		break;
525 	default:
526 		return false;
527 	}
528 
529 	*insn++ = BPF_JMP_IMM(BPF_JSGE, BPF_REG_A, 0, 2);
530 	*insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
531 	*insn   = BPF_EXIT_INSN();
532 
533 	*insnp = insn;
534 	return true;
535 }
536 
537 /**
538  *	bpf_convert_filter - convert filter program
539  *	@prog: the user passed filter program
540  *	@len: the length of the user passed filter program
541  *	@new_prog: allocated 'struct bpf_prog' or NULL
542  *	@new_len: pointer to store length of converted program
543  *	@seen_ld_abs: bool whether we've seen ld_abs/ind
544  *
545  * Remap 'sock_filter' style classic BPF (cBPF) instruction set to 'bpf_insn'
546  * style extended BPF (eBPF).
547  * Conversion workflow:
548  *
549  * 1) First pass for calculating the new program length:
550  *   bpf_convert_filter(old_prog, old_len, NULL, &new_len, &seen_ld_abs)
551  *
552  * 2) 2nd pass to remap in two passes: 1st pass finds new
553  *    jump offsets, 2nd pass remapping:
554  *   bpf_convert_filter(old_prog, old_len, new_prog, &new_len, &seen_ld_abs)
555  */
bpf_convert_filter(struct sock_filter * prog,int len,struct bpf_prog * new_prog,int * new_len,bool * seen_ld_abs)556 static int bpf_convert_filter(struct sock_filter *prog, int len,
557 			      struct bpf_prog *new_prog, int *new_len,
558 			      bool *seen_ld_abs)
559 {
560 	int new_flen = 0, pass = 0, target, i, stack_off;
561 	struct bpf_insn *new_insn, *first_insn = NULL;
562 	struct sock_filter *fp;
563 	int *addrs = NULL;
564 	u8 bpf_src;
565 
566 	BUILD_BUG_ON(BPF_MEMWORDS * sizeof(u32) > MAX_BPF_STACK);
567 	BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
568 
569 	if (len <= 0 || len > BPF_MAXINSNS)
570 		return -EINVAL;
571 
572 	if (new_prog) {
573 		first_insn = new_prog->insnsi;
574 		addrs = kcalloc(len, sizeof(*addrs),
575 				GFP_KERNEL | __GFP_NOWARN);
576 		if (!addrs)
577 			return -ENOMEM;
578 	}
579 
580 do_pass:
581 	new_insn = first_insn;
582 	fp = prog;
583 
584 	/* Classic BPF related prologue emission. */
585 	if (new_prog) {
586 		/* Classic BPF expects A and X to be reset first. These need
587 		 * to be guaranteed to be the first two instructions.
588 		 */
589 		*new_insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
590 		*new_insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_X, BPF_REG_X);
591 
592 		/* All programs must keep CTX in callee saved BPF_REG_CTX.
593 		 * In eBPF case it's done by the compiler, here we need to
594 		 * do this ourself. Initial CTX is present in BPF_REG_ARG1.
595 		 */
596 		*new_insn++ = BPF_MOV64_REG(BPF_REG_CTX, BPF_REG_ARG1);
597 		if (*seen_ld_abs) {
598 			/* For packet access in classic BPF, cache skb->data
599 			 * in callee-saved BPF R8 and skb->len - skb->data_len
600 			 * (headlen) in BPF R9. Since classic BPF is read-only
601 			 * on CTX, we only need to cache it once.
602 			 */
603 			*new_insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
604 						  BPF_REG_D, BPF_REG_CTX,
605 						  offsetof(struct sk_buff, data));
606 			*new_insn++ = BPF_LDX_MEM(BPF_W, BPF_REG_H, BPF_REG_CTX,
607 						  offsetof(struct sk_buff, len));
608 			*new_insn++ = BPF_LDX_MEM(BPF_W, BPF_REG_TMP, BPF_REG_CTX,
609 						  offsetof(struct sk_buff, data_len));
610 			*new_insn++ = BPF_ALU32_REG(BPF_SUB, BPF_REG_H, BPF_REG_TMP);
611 		}
612 	} else {
613 		new_insn += 3;
614 	}
615 
616 	for (i = 0; i < len; fp++, i++) {
617 		struct bpf_insn tmp_insns[32] = { };
618 		struct bpf_insn *insn = tmp_insns;
619 
620 		if (addrs)
621 			addrs[i] = new_insn - first_insn;
622 
623 		switch (fp->code) {
624 		/* All arithmetic insns and skb loads map as-is. */
625 		case BPF_ALU | BPF_ADD | BPF_X:
626 		case BPF_ALU | BPF_ADD | BPF_K:
627 		case BPF_ALU | BPF_SUB | BPF_X:
628 		case BPF_ALU | BPF_SUB | BPF_K:
629 		case BPF_ALU | BPF_AND | BPF_X:
630 		case BPF_ALU | BPF_AND | BPF_K:
631 		case BPF_ALU | BPF_OR | BPF_X:
632 		case BPF_ALU | BPF_OR | BPF_K:
633 		case BPF_ALU | BPF_LSH | BPF_X:
634 		case BPF_ALU | BPF_LSH | BPF_K:
635 		case BPF_ALU | BPF_RSH | BPF_X:
636 		case BPF_ALU | BPF_RSH | BPF_K:
637 		case BPF_ALU | BPF_XOR | BPF_X:
638 		case BPF_ALU | BPF_XOR | BPF_K:
639 		case BPF_ALU | BPF_MUL | BPF_X:
640 		case BPF_ALU | BPF_MUL | BPF_K:
641 		case BPF_ALU | BPF_DIV | BPF_X:
642 		case BPF_ALU | BPF_DIV | BPF_K:
643 		case BPF_ALU | BPF_MOD | BPF_X:
644 		case BPF_ALU | BPF_MOD | BPF_K:
645 		case BPF_ALU | BPF_NEG:
646 		case BPF_LD | BPF_ABS | BPF_W:
647 		case BPF_LD | BPF_ABS | BPF_H:
648 		case BPF_LD | BPF_ABS | BPF_B:
649 		case BPF_LD | BPF_IND | BPF_W:
650 		case BPF_LD | BPF_IND | BPF_H:
651 		case BPF_LD | BPF_IND | BPF_B:
652 			/* Check for overloaded BPF extension and
653 			 * directly convert it if found, otherwise
654 			 * just move on with mapping.
655 			 */
656 			if (BPF_CLASS(fp->code) == BPF_LD &&
657 			    BPF_MODE(fp->code) == BPF_ABS &&
658 			    convert_bpf_extensions(fp, &insn))
659 				break;
660 			if (BPF_CLASS(fp->code) == BPF_LD &&
661 			    convert_bpf_ld_abs(fp, &insn)) {
662 				*seen_ld_abs = true;
663 				break;
664 			}
665 
666 			if (fp->code == (BPF_ALU | BPF_DIV | BPF_X) ||
667 			    fp->code == (BPF_ALU | BPF_MOD | BPF_X)) {
668 				*insn++ = BPF_MOV32_REG(BPF_REG_X, BPF_REG_X);
669 				/* Error with exception code on div/mod by 0.
670 				 * For cBPF programs, this was always return 0.
671 				 */
672 				*insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_X, 0, 2);
673 				*insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
674 				*insn++ = BPF_EXIT_INSN();
675 			}
676 
677 			*insn = BPF_RAW_INSN(fp->code, BPF_REG_A, BPF_REG_X, 0, fp->k);
678 			break;
679 
680 		/* Jump transformation cannot use BPF block macros
681 		 * everywhere as offset calculation and target updates
682 		 * require a bit more work than the rest, i.e. jump
683 		 * opcodes map as-is, but offsets need adjustment.
684 		 */
685 
686 #define BPF_EMIT_JMP							\
687 	do {								\
688 		const s32 off_min = S16_MIN, off_max = S16_MAX;		\
689 		s32 off;						\
690 									\
691 		if (target >= len || target < 0)			\
692 			goto err;					\
693 		off = addrs ? addrs[target] - addrs[i] - 1 : 0;		\
694 		/* Adjust pc relative offset for 2nd or 3rd insn. */	\
695 		off -= insn - tmp_insns;				\
696 		/* Reject anything not fitting into insn->off. */	\
697 		if (off < off_min || off > off_max)			\
698 			goto err;					\
699 		insn->off = off;					\
700 	} while (0)
701 
702 		case BPF_JMP | BPF_JA:
703 			target = i + fp->k + 1;
704 			insn->code = fp->code;
705 			BPF_EMIT_JMP;
706 			break;
707 
708 		case BPF_JMP | BPF_JEQ | BPF_K:
709 		case BPF_JMP | BPF_JEQ | BPF_X:
710 		case BPF_JMP | BPF_JSET | BPF_K:
711 		case BPF_JMP | BPF_JSET | BPF_X:
712 		case BPF_JMP | BPF_JGT | BPF_K:
713 		case BPF_JMP | BPF_JGT | BPF_X:
714 		case BPF_JMP | BPF_JGE | BPF_K:
715 		case BPF_JMP | BPF_JGE | BPF_X:
716 			if (BPF_SRC(fp->code) == BPF_K && (int) fp->k < 0) {
717 				/* BPF immediates are signed, zero extend
718 				 * immediate into tmp register and use it
719 				 * in compare insn.
720 				 */
721 				*insn++ = BPF_MOV32_IMM(BPF_REG_TMP, fp->k);
722 
723 				insn->dst_reg = BPF_REG_A;
724 				insn->src_reg = BPF_REG_TMP;
725 				bpf_src = BPF_X;
726 			} else {
727 				insn->dst_reg = BPF_REG_A;
728 				insn->imm = fp->k;
729 				bpf_src = BPF_SRC(fp->code);
730 				insn->src_reg = bpf_src == BPF_X ? BPF_REG_X : 0;
731 			}
732 
733 			/* Common case where 'jump_false' is next insn. */
734 			if (fp->jf == 0) {
735 				insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
736 				target = i + fp->jt + 1;
737 				BPF_EMIT_JMP;
738 				break;
739 			}
740 
741 			/* Convert some jumps when 'jump_true' is next insn. */
742 			if (fp->jt == 0) {
743 				switch (BPF_OP(fp->code)) {
744 				case BPF_JEQ:
745 					insn->code = BPF_JMP | BPF_JNE | bpf_src;
746 					break;
747 				case BPF_JGT:
748 					insn->code = BPF_JMP | BPF_JLE | bpf_src;
749 					break;
750 				case BPF_JGE:
751 					insn->code = BPF_JMP | BPF_JLT | bpf_src;
752 					break;
753 				default:
754 					goto jmp_rest;
755 				}
756 
757 				target = i + fp->jf + 1;
758 				BPF_EMIT_JMP;
759 				break;
760 			}
761 jmp_rest:
762 			/* Other jumps are mapped into two insns: Jxx and JA. */
763 			target = i + fp->jt + 1;
764 			insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
765 			BPF_EMIT_JMP;
766 			insn++;
767 
768 			insn->code = BPF_JMP | BPF_JA;
769 			target = i + fp->jf + 1;
770 			BPF_EMIT_JMP;
771 			break;
772 
773 		/* ldxb 4 * ([14] & 0xf) is remaped into 6 insns. */
774 		case BPF_LDX | BPF_MSH | BPF_B: {
775 			struct sock_filter tmp = {
776 				.code	= BPF_LD | BPF_ABS | BPF_B,
777 				.k	= fp->k,
778 			};
779 
780 			*seen_ld_abs = true;
781 
782 			/* X = A */
783 			*insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
784 			/* A = BPF_R0 = *(u8 *) (skb->data + K) */
785 			convert_bpf_ld_abs(&tmp, &insn);
786 			insn++;
787 			/* A &= 0xf */
788 			*insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_A, 0xf);
789 			/* A <<= 2 */
790 			*insn++ = BPF_ALU32_IMM(BPF_LSH, BPF_REG_A, 2);
791 			/* tmp = X */
792 			*insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_X);
793 			/* X = A */
794 			*insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
795 			/* A = tmp */
796 			*insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_TMP);
797 			break;
798 		}
799 		/* RET_K is remaped into 2 insns. RET_A case doesn't need an
800 		 * extra mov as BPF_REG_0 is already mapped into BPF_REG_A.
801 		 */
802 		case BPF_RET | BPF_A:
803 		case BPF_RET | BPF_K:
804 			if (BPF_RVAL(fp->code) == BPF_K)
805 				*insn++ = BPF_MOV32_RAW(BPF_K, BPF_REG_0,
806 							0, fp->k);
807 			*insn = BPF_EXIT_INSN();
808 			break;
809 
810 		/* Store to stack. */
811 		case BPF_ST:
812 		case BPF_STX:
813 			stack_off = fp->k * 4  + 4;
814 			*insn = BPF_STX_MEM(BPF_W, BPF_REG_FP, BPF_CLASS(fp->code) ==
815 					    BPF_ST ? BPF_REG_A : BPF_REG_X,
816 					    -stack_off);
817 			/* check_load_and_stores() verifies that classic BPF can
818 			 * load from stack only after write, so tracking
819 			 * stack_depth for ST|STX insns is enough
820 			 */
821 			if (new_prog && new_prog->aux->stack_depth < stack_off)
822 				new_prog->aux->stack_depth = stack_off;
823 			break;
824 
825 		/* Load from stack. */
826 		case BPF_LD | BPF_MEM:
827 		case BPF_LDX | BPF_MEM:
828 			stack_off = fp->k * 4  + 4;
829 			*insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD  ?
830 					    BPF_REG_A : BPF_REG_X, BPF_REG_FP,
831 					    -stack_off);
832 			break;
833 
834 		/* A = K or X = K */
835 		case BPF_LD | BPF_IMM:
836 		case BPF_LDX | BPF_IMM:
837 			*insn = BPF_MOV32_IMM(BPF_CLASS(fp->code) == BPF_LD ?
838 					      BPF_REG_A : BPF_REG_X, fp->k);
839 			break;
840 
841 		/* X = A */
842 		case BPF_MISC | BPF_TAX:
843 			*insn = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
844 			break;
845 
846 		/* A = X */
847 		case BPF_MISC | BPF_TXA:
848 			*insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_X);
849 			break;
850 
851 		/* A = skb->len or X = skb->len */
852 		case BPF_LD | BPF_W | BPF_LEN:
853 		case BPF_LDX | BPF_W | BPF_LEN:
854 			*insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD ?
855 					    BPF_REG_A : BPF_REG_X, BPF_REG_CTX,
856 					    offsetof(struct sk_buff, len));
857 			break;
858 
859 		/* Access seccomp_data fields. */
860 		case BPF_LDX | BPF_ABS | BPF_W:
861 			/* A = *(u32 *) (ctx + K) */
862 			*insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX, fp->k);
863 			break;
864 
865 		/* Unknown instruction. */
866 		default:
867 			goto err;
868 		}
869 
870 		insn++;
871 		if (new_prog)
872 			memcpy(new_insn, tmp_insns,
873 			       sizeof(*insn) * (insn - tmp_insns));
874 		new_insn += insn - tmp_insns;
875 	}
876 
877 	if (!new_prog) {
878 		/* Only calculating new length. */
879 		*new_len = new_insn - first_insn;
880 		if (*seen_ld_abs)
881 			*new_len += 4; /* Prologue bits. */
882 		return 0;
883 	}
884 
885 	pass++;
886 	if (new_flen != new_insn - first_insn) {
887 		new_flen = new_insn - first_insn;
888 		if (pass > 2)
889 			goto err;
890 		goto do_pass;
891 	}
892 
893 	kfree(addrs);
894 	BUG_ON(*new_len != new_flen);
895 	return 0;
896 err:
897 	kfree(addrs);
898 	return -EINVAL;
899 }
900 
901 /* Security:
902  *
903  * As we dont want to clear mem[] array for each packet going through
904  * __bpf_prog_run(), we check that filter loaded by user never try to read
905  * a cell if not previously written, and we check all branches to be sure
906  * a malicious user doesn't try to abuse us.
907  */
check_load_and_stores(const struct sock_filter * filter,int flen)908 static int check_load_and_stores(const struct sock_filter *filter, int flen)
909 {
910 	u16 *masks, memvalid = 0; /* One bit per cell, 16 cells */
911 	int pc, ret = 0;
912 
913 	BUILD_BUG_ON(BPF_MEMWORDS > 16);
914 
915 	masks = kmalloc_array(flen, sizeof(*masks), GFP_KERNEL);
916 	if (!masks)
917 		return -ENOMEM;
918 
919 	memset(masks, 0xff, flen * sizeof(*masks));
920 
921 	for (pc = 0; pc < flen; pc++) {
922 		memvalid &= masks[pc];
923 
924 		switch (filter[pc].code) {
925 		case BPF_ST:
926 		case BPF_STX:
927 			memvalid |= (1 << filter[pc].k);
928 			break;
929 		case BPF_LD | BPF_MEM:
930 		case BPF_LDX | BPF_MEM:
931 			if (!(memvalid & (1 << filter[pc].k))) {
932 				ret = -EINVAL;
933 				goto error;
934 			}
935 			break;
936 		case BPF_JMP | BPF_JA:
937 			/* A jump must set masks on target */
938 			masks[pc + 1 + filter[pc].k] &= memvalid;
939 			memvalid = ~0;
940 			break;
941 		case BPF_JMP | BPF_JEQ | BPF_K:
942 		case BPF_JMP | BPF_JEQ | BPF_X:
943 		case BPF_JMP | BPF_JGE | BPF_K:
944 		case BPF_JMP | BPF_JGE | BPF_X:
945 		case BPF_JMP | BPF_JGT | BPF_K:
946 		case BPF_JMP | BPF_JGT | BPF_X:
947 		case BPF_JMP | BPF_JSET | BPF_K:
948 		case BPF_JMP | BPF_JSET | BPF_X:
949 			/* A jump must set masks on targets */
950 			masks[pc + 1 + filter[pc].jt] &= memvalid;
951 			masks[pc + 1 + filter[pc].jf] &= memvalid;
952 			memvalid = ~0;
953 			break;
954 		}
955 	}
956 error:
957 	kfree(masks);
958 	return ret;
959 }
960 
chk_code_allowed(u16 code_to_probe)961 static bool chk_code_allowed(u16 code_to_probe)
962 {
963 	static const bool codes[] = {
964 		/* 32 bit ALU operations */
965 		[BPF_ALU | BPF_ADD | BPF_K] = true,
966 		[BPF_ALU | BPF_ADD | BPF_X] = true,
967 		[BPF_ALU | BPF_SUB | BPF_K] = true,
968 		[BPF_ALU | BPF_SUB | BPF_X] = true,
969 		[BPF_ALU | BPF_MUL | BPF_K] = true,
970 		[BPF_ALU | BPF_MUL | BPF_X] = true,
971 		[BPF_ALU | BPF_DIV | BPF_K] = true,
972 		[BPF_ALU | BPF_DIV | BPF_X] = true,
973 		[BPF_ALU | BPF_MOD | BPF_K] = true,
974 		[BPF_ALU | BPF_MOD | BPF_X] = true,
975 		[BPF_ALU | BPF_AND | BPF_K] = true,
976 		[BPF_ALU | BPF_AND | BPF_X] = true,
977 		[BPF_ALU | BPF_OR | BPF_K] = true,
978 		[BPF_ALU | BPF_OR | BPF_X] = true,
979 		[BPF_ALU | BPF_XOR | BPF_K] = true,
980 		[BPF_ALU | BPF_XOR | BPF_X] = true,
981 		[BPF_ALU | BPF_LSH | BPF_K] = true,
982 		[BPF_ALU | BPF_LSH | BPF_X] = true,
983 		[BPF_ALU | BPF_RSH | BPF_K] = true,
984 		[BPF_ALU | BPF_RSH | BPF_X] = true,
985 		[BPF_ALU | BPF_NEG] = true,
986 		/* Load instructions */
987 		[BPF_LD | BPF_W | BPF_ABS] = true,
988 		[BPF_LD | BPF_H | BPF_ABS] = true,
989 		[BPF_LD | BPF_B | BPF_ABS] = true,
990 		[BPF_LD | BPF_W | BPF_LEN] = true,
991 		[BPF_LD | BPF_W | BPF_IND] = true,
992 		[BPF_LD | BPF_H | BPF_IND] = true,
993 		[BPF_LD | BPF_B | BPF_IND] = true,
994 		[BPF_LD | BPF_IMM] = true,
995 		[BPF_LD | BPF_MEM] = true,
996 		[BPF_LDX | BPF_W | BPF_LEN] = true,
997 		[BPF_LDX | BPF_B | BPF_MSH] = true,
998 		[BPF_LDX | BPF_IMM] = true,
999 		[BPF_LDX | BPF_MEM] = true,
1000 		/* Store instructions */
1001 		[BPF_ST] = true,
1002 		[BPF_STX] = true,
1003 		/* Misc instructions */
1004 		[BPF_MISC | BPF_TAX] = true,
1005 		[BPF_MISC | BPF_TXA] = true,
1006 		/* Return instructions */
1007 		[BPF_RET | BPF_K] = true,
1008 		[BPF_RET | BPF_A] = true,
1009 		/* Jump instructions */
1010 		[BPF_JMP | BPF_JA] = true,
1011 		[BPF_JMP | BPF_JEQ | BPF_K] = true,
1012 		[BPF_JMP | BPF_JEQ | BPF_X] = true,
1013 		[BPF_JMP | BPF_JGE | BPF_K] = true,
1014 		[BPF_JMP | BPF_JGE | BPF_X] = true,
1015 		[BPF_JMP | BPF_JGT | BPF_K] = true,
1016 		[BPF_JMP | BPF_JGT | BPF_X] = true,
1017 		[BPF_JMP | BPF_JSET | BPF_K] = true,
1018 		[BPF_JMP | BPF_JSET | BPF_X] = true,
1019 	};
1020 
1021 	if (code_to_probe >= ARRAY_SIZE(codes))
1022 		return false;
1023 
1024 	return codes[code_to_probe];
1025 }
1026 
bpf_check_basics_ok(const struct sock_filter * filter,unsigned int flen)1027 static bool bpf_check_basics_ok(const struct sock_filter *filter,
1028 				unsigned int flen)
1029 {
1030 	if (filter == NULL)
1031 		return false;
1032 	if (flen == 0 || flen > BPF_MAXINSNS)
1033 		return false;
1034 
1035 	return true;
1036 }
1037 
1038 /**
1039  *	bpf_check_classic - verify socket filter code
1040  *	@filter: filter to verify
1041  *	@flen: length of filter
1042  *
1043  * Check the user's filter code. If we let some ugly
1044  * filter code slip through kaboom! The filter must contain
1045  * no references or jumps that are out of range, no illegal
1046  * instructions, and must end with a RET instruction.
1047  *
1048  * All jumps are forward as they are not signed.
1049  *
1050  * Returns 0 if the rule set is legal or -EINVAL if not.
1051  */
bpf_check_classic(const struct sock_filter * filter,unsigned int flen)1052 static int bpf_check_classic(const struct sock_filter *filter,
1053 			     unsigned int flen)
1054 {
1055 	bool anc_found;
1056 	int pc;
1057 
1058 	/* Check the filter code now */
1059 	for (pc = 0; pc < flen; pc++) {
1060 		const struct sock_filter *ftest = &filter[pc];
1061 
1062 		/* May we actually operate on this code? */
1063 		if (!chk_code_allowed(ftest->code))
1064 			return -EINVAL;
1065 
1066 		/* Some instructions need special checks */
1067 		switch (ftest->code) {
1068 		case BPF_ALU | BPF_DIV | BPF_K:
1069 		case BPF_ALU | BPF_MOD | BPF_K:
1070 			/* Check for division by zero */
1071 			if (ftest->k == 0)
1072 				return -EINVAL;
1073 			break;
1074 		case BPF_ALU | BPF_LSH | BPF_K:
1075 		case BPF_ALU | BPF_RSH | BPF_K:
1076 			if (ftest->k >= 32)
1077 				return -EINVAL;
1078 			break;
1079 		case BPF_LD | BPF_MEM:
1080 		case BPF_LDX | BPF_MEM:
1081 		case BPF_ST:
1082 		case BPF_STX:
1083 			/* Check for invalid memory addresses */
1084 			if (ftest->k >= BPF_MEMWORDS)
1085 				return -EINVAL;
1086 			break;
1087 		case BPF_JMP | BPF_JA:
1088 			/* Note, the large ftest->k might cause loops.
1089 			 * Compare this with conditional jumps below,
1090 			 * where offsets are limited. --ANK (981016)
1091 			 */
1092 			if (ftest->k >= (unsigned int)(flen - pc - 1))
1093 				return -EINVAL;
1094 			break;
1095 		case BPF_JMP | BPF_JEQ | BPF_K:
1096 		case BPF_JMP | BPF_JEQ | BPF_X:
1097 		case BPF_JMP | BPF_JGE | BPF_K:
1098 		case BPF_JMP | BPF_JGE | BPF_X:
1099 		case BPF_JMP | BPF_JGT | BPF_K:
1100 		case BPF_JMP | BPF_JGT | BPF_X:
1101 		case BPF_JMP | BPF_JSET | BPF_K:
1102 		case BPF_JMP | BPF_JSET | BPF_X:
1103 			/* Both conditionals must be safe */
1104 			if (pc + ftest->jt + 1 >= flen ||
1105 			    pc + ftest->jf + 1 >= flen)
1106 				return -EINVAL;
1107 			break;
1108 		case BPF_LD | BPF_W | BPF_ABS:
1109 		case BPF_LD | BPF_H | BPF_ABS:
1110 		case BPF_LD | BPF_B | BPF_ABS:
1111 			anc_found = false;
1112 			if (bpf_anc_helper(ftest) & BPF_ANC)
1113 				anc_found = true;
1114 			/* Ancillary operation unknown or unsupported */
1115 			if (anc_found == false && ftest->k >= SKF_AD_OFF)
1116 				return -EINVAL;
1117 		}
1118 	}
1119 
1120 	/* Last instruction must be a RET code */
1121 	switch (filter[flen - 1].code) {
1122 	case BPF_RET | BPF_K:
1123 	case BPF_RET | BPF_A:
1124 		return check_load_and_stores(filter, flen);
1125 	}
1126 
1127 	return -EINVAL;
1128 }
1129 
bpf_prog_store_orig_filter(struct bpf_prog * fp,const struct sock_fprog * fprog)1130 static int bpf_prog_store_orig_filter(struct bpf_prog *fp,
1131 				      const struct sock_fprog *fprog)
1132 {
1133 	unsigned int fsize = bpf_classic_proglen(fprog);
1134 	struct sock_fprog_kern *fkprog;
1135 
1136 	fp->orig_prog = kmalloc(sizeof(*fkprog), GFP_KERNEL);
1137 	if (!fp->orig_prog)
1138 		return -ENOMEM;
1139 
1140 	fkprog = fp->orig_prog;
1141 	fkprog->len = fprog->len;
1142 
1143 	fkprog->filter = kmemdup(fp->insns, fsize,
1144 				 GFP_KERNEL | __GFP_NOWARN);
1145 	if (!fkprog->filter) {
1146 		kfree(fp->orig_prog);
1147 		return -ENOMEM;
1148 	}
1149 
1150 	return 0;
1151 }
1152 
bpf_release_orig_filter(struct bpf_prog * fp)1153 static void bpf_release_orig_filter(struct bpf_prog *fp)
1154 {
1155 	struct sock_fprog_kern *fprog = fp->orig_prog;
1156 
1157 	if (fprog) {
1158 		kfree(fprog->filter);
1159 		kfree(fprog);
1160 	}
1161 }
1162 
__bpf_prog_release(struct bpf_prog * prog)1163 static void __bpf_prog_release(struct bpf_prog *prog)
1164 {
1165 	if (prog->type == BPF_PROG_TYPE_SOCKET_FILTER) {
1166 		bpf_prog_put(prog);
1167 	} else {
1168 		bpf_release_orig_filter(prog);
1169 		bpf_prog_free(prog);
1170 	}
1171 }
1172 
__sk_filter_release(struct sk_filter * fp)1173 static void __sk_filter_release(struct sk_filter *fp)
1174 {
1175 	__bpf_prog_release(fp->prog);
1176 	kfree(fp);
1177 }
1178 
1179 /**
1180  * 	sk_filter_release_rcu - Release a socket filter by rcu_head
1181  *	@rcu: rcu_head that contains the sk_filter to free
1182  */
sk_filter_release_rcu(struct rcu_head * rcu)1183 static void sk_filter_release_rcu(struct rcu_head *rcu)
1184 {
1185 	struct sk_filter *fp = container_of(rcu, struct sk_filter, rcu);
1186 
1187 	__sk_filter_release(fp);
1188 }
1189 
1190 /**
1191  *	sk_filter_release - release a socket filter
1192  *	@fp: filter to remove
1193  *
1194  *	Remove a filter from a socket and release its resources.
1195  */
sk_filter_release(struct sk_filter * fp)1196 static void sk_filter_release(struct sk_filter *fp)
1197 {
1198 	if (refcount_dec_and_test(&fp->refcnt))
1199 		call_rcu(&fp->rcu, sk_filter_release_rcu);
1200 }
1201 
sk_filter_uncharge(struct sock * sk,struct sk_filter * fp)1202 void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp)
1203 {
1204 	u32 filter_size = bpf_prog_size(fp->prog->len);
1205 
1206 	atomic_sub(filter_size, &sk->sk_omem_alloc);
1207 	sk_filter_release(fp);
1208 }
1209 
1210 /* try to charge the socket memory if there is space available
1211  * return true on success
1212  */
__sk_filter_charge(struct sock * sk,struct sk_filter * fp)1213 static bool __sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1214 {
1215 	u32 filter_size = bpf_prog_size(fp->prog->len);
1216 	int optmem_max = READ_ONCE(sysctl_optmem_max);
1217 
1218 	/* same check as in sock_kmalloc() */
1219 	if (filter_size <= optmem_max &&
1220 	    atomic_read(&sk->sk_omem_alloc) + filter_size < optmem_max) {
1221 		atomic_add(filter_size, &sk->sk_omem_alloc);
1222 		return true;
1223 	}
1224 	return false;
1225 }
1226 
sk_filter_charge(struct sock * sk,struct sk_filter * fp)1227 bool sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1228 {
1229 	if (!refcount_inc_not_zero(&fp->refcnt))
1230 		return false;
1231 
1232 	if (!__sk_filter_charge(sk, fp)) {
1233 		sk_filter_release(fp);
1234 		return false;
1235 	}
1236 	return true;
1237 }
1238 
bpf_migrate_filter(struct bpf_prog * fp)1239 static struct bpf_prog *bpf_migrate_filter(struct bpf_prog *fp)
1240 {
1241 	struct sock_filter *old_prog;
1242 	struct bpf_prog *old_fp;
1243 	int err, new_len, old_len = fp->len;
1244 	bool seen_ld_abs = false;
1245 
1246 	/* We are free to overwrite insns et al right here as it
1247 	 * won't be used at this point in time anymore internally
1248 	 * after the migration to the internal BPF instruction
1249 	 * representation.
1250 	 */
1251 	BUILD_BUG_ON(sizeof(struct sock_filter) !=
1252 		     sizeof(struct bpf_insn));
1253 
1254 	/* Conversion cannot happen on overlapping memory areas,
1255 	 * so we need to keep the user BPF around until the 2nd
1256 	 * pass. At this time, the user BPF is stored in fp->insns.
1257 	 */
1258 	old_prog = kmemdup(fp->insns, old_len * sizeof(struct sock_filter),
1259 			   GFP_KERNEL | __GFP_NOWARN);
1260 	if (!old_prog) {
1261 		err = -ENOMEM;
1262 		goto out_err;
1263 	}
1264 
1265 	/* 1st pass: calculate the new program length. */
1266 	err = bpf_convert_filter(old_prog, old_len, NULL, &new_len,
1267 				 &seen_ld_abs);
1268 	if (err)
1269 		goto out_err_free;
1270 
1271 	/* Expand fp for appending the new filter representation. */
1272 	old_fp = fp;
1273 	fp = bpf_prog_realloc(old_fp, bpf_prog_size(new_len), 0);
1274 	if (!fp) {
1275 		/* The old_fp is still around in case we couldn't
1276 		 * allocate new memory, so uncharge on that one.
1277 		 */
1278 		fp = old_fp;
1279 		err = -ENOMEM;
1280 		goto out_err_free;
1281 	}
1282 
1283 	fp->len = new_len;
1284 
1285 	/* 2nd pass: remap sock_filter insns into bpf_insn insns. */
1286 	err = bpf_convert_filter(old_prog, old_len, fp, &new_len,
1287 				 &seen_ld_abs);
1288 	if (err)
1289 		/* 2nd bpf_convert_filter() can fail only if it fails
1290 		 * to allocate memory, remapping must succeed. Note,
1291 		 * that at this time old_fp has already been released
1292 		 * by krealloc().
1293 		 */
1294 		goto out_err_free;
1295 
1296 	fp = bpf_prog_select_runtime(fp, &err);
1297 	if (err)
1298 		goto out_err_free;
1299 
1300 	kfree(old_prog);
1301 	return fp;
1302 
1303 out_err_free:
1304 	kfree(old_prog);
1305 out_err:
1306 	__bpf_prog_release(fp);
1307 	return ERR_PTR(err);
1308 }
1309 
bpf_prepare_filter(struct bpf_prog * fp,bpf_aux_classic_check_t trans)1310 static struct bpf_prog *bpf_prepare_filter(struct bpf_prog *fp,
1311 					   bpf_aux_classic_check_t trans)
1312 {
1313 	int err;
1314 
1315 	fp->bpf_func = NULL;
1316 	fp->jited = 0;
1317 
1318 	err = bpf_check_classic(fp->insns, fp->len);
1319 	if (err) {
1320 		__bpf_prog_release(fp);
1321 		return ERR_PTR(err);
1322 	}
1323 
1324 	/* There might be additional checks and transformations
1325 	 * needed on classic filters, f.e. in case of seccomp.
1326 	 */
1327 	if (trans) {
1328 		err = trans(fp->insns, fp->len);
1329 		if (err) {
1330 			__bpf_prog_release(fp);
1331 			return ERR_PTR(err);
1332 		}
1333 	}
1334 
1335 	/* Probe if we can JIT compile the filter and if so, do
1336 	 * the compilation of the filter.
1337 	 */
1338 	bpf_jit_compile(fp);
1339 
1340 	/* JIT compiler couldn't process this filter, so do the
1341 	 * internal BPF translation for the optimized interpreter.
1342 	 */
1343 	if (!fp->jited)
1344 		fp = bpf_migrate_filter(fp);
1345 
1346 	return fp;
1347 }
1348 
1349 /**
1350  *	bpf_prog_create - create an unattached filter
1351  *	@pfp: the unattached filter that is created
1352  *	@fprog: the filter program
1353  *
1354  * Create a filter independent of any socket. We first run some
1355  * sanity checks on it to make sure it does not explode on us later.
1356  * If an error occurs or there is insufficient memory for the filter
1357  * a negative errno code is returned. On success the return is zero.
1358  */
bpf_prog_create(struct bpf_prog ** pfp,struct sock_fprog_kern * fprog)1359 int bpf_prog_create(struct bpf_prog **pfp, struct sock_fprog_kern *fprog)
1360 {
1361 	unsigned int fsize = bpf_classic_proglen(fprog);
1362 	struct bpf_prog *fp;
1363 
1364 	/* Make sure new filter is there and in the right amounts. */
1365 	if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1366 		return -EINVAL;
1367 
1368 	fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1369 	if (!fp)
1370 		return -ENOMEM;
1371 
1372 	memcpy(fp->insns, fprog->filter, fsize);
1373 
1374 	fp->len = fprog->len;
1375 	/* Since unattached filters are not copied back to user
1376 	 * space through sk_get_filter(), we do not need to hold
1377 	 * a copy here, and can spare us the work.
1378 	 */
1379 	fp->orig_prog = NULL;
1380 
1381 	/* bpf_prepare_filter() already takes care of freeing
1382 	 * memory in case something goes wrong.
1383 	 */
1384 	fp = bpf_prepare_filter(fp, NULL);
1385 	if (IS_ERR(fp))
1386 		return PTR_ERR(fp);
1387 
1388 	*pfp = fp;
1389 	return 0;
1390 }
1391 EXPORT_SYMBOL_GPL(bpf_prog_create);
1392 
1393 /**
1394  *	bpf_prog_create_from_user - create an unattached filter from user buffer
1395  *	@pfp: the unattached filter that is created
1396  *	@fprog: the filter program
1397  *	@trans: post-classic verifier transformation handler
1398  *	@save_orig: save classic BPF program
1399  *
1400  * This function effectively does the same as bpf_prog_create(), only
1401  * that it builds up its insns buffer from user space provided buffer.
1402  * It also allows for passing a bpf_aux_classic_check_t handler.
1403  */
bpf_prog_create_from_user(struct bpf_prog ** pfp,struct sock_fprog * fprog,bpf_aux_classic_check_t trans,bool save_orig)1404 int bpf_prog_create_from_user(struct bpf_prog **pfp, struct sock_fprog *fprog,
1405 			      bpf_aux_classic_check_t trans, bool save_orig)
1406 {
1407 	unsigned int fsize = bpf_classic_proglen(fprog);
1408 	struct bpf_prog *fp;
1409 	int err;
1410 
1411 	/* Make sure new filter is there and in the right amounts. */
1412 	if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1413 		return -EINVAL;
1414 
1415 	fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1416 	if (!fp)
1417 		return -ENOMEM;
1418 
1419 	if (copy_from_user(fp->insns, fprog->filter, fsize)) {
1420 		__bpf_prog_free(fp);
1421 		return -EFAULT;
1422 	}
1423 
1424 	fp->len = fprog->len;
1425 	fp->orig_prog = NULL;
1426 
1427 	if (save_orig) {
1428 		err = bpf_prog_store_orig_filter(fp, fprog);
1429 		if (err) {
1430 			__bpf_prog_free(fp);
1431 			return -ENOMEM;
1432 		}
1433 	}
1434 
1435 	/* bpf_prepare_filter() already takes care of freeing
1436 	 * memory in case something goes wrong.
1437 	 */
1438 	fp = bpf_prepare_filter(fp, trans);
1439 	if (IS_ERR(fp))
1440 		return PTR_ERR(fp);
1441 
1442 	*pfp = fp;
1443 	return 0;
1444 }
1445 EXPORT_SYMBOL_GPL(bpf_prog_create_from_user);
1446 
bpf_prog_destroy(struct bpf_prog * fp)1447 void bpf_prog_destroy(struct bpf_prog *fp)
1448 {
1449 	__bpf_prog_release(fp);
1450 }
1451 EXPORT_SYMBOL_GPL(bpf_prog_destroy);
1452 
__sk_attach_prog(struct bpf_prog * prog,struct sock * sk)1453 static int __sk_attach_prog(struct bpf_prog *prog, struct sock *sk)
1454 {
1455 	struct sk_filter *fp, *old_fp;
1456 
1457 	fp = kmalloc(sizeof(*fp), GFP_KERNEL);
1458 	if (!fp)
1459 		return -ENOMEM;
1460 
1461 	fp->prog = prog;
1462 
1463 	if (!__sk_filter_charge(sk, fp)) {
1464 		kfree(fp);
1465 		return -ENOMEM;
1466 	}
1467 	refcount_set(&fp->refcnt, 1);
1468 
1469 	old_fp = rcu_dereference_protected(sk->sk_filter,
1470 					   lockdep_sock_is_held(sk));
1471 	rcu_assign_pointer(sk->sk_filter, fp);
1472 
1473 	if (old_fp)
1474 		sk_filter_uncharge(sk, old_fp);
1475 
1476 	return 0;
1477 }
1478 
1479 static
__get_filter(struct sock_fprog * fprog,struct sock * sk)1480 struct bpf_prog *__get_filter(struct sock_fprog *fprog, struct sock *sk)
1481 {
1482 	unsigned int fsize = bpf_classic_proglen(fprog);
1483 	struct bpf_prog *prog;
1484 	int err;
1485 
1486 	if (sock_flag(sk, SOCK_FILTER_LOCKED))
1487 		return ERR_PTR(-EPERM);
1488 
1489 	/* Make sure new filter is there and in the right amounts. */
1490 	if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1491 		return ERR_PTR(-EINVAL);
1492 
1493 	prog = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1494 	if (!prog)
1495 		return ERR_PTR(-ENOMEM);
1496 
1497 	if (copy_from_user(prog->insns, fprog->filter, fsize)) {
1498 		__bpf_prog_free(prog);
1499 		return ERR_PTR(-EFAULT);
1500 	}
1501 
1502 	prog->len = fprog->len;
1503 
1504 	err = bpf_prog_store_orig_filter(prog, fprog);
1505 	if (err) {
1506 		__bpf_prog_free(prog);
1507 		return ERR_PTR(-ENOMEM);
1508 	}
1509 
1510 	/* bpf_prepare_filter() already takes care of freeing
1511 	 * memory in case something goes wrong.
1512 	 */
1513 	return bpf_prepare_filter(prog, NULL);
1514 }
1515 
1516 /**
1517  *	sk_attach_filter - attach a socket filter
1518  *	@fprog: the filter program
1519  *	@sk: the socket to use
1520  *
1521  * Attach the user's filter code. We first run some sanity checks on
1522  * it to make sure it does not explode on us later. If an error
1523  * occurs or there is insufficient memory for the filter a negative
1524  * errno code is returned. On success the return is zero.
1525  */
sk_attach_filter(struct sock_fprog * fprog,struct sock * sk)1526 int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1527 {
1528 	struct bpf_prog *prog = __get_filter(fprog, sk);
1529 	int err;
1530 
1531 	if (IS_ERR(prog))
1532 		return PTR_ERR(prog);
1533 
1534 	err = __sk_attach_prog(prog, sk);
1535 	if (err < 0) {
1536 		__bpf_prog_release(prog);
1537 		return err;
1538 	}
1539 
1540 	return 0;
1541 }
1542 EXPORT_SYMBOL_GPL(sk_attach_filter);
1543 
sk_reuseport_attach_filter(struct sock_fprog * fprog,struct sock * sk)1544 int sk_reuseport_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1545 {
1546 	struct bpf_prog *prog = __get_filter(fprog, sk);
1547 	int err;
1548 
1549 	if (IS_ERR(prog))
1550 		return PTR_ERR(prog);
1551 
1552 	if (bpf_prog_size(prog->len) > READ_ONCE(sysctl_optmem_max))
1553 		err = -ENOMEM;
1554 	else
1555 		err = reuseport_attach_prog(sk, prog);
1556 
1557 	if (err)
1558 		__bpf_prog_release(prog);
1559 
1560 	return err;
1561 }
1562 
__get_bpf(u32 ufd,struct sock * sk)1563 static struct bpf_prog *__get_bpf(u32 ufd, struct sock *sk)
1564 {
1565 	if (sock_flag(sk, SOCK_FILTER_LOCKED))
1566 		return ERR_PTR(-EPERM);
1567 
1568 	return bpf_prog_get_type(ufd, BPF_PROG_TYPE_SOCKET_FILTER);
1569 }
1570 
sk_attach_bpf(u32 ufd,struct sock * sk)1571 int sk_attach_bpf(u32 ufd, struct sock *sk)
1572 {
1573 	struct bpf_prog *prog = __get_bpf(ufd, sk);
1574 	int err;
1575 
1576 	if (IS_ERR(prog))
1577 		return PTR_ERR(prog);
1578 
1579 	err = __sk_attach_prog(prog, sk);
1580 	if (err < 0) {
1581 		bpf_prog_put(prog);
1582 		return err;
1583 	}
1584 
1585 	return 0;
1586 }
1587 
sk_reuseport_attach_bpf(u32 ufd,struct sock * sk)1588 int sk_reuseport_attach_bpf(u32 ufd, struct sock *sk)
1589 {
1590 	struct bpf_prog *prog;
1591 	int err;
1592 
1593 	if (sock_flag(sk, SOCK_FILTER_LOCKED))
1594 		return -EPERM;
1595 
1596 	prog = bpf_prog_get_type(ufd, BPF_PROG_TYPE_SOCKET_FILTER);
1597 	if (PTR_ERR(prog) == -EINVAL)
1598 		prog = bpf_prog_get_type(ufd, BPF_PROG_TYPE_SK_REUSEPORT);
1599 	if (IS_ERR(prog))
1600 		return PTR_ERR(prog);
1601 
1602 	if (prog->type == BPF_PROG_TYPE_SK_REUSEPORT) {
1603 		/* Like other non BPF_PROG_TYPE_SOCKET_FILTER
1604 		 * bpf prog (e.g. sockmap).  It depends on the
1605 		 * limitation imposed by bpf_prog_load().
1606 		 * Hence, sysctl_optmem_max is not checked.
1607 		 */
1608 		if ((sk->sk_type != SOCK_STREAM &&
1609 		     sk->sk_type != SOCK_DGRAM) ||
1610 		    (sk->sk_protocol != IPPROTO_UDP &&
1611 		     sk->sk_protocol != IPPROTO_TCP) ||
1612 		    (sk->sk_family != AF_INET &&
1613 		     sk->sk_family != AF_INET6)) {
1614 			err = -ENOTSUPP;
1615 			goto err_prog_put;
1616 		}
1617 	} else {
1618 		/* BPF_PROG_TYPE_SOCKET_FILTER */
1619 		if (bpf_prog_size(prog->len) > READ_ONCE(sysctl_optmem_max)) {
1620 			err = -ENOMEM;
1621 			goto err_prog_put;
1622 		}
1623 	}
1624 
1625 	err = reuseport_attach_prog(sk, prog);
1626 err_prog_put:
1627 	if (err)
1628 		bpf_prog_put(prog);
1629 
1630 	return err;
1631 }
1632 
sk_reuseport_prog_free(struct bpf_prog * prog)1633 void sk_reuseport_prog_free(struct bpf_prog *prog)
1634 {
1635 	if (!prog)
1636 		return;
1637 
1638 	if (prog->type == BPF_PROG_TYPE_SK_REUSEPORT)
1639 		bpf_prog_put(prog);
1640 	else
1641 		bpf_prog_destroy(prog);
1642 }
1643 
1644 struct bpf_scratchpad {
1645 	union {
1646 		__be32 diff[MAX_BPF_STACK / sizeof(__be32)];
1647 		u8     buff[MAX_BPF_STACK];
1648 	};
1649 };
1650 
1651 static DEFINE_PER_CPU(struct bpf_scratchpad, bpf_sp);
1652 
__bpf_try_make_writable(struct sk_buff * skb,unsigned int write_len)1653 static inline int __bpf_try_make_writable(struct sk_buff *skb,
1654 					  unsigned int write_len)
1655 {
1656 	return skb_ensure_writable(skb, write_len);
1657 }
1658 
bpf_try_make_writable(struct sk_buff * skb,unsigned int write_len)1659 static inline int bpf_try_make_writable(struct sk_buff *skb,
1660 					unsigned int write_len)
1661 {
1662 	int err = __bpf_try_make_writable(skb, write_len);
1663 
1664 	bpf_compute_data_pointers(skb);
1665 	return err;
1666 }
1667 
bpf_try_make_head_writable(struct sk_buff * skb)1668 static int bpf_try_make_head_writable(struct sk_buff *skb)
1669 {
1670 	return bpf_try_make_writable(skb, skb_headlen(skb));
1671 }
1672 
bpf_push_mac_rcsum(struct sk_buff * skb)1673 static inline void bpf_push_mac_rcsum(struct sk_buff *skb)
1674 {
1675 	if (skb_at_tc_ingress(skb))
1676 		skb_postpush_rcsum(skb, skb_mac_header(skb), skb->mac_len);
1677 }
1678 
bpf_pull_mac_rcsum(struct sk_buff * skb)1679 static inline void bpf_pull_mac_rcsum(struct sk_buff *skb)
1680 {
1681 	if (skb_at_tc_ingress(skb))
1682 		skb_postpull_rcsum(skb, skb_mac_header(skb), skb->mac_len);
1683 }
1684 
BPF_CALL_5(bpf_skb_store_bytes,struct sk_buff *,skb,u32,offset,const void *,from,u32,len,u64,flags)1685 BPF_CALL_5(bpf_skb_store_bytes, struct sk_buff *, skb, u32, offset,
1686 	   const void *, from, u32, len, u64, flags)
1687 {
1688 	void *ptr;
1689 
1690 	if (unlikely(flags & ~(BPF_F_RECOMPUTE_CSUM | BPF_F_INVALIDATE_HASH)))
1691 		return -EINVAL;
1692 	if (unlikely(offset > INT_MAX))
1693 		return -EFAULT;
1694 	if (unlikely(bpf_try_make_writable(skb, offset + len)))
1695 		return -EFAULT;
1696 
1697 	ptr = skb->data + offset;
1698 	if (flags & BPF_F_RECOMPUTE_CSUM)
1699 		__skb_postpull_rcsum(skb, ptr, len, offset);
1700 
1701 	memcpy(ptr, from, len);
1702 
1703 	if (flags & BPF_F_RECOMPUTE_CSUM)
1704 		__skb_postpush_rcsum(skb, ptr, len, offset);
1705 	if (flags & BPF_F_INVALIDATE_HASH)
1706 		skb_clear_hash(skb);
1707 
1708 	return 0;
1709 }
1710 
1711 static const struct bpf_func_proto bpf_skb_store_bytes_proto = {
1712 	.func		= bpf_skb_store_bytes,
1713 	.gpl_only	= false,
1714 	.ret_type	= RET_INTEGER,
1715 	.arg1_type	= ARG_PTR_TO_CTX,
1716 	.arg2_type	= ARG_ANYTHING,
1717 	.arg3_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
1718 	.arg4_type	= ARG_CONST_SIZE,
1719 	.arg5_type	= ARG_ANYTHING,
1720 };
1721 
BPF_CALL_4(bpf_skb_load_bytes,const struct sk_buff *,skb,u32,offset,void *,to,u32,len)1722 BPF_CALL_4(bpf_skb_load_bytes, const struct sk_buff *, skb, u32, offset,
1723 	   void *, to, u32, len)
1724 {
1725 	void *ptr;
1726 
1727 	if (unlikely(offset > INT_MAX))
1728 		goto err_clear;
1729 
1730 	ptr = skb_header_pointer(skb, offset, len, to);
1731 	if (unlikely(!ptr))
1732 		goto err_clear;
1733 	if (ptr != to)
1734 		memcpy(to, ptr, len);
1735 
1736 	return 0;
1737 err_clear:
1738 	memset(to, 0, len);
1739 	return -EFAULT;
1740 }
1741 
1742 static const struct bpf_func_proto bpf_skb_load_bytes_proto = {
1743 	.func		= bpf_skb_load_bytes,
1744 	.gpl_only	= false,
1745 	.ret_type	= RET_INTEGER,
1746 	.arg1_type	= ARG_PTR_TO_CTX,
1747 	.arg2_type	= ARG_ANYTHING,
1748 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
1749 	.arg4_type	= ARG_CONST_SIZE,
1750 };
1751 
BPF_CALL_4(bpf_flow_dissector_load_bytes,const struct bpf_flow_dissector *,ctx,u32,offset,void *,to,u32,len)1752 BPF_CALL_4(bpf_flow_dissector_load_bytes,
1753 	   const struct bpf_flow_dissector *, ctx, u32, offset,
1754 	   void *, to, u32, len)
1755 {
1756 	void *ptr;
1757 
1758 	if (unlikely(offset > 0xffff))
1759 		goto err_clear;
1760 
1761 	if (unlikely(!ctx->skb))
1762 		goto err_clear;
1763 
1764 	ptr = skb_header_pointer(ctx->skb, offset, len, to);
1765 	if (unlikely(!ptr))
1766 		goto err_clear;
1767 	if (ptr != to)
1768 		memcpy(to, ptr, len);
1769 
1770 	return 0;
1771 err_clear:
1772 	memset(to, 0, len);
1773 	return -EFAULT;
1774 }
1775 
1776 static const struct bpf_func_proto bpf_flow_dissector_load_bytes_proto = {
1777 	.func		= bpf_flow_dissector_load_bytes,
1778 	.gpl_only	= false,
1779 	.ret_type	= RET_INTEGER,
1780 	.arg1_type	= ARG_PTR_TO_CTX,
1781 	.arg2_type	= ARG_ANYTHING,
1782 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
1783 	.arg4_type	= ARG_CONST_SIZE,
1784 };
1785 
BPF_CALL_5(bpf_skb_load_bytes_relative,const struct sk_buff *,skb,u32,offset,void *,to,u32,len,u32,start_header)1786 BPF_CALL_5(bpf_skb_load_bytes_relative, const struct sk_buff *, skb,
1787 	   u32, offset, void *, to, u32, len, u32, start_header)
1788 {
1789 	u8 *end = skb_tail_pointer(skb);
1790 	u8 *start, *ptr;
1791 
1792 	if (unlikely(offset > 0xffff))
1793 		goto err_clear;
1794 
1795 	switch (start_header) {
1796 	case BPF_HDR_START_MAC:
1797 		if (unlikely(!skb_mac_header_was_set(skb)))
1798 			goto err_clear;
1799 		start = skb_mac_header(skb);
1800 		break;
1801 	case BPF_HDR_START_NET:
1802 		start = skb_network_header(skb);
1803 		break;
1804 	default:
1805 		goto err_clear;
1806 	}
1807 
1808 	ptr = start + offset;
1809 
1810 	if (likely(ptr + len <= end)) {
1811 		memcpy(to, ptr, len);
1812 		return 0;
1813 	}
1814 
1815 err_clear:
1816 	memset(to, 0, len);
1817 	return -EFAULT;
1818 }
1819 
1820 static const struct bpf_func_proto bpf_skb_load_bytes_relative_proto = {
1821 	.func		= bpf_skb_load_bytes_relative,
1822 	.gpl_only	= false,
1823 	.ret_type	= RET_INTEGER,
1824 	.arg1_type	= ARG_PTR_TO_CTX,
1825 	.arg2_type	= ARG_ANYTHING,
1826 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
1827 	.arg4_type	= ARG_CONST_SIZE,
1828 	.arg5_type	= ARG_ANYTHING,
1829 };
1830 
BPF_CALL_2(bpf_skb_pull_data,struct sk_buff *,skb,u32,len)1831 BPF_CALL_2(bpf_skb_pull_data, struct sk_buff *, skb, u32, len)
1832 {
1833 	/* Idea is the following: should the needed direct read/write
1834 	 * test fail during runtime, we can pull in more data and redo
1835 	 * again, since implicitly, we invalidate previous checks here.
1836 	 *
1837 	 * Or, since we know how much we need to make read/writeable,
1838 	 * this can be done once at the program beginning for direct
1839 	 * access case. By this we overcome limitations of only current
1840 	 * headroom being accessible.
1841 	 */
1842 	return bpf_try_make_writable(skb, len ? : skb_headlen(skb));
1843 }
1844 
1845 static const struct bpf_func_proto bpf_skb_pull_data_proto = {
1846 	.func		= bpf_skb_pull_data,
1847 	.gpl_only	= false,
1848 	.ret_type	= RET_INTEGER,
1849 	.arg1_type	= ARG_PTR_TO_CTX,
1850 	.arg2_type	= ARG_ANYTHING,
1851 };
1852 
BPF_CALL_1(bpf_sk_fullsock,struct sock *,sk)1853 BPF_CALL_1(bpf_sk_fullsock, struct sock *, sk)
1854 {
1855 	return sk_fullsock(sk) ? (unsigned long)sk : (unsigned long)NULL;
1856 }
1857 
1858 static const struct bpf_func_proto bpf_sk_fullsock_proto = {
1859 	.func		= bpf_sk_fullsock,
1860 	.gpl_only	= false,
1861 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
1862 	.arg1_type	= ARG_PTR_TO_SOCK_COMMON,
1863 };
1864 
sk_skb_try_make_writable(struct sk_buff * skb,unsigned int write_len)1865 static inline int sk_skb_try_make_writable(struct sk_buff *skb,
1866 					   unsigned int write_len)
1867 {
1868 	return __bpf_try_make_writable(skb, write_len);
1869 }
1870 
BPF_CALL_2(sk_skb_pull_data,struct sk_buff *,skb,u32,len)1871 BPF_CALL_2(sk_skb_pull_data, struct sk_buff *, skb, u32, len)
1872 {
1873 	/* Idea is the following: should the needed direct read/write
1874 	 * test fail during runtime, we can pull in more data and redo
1875 	 * again, since implicitly, we invalidate previous checks here.
1876 	 *
1877 	 * Or, since we know how much we need to make read/writeable,
1878 	 * this can be done once at the program beginning for direct
1879 	 * access case. By this we overcome limitations of only current
1880 	 * headroom being accessible.
1881 	 */
1882 	return sk_skb_try_make_writable(skb, len ? : skb_headlen(skb));
1883 }
1884 
1885 static const struct bpf_func_proto sk_skb_pull_data_proto = {
1886 	.func		= sk_skb_pull_data,
1887 	.gpl_only	= false,
1888 	.ret_type	= RET_INTEGER,
1889 	.arg1_type	= ARG_PTR_TO_CTX,
1890 	.arg2_type	= ARG_ANYTHING,
1891 };
1892 
BPF_CALL_5(bpf_l3_csum_replace,struct sk_buff *,skb,u32,offset,u64,from,u64,to,u64,flags)1893 BPF_CALL_5(bpf_l3_csum_replace, struct sk_buff *, skb, u32, offset,
1894 	   u64, from, u64, to, u64, flags)
1895 {
1896 	__sum16 *ptr;
1897 
1898 	if (unlikely(flags & ~(BPF_F_HDR_FIELD_MASK)))
1899 		return -EINVAL;
1900 	if (unlikely(offset > 0xffff || offset & 1))
1901 		return -EFAULT;
1902 	if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
1903 		return -EFAULT;
1904 
1905 	ptr = (__sum16 *)(skb->data + offset);
1906 	switch (flags & BPF_F_HDR_FIELD_MASK) {
1907 	case 0:
1908 		if (unlikely(from != 0))
1909 			return -EINVAL;
1910 
1911 		csum_replace_by_diff(ptr, to);
1912 		break;
1913 	case 2:
1914 		csum_replace2(ptr, from, to);
1915 		break;
1916 	case 4:
1917 		csum_replace4(ptr, from, to);
1918 		break;
1919 	default:
1920 		return -EINVAL;
1921 	}
1922 
1923 	return 0;
1924 }
1925 
1926 static const struct bpf_func_proto bpf_l3_csum_replace_proto = {
1927 	.func		= bpf_l3_csum_replace,
1928 	.gpl_only	= false,
1929 	.ret_type	= RET_INTEGER,
1930 	.arg1_type	= ARG_PTR_TO_CTX,
1931 	.arg2_type	= ARG_ANYTHING,
1932 	.arg3_type	= ARG_ANYTHING,
1933 	.arg4_type	= ARG_ANYTHING,
1934 	.arg5_type	= ARG_ANYTHING,
1935 };
1936 
BPF_CALL_5(bpf_l4_csum_replace,struct sk_buff *,skb,u32,offset,u64,from,u64,to,u64,flags)1937 BPF_CALL_5(bpf_l4_csum_replace, struct sk_buff *, skb, u32, offset,
1938 	   u64, from, u64, to, u64, flags)
1939 {
1940 	bool is_pseudo = flags & BPF_F_PSEUDO_HDR;
1941 	bool is_mmzero = flags & BPF_F_MARK_MANGLED_0;
1942 	bool do_mforce = flags & BPF_F_MARK_ENFORCE;
1943 	__sum16 *ptr;
1944 
1945 	if (unlikely(flags & ~(BPF_F_MARK_MANGLED_0 | BPF_F_MARK_ENFORCE |
1946 			       BPF_F_PSEUDO_HDR | BPF_F_HDR_FIELD_MASK)))
1947 		return -EINVAL;
1948 	if (unlikely(offset > 0xffff || offset & 1))
1949 		return -EFAULT;
1950 	if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
1951 		return -EFAULT;
1952 
1953 	ptr = (__sum16 *)(skb->data + offset);
1954 	if (is_mmzero && !do_mforce && !*ptr)
1955 		return 0;
1956 
1957 	switch (flags & BPF_F_HDR_FIELD_MASK) {
1958 	case 0:
1959 		if (unlikely(from != 0))
1960 			return -EINVAL;
1961 
1962 		inet_proto_csum_replace_by_diff(ptr, skb, to, is_pseudo);
1963 		break;
1964 	case 2:
1965 		inet_proto_csum_replace2(ptr, skb, from, to, is_pseudo);
1966 		break;
1967 	case 4:
1968 		inet_proto_csum_replace4(ptr, skb, from, to, is_pseudo);
1969 		break;
1970 	default:
1971 		return -EINVAL;
1972 	}
1973 
1974 	if (is_mmzero && !*ptr)
1975 		*ptr = CSUM_MANGLED_0;
1976 	return 0;
1977 }
1978 
1979 static const struct bpf_func_proto bpf_l4_csum_replace_proto = {
1980 	.func		= bpf_l4_csum_replace,
1981 	.gpl_only	= false,
1982 	.ret_type	= RET_INTEGER,
1983 	.arg1_type	= ARG_PTR_TO_CTX,
1984 	.arg2_type	= ARG_ANYTHING,
1985 	.arg3_type	= ARG_ANYTHING,
1986 	.arg4_type	= ARG_ANYTHING,
1987 	.arg5_type	= ARG_ANYTHING,
1988 };
1989 
BPF_CALL_5(bpf_csum_diff,__be32 *,from,u32,from_size,__be32 *,to,u32,to_size,__wsum,seed)1990 BPF_CALL_5(bpf_csum_diff, __be32 *, from, u32, from_size,
1991 	   __be32 *, to, u32, to_size, __wsum, seed)
1992 {
1993 	struct bpf_scratchpad *sp = this_cpu_ptr(&bpf_sp);
1994 	u32 diff_size = from_size + to_size;
1995 	int i, j = 0;
1996 
1997 	/* This is quite flexible, some examples:
1998 	 *
1999 	 * from_size == 0, to_size > 0,  seed := csum --> pushing data
2000 	 * from_size > 0,  to_size == 0, seed := csum --> pulling data
2001 	 * from_size > 0,  to_size > 0,  seed := 0    --> diffing data
2002 	 *
2003 	 * Even for diffing, from_size and to_size don't need to be equal.
2004 	 */
2005 	if (unlikely(((from_size | to_size) & (sizeof(__be32) - 1)) ||
2006 		     diff_size > sizeof(sp->diff)))
2007 		return -EINVAL;
2008 
2009 	for (i = 0; i < from_size / sizeof(__be32); i++, j++)
2010 		sp->diff[j] = ~from[i];
2011 	for (i = 0; i <   to_size / sizeof(__be32); i++, j++)
2012 		sp->diff[j] = to[i];
2013 
2014 	return csum_partial(sp->diff, diff_size, seed);
2015 }
2016 
2017 static const struct bpf_func_proto bpf_csum_diff_proto = {
2018 	.func		= bpf_csum_diff,
2019 	.gpl_only	= false,
2020 	.pkt_access	= true,
2021 	.ret_type	= RET_INTEGER,
2022 	.arg1_type	= ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
2023 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
2024 	.arg3_type	= ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
2025 	.arg4_type	= ARG_CONST_SIZE_OR_ZERO,
2026 	.arg5_type	= ARG_ANYTHING,
2027 };
2028 
BPF_CALL_2(bpf_csum_update,struct sk_buff *,skb,__wsum,csum)2029 BPF_CALL_2(bpf_csum_update, struct sk_buff *, skb, __wsum, csum)
2030 {
2031 	/* The interface is to be used in combination with bpf_csum_diff()
2032 	 * for direct packet writes. csum rotation for alignment as well
2033 	 * as emulating csum_sub() can be done from the eBPF program.
2034 	 */
2035 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2036 		return (skb->csum = csum_add(skb->csum, csum));
2037 
2038 	return -ENOTSUPP;
2039 }
2040 
2041 static const struct bpf_func_proto bpf_csum_update_proto = {
2042 	.func		= bpf_csum_update,
2043 	.gpl_only	= false,
2044 	.ret_type	= RET_INTEGER,
2045 	.arg1_type	= ARG_PTR_TO_CTX,
2046 	.arg2_type	= ARG_ANYTHING,
2047 };
2048 
BPF_CALL_2(bpf_csum_level,struct sk_buff *,skb,u64,level)2049 BPF_CALL_2(bpf_csum_level, struct sk_buff *, skb, u64, level)
2050 {
2051 	/* The interface is to be used in combination with bpf_skb_adjust_room()
2052 	 * for encap/decap of packet headers when BPF_F_ADJ_ROOM_NO_CSUM_RESET
2053 	 * is passed as flags, for example.
2054 	 */
2055 	switch (level) {
2056 	case BPF_CSUM_LEVEL_INC:
2057 		__skb_incr_checksum_unnecessary(skb);
2058 		break;
2059 	case BPF_CSUM_LEVEL_DEC:
2060 		__skb_decr_checksum_unnecessary(skb);
2061 		break;
2062 	case BPF_CSUM_LEVEL_RESET:
2063 		__skb_reset_checksum_unnecessary(skb);
2064 		break;
2065 	case BPF_CSUM_LEVEL_QUERY:
2066 		return skb->ip_summed == CHECKSUM_UNNECESSARY ?
2067 		       skb->csum_level : -EACCES;
2068 	default:
2069 		return -EINVAL;
2070 	}
2071 
2072 	return 0;
2073 }
2074 
2075 static const struct bpf_func_proto bpf_csum_level_proto = {
2076 	.func		= bpf_csum_level,
2077 	.gpl_only	= false,
2078 	.ret_type	= RET_INTEGER,
2079 	.arg1_type	= ARG_PTR_TO_CTX,
2080 	.arg2_type	= ARG_ANYTHING,
2081 };
2082 
__bpf_rx_skb(struct net_device * dev,struct sk_buff * skb)2083 static inline int __bpf_rx_skb(struct net_device *dev, struct sk_buff *skb)
2084 {
2085 	return dev_forward_skb_nomtu(dev, skb);
2086 }
2087 
__bpf_rx_skb_no_mac(struct net_device * dev,struct sk_buff * skb)2088 static inline int __bpf_rx_skb_no_mac(struct net_device *dev,
2089 				      struct sk_buff *skb)
2090 {
2091 	int ret = ____dev_forward_skb(dev, skb, false);
2092 
2093 	if (likely(!ret)) {
2094 		skb->dev = dev;
2095 		ret = netif_rx(skb);
2096 	}
2097 
2098 	return ret;
2099 }
2100 
__bpf_tx_skb(struct net_device * dev,struct sk_buff * skb)2101 static inline int __bpf_tx_skb(struct net_device *dev, struct sk_buff *skb)
2102 {
2103 	int ret;
2104 
2105 	if (dev_xmit_recursion()) {
2106 		net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
2107 		kfree_skb(skb);
2108 		return -ENETDOWN;
2109 	}
2110 
2111 	skb->dev = dev;
2112 	skb->tstamp = 0;
2113 
2114 	dev_xmit_recursion_inc();
2115 	ret = dev_queue_xmit(skb);
2116 	dev_xmit_recursion_dec();
2117 
2118 	return ret;
2119 }
2120 
__bpf_redirect_no_mac(struct sk_buff * skb,struct net_device * dev,u32 flags)2121 static int __bpf_redirect_no_mac(struct sk_buff *skb, struct net_device *dev,
2122 				 u32 flags)
2123 {
2124 	unsigned int mlen = skb_network_offset(skb);
2125 
2126 	if (unlikely(skb->len <= mlen)) {
2127 		kfree_skb(skb);
2128 		return -ERANGE;
2129 	}
2130 
2131 	if (mlen) {
2132 		__skb_pull(skb, mlen);
2133 		if (unlikely(!skb->len)) {
2134 			kfree_skb(skb);
2135 			return -ERANGE;
2136 		}
2137 
2138 		/* At ingress, the mac header has already been pulled once.
2139 		 * At egress, skb_pospull_rcsum has to be done in case that
2140 		 * the skb is originated from ingress (i.e. a forwarded skb)
2141 		 * to ensure that rcsum starts at net header.
2142 		 */
2143 		if (!skb_at_tc_ingress(skb))
2144 			skb_postpull_rcsum(skb, skb_mac_header(skb), mlen);
2145 	}
2146 	skb_pop_mac_header(skb);
2147 	skb_reset_mac_len(skb);
2148 	return flags & BPF_F_INGRESS ?
2149 	       __bpf_rx_skb_no_mac(dev, skb) : __bpf_tx_skb(dev, skb);
2150 }
2151 
__bpf_redirect_common(struct sk_buff * skb,struct net_device * dev,u32 flags)2152 static int __bpf_redirect_common(struct sk_buff *skb, struct net_device *dev,
2153 				 u32 flags)
2154 {
2155 	/* Verify that a link layer header is carried */
2156 	if (unlikely(skb->mac_header >= skb->network_header || skb->len == 0)) {
2157 		kfree_skb(skb);
2158 		return -ERANGE;
2159 	}
2160 
2161 	bpf_push_mac_rcsum(skb);
2162 	return flags & BPF_F_INGRESS ?
2163 	       __bpf_rx_skb(dev, skb) : __bpf_tx_skb(dev, skb);
2164 }
2165 
__bpf_redirect(struct sk_buff * skb,struct net_device * dev,u32 flags)2166 static int __bpf_redirect(struct sk_buff *skb, struct net_device *dev,
2167 			  u32 flags)
2168 {
2169 	if (dev_is_mac_header_xmit(dev))
2170 		return __bpf_redirect_common(skb, dev, flags);
2171 	else
2172 		return __bpf_redirect_no_mac(skb, dev, flags);
2173 }
2174 
2175 #if IS_ENABLED(CONFIG_IPV6)
bpf_out_neigh_v6(struct net * net,struct sk_buff * skb,struct net_device * dev,struct bpf_nh_params * nh)2176 static int bpf_out_neigh_v6(struct net *net, struct sk_buff *skb,
2177 			    struct net_device *dev, struct bpf_nh_params *nh)
2178 {
2179 	u32 hh_len = LL_RESERVED_SPACE(dev);
2180 	const struct in6_addr *nexthop;
2181 	struct dst_entry *dst = NULL;
2182 	struct neighbour *neigh;
2183 
2184 	if (dev_xmit_recursion()) {
2185 		net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
2186 		goto out_drop;
2187 	}
2188 
2189 	skb->dev = dev;
2190 	skb->tstamp = 0;
2191 
2192 	if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
2193 		skb = skb_expand_head(skb, hh_len);
2194 		if (!skb)
2195 			return -ENOMEM;
2196 	}
2197 
2198 	rcu_read_lock_bh();
2199 	if (!nh) {
2200 		dst = skb_dst(skb);
2201 		nexthop = rt6_nexthop(container_of(dst, struct rt6_info, dst),
2202 				      &ipv6_hdr(skb)->daddr);
2203 	} else {
2204 		nexthop = &nh->ipv6_nh;
2205 	}
2206 	neigh = ip_neigh_gw6(dev, nexthop);
2207 	if (likely(!IS_ERR(neigh))) {
2208 		int ret;
2209 
2210 		sock_confirm_neigh(skb, neigh);
2211 		dev_xmit_recursion_inc();
2212 		ret = neigh_output(neigh, skb, false);
2213 		dev_xmit_recursion_dec();
2214 		rcu_read_unlock_bh();
2215 		return ret;
2216 	}
2217 	rcu_read_unlock_bh();
2218 	if (dst)
2219 		IP6_INC_STATS(net, ip6_dst_idev(dst), IPSTATS_MIB_OUTNOROUTES);
2220 out_drop:
2221 	kfree_skb(skb);
2222 	return -ENETDOWN;
2223 }
2224 
__bpf_redirect_neigh_v6(struct sk_buff * skb,struct net_device * dev,struct bpf_nh_params * nh)2225 static int __bpf_redirect_neigh_v6(struct sk_buff *skb, struct net_device *dev,
2226 				   struct bpf_nh_params *nh)
2227 {
2228 	const struct ipv6hdr *ip6h = ipv6_hdr(skb);
2229 	struct net *net = dev_net(dev);
2230 	int err, ret = NET_XMIT_DROP;
2231 
2232 	if (!nh) {
2233 		struct dst_entry *dst;
2234 		struct flowi6 fl6 = {
2235 			.flowi6_flags = FLOWI_FLAG_ANYSRC,
2236 			.flowi6_mark  = skb->mark,
2237 			.flowlabel    = ip6_flowinfo(ip6h),
2238 			.flowi6_oif   = dev->ifindex,
2239 			.flowi6_proto = ip6h->nexthdr,
2240 			.daddr	      = ip6h->daddr,
2241 			.saddr	      = ip6h->saddr,
2242 		};
2243 
2244 		dst = ipv6_stub->ipv6_dst_lookup_flow(net, NULL, &fl6, NULL);
2245 		if (IS_ERR(dst))
2246 			goto out_drop;
2247 
2248 		skb_dst_set(skb, dst);
2249 	} else if (nh->nh_family != AF_INET6) {
2250 		goto out_drop;
2251 	}
2252 
2253 	err = bpf_out_neigh_v6(net, skb, dev, nh);
2254 	if (unlikely(net_xmit_eval(err)))
2255 		dev->stats.tx_errors++;
2256 	else
2257 		ret = NET_XMIT_SUCCESS;
2258 	goto out_xmit;
2259 out_drop:
2260 	dev->stats.tx_errors++;
2261 	kfree_skb(skb);
2262 out_xmit:
2263 	return ret;
2264 }
2265 #else
__bpf_redirect_neigh_v6(struct sk_buff * skb,struct net_device * dev,struct bpf_nh_params * nh)2266 static int __bpf_redirect_neigh_v6(struct sk_buff *skb, struct net_device *dev,
2267 				   struct bpf_nh_params *nh)
2268 {
2269 	kfree_skb(skb);
2270 	return NET_XMIT_DROP;
2271 }
2272 #endif /* CONFIG_IPV6 */
2273 
2274 #if IS_ENABLED(CONFIG_INET)
bpf_out_neigh_v4(struct net * net,struct sk_buff * skb,struct net_device * dev,struct bpf_nh_params * nh)2275 static int bpf_out_neigh_v4(struct net *net, struct sk_buff *skb,
2276 			    struct net_device *dev, struct bpf_nh_params *nh)
2277 {
2278 	u32 hh_len = LL_RESERVED_SPACE(dev);
2279 	struct neighbour *neigh;
2280 	bool is_v6gw = false;
2281 
2282 	if (dev_xmit_recursion()) {
2283 		net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
2284 		goto out_drop;
2285 	}
2286 
2287 	skb->dev = dev;
2288 	skb->tstamp = 0;
2289 
2290 	if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
2291 		skb = skb_expand_head(skb, hh_len);
2292 		if (!skb)
2293 			return -ENOMEM;
2294 	}
2295 
2296 	rcu_read_lock_bh();
2297 	if (!nh) {
2298 		struct dst_entry *dst = skb_dst(skb);
2299 		struct rtable *rt = container_of(dst, struct rtable, dst);
2300 
2301 		neigh = ip_neigh_for_gw(rt, skb, &is_v6gw);
2302 	} else if (nh->nh_family == AF_INET6) {
2303 		neigh = ip_neigh_gw6(dev, &nh->ipv6_nh);
2304 		is_v6gw = true;
2305 	} else if (nh->nh_family == AF_INET) {
2306 		neigh = ip_neigh_gw4(dev, nh->ipv4_nh);
2307 	} else {
2308 		rcu_read_unlock_bh();
2309 		goto out_drop;
2310 	}
2311 
2312 	if (likely(!IS_ERR(neigh))) {
2313 		int ret;
2314 
2315 		sock_confirm_neigh(skb, neigh);
2316 		dev_xmit_recursion_inc();
2317 		ret = neigh_output(neigh, skb, is_v6gw);
2318 		dev_xmit_recursion_dec();
2319 		rcu_read_unlock_bh();
2320 		return ret;
2321 	}
2322 	rcu_read_unlock_bh();
2323 out_drop:
2324 	kfree_skb(skb);
2325 	return -ENETDOWN;
2326 }
2327 
__bpf_redirect_neigh_v4(struct sk_buff * skb,struct net_device * dev,struct bpf_nh_params * nh)2328 static int __bpf_redirect_neigh_v4(struct sk_buff *skb, struct net_device *dev,
2329 				   struct bpf_nh_params *nh)
2330 {
2331 	const struct iphdr *ip4h = ip_hdr(skb);
2332 	struct net *net = dev_net(dev);
2333 	int err, ret = NET_XMIT_DROP;
2334 
2335 	if (!nh) {
2336 		struct flowi4 fl4 = {
2337 			.flowi4_flags = FLOWI_FLAG_ANYSRC,
2338 			.flowi4_mark  = skb->mark,
2339 			.flowi4_tos   = RT_TOS(ip4h->tos),
2340 			.flowi4_oif   = dev->ifindex,
2341 			.flowi4_proto = ip4h->protocol,
2342 			.daddr	      = ip4h->daddr,
2343 			.saddr	      = ip4h->saddr,
2344 		};
2345 		struct rtable *rt;
2346 
2347 		rt = ip_route_output_flow(net, &fl4, NULL);
2348 		if (IS_ERR(rt))
2349 			goto out_drop;
2350 		if (rt->rt_type != RTN_UNICAST && rt->rt_type != RTN_LOCAL) {
2351 			ip_rt_put(rt);
2352 			goto out_drop;
2353 		}
2354 
2355 		skb_dst_set(skb, &rt->dst);
2356 	}
2357 
2358 	err = bpf_out_neigh_v4(net, skb, dev, nh);
2359 	if (unlikely(net_xmit_eval(err)))
2360 		dev->stats.tx_errors++;
2361 	else
2362 		ret = NET_XMIT_SUCCESS;
2363 	goto out_xmit;
2364 out_drop:
2365 	dev->stats.tx_errors++;
2366 	kfree_skb(skb);
2367 out_xmit:
2368 	return ret;
2369 }
2370 #else
__bpf_redirect_neigh_v4(struct sk_buff * skb,struct net_device * dev,struct bpf_nh_params * nh)2371 static int __bpf_redirect_neigh_v4(struct sk_buff *skb, struct net_device *dev,
2372 				   struct bpf_nh_params *nh)
2373 {
2374 	kfree_skb(skb);
2375 	return NET_XMIT_DROP;
2376 }
2377 #endif /* CONFIG_INET */
2378 
__bpf_redirect_neigh(struct sk_buff * skb,struct net_device * dev,struct bpf_nh_params * nh)2379 static int __bpf_redirect_neigh(struct sk_buff *skb, struct net_device *dev,
2380 				struct bpf_nh_params *nh)
2381 {
2382 	struct ethhdr *ethh = eth_hdr(skb);
2383 
2384 	if (unlikely(skb->mac_header >= skb->network_header))
2385 		goto out;
2386 	bpf_push_mac_rcsum(skb);
2387 	if (is_multicast_ether_addr(ethh->h_dest))
2388 		goto out;
2389 
2390 	skb_pull(skb, sizeof(*ethh));
2391 	skb_unset_mac_header(skb);
2392 	skb_reset_network_header(skb);
2393 
2394 	if (skb->protocol == htons(ETH_P_IP))
2395 		return __bpf_redirect_neigh_v4(skb, dev, nh);
2396 	else if (skb->protocol == htons(ETH_P_IPV6))
2397 		return __bpf_redirect_neigh_v6(skb, dev, nh);
2398 out:
2399 	kfree_skb(skb);
2400 	return -ENOTSUPP;
2401 }
2402 
2403 /* Internal, non-exposed redirect flags. */
2404 enum {
2405 	BPF_F_NEIGH	= (1ULL << 1),
2406 	BPF_F_PEER	= (1ULL << 2),
2407 	BPF_F_NEXTHOP	= (1ULL << 3),
2408 #define BPF_F_REDIRECT_INTERNAL	(BPF_F_NEIGH | BPF_F_PEER | BPF_F_NEXTHOP)
2409 };
2410 
BPF_CALL_3(bpf_clone_redirect,struct sk_buff *,skb,u32,ifindex,u64,flags)2411 BPF_CALL_3(bpf_clone_redirect, struct sk_buff *, skb, u32, ifindex, u64, flags)
2412 {
2413 	struct net_device *dev;
2414 	struct sk_buff *clone;
2415 	int ret;
2416 
2417 	if (unlikely(flags & (~(BPF_F_INGRESS) | BPF_F_REDIRECT_INTERNAL)))
2418 		return -EINVAL;
2419 
2420 	dev = dev_get_by_index_rcu(dev_net(skb->dev), ifindex);
2421 	if (unlikely(!dev))
2422 		return -EINVAL;
2423 
2424 	clone = skb_clone(skb, GFP_ATOMIC);
2425 	if (unlikely(!clone))
2426 		return -ENOMEM;
2427 
2428 	/* For direct write, we need to keep the invariant that the skbs
2429 	 * we're dealing with need to be uncloned. Should uncloning fail
2430 	 * here, we need to free the just generated clone to unclone once
2431 	 * again.
2432 	 */
2433 	ret = bpf_try_make_head_writable(skb);
2434 	if (unlikely(ret)) {
2435 		kfree_skb(clone);
2436 		return -ENOMEM;
2437 	}
2438 
2439 	return __bpf_redirect(clone, dev, flags);
2440 }
2441 
2442 static const struct bpf_func_proto bpf_clone_redirect_proto = {
2443 	.func           = bpf_clone_redirect,
2444 	.gpl_only       = false,
2445 	.ret_type       = RET_INTEGER,
2446 	.arg1_type      = ARG_PTR_TO_CTX,
2447 	.arg2_type      = ARG_ANYTHING,
2448 	.arg3_type      = ARG_ANYTHING,
2449 };
2450 
2451 DEFINE_PER_CPU(struct bpf_redirect_info, bpf_redirect_info);
2452 EXPORT_PER_CPU_SYMBOL_GPL(bpf_redirect_info);
2453 
skb_do_redirect(struct sk_buff * skb)2454 int skb_do_redirect(struct sk_buff *skb)
2455 {
2456 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2457 	struct net *net = dev_net(skb->dev);
2458 	struct net_device *dev;
2459 	u32 flags = ri->flags;
2460 
2461 	dev = dev_get_by_index_rcu(net, ri->tgt_index);
2462 	ri->tgt_index = 0;
2463 	ri->flags = 0;
2464 	if (unlikely(!dev))
2465 		goto out_drop;
2466 	if (flags & BPF_F_PEER) {
2467 		const struct net_device_ops *ops = dev->netdev_ops;
2468 
2469 		if (unlikely(!ops->ndo_get_peer_dev ||
2470 			     !skb_at_tc_ingress(skb)))
2471 			goto out_drop;
2472 		dev = ops->ndo_get_peer_dev(dev);
2473 		if (unlikely(!dev ||
2474 			     !(dev->flags & IFF_UP) ||
2475 			     net_eq(net, dev_net(dev))))
2476 			goto out_drop;
2477 		skb->dev = dev;
2478 		return -EAGAIN;
2479 	}
2480 	return flags & BPF_F_NEIGH ?
2481 	       __bpf_redirect_neigh(skb, dev, flags & BPF_F_NEXTHOP ?
2482 				    &ri->nh : NULL) :
2483 	       __bpf_redirect(skb, dev, flags);
2484 out_drop:
2485 	kfree_skb(skb);
2486 	return -EINVAL;
2487 }
2488 
BPF_CALL_2(bpf_redirect,u32,ifindex,u64,flags)2489 BPF_CALL_2(bpf_redirect, u32, ifindex, u64, flags)
2490 {
2491 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2492 
2493 	if (unlikely(flags & (~(BPF_F_INGRESS) | BPF_F_REDIRECT_INTERNAL)))
2494 		return TC_ACT_SHOT;
2495 
2496 	ri->flags = flags;
2497 	ri->tgt_index = ifindex;
2498 
2499 	return TC_ACT_REDIRECT;
2500 }
2501 
2502 static const struct bpf_func_proto bpf_redirect_proto = {
2503 	.func           = bpf_redirect,
2504 	.gpl_only       = false,
2505 	.ret_type       = RET_INTEGER,
2506 	.arg1_type      = ARG_ANYTHING,
2507 	.arg2_type      = ARG_ANYTHING,
2508 };
2509 
BPF_CALL_2(bpf_redirect_peer,u32,ifindex,u64,flags)2510 BPF_CALL_2(bpf_redirect_peer, u32, ifindex, u64, flags)
2511 {
2512 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2513 
2514 	if (unlikely(flags))
2515 		return TC_ACT_SHOT;
2516 
2517 	ri->flags = BPF_F_PEER;
2518 	ri->tgt_index = ifindex;
2519 
2520 	return TC_ACT_REDIRECT;
2521 }
2522 
2523 static const struct bpf_func_proto bpf_redirect_peer_proto = {
2524 	.func           = bpf_redirect_peer,
2525 	.gpl_only       = false,
2526 	.ret_type       = RET_INTEGER,
2527 	.arg1_type      = ARG_ANYTHING,
2528 	.arg2_type      = ARG_ANYTHING,
2529 };
2530 
BPF_CALL_4(bpf_redirect_neigh,u32,ifindex,struct bpf_redir_neigh *,params,int,plen,u64,flags)2531 BPF_CALL_4(bpf_redirect_neigh, u32, ifindex, struct bpf_redir_neigh *, params,
2532 	   int, plen, u64, flags)
2533 {
2534 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2535 
2536 	if (unlikely((plen && plen < sizeof(*params)) || flags))
2537 		return TC_ACT_SHOT;
2538 
2539 	ri->flags = BPF_F_NEIGH | (plen ? BPF_F_NEXTHOP : 0);
2540 	ri->tgt_index = ifindex;
2541 
2542 	BUILD_BUG_ON(sizeof(struct bpf_redir_neigh) != sizeof(struct bpf_nh_params));
2543 	if (plen)
2544 		memcpy(&ri->nh, params, sizeof(ri->nh));
2545 
2546 	return TC_ACT_REDIRECT;
2547 }
2548 
2549 static const struct bpf_func_proto bpf_redirect_neigh_proto = {
2550 	.func		= bpf_redirect_neigh,
2551 	.gpl_only	= false,
2552 	.ret_type	= RET_INTEGER,
2553 	.arg1_type	= ARG_ANYTHING,
2554 	.arg2_type      = ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
2555 	.arg3_type      = ARG_CONST_SIZE_OR_ZERO,
2556 	.arg4_type	= ARG_ANYTHING,
2557 };
2558 
BPF_CALL_2(bpf_msg_apply_bytes,struct sk_msg *,msg,u32,bytes)2559 BPF_CALL_2(bpf_msg_apply_bytes, struct sk_msg *, msg, u32, bytes)
2560 {
2561 	msg->apply_bytes = bytes;
2562 	return 0;
2563 }
2564 
2565 static const struct bpf_func_proto bpf_msg_apply_bytes_proto = {
2566 	.func           = bpf_msg_apply_bytes,
2567 	.gpl_only       = false,
2568 	.ret_type       = RET_INTEGER,
2569 	.arg1_type	= ARG_PTR_TO_CTX,
2570 	.arg2_type      = ARG_ANYTHING,
2571 };
2572 
BPF_CALL_2(bpf_msg_cork_bytes,struct sk_msg *,msg,u32,bytes)2573 BPF_CALL_2(bpf_msg_cork_bytes, struct sk_msg *, msg, u32, bytes)
2574 {
2575 	msg->cork_bytes = bytes;
2576 	return 0;
2577 }
2578 
sk_msg_reset_curr(struct sk_msg * msg)2579 static void sk_msg_reset_curr(struct sk_msg *msg)
2580 {
2581 	u32 i = msg->sg.start;
2582 	u32 len = 0;
2583 
2584 	do {
2585 		len += sk_msg_elem(msg, i)->length;
2586 		sk_msg_iter_var_next(i);
2587 		if (len >= msg->sg.size)
2588 			break;
2589 	} while (i != msg->sg.end);
2590 
2591 	msg->sg.curr = i;
2592 	msg->sg.copybreak = 0;
2593 }
2594 
2595 static const struct bpf_func_proto bpf_msg_cork_bytes_proto = {
2596 	.func           = bpf_msg_cork_bytes,
2597 	.gpl_only       = false,
2598 	.ret_type       = RET_INTEGER,
2599 	.arg1_type	= ARG_PTR_TO_CTX,
2600 	.arg2_type      = ARG_ANYTHING,
2601 };
2602 
BPF_CALL_4(bpf_msg_pull_data,struct sk_msg *,msg,u32,start,u32,end,u64,flags)2603 BPF_CALL_4(bpf_msg_pull_data, struct sk_msg *, msg, u32, start,
2604 	   u32, end, u64, flags)
2605 {
2606 	u32 len = 0, offset = 0, copy = 0, poffset = 0, bytes = end - start;
2607 	u32 first_sge, last_sge, i, shift, bytes_sg_total;
2608 	struct scatterlist *sge;
2609 	u8 *raw, *to, *from;
2610 	struct page *page;
2611 
2612 	if (unlikely(flags || end <= start))
2613 		return -EINVAL;
2614 
2615 	/* First find the starting scatterlist element */
2616 	i = msg->sg.start;
2617 	do {
2618 		offset += len;
2619 		len = sk_msg_elem(msg, i)->length;
2620 		if (start < offset + len)
2621 			break;
2622 		sk_msg_iter_var_next(i);
2623 	} while (i != msg->sg.end);
2624 
2625 	if (unlikely(start >= offset + len))
2626 		return -EINVAL;
2627 
2628 	first_sge = i;
2629 	/* The start may point into the sg element so we need to also
2630 	 * account for the headroom.
2631 	 */
2632 	bytes_sg_total = start - offset + bytes;
2633 	if (!test_bit(i, &msg->sg.copy) && bytes_sg_total <= len)
2634 		goto out;
2635 
2636 	/* At this point we need to linearize multiple scatterlist
2637 	 * elements or a single shared page. Either way we need to
2638 	 * copy into a linear buffer exclusively owned by BPF. Then
2639 	 * place the buffer in the scatterlist and fixup the original
2640 	 * entries by removing the entries now in the linear buffer
2641 	 * and shifting the remaining entries. For now we do not try
2642 	 * to copy partial entries to avoid complexity of running out
2643 	 * of sg_entry slots. The downside is reading a single byte
2644 	 * will copy the entire sg entry.
2645 	 */
2646 	do {
2647 		copy += sk_msg_elem(msg, i)->length;
2648 		sk_msg_iter_var_next(i);
2649 		if (bytes_sg_total <= copy)
2650 			break;
2651 	} while (i != msg->sg.end);
2652 	last_sge = i;
2653 
2654 	if (unlikely(bytes_sg_total > copy))
2655 		return -EINVAL;
2656 
2657 	page = alloc_pages(__GFP_NOWARN | GFP_ATOMIC | __GFP_COMP,
2658 			   get_order(copy));
2659 	if (unlikely(!page))
2660 		return -ENOMEM;
2661 
2662 	raw = page_address(page);
2663 	i = first_sge;
2664 	do {
2665 		sge = sk_msg_elem(msg, i);
2666 		from = sg_virt(sge);
2667 		len = sge->length;
2668 		to = raw + poffset;
2669 
2670 		memcpy(to, from, len);
2671 		poffset += len;
2672 		sge->length = 0;
2673 		put_page(sg_page(sge));
2674 
2675 		sk_msg_iter_var_next(i);
2676 	} while (i != last_sge);
2677 
2678 	sg_set_page(&msg->sg.data[first_sge], page, copy, 0);
2679 
2680 	/* To repair sg ring we need to shift entries. If we only
2681 	 * had a single entry though we can just replace it and
2682 	 * be done. Otherwise walk the ring and shift the entries.
2683 	 */
2684 	WARN_ON_ONCE(last_sge == first_sge);
2685 	shift = last_sge > first_sge ?
2686 		last_sge - first_sge - 1 :
2687 		NR_MSG_FRAG_IDS - first_sge + last_sge - 1;
2688 	if (!shift)
2689 		goto out;
2690 
2691 	i = first_sge;
2692 	sk_msg_iter_var_next(i);
2693 	do {
2694 		u32 move_from;
2695 
2696 		if (i + shift >= NR_MSG_FRAG_IDS)
2697 			move_from = i + shift - NR_MSG_FRAG_IDS;
2698 		else
2699 			move_from = i + shift;
2700 		if (move_from == msg->sg.end)
2701 			break;
2702 
2703 		msg->sg.data[i] = msg->sg.data[move_from];
2704 		msg->sg.data[move_from].length = 0;
2705 		msg->sg.data[move_from].page_link = 0;
2706 		msg->sg.data[move_from].offset = 0;
2707 		sk_msg_iter_var_next(i);
2708 	} while (1);
2709 
2710 	msg->sg.end = msg->sg.end - shift > msg->sg.end ?
2711 		      msg->sg.end - shift + NR_MSG_FRAG_IDS :
2712 		      msg->sg.end - shift;
2713 out:
2714 	sk_msg_reset_curr(msg);
2715 	msg->data = sg_virt(&msg->sg.data[first_sge]) + start - offset;
2716 	msg->data_end = msg->data + bytes;
2717 	return 0;
2718 }
2719 
2720 static const struct bpf_func_proto bpf_msg_pull_data_proto = {
2721 	.func		= bpf_msg_pull_data,
2722 	.gpl_only	= false,
2723 	.ret_type	= RET_INTEGER,
2724 	.arg1_type	= ARG_PTR_TO_CTX,
2725 	.arg2_type	= ARG_ANYTHING,
2726 	.arg3_type	= ARG_ANYTHING,
2727 	.arg4_type	= ARG_ANYTHING,
2728 };
2729 
BPF_CALL_4(bpf_msg_push_data,struct sk_msg *,msg,u32,start,u32,len,u64,flags)2730 BPF_CALL_4(bpf_msg_push_data, struct sk_msg *, msg, u32, start,
2731 	   u32, len, u64, flags)
2732 {
2733 	struct scatterlist sge, nsge, nnsge, rsge = {0}, *psge;
2734 	u32 new, i = 0, l = 0, space, copy = 0, offset = 0;
2735 	u8 *raw, *to, *from;
2736 	struct page *page;
2737 
2738 	if (unlikely(flags))
2739 		return -EINVAL;
2740 
2741 	if (unlikely(len == 0))
2742 		return 0;
2743 
2744 	/* First find the starting scatterlist element */
2745 	i = msg->sg.start;
2746 	do {
2747 		offset += l;
2748 		l = sk_msg_elem(msg, i)->length;
2749 
2750 		if (start < offset + l)
2751 			break;
2752 		sk_msg_iter_var_next(i);
2753 	} while (i != msg->sg.end);
2754 
2755 	if (start >= offset + l)
2756 		return -EINVAL;
2757 
2758 	space = MAX_MSG_FRAGS - sk_msg_elem_used(msg);
2759 
2760 	/* If no space available will fallback to copy, we need at
2761 	 * least one scatterlist elem available to push data into
2762 	 * when start aligns to the beginning of an element or two
2763 	 * when it falls inside an element. We handle the start equals
2764 	 * offset case because its the common case for inserting a
2765 	 * header.
2766 	 */
2767 	if (!space || (space == 1 && start != offset))
2768 		copy = msg->sg.data[i].length;
2769 
2770 	page = alloc_pages(__GFP_NOWARN | GFP_ATOMIC | __GFP_COMP,
2771 			   get_order(copy + len));
2772 	if (unlikely(!page))
2773 		return -ENOMEM;
2774 
2775 	if (copy) {
2776 		int front, back;
2777 
2778 		raw = page_address(page);
2779 
2780 		psge = sk_msg_elem(msg, i);
2781 		front = start - offset;
2782 		back = psge->length - front;
2783 		from = sg_virt(psge);
2784 
2785 		if (front)
2786 			memcpy(raw, from, front);
2787 
2788 		if (back) {
2789 			from += front;
2790 			to = raw + front + len;
2791 
2792 			memcpy(to, from, back);
2793 		}
2794 
2795 		put_page(sg_page(psge));
2796 	} else if (start - offset) {
2797 		psge = sk_msg_elem(msg, i);
2798 		rsge = sk_msg_elem_cpy(msg, i);
2799 
2800 		psge->length = start - offset;
2801 		rsge.length -= psge->length;
2802 		rsge.offset += start;
2803 
2804 		sk_msg_iter_var_next(i);
2805 		sg_unmark_end(psge);
2806 		sg_unmark_end(&rsge);
2807 		sk_msg_iter_next(msg, end);
2808 	}
2809 
2810 	/* Slot(s) to place newly allocated data */
2811 	new = i;
2812 
2813 	/* Shift one or two slots as needed */
2814 	if (!copy) {
2815 		sge = sk_msg_elem_cpy(msg, i);
2816 
2817 		sk_msg_iter_var_next(i);
2818 		sg_unmark_end(&sge);
2819 		sk_msg_iter_next(msg, end);
2820 
2821 		nsge = sk_msg_elem_cpy(msg, i);
2822 		if (rsge.length) {
2823 			sk_msg_iter_var_next(i);
2824 			nnsge = sk_msg_elem_cpy(msg, i);
2825 		}
2826 
2827 		while (i != msg->sg.end) {
2828 			msg->sg.data[i] = sge;
2829 			sge = nsge;
2830 			sk_msg_iter_var_next(i);
2831 			if (rsge.length) {
2832 				nsge = nnsge;
2833 				nnsge = sk_msg_elem_cpy(msg, i);
2834 			} else {
2835 				nsge = sk_msg_elem_cpy(msg, i);
2836 			}
2837 		}
2838 	}
2839 
2840 	/* Place newly allocated data buffer */
2841 	sk_mem_charge(msg->sk, len);
2842 	msg->sg.size += len;
2843 	__clear_bit(new, &msg->sg.copy);
2844 	sg_set_page(&msg->sg.data[new], page, len + copy, 0);
2845 	if (rsge.length) {
2846 		get_page(sg_page(&rsge));
2847 		sk_msg_iter_var_next(new);
2848 		msg->sg.data[new] = rsge;
2849 	}
2850 
2851 	sk_msg_reset_curr(msg);
2852 	sk_msg_compute_data_pointers(msg);
2853 	return 0;
2854 }
2855 
2856 static const struct bpf_func_proto bpf_msg_push_data_proto = {
2857 	.func		= bpf_msg_push_data,
2858 	.gpl_only	= false,
2859 	.ret_type	= RET_INTEGER,
2860 	.arg1_type	= ARG_PTR_TO_CTX,
2861 	.arg2_type	= ARG_ANYTHING,
2862 	.arg3_type	= ARG_ANYTHING,
2863 	.arg4_type	= ARG_ANYTHING,
2864 };
2865 
sk_msg_shift_left(struct sk_msg * msg,int i)2866 static void sk_msg_shift_left(struct sk_msg *msg, int i)
2867 {
2868 	int prev;
2869 
2870 	do {
2871 		prev = i;
2872 		sk_msg_iter_var_next(i);
2873 		msg->sg.data[prev] = msg->sg.data[i];
2874 	} while (i != msg->sg.end);
2875 
2876 	sk_msg_iter_prev(msg, end);
2877 }
2878 
sk_msg_shift_right(struct sk_msg * msg,int i)2879 static void sk_msg_shift_right(struct sk_msg *msg, int i)
2880 {
2881 	struct scatterlist tmp, sge;
2882 
2883 	sk_msg_iter_next(msg, end);
2884 	sge = sk_msg_elem_cpy(msg, i);
2885 	sk_msg_iter_var_next(i);
2886 	tmp = sk_msg_elem_cpy(msg, i);
2887 
2888 	while (i != msg->sg.end) {
2889 		msg->sg.data[i] = sge;
2890 		sk_msg_iter_var_next(i);
2891 		sge = tmp;
2892 		tmp = sk_msg_elem_cpy(msg, i);
2893 	}
2894 }
2895 
BPF_CALL_4(bpf_msg_pop_data,struct sk_msg *,msg,u32,start,u32,len,u64,flags)2896 BPF_CALL_4(bpf_msg_pop_data, struct sk_msg *, msg, u32, start,
2897 	   u32, len, u64, flags)
2898 {
2899 	u32 i = 0, l = 0, space, offset = 0;
2900 	u64 last = start + len;
2901 	int pop;
2902 
2903 	if (unlikely(flags))
2904 		return -EINVAL;
2905 
2906 	/* First find the starting scatterlist element */
2907 	i = msg->sg.start;
2908 	do {
2909 		offset += l;
2910 		l = sk_msg_elem(msg, i)->length;
2911 
2912 		if (start < offset + l)
2913 			break;
2914 		sk_msg_iter_var_next(i);
2915 	} while (i != msg->sg.end);
2916 
2917 	/* Bounds checks: start and pop must be inside message */
2918 	if (start >= offset + l || last >= msg->sg.size)
2919 		return -EINVAL;
2920 
2921 	space = MAX_MSG_FRAGS - sk_msg_elem_used(msg);
2922 
2923 	pop = len;
2924 	/* --------------| offset
2925 	 * -| start      |-------- len -------|
2926 	 *
2927 	 *  |----- a ----|-------- pop -------|----- b ----|
2928 	 *  |______________________________________________| length
2929 	 *
2930 	 *
2931 	 * a:   region at front of scatter element to save
2932 	 * b:   region at back of scatter element to save when length > A + pop
2933 	 * pop: region to pop from element, same as input 'pop' here will be
2934 	 *      decremented below per iteration.
2935 	 *
2936 	 * Two top-level cases to handle when start != offset, first B is non
2937 	 * zero and second B is zero corresponding to when a pop includes more
2938 	 * than one element.
2939 	 *
2940 	 * Then if B is non-zero AND there is no space allocate space and
2941 	 * compact A, B regions into page. If there is space shift ring to
2942 	 * the rigth free'ing the next element in ring to place B, leaving
2943 	 * A untouched except to reduce length.
2944 	 */
2945 	if (start != offset) {
2946 		struct scatterlist *nsge, *sge = sk_msg_elem(msg, i);
2947 		int a = start;
2948 		int b = sge->length - pop - a;
2949 
2950 		sk_msg_iter_var_next(i);
2951 
2952 		if (pop < sge->length - a) {
2953 			if (space) {
2954 				sge->length = a;
2955 				sk_msg_shift_right(msg, i);
2956 				nsge = sk_msg_elem(msg, i);
2957 				get_page(sg_page(sge));
2958 				sg_set_page(nsge,
2959 					    sg_page(sge),
2960 					    b, sge->offset + pop + a);
2961 			} else {
2962 				struct page *page, *orig;
2963 				u8 *to, *from;
2964 
2965 				page = alloc_pages(__GFP_NOWARN |
2966 						   __GFP_COMP   | GFP_ATOMIC,
2967 						   get_order(a + b));
2968 				if (unlikely(!page))
2969 					return -ENOMEM;
2970 
2971 				sge->length = a;
2972 				orig = sg_page(sge);
2973 				from = sg_virt(sge);
2974 				to = page_address(page);
2975 				memcpy(to, from, a);
2976 				memcpy(to + a, from + a + pop, b);
2977 				sg_set_page(sge, page, a + b, 0);
2978 				put_page(orig);
2979 			}
2980 			pop = 0;
2981 		} else if (pop >= sge->length - a) {
2982 			pop -= (sge->length - a);
2983 			sge->length = a;
2984 		}
2985 	}
2986 
2987 	/* From above the current layout _must_ be as follows,
2988 	 *
2989 	 * -| offset
2990 	 * -| start
2991 	 *
2992 	 *  |---- pop ---|---------------- b ------------|
2993 	 *  |____________________________________________| length
2994 	 *
2995 	 * Offset and start of the current msg elem are equal because in the
2996 	 * previous case we handled offset != start and either consumed the
2997 	 * entire element and advanced to the next element OR pop == 0.
2998 	 *
2999 	 * Two cases to handle here are first pop is less than the length
3000 	 * leaving some remainder b above. Simply adjust the element's layout
3001 	 * in this case. Or pop >= length of the element so that b = 0. In this
3002 	 * case advance to next element decrementing pop.
3003 	 */
3004 	while (pop) {
3005 		struct scatterlist *sge = sk_msg_elem(msg, i);
3006 
3007 		if (pop < sge->length) {
3008 			sge->length -= pop;
3009 			sge->offset += pop;
3010 			pop = 0;
3011 		} else {
3012 			pop -= sge->length;
3013 			sk_msg_shift_left(msg, i);
3014 		}
3015 		sk_msg_iter_var_next(i);
3016 	}
3017 
3018 	sk_mem_uncharge(msg->sk, len - pop);
3019 	msg->sg.size -= (len - pop);
3020 	sk_msg_reset_curr(msg);
3021 	sk_msg_compute_data_pointers(msg);
3022 	return 0;
3023 }
3024 
3025 static const struct bpf_func_proto bpf_msg_pop_data_proto = {
3026 	.func		= bpf_msg_pop_data,
3027 	.gpl_only	= false,
3028 	.ret_type	= RET_INTEGER,
3029 	.arg1_type	= ARG_PTR_TO_CTX,
3030 	.arg2_type	= ARG_ANYTHING,
3031 	.arg3_type	= ARG_ANYTHING,
3032 	.arg4_type	= ARG_ANYTHING,
3033 };
3034 
3035 #ifdef CONFIG_CGROUP_NET_CLASSID
BPF_CALL_0(bpf_get_cgroup_classid_curr)3036 BPF_CALL_0(bpf_get_cgroup_classid_curr)
3037 {
3038 	return __task_get_classid(current);
3039 }
3040 
3041 static const struct bpf_func_proto bpf_get_cgroup_classid_curr_proto = {
3042 	.func		= bpf_get_cgroup_classid_curr,
3043 	.gpl_only	= false,
3044 	.ret_type	= RET_INTEGER,
3045 };
3046 
BPF_CALL_1(bpf_skb_cgroup_classid,const struct sk_buff *,skb)3047 BPF_CALL_1(bpf_skb_cgroup_classid, const struct sk_buff *, skb)
3048 {
3049 	struct sock *sk = skb_to_full_sk(skb);
3050 
3051 	if (!sk || !sk_fullsock(sk))
3052 		return 0;
3053 
3054 	return sock_cgroup_classid(&sk->sk_cgrp_data);
3055 }
3056 
3057 static const struct bpf_func_proto bpf_skb_cgroup_classid_proto = {
3058 	.func		= bpf_skb_cgroup_classid,
3059 	.gpl_only	= false,
3060 	.ret_type	= RET_INTEGER,
3061 	.arg1_type	= ARG_PTR_TO_CTX,
3062 };
3063 #endif
3064 
BPF_CALL_1(bpf_get_cgroup_classid,const struct sk_buff *,skb)3065 BPF_CALL_1(bpf_get_cgroup_classid, const struct sk_buff *, skb)
3066 {
3067 	return task_get_classid(skb);
3068 }
3069 
3070 static const struct bpf_func_proto bpf_get_cgroup_classid_proto = {
3071 	.func           = bpf_get_cgroup_classid,
3072 	.gpl_only       = false,
3073 	.ret_type       = RET_INTEGER,
3074 	.arg1_type      = ARG_PTR_TO_CTX,
3075 };
3076 
BPF_CALL_1(bpf_get_route_realm,const struct sk_buff *,skb)3077 BPF_CALL_1(bpf_get_route_realm, const struct sk_buff *, skb)
3078 {
3079 	return dst_tclassid(skb);
3080 }
3081 
3082 static const struct bpf_func_proto bpf_get_route_realm_proto = {
3083 	.func           = bpf_get_route_realm,
3084 	.gpl_only       = false,
3085 	.ret_type       = RET_INTEGER,
3086 	.arg1_type      = ARG_PTR_TO_CTX,
3087 };
3088 
BPF_CALL_1(bpf_get_hash_recalc,struct sk_buff *,skb)3089 BPF_CALL_1(bpf_get_hash_recalc, struct sk_buff *, skb)
3090 {
3091 	/* If skb_clear_hash() was called due to mangling, we can
3092 	 * trigger SW recalculation here. Later access to hash
3093 	 * can then use the inline skb->hash via context directly
3094 	 * instead of calling this helper again.
3095 	 */
3096 	return skb_get_hash(skb);
3097 }
3098 
3099 static const struct bpf_func_proto bpf_get_hash_recalc_proto = {
3100 	.func		= bpf_get_hash_recalc,
3101 	.gpl_only	= false,
3102 	.ret_type	= RET_INTEGER,
3103 	.arg1_type	= ARG_PTR_TO_CTX,
3104 };
3105 
BPF_CALL_1(bpf_set_hash_invalid,struct sk_buff *,skb)3106 BPF_CALL_1(bpf_set_hash_invalid, struct sk_buff *, skb)
3107 {
3108 	/* After all direct packet write, this can be used once for
3109 	 * triggering a lazy recalc on next skb_get_hash() invocation.
3110 	 */
3111 	skb_clear_hash(skb);
3112 	return 0;
3113 }
3114 
3115 static const struct bpf_func_proto bpf_set_hash_invalid_proto = {
3116 	.func		= bpf_set_hash_invalid,
3117 	.gpl_only	= false,
3118 	.ret_type	= RET_INTEGER,
3119 	.arg1_type	= ARG_PTR_TO_CTX,
3120 };
3121 
BPF_CALL_2(bpf_set_hash,struct sk_buff *,skb,u32,hash)3122 BPF_CALL_2(bpf_set_hash, struct sk_buff *, skb, u32, hash)
3123 {
3124 	/* Set user specified hash as L4(+), so that it gets returned
3125 	 * on skb_get_hash() call unless BPF prog later on triggers a
3126 	 * skb_clear_hash().
3127 	 */
3128 	__skb_set_sw_hash(skb, hash, true);
3129 	return 0;
3130 }
3131 
3132 static const struct bpf_func_proto bpf_set_hash_proto = {
3133 	.func		= bpf_set_hash,
3134 	.gpl_only	= false,
3135 	.ret_type	= RET_INTEGER,
3136 	.arg1_type	= ARG_PTR_TO_CTX,
3137 	.arg2_type	= ARG_ANYTHING,
3138 };
3139 
BPF_CALL_3(bpf_skb_vlan_push,struct sk_buff *,skb,__be16,vlan_proto,u16,vlan_tci)3140 BPF_CALL_3(bpf_skb_vlan_push, struct sk_buff *, skb, __be16, vlan_proto,
3141 	   u16, vlan_tci)
3142 {
3143 	int ret;
3144 
3145 	if (unlikely(vlan_proto != htons(ETH_P_8021Q) &&
3146 		     vlan_proto != htons(ETH_P_8021AD)))
3147 		vlan_proto = htons(ETH_P_8021Q);
3148 
3149 	bpf_push_mac_rcsum(skb);
3150 	ret = skb_vlan_push(skb, vlan_proto, vlan_tci);
3151 	bpf_pull_mac_rcsum(skb);
3152 
3153 	bpf_compute_data_pointers(skb);
3154 	return ret;
3155 }
3156 
3157 static const struct bpf_func_proto bpf_skb_vlan_push_proto = {
3158 	.func           = bpf_skb_vlan_push,
3159 	.gpl_only       = false,
3160 	.ret_type       = RET_INTEGER,
3161 	.arg1_type      = ARG_PTR_TO_CTX,
3162 	.arg2_type      = ARG_ANYTHING,
3163 	.arg3_type      = ARG_ANYTHING,
3164 };
3165 
BPF_CALL_1(bpf_skb_vlan_pop,struct sk_buff *,skb)3166 BPF_CALL_1(bpf_skb_vlan_pop, struct sk_buff *, skb)
3167 {
3168 	int ret;
3169 
3170 	bpf_push_mac_rcsum(skb);
3171 	ret = skb_vlan_pop(skb);
3172 	bpf_pull_mac_rcsum(skb);
3173 
3174 	bpf_compute_data_pointers(skb);
3175 	return ret;
3176 }
3177 
3178 static const struct bpf_func_proto bpf_skb_vlan_pop_proto = {
3179 	.func           = bpf_skb_vlan_pop,
3180 	.gpl_only       = false,
3181 	.ret_type       = RET_INTEGER,
3182 	.arg1_type      = ARG_PTR_TO_CTX,
3183 };
3184 
bpf_skb_generic_push(struct sk_buff * skb,u32 off,u32 len)3185 static int bpf_skb_generic_push(struct sk_buff *skb, u32 off, u32 len)
3186 {
3187 	/* Caller already did skb_cow() with len as headroom,
3188 	 * so no need to do it here.
3189 	 */
3190 	skb_push(skb, len);
3191 	memmove(skb->data, skb->data + len, off);
3192 	memset(skb->data + off, 0, len);
3193 
3194 	/* No skb_postpush_rcsum(skb, skb->data + off, len)
3195 	 * needed here as it does not change the skb->csum
3196 	 * result for checksum complete when summing over
3197 	 * zeroed blocks.
3198 	 */
3199 	return 0;
3200 }
3201 
bpf_skb_generic_pop(struct sk_buff * skb,u32 off,u32 len)3202 static int bpf_skb_generic_pop(struct sk_buff *skb, u32 off, u32 len)
3203 {
3204 	void *old_data;
3205 
3206 	/* skb_ensure_writable() is not needed here, as we're
3207 	 * already working on an uncloned skb.
3208 	 */
3209 	if (unlikely(!pskb_may_pull(skb, off + len)))
3210 		return -ENOMEM;
3211 
3212 	old_data = skb->data;
3213 	__skb_pull(skb, len);
3214 	skb_postpull_rcsum(skb, old_data + off, len);
3215 	memmove(skb->data, old_data, off);
3216 
3217 	return 0;
3218 }
3219 
bpf_skb_net_hdr_push(struct sk_buff * skb,u32 off,u32 len)3220 static int bpf_skb_net_hdr_push(struct sk_buff *skb, u32 off, u32 len)
3221 {
3222 	bool trans_same = skb->transport_header == skb->network_header;
3223 	int ret;
3224 
3225 	/* There's no need for __skb_push()/__skb_pull() pair to
3226 	 * get to the start of the mac header as we're guaranteed
3227 	 * to always start from here under eBPF.
3228 	 */
3229 	ret = bpf_skb_generic_push(skb, off, len);
3230 	if (likely(!ret)) {
3231 		skb->mac_header -= len;
3232 		skb->network_header -= len;
3233 		if (trans_same)
3234 			skb->transport_header = skb->network_header;
3235 	}
3236 
3237 	return ret;
3238 }
3239 
bpf_skb_net_hdr_pop(struct sk_buff * skb,u32 off,u32 len)3240 static int bpf_skb_net_hdr_pop(struct sk_buff *skb, u32 off, u32 len)
3241 {
3242 	bool trans_same = skb->transport_header == skb->network_header;
3243 	int ret;
3244 
3245 	/* Same here, __skb_push()/__skb_pull() pair not needed. */
3246 	ret = bpf_skb_generic_pop(skb, off, len);
3247 	if (likely(!ret)) {
3248 		skb->mac_header += len;
3249 		skb->network_header += len;
3250 		if (trans_same)
3251 			skb->transport_header = skb->network_header;
3252 	}
3253 
3254 	return ret;
3255 }
3256 
bpf_skb_proto_4_to_6(struct sk_buff * skb)3257 static int bpf_skb_proto_4_to_6(struct sk_buff *skb)
3258 {
3259 	const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
3260 	u32 off = skb_mac_header_len(skb);
3261 	int ret;
3262 
3263 	ret = skb_cow(skb, len_diff);
3264 	if (unlikely(ret < 0))
3265 		return ret;
3266 
3267 	ret = bpf_skb_net_hdr_push(skb, off, len_diff);
3268 	if (unlikely(ret < 0))
3269 		return ret;
3270 
3271 	if (skb_is_gso(skb)) {
3272 		struct skb_shared_info *shinfo = skb_shinfo(skb);
3273 
3274 		/* SKB_GSO_TCPV4 needs to be changed into SKB_GSO_TCPV6. */
3275 		if (shinfo->gso_type & SKB_GSO_TCPV4) {
3276 			shinfo->gso_type &= ~SKB_GSO_TCPV4;
3277 			shinfo->gso_type |=  SKB_GSO_TCPV6;
3278 		}
3279 	}
3280 
3281 	skb->protocol = htons(ETH_P_IPV6);
3282 	skb_clear_hash(skb);
3283 
3284 	return 0;
3285 }
3286 
bpf_skb_proto_6_to_4(struct sk_buff * skb)3287 static int bpf_skb_proto_6_to_4(struct sk_buff *skb)
3288 {
3289 	const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
3290 	u32 off = skb_mac_header_len(skb);
3291 	int ret;
3292 
3293 	ret = skb_unclone(skb, GFP_ATOMIC);
3294 	if (unlikely(ret < 0))
3295 		return ret;
3296 
3297 	ret = bpf_skb_net_hdr_pop(skb, off, len_diff);
3298 	if (unlikely(ret < 0))
3299 		return ret;
3300 
3301 	if (skb_is_gso(skb)) {
3302 		struct skb_shared_info *shinfo = skb_shinfo(skb);
3303 
3304 		/* SKB_GSO_TCPV6 needs to be changed into SKB_GSO_TCPV4. */
3305 		if (shinfo->gso_type & SKB_GSO_TCPV6) {
3306 			shinfo->gso_type &= ~SKB_GSO_TCPV6;
3307 			shinfo->gso_type |=  SKB_GSO_TCPV4;
3308 		}
3309 	}
3310 
3311 	skb->protocol = htons(ETH_P_IP);
3312 	skb_clear_hash(skb);
3313 
3314 	return 0;
3315 }
3316 
bpf_skb_proto_xlat(struct sk_buff * skb,__be16 to_proto)3317 static int bpf_skb_proto_xlat(struct sk_buff *skb, __be16 to_proto)
3318 {
3319 	__be16 from_proto = skb->protocol;
3320 
3321 	if (from_proto == htons(ETH_P_IP) &&
3322 	      to_proto == htons(ETH_P_IPV6))
3323 		return bpf_skb_proto_4_to_6(skb);
3324 
3325 	if (from_proto == htons(ETH_P_IPV6) &&
3326 	      to_proto == htons(ETH_P_IP))
3327 		return bpf_skb_proto_6_to_4(skb);
3328 
3329 	return -ENOTSUPP;
3330 }
3331 
BPF_CALL_3(bpf_skb_change_proto,struct sk_buff *,skb,__be16,proto,u64,flags)3332 BPF_CALL_3(bpf_skb_change_proto, struct sk_buff *, skb, __be16, proto,
3333 	   u64, flags)
3334 {
3335 	int ret;
3336 
3337 	if (unlikely(flags))
3338 		return -EINVAL;
3339 
3340 	/* General idea is that this helper does the basic groundwork
3341 	 * needed for changing the protocol, and eBPF program fills the
3342 	 * rest through bpf_skb_store_bytes(), bpf_lX_csum_replace()
3343 	 * and other helpers, rather than passing a raw buffer here.
3344 	 *
3345 	 * The rationale is to keep this minimal and without a need to
3346 	 * deal with raw packet data. F.e. even if we would pass buffers
3347 	 * here, the program still needs to call the bpf_lX_csum_replace()
3348 	 * helpers anyway. Plus, this way we keep also separation of
3349 	 * concerns, since f.e. bpf_skb_store_bytes() should only take
3350 	 * care of stores.
3351 	 *
3352 	 * Currently, additional options and extension header space are
3353 	 * not supported, but flags register is reserved so we can adapt
3354 	 * that. For offloads, we mark packet as dodgy, so that headers
3355 	 * need to be verified first.
3356 	 */
3357 	ret = bpf_skb_proto_xlat(skb, proto);
3358 	bpf_compute_data_pointers(skb);
3359 	return ret;
3360 }
3361 
3362 static const struct bpf_func_proto bpf_skb_change_proto_proto = {
3363 	.func		= bpf_skb_change_proto,
3364 	.gpl_only	= false,
3365 	.ret_type	= RET_INTEGER,
3366 	.arg1_type	= ARG_PTR_TO_CTX,
3367 	.arg2_type	= ARG_ANYTHING,
3368 	.arg3_type	= ARG_ANYTHING,
3369 };
3370 
BPF_CALL_2(bpf_skb_change_type,struct sk_buff *,skb,u32,pkt_type)3371 BPF_CALL_2(bpf_skb_change_type, struct sk_buff *, skb, u32, pkt_type)
3372 {
3373 	/* We only allow a restricted subset to be changed for now. */
3374 	if (unlikely(!skb_pkt_type_ok(skb->pkt_type) ||
3375 		     !skb_pkt_type_ok(pkt_type)))
3376 		return -EINVAL;
3377 
3378 	skb->pkt_type = pkt_type;
3379 	return 0;
3380 }
3381 
3382 static const struct bpf_func_proto bpf_skb_change_type_proto = {
3383 	.func		= bpf_skb_change_type,
3384 	.gpl_only	= false,
3385 	.ret_type	= RET_INTEGER,
3386 	.arg1_type	= ARG_PTR_TO_CTX,
3387 	.arg2_type	= ARG_ANYTHING,
3388 };
3389 
bpf_skb_net_base_len(const struct sk_buff * skb)3390 static u32 bpf_skb_net_base_len(const struct sk_buff *skb)
3391 {
3392 	switch (skb->protocol) {
3393 	case htons(ETH_P_IP):
3394 		return sizeof(struct iphdr);
3395 	case htons(ETH_P_IPV6):
3396 		return sizeof(struct ipv6hdr);
3397 	default:
3398 		return ~0U;
3399 	}
3400 }
3401 
3402 #define BPF_F_ADJ_ROOM_ENCAP_L3_MASK	(BPF_F_ADJ_ROOM_ENCAP_L3_IPV4 | \
3403 					 BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3404 
3405 #define BPF_F_ADJ_ROOM_MASK		(BPF_F_ADJ_ROOM_FIXED_GSO | \
3406 					 BPF_F_ADJ_ROOM_ENCAP_L3_MASK | \
3407 					 BPF_F_ADJ_ROOM_ENCAP_L4_GRE | \
3408 					 BPF_F_ADJ_ROOM_ENCAP_L4_UDP | \
3409 					 BPF_F_ADJ_ROOM_ENCAP_L2_ETH | \
3410 					 BPF_F_ADJ_ROOM_ENCAP_L2( \
3411 					  BPF_ADJ_ROOM_ENCAP_L2_MASK))
3412 
bpf_skb_net_grow(struct sk_buff * skb,u32 off,u32 len_diff,u64 flags)3413 static int bpf_skb_net_grow(struct sk_buff *skb, u32 off, u32 len_diff,
3414 			    u64 flags)
3415 {
3416 	u8 inner_mac_len = flags >> BPF_ADJ_ROOM_ENCAP_L2_SHIFT;
3417 	bool encap = flags & BPF_F_ADJ_ROOM_ENCAP_L3_MASK;
3418 	u16 mac_len = 0, inner_net = 0, inner_trans = 0;
3419 	unsigned int gso_type = SKB_GSO_DODGY;
3420 	int ret;
3421 
3422 	if (skb_is_gso(skb) && !skb_is_gso_tcp(skb)) {
3423 		/* udp gso_size delineates datagrams, only allow if fixed */
3424 		if (!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ||
3425 		    !(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3426 			return -ENOTSUPP;
3427 	}
3428 
3429 	ret = skb_cow_head(skb, len_diff);
3430 	if (unlikely(ret < 0))
3431 		return ret;
3432 
3433 	if (encap) {
3434 		if (skb->protocol != htons(ETH_P_IP) &&
3435 		    skb->protocol != htons(ETH_P_IPV6))
3436 			return -ENOTSUPP;
3437 
3438 		if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4 &&
3439 		    flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3440 			return -EINVAL;
3441 
3442 		if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE &&
3443 		    flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP)
3444 			return -EINVAL;
3445 
3446 		if (flags & BPF_F_ADJ_ROOM_ENCAP_L2_ETH &&
3447 		    inner_mac_len < ETH_HLEN)
3448 			return -EINVAL;
3449 
3450 		if (skb->encapsulation)
3451 			return -EALREADY;
3452 
3453 		mac_len = skb->network_header - skb->mac_header;
3454 		inner_net = skb->network_header;
3455 		if (inner_mac_len > len_diff)
3456 			return -EINVAL;
3457 		inner_trans = skb->transport_header;
3458 	}
3459 
3460 	ret = bpf_skb_net_hdr_push(skb, off, len_diff);
3461 	if (unlikely(ret < 0))
3462 		return ret;
3463 
3464 	if (encap) {
3465 		skb->inner_mac_header = inner_net - inner_mac_len;
3466 		skb->inner_network_header = inner_net;
3467 		skb->inner_transport_header = inner_trans;
3468 
3469 		if (flags & BPF_F_ADJ_ROOM_ENCAP_L2_ETH)
3470 			skb_set_inner_protocol(skb, htons(ETH_P_TEB));
3471 		else
3472 			skb_set_inner_protocol(skb, skb->protocol);
3473 
3474 		skb->encapsulation = 1;
3475 		skb_set_network_header(skb, mac_len);
3476 
3477 		if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP)
3478 			gso_type |= SKB_GSO_UDP_TUNNEL;
3479 		else if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE)
3480 			gso_type |= SKB_GSO_GRE;
3481 		else if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3482 			gso_type |= SKB_GSO_IPXIP6;
3483 		else if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4)
3484 			gso_type |= SKB_GSO_IPXIP4;
3485 
3486 		if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE ||
3487 		    flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP) {
3488 			int nh_len = flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6 ?
3489 					sizeof(struct ipv6hdr) :
3490 					sizeof(struct iphdr);
3491 
3492 			skb_set_transport_header(skb, mac_len + nh_len);
3493 		}
3494 
3495 		/* Match skb->protocol to new outer l3 protocol */
3496 		if (skb->protocol == htons(ETH_P_IP) &&
3497 		    flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3498 			skb->protocol = htons(ETH_P_IPV6);
3499 		else if (skb->protocol == htons(ETH_P_IPV6) &&
3500 			 flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4)
3501 			skb->protocol = htons(ETH_P_IP);
3502 	}
3503 
3504 	if (skb_is_gso(skb)) {
3505 		struct skb_shared_info *shinfo = skb_shinfo(skb);
3506 
3507 		/* Due to header grow, MSS needs to be downgraded. */
3508 		if (!(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3509 			skb_decrease_gso_size(shinfo, len_diff);
3510 
3511 		/* Header must be checked, and gso_segs recomputed. */
3512 		shinfo->gso_type |= gso_type;
3513 		shinfo->gso_segs = 0;
3514 	}
3515 
3516 	return 0;
3517 }
3518 
bpf_skb_net_shrink(struct sk_buff * skb,u32 off,u32 len_diff,u64 flags)3519 static int bpf_skb_net_shrink(struct sk_buff *skb, u32 off, u32 len_diff,
3520 			      u64 flags)
3521 {
3522 	int ret;
3523 
3524 	if (unlikely(flags & ~(BPF_F_ADJ_ROOM_FIXED_GSO |
3525 			       BPF_F_ADJ_ROOM_NO_CSUM_RESET)))
3526 		return -EINVAL;
3527 
3528 	if (skb_is_gso(skb) && !skb_is_gso_tcp(skb)) {
3529 		/* udp gso_size delineates datagrams, only allow if fixed */
3530 		if (!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ||
3531 		    !(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3532 			return -ENOTSUPP;
3533 	}
3534 
3535 	ret = skb_unclone(skb, GFP_ATOMIC);
3536 	if (unlikely(ret < 0))
3537 		return ret;
3538 
3539 	ret = bpf_skb_net_hdr_pop(skb, off, len_diff);
3540 	if (unlikely(ret < 0))
3541 		return ret;
3542 
3543 	if (skb_is_gso(skb)) {
3544 		struct skb_shared_info *shinfo = skb_shinfo(skb);
3545 
3546 		/* Due to header shrink, MSS can be upgraded. */
3547 		if (!(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3548 			skb_increase_gso_size(shinfo, len_diff);
3549 
3550 		/* Header must be checked, and gso_segs recomputed. */
3551 		shinfo->gso_type |= SKB_GSO_DODGY;
3552 		shinfo->gso_segs = 0;
3553 	}
3554 
3555 	return 0;
3556 }
3557 
3558 #define BPF_SKB_MAX_LEN SKB_MAX_ALLOC
3559 
BPF_CALL_4(sk_skb_adjust_room,struct sk_buff *,skb,s32,len_diff,u32,mode,u64,flags)3560 BPF_CALL_4(sk_skb_adjust_room, struct sk_buff *, skb, s32, len_diff,
3561 	   u32, mode, u64, flags)
3562 {
3563 	u32 len_diff_abs = abs(len_diff);
3564 	bool shrink = len_diff < 0;
3565 	int ret = 0;
3566 
3567 	if (unlikely(flags || mode))
3568 		return -EINVAL;
3569 	if (unlikely(len_diff_abs > 0xfffU))
3570 		return -EFAULT;
3571 
3572 	if (!shrink) {
3573 		ret = skb_cow(skb, len_diff);
3574 		if (unlikely(ret < 0))
3575 			return ret;
3576 		__skb_push(skb, len_diff_abs);
3577 		memset(skb->data, 0, len_diff_abs);
3578 	} else {
3579 		if (unlikely(!pskb_may_pull(skb, len_diff_abs)))
3580 			return -ENOMEM;
3581 		__skb_pull(skb, len_diff_abs);
3582 	}
3583 	if (tls_sw_has_ctx_rx(skb->sk)) {
3584 		struct strp_msg *rxm = strp_msg(skb);
3585 
3586 		rxm->full_len += len_diff;
3587 	}
3588 	return ret;
3589 }
3590 
3591 static const struct bpf_func_proto sk_skb_adjust_room_proto = {
3592 	.func		= sk_skb_adjust_room,
3593 	.gpl_only	= false,
3594 	.ret_type	= RET_INTEGER,
3595 	.arg1_type	= ARG_PTR_TO_CTX,
3596 	.arg2_type	= ARG_ANYTHING,
3597 	.arg3_type	= ARG_ANYTHING,
3598 	.arg4_type	= ARG_ANYTHING,
3599 };
3600 
BPF_CALL_4(bpf_skb_adjust_room,struct sk_buff *,skb,s32,len_diff,u32,mode,u64,flags)3601 BPF_CALL_4(bpf_skb_adjust_room, struct sk_buff *, skb, s32, len_diff,
3602 	   u32, mode, u64, flags)
3603 {
3604 	u32 len_cur, len_diff_abs = abs(len_diff);
3605 	u32 len_min = bpf_skb_net_base_len(skb);
3606 	u32 len_max = BPF_SKB_MAX_LEN;
3607 	__be16 proto = skb->protocol;
3608 	bool shrink = len_diff < 0;
3609 	u32 off;
3610 	int ret;
3611 
3612 	if (unlikely(flags & ~(BPF_F_ADJ_ROOM_MASK |
3613 			       BPF_F_ADJ_ROOM_NO_CSUM_RESET)))
3614 		return -EINVAL;
3615 	if (unlikely(len_diff_abs > 0xfffU))
3616 		return -EFAULT;
3617 	if (unlikely(proto != htons(ETH_P_IP) &&
3618 		     proto != htons(ETH_P_IPV6)))
3619 		return -ENOTSUPP;
3620 
3621 	off = skb_mac_header_len(skb);
3622 	switch (mode) {
3623 	case BPF_ADJ_ROOM_NET:
3624 		off += bpf_skb_net_base_len(skb);
3625 		break;
3626 	case BPF_ADJ_ROOM_MAC:
3627 		break;
3628 	default:
3629 		return -ENOTSUPP;
3630 	}
3631 
3632 	len_cur = skb->len - skb_network_offset(skb);
3633 	if ((shrink && (len_diff_abs >= len_cur ||
3634 			len_cur - len_diff_abs < len_min)) ||
3635 	    (!shrink && (skb->len + len_diff_abs > len_max &&
3636 			 !skb_is_gso(skb))))
3637 		return -ENOTSUPP;
3638 
3639 	ret = shrink ? bpf_skb_net_shrink(skb, off, len_diff_abs, flags) :
3640 		       bpf_skb_net_grow(skb, off, len_diff_abs, flags);
3641 	if (!ret && !(flags & BPF_F_ADJ_ROOM_NO_CSUM_RESET))
3642 		__skb_reset_checksum_unnecessary(skb);
3643 
3644 	bpf_compute_data_pointers(skb);
3645 	return ret;
3646 }
3647 
3648 static const struct bpf_func_proto bpf_skb_adjust_room_proto = {
3649 	.func		= bpf_skb_adjust_room,
3650 	.gpl_only	= false,
3651 	.ret_type	= RET_INTEGER,
3652 	.arg1_type	= ARG_PTR_TO_CTX,
3653 	.arg2_type	= ARG_ANYTHING,
3654 	.arg3_type	= ARG_ANYTHING,
3655 	.arg4_type	= ARG_ANYTHING,
3656 };
3657 
__bpf_skb_min_len(const struct sk_buff * skb)3658 static u32 __bpf_skb_min_len(const struct sk_buff *skb)
3659 {
3660 	u32 min_len = skb_network_offset(skb);
3661 
3662 	if (skb_transport_header_was_set(skb))
3663 		min_len = skb_transport_offset(skb);
3664 	if (skb->ip_summed == CHECKSUM_PARTIAL)
3665 		min_len = skb_checksum_start_offset(skb) +
3666 			  skb->csum_offset + sizeof(__sum16);
3667 	return min_len;
3668 }
3669 
bpf_skb_grow_rcsum(struct sk_buff * skb,unsigned int new_len)3670 static int bpf_skb_grow_rcsum(struct sk_buff *skb, unsigned int new_len)
3671 {
3672 	unsigned int old_len = skb->len;
3673 	int ret;
3674 
3675 	ret = __skb_grow_rcsum(skb, new_len);
3676 	if (!ret)
3677 		memset(skb->data + old_len, 0, new_len - old_len);
3678 	return ret;
3679 }
3680 
bpf_skb_trim_rcsum(struct sk_buff * skb,unsigned int new_len)3681 static int bpf_skb_trim_rcsum(struct sk_buff *skb, unsigned int new_len)
3682 {
3683 	return __skb_trim_rcsum(skb, new_len);
3684 }
3685 
__bpf_skb_change_tail(struct sk_buff * skb,u32 new_len,u64 flags)3686 static inline int __bpf_skb_change_tail(struct sk_buff *skb, u32 new_len,
3687 					u64 flags)
3688 {
3689 	u32 max_len = BPF_SKB_MAX_LEN;
3690 	u32 min_len = __bpf_skb_min_len(skb);
3691 	int ret;
3692 
3693 	if (unlikely(flags || new_len > max_len || new_len < min_len))
3694 		return -EINVAL;
3695 	if (skb->encapsulation)
3696 		return -ENOTSUPP;
3697 
3698 	/* The basic idea of this helper is that it's performing the
3699 	 * needed work to either grow or trim an skb, and eBPF program
3700 	 * rewrites the rest via helpers like bpf_skb_store_bytes(),
3701 	 * bpf_lX_csum_replace() and others rather than passing a raw
3702 	 * buffer here. This one is a slow path helper and intended
3703 	 * for replies with control messages.
3704 	 *
3705 	 * Like in bpf_skb_change_proto(), we want to keep this rather
3706 	 * minimal and without protocol specifics so that we are able
3707 	 * to separate concerns as in bpf_skb_store_bytes() should only
3708 	 * be the one responsible for writing buffers.
3709 	 *
3710 	 * It's really expected to be a slow path operation here for
3711 	 * control message replies, so we're implicitly linearizing,
3712 	 * uncloning and drop offloads from the skb by this.
3713 	 */
3714 	ret = __bpf_try_make_writable(skb, skb->len);
3715 	if (!ret) {
3716 		if (new_len > skb->len)
3717 			ret = bpf_skb_grow_rcsum(skb, new_len);
3718 		else if (new_len < skb->len)
3719 			ret = bpf_skb_trim_rcsum(skb, new_len);
3720 		if (!ret && skb_is_gso(skb))
3721 			skb_gso_reset(skb);
3722 	}
3723 	return ret;
3724 }
3725 
BPF_CALL_3(bpf_skb_change_tail,struct sk_buff *,skb,u32,new_len,u64,flags)3726 BPF_CALL_3(bpf_skb_change_tail, struct sk_buff *, skb, u32, new_len,
3727 	   u64, flags)
3728 {
3729 	int ret = __bpf_skb_change_tail(skb, new_len, flags);
3730 
3731 	bpf_compute_data_pointers(skb);
3732 	return ret;
3733 }
3734 
3735 static const struct bpf_func_proto bpf_skb_change_tail_proto = {
3736 	.func		= bpf_skb_change_tail,
3737 	.gpl_only	= false,
3738 	.ret_type	= RET_INTEGER,
3739 	.arg1_type	= ARG_PTR_TO_CTX,
3740 	.arg2_type	= ARG_ANYTHING,
3741 	.arg3_type	= ARG_ANYTHING,
3742 };
3743 
BPF_CALL_3(sk_skb_change_tail,struct sk_buff *,skb,u32,new_len,u64,flags)3744 BPF_CALL_3(sk_skb_change_tail, struct sk_buff *, skb, u32, new_len,
3745 	   u64, flags)
3746 {
3747 	return __bpf_skb_change_tail(skb, new_len, flags);
3748 }
3749 
3750 static const struct bpf_func_proto sk_skb_change_tail_proto = {
3751 	.func		= sk_skb_change_tail,
3752 	.gpl_only	= false,
3753 	.ret_type	= RET_INTEGER,
3754 	.arg1_type	= ARG_PTR_TO_CTX,
3755 	.arg2_type	= ARG_ANYTHING,
3756 	.arg3_type	= ARG_ANYTHING,
3757 };
3758 
__bpf_skb_change_head(struct sk_buff * skb,u32 head_room,u64 flags)3759 static inline int __bpf_skb_change_head(struct sk_buff *skb, u32 head_room,
3760 					u64 flags)
3761 {
3762 	u32 max_len = BPF_SKB_MAX_LEN;
3763 	u32 new_len = skb->len + head_room;
3764 	int ret;
3765 
3766 	if (unlikely(flags || (!skb_is_gso(skb) && new_len > max_len) ||
3767 		     new_len < skb->len))
3768 		return -EINVAL;
3769 
3770 	ret = skb_cow(skb, head_room);
3771 	if (likely(!ret)) {
3772 		/* Idea for this helper is that we currently only
3773 		 * allow to expand on mac header. This means that
3774 		 * skb->protocol network header, etc, stay as is.
3775 		 * Compared to bpf_skb_change_tail(), we're more
3776 		 * flexible due to not needing to linearize or
3777 		 * reset GSO. Intention for this helper is to be
3778 		 * used by an L3 skb that needs to push mac header
3779 		 * for redirection into L2 device.
3780 		 */
3781 		__skb_push(skb, head_room);
3782 		memset(skb->data, 0, head_room);
3783 		skb_reset_mac_header(skb);
3784 		skb_reset_mac_len(skb);
3785 	}
3786 
3787 	return ret;
3788 }
3789 
BPF_CALL_3(bpf_skb_change_head,struct sk_buff *,skb,u32,head_room,u64,flags)3790 BPF_CALL_3(bpf_skb_change_head, struct sk_buff *, skb, u32, head_room,
3791 	   u64, flags)
3792 {
3793 	int ret = __bpf_skb_change_head(skb, head_room, flags);
3794 
3795 	bpf_compute_data_pointers(skb);
3796 	return ret;
3797 }
3798 
3799 static const struct bpf_func_proto bpf_skb_change_head_proto = {
3800 	.func		= bpf_skb_change_head,
3801 	.gpl_only	= false,
3802 	.ret_type	= RET_INTEGER,
3803 	.arg1_type	= ARG_PTR_TO_CTX,
3804 	.arg2_type	= ARG_ANYTHING,
3805 	.arg3_type	= ARG_ANYTHING,
3806 };
3807 
BPF_CALL_3(sk_skb_change_head,struct sk_buff *,skb,u32,head_room,u64,flags)3808 BPF_CALL_3(sk_skb_change_head, struct sk_buff *, skb, u32, head_room,
3809 	   u64, flags)
3810 {
3811 	return __bpf_skb_change_head(skb, head_room, flags);
3812 }
3813 
3814 static const struct bpf_func_proto sk_skb_change_head_proto = {
3815 	.func		= sk_skb_change_head,
3816 	.gpl_only	= false,
3817 	.ret_type	= RET_INTEGER,
3818 	.arg1_type	= ARG_PTR_TO_CTX,
3819 	.arg2_type	= ARG_ANYTHING,
3820 	.arg3_type	= ARG_ANYTHING,
3821 };
xdp_get_metalen(const struct xdp_buff * xdp)3822 static unsigned long xdp_get_metalen(const struct xdp_buff *xdp)
3823 {
3824 	return xdp_data_meta_unsupported(xdp) ? 0 :
3825 	       xdp->data - xdp->data_meta;
3826 }
3827 
BPF_CALL_2(bpf_xdp_adjust_head,struct xdp_buff *,xdp,int,offset)3828 BPF_CALL_2(bpf_xdp_adjust_head, struct xdp_buff *, xdp, int, offset)
3829 {
3830 	void *xdp_frame_end = xdp->data_hard_start + sizeof(struct xdp_frame);
3831 	unsigned long metalen = xdp_get_metalen(xdp);
3832 	void *data_start = xdp_frame_end + metalen;
3833 	void *data = xdp->data + offset;
3834 
3835 	if (unlikely(data < data_start ||
3836 		     data > xdp->data_end - ETH_HLEN))
3837 		return -EINVAL;
3838 
3839 	if (metalen)
3840 		memmove(xdp->data_meta + offset,
3841 			xdp->data_meta, metalen);
3842 	xdp->data_meta += offset;
3843 	xdp->data = data;
3844 
3845 	return 0;
3846 }
3847 
3848 static const struct bpf_func_proto bpf_xdp_adjust_head_proto = {
3849 	.func		= bpf_xdp_adjust_head,
3850 	.gpl_only	= false,
3851 	.ret_type	= RET_INTEGER,
3852 	.arg1_type	= ARG_PTR_TO_CTX,
3853 	.arg2_type	= ARG_ANYTHING,
3854 };
3855 
BPF_CALL_2(bpf_xdp_adjust_tail,struct xdp_buff *,xdp,int,offset)3856 BPF_CALL_2(bpf_xdp_adjust_tail, struct xdp_buff *, xdp, int, offset)
3857 {
3858 	void *data_hard_end = xdp_data_hard_end(xdp); /* use xdp->frame_sz */
3859 	void *data_end = xdp->data_end + offset;
3860 
3861 	/* Notice that xdp_data_hard_end have reserved some tailroom */
3862 	if (unlikely(data_end > data_hard_end))
3863 		return -EINVAL;
3864 
3865 	if (unlikely(data_end < xdp->data + ETH_HLEN))
3866 		return -EINVAL;
3867 
3868 	/* Clear memory area on grow, can contain uninit kernel memory */
3869 	if (offset > 0)
3870 		memset(xdp->data_end, 0, offset);
3871 
3872 	xdp->data_end = data_end;
3873 
3874 	return 0;
3875 }
3876 
3877 static const struct bpf_func_proto bpf_xdp_adjust_tail_proto = {
3878 	.func		= bpf_xdp_adjust_tail,
3879 	.gpl_only	= false,
3880 	.ret_type	= RET_INTEGER,
3881 	.arg1_type	= ARG_PTR_TO_CTX,
3882 	.arg2_type	= ARG_ANYTHING,
3883 };
3884 
BPF_CALL_2(bpf_xdp_adjust_meta,struct xdp_buff *,xdp,int,offset)3885 BPF_CALL_2(bpf_xdp_adjust_meta, struct xdp_buff *, xdp, int, offset)
3886 {
3887 	void *xdp_frame_end = xdp->data_hard_start + sizeof(struct xdp_frame);
3888 	void *meta = xdp->data_meta + offset;
3889 	unsigned long metalen = xdp->data - meta;
3890 
3891 	if (xdp_data_meta_unsupported(xdp))
3892 		return -ENOTSUPP;
3893 	if (unlikely(meta < xdp_frame_end ||
3894 		     meta > xdp->data))
3895 		return -EINVAL;
3896 	if (unlikely(xdp_metalen_invalid(metalen)))
3897 		return -EACCES;
3898 
3899 	xdp->data_meta = meta;
3900 
3901 	return 0;
3902 }
3903 
3904 static const struct bpf_func_proto bpf_xdp_adjust_meta_proto = {
3905 	.func		= bpf_xdp_adjust_meta,
3906 	.gpl_only	= false,
3907 	.ret_type	= RET_INTEGER,
3908 	.arg1_type	= ARG_PTR_TO_CTX,
3909 	.arg2_type	= ARG_ANYTHING,
3910 };
3911 
3912 /* XDP_REDIRECT works by a three-step process, implemented in the functions
3913  * below:
3914  *
3915  * 1. The bpf_redirect() and bpf_redirect_map() helpers will lookup the target
3916  *    of the redirect and store it (along with some other metadata) in a per-CPU
3917  *    struct bpf_redirect_info.
3918  *
3919  * 2. When the program returns the XDP_REDIRECT return code, the driver will
3920  *    call xdp_do_redirect() which will use the information in struct
3921  *    bpf_redirect_info to actually enqueue the frame into a map type-specific
3922  *    bulk queue structure.
3923  *
3924  * 3. Before exiting its NAPI poll loop, the driver will call xdp_do_flush(),
3925  *    which will flush all the different bulk queues, thus completing the
3926  *    redirect.
3927  *
3928  * Pointers to the map entries will be kept around for this whole sequence of
3929  * steps, protected by RCU. However, there is no top-level rcu_read_lock() in
3930  * the core code; instead, the RCU protection relies on everything happening
3931  * inside a single NAPI poll sequence, which means it's between a pair of calls
3932  * to local_bh_disable()/local_bh_enable().
3933  *
3934  * The map entries are marked as __rcu and the map code makes sure to
3935  * dereference those pointers with rcu_dereference_check() in a way that works
3936  * for both sections that to hold an rcu_read_lock() and sections that are
3937  * called from NAPI without a separate rcu_read_lock(). The code below does not
3938  * use RCU annotations, but relies on those in the map code.
3939  */
xdp_do_flush(void)3940 void xdp_do_flush(void)
3941 {
3942 	__dev_flush();
3943 	__cpu_map_flush();
3944 	__xsk_map_flush();
3945 }
3946 EXPORT_SYMBOL_GPL(xdp_do_flush);
3947 
bpf_clear_redirect_map(struct bpf_map * map)3948 void bpf_clear_redirect_map(struct bpf_map *map)
3949 {
3950 	struct bpf_redirect_info *ri;
3951 	int cpu;
3952 
3953 	for_each_possible_cpu(cpu) {
3954 		ri = per_cpu_ptr(&bpf_redirect_info, cpu);
3955 		/* Avoid polluting remote cacheline due to writes if
3956 		 * not needed. Once we pass this test, we need the
3957 		 * cmpxchg() to make sure it hasn't been changed in
3958 		 * the meantime by remote CPU.
3959 		 */
3960 		if (unlikely(READ_ONCE(ri->map) == map))
3961 			cmpxchg(&ri->map, map, NULL);
3962 	}
3963 }
3964 
3965 DEFINE_STATIC_KEY_FALSE(bpf_master_redirect_enabled_key);
3966 EXPORT_SYMBOL_GPL(bpf_master_redirect_enabled_key);
3967 
xdp_master_redirect(struct xdp_buff * xdp)3968 u32 xdp_master_redirect(struct xdp_buff *xdp)
3969 {
3970 	struct net_device *master, *slave;
3971 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
3972 
3973 	master = netdev_master_upper_dev_get_rcu(xdp->rxq->dev);
3974 	slave = master->netdev_ops->ndo_xdp_get_xmit_slave(master, xdp);
3975 	if (slave && slave != xdp->rxq->dev) {
3976 		/* The target device is different from the receiving device, so
3977 		 * redirect it to the new device.
3978 		 * Using XDP_REDIRECT gets the correct behaviour from XDP enabled
3979 		 * drivers to unmap the packet from their rx ring.
3980 		 */
3981 		ri->tgt_index = slave->ifindex;
3982 		ri->map_id = INT_MAX;
3983 		ri->map_type = BPF_MAP_TYPE_UNSPEC;
3984 		return XDP_REDIRECT;
3985 	}
3986 	return XDP_TX;
3987 }
3988 EXPORT_SYMBOL_GPL(xdp_master_redirect);
3989 
xdp_do_redirect(struct net_device * dev,struct xdp_buff * xdp,struct bpf_prog * xdp_prog)3990 int xdp_do_redirect(struct net_device *dev, struct xdp_buff *xdp,
3991 		    struct bpf_prog *xdp_prog)
3992 {
3993 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
3994 	enum bpf_map_type map_type = ri->map_type;
3995 	void *fwd = ri->tgt_value;
3996 	u32 map_id = ri->map_id;
3997 	struct bpf_map *map;
3998 	int err;
3999 
4000 	ri->map_id = 0; /* Valid map id idr range: [1,INT_MAX[ */
4001 	ri->map_type = BPF_MAP_TYPE_UNSPEC;
4002 
4003 	switch (map_type) {
4004 	case BPF_MAP_TYPE_DEVMAP:
4005 		fallthrough;
4006 	case BPF_MAP_TYPE_DEVMAP_HASH:
4007 		map = READ_ONCE(ri->map);
4008 		if (unlikely(map)) {
4009 			WRITE_ONCE(ri->map, NULL);
4010 			err = dev_map_enqueue_multi(xdp, dev, map,
4011 						    ri->flags & BPF_F_EXCLUDE_INGRESS);
4012 		} else {
4013 			err = dev_map_enqueue(fwd, xdp, dev);
4014 		}
4015 		break;
4016 	case BPF_MAP_TYPE_CPUMAP:
4017 		err = cpu_map_enqueue(fwd, xdp, dev);
4018 		break;
4019 	case BPF_MAP_TYPE_XSKMAP:
4020 		err = __xsk_map_redirect(fwd, xdp);
4021 		break;
4022 	case BPF_MAP_TYPE_UNSPEC:
4023 		if (map_id == INT_MAX) {
4024 			fwd = dev_get_by_index_rcu(dev_net(dev), ri->tgt_index);
4025 			if (unlikely(!fwd)) {
4026 				err = -EINVAL;
4027 				break;
4028 			}
4029 			err = dev_xdp_enqueue(fwd, xdp, dev);
4030 			break;
4031 		}
4032 		fallthrough;
4033 	default:
4034 		err = -EBADRQC;
4035 	}
4036 
4037 	if (unlikely(err))
4038 		goto err;
4039 
4040 	_trace_xdp_redirect_map(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index);
4041 	return 0;
4042 err:
4043 	_trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index, err);
4044 	return err;
4045 }
4046 EXPORT_SYMBOL_GPL(xdp_do_redirect);
4047 
xdp_do_generic_redirect_map(struct net_device * dev,struct sk_buff * skb,struct xdp_buff * xdp,struct bpf_prog * xdp_prog,void * fwd,enum bpf_map_type map_type,u32 map_id)4048 static int xdp_do_generic_redirect_map(struct net_device *dev,
4049 				       struct sk_buff *skb,
4050 				       struct xdp_buff *xdp,
4051 				       struct bpf_prog *xdp_prog,
4052 				       void *fwd,
4053 				       enum bpf_map_type map_type, u32 map_id)
4054 {
4055 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4056 	struct bpf_map *map;
4057 	int err;
4058 
4059 	switch (map_type) {
4060 	case BPF_MAP_TYPE_DEVMAP:
4061 		fallthrough;
4062 	case BPF_MAP_TYPE_DEVMAP_HASH:
4063 		map = READ_ONCE(ri->map);
4064 		if (unlikely(map)) {
4065 			WRITE_ONCE(ri->map, NULL);
4066 			err = dev_map_redirect_multi(dev, skb, xdp_prog, map,
4067 						     ri->flags & BPF_F_EXCLUDE_INGRESS);
4068 		} else {
4069 			err = dev_map_generic_redirect(fwd, skb, xdp_prog);
4070 		}
4071 		if (unlikely(err))
4072 			goto err;
4073 		break;
4074 	case BPF_MAP_TYPE_XSKMAP:
4075 		err = xsk_generic_rcv(fwd, xdp);
4076 		if (err)
4077 			goto err;
4078 		consume_skb(skb);
4079 		break;
4080 	case BPF_MAP_TYPE_CPUMAP:
4081 		err = cpu_map_generic_redirect(fwd, skb);
4082 		if (unlikely(err))
4083 			goto err;
4084 		break;
4085 	default:
4086 		err = -EBADRQC;
4087 		goto err;
4088 	}
4089 
4090 	_trace_xdp_redirect_map(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index);
4091 	return 0;
4092 err:
4093 	_trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index, err);
4094 	return err;
4095 }
4096 
xdp_do_generic_redirect(struct net_device * dev,struct sk_buff * skb,struct xdp_buff * xdp,struct bpf_prog * xdp_prog)4097 int xdp_do_generic_redirect(struct net_device *dev, struct sk_buff *skb,
4098 			    struct xdp_buff *xdp, struct bpf_prog *xdp_prog)
4099 {
4100 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4101 	enum bpf_map_type map_type = ri->map_type;
4102 	void *fwd = ri->tgt_value;
4103 	u32 map_id = ri->map_id;
4104 	int err;
4105 
4106 	ri->map_id = 0; /* Valid map id idr range: [1,INT_MAX[ */
4107 	ri->map_type = BPF_MAP_TYPE_UNSPEC;
4108 
4109 	if (map_type == BPF_MAP_TYPE_UNSPEC && map_id == INT_MAX) {
4110 		fwd = dev_get_by_index_rcu(dev_net(dev), ri->tgt_index);
4111 		if (unlikely(!fwd)) {
4112 			err = -EINVAL;
4113 			goto err;
4114 		}
4115 
4116 		err = xdp_ok_fwd_dev(fwd, skb->len);
4117 		if (unlikely(err))
4118 			goto err;
4119 
4120 		skb->dev = fwd;
4121 		_trace_xdp_redirect(dev, xdp_prog, ri->tgt_index);
4122 		generic_xdp_tx(skb, xdp_prog);
4123 		return 0;
4124 	}
4125 
4126 	return xdp_do_generic_redirect_map(dev, skb, xdp, xdp_prog, fwd, map_type, map_id);
4127 err:
4128 	_trace_xdp_redirect_err(dev, xdp_prog, ri->tgt_index, err);
4129 	return err;
4130 }
4131 
BPF_CALL_2(bpf_xdp_redirect,u32,ifindex,u64,flags)4132 BPF_CALL_2(bpf_xdp_redirect, u32, ifindex, u64, flags)
4133 {
4134 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4135 
4136 	if (unlikely(flags))
4137 		return XDP_ABORTED;
4138 
4139 	/* NB! Map type UNSPEC and map_id == INT_MAX (never generated
4140 	 * by map_idr) is used for ifindex based XDP redirect.
4141 	 */
4142 	ri->tgt_index = ifindex;
4143 	ri->map_id = INT_MAX;
4144 	ri->map_type = BPF_MAP_TYPE_UNSPEC;
4145 
4146 	return XDP_REDIRECT;
4147 }
4148 
4149 static const struct bpf_func_proto bpf_xdp_redirect_proto = {
4150 	.func           = bpf_xdp_redirect,
4151 	.gpl_only       = false,
4152 	.ret_type       = RET_INTEGER,
4153 	.arg1_type      = ARG_ANYTHING,
4154 	.arg2_type      = ARG_ANYTHING,
4155 };
4156 
BPF_CALL_3(bpf_xdp_redirect_map,struct bpf_map *,map,u32,ifindex,u64,flags)4157 BPF_CALL_3(bpf_xdp_redirect_map, struct bpf_map *, map, u32, ifindex,
4158 	   u64, flags)
4159 {
4160 	return map->ops->map_redirect(map, ifindex, flags);
4161 }
4162 
4163 static const struct bpf_func_proto bpf_xdp_redirect_map_proto = {
4164 	.func           = bpf_xdp_redirect_map,
4165 	.gpl_only       = false,
4166 	.ret_type       = RET_INTEGER,
4167 	.arg1_type      = ARG_CONST_MAP_PTR,
4168 	.arg2_type      = ARG_ANYTHING,
4169 	.arg3_type      = ARG_ANYTHING,
4170 };
4171 
bpf_skb_copy(void * dst_buff,const void * skb,unsigned long off,unsigned long len)4172 static unsigned long bpf_skb_copy(void *dst_buff, const void *skb,
4173 				  unsigned long off, unsigned long len)
4174 {
4175 	void *ptr = skb_header_pointer(skb, off, len, dst_buff);
4176 
4177 	if (unlikely(!ptr))
4178 		return len;
4179 	if (ptr != dst_buff)
4180 		memcpy(dst_buff, ptr, len);
4181 
4182 	return 0;
4183 }
4184 
BPF_CALL_5(bpf_skb_event_output,struct sk_buff *,skb,struct bpf_map *,map,u64,flags,void *,meta,u64,meta_size)4185 BPF_CALL_5(bpf_skb_event_output, struct sk_buff *, skb, struct bpf_map *, map,
4186 	   u64, flags, void *, meta, u64, meta_size)
4187 {
4188 	u64 skb_size = (flags & BPF_F_CTXLEN_MASK) >> 32;
4189 
4190 	if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
4191 		return -EINVAL;
4192 	if (unlikely(!skb || skb_size > skb->len))
4193 		return -EFAULT;
4194 
4195 	return bpf_event_output(map, flags, meta, meta_size, skb, skb_size,
4196 				bpf_skb_copy);
4197 }
4198 
4199 static const struct bpf_func_proto bpf_skb_event_output_proto = {
4200 	.func		= bpf_skb_event_output,
4201 	.gpl_only	= true,
4202 	.ret_type	= RET_INTEGER,
4203 	.arg1_type	= ARG_PTR_TO_CTX,
4204 	.arg2_type	= ARG_CONST_MAP_PTR,
4205 	.arg3_type	= ARG_ANYTHING,
4206 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
4207 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
4208 };
4209 
4210 BTF_ID_LIST_SINGLE(bpf_skb_output_btf_ids, struct, sk_buff)
4211 
4212 const struct bpf_func_proto bpf_skb_output_proto = {
4213 	.func		= bpf_skb_event_output,
4214 	.gpl_only	= true,
4215 	.ret_type	= RET_INTEGER,
4216 	.arg1_type	= ARG_PTR_TO_BTF_ID,
4217 	.arg1_btf_id	= &bpf_skb_output_btf_ids[0],
4218 	.arg2_type	= ARG_CONST_MAP_PTR,
4219 	.arg3_type	= ARG_ANYTHING,
4220 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
4221 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
4222 };
4223 
bpf_tunnel_key_af(u64 flags)4224 static unsigned short bpf_tunnel_key_af(u64 flags)
4225 {
4226 	return flags & BPF_F_TUNINFO_IPV6 ? AF_INET6 : AF_INET;
4227 }
4228 
BPF_CALL_4(bpf_skb_get_tunnel_key,struct sk_buff *,skb,struct bpf_tunnel_key *,to,u32,size,u64,flags)4229 BPF_CALL_4(bpf_skb_get_tunnel_key, struct sk_buff *, skb, struct bpf_tunnel_key *, to,
4230 	   u32, size, u64, flags)
4231 {
4232 	const struct ip_tunnel_info *info = skb_tunnel_info(skb);
4233 	u8 compat[sizeof(struct bpf_tunnel_key)];
4234 	void *to_orig = to;
4235 	int err;
4236 
4237 	if (unlikely(!info || (flags & ~(BPF_F_TUNINFO_IPV6)))) {
4238 		err = -EINVAL;
4239 		goto err_clear;
4240 	}
4241 	if (ip_tunnel_info_af(info) != bpf_tunnel_key_af(flags)) {
4242 		err = -EPROTO;
4243 		goto err_clear;
4244 	}
4245 	if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
4246 		err = -EINVAL;
4247 		switch (size) {
4248 		case offsetof(struct bpf_tunnel_key, tunnel_label):
4249 		case offsetof(struct bpf_tunnel_key, tunnel_ext):
4250 			goto set_compat;
4251 		case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
4252 			/* Fixup deprecated structure layouts here, so we have
4253 			 * a common path later on.
4254 			 */
4255 			if (ip_tunnel_info_af(info) != AF_INET)
4256 				goto err_clear;
4257 set_compat:
4258 			to = (struct bpf_tunnel_key *)compat;
4259 			break;
4260 		default:
4261 			goto err_clear;
4262 		}
4263 	}
4264 
4265 	to->tunnel_id = be64_to_cpu(info->key.tun_id);
4266 	to->tunnel_tos = info->key.tos;
4267 	to->tunnel_ttl = info->key.ttl;
4268 	to->tunnel_ext = 0;
4269 
4270 	if (flags & BPF_F_TUNINFO_IPV6) {
4271 		memcpy(to->remote_ipv6, &info->key.u.ipv6.src,
4272 		       sizeof(to->remote_ipv6));
4273 		to->tunnel_label = be32_to_cpu(info->key.label);
4274 	} else {
4275 		to->remote_ipv4 = be32_to_cpu(info->key.u.ipv4.src);
4276 		memset(&to->remote_ipv6[1], 0, sizeof(__u32) * 3);
4277 		to->tunnel_label = 0;
4278 	}
4279 
4280 	if (unlikely(size != sizeof(struct bpf_tunnel_key)))
4281 		memcpy(to_orig, to, size);
4282 
4283 	return 0;
4284 err_clear:
4285 	memset(to_orig, 0, size);
4286 	return err;
4287 }
4288 
4289 static const struct bpf_func_proto bpf_skb_get_tunnel_key_proto = {
4290 	.func		= bpf_skb_get_tunnel_key,
4291 	.gpl_only	= false,
4292 	.ret_type	= RET_INTEGER,
4293 	.arg1_type	= ARG_PTR_TO_CTX,
4294 	.arg2_type	= ARG_PTR_TO_UNINIT_MEM,
4295 	.arg3_type	= ARG_CONST_SIZE,
4296 	.arg4_type	= ARG_ANYTHING,
4297 };
4298 
BPF_CALL_3(bpf_skb_get_tunnel_opt,struct sk_buff *,skb,u8 *,to,u32,size)4299 BPF_CALL_3(bpf_skb_get_tunnel_opt, struct sk_buff *, skb, u8 *, to, u32, size)
4300 {
4301 	const struct ip_tunnel_info *info = skb_tunnel_info(skb);
4302 	int err;
4303 
4304 	if (unlikely(!info ||
4305 		     !(info->key.tun_flags & TUNNEL_OPTIONS_PRESENT))) {
4306 		err = -ENOENT;
4307 		goto err_clear;
4308 	}
4309 	if (unlikely(size < info->options_len)) {
4310 		err = -ENOMEM;
4311 		goto err_clear;
4312 	}
4313 
4314 	ip_tunnel_info_opts_get(to, info);
4315 	if (size > info->options_len)
4316 		memset(to + info->options_len, 0, size - info->options_len);
4317 
4318 	return info->options_len;
4319 err_clear:
4320 	memset(to, 0, size);
4321 	return err;
4322 }
4323 
4324 static const struct bpf_func_proto bpf_skb_get_tunnel_opt_proto = {
4325 	.func		= bpf_skb_get_tunnel_opt,
4326 	.gpl_only	= false,
4327 	.ret_type	= RET_INTEGER,
4328 	.arg1_type	= ARG_PTR_TO_CTX,
4329 	.arg2_type	= ARG_PTR_TO_UNINIT_MEM,
4330 	.arg3_type	= ARG_CONST_SIZE,
4331 };
4332 
4333 static struct metadata_dst __percpu *md_dst;
4334 
BPF_CALL_4(bpf_skb_set_tunnel_key,struct sk_buff *,skb,const struct bpf_tunnel_key *,from,u32,size,u64,flags)4335 BPF_CALL_4(bpf_skb_set_tunnel_key, struct sk_buff *, skb,
4336 	   const struct bpf_tunnel_key *, from, u32, size, u64, flags)
4337 {
4338 	struct metadata_dst *md = this_cpu_ptr(md_dst);
4339 	u8 compat[sizeof(struct bpf_tunnel_key)];
4340 	struct ip_tunnel_info *info;
4341 
4342 	if (unlikely(flags & ~(BPF_F_TUNINFO_IPV6 | BPF_F_ZERO_CSUM_TX |
4343 			       BPF_F_DONT_FRAGMENT | BPF_F_SEQ_NUMBER)))
4344 		return -EINVAL;
4345 	if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
4346 		switch (size) {
4347 		case offsetof(struct bpf_tunnel_key, tunnel_label):
4348 		case offsetof(struct bpf_tunnel_key, tunnel_ext):
4349 		case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
4350 			/* Fixup deprecated structure layouts here, so we have
4351 			 * a common path later on.
4352 			 */
4353 			memcpy(compat, from, size);
4354 			memset(compat + size, 0, sizeof(compat) - size);
4355 			from = (const struct bpf_tunnel_key *) compat;
4356 			break;
4357 		default:
4358 			return -EINVAL;
4359 		}
4360 	}
4361 	if (unlikely((!(flags & BPF_F_TUNINFO_IPV6) && from->tunnel_label) ||
4362 		     from->tunnel_ext))
4363 		return -EINVAL;
4364 
4365 	skb_dst_drop(skb);
4366 	dst_hold((struct dst_entry *) md);
4367 	skb_dst_set(skb, (struct dst_entry *) md);
4368 
4369 	info = &md->u.tun_info;
4370 	memset(info, 0, sizeof(*info));
4371 	info->mode = IP_TUNNEL_INFO_TX;
4372 
4373 	info->key.tun_flags = TUNNEL_KEY | TUNNEL_CSUM | TUNNEL_NOCACHE;
4374 	if (flags & BPF_F_DONT_FRAGMENT)
4375 		info->key.tun_flags |= TUNNEL_DONT_FRAGMENT;
4376 	if (flags & BPF_F_ZERO_CSUM_TX)
4377 		info->key.tun_flags &= ~TUNNEL_CSUM;
4378 	if (flags & BPF_F_SEQ_NUMBER)
4379 		info->key.tun_flags |= TUNNEL_SEQ;
4380 
4381 	info->key.tun_id = cpu_to_be64(from->tunnel_id);
4382 	info->key.tos = from->tunnel_tos;
4383 	info->key.ttl = from->tunnel_ttl;
4384 
4385 	if (flags & BPF_F_TUNINFO_IPV6) {
4386 		info->mode |= IP_TUNNEL_INFO_IPV6;
4387 		memcpy(&info->key.u.ipv6.dst, from->remote_ipv6,
4388 		       sizeof(from->remote_ipv6));
4389 		info->key.label = cpu_to_be32(from->tunnel_label) &
4390 				  IPV6_FLOWLABEL_MASK;
4391 	} else {
4392 		info->key.u.ipv4.dst = cpu_to_be32(from->remote_ipv4);
4393 	}
4394 
4395 	return 0;
4396 }
4397 
4398 static const struct bpf_func_proto bpf_skb_set_tunnel_key_proto = {
4399 	.func		= bpf_skb_set_tunnel_key,
4400 	.gpl_only	= false,
4401 	.ret_type	= RET_INTEGER,
4402 	.arg1_type	= ARG_PTR_TO_CTX,
4403 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
4404 	.arg3_type	= ARG_CONST_SIZE,
4405 	.arg4_type	= ARG_ANYTHING,
4406 };
4407 
BPF_CALL_3(bpf_skb_set_tunnel_opt,struct sk_buff *,skb,const u8 *,from,u32,size)4408 BPF_CALL_3(bpf_skb_set_tunnel_opt, struct sk_buff *, skb,
4409 	   const u8 *, from, u32, size)
4410 {
4411 	struct ip_tunnel_info *info = skb_tunnel_info(skb);
4412 	const struct metadata_dst *md = this_cpu_ptr(md_dst);
4413 
4414 	if (unlikely(info != &md->u.tun_info || (size & (sizeof(u32) - 1))))
4415 		return -EINVAL;
4416 	if (unlikely(size > IP_TUNNEL_OPTS_MAX))
4417 		return -ENOMEM;
4418 
4419 	ip_tunnel_info_opts_set(info, from, size, TUNNEL_OPTIONS_PRESENT);
4420 
4421 	return 0;
4422 }
4423 
4424 static const struct bpf_func_proto bpf_skb_set_tunnel_opt_proto = {
4425 	.func		= bpf_skb_set_tunnel_opt,
4426 	.gpl_only	= false,
4427 	.ret_type	= RET_INTEGER,
4428 	.arg1_type	= ARG_PTR_TO_CTX,
4429 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
4430 	.arg3_type	= ARG_CONST_SIZE,
4431 };
4432 
4433 static const struct bpf_func_proto *
bpf_get_skb_set_tunnel_proto(enum bpf_func_id which)4434 bpf_get_skb_set_tunnel_proto(enum bpf_func_id which)
4435 {
4436 	if (!md_dst) {
4437 		struct metadata_dst __percpu *tmp;
4438 
4439 		tmp = metadata_dst_alloc_percpu(IP_TUNNEL_OPTS_MAX,
4440 						METADATA_IP_TUNNEL,
4441 						GFP_KERNEL);
4442 		if (!tmp)
4443 			return NULL;
4444 		if (cmpxchg(&md_dst, NULL, tmp))
4445 			metadata_dst_free_percpu(tmp);
4446 	}
4447 
4448 	switch (which) {
4449 	case BPF_FUNC_skb_set_tunnel_key:
4450 		return &bpf_skb_set_tunnel_key_proto;
4451 	case BPF_FUNC_skb_set_tunnel_opt:
4452 		return &bpf_skb_set_tunnel_opt_proto;
4453 	default:
4454 		return NULL;
4455 	}
4456 }
4457 
BPF_CALL_3(bpf_skb_under_cgroup,struct sk_buff *,skb,struct bpf_map *,map,u32,idx)4458 BPF_CALL_3(bpf_skb_under_cgroup, struct sk_buff *, skb, struct bpf_map *, map,
4459 	   u32, idx)
4460 {
4461 	struct bpf_array *array = container_of(map, struct bpf_array, map);
4462 	struct cgroup *cgrp;
4463 	struct sock *sk;
4464 
4465 	sk = skb_to_full_sk(skb);
4466 	if (!sk || !sk_fullsock(sk))
4467 		return -ENOENT;
4468 	if (unlikely(idx >= array->map.max_entries))
4469 		return -E2BIG;
4470 
4471 	cgrp = READ_ONCE(array->ptrs[idx]);
4472 	if (unlikely(!cgrp))
4473 		return -EAGAIN;
4474 
4475 	return sk_under_cgroup_hierarchy(sk, cgrp);
4476 }
4477 
4478 static const struct bpf_func_proto bpf_skb_under_cgroup_proto = {
4479 	.func		= bpf_skb_under_cgroup,
4480 	.gpl_only	= false,
4481 	.ret_type	= RET_INTEGER,
4482 	.arg1_type	= ARG_PTR_TO_CTX,
4483 	.arg2_type	= ARG_CONST_MAP_PTR,
4484 	.arg3_type	= ARG_ANYTHING,
4485 };
4486 
4487 #ifdef CONFIG_SOCK_CGROUP_DATA
__bpf_sk_cgroup_id(struct sock * sk)4488 static inline u64 __bpf_sk_cgroup_id(struct sock *sk)
4489 {
4490 	struct cgroup *cgrp;
4491 
4492 	sk = sk_to_full_sk(sk);
4493 	if (!sk || !sk_fullsock(sk))
4494 		return 0;
4495 
4496 	cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
4497 	return cgroup_id(cgrp);
4498 }
4499 
BPF_CALL_1(bpf_skb_cgroup_id,const struct sk_buff *,skb)4500 BPF_CALL_1(bpf_skb_cgroup_id, const struct sk_buff *, skb)
4501 {
4502 	return __bpf_sk_cgroup_id(skb->sk);
4503 }
4504 
4505 static const struct bpf_func_proto bpf_skb_cgroup_id_proto = {
4506 	.func           = bpf_skb_cgroup_id,
4507 	.gpl_only       = false,
4508 	.ret_type       = RET_INTEGER,
4509 	.arg1_type      = ARG_PTR_TO_CTX,
4510 };
4511 
__bpf_sk_ancestor_cgroup_id(struct sock * sk,int ancestor_level)4512 static inline u64 __bpf_sk_ancestor_cgroup_id(struct sock *sk,
4513 					      int ancestor_level)
4514 {
4515 	struct cgroup *ancestor;
4516 	struct cgroup *cgrp;
4517 
4518 	sk = sk_to_full_sk(sk);
4519 	if (!sk || !sk_fullsock(sk))
4520 		return 0;
4521 
4522 	cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
4523 	ancestor = cgroup_ancestor(cgrp, ancestor_level);
4524 	if (!ancestor)
4525 		return 0;
4526 
4527 	return cgroup_id(ancestor);
4528 }
4529 
BPF_CALL_2(bpf_skb_ancestor_cgroup_id,const struct sk_buff *,skb,int,ancestor_level)4530 BPF_CALL_2(bpf_skb_ancestor_cgroup_id, const struct sk_buff *, skb, int,
4531 	   ancestor_level)
4532 {
4533 	return __bpf_sk_ancestor_cgroup_id(skb->sk, ancestor_level);
4534 }
4535 
4536 static const struct bpf_func_proto bpf_skb_ancestor_cgroup_id_proto = {
4537 	.func           = bpf_skb_ancestor_cgroup_id,
4538 	.gpl_only       = false,
4539 	.ret_type       = RET_INTEGER,
4540 	.arg1_type      = ARG_PTR_TO_CTX,
4541 	.arg2_type      = ARG_ANYTHING,
4542 };
4543 
BPF_CALL_1(bpf_sk_cgroup_id,struct sock *,sk)4544 BPF_CALL_1(bpf_sk_cgroup_id, struct sock *, sk)
4545 {
4546 	return __bpf_sk_cgroup_id(sk);
4547 }
4548 
4549 static const struct bpf_func_proto bpf_sk_cgroup_id_proto = {
4550 	.func           = bpf_sk_cgroup_id,
4551 	.gpl_only       = false,
4552 	.ret_type       = RET_INTEGER,
4553 	.arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
4554 };
4555 
BPF_CALL_2(bpf_sk_ancestor_cgroup_id,struct sock *,sk,int,ancestor_level)4556 BPF_CALL_2(bpf_sk_ancestor_cgroup_id, struct sock *, sk, int, ancestor_level)
4557 {
4558 	return __bpf_sk_ancestor_cgroup_id(sk, ancestor_level);
4559 }
4560 
4561 static const struct bpf_func_proto bpf_sk_ancestor_cgroup_id_proto = {
4562 	.func           = bpf_sk_ancestor_cgroup_id,
4563 	.gpl_only       = false,
4564 	.ret_type       = RET_INTEGER,
4565 	.arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
4566 	.arg2_type      = ARG_ANYTHING,
4567 };
4568 #endif
4569 
bpf_xdp_copy(void * dst_buff,const void * src_buff,unsigned long off,unsigned long len)4570 static unsigned long bpf_xdp_copy(void *dst_buff, const void *src_buff,
4571 				  unsigned long off, unsigned long len)
4572 {
4573 	memcpy(dst_buff, src_buff + off, len);
4574 	return 0;
4575 }
4576 
BPF_CALL_5(bpf_xdp_event_output,struct xdp_buff *,xdp,struct bpf_map *,map,u64,flags,void *,meta,u64,meta_size)4577 BPF_CALL_5(bpf_xdp_event_output, struct xdp_buff *, xdp, struct bpf_map *, map,
4578 	   u64, flags, void *, meta, u64, meta_size)
4579 {
4580 	u64 xdp_size = (flags & BPF_F_CTXLEN_MASK) >> 32;
4581 
4582 	if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
4583 		return -EINVAL;
4584 	if (unlikely(!xdp ||
4585 		     xdp_size > (unsigned long)(xdp->data_end - xdp->data)))
4586 		return -EFAULT;
4587 
4588 	return bpf_event_output(map, flags, meta, meta_size, xdp->data,
4589 				xdp_size, bpf_xdp_copy);
4590 }
4591 
4592 static const struct bpf_func_proto bpf_xdp_event_output_proto = {
4593 	.func		= bpf_xdp_event_output,
4594 	.gpl_only	= true,
4595 	.ret_type	= RET_INTEGER,
4596 	.arg1_type	= ARG_PTR_TO_CTX,
4597 	.arg2_type	= ARG_CONST_MAP_PTR,
4598 	.arg3_type	= ARG_ANYTHING,
4599 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
4600 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
4601 };
4602 
4603 BTF_ID_LIST_SINGLE(bpf_xdp_output_btf_ids, struct, xdp_buff)
4604 
4605 const struct bpf_func_proto bpf_xdp_output_proto = {
4606 	.func		= bpf_xdp_event_output,
4607 	.gpl_only	= true,
4608 	.ret_type	= RET_INTEGER,
4609 	.arg1_type	= ARG_PTR_TO_BTF_ID,
4610 	.arg1_btf_id	= &bpf_xdp_output_btf_ids[0],
4611 	.arg2_type	= ARG_CONST_MAP_PTR,
4612 	.arg3_type	= ARG_ANYTHING,
4613 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
4614 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
4615 };
4616 
BPF_CALL_1(bpf_get_socket_cookie,struct sk_buff *,skb)4617 BPF_CALL_1(bpf_get_socket_cookie, struct sk_buff *, skb)
4618 {
4619 	return skb->sk ? __sock_gen_cookie(skb->sk) : 0;
4620 }
4621 
4622 static const struct bpf_func_proto bpf_get_socket_cookie_proto = {
4623 	.func           = bpf_get_socket_cookie,
4624 	.gpl_only       = false,
4625 	.ret_type       = RET_INTEGER,
4626 	.arg1_type      = ARG_PTR_TO_CTX,
4627 };
4628 
BPF_CALL_1(bpf_get_socket_cookie_sock_addr,struct bpf_sock_addr_kern *,ctx)4629 BPF_CALL_1(bpf_get_socket_cookie_sock_addr, struct bpf_sock_addr_kern *, ctx)
4630 {
4631 	return __sock_gen_cookie(ctx->sk);
4632 }
4633 
4634 static const struct bpf_func_proto bpf_get_socket_cookie_sock_addr_proto = {
4635 	.func		= bpf_get_socket_cookie_sock_addr,
4636 	.gpl_only	= false,
4637 	.ret_type	= RET_INTEGER,
4638 	.arg1_type	= ARG_PTR_TO_CTX,
4639 };
4640 
BPF_CALL_1(bpf_get_socket_cookie_sock,struct sock *,ctx)4641 BPF_CALL_1(bpf_get_socket_cookie_sock, struct sock *, ctx)
4642 {
4643 	return __sock_gen_cookie(ctx);
4644 }
4645 
4646 static const struct bpf_func_proto bpf_get_socket_cookie_sock_proto = {
4647 	.func		= bpf_get_socket_cookie_sock,
4648 	.gpl_only	= false,
4649 	.ret_type	= RET_INTEGER,
4650 	.arg1_type	= ARG_PTR_TO_CTX,
4651 };
4652 
BPF_CALL_1(bpf_get_socket_ptr_cookie,struct sock *,sk)4653 BPF_CALL_1(bpf_get_socket_ptr_cookie, struct sock *, sk)
4654 {
4655 	return sk ? sock_gen_cookie(sk) : 0;
4656 }
4657 
4658 const struct bpf_func_proto bpf_get_socket_ptr_cookie_proto = {
4659 	.func		= bpf_get_socket_ptr_cookie,
4660 	.gpl_only	= false,
4661 	.ret_type	= RET_INTEGER,
4662 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
4663 };
4664 
BPF_CALL_1(bpf_get_socket_cookie_sock_ops,struct bpf_sock_ops_kern *,ctx)4665 BPF_CALL_1(bpf_get_socket_cookie_sock_ops, struct bpf_sock_ops_kern *, ctx)
4666 {
4667 	return __sock_gen_cookie(ctx->sk);
4668 }
4669 
4670 static const struct bpf_func_proto bpf_get_socket_cookie_sock_ops_proto = {
4671 	.func		= bpf_get_socket_cookie_sock_ops,
4672 	.gpl_only	= false,
4673 	.ret_type	= RET_INTEGER,
4674 	.arg1_type	= ARG_PTR_TO_CTX,
4675 };
4676 
__bpf_get_netns_cookie(struct sock * sk)4677 static u64 __bpf_get_netns_cookie(struct sock *sk)
4678 {
4679 	const struct net *net = sk ? sock_net(sk) : &init_net;
4680 
4681 	return net->net_cookie;
4682 }
4683 
BPF_CALL_1(bpf_get_netns_cookie_sock,struct sock *,ctx)4684 BPF_CALL_1(bpf_get_netns_cookie_sock, struct sock *, ctx)
4685 {
4686 	return __bpf_get_netns_cookie(ctx);
4687 }
4688 
4689 static const struct bpf_func_proto bpf_get_netns_cookie_sock_proto = {
4690 	.func		= bpf_get_netns_cookie_sock,
4691 	.gpl_only	= false,
4692 	.ret_type	= RET_INTEGER,
4693 	.arg1_type	= ARG_PTR_TO_CTX_OR_NULL,
4694 };
4695 
BPF_CALL_1(bpf_get_netns_cookie_sock_addr,struct bpf_sock_addr_kern *,ctx)4696 BPF_CALL_1(bpf_get_netns_cookie_sock_addr, struct bpf_sock_addr_kern *, ctx)
4697 {
4698 	return __bpf_get_netns_cookie(ctx ? ctx->sk : NULL);
4699 }
4700 
4701 static const struct bpf_func_proto bpf_get_netns_cookie_sock_addr_proto = {
4702 	.func		= bpf_get_netns_cookie_sock_addr,
4703 	.gpl_only	= false,
4704 	.ret_type	= RET_INTEGER,
4705 	.arg1_type	= ARG_PTR_TO_CTX_OR_NULL,
4706 };
4707 
BPF_CALL_1(bpf_get_netns_cookie_sock_ops,struct bpf_sock_ops_kern *,ctx)4708 BPF_CALL_1(bpf_get_netns_cookie_sock_ops, struct bpf_sock_ops_kern *, ctx)
4709 {
4710 	return __bpf_get_netns_cookie(ctx ? ctx->sk : NULL);
4711 }
4712 
4713 static const struct bpf_func_proto bpf_get_netns_cookie_sock_ops_proto = {
4714 	.func		= bpf_get_netns_cookie_sock_ops,
4715 	.gpl_only	= false,
4716 	.ret_type	= RET_INTEGER,
4717 	.arg1_type	= ARG_PTR_TO_CTX_OR_NULL,
4718 };
4719 
BPF_CALL_1(bpf_get_netns_cookie_sk_msg,struct sk_msg *,ctx)4720 BPF_CALL_1(bpf_get_netns_cookie_sk_msg, struct sk_msg *, ctx)
4721 {
4722 	return __bpf_get_netns_cookie(ctx ? ctx->sk : NULL);
4723 }
4724 
4725 static const struct bpf_func_proto bpf_get_netns_cookie_sk_msg_proto = {
4726 	.func		= bpf_get_netns_cookie_sk_msg,
4727 	.gpl_only	= false,
4728 	.ret_type	= RET_INTEGER,
4729 	.arg1_type	= ARG_PTR_TO_CTX_OR_NULL,
4730 };
4731 
BPF_CALL_1(bpf_get_socket_uid,struct sk_buff *,skb)4732 BPF_CALL_1(bpf_get_socket_uid, struct sk_buff *, skb)
4733 {
4734 	struct sock *sk = sk_to_full_sk(skb->sk);
4735 	kuid_t kuid;
4736 
4737 	if (!sk || !sk_fullsock(sk))
4738 		return overflowuid;
4739 	kuid = sock_net_uid(sock_net(sk), sk);
4740 	return from_kuid_munged(sock_net(sk)->user_ns, kuid);
4741 }
4742 
4743 static const struct bpf_func_proto bpf_get_socket_uid_proto = {
4744 	.func           = bpf_get_socket_uid,
4745 	.gpl_only       = false,
4746 	.ret_type       = RET_INTEGER,
4747 	.arg1_type      = ARG_PTR_TO_CTX,
4748 };
4749 
_bpf_setsockopt(struct sock * sk,int level,int optname,char * optval,int optlen)4750 static int _bpf_setsockopt(struct sock *sk, int level, int optname,
4751 			   char *optval, int optlen)
4752 {
4753 	char devname[IFNAMSIZ];
4754 	int val, valbool;
4755 	struct net *net;
4756 	int ifindex;
4757 	int ret = 0;
4758 
4759 	if (!sk_fullsock(sk))
4760 		return -EINVAL;
4761 
4762 	sock_owned_by_me(sk);
4763 
4764 	if (level == SOL_SOCKET) {
4765 		if (optlen != sizeof(int) && optname != SO_BINDTODEVICE)
4766 			return -EINVAL;
4767 		val = *((int *)optval);
4768 		valbool = val ? 1 : 0;
4769 
4770 		/* Only some socketops are supported */
4771 		switch (optname) {
4772 		case SO_RCVBUF:
4773 			val = min_t(u32, val, READ_ONCE(sysctl_rmem_max));
4774 			val = min_t(int, val, INT_MAX / 2);
4775 			sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
4776 			WRITE_ONCE(sk->sk_rcvbuf,
4777 				   max_t(int, val * 2, SOCK_MIN_RCVBUF));
4778 			break;
4779 		case SO_SNDBUF:
4780 			val = min_t(u32, val, READ_ONCE(sysctl_wmem_max));
4781 			val = min_t(int, val, INT_MAX / 2);
4782 			sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
4783 			WRITE_ONCE(sk->sk_sndbuf,
4784 				   max_t(int, val * 2, SOCK_MIN_SNDBUF));
4785 			break;
4786 		case SO_MAX_PACING_RATE: /* 32bit version */
4787 			if (val != ~0U)
4788 				cmpxchg(&sk->sk_pacing_status,
4789 					SK_PACING_NONE,
4790 					SK_PACING_NEEDED);
4791 			sk->sk_max_pacing_rate = (val == ~0U) ?
4792 						 ~0UL : (unsigned int)val;
4793 			sk->sk_pacing_rate = min(sk->sk_pacing_rate,
4794 						 sk->sk_max_pacing_rate);
4795 			break;
4796 		case SO_PRIORITY:
4797 			sk->sk_priority = val;
4798 			break;
4799 		case SO_RCVLOWAT:
4800 			if (val < 0)
4801 				val = INT_MAX;
4802 			WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
4803 			break;
4804 		case SO_MARK:
4805 			if (sk->sk_mark != val) {
4806 				sk->sk_mark = val;
4807 				sk_dst_reset(sk);
4808 			}
4809 			break;
4810 		case SO_BINDTODEVICE:
4811 			optlen = min_t(long, optlen, IFNAMSIZ - 1);
4812 			strncpy(devname, optval, optlen);
4813 			devname[optlen] = 0;
4814 
4815 			ifindex = 0;
4816 			if (devname[0] != '\0') {
4817 				struct net_device *dev;
4818 
4819 				ret = -ENODEV;
4820 
4821 				net = sock_net(sk);
4822 				dev = dev_get_by_name(net, devname);
4823 				if (!dev)
4824 					break;
4825 				ifindex = dev->ifindex;
4826 				dev_put(dev);
4827 			}
4828 			fallthrough;
4829 		case SO_BINDTOIFINDEX:
4830 			if (optname == SO_BINDTOIFINDEX)
4831 				ifindex = val;
4832 			ret = sock_bindtoindex(sk, ifindex, false);
4833 			break;
4834 		case SO_KEEPALIVE:
4835 			if (sk->sk_prot->keepalive)
4836 				sk->sk_prot->keepalive(sk, valbool);
4837 			sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
4838 			break;
4839 		case SO_REUSEPORT:
4840 			sk->sk_reuseport = valbool;
4841 			break;
4842 		default:
4843 			ret = -EINVAL;
4844 		}
4845 #ifdef CONFIG_INET
4846 	} else if (level == SOL_IP) {
4847 		if (optlen != sizeof(int) || sk->sk_family != AF_INET)
4848 			return -EINVAL;
4849 
4850 		val = *((int *)optval);
4851 		/* Only some options are supported */
4852 		switch (optname) {
4853 		case IP_TOS:
4854 			if (val < -1 || val > 0xff) {
4855 				ret = -EINVAL;
4856 			} else {
4857 				struct inet_sock *inet = inet_sk(sk);
4858 
4859 				if (val == -1)
4860 					val = 0;
4861 				inet->tos = val;
4862 			}
4863 			break;
4864 		default:
4865 			ret = -EINVAL;
4866 		}
4867 #if IS_ENABLED(CONFIG_IPV6)
4868 	} else if (level == SOL_IPV6) {
4869 		if (optlen != sizeof(int) || sk->sk_family != AF_INET6)
4870 			return -EINVAL;
4871 
4872 		val = *((int *)optval);
4873 		/* Only some options are supported */
4874 		switch (optname) {
4875 		case IPV6_TCLASS:
4876 			if (val < -1 || val > 0xff) {
4877 				ret = -EINVAL;
4878 			} else {
4879 				struct ipv6_pinfo *np = inet6_sk(sk);
4880 
4881 				if (val == -1)
4882 					val = 0;
4883 				np->tclass = val;
4884 			}
4885 			break;
4886 		default:
4887 			ret = -EINVAL;
4888 		}
4889 #endif
4890 	} else if (level == SOL_TCP &&
4891 		   sk->sk_prot->setsockopt == tcp_setsockopt) {
4892 		if (optname == TCP_CONGESTION) {
4893 			char name[TCP_CA_NAME_MAX];
4894 
4895 			strncpy(name, optval, min_t(long, optlen,
4896 						    TCP_CA_NAME_MAX-1));
4897 			name[TCP_CA_NAME_MAX-1] = 0;
4898 			ret = tcp_set_congestion_control(sk, name, false, true);
4899 		} else {
4900 			struct inet_connection_sock *icsk = inet_csk(sk);
4901 			struct tcp_sock *tp = tcp_sk(sk);
4902 			unsigned long timeout;
4903 
4904 			if (optlen != sizeof(int))
4905 				return -EINVAL;
4906 
4907 			val = *((int *)optval);
4908 			/* Only some options are supported */
4909 			switch (optname) {
4910 			case TCP_BPF_IW:
4911 				if (val <= 0 || tp->data_segs_out > tp->syn_data)
4912 					ret = -EINVAL;
4913 				else
4914 					tcp_snd_cwnd_set(tp, val);
4915 				break;
4916 			case TCP_BPF_SNDCWND_CLAMP:
4917 				if (val <= 0) {
4918 					ret = -EINVAL;
4919 				} else {
4920 					tp->snd_cwnd_clamp = val;
4921 					tp->snd_ssthresh = val;
4922 				}
4923 				break;
4924 			case TCP_BPF_DELACK_MAX:
4925 				timeout = usecs_to_jiffies(val);
4926 				if (timeout > TCP_DELACK_MAX ||
4927 				    timeout < TCP_TIMEOUT_MIN)
4928 					return -EINVAL;
4929 				inet_csk(sk)->icsk_delack_max = timeout;
4930 				break;
4931 			case TCP_BPF_RTO_MIN:
4932 				timeout = usecs_to_jiffies(val);
4933 				if (timeout > TCP_RTO_MIN ||
4934 				    timeout < TCP_TIMEOUT_MIN)
4935 					return -EINVAL;
4936 				inet_csk(sk)->icsk_rto_min = timeout;
4937 				break;
4938 			case TCP_SAVE_SYN:
4939 				if (val < 0 || val > 1)
4940 					ret = -EINVAL;
4941 				else
4942 					tp->save_syn = val;
4943 				break;
4944 			case TCP_KEEPIDLE:
4945 				ret = tcp_sock_set_keepidle_locked(sk, val);
4946 				break;
4947 			case TCP_KEEPINTVL:
4948 				if (val < 1 || val > MAX_TCP_KEEPINTVL)
4949 					ret = -EINVAL;
4950 				else
4951 					tp->keepalive_intvl = val * HZ;
4952 				break;
4953 			case TCP_KEEPCNT:
4954 				if (val < 1 || val > MAX_TCP_KEEPCNT)
4955 					ret = -EINVAL;
4956 				else
4957 					tp->keepalive_probes = val;
4958 				break;
4959 			case TCP_SYNCNT:
4960 				if (val < 1 || val > MAX_TCP_SYNCNT)
4961 					ret = -EINVAL;
4962 				else
4963 					icsk->icsk_syn_retries = val;
4964 				break;
4965 			case TCP_USER_TIMEOUT:
4966 				if (val < 0)
4967 					ret = -EINVAL;
4968 				else
4969 					icsk->icsk_user_timeout = val;
4970 				break;
4971 			case TCP_NOTSENT_LOWAT:
4972 				tp->notsent_lowat = val;
4973 				sk->sk_write_space(sk);
4974 				break;
4975 			case TCP_WINDOW_CLAMP:
4976 				ret = tcp_set_window_clamp(sk, val);
4977 				break;
4978 			default:
4979 				ret = -EINVAL;
4980 			}
4981 		}
4982 #endif
4983 	} else {
4984 		ret = -EINVAL;
4985 	}
4986 	return ret;
4987 }
4988 
_bpf_getsockopt(struct sock * sk,int level,int optname,char * optval,int optlen)4989 static int _bpf_getsockopt(struct sock *sk, int level, int optname,
4990 			   char *optval, int optlen)
4991 {
4992 	if (!sk_fullsock(sk))
4993 		goto err_clear;
4994 
4995 	sock_owned_by_me(sk);
4996 
4997 	if (level == SOL_SOCKET) {
4998 		if (optlen != sizeof(int))
4999 			goto err_clear;
5000 
5001 		switch (optname) {
5002 		case SO_MARK:
5003 			*((int *)optval) = sk->sk_mark;
5004 			break;
5005 		case SO_PRIORITY:
5006 			*((int *)optval) = sk->sk_priority;
5007 			break;
5008 		case SO_BINDTOIFINDEX:
5009 			*((int *)optval) = sk->sk_bound_dev_if;
5010 			break;
5011 		case SO_REUSEPORT:
5012 			*((int *)optval) = sk->sk_reuseport;
5013 			break;
5014 		default:
5015 			goto err_clear;
5016 		}
5017 #ifdef CONFIG_INET
5018 	} else if (level == SOL_TCP && sk->sk_prot->getsockopt == tcp_getsockopt) {
5019 		struct inet_connection_sock *icsk;
5020 		struct tcp_sock *tp;
5021 
5022 		switch (optname) {
5023 		case TCP_CONGESTION:
5024 			icsk = inet_csk(sk);
5025 
5026 			if (!icsk->icsk_ca_ops || optlen <= 1)
5027 				goto err_clear;
5028 			strncpy(optval, icsk->icsk_ca_ops->name, optlen);
5029 			optval[optlen - 1] = 0;
5030 			break;
5031 		case TCP_SAVED_SYN:
5032 			tp = tcp_sk(sk);
5033 
5034 			if (optlen <= 0 || !tp->saved_syn ||
5035 			    optlen > tcp_saved_syn_len(tp->saved_syn))
5036 				goto err_clear;
5037 			memcpy(optval, tp->saved_syn->data, optlen);
5038 			break;
5039 		default:
5040 			goto err_clear;
5041 		}
5042 	} else if (level == SOL_IP) {
5043 		struct inet_sock *inet = inet_sk(sk);
5044 
5045 		if (optlen != sizeof(int) || sk->sk_family != AF_INET)
5046 			goto err_clear;
5047 
5048 		/* Only some options are supported */
5049 		switch (optname) {
5050 		case IP_TOS:
5051 			*((int *)optval) = (int)inet->tos;
5052 			break;
5053 		default:
5054 			goto err_clear;
5055 		}
5056 #if IS_ENABLED(CONFIG_IPV6)
5057 	} else if (level == SOL_IPV6) {
5058 		struct ipv6_pinfo *np = inet6_sk(sk);
5059 
5060 		if (optlen != sizeof(int) || sk->sk_family != AF_INET6)
5061 			goto err_clear;
5062 
5063 		/* Only some options are supported */
5064 		switch (optname) {
5065 		case IPV6_TCLASS:
5066 			*((int *)optval) = (int)np->tclass;
5067 			break;
5068 		default:
5069 			goto err_clear;
5070 		}
5071 #endif
5072 #endif
5073 	} else {
5074 		goto err_clear;
5075 	}
5076 	return 0;
5077 err_clear:
5078 	memset(optval, 0, optlen);
5079 	return -EINVAL;
5080 }
5081 
BPF_CALL_5(bpf_sk_setsockopt,struct sock *,sk,int,level,int,optname,char *,optval,int,optlen)5082 BPF_CALL_5(bpf_sk_setsockopt, struct sock *, sk, int, level,
5083 	   int, optname, char *, optval, int, optlen)
5084 {
5085 	if (level == SOL_TCP && optname == TCP_CONGESTION) {
5086 		if (optlen >= sizeof("cdg") - 1 &&
5087 		    !strncmp("cdg", optval, optlen))
5088 			return -ENOTSUPP;
5089 	}
5090 
5091 	return _bpf_setsockopt(sk, level, optname, optval, optlen);
5092 }
5093 
5094 const struct bpf_func_proto bpf_sk_setsockopt_proto = {
5095 	.func		= bpf_sk_setsockopt,
5096 	.gpl_only	= false,
5097 	.ret_type	= RET_INTEGER,
5098 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5099 	.arg2_type	= ARG_ANYTHING,
5100 	.arg3_type	= ARG_ANYTHING,
5101 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
5102 	.arg5_type	= ARG_CONST_SIZE,
5103 };
5104 
BPF_CALL_5(bpf_sk_getsockopt,struct sock *,sk,int,level,int,optname,char *,optval,int,optlen)5105 BPF_CALL_5(bpf_sk_getsockopt, struct sock *, sk, int, level,
5106 	   int, optname, char *, optval, int, optlen)
5107 {
5108 	return _bpf_getsockopt(sk, level, optname, optval, optlen);
5109 }
5110 
5111 const struct bpf_func_proto bpf_sk_getsockopt_proto = {
5112 	.func		= bpf_sk_getsockopt,
5113 	.gpl_only	= false,
5114 	.ret_type	= RET_INTEGER,
5115 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5116 	.arg2_type	= ARG_ANYTHING,
5117 	.arg3_type	= ARG_ANYTHING,
5118 	.arg4_type	= ARG_PTR_TO_UNINIT_MEM,
5119 	.arg5_type	= ARG_CONST_SIZE,
5120 };
5121 
BPF_CALL_5(bpf_sock_addr_setsockopt,struct bpf_sock_addr_kern *,ctx,int,level,int,optname,char *,optval,int,optlen)5122 BPF_CALL_5(bpf_sock_addr_setsockopt, struct bpf_sock_addr_kern *, ctx,
5123 	   int, level, int, optname, char *, optval, int, optlen)
5124 {
5125 	return _bpf_setsockopt(ctx->sk, level, optname, optval, optlen);
5126 }
5127 
5128 static const struct bpf_func_proto bpf_sock_addr_setsockopt_proto = {
5129 	.func		= bpf_sock_addr_setsockopt,
5130 	.gpl_only	= false,
5131 	.ret_type	= RET_INTEGER,
5132 	.arg1_type	= ARG_PTR_TO_CTX,
5133 	.arg2_type	= ARG_ANYTHING,
5134 	.arg3_type	= ARG_ANYTHING,
5135 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
5136 	.arg5_type	= ARG_CONST_SIZE,
5137 };
5138 
BPF_CALL_5(bpf_sock_addr_getsockopt,struct bpf_sock_addr_kern *,ctx,int,level,int,optname,char *,optval,int,optlen)5139 BPF_CALL_5(bpf_sock_addr_getsockopt, struct bpf_sock_addr_kern *, ctx,
5140 	   int, level, int, optname, char *, optval, int, optlen)
5141 {
5142 	return _bpf_getsockopt(ctx->sk, level, optname, optval, optlen);
5143 }
5144 
5145 static const struct bpf_func_proto bpf_sock_addr_getsockopt_proto = {
5146 	.func		= bpf_sock_addr_getsockopt,
5147 	.gpl_only	= false,
5148 	.ret_type	= RET_INTEGER,
5149 	.arg1_type	= ARG_PTR_TO_CTX,
5150 	.arg2_type	= ARG_ANYTHING,
5151 	.arg3_type	= ARG_ANYTHING,
5152 	.arg4_type	= ARG_PTR_TO_UNINIT_MEM,
5153 	.arg5_type	= ARG_CONST_SIZE,
5154 };
5155 
BPF_CALL_5(bpf_sock_ops_setsockopt,struct bpf_sock_ops_kern *,bpf_sock,int,level,int,optname,char *,optval,int,optlen)5156 BPF_CALL_5(bpf_sock_ops_setsockopt, struct bpf_sock_ops_kern *, bpf_sock,
5157 	   int, level, int, optname, char *, optval, int, optlen)
5158 {
5159 	return _bpf_setsockopt(bpf_sock->sk, level, optname, optval, optlen);
5160 }
5161 
5162 static const struct bpf_func_proto bpf_sock_ops_setsockopt_proto = {
5163 	.func		= bpf_sock_ops_setsockopt,
5164 	.gpl_only	= false,
5165 	.ret_type	= RET_INTEGER,
5166 	.arg1_type	= ARG_PTR_TO_CTX,
5167 	.arg2_type	= ARG_ANYTHING,
5168 	.arg3_type	= ARG_ANYTHING,
5169 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
5170 	.arg5_type	= ARG_CONST_SIZE,
5171 };
5172 
bpf_sock_ops_get_syn(struct bpf_sock_ops_kern * bpf_sock,int optname,const u8 ** start)5173 static int bpf_sock_ops_get_syn(struct bpf_sock_ops_kern *bpf_sock,
5174 				int optname, const u8 **start)
5175 {
5176 	struct sk_buff *syn_skb = bpf_sock->syn_skb;
5177 	const u8 *hdr_start;
5178 	int ret;
5179 
5180 	if (syn_skb) {
5181 		/* sk is a request_sock here */
5182 
5183 		if (optname == TCP_BPF_SYN) {
5184 			hdr_start = syn_skb->data;
5185 			ret = tcp_hdrlen(syn_skb);
5186 		} else if (optname == TCP_BPF_SYN_IP) {
5187 			hdr_start = skb_network_header(syn_skb);
5188 			ret = skb_network_header_len(syn_skb) +
5189 				tcp_hdrlen(syn_skb);
5190 		} else {
5191 			/* optname == TCP_BPF_SYN_MAC */
5192 			hdr_start = skb_mac_header(syn_skb);
5193 			ret = skb_mac_header_len(syn_skb) +
5194 				skb_network_header_len(syn_skb) +
5195 				tcp_hdrlen(syn_skb);
5196 		}
5197 	} else {
5198 		struct sock *sk = bpf_sock->sk;
5199 		struct saved_syn *saved_syn;
5200 
5201 		if (sk->sk_state == TCP_NEW_SYN_RECV)
5202 			/* synack retransmit. bpf_sock->syn_skb will
5203 			 * not be available.  It has to resort to
5204 			 * saved_syn (if it is saved).
5205 			 */
5206 			saved_syn = inet_reqsk(sk)->saved_syn;
5207 		else
5208 			saved_syn = tcp_sk(sk)->saved_syn;
5209 
5210 		if (!saved_syn)
5211 			return -ENOENT;
5212 
5213 		if (optname == TCP_BPF_SYN) {
5214 			hdr_start = saved_syn->data +
5215 				saved_syn->mac_hdrlen +
5216 				saved_syn->network_hdrlen;
5217 			ret = saved_syn->tcp_hdrlen;
5218 		} else if (optname == TCP_BPF_SYN_IP) {
5219 			hdr_start = saved_syn->data +
5220 				saved_syn->mac_hdrlen;
5221 			ret = saved_syn->network_hdrlen +
5222 				saved_syn->tcp_hdrlen;
5223 		} else {
5224 			/* optname == TCP_BPF_SYN_MAC */
5225 
5226 			/* TCP_SAVE_SYN may not have saved the mac hdr */
5227 			if (!saved_syn->mac_hdrlen)
5228 				return -ENOENT;
5229 
5230 			hdr_start = saved_syn->data;
5231 			ret = saved_syn->mac_hdrlen +
5232 				saved_syn->network_hdrlen +
5233 				saved_syn->tcp_hdrlen;
5234 		}
5235 	}
5236 
5237 	*start = hdr_start;
5238 	return ret;
5239 }
5240 
BPF_CALL_5(bpf_sock_ops_getsockopt,struct bpf_sock_ops_kern *,bpf_sock,int,level,int,optname,char *,optval,int,optlen)5241 BPF_CALL_5(bpf_sock_ops_getsockopt, struct bpf_sock_ops_kern *, bpf_sock,
5242 	   int, level, int, optname, char *, optval, int, optlen)
5243 {
5244 	if (IS_ENABLED(CONFIG_INET) && level == SOL_TCP &&
5245 	    optname >= TCP_BPF_SYN && optname <= TCP_BPF_SYN_MAC) {
5246 		int ret, copy_len = 0;
5247 		const u8 *start;
5248 
5249 		ret = bpf_sock_ops_get_syn(bpf_sock, optname, &start);
5250 		if (ret > 0) {
5251 			copy_len = ret;
5252 			if (optlen < copy_len) {
5253 				copy_len = optlen;
5254 				ret = -ENOSPC;
5255 			}
5256 
5257 			memcpy(optval, start, copy_len);
5258 		}
5259 
5260 		/* Zero out unused buffer at the end */
5261 		memset(optval + copy_len, 0, optlen - copy_len);
5262 
5263 		return ret;
5264 	}
5265 
5266 	return _bpf_getsockopt(bpf_sock->sk, level, optname, optval, optlen);
5267 }
5268 
5269 static const struct bpf_func_proto bpf_sock_ops_getsockopt_proto = {
5270 	.func		= bpf_sock_ops_getsockopt,
5271 	.gpl_only	= false,
5272 	.ret_type	= RET_INTEGER,
5273 	.arg1_type	= ARG_PTR_TO_CTX,
5274 	.arg2_type	= ARG_ANYTHING,
5275 	.arg3_type	= ARG_ANYTHING,
5276 	.arg4_type	= ARG_PTR_TO_UNINIT_MEM,
5277 	.arg5_type	= ARG_CONST_SIZE,
5278 };
5279 
BPF_CALL_2(bpf_sock_ops_cb_flags_set,struct bpf_sock_ops_kern *,bpf_sock,int,argval)5280 BPF_CALL_2(bpf_sock_ops_cb_flags_set, struct bpf_sock_ops_kern *, bpf_sock,
5281 	   int, argval)
5282 {
5283 	struct sock *sk = bpf_sock->sk;
5284 	int val = argval & BPF_SOCK_OPS_ALL_CB_FLAGS;
5285 
5286 	if (!IS_ENABLED(CONFIG_INET) || !sk_fullsock(sk))
5287 		return -EINVAL;
5288 
5289 	tcp_sk(sk)->bpf_sock_ops_cb_flags = val;
5290 
5291 	return argval & (~BPF_SOCK_OPS_ALL_CB_FLAGS);
5292 }
5293 
5294 static const struct bpf_func_proto bpf_sock_ops_cb_flags_set_proto = {
5295 	.func		= bpf_sock_ops_cb_flags_set,
5296 	.gpl_only	= false,
5297 	.ret_type	= RET_INTEGER,
5298 	.arg1_type	= ARG_PTR_TO_CTX,
5299 	.arg2_type	= ARG_ANYTHING,
5300 };
5301 
5302 const struct ipv6_bpf_stub *ipv6_bpf_stub __read_mostly;
5303 EXPORT_SYMBOL_GPL(ipv6_bpf_stub);
5304 
BPF_CALL_3(bpf_bind,struct bpf_sock_addr_kern *,ctx,struct sockaddr *,addr,int,addr_len)5305 BPF_CALL_3(bpf_bind, struct bpf_sock_addr_kern *, ctx, struct sockaddr *, addr,
5306 	   int, addr_len)
5307 {
5308 #ifdef CONFIG_INET
5309 	struct sock *sk = ctx->sk;
5310 	u32 flags = BIND_FROM_BPF;
5311 	int err;
5312 
5313 	err = -EINVAL;
5314 	if (addr_len < offsetofend(struct sockaddr, sa_family))
5315 		return err;
5316 	if (addr->sa_family == AF_INET) {
5317 		if (addr_len < sizeof(struct sockaddr_in))
5318 			return err;
5319 		if (((struct sockaddr_in *)addr)->sin_port == htons(0))
5320 			flags |= BIND_FORCE_ADDRESS_NO_PORT;
5321 		return __inet_bind(sk, addr, addr_len, flags);
5322 #if IS_ENABLED(CONFIG_IPV6)
5323 	} else if (addr->sa_family == AF_INET6) {
5324 		if (addr_len < SIN6_LEN_RFC2133)
5325 			return err;
5326 		if (((struct sockaddr_in6 *)addr)->sin6_port == htons(0))
5327 			flags |= BIND_FORCE_ADDRESS_NO_PORT;
5328 		/* ipv6_bpf_stub cannot be NULL, since it's called from
5329 		 * bpf_cgroup_inet6_connect hook and ipv6 is already loaded
5330 		 */
5331 		return ipv6_bpf_stub->inet6_bind(sk, addr, addr_len, flags);
5332 #endif /* CONFIG_IPV6 */
5333 	}
5334 #endif /* CONFIG_INET */
5335 
5336 	return -EAFNOSUPPORT;
5337 }
5338 
5339 static const struct bpf_func_proto bpf_bind_proto = {
5340 	.func		= bpf_bind,
5341 	.gpl_only	= false,
5342 	.ret_type	= RET_INTEGER,
5343 	.arg1_type	= ARG_PTR_TO_CTX,
5344 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
5345 	.arg3_type	= ARG_CONST_SIZE,
5346 };
5347 
5348 #ifdef CONFIG_XFRM
BPF_CALL_5(bpf_skb_get_xfrm_state,struct sk_buff *,skb,u32,index,struct bpf_xfrm_state *,to,u32,size,u64,flags)5349 BPF_CALL_5(bpf_skb_get_xfrm_state, struct sk_buff *, skb, u32, index,
5350 	   struct bpf_xfrm_state *, to, u32, size, u64, flags)
5351 {
5352 	const struct sec_path *sp = skb_sec_path(skb);
5353 	const struct xfrm_state *x;
5354 
5355 	if (!sp || unlikely(index >= sp->len || flags))
5356 		goto err_clear;
5357 
5358 	x = sp->xvec[index];
5359 
5360 	if (unlikely(size != sizeof(struct bpf_xfrm_state)))
5361 		goto err_clear;
5362 
5363 	to->reqid = x->props.reqid;
5364 	to->spi = x->id.spi;
5365 	to->family = x->props.family;
5366 	to->ext = 0;
5367 
5368 	if (to->family == AF_INET6) {
5369 		memcpy(to->remote_ipv6, x->props.saddr.a6,
5370 		       sizeof(to->remote_ipv6));
5371 	} else {
5372 		to->remote_ipv4 = x->props.saddr.a4;
5373 		memset(&to->remote_ipv6[1], 0, sizeof(__u32) * 3);
5374 	}
5375 
5376 	return 0;
5377 err_clear:
5378 	memset(to, 0, size);
5379 	return -EINVAL;
5380 }
5381 
5382 static const struct bpf_func_proto bpf_skb_get_xfrm_state_proto = {
5383 	.func		= bpf_skb_get_xfrm_state,
5384 	.gpl_only	= false,
5385 	.ret_type	= RET_INTEGER,
5386 	.arg1_type	= ARG_PTR_TO_CTX,
5387 	.arg2_type	= ARG_ANYTHING,
5388 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
5389 	.arg4_type	= ARG_CONST_SIZE,
5390 	.arg5_type	= ARG_ANYTHING,
5391 };
5392 #endif
5393 
5394 #if IS_ENABLED(CONFIG_INET) || IS_ENABLED(CONFIG_IPV6)
bpf_fib_set_fwd_params(struct bpf_fib_lookup * params,u32 mtu)5395 static int bpf_fib_set_fwd_params(struct bpf_fib_lookup *params, u32 mtu)
5396 {
5397 	params->h_vlan_TCI = 0;
5398 	params->h_vlan_proto = 0;
5399 	if (mtu)
5400 		params->mtu_result = mtu; /* union with tot_len */
5401 
5402 	return 0;
5403 }
5404 #endif
5405 
5406 #if IS_ENABLED(CONFIG_INET)
bpf_ipv4_fib_lookup(struct net * net,struct bpf_fib_lookup * params,u32 flags,bool check_mtu)5407 static int bpf_ipv4_fib_lookup(struct net *net, struct bpf_fib_lookup *params,
5408 			       u32 flags, bool check_mtu)
5409 {
5410 	struct fib_nh_common *nhc;
5411 	struct in_device *in_dev;
5412 	struct neighbour *neigh;
5413 	struct net_device *dev;
5414 	struct fib_result res;
5415 	struct flowi4 fl4;
5416 	u32 mtu = 0;
5417 	int err;
5418 
5419 	dev = dev_get_by_index_rcu(net, params->ifindex);
5420 	if (unlikely(!dev))
5421 		return -ENODEV;
5422 
5423 	/* verify forwarding is enabled on this interface */
5424 	in_dev = __in_dev_get_rcu(dev);
5425 	if (unlikely(!in_dev || !IN_DEV_FORWARD(in_dev)))
5426 		return BPF_FIB_LKUP_RET_FWD_DISABLED;
5427 
5428 	if (flags & BPF_FIB_LOOKUP_OUTPUT) {
5429 		fl4.flowi4_iif = 1;
5430 		fl4.flowi4_oif = params->ifindex;
5431 	} else {
5432 		fl4.flowi4_iif = params->ifindex;
5433 		fl4.flowi4_oif = 0;
5434 	}
5435 	fl4.flowi4_tos = params->tos & IPTOS_RT_MASK;
5436 	fl4.flowi4_scope = RT_SCOPE_UNIVERSE;
5437 	fl4.flowi4_flags = 0;
5438 
5439 	fl4.flowi4_proto = params->l4_protocol;
5440 	fl4.daddr = params->ipv4_dst;
5441 	fl4.saddr = params->ipv4_src;
5442 	fl4.fl4_sport = params->sport;
5443 	fl4.fl4_dport = params->dport;
5444 	fl4.flowi4_multipath_hash = 0;
5445 
5446 	if (flags & BPF_FIB_LOOKUP_DIRECT) {
5447 		u32 tbid = l3mdev_fib_table_rcu(dev) ? : RT_TABLE_MAIN;
5448 		struct fib_table *tb;
5449 
5450 		if (flags & BPF_FIB_LOOKUP_TBID) {
5451 			tbid = params->tbid;
5452 			/* zero out for vlan output */
5453 			params->tbid = 0;
5454 		}
5455 
5456 		tb = fib_get_table(net, tbid);
5457 		if (unlikely(!tb))
5458 			return BPF_FIB_LKUP_RET_NOT_FWDED;
5459 
5460 		err = fib_table_lookup(tb, &fl4, &res, FIB_LOOKUP_NOREF);
5461 	} else {
5462 		fl4.flowi4_mark = 0;
5463 		fl4.flowi4_secid = 0;
5464 		fl4.flowi4_tun_key.tun_id = 0;
5465 		fl4.flowi4_uid = sock_net_uid(net, NULL);
5466 
5467 		err = fib_lookup(net, &fl4, &res, FIB_LOOKUP_NOREF);
5468 	}
5469 
5470 	if (err) {
5471 		/* map fib lookup errors to RTN_ type */
5472 		if (err == -EINVAL)
5473 			return BPF_FIB_LKUP_RET_BLACKHOLE;
5474 		if (err == -EHOSTUNREACH)
5475 			return BPF_FIB_LKUP_RET_UNREACHABLE;
5476 		if (err == -EACCES)
5477 			return BPF_FIB_LKUP_RET_PROHIBIT;
5478 
5479 		return BPF_FIB_LKUP_RET_NOT_FWDED;
5480 	}
5481 
5482 	if (res.type != RTN_UNICAST)
5483 		return BPF_FIB_LKUP_RET_NOT_FWDED;
5484 
5485 	if (fib_info_num_path(res.fi) > 1)
5486 		fib_select_path(net, &res, &fl4, NULL);
5487 
5488 	if (check_mtu) {
5489 		mtu = ip_mtu_from_fib_result(&res, params->ipv4_dst);
5490 		if (params->tot_len > mtu) {
5491 			params->mtu_result = mtu; /* union with tot_len */
5492 			return BPF_FIB_LKUP_RET_FRAG_NEEDED;
5493 		}
5494 	}
5495 
5496 	nhc = res.nhc;
5497 
5498 	/* do not handle lwt encaps right now */
5499 	if (nhc->nhc_lwtstate)
5500 		return BPF_FIB_LKUP_RET_UNSUPP_LWT;
5501 
5502 	dev = nhc->nhc_dev;
5503 
5504 	params->rt_metric = res.fi->fib_priority;
5505 	params->ifindex = dev->ifindex;
5506 
5507 	if (flags & BPF_FIB_LOOKUP_SRC)
5508 		params->ipv4_src = fib_result_prefsrc(net, &res);
5509 
5510 	/* xdp and cls_bpf programs are run in RCU-bh so
5511 	 * rcu_read_lock_bh is not needed here
5512 	 */
5513 	if (likely(nhc->nhc_gw_family != AF_INET6)) {
5514 		if (nhc->nhc_gw_family)
5515 			params->ipv4_dst = nhc->nhc_gw.ipv4;
5516 	} else {
5517 		struct in6_addr *dst = (struct in6_addr *)params->ipv6_dst;
5518 
5519 		params->family = AF_INET6;
5520 		*dst = nhc->nhc_gw.ipv6;
5521 	}
5522 
5523 	if (flags & BPF_FIB_LOOKUP_SKIP_NEIGH)
5524 		goto set_fwd_params;
5525 
5526 	if (likely(nhc->nhc_gw_family != AF_INET6))
5527 		neigh = __ipv4_neigh_lookup_noref(dev,
5528 						  (__force u32)params->ipv4_dst);
5529 	else
5530 		neigh = __ipv6_neigh_lookup_noref_stub(dev, params->ipv6_dst);
5531 
5532 	if (!neigh || !(neigh->nud_state & NUD_VALID))
5533 		return BPF_FIB_LKUP_RET_NO_NEIGH;
5534 	memcpy(params->dmac, neigh->ha, ETH_ALEN);
5535 	memcpy(params->smac, dev->dev_addr, ETH_ALEN);
5536 
5537 set_fwd_params:
5538 	return bpf_fib_set_fwd_params(params, mtu);
5539 }
5540 #endif
5541 
5542 #if IS_ENABLED(CONFIG_IPV6)
bpf_ipv6_fib_lookup(struct net * net,struct bpf_fib_lookup * params,u32 flags,bool check_mtu)5543 static int bpf_ipv6_fib_lookup(struct net *net, struct bpf_fib_lookup *params,
5544 			       u32 flags, bool check_mtu)
5545 {
5546 	struct in6_addr *src = (struct in6_addr *) params->ipv6_src;
5547 	struct in6_addr *dst = (struct in6_addr *) params->ipv6_dst;
5548 	struct fib6_result res = {};
5549 	struct neighbour *neigh;
5550 	struct net_device *dev;
5551 	struct inet6_dev *idev;
5552 	struct flowi6 fl6;
5553 	int strict = 0;
5554 	int oif, err;
5555 	u32 mtu = 0;
5556 
5557 	/* link local addresses are never forwarded */
5558 	if (rt6_need_strict(dst) || rt6_need_strict(src))
5559 		return BPF_FIB_LKUP_RET_NOT_FWDED;
5560 
5561 	dev = dev_get_by_index_rcu(net, params->ifindex);
5562 	if (unlikely(!dev))
5563 		return -ENODEV;
5564 
5565 	idev = __in6_dev_get_safely(dev);
5566 	if (unlikely(!idev || !idev->cnf.forwarding))
5567 		return BPF_FIB_LKUP_RET_FWD_DISABLED;
5568 
5569 	if (flags & BPF_FIB_LOOKUP_OUTPUT) {
5570 		fl6.flowi6_iif = 1;
5571 		oif = fl6.flowi6_oif = params->ifindex;
5572 	} else {
5573 		oif = fl6.flowi6_iif = params->ifindex;
5574 		fl6.flowi6_oif = 0;
5575 		strict = RT6_LOOKUP_F_HAS_SADDR;
5576 	}
5577 	fl6.flowlabel = params->flowinfo;
5578 	fl6.flowi6_scope = 0;
5579 	fl6.flowi6_flags = 0;
5580 	fl6.mp_hash = 0;
5581 
5582 	fl6.flowi6_proto = params->l4_protocol;
5583 	fl6.daddr = *dst;
5584 	fl6.saddr = *src;
5585 	fl6.fl6_sport = params->sport;
5586 	fl6.fl6_dport = params->dport;
5587 
5588 	if (flags & BPF_FIB_LOOKUP_DIRECT) {
5589 		u32 tbid = l3mdev_fib_table_rcu(dev) ? : RT_TABLE_MAIN;
5590 		struct fib6_table *tb;
5591 
5592 		if (flags & BPF_FIB_LOOKUP_TBID) {
5593 			tbid = params->tbid;
5594 			/* zero out for vlan output */
5595 			params->tbid = 0;
5596 		}
5597 
5598 		tb = ipv6_stub->fib6_get_table(net, tbid);
5599 		if (unlikely(!tb))
5600 			return BPF_FIB_LKUP_RET_NOT_FWDED;
5601 
5602 		err = ipv6_stub->fib6_table_lookup(net, tb, oif, &fl6, &res,
5603 						   strict);
5604 	} else {
5605 		fl6.flowi6_mark = 0;
5606 		fl6.flowi6_secid = 0;
5607 		fl6.flowi6_tun_key.tun_id = 0;
5608 		fl6.flowi6_uid = sock_net_uid(net, NULL);
5609 
5610 		err = ipv6_stub->fib6_lookup(net, oif, &fl6, &res, strict);
5611 	}
5612 
5613 	if (unlikely(err || IS_ERR_OR_NULL(res.f6i) ||
5614 		     res.f6i == net->ipv6.fib6_null_entry))
5615 		return BPF_FIB_LKUP_RET_NOT_FWDED;
5616 
5617 	switch (res.fib6_type) {
5618 	/* only unicast is forwarded */
5619 	case RTN_UNICAST:
5620 		break;
5621 	case RTN_BLACKHOLE:
5622 		return BPF_FIB_LKUP_RET_BLACKHOLE;
5623 	case RTN_UNREACHABLE:
5624 		return BPF_FIB_LKUP_RET_UNREACHABLE;
5625 	case RTN_PROHIBIT:
5626 		return BPF_FIB_LKUP_RET_PROHIBIT;
5627 	default:
5628 		return BPF_FIB_LKUP_RET_NOT_FWDED;
5629 	}
5630 
5631 	ipv6_stub->fib6_select_path(net, &res, &fl6, fl6.flowi6_oif,
5632 				    fl6.flowi6_oif != 0, NULL, strict);
5633 
5634 	if (check_mtu) {
5635 		mtu = ipv6_stub->ip6_mtu_from_fib6(&res, dst, src);
5636 		if (params->tot_len > mtu) {
5637 			params->mtu_result = mtu; /* union with tot_len */
5638 			return BPF_FIB_LKUP_RET_FRAG_NEEDED;
5639 		}
5640 	}
5641 
5642 	if (res.nh->fib_nh_lws)
5643 		return BPF_FIB_LKUP_RET_UNSUPP_LWT;
5644 
5645 	if (res.nh->fib_nh_gw_family)
5646 		*dst = res.nh->fib_nh_gw6;
5647 
5648 	dev = res.nh->fib_nh_dev;
5649 	params->rt_metric = res.f6i->fib6_metric;
5650 	params->ifindex = dev->ifindex;
5651 
5652 	if (flags & BPF_FIB_LOOKUP_SRC) {
5653 		if (res.f6i->fib6_prefsrc.plen) {
5654 			*src = res.f6i->fib6_prefsrc.addr;
5655 		} else {
5656 			err = ipv6_bpf_stub->ipv6_dev_get_saddr(net, dev,
5657 								&fl6.daddr, 0,
5658 								src);
5659 			if (err)
5660 				return BPF_FIB_LKUP_RET_NO_SRC_ADDR;
5661 		}
5662 	}
5663 
5664 	if (flags & BPF_FIB_LOOKUP_SKIP_NEIGH)
5665 		goto set_fwd_params;
5666 
5667 	/* xdp and cls_bpf programs are run in RCU-bh so rcu_read_lock_bh is
5668 	 * not needed here.
5669 	 */
5670 	neigh = __ipv6_neigh_lookup_noref_stub(dev, dst);
5671 	if (!neigh || !(neigh->nud_state & NUD_VALID))
5672 		return BPF_FIB_LKUP_RET_NO_NEIGH;
5673 	memcpy(params->dmac, neigh->ha, ETH_ALEN);
5674 	memcpy(params->smac, dev->dev_addr, ETH_ALEN);
5675 
5676 set_fwd_params:
5677 	return bpf_fib_set_fwd_params(params, mtu);
5678 }
5679 #endif
5680 
5681 #define BPF_FIB_LOOKUP_MASK (BPF_FIB_LOOKUP_DIRECT | BPF_FIB_LOOKUP_OUTPUT | \
5682 			     BPF_FIB_LOOKUP_SKIP_NEIGH | BPF_FIB_LOOKUP_TBID | \
5683 			     BPF_FIB_LOOKUP_SRC)
5684 
BPF_CALL_4(bpf_xdp_fib_lookup,struct xdp_buff *,ctx,struct bpf_fib_lookup *,params,int,plen,u32,flags)5685 BPF_CALL_4(bpf_xdp_fib_lookup, struct xdp_buff *, ctx,
5686 	   struct bpf_fib_lookup *, params, int, plen, u32, flags)
5687 {
5688 	if (plen < sizeof(*params))
5689 		return -EINVAL;
5690 
5691 	if (flags & ~BPF_FIB_LOOKUP_MASK)
5692 		return -EINVAL;
5693 
5694 	switch (params->family) {
5695 #if IS_ENABLED(CONFIG_INET)
5696 	case AF_INET:
5697 		return bpf_ipv4_fib_lookup(dev_net(ctx->rxq->dev), params,
5698 					   flags, true);
5699 #endif
5700 #if IS_ENABLED(CONFIG_IPV6)
5701 	case AF_INET6:
5702 		return bpf_ipv6_fib_lookup(dev_net(ctx->rxq->dev), params,
5703 					   flags, true);
5704 #endif
5705 	}
5706 	return -EAFNOSUPPORT;
5707 }
5708 
5709 static const struct bpf_func_proto bpf_xdp_fib_lookup_proto = {
5710 	.func		= bpf_xdp_fib_lookup,
5711 	.gpl_only	= true,
5712 	.ret_type	= RET_INTEGER,
5713 	.arg1_type      = ARG_PTR_TO_CTX,
5714 	.arg2_type      = ARG_PTR_TO_MEM,
5715 	.arg3_type      = ARG_CONST_SIZE,
5716 	.arg4_type	= ARG_ANYTHING,
5717 };
5718 
BPF_CALL_4(bpf_skb_fib_lookup,struct sk_buff *,skb,struct bpf_fib_lookup *,params,int,plen,u32,flags)5719 BPF_CALL_4(bpf_skb_fib_lookup, struct sk_buff *, skb,
5720 	   struct bpf_fib_lookup *, params, int, plen, u32, flags)
5721 {
5722 	struct net *net = dev_net(skb->dev);
5723 	int rc = -EAFNOSUPPORT;
5724 	bool check_mtu = false;
5725 
5726 	if (plen < sizeof(*params))
5727 		return -EINVAL;
5728 
5729 	if (flags & ~BPF_FIB_LOOKUP_MASK)
5730 		return -EINVAL;
5731 
5732 	if (params->tot_len)
5733 		check_mtu = true;
5734 
5735 	switch (params->family) {
5736 #if IS_ENABLED(CONFIG_INET)
5737 	case AF_INET:
5738 		rc = bpf_ipv4_fib_lookup(net, params, flags, check_mtu);
5739 		break;
5740 #endif
5741 #if IS_ENABLED(CONFIG_IPV6)
5742 	case AF_INET6:
5743 		rc = bpf_ipv6_fib_lookup(net, params, flags, check_mtu);
5744 		break;
5745 #endif
5746 	}
5747 
5748 	if (rc == BPF_FIB_LKUP_RET_SUCCESS && !check_mtu) {
5749 		struct net_device *dev;
5750 
5751 		/* When tot_len isn't provided by user, check skb
5752 		 * against MTU of FIB lookup resulting net_device
5753 		 */
5754 		dev = dev_get_by_index_rcu(net, params->ifindex);
5755 		if (!is_skb_forwardable(dev, skb))
5756 			rc = BPF_FIB_LKUP_RET_FRAG_NEEDED;
5757 
5758 		params->mtu_result = dev->mtu; /* union with tot_len */
5759 	}
5760 
5761 	return rc;
5762 }
5763 
5764 static const struct bpf_func_proto bpf_skb_fib_lookup_proto = {
5765 	.func		= bpf_skb_fib_lookup,
5766 	.gpl_only	= true,
5767 	.ret_type	= RET_INTEGER,
5768 	.arg1_type      = ARG_PTR_TO_CTX,
5769 	.arg2_type      = ARG_PTR_TO_MEM,
5770 	.arg3_type      = ARG_CONST_SIZE,
5771 	.arg4_type	= ARG_ANYTHING,
5772 };
5773 
__dev_via_ifindex(struct net_device * dev_curr,u32 ifindex)5774 static struct net_device *__dev_via_ifindex(struct net_device *dev_curr,
5775 					    u32 ifindex)
5776 {
5777 	struct net *netns = dev_net(dev_curr);
5778 
5779 	/* Non-redirect use-cases can use ifindex=0 and save ifindex lookup */
5780 	if (ifindex == 0)
5781 		return dev_curr;
5782 
5783 	return dev_get_by_index_rcu(netns, ifindex);
5784 }
5785 
BPF_CALL_5(bpf_skb_check_mtu,struct sk_buff *,skb,u32,ifindex,u32 *,mtu_len,s32,len_diff,u64,flags)5786 BPF_CALL_5(bpf_skb_check_mtu, struct sk_buff *, skb,
5787 	   u32, ifindex, u32 *, mtu_len, s32, len_diff, u64, flags)
5788 {
5789 	int ret = BPF_MTU_CHK_RET_FRAG_NEEDED;
5790 	struct net_device *dev = skb->dev;
5791 	int skb_len, dev_len;
5792 	int mtu;
5793 
5794 	if (unlikely(flags & ~(BPF_MTU_CHK_SEGS)))
5795 		return -EINVAL;
5796 
5797 	if (unlikely(flags & BPF_MTU_CHK_SEGS && (len_diff || *mtu_len)))
5798 		return -EINVAL;
5799 
5800 	dev = __dev_via_ifindex(dev, ifindex);
5801 	if (unlikely(!dev))
5802 		return -ENODEV;
5803 
5804 	mtu = READ_ONCE(dev->mtu);
5805 
5806 	dev_len = mtu + dev->hard_header_len;
5807 
5808 	/* If set use *mtu_len as input, L3 as iph->tot_len (like fib_lookup) */
5809 	skb_len = *mtu_len ? *mtu_len + dev->hard_header_len : skb->len;
5810 
5811 	skb_len += len_diff; /* minus result pass check */
5812 	if (skb_len <= dev_len) {
5813 		ret = BPF_MTU_CHK_RET_SUCCESS;
5814 		goto out;
5815 	}
5816 	/* At this point, skb->len exceed MTU, but as it include length of all
5817 	 * segments, it can still be below MTU.  The SKB can possibly get
5818 	 * re-segmented in transmit path (see validate_xmit_skb).  Thus, user
5819 	 * must choose if segs are to be MTU checked.
5820 	 */
5821 	if (skb_is_gso(skb)) {
5822 		ret = BPF_MTU_CHK_RET_SUCCESS;
5823 
5824 		if (flags & BPF_MTU_CHK_SEGS &&
5825 		    !skb_gso_validate_network_len(skb, mtu))
5826 			ret = BPF_MTU_CHK_RET_SEGS_TOOBIG;
5827 	}
5828 out:
5829 	/* BPF verifier guarantees valid pointer */
5830 	*mtu_len = mtu;
5831 
5832 	return ret;
5833 }
5834 
BPF_CALL_5(bpf_xdp_check_mtu,struct xdp_buff *,xdp,u32,ifindex,u32 *,mtu_len,s32,len_diff,u64,flags)5835 BPF_CALL_5(bpf_xdp_check_mtu, struct xdp_buff *, xdp,
5836 	   u32, ifindex, u32 *, mtu_len, s32, len_diff, u64, flags)
5837 {
5838 	struct net_device *dev = xdp->rxq->dev;
5839 	int xdp_len = xdp->data_end - xdp->data;
5840 	int ret = BPF_MTU_CHK_RET_SUCCESS;
5841 	int mtu, dev_len;
5842 
5843 	/* XDP variant doesn't support multi-buffer segment check (yet) */
5844 	if (unlikely(flags))
5845 		return -EINVAL;
5846 
5847 	dev = __dev_via_ifindex(dev, ifindex);
5848 	if (unlikely(!dev))
5849 		return -ENODEV;
5850 
5851 	mtu = READ_ONCE(dev->mtu);
5852 
5853 	/* Add L2-header as dev MTU is L3 size */
5854 	dev_len = mtu + dev->hard_header_len;
5855 
5856 	/* Use *mtu_len as input, L3 as iph->tot_len (like fib_lookup) */
5857 	if (*mtu_len)
5858 		xdp_len = *mtu_len + dev->hard_header_len;
5859 
5860 	xdp_len += len_diff; /* minus result pass check */
5861 	if (xdp_len > dev_len)
5862 		ret = BPF_MTU_CHK_RET_FRAG_NEEDED;
5863 
5864 	/* BPF verifier guarantees valid pointer */
5865 	*mtu_len = mtu;
5866 
5867 	return ret;
5868 }
5869 
5870 static const struct bpf_func_proto bpf_skb_check_mtu_proto = {
5871 	.func		= bpf_skb_check_mtu,
5872 	.gpl_only	= true,
5873 	.ret_type	= RET_INTEGER,
5874 	.arg1_type      = ARG_PTR_TO_CTX,
5875 	.arg2_type      = ARG_ANYTHING,
5876 	.arg3_type      = ARG_PTR_TO_INT,
5877 	.arg4_type      = ARG_ANYTHING,
5878 	.arg5_type      = ARG_ANYTHING,
5879 };
5880 
5881 static const struct bpf_func_proto bpf_xdp_check_mtu_proto = {
5882 	.func		= bpf_xdp_check_mtu,
5883 	.gpl_only	= true,
5884 	.ret_type	= RET_INTEGER,
5885 	.arg1_type      = ARG_PTR_TO_CTX,
5886 	.arg2_type      = ARG_ANYTHING,
5887 	.arg3_type      = ARG_PTR_TO_INT,
5888 	.arg4_type      = ARG_ANYTHING,
5889 	.arg5_type      = ARG_ANYTHING,
5890 };
5891 
5892 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
bpf_push_seg6_encap(struct sk_buff * skb,u32 type,void * hdr,u32 len)5893 static int bpf_push_seg6_encap(struct sk_buff *skb, u32 type, void *hdr, u32 len)
5894 {
5895 	int err;
5896 	struct ipv6_sr_hdr *srh = (struct ipv6_sr_hdr *)hdr;
5897 
5898 	if (!seg6_validate_srh(srh, len, false))
5899 		return -EINVAL;
5900 
5901 	switch (type) {
5902 	case BPF_LWT_ENCAP_SEG6_INLINE:
5903 		if (skb->protocol != htons(ETH_P_IPV6))
5904 			return -EBADMSG;
5905 
5906 		err = seg6_do_srh_inline(skb, srh);
5907 		break;
5908 	case BPF_LWT_ENCAP_SEG6:
5909 		skb_reset_inner_headers(skb);
5910 		skb->encapsulation = 1;
5911 		err = seg6_do_srh_encap(skb, srh, IPPROTO_IPV6);
5912 		break;
5913 	default:
5914 		return -EINVAL;
5915 	}
5916 
5917 	bpf_compute_data_pointers(skb);
5918 	if (err)
5919 		return err;
5920 
5921 	skb_set_transport_header(skb, sizeof(struct ipv6hdr));
5922 
5923 	return seg6_lookup_nexthop(skb, NULL, 0);
5924 }
5925 #endif /* CONFIG_IPV6_SEG6_BPF */
5926 
5927 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
bpf_push_ip_encap(struct sk_buff * skb,void * hdr,u32 len,bool ingress)5928 static int bpf_push_ip_encap(struct sk_buff *skb, void *hdr, u32 len,
5929 			     bool ingress)
5930 {
5931 	return bpf_lwt_push_ip_encap(skb, hdr, len, ingress);
5932 }
5933 #endif
5934 
BPF_CALL_4(bpf_lwt_in_push_encap,struct sk_buff *,skb,u32,type,void *,hdr,u32,len)5935 BPF_CALL_4(bpf_lwt_in_push_encap, struct sk_buff *, skb, u32, type, void *, hdr,
5936 	   u32, len)
5937 {
5938 	switch (type) {
5939 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
5940 	case BPF_LWT_ENCAP_SEG6:
5941 	case BPF_LWT_ENCAP_SEG6_INLINE:
5942 		return bpf_push_seg6_encap(skb, type, hdr, len);
5943 #endif
5944 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
5945 	case BPF_LWT_ENCAP_IP:
5946 		return bpf_push_ip_encap(skb, hdr, len, true /* ingress */);
5947 #endif
5948 	default:
5949 		return -EINVAL;
5950 	}
5951 }
5952 
BPF_CALL_4(bpf_lwt_xmit_push_encap,struct sk_buff *,skb,u32,type,void *,hdr,u32,len)5953 BPF_CALL_4(bpf_lwt_xmit_push_encap, struct sk_buff *, skb, u32, type,
5954 	   void *, hdr, u32, len)
5955 {
5956 	switch (type) {
5957 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
5958 	case BPF_LWT_ENCAP_IP:
5959 		return bpf_push_ip_encap(skb, hdr, len, false /* egress */);
5960 #endif
5961 	default:
5962 		return -EINVAL;
5963 	}
5964 }
5965 
5966 static const struct bpf_func_proto bpf_lwt_in_push_encap_proto = {
5967 	.func		= bpf_lwt_in_push_encap,
5968 	.gpl_only	= false,
5969 	.ret_type	= RET_INTEGER,
5970 	.arg1_type	= ARG_PTR_TO_CTX,
5971 	.arg2_type	= ARG_ANYTHING,
5972 	.arg3_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
5973 	.arg4_type	= ARG_CONST_SIZE
5974 };
5975 
5976 static const struct bpf_func_proto bpf_lwt_xmit_push_encap_proto = {
5977 	.func		= bpf_lwt_xmit_push_encap,
5978 	.gpl_only	= false,
5979 	.ret_type	= RET_INTEGER,
5980 	.arg1_type	= ARG_PTR_TO_CTX,
5981 	.arg2_type	= ARG_ANYTHING,
5982 	.arg3_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
5983 	.arg4_type	= ARG_CONST_SIZE
5984 };
5985 
5986 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
BPF_CALL_4(bpf_lwt_seg6_store_bytes,struct sk_buff *,skb,u32,offset,const void *,from,u32,len)5987 BPF_CALL_4(bpf_lwt_seg6_store_bytes, struct sk_buff *, skb, u32, offset,
5988 	   const void *, from, u32, len)
5989 {
5990 	struct seg6_bpf_srh_state *srh_state =
5991 		this_cpu_ptr(&seg6_bpf_srh_states);
5992 	struct ipv6_sr_hdr *srh = srh_state->srh;
5993 	void *srh_tlvs, *srh_end, *ptr;
5994 	int srhoff = 0;
5995 
5996 	if (srh == NULL)
5997 		return -EINVAL;
5998 
5999 	srh_tlvs = (void *)((char *)srh + ((srh->first_segment + 1) << 4));
6000 	srh_end = (void *)((char *)srh + sizeof(*srh) + srh_state->hdrlen);
6001 
6002 	ptr = skb->data + offset;
6003 	if (ptr >= srh_tlvs && ptr + len <= srh_end)
6004 		srh_state->valid = false;
6005 	else if (ptr < (void *)&srh->flags ||
6006 		 ptr + len > (void *)&srh->segments)
6007 		return -EFAULT;
6008 
6009 	if (unlikely(bpf_try_make_writable(skb, offset + len)))
6010 		return -EFAULT;
6011 	if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0)
6012 		return -EINVAL;
6013 	srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
6014 
6015 	memcpy(skb->data + offset, from, len);
6016 	return 0;
6017 }
6018 
6019 static const struct bpf_func_proto bpf_lwt_seg6_store_bytes_proto = {
6020 	.func		= bpf_lwt_seg6_store_bytes,
6021 	.gpl_only	= false,
6022 	.ret_type	= RET_INTEGER,
6023 	.arg1_type	= ARG_PTR_TO_CTX,
6024 	.arg2_type	= ARG_ANYTHING,
6025 	.arg3_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6026 	.arg4_type	= ARG_CONST_SIZE
6027 };
6028 
bpf_update_srh_state(struct sk_buff * skb)6029 static void bpf_update_srh_state(struct sk_buff *skb)
6030 {
6031 	struct seg6_bpf_srh_state *srh_state =
6032 		this_cpu_ptr(&seg6_bpf_srh_states);
6033 	int srhoff = 0;
6034 
6035 	if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0) {
6036 		srh_state->srh = NULL;
6037 	} else {
6038 		srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
6039 		srh_state->hdrlen = srh_state->srh->hdrlen << 3;
6040 		srh_state->valid = true;
6041 	}
6042 }
6043 
BPF_CALL_4(bpf_lwt_seg6_action,struct sk_buff *,skb,u32,action,void *,param,u32,param_len)6044 BPF_CALL_4(bpf_lwt_seg6_action, struct sk_buff *, skb,
6045 	   u32, action, void *, param, u32, param_len)
6046 {
6047 	struct seg6_bpf_srh_state *srh_state =
6048 		this_cpu_ptr(&seg6_bpf_srh_states);
6049 	int hdroff = 0;
6050 	int err;
6051 
6052 	switch (action) {
6053 	case SEG6_LOCAL_ACTION_END_X:
6054 		if (!seg6_bpf_has_valid_srh(skb))
6055 			return -EBADMSG;
6056 		if (param_len != sizeof(struct in6_addr))
6057 			return -EINVAL;
6058 		return seg6_lookup_nexthop(skb, (struct in6_addr *)param, 0);
6059 	case SEG6_LOCAL_ACTION_END_T:
6060 		if (!seg6_bpf_has_valid_srh(skb))
6061 			return -EBADMSG;
6062 		if (param_len != sizeof(int))
6063 			return -EINVAL;
6064 		return seg6_lookup_nexthop(skb, NULL, *(int *)param);
6065 	case SEG6_LOCAL_ACTION_END_DT6:
6066 		if (!seg6_bpf_has_valid_srh(skb))
6067 			return -EBADMSG;
6068 		if (param_len != sizeof(int))
6069 			return -EINVAL;
6070 
6071 		if (ipv6_find_hdr(skb, &hdroff, IPPROTO_IPV6, NULL, NULL) < 0)
6072 			return -EBADMSG;
6073 		if (!pskb_pull(skb, hdroff))
6074 			return -EBADMSG;
6075 
6076 		skb_postpull_rcsum(skb, skb_network_header(skb), hdroff);
6077 		skb_reset_network_header(skb);
6078 		skb_reset_transport_header(skb);
6079 		skb->encapsulation = 0;
6080 
6081 		bpf_compute_data_pointers(skb);
6082 		bpf_update_srh_state(skb);
6083 		return seg6_lookup_nexthop(skb, NULL, *(int *)param);
6084 	case SEG6_LOCAL_ACTION_END_B6:
6085 		if (srh_state->srh && !seg6_bpf_has_valid_srh(skb))
6086 			return -EBADMSG;
6087 		err = bpf_push_seg6_encap(skb, BPF_LWT_ENCAP_SEG6_INLINE,
6088 					  param, param_len);
6089 		if (!err)
6090 			bpf_update_srh_state(skb);
6091 
6092 		return err;
6093 	case SEG6_LOCAL_ACTION_END_B6_ENCAP:
6094 		if (srh_state->srh && !seg6_bpf_has_valid_srh(skb))
6095 			return -EBADMSG;
6096 		err = bpf_push_seg6_encap(skb, BPF_LWT_ENCAP_SEG6,
6097 					  param, param_len);
6098 		if (!err)
6099 			bpf_update_srh_state(skb);
6100 
6101 		return err;
6102 	default:
6103 		return -EINVAL;
6104 	}
6105 }
6106 
6107 static const struct bpf_func_proto bpf_lwt_seg6_action_proto = {
6108 	.func		= bpf_lwt_seg6_action,
6109 	.gpl_only	= false,
6110 	.ret_type	= RET_INTEGER,
6111 	.arg1_type	= ARG_PTR_TO_CTX,
6112 	.arg2_type	= ARG_ANYTHING,
6113 	.arg3_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6114 	.arg4_type	= ARG_CONST_SIZE
6115 };
6116 
BPF_CALL_3(bpf_lwt_seg6_adjust_srh,struct sk_buff *,skb,u32,offset,s32,len)6117 BPF_CALL_3(bpf_lwt_seg6_adjust_srh, struct sk_buff *, skb, u32, offset,
6118 	   s32, len)
6119 {
6120 	struct seg6_bpf_srh_state *srh_state =
6121 		this_cpu_ptr(&seg6_bpf_srh_states);
6122 	struct ipv6_sr_hdr *srh = srh_state->srh;
6123 	void *srh_end, *srh_tlvs, *ptr;
6124 	struct ipv6hdr *hdr;
6125 	int srhoff = 0;
6126 	int ret;
6127 
6128 	if (unlikely(srh == NULL))
6129 		return -EINVAL;
6130 
6131 	srh_tlvs = (void *)((unsigned char *)srh + sizeof(*srh) +
6132 			((srh->first_segment + 1) << 4));
6133 	srh_end = (void *)((unsigned char *)srh + sizeof(*srh) +
6134 			srh_state->hdrlen);
6135 	ptr = skb->data + offset;
6136 
6137 	if (unlikely(ptr < srh_tlvs || ptr > srh_end))
6138 		return -EFAULT;
6139 	if (unlikely(len < 0 && (void *)((char *)ptr - len) > srh_end))
6140 		return -EFAULT;
6141 
6142 	if (len > 0) {
6143 		ret = skb_cow_head(skb, len);
6144 		if (unlikely(ret < 0))
6145 			return ret;
6146 
6147 		ret = bpf_skb_net_hdr_push(skb, offset, len);
6148 	} else {
6149 		ret = bpf_skb_net_hdr_pop(skb, offset, -1 * len);
6150 	}
6151 
6152 	bpf_compute_data_pointers(skb);
6153 	if (unlikely(ret < 0))
6154 		return ret;
6155 
6156 	hdr = (struct ipv6hdr *)skb->data;
6157 	hdr->payload_len = htons(skb->len - sizeof(struct ipv6hdr));
6158 
6159 	if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0)
6160 		return -EINVAL;
6161 	srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
6162 	srh_state->hdrlen += len;
6163 	srh_state->valid = false;
6164 	return 0;
6165 }
6166 
6167 static const struct bpf_func_proto bpf_lwt_seg6_adjust_srh_proto = {
6168 	.func		= bpf_lwt_seg6_adjust_srh,
6169 	.gpl_only	= false,
6170 	.ret_type	= RET_INTEGER,
6171 	.arg1_type	= ARG_PTR_TO_CTX,
6172 	.arg2_type	= ARG_ANYTHING,
6173 	.arg3_type	= ARG_ANYTHING,
6174 };
6175 #endif /* CONFIG_IPV6_SEG6_BPF */
6176 
6177 #ifdef CONFIG_INET
sk_lookup(struct net * net,struct bpf_sock_tuple * tuple,int dif,int sdif,u8 family,u8 proto)6178 static struct sock *sk_lookup(struct net *net, struct bpf_sock_tuple *tuple,
6179 			      int dif, int sdif, u8 family, u8 proto)
6180 {
6181 	bool refcounted = false;
6182 	struct sock *sk = NULL;
6183 
6184 	if (family == AF_INET) {
6185 		__be32 src4 = tuple->ipv4.saddr;
6186 		__be32 dst4 = tuple->ipv4.daddr;
6187 
6188 		if (proto == IPPROTO_TCP)
6189 			sk = __inet_lookup(net, &tcp_hashinfo, NULL, 0,
6190 					   src4, tuple->ipv4.sport,
6191 					   dst4, tuple->ipv4.dport,
6192 					   dif, sdif, &refcounted);
6193 		else
6194 			sk = __udp4_lib_lookup(net, src4, tuple->ipv4.sport,
6195 					       dst4, tuple->ipv4.dport,
6196 					       dif, sdif, &udp_table, NULL);
6197 #if IS_ENABLED(CONFIG_IPV6)
6198 	} else {
6199 		struct in6_addr *src6 = (struct in6_addr *)&tuple->ipv6.saddr;
6200 		struct in6_addr *dst6 = (struct in6_addr *)&tuple->ipv6.daddr;
6201 
6202 		if (proto == IPPROTO_TCP)
6203 			sk = __inet6_lookup(net, &tcp_hashinfo, NULL, 0,
6204 					    src6, tuple->ipv6.sport,
6205 					    dst6, ntohs(tuple->ipv6.dport),
6206 					    dif, sdif, &refcounted);
6207 		else if (likely(ipv6_bpf_stub))
6208 			sk = ipv6_bpf_stub->udp6_lib_lookup(net,
6209 							    src6, tuple->ipv6.sport,
6210 							    dst6, tuple->ipv6.dport,
6211 							    dif, sdif,
6212 							    &udp_table, NULL);
6213 #endif
6214 	}
6215 
6216 	if (unlikely(sk && !refcounted && !sock_flag(sk, SOCK_RCU_FREE))) {
6217 		WARN_ONCE(1, "Found non-RCU, unreferenced socket!");
6218 		sk = NULL;
6219 	}
6220 	return sk;
6221 }
6222 
6223 /* bpf_skc_lookup performs the core lookup for different types of sockets,
6224  * taking a reference on the socket if it doesn't have the flag SOCK_RCU_FREE.
6225  * Returns the socket as an 'unsigned long' to simplify the casting in the
6226  * callers to satisfy BPF_CALL declarations.
6227  */
6228 static struct sock *
__bpf_skc_lookup(struct sk_buff * skb,struct bpf_sock_tuple * tuple,u32 len,struct net * caller_net,u32 ifindex,u8 proto,u64 netns_id,u64 flags,int sdif)6229 __bpf_skc_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6230 		 struct net *caller_net, u32 ifindex, u8 proto, u64 netns_id,
6231 		 u64 flags, int sdif)
6232 {
6233 	struct sock *sk = NULL;
6234 	struct net *net;
6235 	u8 family;
6236 
6237 	if (len == sizeof(tuple->ipv4))
6238 		family = AF_INET;
6239 	else if (len == sizeof(tuple->ipv6))
6240 		family = AF_INET6;
6241 	else
6242 		return NULL;
6243 
6244 	if (unlikely(flags || !((s32)netns_id < 0 || netns_id <= S32_MAX)))
6245 		goto out;
6246 
6247 	if (sdif < 0) {
6248 		if (family == AF_INET)
6249 			sdif = inet_sdif(skb);
6250 		else
6251 			sdif = inet6_sdif(skb);
6252 	}
6253 
6254 	if ((s32)netns_id < 0) {
6255 		net = caller_net;
6256 		sk = sk_lookup(net, tuple, ifindex, sdif, family, proto);
6257 	} else {
6258 		net = get_net_ns_by_id(caller_net, netns_id);
6259 		if (unlikely(!net))
6260 			goto out;
6261 		sk = sk_lookup(net, tuple, ifindex, sdif, family, proto);
6262 		put_net(net);
6263 	}
6264 
6265 out:
6266 	return sk;
6267 }
6268 
6269 static struct sock *
__bpf_sk_lookup(struct sk_buff * skb,struct bpf_sock_tuple * tuple,u32 len,struct net * caller_net,u32 ifindex,u8 proto,u64 netns_id,u64 flags,int sdif)6270 __bpf_sk_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6271 		struct net *caller_net, u32 ifindex, u8 proto, u64 netns_id,
6272 		u64 flags, int sdif)
6273 {
6274 	struct sock *sk = __bpf_skc_lookup(skb, tuple, len, caller_net,
6275 					   ifindex, proto, netns_id, flags,
6276 					   sdif);
6277 
6278 	if (sk) {
6279 		struct sock *sk2 = sk_to_full_sk(sk);
6280 
6281 		/* sk_to_full_sk() may return (sk)->rsk_listener, so make sure the original sk
6282 		 * sock refcnt is decremented to prevent a request_sock leak.
6283 		 */
6284 		if (!sk_fullsock(sk2))
6285 			sk2 = NULL;
6286 		if (sk2 != sk) {
6287 			sock_gen_put(sk);
6288 			/* Ensure there is no need to bump sk2 refcnt */
6289 			if (unlikely(sk2 && !sock_flag(sk2, SOCK_RCU_FREE))) {
6290 				WARN_ONCE(1, "Found non-RCU, unreferenced socket!");
6291 				return NULL;
6292 			}
6293 			sk = sk2;
6294 		}
6295 	}
6296 
6297 	return sk;
6298 }
6299 
6300 static struct sock *
bpf_skc_lookup(struct sk_buff * skb,struct bpf_sock_tuple * tuple,u32 len,u8 proto,u64 netns_id,u64 flags)6301 bpf_skc_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6302 	       u8 proto, u64 netns_id, u64 flags)
6303 {
6304 	struct net *caller_net;
6305 	int ifindex;
6306 
6307 	if (skb->dev) {
6308 		caller_net = dev_net(skb->dev);
6309 		ifindex = skb->dev->ifindex;
6310 	} else {
6311 		caller_net = sock_net(skb->sk);
6312 		ifindex = 0;
6313 	}
6314 
6315 	return __bpf_skc_lookup(skb, tuple, len, caller_net, ifindex, proto,
6316 				netns_id, flags, -1);
6317 }
6318 
6319 static struct sock *
bpf_sk_lookup(struct sk_buff * skb,struct bpf_sock_tuple * tuple,u32 len,u8 proto,u64 netns_id,u64 flags)6320 bpf_sk_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6321 	      u8 proto, u64 netns_id, u64 flags)
6322 {
6323 	struct sock *sk = bpf_skc_lookup(skb, tuple, len, proto, netns_id,
6324 					 flags);
6325 
6326 	if (sk) {
6327 		struct sock *sk2 = sk_to_full_sk(sk);
6328 
6329 		/* sk_to_full_sk() may return (sk)->rsk_listener, so make sure the original sk
6330 		 * sock refcnt is decremented to prevent a request_sock leak.
6331 		 */
6332 		if (!sk_fullsock(sk2))
6333 			sk2 = NULL;
6334 		if (sk2 != sk) {
6335 			sock_gen_put(sk);
6336 			/* Ensure there is no need to bump sk2 refcnt */
6337 			if (unlikely(sk2 && !sock_flag(sk2, SOCK_RCU_FREE))) {
6338 				WARN_ONCE(1, "Found non-RCU, unreferenced socket!");
6339 				return NULL;
6340 			}
6341 			sk = sk2;
6342 		}
6343 	}
6344 
6345 	return sk;
6346 }
6347 
BPF_CALL_5(bpf_skc_lookup_tcp,struct sk_buff *,skb,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)6348 BPF_CALL_5(bpf_skc_lookup_tcp, struct sk_buff *, skb,
6349 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6350 {
6351 	return (unsigned long)bpf_skc_lookup(skb, tuple, len, IPPROTO_TCP,
6352 					     netns_id, flags);
6353 }
6354 
6355 static const struct bpf_func_proto bpf_skc_lookup_tcp_proto = {
6356 	.func		= bpf_skc_lookup_tcp,
6357 	.gpl_only	= false,
6358 	.pkt_access	= true,
6359 	.ret_type	= RET_PTR_TO_SOCK_COMMON_OR_NULL,
6360 	.arg1_type	= ARG_PTR_TO_CTX,
6361 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6362 	.arg3_type	= ARG_CONST_SIZE,
6363 	.arg4_type	= ARG_ANYTHING,
6364 	.arg5_type	= ARG_ANYTHING,
6365 };
6366 
BPF_CALL_5(bpf_sk_lookup_tcp,struct sk_buff *,skb,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)6367 BPF_CALL_5(bpf_sk_lookup_tcp, struct sk_buff *, skb,
6368 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6369 {
6370 	return (unsigned long)bpf_sk_lookup(skb, tuple, len, IPPROTO_TCP,
6371 					    netns_id, flags);
6372 }
6373 
6374 static const struct bpf_func_proto bpf_sk_lookup_tcp_proto = {
6375 	.func		= bpf_sk_lookup_tcp,
6376 	.gpl_only	= false,
6377 	.pkt_access	= true,
6378 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
6379 	.arg1_type	= ARG_PTR_TO_CTX,
6380 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6381 	.arg3_type	= ARG_CONST_SIZE,
6382 	.arg4_type	= ARG_ANYTHING,
6383 	.arg5_type	= ARG_ANYTHING,
6384 };
6385 
BPF_CALL_5(bpf_sk_lookup_udp,struct sk_buff *,skb,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)6386 BPF_CALL_5(bpf_sk_lookup_udp, struct sk_buff *, skb,
6387 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6388 {
6389 	return (unsigned long)bpf_sk_lookup(skb, tuple, len, IPPROTO_UDP,
6390 					    netns_id, flags);
6391 }
6392 
6393 static const struct bpf_func_proto bpf_sk_lookup_udp_proto = {
6394 	.func		= bpf_sk_lookup_udp,
6395 	.gpl_only	= false,
6396 	.pkt_access	= true,
6397 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
6398 	.arg1_type	= ARG_PTR_TO_CTX,
6399 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6400 	.arg3_type	= ARG_CONST_SIZE,
6401 	.arg4_type	= ARG_ANYTHING,
6402 	.arg5_type	= ARG_ANYTHING,
6403 };
6404 
BPF_CALL_5(bpf_tc_skc_lookup_tcp,struct sk_buff *,skb,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)6405 BPF_CALL_5(bpf_tc_skc_lookup_tcp, struct sk_buff *, skb,
6406 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6407 {
6408 	struct net_device *dev = skb->dev;
6409 	int ifindex = dev->ifindex, sdif = dev_sdif(dev);
6410 	struct net *caller_net = dev_net(dev);
6411 
6412 	return (unsigned long)__bpf_skc_lookup(skb, tuple, len, caller_net,
6413 					       ifindex, IPPROTO_TCP, netns_id,
6414 					       flags, sdif);
6415 }
6416 
6417 static const struct bpf_func_proto bpf_tc_skc_lookup_tcp_proto = {
6418 	.func		= bpf_tc_skc_lookup_tcp,
6419 	.gpl_only	= false,
6420 	.pkt_access	= true,
6421 	.ret_type	= RET_PTR_TO_SOCK_COMMON_OR_NULL,
6422 	.arg1_type	= ARG_PTR_TO_CTX,
6423 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6424 	.arg3_type	= ARG_CONST_SIZE,
6425 	.arg4_type	= ARG_ANYTHING,
6426 	.arg5_type	= ARG_ANYTHING,
6427 };
6428 
BPF_CALL_5(bpf_tc_sk_lookup_tcp,struct sk_buff *,skb,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)6429 BPF_CALL_5(bpf_tc_sk_lookup_tcp, struct sk_buff *, skb,
6430 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6431 {
6432 	struct net_device *dev = skb->dev;
6433 	int ifindex = dev->ifindex, sdif = dev_sdif(dev);
6434 	struct net *caller_net = dev_net(dev);
6435 
6436 	return (unsigned long)__bpf_sk_lookup(skb, tuple, len, caller_net,
6437 					      ifindex, IPPROTO_TCP, netns_id,
6438 					      flags, sdif);
6439 }
6440 
6441 static const struct bpf_func_proto bpf_tc_sk_lookup_tcp_proto = {
6442 	.func		= bpf_tc_sk_lookup_tcp,
6443 	.gpl_only	= false,
6444 	.pkt_access	= true,
6445 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
6446 	.arg1_type	= ARG_PTR_TO_CTX,
6447 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6448 	.arg3_type	= ARG_CONST_SIZE,
6449 	.arg4_type	= ARG_ANYTHING,
6450 	.arg5_type	= ARG_ANYTHING,
6451 };
6452 
BPF_CALL_5(bpf_tc_sk_lookup_udp,struct sk_buff *,skb,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)6453 BPF_CALL_5(bpf_tc_sk_lookup_udp, struct sk_buff *, skb,
6454 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6455 {
6456 	struct net_device *dev = skb->dev;
6457 	int ifindex = dev->ifindex, sdif = dev_sdif(dev);
6458 	struct net *caller_net = dev_net(dev);
6459 
6460 	return (unsigned long)__bpf_sk_lookup(skb, tuple, len, caller_net,
6461 					      ifindex, IPPROTO_UDP, netns_id,
6462 					      flags, sdif);
6463 }
6464 
6465 static const struct bpf_func_proto bpf_tc_sk_lookup_udp_proto = {
6466 	.func		= bpf_tc_sk_lookup_udp,
6467 	.gpl_only	= false,
6468 	.pkt_access	= true,
6469 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
6470 	.arg1_type	= ARG_PTR_TO_CTX,
6471 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6472 	.arg3_type	= ARG_CONST_SIZE,
6473 	.arg4_type	= ARG_ANYTHING,
6474 	.arg5_type	= ARG_ANYTHING,
6475 };
6476 
BPF_CALL_1(bpf_sk_release,struct sock *,sk)6477 BPF_CALL_1(bpf_sk_release, struct sock *, sk)
6478 {
6479 	if (sk && sk_is_refcounted(sk))
6480 		sock_gen_put(sk);
6481 	return 0;
6482 }
6483 
6484 static const struct bpf_func_proto bpf_sk_release_proto = {
6485 	.func		= bpf_sk_release,
6486 	.gpl_only	= false,
6487 	.ret_type	= RET_INTEGER,
6488 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
6489 };
6490 
BPF_CALL_5(bpf_xdp_sk_lookup_udp,struct xdp_buff *,ctx,struct bpf_sock_tuple *,tuple,u32,len,u32,netns_id,u64,flags)6491 BPF_CALL_5(bpf_xdp_sk_lookup_udp, struct xdp_buff *, ctx,
6492 	   struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
6493 {
6494 	struct net_device *dev = ctx->rxq->dev;
6495 	int ifindex = dev->ifindex, sdif = dev_sdif(dev);
6496 	struct net *caller_net = dev_net(dev);
6497 
6498 	return (unsigned long)__bpf_sk_lookup(NULL, tuple, len, caller_net,
6499 					      ifindex, IPPROTO_UDP, netns_id,
6500 					      flags, sdif);
6501 }
6502 
6503 static const struct bpf_func_proto bpf_xdp_sk_lookup_udp_proto = {
6504 	.func           = bpf_xdp_sk_lookup_udp,
6505 	.gpl_only       = false,
6506 	.pkt_access     = true,
6507 	.ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
6508 	.arg1_type      = ARG_PTR_TO_CTX,
6509 	.arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
6510 	.arg3_type      = ARG_CONST_SIZE,
6511 	.arg4_type      = ARG_ANYTHING,
6512 	.arg5_type      = ARG_ANYTHING,
6513 };
6514 
BPF_CALL_5(bpf_xdp_skc_lookup_tcp,struct xdp_buff *,ctx,struct bpf_sock_tuple *,tuple,u32,len,u32,netns_id,u64,flags)6515 BPF_CALL_5(bpf_xdp_skc_lookup_tcp, struct xdp_buff *, ctx,
6516 	   struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
6517 {
6518 	struct net_device *dev = ctx->rxq->dev;
6519 	int ifindex = dev->ifindex, sdif = dev_sdif(dev);
6520 	struct net *caller_net = dev_net(dev);
6521 
6522 	return (unsigned long)__bpf_skc_lookup(NULL, tuple, len, caller_net,
6523 					       ifindex, IPPROTO_TCP, netns_id,
6524 					       flags, sdif);
6525 }
6526 
6527 static const struct bpf_func_proto bpf_xdp_skc_lookup_tcp_proto = {
6528 	.func           = bpf_xdp_skc_lookup_tcp,
6529 	.gpl_only       = false,
6530 	.pkt_access     = true,
6531 	.ret_type       = RET_PTR_TO_SOCK_COMMON_OR_NULL,
6532 	.arg1_type      = ARG_PTR_TO_CTX,
6533 	.arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
6534 	.arg3_type      = ARG_CONST_SIZE,
6535 	.arg4_type      = ARG_ANYTHING,
6536 	.arg5_type      = ARG_ANYTHING,
6537 };
6538 
BPF_CALL_5(bpf_xdp_sk_lookup_tcp,struct xdp_buff *,ctx,struct bpf_sock_tuple *,tuple,u32,len,u32,netns_id,u64,flags)6539 BPF_CALL_5(bpf_xdp_sk_lookup_tcp, struct xdp_buff *, ctx,
6540 	   struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
6541 {
6542 	struct net_device *dev = ctx->rxq->dev;
6543 	int ifindex = dev->ifindex, sdif = dev_sdif(dev);
6544 	struct net *caller_net = dev_net(dev);
6545 
6546 	return (unsigned long)__bpf_sk_lookup(NULL, tuple, len, caller_net,
6547 					      ifindex, IPPROTO_TCP, netns_id,
6548 					      flags, sdif);
6549 }
6550 
6551 static const struct bpf_func_proto bpf_xdp_sk_lookup_tcp_proto = {
6552 	.func           = bpf_xdp_sk_lookup_tcp,
6553 	.gpl_only       = false,
6554 	.pkt_access     = true,
6555 	.ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
6556 	.arg1_type      = ARG_PTR_TO_CTX,
6557 	.arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
6558 	.arg3_type      = ARG_CONST_SIZE,
6559 	.arg4_type      = ARG_ANYTHING,
6560 	.arg5_type      = ARG_ANYTHING,
6561 };
6562 
BPF_CALL_5(bpf_sock_addr_skc_lookup_tcp,struct bpf_sock_addr_kern *,ctx,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)6563 BPF_CALL_5(bpf_sock_addr_skc_lookup_tcp, struct bpf_sock_addr_kern *, ctx,
6564 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6565 {
6566 	return (unsigned long)__bpf_skc_lookup(NULL, tuple, len,
6567 					       sock_net(ctx->sk), 0,
6568 					       IPPROTO_TCP, netns_id, flags,
6569 					       -1);
6570 }
6571 
6572 static const struct bpf_func_proto bpf_sock_addr_skc_lookup_tcp_proto = {
6573 	.func		= bpf_sock_addr_skc_lookup_tcp,
6574 	.gpl_only	= false,
6575 	.ret_type	= RET_PTR_TO_SOCK_COMMON_OR_NULL,
6576 	.arg1_type	= ARG_PTR_TO_CTX,
6577 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6578 	.arg3_type	= ARG_CONST_SIZE,
6579 	.arg4_type	= ARG_ANYTHING,
6580 	.arg5_type	= ARG_ANYTHING,
6581 };
6582 
BPF_CALL_5(bpf_sock_addr_sk_lookup_tcp,struct bpf_sock_addr_kern *,ctx,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)6583 BPF_CALL_5(bpf_sock_addr_sk_lookup_tcp, struct bpf_sock_addr_kern *, ctx,
6584 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6585 {
6586 	return (unsigned long)__bpf_sk_lookup(NULL, tuple, len,
6587 					      sock_net(ctx->sk), 0, IPPROTO_TCP,
6588 					      netns_id, flags, -1);
6589 }
6590 
6591 static const struct bpf_func_proto bpf_sock_addr_sk_lookup_tcp_proto = {
6592 	.func		= bpf_sock_addr_sk_lookup_tcp,
6593 	.gpl_only	= false,
6594 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
6595 	.arg1_type	= ARG_PTR_TO_CTX,
6596 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6597 	.arg3_type	= ARG_CONST_SIZE,
6598 	.arg4_type	= ARG_ANYTHING,
6599 	.arg5_type	= ARG_ANYTHING,
6600 };
6601 
BPF_CALL_5(bpf_sock_addr_sk_lookup_udp,struct bpf_sock_addr_kern *,ctx,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)6602 BPF_CALL_5(bpf_sock_addr_sk_lookup_udp, struct bpf_sock_addr_kern *, ctx,
6603 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6604 {
6605 	return (unsigned long)__bpf_sk_lookup(NULL, tuple, len,
6606 					      sock_net(ctx->sk), 0, IPPROTO_UDP,
6607 					      netns_id, flags, -1);
6608 }
6609 
6610 static const struct bpf_func_proto bpf_sock_addr_sk_lookup_udp_proto = {
6611 	.func		= bpf_sock_addr_sk_lookup_udp,
6612 	.gpl_only	= false,
6613 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
6614 	.arg1_type	= ARG_PTR_TO_CTX,
6615 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6616 	.arg3_type	= ARG_CONST_SIZE,
6617 	.arg4_type	= ARG_ANYTHING,
6618 	.arg5_type	= ARG_ANYTHING,
6619 };
6620 
bpf_tcp_sock_is_valid_access(int off,int size,enum bpf_access_type type,struct bpf_insn_access_aux * info)6621 bool bpf_tcp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
6622 				  struct bpf_insn_access_aux *info)
6623 {
6624 	if (off < 0 || off >= offsetofend(struct bpf_tcp_sock,
6625 					  icsk_retransmits))
6626 		return false;
6627 
6628 	if (off % size != 0)
6629 		return false;
6630 
6631 	switch (off) {
6632 	case offsetof(struct bpf_tcp_sock, bytes_received):
6633 	case offsetof(struct bpf_tcp_sock, bytes_acked):
6634 		return size == sizeof(__u64);
6635 	default:
6636 		return size == sizeof(__u32);
6637 	}
6638 }
6639 
bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)6640 u32 bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type,
6641 				    const struct bpf_insn *si,
6642 				    struct bpf_insn *insn_buf,
6643 				    struct bpf_prog *prog, u32 *target_size)
6644 {
6645 	struct bpf_insn *insn = insn_buf;
6646 
6647 #define BPF_TCP_SOCK_GET_COMMON(FIELD)					\
6648 	do {								\
6649 		BUILD_BUG_ON(sizeof_field(struct tcp_sock, FIELD) >	\
6650 			     sizeof_field(struct bpf_tcp_sock, FIELD));	\
6651 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct tcp_sock, FIELD),\
6652 				      si->dst_reg, si->src_reg,		\
6653 				      offsetof(struct tcp_sock, FIELD)); \
6654 	} while (0)
6655 
6656 #define BPF_INET_SOCK_GET_COMMON(FIELD)					\
6657 	do {								\
6658 		BUILD_BUG_ON(sizeof_field(struct inet_connection_sock,	\
6659 					  FIELD) >			\
6660 			     sizeof_field(struct bpf_tcp_sock, FIELD));	\
6661 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			\
6662 					struct inet_connection_sock,	\
6663 					FIELD),				\
6664 				      si->dst_reg, si->src_reg,		\
6665 				      offsetof(				\
6666 					struct inet_connection_sock,	\
6667 					FIELD));			\
6668 	} while (0)
6669 
6670 	if (insn > insn_buf)
6671 		return insn - insn_buf;
6672 
6673 	switch (si->off) {
6674 	case offsetof(struct bpf_tcp_sock, rtt_min):
6675 		BUILD_BUG_ON(sizeof_field(struct tcp_sock, rtt_min) !=
6676 			     sizeof(struct minmax));
6677 		BUILD_BUG_ON(sizeof(struct minmax) <
6678 			     sizeof(struct minmax_sample));
6679 
6680 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
6681 				      offsetof(struct tcp_sock, rtt_min) +
6682 				      offsetof(struct minmax_sample, v));
6683 		break;
6684 	case offsetof(struct bpf_tcp_sock, snd_cwnd):
6685 		BPF_TCP_SOCK_GET_COMMON(snd_cwnd);
6686 		break;
6687 	case offsetof(struct bpf_tcp_sock, srtt_us):
6688 		BPF_TCP_SOCK_GET_COMMON(srtt_us);
6689 		break;
6690 	case offsetof(struct bpf_tcp_sock, snd_ssthresh):
6691 		BPF_TCP_SOCK_GET_COMMON(snd_ssthresh);
6692 		break;
6693 	case offsetof(struct bpf_tcp_sock, rcv_nxt):
6694 		BPF_TCP_SOCK_GET_COMMON(rcv_nxt);
6695 		break;
6696 	case offsetof(struct bpf_tcp_sock, snd_nxt):
6697 		BPF_TCP_SOCK_GET_COMMON(snd_nxt);
6698 		break;
6699 	case offsetof(struct bpf_tcp_sock, snd_una):
6700 		BPF_TCP_SOCK_GET_COMMON(snd_una);
6701 		break;
6702 	case offsetof(struct bpf_tcp_sock, mss_cache):
6703 		BPF_TCP_SOCK_GET_COMMON(mss_cache);
6704 		break;
6705 	case offsetof(struct bpf_tcp_sock, ecn_flags):
6706 		BPF_TCP_SOCK_GET_COMMON(ecn_flags);
6707 		break;
6708 	case offsetof(struct bpf_tcp_sock, rate_delivered):
6709 		BPF_TCP_SOCK_GET_COMMON(rate_delivered);
6710 		break;
6711 	case offsetof(struct bpf_tcp_sock, rate_interval_us):
6712 		BPF_TCP_SOCK_GET_COMMON(rate_interval_us);
6713 		break;
6714 	case offsetof(struct bpf_tcp_sock, packets_out):
6715 		BPF_TCP_SOCK_GET_COMMON(packets_out);
6716 		break;
6717 	case offsetof(struct bpf_tcp_sock, retrans_out):
6718 		BPF_TCP_SOCK_GET_COMMON(retrans_out);
6719 		break;
6720 	case offsetof(struct bpf_tcp_sock, total_retrans):
6721 		BPF_TCP_SOCK_GET_COMMON(total_retrans);
6722 		break;
6723 	case offsetof(struct bpf_tcp_sock, segs_in):
6724 		BPF_TCP_SOCK_GET_COMMON(segs_in);
6725 		break;
6726 	case offsetof(struct bpf_tcp_sock, data_segs_in):
6727 		BPF_TCP_SOCK_GET_COMMON(data_segs_in);
6728 		break;
6729 	case offsetof(struct bpf_tcp_sock, segs_out):
6730 		BPF_TCP_SOCK_GET_COMMON(segs_out);
6731 		break;
6732 	case offsetof(struct bpf_tcp_sock, data_segs_out):
6733 		BPF_TCP_SOCK_GET_COMMON(data_segs_out);
6734 		break;
6735 	case offsetof(struct bpf_tcp_sock, lost_out):
6736 		BPF_TCP_SOCK_GET_COMMON(lost_out);
6737 		break;
6738 	case offsetof(struct bpf_tcp_sock, sacked_out):
6739 		BPF_TCP_SOCK_GET_COMMON(sacked_out);
6740 		break;
6741 	case offsetof(struct bpf_tcp_sock, bytes_received):
6742 		BPF_TCP_SOCK_GET_COMMON(bytes_received);
6743 		break;
6744 	case offsetof(struct bpf_tcp_sock, bytes_acked):
6745 		BPF_TCP_SOCK_GET_COMMON(bytes_acked);
6746 		break;
6747 	case offsetof(struct bpf_tcp_sock, dsack_dups):
6748 		BPF_TCP_SOCK_GET_COMMON(dsack_dups);
6749 		break;
6750 	case offsetof(struct bpf_tcp_sock, delivered):
6751 		BPF_TCP_SOCK_GET_COMMON(delivered);
6752 		break;
6753 	case offsetof(struct bpf_tcp_sock, delivered_ce):
6754 		BPF_TCP_SOCK_GET_COMMON(delivered_ce);
6755 		break;
6756 	case offsetof(struct bpf_tcp_sock, icsk_retransmits):
6757 		BPF_INET_SOCK_GET_COMMON(icsk_retransmits);
6758 		break;
6759 	}
6760 
6761 	return insn - insn_buf;
6762 }
6763 
BPF_CALL_1(bpf_tcp_sock,struct sock *,sk)6764 BPF_CALL_1(bpf_tcp_sock, struct sock *, sk)
6765 {
6766 	if (sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP)
6767 		return (unsigned long)sk;
6768 
6769 	return (unsigned long)NULL;
6770 }
6771 
6772 const struct bpf_func_proto bpf_tcp_sock_proto = {
6773 	.func		= bpf_tcp_sock,
6774 	.gpl_only	= false,
6775 	.ret_type	= RET_PTR_TO_TCP_SOCK_OR_NULL,
6776 	.arg1_type	= ARG_PTR_TO_SOCK_COMMON,
6777 };
6778 
BPF_CALL_1(bpf_get_listener_sock,struct sock *,sk)6779 BPF_CALL_1(bpf_get_listener_sock, struct sock *, sk)
6780 {
6781 	sk = sk_to_full_sk(sk);
6782 
6783 	if (sk->sk_state == TCP_LISTEN && sock_flag(sk, SOCK_RCU_FREE))
6784 		return (unsigned long)sk;
6785 
6786 	return (unsigned long)NULL;
6787 }
6788 
6789 static const struct bpf_func_proto bpf_get_listener_sock_proto = {
6790 	.func		= bpf_get_listener_sock,
6791 	.gpl_only	= false,
6792 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
6793 	.arg1_type	= ARG_PTR_TO_SOCK_COMMON,
6794 };
6795 
BPF_CALL_1(bpf_skb_ecn_set_ce,struct sk_buff *,skb)6796 BPF_CALL_1(bpf_skb_ecn_set_ce, struct sk_buff *, skb)
6797 {
6798 	unsigned int iphdr_len;
6799 
6800 	switch (skb_protocol(skb, true)) {
6801 	case cpu_to_be16(ETH_P_IP):
6802 		iphdr_len = sizeof(struct iphdr);
6803 		break;
6804 	case cpu_to_be16(ETH_P_IPV6):
6805 		iphdr_len = sizeof(struct ipv6hdr);
6806 		break;
6807 	default:
6808 		return 0;
6809 	}
6810 
6811 	if (skb_headlen(skb) < iphdr_len)
6812 		return 0;
6813 
6814 	if (skb_cloned(skb) && !skb_clone_writable(skb, iphdr_len))
6815 		return 0;
6816 
6817 	return INET_ECN_set_ce(skb);
6818 }
6819 
bpf_xdp_sock_is_valid_access(int off,int size,enum bpf_access_type type,struct bpf_insn_access_aux * info)6820 bool bpf_xdp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
6821 				  struct bpf_insn_access_aux *info)
6822 {
6823 	if (off < 0 || off >= offsetofend(struct bpf_xdp_sock, queue_id))
6824 		return false;
6825 
6826 	if (off % size != 0)
6827 		return false;
6828 
6829 	switch (off) {
6830 	default:
6831 		return size == sizeof(__u32);
6832 	}
6833 }
6834 
bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)6835 u32 bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type,
6836 				    const struct bpf_insn *si,
6837 				    struct bpf_insn *insn_buf,
6838 				    struct bpf_prog *prog, u32 *target_size)
6839 {
6840 	struct bpf_insn *insn = insn_buf;
6841 
6842 #define BPF_XDP_SOCK_GET(FIELD)						\
6843 	do {								\
6844 		BUILD_BUG_ON(sizeof_field(struct xdp_sock, FIELD) >	\
6845 			     sizeof_field(struct bpf_xdp_sock, FIELD));	\
6846 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_sock, FIELD),\
6847 				      si->dst_reg, si->src_reg,		\
6848 				      offsetof(struct xdp_sock, FIELD)); \
6849 	} while (0)
6850 
6851 	switch (si->off) {
6852 	case offsetof(struct bpf_xdp_sock, queue_id):
6853 		BPF_XDP_SOCK_GET(queue_id);
6854 		break;
6855 	}
6856 
6857 	return insn - insn_buf;
6858 }
6859 
6860 static const struct bpf_func_proto bpf_skb_ecn_set_ce_proto = {
6861 	.func           = bpf_skb_ecn_set_ce,
6862 	.gpl_only       = false,
6863 	.ret_type       = RET_INTEGER,
6864 	.arg1_type      = ARG_PTR_TO_CTX,
6865 };
6866 
BPF_CALL_5(bpf_tcp_check_syncookie,struct sock *,sk,void *,iph,u32,iph_len,struct tcphdr *,th,u32,th_len)6867 BPF_CALL_5(bpf_tcp_check_syncookie, struct sock *, sk, void *, iph, u32, iph_len,
6868 	   struct tcphdr *, th, u32, th_len)
6869 {
6870 #ifdef CONFIG_SYN_COOKIES
6871 	u32 cookie;
6872 	int ret;
6873 
6874 	if (unlikely(!sk || th_len < sizeof(*th)))
6875 		return -EINVAL;
6876 
6877 	/* sk_listener() allows TCP_NEW_SYN_RECV, which makes no sense here. */
6878 	if (sk->sk_protocol != IPPROTO_TCP || sk->sk_state != TCP_LISTEN)
6879 		return -EINVAL;
6880 
6881 	if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_syncookies))
6882 		return -EINVAL;
6883 
6884 	if (!th->ack || th->rst || th->syn)
6885 		return -ENOENT;
6886 
6887 	if (unlikely(iph_len < sizeof(struct iphdr)))
6888 		return -EINVAL;
6889 
6890 	if (tcp_synq_no_recent_overflow(sk))
6891 		return -ENOENT;
6892 
6893 	cookie = ntohl(th->ack_seq) - 1;
6894 
6895 	/* Both struct iphdr and struct ipv6hdr have the version field at the
6896 	 * same offset so we can cast to the shorter header (struct iphdr).
6897 	 */
6898 	switch (((struct iphdr *)iph)->version) {
6899 	case 4:
6900 		if (sk->sk_family == AF_INET6 && ipv6_only_sock(sk))
6901 			return -EINVAL;
6902 
6903 		ret = __cookie_v4_check((struct iphdr *)iph, th, cookie);
6904 		break;
6905 
6906 #if IS_BUILTIN(CONFIG_IPV6)
6907 	case 6:
6908 		if (unlikely(iph_len < sizeof(struct ipv6hdr)))
6909 			return -EINVAL;
6910 
6911 		if (sk->sk_family != AF_INET6)
6912 			return -EINVAL;
6913 
6914 		ret = __cookie_v6_check((struct ipv6hdr *)iph, th, cookie);
6915 		break;
6916 #endif /* CONFIG_IPV6 */
6917 
6918 	default:
6919 		return -EPROTONOSUPPORT;
6920 	}
6921 
6922 	if (ret > 0)
6923 		return 0;
6924 
6925 	return -ENOENT;
6926 #else
6927 	return -ENOTSUPP;
6928 #endif
6929 }
6930 
6931 static const struct bpf_func_proto bpf_tcp_check_syncookie_proto = {
6932 	.func		= bpf_tcp_check_syncookie,
6933 	.gpl_only	= true,
6934 	.pkt_access	= true,
6935 	.ret_type	= RET_INTEGER,
6936 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
6937 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6938 	.arg3_type	= ARG_CONST_SIZE,
6939 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6940 	.arg5_type	= ARG_CONST_SIZE,
6941 };
6942 
BPF_CALL_5(bpf_tcp_gen_syncookie,struct sock *,sk,void *,iph,u32,iph_len,struct tcphdr *,th,u32,th_len)6943 BPF_CALL_5(bpf_tcp_gen_syncookie, struct sock *, sk, void *, iph, u32, iph_len,
6944 	   struct tcphdr *, th, u32, th_len)
6945 {
6946 #ifdef CONFIG_SYN_COOKIES
6947 	u32 cookie;
6948 	u16 mss;
6949 
6950 	if (unlikely(!sk || th_len < sizeof(*th) || th_len != th->doff * 4))
6951 		return -EINVAL;
6952 
6953 	if (sk->sk_protocol != IPPROTO_TCP || sk->sk_state != TCP_LISTEN)
6954 		return -EINVAL;
6955 
6956 	if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_syncookies))
6957 		return -ENOENT;
6958 
6959 	if (!th->syn || th->ack || th->fin || th->rst)
6960 		return -EINVAL;
6961 
6962 	if (unlikely(iph_len < sizeof(struct iphdr)))
6963 		return -EINVAL;
6964 
6965 	/* Both struct iphdr and struct ipv6hdr have the version field at the
6966 	 * same offset so we can cast to the shorter header (struct iphdr).
6967 	 */
6968 	switch (((struct iphdr *)iph)->version) {
6969 	case 4:
6970 		if (sk->sk_family == AF_INET6 && sk->sk_ipv6only)
6971 			return -EINVAL;
6972 
6973 		mss = tcp_v4_get_syncookie(sk, iph, th, &cookie);
6974 		break;
6975 
6976 #if IS_BUILTIN(CONFIG_IPV6)
6977 	case 6:
6978 		if (unlikely(iph_len < sizeof(struct ipv6hdr)))
6979 			return -EINVAL;
6980 
6981 		if (sk->sk_family != AF_INET6)
6982 			return -EINVAL;
6983 
6984 		mss = tcp_v6_get_syncookie(sk, iph, th, &cookie);
6985 		break;
6986 #endif /* CONFIG_IPV6 */
6987 
6988 	default:
6989 		return -EPROTONOSUPPORT;
6990 	}
6991 	if (mss == 0)
6992 		return -ENOENT;
6993 
6994 	return cookie | ((u64)mss << 32);
6995 #else
6996 	return -EOPNOTSUPP;
6997 #endif /* CONFIG_SYN_COOKIES */
6998 }
6999 
7000 static const struct bpf_func_proto bpf_tcp_gen_syncookie_proto = {
7001 	.func		= bpf_tcp_gen_syncookie,
7002 	.gpl_only	= true, /* __cookie_v*_init_sequence() is GPL */
7003 	.pkt_access	= true,
7004 	.ret_type	= RET_INTEGER,
7005 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
7006 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
7007 	.arg3_type	= ARG_CONST_SIZE,
7008 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
7009 	.arg5_type	= ARG_CONST_SIZE,
7010 };
7011 
BPF_CALL_3(bpf_sk_assign,struct sk_buff *,skb,struct sock *,sk,u64,flags)7012 BPF_CALL_3(bpf_sk_assign, struct sk_buff *, skb, struct sock *, sk, u64, flags)
7013 {
7014 	if (!sk || flags != 0)
7015 		return -EINVAL;
7016 	if (!skb_at_tc_ingress(skb))
7017 		return -EOPNOTSUPP;
7018 	if (unlikely(dev_net(skb->dev) != sock_net(sk)))
7019 		return -ENETUNREACH;
7020 	if (unlikely(sk_fullsock(sk) && sk->sk_reuseport))
7021 		return -ESOCKTNOSUPPORT;
7022 	if (sk_unhashed(sk))
7023 		return -EOPNOTSUPP;
7024 	if (sk_is_refcounted(sk) &&
7025 	    unlikely(!refcount_inc_not_zero(&sk->sk_refcnt)))
7026 		return -ENOENT;
7027 
7028 	skb_orphan(skb);
7029 	skb->sk = sk;
7030 	skb->destructor = sock_pfree;
7031 
7032 	return 0;
7033 }
7034 
7035 static const struct bpf_func_proto bpf_sk_assign_proto = {
7036 	.func		= bpf_sk_assign,
7037 	.gpl_only	= false,
7038 	.ret_type	= RET_INTEGER,
7039 	.arg1_type      = ARG_PTR_TO_CTX,
7040 	.arg2_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
7041 	.arg3_type	= ARG_ANYTHING,
7042 };
7043 
bpf_search_tcp_opt(const u8 * op,const u8 * opend,u8 search_kind,const u8 * magic,u8 magic_len,bool * eol)7044 static const u8 *bpf_search_tcp_opt(const u8 *op, const u8 *opend,
7045 				    u8 search_kind, const u8 *magic,
7046 				    u8 magic_len, bool *eol)
7047 {
7048 	u8 kind, kind_len;
7049 
7050 	*eol = false;
7051 
7052 	while (op < opend) {
7053 		kind = op[0];
7054 
7055 		if (kind == TCPOPT_EOL) {
7056 			*eol = true;
7057 			return ERR_PTR(-ENOMSG);
7058 		} else if (kind == TCPOPT_NOP) {
7059 			op++;
7060 			continue;
7061 		}
7062 
7063 		if (opend - op < 2 || opend - op < op[1] || op[1] < 2)
7064 			/* Something is wrong in the received header.
7065 			 * Follow the TCP stack's tcp_parse_options()
7066 			 * and just bail here.
7067 			 */
7068 			return ERR_PTR(-EFAULT);
7069 
7070 		kind_len = op[1];
7071 		if (search_kind == kind) {
7072 			if (!magic_len)
7073 				return op;
7074 
7075 			if (magic_len > kind_len - 2)
7076 				return ERR_PTR(-ENOMSG);
7077 
7078 			if (!memcmp(&op[2], magic, magic_len))
7079 				return op;
7080 		}
7081 
7082 		op += kind_len;
7083 	}
7084 
7085 	return ERR_PTR(-ENOMSG);
7086 }
7087 
BPF_CALL_4(bpf_sock_ops_load_hdr_opt,struct bpf_sock_ops_kern *,bpf_sock,void *,search_res,u32,len,u64,flags)7088 BPF_CALL_4(bpf_sock_ops_load_hdr_opt, struct bpf_sock_ops_kern *, bpf_sock,
7089 	   void *, search_res, u32, len, u64, flags)
7090 {
7091 	bool eol, load_syn = flags & BPF_LOAD_HDR_OPT_TCP_SYN;
7092 	const u8 *op, *opend, *magic, *search = search_res;
7093 	u8 search_kind, search_len, copy_len, magic_len;
7094 	int ret;
7095 
7096 	/* 2 byte is the minimal option len except TCPOPT_NOP and
7097 	 * TCPOPT_EOL which are useless for the bpf prog to learn
7098 	 * and this helper disallow loading them also.
7099 	 */
7100 	if (len < 2 || flags & ~BPF_LOAD_HDR_OPT_TCP_SYN)
7101 		return -EINVAL;
7102 
7103 	search_kind = search[0];
7104 	search_len = search[1];
7105 
7106 	if (search_len > len || search_kind == TCPOPT_NOP ||
7107 	    search_kind == TCPOPT_EOL)
7108 		return -EINVAL;
7109 
7110 	if (search_kind == TCPOPT_EXP || search_kind == 253) {
7111 		/* 16 or 32 bit magic.  +2 for kind and kind length */
7112 		if (search_len != 4 && search_len != 6)
7113 			return -EINVAL;
7114 		magic = &search[2];
7115 		magic_len = search_len - 2;
7116 	} else {
7117 		if (search_len)
7118 			return -EINVAL;
7119 		magic = NULL;
7120 		magic_len = 0;
7121 	}
7122 
7123 	if (load_syn) {
7124 		ret = bpf_sock_ops_get_syn(bpf_sock, TCP_BPF_SYN, &op);
7125 		if (ret < 0)
7126 			return ret;
7127 
7128 		opend = op + ret;
7129 		op += sizeof(struct tcphdr);
7130 	} else {
7131 		if (!bpf_sock->skb ||
7132 		    bpf_sock->op == BPF_SOCK_OPS_HDR_OPT_LEN_CB)
7133 			/* This bpf_sock->op cannot call this helper */
7134 			return -EPERM;
7135 
7136 		opend = bpf_sock->skb_data_end;
7137 		op = bpf_sock->skb->data + sizeof(struct tcphdr);
7138 	}
7139 
7140 	op = bpf_search_tcp_opt(op, opend, search_kind, magic, magic_len,
7141 				&eol);
7142 	if (IS_ERR(op))
7143 		return PTR_ERR(op);
7144 
7145 	copy_len = op[1];
7146 	ret = copy_len;
7147 	if (copy_len > len) {
7148 		ret = -ENOSPC;
7149 		copy_len = len;
7150 	}
7151 
7152 	memcpy(search_res, op, copy_len);
7153 	return ret;
7154 }
7155 
7156 static const struct bpf_func_proto bpf_sock_ops_load_hdr_opt_proto = {
7157 	.func		= bpf_sock_ops_load_hdr_opt,
7158 	.gpl_only	= false,
7159 	.ret_type	= RET_INTEGER,
7160 	.arg1_type	= ARG_PTR_TO_CTX,
7161 	.arg2_type	= ARG_PTR_TO_MEM,
7162 	.arg3_type	= ARG_CONST_SIZE,
7163 	.arg4_type	= ARG_ANYTHING,
7164 };
7165 
BPF_CALL_4(bpf_sock_ops_store_hdr_opt,struct bpf_sock_ops_kern *,bpf_sock,const void *,from,u32,len,u64,flags)7166 BPF_CALL_4(bpf_sock_ops_store_hdr_opt, struct bpf_sock_ops_kern *, bpf_sock,
7167 	   const void *, from, u32, len, u64, flags)
7168 {
7169 	u8 new_kind, new_kind_len, magic_len = 0, *opend;
7170 	const u8 *op, *new_op, *magic = NULL;
7171 	struct sk_buff *skb;
7172 	bool eol;
7173 
7174 	if (bpf_sock->op != BPF_SOCK_OPS_WRITE_HDR_OPT_CB)
7175 		return -EPERM;
7176 
7177 	if (len < 2 || flags)
7178 		return -EINVAL;
7179 
7180 	new_op = from;
7181 	new_kind = new_op[0];
7182 	new_kind_len = new_op[1];
7183 
7184 	if (new_kind_len > len || new_kind == TCPOPT_NOP ||
7185 	    new_kind == TCPOPT_EOL)
7186 		return -EINVAL;
7187 
7188 	if (new_kind_len > bpf_sock->remaining_opt_len)
7189 		return -ENOSPC;
7190 
7191 	/* 253 is another experimental kind */
7192 	if (new_kind == TCPOPT_EXP || new_kind == 253)  {
7193 		if (new_kind_len < 4)
7194 			return -EINVAL;
7195 		/* Match for the 2 byte magic also.
7196 		 * RFC 6994: the magic could be 2 or 4 bytes.
7197 		 * Hence, matching by 2 byte only is on the
7198 		 * conservative side but it is the right
7199 		 * thing to do for the 'search-for-duplication'
7200 		 * purpose.
7201 		 */
7202 		magic = &new_op[2];
7203 		magic_len = 2;
7204 	}
7205 
7206 	/* Check for duplication */
7207 	skb = bpf_sock->skb;
7208 	op = skb->data + sizeof(struct tcphdr);
7209 	opend = bpf_sock->skb_data_end;
7210 
7211 	op = bpf_search_tcp_opt(op, opend, new_kind, magic, magic_len,
7212 				&eol);
7213 	if (!IS_ERR(op))
7214 		return -EEXIST;
7215 
7216 	if (PTR_ERR(op) != -ENOMSG)
7217 		return PTR_ERR(op);
7218 
7219 	if (eol)
7220 		/* The option has been ended.  Treat it as no more
7221 		 * header option can be written.
7222 		 */
7223 		return -ENOSPC;
7224 
7225 	/* No duplication found.  Store the header option. */
7226 	memcpy(opend, from, new_kind_len);
7227 
7228 	bpf_sock->remaining_opt_len -= new_kind_len;
7229 	bpf_sock->skb_data_end += new_kind_len;
7230 
7231 	return 0;
7232 }
7233 
7234 static const struct bpf_func_proto bpf_sock_ops_store_hdr_opt_proto = {
7235 	.func		= bpf_sock_ops_store_hdr_opt,
7236 	.gpl_only	= false,
7237 	.ret_type	= RET_INTEGER,
7238 	.arg1_type	= ARG_PTR_TO_CTX,
7239 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
7240 	.arg3_type	= ARG_CONST_SIZE,
7241 	.arg4_type	= ARG_ANYTHING,
7242 };
7243 
BPF_CALL_3(bpf_sock_ops_reserve_hdr_opt,struct bpf_sock_ops_kern *,bpf_sock,u32,len,u64,flags)7244 BPF_CALL_3(bpf_sock_ops_reserve_hdr_opt, struct bpf_sock_ops_kern *, bpf_sock,
7245 	   u32, len, u64, flags)
7246 {
7247 	if (bpf_sock->op != BPF_SOCK_OPS_HDR_OPT_LEN_CB)
7248 		return -EPERM;
7249 
7250 	if (flags || len < 2)
7251 		return -EINVAL;
7252 
7253 	if (len > bpf_sock->remaining_opt_len)
7254 		return -ENOSPC;
7255 
7256 	bpf_sock->remaining_opt_len -= len;
7257 
7258 	return 0;
7259 }
7260 
7261 static const struct bpf_func_proto bpf_sock_ops_reserve_hdr_opt_proto = {
7262 	.func		= bpf_sock_ops_reserve_hdr_opt,
7263 	.gpl_only	= false,
7264 	.ret_type	= RET_INTEGER,
7265 	.arg1_type	= ARG_PTR_TO_CTX,
7266 	.arg2_type	= ARG_ANYTHING,
7267 	.arg3_type	= ARG_ANYTHING,
7268 };
7269 
7270 #endif /* CONFIG_INET */
7271 
bpf_helper_changes_pkt_data(void * func)7272 bool bpf_helper_changes_pkt_data(void *func)
7273 {
7274 	if (func == bpf_skb_vlan_push ||
7275 	    func == bpf_skb_vlan_pop ||
7276 	    func == bpf_skb_store_bytes ||
7277 	    func == bpf_skb_change_proto ||
7278 	    func == bpf_skb_change_head ||
7279 	    func == sk_skb_change_head ||
7280 	    func == bpf_skb_change_tail ||
7281 	    func == sk_skb_change_tail ||
7282 	    func == bpf_skb_adjust_room ||
7283 	    func == sk_skb_adjust_room ||
7284 	    func == bpf_skb_pull_data ||
7285 	    func == sk_skb_pull_data ||
7286 	    func == bpf_clone_redirect ||
7287 	    func == bpf_l3_csum_replace ||
7288 	    func == bpf_l4_csum_replace ||
7289 	    func == bpf_xdp_adjust_head ||
7290 	    func == bpf_xdp_adjust_meta ||
7291 	    func == bpf_msg_pull_data ||
7292 	    func == bpf_msg_push_data ||
7293 	    func == bpf_msg_pop_data ||
7294 	    func == bpf_xdp_adjust_tail ||
7295 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
7296 	    func == bpf_lwt_seg6_store_bytes ||
7297 	    func == bpf_lwt_seg6_adjust_srh ||
7298 	    func == bpf_lwt_seg6_action ||
7299 #endif
7300 #ifdef CONFIG_INET
7301 	    func == bpf_sock_ops_store_hdr_opt ||
7302 #endif
7303 	    func == bpf_lwt_in_push_encap ||
7304 	    func == bpf_lwt_xmit_push_encap)
7305 		return true;
7306 
7307 	return false;
7308 }
7309 
7310 const struct bpf_func_proto bpf_event_output_data_proto __weak;
7311 const struct bpf_func_proto bpf_sk_storage_get_cg_sock_proto __weak;
7312 
7313 static const struct bpf_func_proto *
sock_filter_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)7314 sock_filter_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7315 {
7316 	switch (func_id) {
7317 	/* inet and inet6 sockets are created in a process
7318 	 * context so there is always a valid uid/gid
7319 	 */
7320 	case BPF_FUNC_get_current_uid_gid:
7321 		return &bpf_get_current_uid_gid_proto;
7322 	case BPF_FUNC_get_local_storage:
7323 		return &bpf_get_local_storage_proto;
7324 	case BPF_FUNC_get_socket_cookie:
7325 		return &bpf_get_socket_cookie_sock_proto;
7326 	case BPF_FUNC_get_netns_cookie:
7327 		return &bpf_get_netns_cookie_sock_proto;
7328 	case BPF_FUNC_perf_event_output:
7329 		return &bpf_event_output_data_proto;
7330 	case BPF_FUNC_get_current_pid_tgid:
7331 		return &bpf_get_current_pid_tgid_proto;
7332 	case BPF_FUNC_get_current_comm:
7333 		return &bpf_get_current_comm_proto;
7334 #ifdef CONFIG_CGROUPS
7335 	case BPF_FUNC_get_current_cgroup_id:
7336 		return &bpf_get_current_cgroup_id_proto;
7337 	case BPF_FUNC_get_current_ancestor_cgroup_id:
7338 		return &bpf_get_current_ancestor_cgroup_id_proto;
7339 #endif
7340 #ifdef CONFIG_CGROUP_NET_CLASSID
7341 	case BPF_FUNC_get_cgroup_classid:
7342 		return &bpf_get_cgroup_classid_curr_proto;
7343 #endif
7344 	case BPF_FUNC_sk_storage_get:
7345 		return &bpf_sk_storage_get_cg_sock_proto;
7346 	case BPF_FUNC_ktime_get_coarse_ns:
7347 		return &bpf_ktime_get_coarse_ns_proto;
7348 	default:
7349 		return bpf_base_func_proto(func_id);
7350 	}
7351 }
7352 
7353 static const struct bpf_func_proto *
sock_addr_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)7354 sock_addr_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7355 {
7356 	switch (func_id) {
7357 	/* inet and inet6 sockets are created in a process
7358 	 * context so there is always a valid uid/gid
7359 	 */
7360 	case BPF_FUNC_get_current_uid_gid:
7361 		return &bpf_get_current_uid_gid_proto;
7362 	case BPF_FUNC_bind:
7363 		switch (prog->expected_attach_type) {
7364 		case BPF_CGROUP_INET4_CONNECT:
7365 		case BPF_CGROUP_INET6_CONNECT:
7366 			return &bpf_bind_proto;
7367 		default:
7368 			return NULL;
7369 		}
7370 	case BPF_FUNC_get_socket_cookie:
7371 		return &bpf_get_socket_cookie_sock_addr_proto;
7372 	case BPF_FUNC_get_netns_cookie:
7373 		return &bpf_get_netns_cookie_sock_addr_proto;
7374 	case BPF_FUNC_get_local_storage:
7375 		return &bpf_get_local_storage_proto;
7376 	case BPF_FUNC_perf_event_output:
7377 		return &bpf_event_output_data_proto;
7378 	case BPF_FUNC_get_current_pid_tgid:
7379 		return &bpf_get_current_pid_tgid_proto;
7380 	case BPF_FUNC_get_current_comm:
7381 		return &bpf_get_current_comm_proto;
7382 #ifdef CONFIG_CGROUPS
7383 	case BPF_FUNC_get_current_cgroup_id:
7384 		return &bpf_get_current_cgroup_id_proto;
7385 	case BPF_FUNC_get_current_ancestor_cgroup_id:
7386 		return &bpf_get_current_ancestor_cgroup_id_proto;
7387 #endif
7388 #ifdef CONFIG_CGROUP_NET_CLASSID
7389 	case BPF_FUNC_get_cgroup_classid:
7390 		return &bpf_get_cgroup_classid_curr_proto;
7391 #endif
7392 #ifdef CONFIG_INET
7393 	case BPF_FUNC_sk_lookup_tcp:
7394 		return &bpf_sock_addr_sk_lookup_tcp_proto;
7395 	case BPF_FUNC_sk_lookup_udp:
7396 		return &bpf_sock_addr_sk_lookup_udp_proto;
7397 	case BPF_FUNC_sk_release:
7398 		return &bpf_sk_release_proto;
7399 	case BPF_FUNC_skc_lookup_tcp:
7400 		return &bpf_sock_addr_skc_lookup_tcp_proto;
7401 #endif /* CONFIG_INET */
7402 	case BPF_FUNC_sk_storage_get:
7403 		return &bpf_sk_storage_get_proto;
7404 	case BPF_FUNC_sk_storage_delete:
7405 		return &bpf_sk_storage_delete_proto;
7406 	case BPF_FUNC_setsockopt:
7407 		switch (prog->expected_attach_type) {
7408 		case BPF_CGROUP_INET4_BIND:
7409 		case BPF_CGROUP_INET6_BIND:
7410 		case BPF_CGROUP_INET4_CONNECT:
7411 		case BPF_CGROUP_INET6_CONNECT:
7412 		case BPF_CGROUP_UDP4_RECVMSG:
7413 		case BPF_CGROUP_UDP6_RECVMSG:
7414 		case BPF_CGROUP_UDP4_SENDMSG:
7415 		case BPF_CGROUP_UDP6_SENDMSG:
7416 		case BPF_CGROUP_INET4_GETPEERNAME:
7417 		case BPF_CGROUP_INET6_GETPEERNAME:
7418 		case BPF_CGROUP_INET4_GETSOCKNAME:
7419 		case BPF_CGROUP_INET6_GETSOCKNAME:
7420 			return &bpf_sock_addr_setsockopt_proto;
7421 		default:
7422 			return NULL;
7423 		}
7424 	case BPF_FUNC_getsockopt:
7425 		switch (prog->expected_attach_type) {
7426 		case BPF_CGROUP_INET4_BIND:
7427 		case BPF_CGROUP_INET6_BIND:
7428 		case BPF_CGROUP_INET4_CONNECT:
7429 		case BPF_CGROUP_INET6_CONNECT:
7430 		case BPF_CGROUP_UDP4_RECVMSG:
7431 		case BPF_CGROUP_UDP6_RECVMSG:
7432 		case BPF_CGROUP_UDP4_SENDMSG:
7433 		case BPF_CGROUP_UDP6_SENDMSG:
7434 		case BPF_CGROUP_INET4_GETPEERNAME:
7435 		case BPF_CGROUP_INET6_GETPEERNAME:
7436 		case BPF_CGROUP_INET4_GETSOCKNAME:
7437 		case BPF_CGROUP_INET6_GETSOCKNAME:
7438 			return &bpf_sock_addr_getsockopt_proto;
7439 		default:
7440 			return NULL;
7441 		}
7442 	default:
7443 		return bpf_sk_base_func_proto(func_id);
7444 	}
7445 }
7446 
7447 static const struct bpf_func_proto *
sk_filter_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)7448 sk_filter_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7449 {
7450 	switch (func_id) {
7451 	case BPF_FUNC_skb_load_bytes:
7452 		return &bpf_skb_load_bytes_proto;
7453 	case BPF_FUNC_skb_load_bytes_relative:
7454 		return &bpf_skb_load_bytes_relative_proto;
7455 	case BPF_FUNC_get_socket_cookie:
7456 		return &bpf_get_socket_cookie_proto;
7457 	case BPF_FUNC_get_socket_uid:
7458 		return &bpf_get_socket_uid_proto;
7459 	case BPF_FUNC_perf_event_output:
7460 		return &bpf_skb_event_output_proto;
7461 	default:
7462 		return bpf_sk_base_func_proto(func_id);
7463 	}
7464 }
7465 
7466 const struct bpf_func_proto bpf_sk_storage_get_proto __weak;
7467 const struct bpf_func_proto bpf_sk_storage_delete_proto __weak;
7468 
7469 static const struct bpf_func_proto *
cg_skb_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)7470 cg_skb_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7471 {
7472 	switch (func_id) {
7473 	case BPF_FUNC_get_local_storage:
7474 		return &bpf_get_local_storage_proto;
7475 	case BPF_FUNC_sk_fullsock:
7476 		return &bpf_sk_fullsock_proto;
7477 	case BPF_FUNC_sk_storage_get:
7478 		return &bpf_sk_storage_get_proto;
7479 	case BPF_FUNC_sk_storage_delete:
7480 		return &bpf_sk_storage_delete_proto;
7481 	case BPF_FUNC_perf_event_output:
7482 		return &bpf_skb_event_output_proto;
7483 #ifdef CONFIG_SOCK_CGROUP_DATA
7484 	case BPF_FUNC_skb_cgroup_id:
7485 		return &bpf_skb_cgroup_id_proto;
7486 	case BPF_FUNC_skb_ancestor_cgroup_id:
7487 		return &bpf_skb_ancestor_cgroup_id_proto;
7488 	case BPF_FUNC_sk_cgroup_id:
7489 		return &bpf_sk_cgroup_id_proto;
7490 	case BPF_FUNC_sk_ancestor_cgroup_id:
7491 		return &bpf_sk_ancestor_cgroup_id_proto;
7492 #endif
7493 #ifdef CONFIG_INET
7494 	case BPF_FUNC_sk_lookup_tcp:
7495 		return &bpf_sk_lookup_tcp_proto;
7496 	case BPF_FUNC_sk_lookup_udp:
7497 		return &bpf_sk_lookup_udp_proto;
7498 	case BPF_FUNC_sk_release:
7499 		return &bpf_sk_release_proto;
7500 	case BPF_FUNC_skc_lookup_tcp:
7501 		return &bpf_skc_lookup_tcp_proto;
7502 	case BPF_FUNC_tcp_sock:
7503 		return &bpf_tcp_sock_proto;
7504 	case BPF_FUNC_get_listener_sock:
7505 		return &bpf_get_listener_sock_proto;
7506 	case BPF_FUNC_skb_ecn_set_ce:
7507 		return &bpf_skb_ecn_set_ce_proto;
7508 #endif
7509 	default:
7510 		return sk_filter_func_proto(func_id, prog);
7511 	}
7512 }
7513 
7514 static const struct bpf_func_proto *
tc_cls_act_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)7515 tc_cls_act_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7516 {
7517 	switch (func_id) {
7518 	case BPF_FUNC_skb_store_bytes:
7519 		return &bpf_skb_store_bytes_proto;
7520 	case BPF_FUNC_skb_load_bytes:
7521 		return &bpf_skb_load_bytes_proto;
7522 	case BPF_FUNC_skb_load_bytes_relative:
7523 		return &bpf_skb_load_bytes_relative_proto;
7524 	case BPF_FUNC_skb_pull_data:
7525 		return &bpf_skb_pull_data_proto;
7526 	case BPF_FUNC_csum_diff:
7527 		return &bpf_csum_diff_proto;
7528 	case BPF_FUNC_csum_update:
7529 		return &bpf_csum_update_proto;
7530 	case BPF_FUNC_csum_level:
7531 		return &bpf_csum_level_proto;
7532 	case BPF_FUNC_l3_csum_replace:
7533 		return &bpf_l3_csum_replace_proto;
7534 	case BPF_FUNC_l4_csum_replace:
7535 		return &bpf_l4_csum_replace_proto;
7536 	case BPF_FUNC_clone_redirect:
7537 		return &bpf_clone_redirect_proto;
7538 	case BPF_FUNC_get_cgroup_classid:
7539 		return &bpf_get_cgroup_classid_proto;
7540 	case BPF_FUNC_skb_vlan_push:
7541 		return &bpf_skb_vlan_push_proto;
7542 	case BPF_FUNC_skb_vlan_pop:
7543 		return &bpf_skb_vlan_pop_proto;
7544 	case BPF_FUNC_skb_change_proto:
7545 		return &bpf_skb_change_proto_proto;
7546 	case BPF_FUNC_skb_change_type:
7547 		return &bpf_skb_change_type_proto;
7548 	case BPF_FUNC_skb_adjust_room:
7549 		return &bpf_skb_adjust_room_proto;
7550 	case BPF_FUNC_skb_change_tail:
7551 		return &bpf_skb_change_tail_proto;
7552 	case BPF_FUNC_skb_change_head:
7553 		return &bpf_skb_change_head_proto;
7554 	case BPF_FUNC_skb_get_tunnel_key:
7555 		return &bpf_skb_get_tunnel_key_proto;
7556 	case BPF_FUNC_skb_set_tunnel_key:
7557 		return bpf_get_skb_set_tunnel_proto(func_id);
7558 	case BPF_FUNC_skb_get_tunnel_opt:
7559 		return &bpf_skb_get_tunnel_opt_proto;
7560 	case BPF_FUNC_skb_set_tunnel_opt:
7561 		return bpf_get_skb_set_tunnel_proto(func_id);
7562 	case BPF_FUNC_redirect:
7563 		return &bpf_redirect_proto;
7564 	case BPF_FUNC_redirect_neigh:
7565 		return &bpf_redirect_neigh_proto;
7566 	case BPF_FUNC_redirect_peer:
7567 		return &bpf_redirect_peer_proto;
7568 	case BPF_FUNC_get_route_realm:
7569 		return &bpf_get_route_realm_proto;
7570 	case BPF_FUNC_get_hash_recalc:
7571 		return &bpf_get_hash_recalc_proto;
7572 	case BPF_FUNC_set_hash_invalid:
7573 		return &bpf_set_hash_invalid_proto;
7574 	case BPF_FUNC_set_hash:
7575 		return &bpf_set_hash_proto;
7576 	case BPF_FUNC_perf_event_output:
7577 		return &bpf_skb_event_output_proto;
7578 	case BPF_FUNC_get_smp_processor_id:
7579 		return &bpf_get_smp_processor_id_proto;
7580 	case BPF_FUNC_skb_under_cgroup:
7581 		return &bpf_skb_under_cgroup_proto;
7582 	case BPF_FUNC_get_socket_cookie:
7583 		return &bpf_get_socket_cookie_proto;
7584 	case BPF_FUNC_get_socket_uid:
7585 		return &bpf_get_socket_uid_proto;
7586 	case BPF_FUNC_fib_lookup:
7587 		return &bpf_skb_fib_lookup_proto;
7588 	case BPF_FUNC_check_mtu:
7589 		return &bpf_skb_check_mtu_proto;
7590 	case BPF_FUNC_sk_fullsock:
7591 		return &bpf_sk_fullsock_proto;
7592 	case BPF_FUNC_sk_storage_get:
7593 		return &bpf_sk_storage_get_proto;
7594 	case BPF_FUNC_sk_storage_delete:
7595 		return &bpf_sk_storage_delete_proto;
7596 #ifdef CONFIG_XFRM
7597 	case BPF_FUNC_skb_get_xfrm_state:
7598 		return &bpf_skb_get_xfrm_state_proto;
7599 #endif
7600 #ifdef CONFIG_CGROUP_NET_CLASSID
7601 	case BPF_FUNC_skb_cgroup_classid:
7602 		return &bpf_skb_cgroup_classid_proto;
7603 #endif
7604 #ifdef CONFIG_SOCK_CGROUP_DATA
7605 	case BPF_FUNC_skb_cgroup_id:
7606 		return &bpf_skb_cgroup_id_proto;
7607 	case BPF_FUNC_skb_ancestor_cgroup_id:
7608 		return &bpf_skb_ancestor_cgroup_id_proto;
7609 #endif
7610 #ifdef CONFIG_INET
7611 	case BPF_FUNC_sk_lookup_tcp:
7612 		return &bpf_tc_sk_lookup_tcp_proto;
7613 	case BPF_FUNC_sk_lookup_udp:
7614 		return &bpf_tc_sk_lookup_udp_proto;
7615 	case BPF_FUNC_sk_release:
7616 		return &bpf_sk_release_proto;
7617 	case BPF_FUNC_tcp_sock:
7618 		return &bpf_tcp_sock_proto;
7619 	case BPF_FUNC_get_listener_sock:
7620 		return &bpf_get_listener_sock_proto;
7621 	case BPF_FUNC_skc_lookup_tcp:
7622 		return &bpf_tc_skc_lookup_tcp_proto;
7623 	case BPF_FUNC_tcp_check_syncookie:
7624 		return &bpf_tcp_check_syncookie_proto;
7625 	case BPF_FUNC_skb_ecn_set_ce:
7626 		return &bpf_skb_ecn_set_ce_proto;
7627 	case BPF_FUNC_tcp_gen_syncookie:
7628 		return &bpf_tcp_gen_syncookie_proto;
7629 	case BPF_FUNC_sk_assign:
7630 		return &bpf_sk_assign_proto;
7631 #endif
7632 	default:
7633 		return bpf_sk_base_func_proto(func_id);
7634 	}
7635 }
7636 
7637 static const struct bpf_func_proto *
xdp_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)7638 xdp_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7639 {
7640 	switch (func_id) {
7641 	case BPF_FUNC_perf_event_output:
7642 		return &bpf_xdp_event_output_proto;
7643 	case BPF_FUNC_get_smp_processor_id:
7644 		return &bpf_get_smp_processor_id_proto;
7645 	case BPF_FUNC_csum_diff:
7646 		return &bpf_csum_diff_proto;
7647 	case BPF_FUNC_xdp_adjust_head:
7648 		return &bpf_xdp_adjust_head_proto;
7649 	case BPF_FUNC_xdp_adjust_meta:
7650 		return &bpf_xdp_adjust_meta_proto;
7651 	case BPF_FUNC_redirect:
7652 		return &bpf_xdp_redirect_proto;
7653 	case BPF_FUNC_redirect_map:
7654 		return &bpf_xdp_redirect_map_proto;
7655 	case BPF_FUNC_xdp_adjust_tail:
7656 		return &bpf_xdp_adjust_tail_proto;
7657 	case BPF_FUNC_fib_lookup:
7658 		return &bpf_xdp_fib_lookup_proto;
7659 	case BPF_FUNC_check_mtu:
7660 		return &bpf_xdp_check_mtu_proto;
7661 #ifdef CONFIG_INET
7662 	case BPF_FUNC_sk_lookup_udp:
7663 		return &bpf_xdp_sk_lookup_udp_proto;
7664 	case BPF_FUNC_sk_lookup_tcp:
7665 		return &bpf_xdp_sk_lookup_tcp_proto;
7666 	case BPF_FUNC_sk_release:
7667 		return &bpf_sk_release_proto;
7668 	case BPF_FUNC_skc_lookup_tcp:
7669 		return &bpf_xdp_skc_lookup_tcp_proto;
7670 	case BPF_FUNC_tcp_check_syncookie:
7671 		return &bpf_tcp_check_syncookie_proto;
7672 	case BPF_FUNC_tcp_gen_syncookie:
7673 		return &bpf_tcp_gen_syncookie_proto;
7674 #endif
7675 	default:
7676 		return bpf_sk_base_func_proto(func_id);
7677 	}
7678 }
7679 
7680 const struct bpf_func_proto bpf_sock_map_update_proto __weak;
7681 const struct bpf_func_proto bpf_sock_hash_update_proto __weak;
7682 
7683 static const struct bpf_func_proto *
sock_ops_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)7684 sock_ops_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7685 {
7686 	switch (func_id) {
7687 	case BPF_FUNC_setsockopt:
7688 		return &bpf_sock_ops_setsockopt_proto;
7689 	case BPF_FUNC_getsockopt:
7690 		return &bpf_sock_ops_getsockopt_proto;
7691 	case BPF_FUNC_sock_ops_cb_flags_set:
7692 		return &bpf_sock_ops_cb_flags_set_proto;
7693 	case BPF_FUNC_sock_map_update:
7694 		return &bpf_sock_map_update_proto;
7695 	case BPF_FUNC_sock_hash_update:
7696 		return &bpf_sock_hash_update_proto;
7697 	case BPF_FUNC_get_socket_cookie:
7698 		return &bpf_get_socket_cookie_sock_ops_proto;
7699 	case BPF_FUNC_get_local_storage:
7700 		return &bpf_get_local_storage_proto;
7701 	case BPF_FUNC_perf_event_output:
7702 		return &bpf_event_output_data_proto;
7703 	case BPF_FUNC_sk_storage_get:
7704 		return &bpf_sk_storage_get_proto;
7705 	case BPF_FUNC_sk_storage_delete:
7706 		return &bpf_sk_storage_delete_proto;
7707 	case BPF_FUNC_get_netns_cookie:
7708 		return &bpf_get_netns_cookie_sock_ops_proto;
7709 #ifdef CONFIG_INET
7710 	case BPF_FUNC_load_hdr_opt:
7711 		return &bpf_sock_ops_load_hdr_opt_proto;
7712 	case BPF_FUNC_store_hdr_opt:
7713 		return &bpf_sock_ops_store_hdr_opt_proto;
7714 	case BPF_FUNC_reserve_hdr_opt:
7715 		return &bpf_sock_ops_reserve_hdr_opt_proto;
7716 	case BPF_FUNC_tcp_sock:
7717 		return &bpf_tcp_sock_proto;
7718 #endif /* CONFIG_INET */
7719 	default:
7720 		return bpf_sk_base_func_proto(func_id);
7721 	}
7722 }
7723 
7724 const struct bpf_func_proto bpf_msg_redirect_map_proto __weak;
7725 const struct bpf_func_proto bpf_msg_redirect_hash_proto __weak;
7726 
7727 static const struct bpf_func_proto *
sk_msg_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)7728 sk_msg_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7729 {
7730 	switch (func_id) {
7731 	case BPF_FUNC_msg_redirect_map:
7732 		return &bpf_msg_redirect_map_proto;
7733 	case BPF_FUNC_msg_redirect_hash:
7734 		return &bpf_msg_redirect_hash_proto;
7735 	case BPF_FUNC_msg_apply_bytes:
7736 		return &bpf_msg_apply_bytes_proto;
7737 	case BPF_FUNC_msg_cork_bytes:
7738 		return &bpf_msg_cork_bytes_proto;
7739 	case BPF_FUNC_msg_pull_data:
7740 		return &bpf_msg_pull_data_proto;
7741 	case BPF_FUNC_msg_push_data:
7742 		return &bpf_msg_push_data_proto;
7743 	case BPF_FUNC_msg_pop_data:
7744 		return &bpf_msg_pop_data_proto;
7745 	case BPF_FUNC_perf_event_output:
7746 		return &bpf_event_output_data_proto;
7747 	case BPF_FUNC_get_current_uid_gid:
7748 		return &bpf_get_current_uid_gid_proto;
7749 	case BPF_FUNC_get_current_pid_tgid:
7750 		return &bpf_get_current_pid_tgid_proto;
7751 	case BPF_FUNC_sk_storage_get:
7752 		return &bpf_sk_storage_get_proto;
7753 	case BPF_FUNC_sk_storage_delete:
7754 		return &bpf_sk_storage_delete_proto;
7755 	case BPF_FUNC_get_netns_cookie:
7756 		return &bpf_get_netns_cookie_sk_msg_proto;
7757 #ifdef CONFIG_CGROUPS
7758 	case BPF_FUNC_get_current_cgroup_id:
7759 		return &bpf_get_current_cgroup_id_proto;
7760 	case BPF_FUNC_get_current_ancestor_cgroup_id:
7761 		return &bpf_get_current_ancestor_cgroup_id_proto;
7762 #endif
7763 #ifdef CONFIG_CGROUP_NET_CLASSID
7764 	case BPF_FUNC_get_cgroup_classid:
7765 		return &bpf_get_cgroup_classid_curr_proto;
7766 #endif
7767 	default:
7768 		return bpf_sk_base_func_proto(func_id);
7769 	}
7770 }
7771 
7772 const struct bpf_func_proto bpf_sk_redirect_map_proto __weak;
7773 const struct bpf_func_proto bpf_sk_redirect_hash_proto __weak;
7774 
7775 static const struct bpf_func_proto *
sk_skb_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)7776 sk_skb_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7777 {
7778 	switch (func_id) {
7779 	case BPF_FUNC_skb_store_bytes:
7780 		return &bpf_skb_store_bytes_proto;
7781 	case BPF_FUNC_skb_load_bytes:
7782 		return &bpf_skb_load_bytes_proto;
7783 	case BPF_FUNC_skb_pull_data:
7784 		return &sk_skb_pull_data_proto;
7785 	case BPF_FUNC_skb_change_tail:
7786 		return &sk_skb_change_tail_proto;
7787 	case BPF_FUNC_skb_change_head:
7788 		return &sk_skb_change_head_proto;
7789 	case BPF_FUNC_skb_adjust_room:
7790 		return &sk_skb_adjust_room_proto;
7791 	case BPF_FUNC_get_socket_cookie:
7792 		return &bpf_get_socket_cookie_proto;
7793 	case BPF_FUNC_get_socket_uid:
7794 		return &bpf_get_socket_uid_proto;
7795 	case BPF_FUNC_sk_redirect_map:
7796 		return &bpf_sk_redirect_map_proto;
7797 	case BPF_FUNC_sk_redirect_hash:
7798 		return &bpf_sk_redirect_hash_proto;
7799 	case BPF_FUNC_perf_event_output:
7800 		return &bpf_skb_event_output_proto;
7801 #ifdef CONFIG_INET
7802 	case BPF_FUNC_sk_lookup_tcp:
7803 		return &bpf_sk_lookup_tcp_proto;
7804 	case BPF_FUNC_sk_lookup_udp:
7805 		return &bpf_sk_lookup_udp_proto;
7806 	case BPF_FUNC_sk_release:
7807 		return &bpf_sk_release_proto;
7808 	case BPF_FUNC_skc_lookup_tcp:
7809 		return &bpf_skc_lookup_tcp_proto;
7810 #endif
7811 	default:
7812 		return bpf_sk_base_func_proto(func_id);
7813 	}
7814 }
7815 
7816 static const struct bpf_func_proto *
flow_dissector_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)7817 flow_dissector_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7818 {
7819 	switch (func_id) {
7820 	case BPF_FUNC_skb_load_bytes:
7821 		return &bpf_flow_dissector_load_bytes_proto;
7822 	default:
7823 		return bpf_sk_base_func_proto(func_id);
7824 	}
7825 }
7826 
7827 static const struct bpf_func_proto *
lwt_out_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)7828 lwt_out_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7829 {
7830 	switch (func_id) {
7831 	case BPF_FUNC_skb_load_bytes:
7832 		return &bpf_skb_load_bytes_proto;
7833 	case BPF_FUNC_skb_pull_data:
7834 		return &bpf_skb_pull_data_proto;
7835 	case BPF_FUNC_csum_diff:
7836 		return &bpf_csum_diff_proto;
7837 	case BPF_FUNC_get_cgroup_classid:
7838 		return &bpf_get_cgroup_classid_proto;
7839 	case BPF_FUNC_get_route_realm:
7840 		return &bpf_get_route_realm_proto;
7841 	case BPF_FUNC_get_hash_recalc:
7842 		return &bpf_get_hash_recalc_proto;
7843 	case BPF_FUNC_perf_event_output:
7844 		return &bpf_skb_event_output_proto;
7845 	case BPF_FUNC_get_smp_processor_id:
7846 		return &bpf_get_smp_processor_id_proto;
7847 	case BPF_FUNC_skb_under_cgroup:
7848 		return &bpf_skb_under_cgroup_proto;
7849 	default:
7850 		return bpf_sk_base_func_proto(func_id);
7851 	}
7852 }
7853 
7854 static const struct bpf_func_proto *
lwt_in_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)7855 lwt_in_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7856 {
7857 	switch (func_id) {
7858 	case BPF_FUNC_lwt_push_encap:
7859 		return &bpf_lwt_in_push_encap_proto;
7860 	default:
7861 		return lwt_out_func_proto(func_id, prog);
7862 	}
7863 }
7864 
7865 static const struct bpf_func_proto *
lwt_xmit_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)7866 lwt_xmit_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7867 {
7868 	switch (func_id) {
7869 	case BPF_FUNC_skb_get_tunnel_key:
7870 		return &bpf_skb_get_tunnel_key_proto;
7871 	case BPF_FUNC_skb_set_tunnel_key:
7872 		return bpf_get_skb_set_tunnel_proto(func_id);
7873 	case BPF_FUNC_skb_get_tunnel_opt:
7874 		return &bpf_skb_get_tunnel_opt_proto;
7875 	case BPF_FUNC_skb_set_tunnel_opt:
7876 		return bpf_get_skb_set_tunnel_proto(func_id);
7877 	case BPF_FUNC_redirect:
7878 		return &bpf_redirect_proto;
7879 	case BPF_FUNC_clone_redirect:
7880 		return &bpf_clone_redirect_proto;
7881 	case BPF_FUNC_skb_change_tail:
7882 		return &bpf_skb_change_tail_proto;
7883 	case BPF_FUNC_skb_change_head:
7884 		return &bpf_skb_change_head_proto;
7885 	case BPF_FUNC_skb_store_bytes:
7886 		return &bpf_skb_store_bytes_proto;
7887 	case BPF_FUNC_csum_update:
7888 		return &bpf_csum_update_proto;
7889 	case BPF_FUNC_csum_level:
7890 		return &bpf_csum_level_proto;
7891 	case BPF_FUNC_l3_csum_replace:
7892 		return &bpf_l3_csum_replace_proto;
7893 	case BPF_FUNC_l4_csum_replace:
7894 		return &bpf_l4_csum_replace_proto;
7895 	case BPF_FUNC_set_hash_invalid:
7896 		return &bpf_set_hash_invalid_proto;
7897 	case BPF_FUNC_lwt_push_encap:
7898 		return &bpf_lwt_xmit_push_encap_proto;
7899 	default:
7900 		return lwt_out_func_proto(func_id, prog);
7901 	}
7902 }
7903 
7904 static const struct bpf_func_proto *
lwt_seg6local_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)7905 lwt_seg6local_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7906 {
7907 	switch (func_id) {
7908 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
7909 	case BPF_FUNC_lwt_seg6_store_bytes:
7910 		return &bpf_lwt_seg6_store_bytes_proto;
7911 	case BPF_FUNC_lwt_seg6_action:
7912 		return &bpf_lwt_seg6_action_proto;
7913 	case BPF_FUNC_lwt_seg6_adjust_srh:
7914 		return &bpf_lwt_seg6_adjust_srh_proto;
7915 #endif
7916 	default:
7917 		return lwt_out_func_proto(func_id, prog);
7918 	}
7919 }
7920 
bpf_skb_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)7921 static bool bpf_skb_is_valid_access(int off, int size, enum bpf_access_type type,
7922 				    const struct bpf_prog *prog,
7923 				    struct bpf_insn_access_aux *info)
7924 {
7925 	const int size_default = sizeof(__u32);
7926 
7927 	if (off < 0 || off >= sizeof(struct __sk_buff))
7928 		return false;
7929 
7930 	/* The verifier guarantees that size > 0. */
7931 	if (off % size != 0)
7932 		return false;
7933 
7934 	switch (off) {
7935 	case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
7936 		if (off + size > offsetofend(struct __sk_buff, cb[4]))
7937 			return false;
7938 		break;
7939 	case bpf_ctx_range_till(struct __sk_buff, remote_ip6[0], remote_ip6[3]):
7940 	case bpf_ctx_range_till(struct __sk_buff, local_ip6[0], local_ip6[3]):
7941 	case bpf_ctx_range_till(struct __sk_buff, remote_ip4, remote_ip4):
7942 	case bpf_ctx_range_till(struct __sk_buff, local_ip4, local_ip4):
7943 	case bpf_ctx_range(struct __sk_buff, data):
7944 	case bpf_ctx_range(struct __sk_buff, data_meta):
7945 	case bpf_ctx_range(struct __sk_buff, data_end):
7946 		if (size != size_default)
7947 			return false;
7948 		break;
7949 	case bpf_ctx_range_ptr(struct __sk_buff, flow_keys):
7950 		return false;
7951 	case bpf_ctx_range(struct __sk_buff, tstamp):
7952 		if (size != sizeof(__u64))
7953 			return false;
7954 		break;
7955 	case offsetof(struct __sk_buff, sk):
7956 		if (type == BPF_WRITE || size != sizeof(__u64))
7957 			return false;
7958 		info->reg_type = PTR_TO_SOCK_COMMON_OR_NULL;
7959 		break;
7960 	default:
7961 		/* Only narrow read access allowed for now. */
7962 		if (type == BPF_WRITE) {
7963 			if (size != size_default)
7964 				return false;
7965 		} else {
7966 			bpf_ctx_record_field_size(info, size_default);
7967 			if (!bpf_ctx_narrow_access_ok(off, size, size_default))
7968 				return false;
7969 		}
7970 	}
7971 
7972 	return true;
7973 }
7974 
sk_filter_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)7975 static bool sk_filter_is_valid_access(int off, int size,
7976 				      enum bpf_access_type type,
7977 				      const struct bpf_prog *prog,
7978 				      struct bpf_insn_access_aux *info)
7979 {
7980 	switch (off) {
7981 	case bpf_ctx_range(struct __sk_buff, tc_classid):
7982 	case bpf_ctx_range(struct __sk_buff, data):
7983 	case bpf_ctx_range(struct __sk_buff, data_meta):
7984 	case bpf_ctx_range(struct __sk_buff, data_end):
7985 	case bpf_ctx_range_till(struct __sk_buff, family, local_port):
7986 	case bpf_ctx_range(struct __sk_buff, tstamp):
7987 	case bpf_ctx_range(struct __sk_buff, wire_len):
7988 		return false;
7989 	}
7990 
7991 	if (type == BPF_WRITE) {
7992 		switch (off) {
7993 		case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
7994 			break;
7995 		default:
7996 			return false;
7997 		}
7998 	}
7999 
8000 	return bpf_skb_is_valid_access(off, size, type, prog, info);
8001 }
8002 
cg_skb_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)8003 static bool cg_skb_is_valid_access(int off, int size,
8004 				   enum bpf_access_type type,
8005 				   const struct bpf_prog *prog,
8006 				   struct bpf_insn_access_aux *info)
8007 {
8008 	switch (off) {
8009 	case bpf_ctx_range(struct __sk_buff, tc_classid):
8010 	case bpf_ctx_range(struct __sk_buff, data_meta):
8011 	case bpf_ctx_range(struct __sk_buff, wire_len):
8012 		return false;
8013 	case bpf_ctx_range(struct __sk_buff, data):
8014 	case bpf_ctx_range(struct __sk_buff, data_end):
8015 		if (!bpf_capable())
8016 			return false;
8017 		break;
8018 	}
8019 
8020 	if (type == BPF_WRITE) {
8021 		switch (off) {
8022 		case bpf_ctx_range(struct __sk_buff, mark):
8023 		case bpf_ctx_range(struct __sk_buff, priority):
8024 		case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8025 			break;
8026 		case bpf_ctx_range(struct __sk_buff, tstamp):
8027 			if (!bpf_capable())
8028 				return false;
8029 			break;
8030 		default:
8031 			return false;
8032 		}
8033 	}
8034 
8035 	switch (off) {
8036 	case bpf_ctx_range(struct __sk_buff, data):
8037 		info->reg_type = PTR_TO_PACKET;
8038 		break;
8039 	case bpf_ctx_range(struct __sk_buff, data_end):
8040 		info->reg_type = PTR_TO_PACKET_END;
8041 		break;
8042 	}
8043 
8044 	return bpf_skb_is_valid_access(off, size, type, prog, info);
8045 }
8046 
lwt_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)8047 static bool lwt_is_valid_access(int off, int size,
8048 				enum bpf_access_type type,
8049 				const struct bpf_prog *prog,
8050 				struct bpf_insn_access_aux *info)
8051 {
8052 	switch (off) {
8053 	case bpf_ctx_range(struct __sk_buff, tc_classid):
8054 	case bpf_ctx_range_till(struct __sk_buff, family, local_port):
8055 	case bpf_ctx_range(struct __sk_buff, data_meta):
8056 	case bpf_ctx_range(struct __sk_buff, tstamp):
8057 	case bpf_ctx_range(struct __sk_buff, wire_len):
8058 		return false;
8059 	}
8060 
8061 	if (type == BPF_WRITE) {
8062 		switch (off) {
8063 		case bpf_ctx_range(struct __sk_buff, mark):
8064 		case bpf_ctx_range(struct __sk_buff, priority):
8065 		case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8066 			break;
8067 		default:
8068 			return false;
8069 		}
8070 	}
8071 
8072 	switch (off) {
8073 	case bpf_ctx_range(struct __sk_buff, data):
8074 		info->reg_type = PTR_TO_PACKET;
8075 		break;
8076 	case bpf_ctx_range(struct __sk_buff, data_end):
8077 		info->reg_type = PTR_TO_PACKET_END;
8078 		break;
8079 	}
8080 
8081 	return bpf_skb_is_valid_access(off, size, type, prog, info);
8082 }
8083 
8084 /* Attach type specific accesses */
__sock_filter_check_attach_type(int off,enum bpf_access_type access_type,enum bpf_attach_type attach_type)8085 static bool __sock_filter_check_attach_type(int off,
8086 					    enum bpf_access_type access_type,
8087 					    enum bpf_attach_type attach_type)
8088 {
8089 	switch (off) {
8090 	case offsetof(struct bpf_sock, bound_dev_if):
8091 	case offsetof(struct bpf_sock, mark):
8092 	case offsetof(struct bpf_sock, priority):
8093 		switch (attach_type) {
8094 		case BPF_CGROUP_INET_SOCK_CREATE:
8095 		case BPF_CGROUP_INET_SOCK_RELEASE:
8096 			goto full_access;
8097 		default:
8098 			return false;
8099 		}
8100 	case bpf_ctx_range(struct bpf_sock, src_ip4):
8101 		switch (attach_type) {
8102 		case BPF_CGROUP_INET4_POST_BIND:
8103 			goto read_only;
8104 		default:
8105 			return false;
8106 		}
8107 	case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
8108 		switch (attach_type) {
8109 		case BPF_CGROUP_INET6_POST_BIND:
8110 			goto read_only;
8111 		default:
8112 			return false;
8113 		}
8114 	case bpf_ctx_range(struct bpf_sock, src_port):
8115 		switch (attach_type) {
8116 		case BPF_CGROUP_INET4_POST_BIND:
8117 		case BPF_CGROUP_INET6_POST_BIND:
8118 			goto read_only;
8119 		default:
8120 			return false;
8121 		}
8122 	}
8123 read_only:
8124 	return access_type == BPF_READ;
8125 full_access:
8126 	return true;
8127 }
8128 
bpf_sock_common_is_valid_access(int off,int size,enum bpf_access_type type,struct bpf_insn_access_aux * info)8129 bool bpf_sock_common_is_valid_access(int off, int size,
8130 				     enum bpf_access_type type,
8131 				     struct bpf_insn_access_aux *info)
8132 {
8133 	switch (off) {
8134 	case bpf_ctx_range_till(struct bpf_sock, type, priority):
8135 		return false;
8136 	default:
8137 		return bpf_sock_is_valid_access(off, size, type, info);
8138 	}
8139 }
8140 
bpf_sock_is_valid_access(int off,int size,enum bpf_access_type type,struct bpf_insn_access_aux * info)8141 bool bpf_sock_is_valid_access(int off, int size, enum bpf_access_type type,
8142 			      struct bpf_insn_access_aux *info)
8143 {
8144 	const int size_default = sizeof(__u32);
8145 	int field_size;
8146 
8147 	if (off < 0 || off >= sizeof(struct bpf_sock))
8148 		return false;
8149 	if (off % size != 0)
8150 		return false;
8151 
8152 	switch (off) {
8153 	case offsetof(struct bpf_sock, state):
8154 	case offsetof(struct bpf_sock, family):
8155 	case offsetof(struct bpf_sock, type):
8156 	case offsetof(struct bpf_sock, protocol):
8157 	case offsetof(struct bpf_sock, src_port):
8158 	case offsetof(struct bpf_sock, rx_queue_mapping):
8159 	case bpf_ctx_range(struct bpf_sock, src_ip4):
8160 	case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
8161 	case bpf_ctx_range(struct bpf_sock, dst_ip4):
8162 	case bpf_ctx_range_till(struct bpf_sock, dst_ip6[0], dst_ip6[3]):
8163 		bpf_ctx_record_field_size(info, size_default);
8164 		return bpf_ctx_narrow_access_ok(off, size, size_default);
8165 	case bpf_ctx_range(struct bpf_sock, dst_port):
8166 		field_size = size == size_default ?
8167 			size_default : sizeof_field(struct bpf_sock, dst_port);
8168 		bpf_ctx_record_field_size(info, field_size);
8169 		return bpf_ctx_narrow_access_ok(off, size, field_size);
8170 	case offsetofend(struct bpf_sock, dst_port) ...
8171 	     offsetof(struct bpf_sock, dst_ip4) - 1:
8172 		return false;
8173 	}
8174 
8175 	return size == size_default;
8176 }
8177 
sock_filter_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)8178 static bool sock_filter_is_valid_access(int off, int size,
8179 					enum bpf_access_type type,
8180 					const struct bpf_prog *prog,
8181 					struct bpf_insn_access_aux *info)
8182 {
8183 	if (!bpf_sock_is_valid_access(off, size, type, info))
8184 		return false;
8185 	return __sock_filter_check_attach_type(off, type,
8186 					       prog->expected_attach_type);
8187 }
8188 
bpf_noop_prologue(struct bpf_insn * insn_buf,bool direct_write,const struct bpf_prog * prog)8189 static int bpf_noop_prologue(struct bpf_insn *insn_buf, bool direct_write,
8190 			     const struct bpf_prog *prog)
8191 {
8192 	/* Neither direct read nor direct write requires any preliminary
8193 	 * action.
8194 	 */
8195 	return 0;
8196 }
8197 
bpf_unclone_prologue(struct bpf_insn * insn_buf,bool direct_write,const struct bpf_prog * prog,int drop_verdict)8198 static int bpf_unclone_prologue(struct bpf_insn *insn_buf, bool direct_write,
8199 				const struct bpf_prog *prog, int drop_verdict)
8200 {
8201 	struct bpf_insn *insn = insn_buf;
8202 
8203 	if (!direct_write)
8204 		return 0;
8205 
8206 	/* if (!skb->cloned)
8207 	 *       goto start;
8208 	 *
8209 	 * (Fast-path, otherwise approximation that we might be
8210 	 *  a clone, do the rest in helper.)
8211 	 */
8212 	*insn++ = BPF_LDX_MEM(BPF_B, BPF_REG_6, BPF_REG_1, CLONED_OFFSET());
8213 	*insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_6, CLONED_MASK);
8214 	*insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_6, 0, 7);
8215 
8216 	/* ret = bpf_skb_pull_data(skb, 0); */
8217 	*insn++ = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1);
8218 	*insn++ = BPF_ALU64_REG(BPF_XOR, BPF_REG_2, BPF_REG_2);
8219 	*insn++ = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
8220 			       BPF_FUNC_skb_pull_data);
8221 	/* if (!ret)
8222 	 *      goto restore;
8223 	 * return TC_ACT_SHOT;
8224 	 */
8225 	*insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 2);
8226 	*insn++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_0, drop_verdict);
8227 	*insn++ = BPF_EXIT_INSN();
8228 
8229 	/* restore: */
8230 	*insn++ = BPF_MOV64_REG(BPF_REG_1, BPF_REG_6);
8231 	/* start: */
8232 	*insn++ = prog->insnsi[0];
8233 
8234 	return insn - insn_buf;
8235 }
8236 
bpf_gen_ld_abs(const struct bpf_insn * orig,struct bpf_insn * insn_buf)8237 static int bpf_gen_ld_abs(const struct bpf_insn *orig,
8238 			  struct bpf_insn *insn_buf)
8239 {
8240 	bool indirect = BPF_MODE(orig->code) == BPF_IND;
8241 	struct bpf_insn *insn = insn_buf;
8242 
8243 	if (!indirect) {
8244 		*insn++ = BPF_MOV64_IMM(BPF_REG_2, orig->imm);
8245 	} else {
8246 		*insn++ = BPF_MOV64_REG(BPF_REG_2, orig->src_reg);
8247 		if (orig->imm)
8248 			*insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, orig->imm);
8249 	}
8250 	/* We're guaranteed here that CTX is in R6. */
8251 	*insn++ = BPF_MOV64_REG(BPF_REG_1, BPF_REG_CTX);
8252 
8253 	switch (BPF_SIZE(orig->code)) {
8254 	case BPF_B:
8255 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_8_no_cache);
8256 		break;
8257 	case BPF_H:
8258 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_16_no_cache);
8259 		break;
8260 	case BPF_W:
8261 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_32_no_cache);
8262 		break;
8263 	}
8264 
8265 	*insn++ = BPF_JMP_IMM(BPF_JSGE, BPF_REG_0, 0, 2);
8266 	*insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_0, BPF_REG_0);
8267 	*insn++ = BPF_EXIT_INSN();
8268 
8269 	return insn - insn_buf;
8270 }
8271 
tc_cls_act_prologue(struct bpf_insn * insn_buf,bool direct_write,const struct bpf_prog * prog)8272 static int tc_cls_act_prologue(struct bpf_insn *insn_buf, bool direct_write,
8273 			       const struct bpf_prog *prog)
8274 {
8275 	return bpf_unclone_prologue(insn_buf, direct_write, prog, TC_ACT_SHOT);
8276 }
8277 
tc_cls_act_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)8278 static bool tc_cls_act_is_valid_access(int off, int size,
8279 				       enum bpf_access_type type,
8280 				       const struct bpf_prog *prog,
8281 				       struct bpf_insn_access_aux *info)
8282 {
8283 	if (type == BPF_WRITE) {
8284 		switch (off) {
8285 		case bpf_ctx_range(struct __sk_buff, mark):
8286 		case bpf_ctx_range(struct __sk_buff, tc_index):
8287 		case bpf_ctx_range(struct __sk_buff, priority):
8288 		case bpf_ctx_range(struct __sk_buff, tc_classid):
8289 		case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8290 		case bpf_ctx_range(struct __sk_buff, tstamp):
8291 		case bpf_ctx_range(struct __sk_buff, queue_mapping):
8292 			break;
8293 		default:
8294 			return false;
8295 		}
8296 	}
8297 
8298 	switch (off) {
8299 	case bpf_ctx_range(struct __sk_buff, data):
8300 		info->reg_type = PTR_TO_PACKET;
8301 		break;
8302 	case bpf_ctx_range(struct __sk_buff, data_meta):
8303 		info->reg_type = PTR_TO_PACKET_META;
8304 		break;
8305 	case bpf_ctx_range(struct __sk_buff, data_end):
8306 		info->reg_type = PTR_TO_PACKET_END;
8307 		break;
8308 	case bpf_ctx_range_till(struct __sk_buff, family, local_port):
8309 		return false;
8310 	}
8311 
8312 	return bpf_skb_is_valid_access(off, size, type, prog, info);
8313 }
8314 
__is_valid_xdp_access(int off,int size)8315 static bool __is_valid_xdp_access(int off, int size)
8316 {
8317 	if (off < 0 || off >= sizeof(struct xdp_md))
8318 		return false;
8319 	if (off % size != 0)
8320 		return false;
8321 	if (size != sizeof(__u32))
8322 		return false;
8323 
8324 	return true;
8325 }
8326 
xdp_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)8327 static bool xdp_is_valid_access(int off, int size,
8328 				enum bpf_access_type type,
8329 				const struct bpf_prog *prog,
8330 				struct bpf_insn_access_aux *info)
8331 {
8332 	if (prog->expected_attach_type != BPF_XDP_DEVMAP) {
8333 		switch (off) {
8334 		case offsetof(struct xdp_md, egress_ifindex):
8335 			return false;
8336 		}
8337 	}
8338 
8339 	if (type == BPF_WRITE) {
8340 		if (bpf_prog_is_dev_bound(prog->aux)) {
8341 			switch (off) {
8342 			case offsetof(struct xdp_md, rx_queue_index):
8343 				return __is_valid_xdp_access(off, size);
8344 			}
8345 		}
8346 		return false;
8347 	}
8348 
8349 	switch (off) {
8350 	case offsetof(struct xdp_md, data):
8351 		info->reg_type = PTR_TO_PACKET;
8352 		break;
8353 	case offsetof(struct xdp_md, data_meta):
8354 		info->reg_type = PTR_TO_PACKET_META;
8355 		break;
8356 	case offsetof(struct xdp_md, data_end):
8357 		info->reg_type = PTR_TO_PACKET_END;
8358 		break;
8359 	}
8360 
8361 	return __is_valid_xdp_access(off, size);
8362 }
8363 
bpf_warn_invalid_xdp_action(u32 act)8364 void bpf_warn_invalid_xdp_action(u32 act)
8365 {
8366 	const u32 act_max = XDP_REDIRECT;
8367 
8368 	pr_warn_once("%s XDP return value %u, expect packet loss!\n",
8369 		     act > act_max ? "Illegal" : "Driver unsupported",
8370 		     act);
8371 }
8372 EXPORT_SYMBOL_GPL(bpf_warn_invalid_xdp_action);
8373 
sock_addr_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)8374 static bool sock_addr_is_valid_access(int off, int size,
8375 				      enum bpf_access_type type,
8376 				      const struct bpf_prog *prog,
8377 				      struct bpf_insn_access_aux *info)
8378 {
8379 	const int size_default = sizeof(__u32);
8380 
8381 	if (off < 0 || off >= sizeof(struct bpf_sock_addr))
8382 		return false;
8383 	if (off % size != 0)
8384 		return false;
8385 
8386 	/* Disallow access to IPv6 fields from IPv4 contex and vise
8387 	 * versa.
8388 	 */
8389 	switch (off) {
8390 	case bpf_ctx_range(struct bpf_sock_addr, user_ip4):
8391 		switch (prog->expected_attach_type) {
8392 		case BPF_CGROUP_INET4_BIND:
8393 		case BPF_CGROUP_INET4_CONNECT:
8394 		case BPF_CGROUP_INET4_GETPEERNAME:
8395 		case BPF_CGROUP_INET4_GETSOCKNAME:
8396 		case BPF_CGROUP_UDP4_SENDMSG:
8397 		case BPF_CGROUP_UDP4_RECVMSG:
8398 			break;
8399 		default:
8400 			return false;
8401 		}
8402 		break;
8403 	case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
8404 		switch (prog->expected_attach_type) {
8405 		case BPF_CGROUP_INET6_BIND:
8406 		case BPF_CGROUP_INET6_CONNECT:
8407 		case BPF_CGROUP_INET6_GETPEERNAME:
8408 		case BPF_CGROUP_INET6_GETSOCKNAME:
8409 		case BPF_CGROUP_UDP6_SENDMSG:
8410 		case BPF_CGROUP_UDP6_RECVMSG:
8411 			break;
8412 		default:
8413 			return false;
8414 		}
8415 		break;
8416 	case bpf_ctx_range(struct bpf_sock_addr, msg_src_ip4):
8417 		switch (prog->expected_attach_type) {
8418 		case BPF_CGROUP_UDP4_SENDMSG:
8419 			break;
8420 		default:
8421 			return false;
8422 		}
8423 		break;
8424 	case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
8425 				msg_src_ip6[3]):
8426 		switch (prog->expected_attach_type) {
8427 		case BPF_CGROUP_UDP6_SENDMSG:
8428 			break;
8429 		default:
8430 			return false;
8431 		}
8432 		break;
8433 	}
8434 
8435 	switch (off) {
8436 	case bpf_ctx_range(struct bpf_sock_addr, user_ip4):
8437 	case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
8438 	case bpf_ctx_range(struct bpf_sock_addr, msg_src_ip4):
8439 	case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
8440 				msg_src_ip6[3]):
8441 	case bpf_ctx_range(struct bpf_sock_addr, user_port):
8442 		if (type == BPF_READ) {
8443 			bpf_ctx_record_field_size(info, size_default);
8444 
8445 			if (bpf_ctx_wide_access_ok(off, size,
8446 						   struct bpf_sock_addr,
8447 						   user_ip6))
8448 				return true;
8449 
8450 			if (bpf_ctx_wide_access_ok(off, size,
8451 						   struct bpf_sock_addr,
8452 						   msg_src_ip6))
8453 				return true;
8454 
8455 			if (!bpf_ctx_narrow_access_ok(off, size, size_default))
8456 				return false;
8457 		} else {
8458 			if (bpf_ctx_wide_access_ok(off, size,
8459 						   struct bpf_sock_addr,
8460 						   user_ip6))
8461 				return true;
8462 
8463 			if (bpf_ctx_wide_access_ok(off, size,
8464 						   struct bpf_sock_addr,
8465 						   msg_src_ip6))
8466 				return true;
8467 
8468 			if (size != size_default)
8469 				return false;
8470 		}
8471 		break;
8472 	case offsetof(struct bpf_sock_addr, sk):
8473 		if (type != BPF_READ)
8474 			return false;
8475 		if (size != sizeof(__u64))
8476 			return false;
8477 		info->reg_type = PTR_TO_SOCKET;
8478 		break;
8479 	default:
8480 		if (type == BPF_READ) {
8481 			if (size != size_default)
8482 				return false;
8483 		} else {
8484 			return false;
8485 		}
8486 	}
8487 
8488 	return true;
8489 }
8490 
sock_ops_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)8491 static bool sock_ops_is_valid_access(int off, int size,
8492 				     enum bpf_access_type type,
8493 				     const struct bpf_prog *prog,
8494 				     struct bpf_insn_access_aux *info)
8495 {
8496 	const int size_default = sizeof(__u32);
8497 
8498 	if (off < 0 || off >= sizeof(struct bpf_sock_ops))
8499 		return false;
8500 
8501 	/* The verifier guarantees that size > 0. */
8502 	if (off % size != 0)
8503 		return false;
8504 
8505 	if (type == BPF_WRITE) {
8506 		switch (off) {
8507 		case offsetof(struct bpf_sock_ops, reply):
8508 		case offsetof(struct bpf_sock_ops, sk_txhash):
8509 			if (size != size_default)
8510 				return false;
8511 			break;
8512 		default:
8513 			return false;
8514 		}
8515 	} else {
8516 		switch (off) {
8517 		case bpf_ctx_range_till(struct bpf_sock_ops, bytes_received,
8518 					bytes_acked):
8519 			if (size != sizeof(__u64))
8520 				return false;
8521 			break;
8522 		case offsetof(struct bpf_sock_ops, sk):
8523 			if (size != sizeof(__u64))
8524 				return false;
8525 			info->reg_type = PTR_TO_SOCKET_OR_NULL;
8526 			break;
8527 		case offsetof(struct bpf_sock_ops, skb_data):
8528 			if (size != sizeof(__u64))
8529 				return false;
8530 			info->reg_type = PTR_TO_PACKET;
8531 			break;
8532 		case offsetof(struct bpf_sock_ops, skb_data_end):
8533 			if (size != sizeof(__u64))
8534 				return false;
8535 			info->reg_type = PTR_TO_PACKET_END;
8536 			break;
8537 		case offsetof(struct bpf_sock_ops, skb_tcp_flags):
8538 			bpf_ctx_record_field_size(info, size_default);
8539 			return bpf_ctx_narrow_access_ok(off, size,
8540 							size_default);
8541 		default:
8542 			if (size != size_default)
8543 				return false;
8544 			break;
8545 		}
8546 	}
8547 
8548 	return true;
8549 }
8550 
sk_skb_prologue(struct bpf_insn * insn_buf,bool direct_write,const struct bpf_prog * prog)8551 static int sk_skb_prologue(struct bpf_insn *insn_buf, bool direct_write,
8552 			   const struct bpf_prog *prog)
8553 {
8554 	return bpf_unclone_prologue(insn_buf, direct_write, prog, SK_DROP);
8555 }
8556 
sk_skb_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)8557 static bool sk_skb_is_valid_access(int off, int size,
8558 				   enum bpf_access_type type,
8559 				   const struct bpf_prog *prog,
8560 				   struct bpf_insn_access_aux *info)
8561 {
8562 	switch (off) {
8563 	case bpf_ctx_range(struct __sk_buff, tc_classid):
8564 	case bpf_ctx_range(struct __sk_buff, data_meta):
8565 	case bpf_ctx_range(struct __sk_buff, tstamp):
8566 	case bpf_ctx_range(struct __sk_buff, wire_len):
8567 		return false;
8568 	}
8569 
8570 	if (type == BPF_WRITE) {
8571 		switch (off) {
8572 		case bpf_ctx_range(struct __sk_buff, tc_index):
8573 		case bpf_ctx_range(struct __sk_buff, priority):
8574 			break;
8575 		default:
8576 			return false;
8577 		}
8578 	}
8579 
8580 	switch (off) {
8581 	case bpf_ctx_range(struct __sk_buff, mark):
8582 		return false;
8583 	case bpf_ctx_range(struct __sk_buff, data):
8584 		info->reg_type = PTR_TO_PACKET;
8585 		break;
8586 	case bpf_ctx_range(struct __sk_buff, data_end):
8587 		info->reg_type = PTR_TO_PACKET_END;
8588 		break;
8589 	}
8590 
8591 	return bpf_skb_is_valid_access(off, size, type, prog, info);
8592 }
8593 
sk_msg_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)8594 static bool sk_msg_is_valid_access(int off, int size,
8595 				   enum bpf_access_type type,
8596 				   const struct bpf_prog *prog,
8597 				   struct bpf_insn_access_aux *info)
8598 {
8599 	if (type == BPF_WRITE)
8600 		return false;
8601 
8602 	if (off % size != 0)
8603 		return false;
8604 
8605 	switch (off) {
8606 	case offsetof(struct sk_msg_md, data):
8607 		info->reg_type = PTR_TO_PACKET;
8608 		if (size != sizeof(__u64))
8609 			return false;
8610 		break;
8611 	case offsetof(struct sk_msg_md, data_end):
8612 		info->reg_type = PTR_TO_PACKET_END;
8613 		if (size != sizeof(__u64))
8614 			return false;
8615 		break;
8616 	case offsetof(struct sk_msg_md, sk):
8617 		if (size != sizeof(__u64))
8618 			return false;
8619 		info->reg_type = PTR_TO_SOCKET;
8620 		break;
8621 	case bpf_ctx_range(struct sk_msg_md, family):
8622 	case bpf_ctx_range(struct sk_msg_md, remote_ip4):
8623 	case bpf_ctx_range(struct sk_msg_md, local_ip4):
8624 	case bpf_ctx_range_till(struct sk_msg_md, remote_ip6[0], remote_ip6[3]):
8625 	case bpf_ctx_range_till(struct sk_msg_md, local_ip6[0], local_ip6[3]):
8626 	case bpf_ctx_range(struct sk_msg_md, remote_port):
8627 	case bpf_ctx_range(struct sk_msg_md, local_port):
8628 	case bpf_ctx_range(struct sk_msg_md, size):
8629 		if (size != sizeof(__u32))
8630 			return false;
8631 		break;
8632 	default:
8633 		return false;
8634 	}
8635 	return true;
8636 }
8637 
flow_dissector_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)8638 static bool flow_dissector_is_valid_access(int off, int size,
8639 					   enum bpf_access_type type,
8640 					   const struct bpf_prog *prog,
8641 					   struct bpf_insn_access_aux *info)
8642 {
8643 	const int size_default = sizeof(__u32);
8644 
8645 	if (off < 0 || off >= sizeof(struct __sk_buff))
8646 		return false;
8647 
8648 	if (type == BPF_WRITE)
8649 		return false;
8650 
8651 	switch (off) {
8652 	case bpf_ctx_range(struct __sk_buff, data):
8653 		if (size != size_default)
8654 			return false;
8655 		info->reg_type = PTR_TO_PACKET;
8656 		return true;
8657 	case bpf_ctx_range(struct __sk_buff, data_end):
8658 		if (size != size_default)
8659 			return false;
8660 		info->reg_type = PTR_TO_PACKET_END;
8661 		return true;
8662 	case bpf_ctx_range_ptr(struct __sk_buff, flow_keys):
8663 		if (size != sizeof(__u64))
8664 			return false;
8665 		info->reg_type = PTR_TO_FLOW_KEYS;
8666 		return true;
8667 	default:
8668 		return false;
8669 	}
8670 }
8671 
flow_dissector_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)8672 static u32 flow_dissector_convert_ctx_access(enum bpf_access_type type,
8673 					     const struct bpf_insn *si,
8674 					     struct bpf_insn *insn_buf,
8675 					     struct bpf_prog *prog,
8676 					     u32 *target_size)
8677 
8678 {
8679 	struct bpf_insn *insn = insn_buf;
8680 
8681 	switch (si->off) {
8682 	case offsetof(struct __sk_buff, data):
8683 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, data),
8684 				      si->dst_reg, si->src_reg,
8685 				      offsetof(struct bpf_flow_dissector, data));
8686 		break;
8687 
8688 	case offsetof(struct __sk_buff, data_end):
8689 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, data_end),
8690 				      si->dst_reg, si->src_reg,
8691 				      offsetof(struct bpf_flow_dissector, data_end));
8692 		break;
8693 
8694 	case offsetof(struct __sk_buff, flow_keys):
8695 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, flow_keys),
8696 				      si->dst_reg, si->src_reg,
8697 				      offsetof(struct bpf_flow_dissector, flow_keys));
8698 		break;
8699 	}
8700 
8701 	return insn - insn_buf;
8702 }
8703 
bpf_convert_shinfo_access(const struct bpf_insn * si,struct bpf_insn * insn)8704 static struct bpf_insn *bpf_convert_shinfo_access(const struct bpf_insn *si,
8705 						  struct bpf_insn *insn)
8706 {
8707 	/* si->dst_reg = skb_shinfo(SKB); */
8708 #ifdef NET_SKBUFF_DATA_USES_OFFSET
8709 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, end),
8710 			      BPF_REG_AX, si->src_reg,
8711 			      offsetof(struct sk_buff, end));
8712 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, head),
8713 			      si->dst_reg, si->src_reg,
8714 			      offsetof(struct sk_buff, head));
8715 	*insn++ = BPF_ALU64_REG(BPF_ADD, si->dst_reg, BPF_REG_AX);
8716 #else
8717 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, end),
8718 			      si->dst_reg, si->src_reg,
8719 			      offsetof(struct sk_buff, end));
8720 #endif
8721 
8722 	return insn;
8723 }
8724 
bpf_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)8725 static u32 bpf_convert_ctx_access(enum bpf_access_type type,
8726 				  const struct bpf_insn *si,
8727 				  struct bpf_insn *insn_buf,
8728 				  struct bpf_prog *prog, u32 *target_size)
8729 {
8730 	struct bpf_insn *insn = insn_buf;
8731 	int off;
8732 
8733 	switch (si->off) {
8734 	case offsetof(struct __sk_buff, len):
8735 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
8736 				      bpf_target_off(struct sk_buff, len, 4,
8737 						     target_size));
8738 		break;
8739 
8740 	case offsetof(struct __sk_buff, protocol):
8741 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
8742 				      bpf_target_off(struct sk_buff, protocol, 2,
8743 						     target_size));
8744 		break;
8745 
8746 	case offsetof(struct __sk_buff, vlan_proto):
8747 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
8748 				      bpf_target_off(struct sk_buff, vlan_proto, 2,
8749 						     target_size));
8750 		break;
8751 
8752 	case offsetof(struct __sk_buff, priority):
8753 		if (type == BPF_WRITE)
8754 			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
8755 					      bpf_target_off(struct sk_buff, priority, 4,
8756 							     target_size));
8757 		else
8758 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
8759 					      bpf_target_off(struct sk_buff, priority, 4,
8760 							     target_size));
8761 		break;
8762 
8763 	case offsetof(struct __sk_buff, ingress_ifindex):
8764 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
8765 				      bpf_target_off(struct sk_buff, skb_iif, 4,
8766 						     target_size));
8767 		break;
8768 
8769 	case offsetof(struct __sk_buff, ifindex):
8770 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
8771 				      si->dst_reg, si->src_reg,
8772 				      offsetof(struct sk_buff, dev));
8773 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
8774 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8775 				      bpf_target_off(struct net_device, ifindex, 4,
8776 						     target_size));
8777 		break;
8778 
8779 	case offsetof(struct __sk_buff, hash):
8780 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
8781 				      bpf_target_off(struct sk_buff, hash, 4,
8782 						     target_size));
8783 		break;
8784 
8785 	case offsetof(struct __sk_buff, mark):
8786 		if (type == BPF_WRITE)
8787 			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
8788 					      bpf_target_off(struct sk_buff, mark, 4,
8789 							     target_size));
8790 		else
8791 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
8792 					      bpf_target_off(struct sk_buff, mark, 4,
8793 							     target_size));
8794 		break;
8795 
8796 	case offsetof(struct __sk_buff, pkt_type):
8797 		*target_size = 1;
8798 		*insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->src_reg,
8799 				      PKT_TYPE_OFFSET());
8800 		*insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, PKT_TYPE_MAX);
8801 #ifdef __BIG_ENDIAN_BITFIELD
8802 		*insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, 5);
8803 #endif
8804 		break;
8805 
8806 	case offsetof(struct __sk_buff, queue_mapping):
8807 		if (type == BPF_WRITE) {
8808 			*insn++ = BPF_JMP_IMM(BPF_JGE, si->src_reg, NO_QUEUE_MAPPING, 1);
8809 			*insn++ = BPF_STX_MEM(BPF_H, si->dst_reg, si->src_reg,
8810 					      bpf_target_off(struct sk_buff,
8811 							     queue_mapping,
8812 							     2, target_size));
8813 		} else {
8814 			*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
8815 					      bpf_target_off(struct sk_buff,
8816 							     queue_mapping,
8817 							     2, target_size));
8818 		}
8819 		break;
8820 
8821 	case offsetof(struct __sk_buff, vlan_present):
8822 		*target_size = 1;
8823 		*insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->src_reg,
8824 				      PKT_VLAN_PRESENT_OFFSET());
8825 		if (PKT_VLAN_PRESENT_BIT)
8826 			*insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, PKT_VLAN_PRESENT_BIT);
8827 		if (PKT_VLAN_PRESENT_BIT < 7)
8828 			*insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, 1);
8829 		break;
8830 
8831 	case offsetof(struct __sk_buff, vlan_tci):
8832 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
8833 				      bpf_target_off(struct sk_buff, vlan_tci, 2,
8834 						     target_size));
8835 		break;
8836 
8837 	case offsetof(struct __sk_buff, cb[0]) ...
8838 	     offsetofend(struct __sk_buff, cb[4]) - 1:
8839 		BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, data) < 20);
8840 		BUILD_BUG_ON((offsetof(struct sk_buff, cb) +
8841 			      offsetof(struct qdisc_skb_cb, data)) %
8842 			     sizeof(__u64));
8843 
8844 		prog->cb_access = 1;
8845 		off  = si->off;
8846 		off -= offsetof(struct __sk_buff, cb[0]);
8847 		off += offsetof(struct sk_buff, cb);
8848 		off += offsetof(struct qdisc_skb_cb, data);
8849 		if (type == BPF_WRITE)
8850 			*insn++ = BPF_STX_MEM(BPF_SIZE(si->code), si->dst_reg,
8851 					      si->src_reg, off);
8852 		else
8853 			*insn++ = BPF_LDX_MEM(BPF_SIZE(si->code), si->dst_reg,
8854 					      si->src_reg, off);
8855 		break;
8856 
8857 	case offsetof(struct __sk_buff, tc_classid):
8858 		BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, tc_classid) != 2);
8859 
8860 		off  = si->off;
8861 		off -= offsetof(struct __sk_buff, tc_classid);
8862 		off += offsetof(struct sk_buff, cb);
8863 		off += offsetof(struct qdisc_skb_cb, tc_classid);
8864 		*target_size = 2;
8865 		if (type == BPF_WRITE)
8866 			*insn++ = BPF_STX_MEM(BPF_H, si->dst_reg,
8867 					      si->src_reg, off);
8868 		else
8869 			*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg,
8870 					      si->src_reg, off);
8871 		break;
8872 
8873 	case offsetof(struct __sk_buff, data):
8874 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
8875 				      si->dst_reg, si->src_reg,
8876 				      offsetof(struct sk_buff, data));
8877 		break;
8878 
8879 	case offsetof(struct __sk_buff, data_meta):
8880 		off  = si->off;
8881 		off -= offsetof(struct __sk_buff, data_meta);
8882 		off += offsetof(struct sk_buff, cb);
8883 		off += offsetof(struct bpf_skb_data_end, data_meta);
8884 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
8885 				      si->src_reg, off);
8886 		break;
8887 
8888 	case offsetof(struct __sk_buff, data_end):
8889 		off  = si->off;
8890 		off -= offsetof(struct __sk_buff, data_end);
8891 		off += offsetof(struct sk_buff, cb);
8892 		off += offsetof(struct bpf_skb_data_end, data_end);
8893 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
8894 				      si->src_reg, off);
8895 		break;
8896 
8897 	case offsetof(struct __sk_buff, tc_index):
8898 #ifdef CONFIG_NET_SCHED
8899 		if (type == BPF_WRITE)
8900 			*insn++ = BPF_STX_MEM(BPF_H, si->dst_reg, si->src_reg,
8901 					      bpf_target_off(struct sk_buff, tc_index, 2,
8902 							     target_size));
8903 		else
8904 			*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
8905 					      bpf_target_off(struct sk_buff, tc_index, 2,
8906 							     target_size));
8907 #else
8908 		*target_size = 2;
8909 		if (type == BPF_WRITE)
8910 			*insn++ = BPF_MOV64_REG(si->dst_reg, si->dst_reg);
8911 		else
8912 			*insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
8913 #endif
8914 		break;
8915 
8916 	case offsetof(struct __sk_buff, napi_id):
8917 #if defined(CONFIG_NET_RX_BUSY_POLL)
8918 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
8919 				      bpf_target_off(struct sk_buff, napi_id, 4,
8920 						     target_size));
8921 		*insn++ = BPF_JMP_IMM(BPF_JGE, si->dst_reg, MIN_NAPI_ID, 1);
8922 		*insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
8923 #else
8924 		*target_size = 4;
8925 		*insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
8926 #endif
8927 		break;
8928 	case offsetof(struct __sk_buff, family):
8929 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
8930 
8931 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
8932 				      si->dst_reg, si->src_reg,
8933 				      offsetof(struct sk_buff, sk));
8934 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
8935 				      bpf_target_off(struct sock_common,
8936 						     skc_family,
8937 						     2, target_size));
8938 		break;
8939 	case offsetof(struct __sk_buff, remote_ip4):
8940 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
8941 
8942 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
8943 				      si->dst_reg, si->src_reg,
8944 				      offsetof(struct sk_buff, sk));
8945 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8946 				      bpf_target_off(struct sock_common,
8947 						     skc_daddr,
8948 						     4, target_size));
8949 		break;
8950 	case offsetof(struct __sk_buff, local_ip4):
8951 		BUILD_BUG_ON(sizeof_field(struct sock_common,
8952 					  skc_rcv_saddr) != 4);
8953 
8954 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
8955 				      si->dst_reg, si->src_reg,
8956 				      offsetof(struct sk_buff, sk));
8957 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8958 				      bpf_target_off(struct sock_common,
8959 						     skc_rcv_saddr,
8960 						     4, target_size));
8961 		break;
8962 	case offsetof(struct __sk_buff, remote_ip6[0]) ...
8963 	     offsetof(struct __sk_buff, remote_ip6[3]):
8964 #if IS_ENABLED(CONFIG_IPV6)
8965 		BUILD_BUG_ON(sizeof_field(struct sock_common,
8966 					  skc_v6_daddr.s6_addr32[0]) != 4);
8967 
8968 		off = si->off;
8969 		off -= offsetof(struct __sk_buff, remote_ip6[0]);
8970 
8971 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
8972 				      si->dst_reg, si->src_reg,
8973 				      offsetof(struct sk_buff, sk));
8974 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8975 				      offsetof(struct sock_common,
8976 					       skc_v6_daddr.s6_addr32[0]) +
8977 				      off);
8978 #else
8979 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
8980 #endif
8981 		break;
8982 	case offsetof(struct __sk_buff, local_ip6[0]) ...
8983 	     offsetof(struct __sk_buff, local_ip6[3]):
8984 #if IS_ENABLED(CONFIG_IPV6)
8985 		BUILD_BUG_ON(sizeof_field(struct sock_common,
8986 					  skc_v6_rcv_saddr.s6_addr32[0]) != 4);
8987 
8988 		off = si->off;
8989 		off -= offsetof(struct __sk_buff, local_ip6[0]);
8990 
8991 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
8992 				      si->dst_reg, si->src_reg,
8993 				      offsetof(struct sk_buff, sk));
8994 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8995 				      offsetof(struct sock_common,
8996 					       skc_v6_rcv_saddr.s6_addr32[0]) +
8997 				      off);
8998 #else
8999 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9000 #endif
9001 		break;
9002 
9003 	case offsetof(struct __sk_buff, remote_port):
9004 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
9005 
9006 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9007 				      si->dst_reg, si->src_reg,
9008 				      offsetof(struct sk_buff, sk));
9009 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9010 				      bpf_target_off(struct sock_common,
9011 						     skc_dport,
9012 						     2, target_size));
9013 #ifndef __BIG_ENDIAN_BITFIELD
9014 		*insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
9015 #endif
9016 		break;
9017 
9018 	case offsetof(struct __sk_buff, local_port):
9019 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
9020 
9021 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9022 				      si->dst_reg, si->src_reg,
9023 				      offsetof(struct sk_buff, sk));
9024 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9025 				      bpf_target_off(struct sock_common,
9026 						     skc_num, 2, target_size));
9027 		break;
9028 
9029 	case offsetof(struct __sk_buff, tstamp):
9030 		BUILD_BUG_ON(sizeof_field(struct sk_buff, tstamp) != 8);
9031 
9032 		if (type == BPF_WRITE)
9033 			*insn++ = BPF_STX_MEM(BPF_DW,
9034 					      si->dst_reg, si->src_reg,
9035 					      bpf_target_off(struct sk_buff,
9036 							     tstamp, 8,
9037 							     target_size));
9038 		else
9039 			*insn++ = BPF_LDX_MEM(BPF_DW,
9040 					      si->dst_reg, si->src_reg,
9041 					      bpf_target_off(struct sk_buff,
9042 							     tstamp, 8,
9043 							     target_size));
9044 		break;
9045 
9046 	case offsetof(struct __sk_buff, gso_segs):
9047 		insn = bpf_convert_shinfo_access(si, insn);
9048 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct skb_shared_info, gso_segs),
9049 				      si->dst_reg, si->dst_reg,
9050 				      bpf_target_off(struct skb_shared_info,
9051 						     gso_segs, 2,
9052 						     target_size));
9053 		break;
9054 	case offsetof(struct __sk_buff, gso_size):
9055 		insn = bpf_convert_shinfo_access(si, insn);
9056 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct skb_shared_info, gso_size),
9057 				      si->dst_reg, si->dst_reg,
9058 				      bpf_target_off(struct skb_shared_info,
9059 						     gso_size, 2,
9060 						     target_size));
9061 		break;
9062 	case offsetof(struct __sk_buff, wire_len):
9063 		BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, pkt_len) != 4);
9064 
9065 		off = si->off;
9066 		off -= offsetof(struct __sk_buff, wire_len);
9067 		off += offsetof(struct sk_buff, cb);
9068 		off += offsetof(struct qdisc_skb_cb, pkt_len);
9069 		*target_size = 4;
9070 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg, off);
9071 		break;
9072 
9073 	case offsetof(struct __sk_buff, sk):
9074 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9075 				      si->dst_reg, si->src_reg,
9076 				      offsetof(struct sk_buff, sk));
9077 		break;
9078 	}
9079 
9080 	return insn - insn_buf;
9081 }
9082 
bpf_sock_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)9083 u32 bpf_sock_convert_ctx_access(enum bpf_access_type type,
9084 				const struct bpf_insn *si,
9085 				struct bpf_insn *insn_buf,
9086 				struct bpf_prog *prog, u32 *target_size)
9087 {
9088 	struct bpf_insn *insn = insn_buf;
9089 	int off;
9090 
9091 	switch (si->off) {
9092 	case offsetof(struct bpf_sock, bound_dev_if):
9093 		BUILD_BUG_ON(sizeof_field(struct sock, sk_bound_dev_if) != 4);
9094 
9095 		if (type == BPF_WRITE)
9096 			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
9097 					offsetof(struct sock, sk_bound_dev_if));
9098 		else
9099 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9100 				      offsetof(struct sock, sk_bound_dev_if));
9101 		break;
9102 
9103 	case offsetof(struct bpf_sock, mark):
9104 		BUILD_BUG_ON(sizeof_field(struct sock, sk_mark) != 4);
9105 
9106 		if (type == BPF_WRITE)
9107 			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
9108 					offsetof(struct sock, sk_mark));
9109 		else
9110 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9111 				      offsetof(struct sock, sk_mark));
9112 		break;
9113 
9114 	case offsetof(struct bpf_sock, priority):
9115 		BUILD_BUG_ON(sizeof_field(struct sock, sk_priority) != 4);
9116 
9117 		if (type == BPF_WRITE)
9118 			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
9119 					offsetof(struct sock, sk_priority));
9120 		else
9121 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9122 				      offsetof(struct sock, sk_priority));
9123 		break;
9124 
9125 	case offsetof(struct bpf_sock, family):
9126 		*insn++ = BPF_LDX_MEM(
9127 			BPF_FIELD_SIZEOF(struct sock_common, skc_family),
9128 			si->dst_reg, si->src_reg,
9129 			bpf_target_off(struct sock_common,
9130 				       skc_family,
9131 				       sizeof_field(struct sock_common,
9132 						    skc_family),
9133 				       target_size));
9134 		break;
9135 
9136 	case offsetof(struct bpf_sock, type):
9137 		*insn++ = BPF_LDX_MEM(
9138 			BPF_FIELD_SIZEOF(struct sock, sk_type),
9139 			si->dst_reg, si->src_reg,
9140 			bpf_target_off(struct sock, sk_type,
9141 				       sizeof_field(struct sock, sk_type),
9142 				       target_size));
9143 		break;
9144 
9145 	case offsetof(struct bpf_sock, protocol):
9146 		*insn++ = BPF_LDX_MEM(
9147 			BPF_FIELD_SIZEOF(struct sock, sk_protocol),
9148 			si->dst_reg, si->src_reg,
9149 			bpf_target_off(struct sock, sk_protocol,
9150 				       sizeof_field(struct sock, sk_protocol),
9151 				       target_size));
9152 		break;
9153 
9154 	case offsetof(struct bpf_sock, src_ip4):
9155 		*insn++ = BPF_LDX_MEM(
9156 			BPF_SIZE(si->code), si->dst_reg, si->src_reg,
9157 			bpf_target_off(struct sock_common, skc_rcv_saddr,
9158 				       sizeof_field(struct sock_common,
9159 						    skc_rcv_saddr),
9160 				       target_size));
9161 		break;
9162 
9163 	case offsetof(struct bpf_sock, dst_ip4):
9164 		*insn++ = BPF_LDX_MEM(
9165 			BPF_SIZE(si->code), si->dst_reg, si->src_reg,
9166 			bpf_target_off(struct sock_common, skc_daddr,
9167 				       sizeof_field(struct sock_common,
9168 						    skc_daddr),
9169 				       target_size));
9170 		break;
9171 
9172 	case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
9173 #if IS_ENABLED(CONFIG_IPV6)
9174 		off = si->off;
9175 		off -= offsetof(struct bpf_sock, src_ip6[0]);
9176 		*insn++ = BPF_LDX_MEM(
9177 			BPF_SIZE(si->code), si->dst_reg, si->src_reg,
9178 			bpf_target_off(
9179 				struct sock_common,
9180 				skc_v6_rcv_saddr.s6_addr32[0],
9181 				sizeof_field(struct sock_common,
9182 					     skc_v6_rcv_saddr.s6_addr32[0]),
9183 				target_size) + off);
9184 #else
9185 		(void)off;
9186 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9187 #endif
9188 		break;
9189 
9190 	case bpf_ctx_range_till(struct bpf_sock, dst_ip6[0], dst_ip6[3]):
9191 #if IS_ENABLED(CONFIG_IPV6)
9192 		off = si->off;
9193 		off -= offsetof(struct bpf_sock, dst_ip6[0]);
9194 		*insn++ = BPF_LDX_MEM(
9195 			BPF_SIZE(si->code), si->dst_reg, si->src_reg,
9196 			bpf_target_off(struct sock_common,
9197 				       skc_v6_daddr.s6_addr32[0],
9198 				       sizeof_field(struct sock_common,
9199 						    skc_v6_daddr.s6_addr32[0]),
9200 				       target_size) + off);
9201 #else
9202 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9203 		*target_size = 4;
9204 #endif
9205 		break;
9206 
9207 	case offsetof(struct bpf_sock, src_port):
9208 		*insn++ = BPF_LDX_MEM(
9209 			BPF_FIELD_SIZEOF(struct sock_common, skc_num),
9210 			si->dst_reg, si->src_reg,
9211 			bpf_target_off(struct sock_common, skc_num,
9212 				       sizeof_field(struct sock_common,
9213 						    skc_num),
9214 				       target_size));
9215 		break;
9216 
9217 	case offsetof(struct bpf_sock, dst_port):
9218 		*insn++ = BPF_LDX_MEM(
9219 			BPF_FIELD_SIZEOF(struct sock_common, skc_dport),
9220 			si->dst_reg, si->src_reg,
9221 			bpf_target_off(struct sock_common, skc_dport,
9222 				       sizeof_field(struct sock_common,
9223 						    skc_dport),
9224 				       target_size));
9225 		break;
9226 
9227 	case offsetof(struct bpf_sock, state):
9228 		*insn++ = BPF_LDX_MEM(
9229 			BPF_FIELD_SIZEOF(struct sock_common, skc_state),
9230 			si->dst_reg, si->src_reg,
9231 			bpf_target_off(struct sock_common, skc_state,
9232 				       sizeof_field(struct sock_common,
9233 						    skc_state),
9234 				       target_size));
9235 		break;
9236 	case offsetof(struct bpf_sock, rx_queue_mapping):
9237 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
9238 		*insn++ = BPF_LDX_MEM(
9239 			BPF_FIELD_SIZEOF(struct sock, sk_rx_queue_mapping),
9240 			si->dst_reg, si->src_reg,
9241 			bpf_target_off(struct sock, sk_rx_queue_mapping,
9242 				       sizeof_field(struct sock,
9243 						    sk_rx_queue_mapping),
9244 				       target_size));
9245 		*insn++ = BPF_JMP_IMM(BPF_JNE, si->dst_reg, NO_QUEUE_MAPPING,
9246 				      1);
9247 		*insn++ = BPF_MOV64_IMM(si->dst_reg, -1);
9248 #else
9249 		*insn++ = BPF_MOV64_IMM(si->dst_reg, -1);
9250 		*target_size = 2;
9251 #endif
9252 		break;
9253 	}
9254 
9255 	return insn - insn_buf;
9256 }
9257 
tc_cls_act_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)9258 static u32 tc_cls_act_convert_ctx_access(enum bpf_access_type type,
9259 					 const struct bpf_insn *si,
9260 					 struct bpf_insn *insn_buf,
9261 					 struct bpf_prog *prog, u32 *target_size)
9262 {
9263 	struct bpf_insn *insn = insn_buf;
9264 
9265 	switch (si->off) {
9266 	case offsetof(struct __sk_buff, ifindex):
9267 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
9268 				      si->dst_reg, si->src_reg,
9269 				      offsetof(struct sk_buff, dev));
9270 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9271 				      bpf_target_off(struct net_device, ifindex, 4,
9272 						     target_size));
9273 		break;
9274 	default:
9275 		return bpf_convert_ctx_access(type, si, insn_buf, prog,
9276 					      target_size);
9277 	}
9278 
9279 	return insn - insn_buf;
9280 }
9281 
xdp_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)9282 static u32 xdp_convert_ctx_access(enum bpf_access_type type,
9283 				  const struct bpf_insn *si,
9284 				  struct bpf_insn *insn_buf,
9285 				  struct bpf_prog *prog, u32 *target_size)
9286 {
9287 	struct bpf_insn *insn = insn_buf;
9288 
9289 	switch (si->off) {
9290 	case offsetof(struct xdp_md, data):
9291 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data),
9292 				      si->dst_reg, si->src_reg,
9293 				      offsetof(struct xdp_buff, data));
9294 		break;
9295 	case offsetof(struct xdp_md, data_meta):
9296 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data_meta),
9297 				      si->dst_reg, si->src_reg,
9298 				      offsetof(struct xdp_buff, data_meta));
9299 		break;
9300 	case offsetof(struct xdp_md, data_end):
9301 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data_end),
9302 				      si->dst_reg, si->src_reg,
9303 				      offsetof(struct xdp_buff, data_end));
9304 		break;
9305 	case offsetof(struct xdp_md, ingress_ifindex):
9306 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, rxq),
9307 				      si->dst_reg, si->src_reg,
9308 				      offsetof(struct xdp_buff, rxq));
9309 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_rxq_info, dev),
9310 				      si->dst_reg, si->dst_reg,
9311 				      offsetof(struct xdp_rxq_info, dev));
9312 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9313 				      offsetof(struct net_device, ifindex));
9314 		break;
9315 	case offsetof(struct xdp_md, rx_queue_index):
9316 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, rxq),
9317 				      si->dst_reg, si->src_reg,
9318 				      offsetof(struct xdp_buff, rxq));
9319 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9320 				      offsetof(struct xdp_rxq_info,
9321 					       queue_index));
9322 		break;
9323 	case offsetof(struct xdp_md, egress_ifindex):
9324 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, txq),
9325 				      si->dst_reg, si->src_reg,
9326 				      offsetof(struct xdp_buff, txq));
9327 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_txq_info, dev),
9328 				      si->dst_reg, si->dst_reg,
9329 				      offsetof(struct xdp_txq_info, dev));
9330 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9331 				      offsetof(struct net_device, ifindex));
9332 		break;
9333 	}
9334 
9335 	return insn - insn_buf;
9336 }
9337 
9338 /* SOCK_ADDR_LOAD_NESTED_FIELD() loads Nested Field S.F.NF where S is type of
9339  * context Structure, F is Field in context structure that contains a pointer
9340  * to Nested Structure of type NS that has the field NF.
9341  *
9342  * SIZE encodes the load size (BPF_B, BPF_H, etc). It's up to caller to make
9343  * sure that SIZE is not greater than actual size of S.F.NF.
9344  *
9345  * If offset OFF is provided, the load happens from that offset relative to
9346  * offset of NF.
9347  */
9348 #define SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, SIZE, OFF)	       \
9349 	do {								       \
9350 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(S, F), si->dst_reg,     \
9351 				      si->src_reg, offsetof(S, F));	       \
9352 		*insn++ = BPF_LDX_MEM(					       \
9353 			SIZE, si->dst_reg, si->dst_reg,			       \
9354 			bpf_target_off(NS, NF, sizeof_field(NS, NF),	       \
9355 				       target_size)			       \
9356 				+ OFF);					       \
9357 	} while (0)
9358 
9359 #define SOCK_ADDR_LOAD_NESTED_FIELD(S, NS, F, NF)			       \
9360 	SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(S, NS, F, NF,		       \
9361 					     BPF_FIELD_SIZEOF(NS, NF), 0)
9362 
9363 /* SOCK_ADDR_STORE_NESTED_FIELD_OFF() has semantic similar to
9364  * SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF() but for store operation.
9365  *
9366  * In addition it uses Temporary Field TF (member of struct S) as the 3rd
9367  * "register" since two registers available in convert_ctx_access are not
9368  * enough: we can't override neither SRC, since it contains value to store, nor
9369  * DST since it contains pointer to context that may be used by later
9370  * instructions. But we need a temporary place to save pointer to nested
9371  * structure whose field we want to store to.
9372  */
9373 #define SOCK_ADDR_STORE_NESTED_FIELD_OFF(S, NS, F, NF, SIZE, OFF, TF)	       \
9374 	do {								       \
9375 		int tmp_reg = BPF_REG_9;				       \
9376 		if (si->src_reg == tmp_reg || si->dst_reg == tmp_reg)	       \
9377 			--tmp_reg;					       \
9378 		if (si->src_reg == tmp_reg || si->dst_reg == tmp_reg)	       \
9379 			--tmp_reg;					       \
9380 		*insn++ = BPF_STX_MEM(BPF_DW, si->dst_reg, tmp_reg,	       \
9381 				      offsetof(S, TF));			       \
9382 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(S, F), tmp_reg,	       \
9383 				      si->dst_reg, offsetof(S, F));	       \
9384 		*insn++ = BPF_STX_MEM(SIZE, tmp_reg, si->src_reg,	       \
9385 			bpf_target_off(NS, NF, sizeof_field(NS, NF),	       \
9386 				       target_size)			       \
9387 				+ OFF);					       \
9388 		*insn++ = BPF_LDX_MEM(BPF_DW, tmp_reg, si->dst_reg,	       \
9389 				      offsetof(S, TF));			       \
9390 	} while (0)
9391 
9392 #define SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, SIZE, OFF, \
9393 						      TF)		       \
9394 	do {								       \
9395 		if (type == BPF_WRITE) {				       \
9396 			SOCK_ADDR_STORE_NESTED_FIELD_OFF(S, NS, F, NF, SIZE,   \
9397 							 OFF, TF);	       \
9398 		} else {						       \
9399 			SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(		       \
9400 				S, NS, F, NF, SIZE, OFF);  \
9401 		}							       \
9402 	} while (0)
9403 
9404 #define SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD(S, NS, F, NF, TF)		       \
9405 	SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(			       \
9406 		S, NS, F, NF, BPF_FIELD_SIZEOF(NS, NF), 0, TF)
9407 
sock_addr_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)9408 static u32 sock_addr_convert_ctx_access(enum bpf_access_type type,
9409 					const struct bpf_insn *si,
9410 					struct bpf_insn *insn_buf,
9411 					struct bpf_prog *prog, u32 *target_size)
9412 {
9413 	int off, port_size = sizeof_field(struct sockaddr_in6, sin6_port);
9414 	struct bpf_insn *insn = insn_buf;
9415 
9416 	switch (si->off) {
9417 	case offsetof(struct bpf_sock_addr, user_family):
9418 		SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
9419 					    struct sockaddr, uaddr, sa_family);
9420 		break;
9421 
9422 	case offsetof(struct bpf_sock_addr, user_ip4):
9423 		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
9424 			struct bpf_sock_addr_kern, struct sockaddr_in, uaddr,
9425 			sin_addr, BPF_SIZE(si->code), 0, tmp_reg);
9426 		break;
9427 
9428 	case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
9429 		off = si->off;
9430 		off -= offsetof(struct bpf_sock_addr, user_ip6[0]);
9431 		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
9432 			struct bpf_sock_addr_kern, struct sockaddr_in6, uaddr,
9433 			sin6_addr.s6_addr32[0], BPF_SIZE(si->code), off,
9434 			tmp_reg);
9435 		break;
9436 
9437 	case offsetof(struct bpf_sock_addr, user_port):
9438 		/* To get port we need to know sa_family first and then treat
9439 		 * sockaddr as either sockaddr_in or sockaddr_in6.
9440 		 * Though we can simplify since port field has same offset and
9441 		 * size in both structures.
9442 		 * Here we check this invariant and use just one of the
9443 		 * structures if it's true.
9444 		 */
9445 		BUILD_BUG_ON(offsetof(struct sockaddr_in, sin_port) !=
9446 			     offsetof(struct sockaddr_in6, sin6_port));
9447 		BUILD_BUG_ON(sizeof_field(struct sockaddr_in, sin_port) !=
9448 			     sizeof_field(struct sockaddr_in6, sin6_port));
9449 		/* Account for sin6_port being smaller than user_port. */
9450 		port_size = min(port_size, BPF_LDST_BYTES(si));
9451 		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
9452 			struct bpf_sock_addr_kern, struct sockaddr_in6, uaddr,
9453 			sin6_port, bytes_to_bpf_size(port_size), 0, tmp_reg);
9454 		break;
9455 
9456 	case offsetof(struct bpf_sock_addr, family):
9457 		SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
9458 					    struct sock, sk, sk_family);
9459 		break;
9460 
9461 	case offsetof(struct bpf_sock_addr, type):
9462 		SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
9463 					    struct sock, sk, sk_type);
9464 		break;
9465 
9466 	case offsetof(struct bpf_sock_addr, protocol):
9467 		SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
9468 					    struct sock, sk, sk_protocol);
9469 		break;
9470 
9471 	case offsetof(struct bpf_sock_addr, msg_src_ip4):
9472 		/* Treat t_ctx as struct in_addr for msg_src_ip4. */
9473 		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
9474 			struct bpf_sock_addr_kern, struct in_addr, t_ctx,
9475 			s_addr, BPF_SIZE(si->code), 0, tmp_reg);
9476 		break;
9477 
9478 	case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
9479 				msg_src_ip6[3]):
9480 		off = si->off;
9481 		off -= offsetof(struct bpf_sock_addr, msg_src_ip6[0]);
9482 		/* Treat t_ctx as struct in6_addr for msg_src_ip6. */
9483 		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
9484 			struct bpf_sock_addr_kern, struct in6_addr, t_ctx,
9485 			s6_addr32[0], BPF_SIZE(si->code), off, tmp_reg);
9486 		break;
9487 	case offsetof(struct bpf_sock_addr, sk):
9488 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_addr_kern, sk),
9489 				      si->dst_reg, si->src_reg,
9490 				      offsetof(struct bpf_sock_addr_kern, sk));
9491 		break;
9492 	}
9493 
9494 	return insn - insn_buf;
9495 }
9496 
sock_ops_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)9497 static u32 sock_ops_convert_ctx_access(enum bpf_access_type type,
9498 				       const struct bpf_insn *si,
9499 				       struct bpf_insn *insn_buf,
9500 				       struct bpf_prog *prog,
9501 				       u32 *target_size)
9502 {
9503 	struct bpf_insn *insn = insn_buf;
9504 	int off;
9505 
9506 /* Helper macro for adding read access to tcp_sock or sock fields. */
9507 #define SOCK_OPS_GET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ)			      \
9508 	do {								      \
9509 		int fullsock_reg = si->dst_reg, reg = BPF_REG_9, jmp = 2;     \
9510 		BUILD_BUG_ON(sizeof_field(OBJ, OBJ_FIELD) >		      \
9511 			     sizeof_field(struct bpf_sock_ops, BPF_FIELD));   \
9512 		if (si->dst_reg == reg || si->src_reg == reg)		      \
9513 			reg--;						      \
9514 		if (si->dst_reg == reg || si->src_reg == reg)		      \
9515 			reg--;						      \
9516 		if (si->dst_reg == si->src_reg) {			      \
9517 			*insn++ = BPF_STX_MEM(BPF_DW, si->src_reg, reg,	      \
9518 					  offsetof(struct bpf_sock_ops_kern,  \
9519 					  temp));			      \
9520 			fullsock_reg = reg;				      \
9521 			jmp += 2;					      \
9522 		}							      \
9523 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
9524 						struct bpf_sock_ops_kern,     \
9525 						is_fullsock),		      \
9526 				      fullsock_reg, si->src_reg,	      \
9527 				      offsetof(struct bpf_sock_ops_kern,      \
9528 					       is_fullsock));		      \
9529 		*insn++ = BPF_JMP_IMM(BPF_JEQ, fullsock_reg, 0, jmp);	      \
9530 		if (si->dst_reg == si->src_reg)				      \
9531 			*insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,	      \
9532 				      offsetof(struct bpf_sock_ops_kern,      \
9533 				      temp));				      \
9534 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
9535 						struct bpf_sock_ops_kern, sk),\
9536 				      si->dst_reg, si->src_reg,		      \
9537 				      offsetof(struct bpf_sock_ops_kern, sk));\
9538 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(OBJ,		      \
9539 						       OBJ_FIELD),	      \
9540 				      si->dst_reg, si->dst_reg,		      \
9541 				      offsetof(OBJ, OBJ_FIELD));	      \
9542 		if (si->dst_reg == si->src_reg)	{			      \
9543 			*insn++ = BPF_JMP_A(1);				      \
9544 			*insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,	      \
9545 				      offsetof(struct bpf_sock_ops_kern,      \
9546 				      temp));				      \
9547 		}							      \
9548 	} while (0)
9549 
9550 #define SOCK_OPS_GET_SK()							      \
9551 	do {								      \
9552 		int fullsock_reg = si->dst_reg, reg = BPF_REG_9, jmp = 1;     \
9553 		if (si->dst_reg == reg || si->src_reg == reg)		      \
9554 			reg--;						      \
9555 		if (si->dst_reg == reg || si->src_reg == reg)		      \
9556 			reg--;						      \
9557 		if (si->dst_reg == si->src_reg) {			      \
9558 			*insn++ = BPF_STX_MEM(BPF_DW, si->src_reg, reg,	      \
9559 					  offsetof(struct bpf_sock_ops_kern,  \
9560 					  temp));			      \
9561 			fullsock_reg = reg;				      \
9562 			jmp += 2;					      \
9563 		}							      \
9564 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
9565 						struct bpf_sock_ops_kern,     \
9566 						is_fullsock),		      \
9567 				      fullsock_reg, si->src_reg,	      \
9568 				      offsetof(struct bpf_sock_ops_kern,      \
9569 					       is_fullsock));		      \
9570 		*insn++ = BPF_JMP_IMM(BPF_JEQ, fullsock_reg, 0, jmp);	      \
9571 		if (si->dst_reg == si->src_reg)				      \
9572 			*insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,	      \
9573 				      offsetof(struct bpf_sock_ops_kern,      \
9574 				      temp));				      \
9575 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
9576 						struct bpf_sock_ops_kern, sk),\
9577 				      si->dst_reg, si->src_reg,		      \
9578 				      offsetof(struct bpf_sock_ops_kern, sk));\
9579 		if (si->dst_reg == si->src_reg)	{			      \
9580 			*insn++ = BPF_JMP_A(1);				      \
9581 			*insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,	      \
9582 				      offsetof(struct bpf_sock_ops_kern,      \
9583 				      temp));				      \
9584 		}							      \
9585 	} while (0)
9586 
9587 #define SOCK_OPS_GET_TCP_SOCK_FIELD(FIELD) \
9588 		SOCK_OPS_GET_FIELD(FIELD, FIELD, struct tcp_sock)
9589 
9590 /* Helper macro for adding write access to tcp_sock or sock fields.
9591  * The macro is called with two registers, dst_reg which contains a pointer
9592  * to ctx (context) and src_reg which contains the value that should be
9593  * stored. However, we need an additional register since we cannot overwrite
9594  * dst_reg because it may be used later in the program.
9595  * Instead we "borrow" one of the other register. We first save its value
9596  * into a new (temp) field in bpf_sock_ops_kern, use it, and then restore
9597  * it at the end of the macro.
9598  */
9599 #define SOCK_OPS_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ)			      \
9600 	do {								      \
9601 		int reg = BPF_REG_9;					      \
9602 		BUILD_BUG_ON(sizeof_field(OBJ, OBJ_FIELD) >		      \
9603 			     sizeof_field(struct bpf_sock_ops, BPF_FIELD));   \
9604 		if (si->dst_reg == reg || si->src_reg == reg)		      \
9605 			reg--;						      \
9606 		if (si->dst_reg == reg || si->src_reg == reg)		      \
9607 			reg--;						      \
9608 		*insn++ = BPF_STX_MEM(BPF_DW, si->dst_reg, reg,		      \
9609 				      offsetof(struct bpf_sock_ops_kern,      \
9610 					       temp));			      \
9611 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
9612 						struct bpf_sock_ops_kern,     \
9613 						is_fullsock),		      \
9614 				      reg, si->dst_reg,			      \
9615 				      offsetof(struct bpf_sock_ops_kern,      \
9616 					       is_fullsock));		      \
9617 		*insn++ = BPF_JMP_IMM(BPF_JEQ, reg, 0, 2);		      \
9618 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
9619 						struct bpf_sock_ops_kern, sk),\
9620 				      reg, si->dst_reg,			      \
9621 				      offsetof(struct bpf_sock_ops_kern, sk));\
9622 		*insn++ = BPF_STX_MEM(BPF_FIELD_SIZEOF(OBJ, OBJ_FIELD),	      \
9623 				      reg, si->src_reg,			      \
9624 				      offsetof(OBJ, OBJ_FIELD));	      \
9625 		*insn++ = BPF_LDX_MEM(BPF_DW, reg, si->dst_reg,		      \
9626 				      offsetof(struct bpf_sock_ops_kern,      \
9627 					       temp));			      \
9628 	} while (0)
9629 
9630 #define SOCK_OPS_GET_OR_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ, TYPE)	      \
9631 	do {								      \
9632 		if (TYPE == BPF_WRITE)					      \
9633 			SOCK_OPS_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ);	      \
9634 		else							      \
9635 			SOCK_OPS_GET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ);	      \
9636 	} while (0)
9637 
9638 	if (insn > insn_buf)
9639 		return insn - insn_buf;
9640 
9641 	switch (si->off) {
9642 	case offsetof(struct bpf_sock_ops, op):
9643 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
9644 						       op),
9645 				      si->dst_reg, si->src_reg,
9646 				      offsetof(struct bpf_sock_ops_kern, op));
9647 		break;
9648 
9649 	case offsetof(struct bpf_sock_ops, replylong[0]) ...
9650 	     offsetof(struct bpf_sock_ops, replylong[3]):
9651 		BUILD_BUG_ON(sizeof_field(struct bpf_sock_ops, reply) !=
9652 			     sizeof_field(struct bpf_sock_ops_kern, reply));
9653 		BUILD_BUG_ON(sizeof_field(struct bpf_sock_ops, replylong) !=
9654 			     sizeof_field(struct bpf_sock_ops_kern, replylong));
9655 		off = si->off;
9656 		off -= offsetof(struct bpf_sock_ops, replylong[0]);
9657 		off += offsetof(struct bpf_sock_ops_kern, replylong[0]);
9658 		if (type == BPF_WRITE)
9659 			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
9660 					      off);
9661 		else
9662 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9663 					      off);
9664 		break;
9665 
9666 	case offsetof(struct bpf_sock_ops, family):
9667 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
9668 
9669 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9670 					      struct bpf_sock_ops_kern, sk),
9671 				      si->dst_reg, si->src_reg,
9672 				      offsetof(struct bpf_sock_ops_kern, sk));
9673 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9674 				      offsetof(struct sock_common, skc_family));
9675 		break;
9676 
9677 	case offsetof(struct bpf_sock_ops, remote_ip4):
9678 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
9679 
9680 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9681 						struct bpf_sock_ops_kern, sk),
9682 				      si->dst_reg, si->src_reg,
9683 				      offsetof(struct bpf_sock_ops_kern, sk));
9684 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9685 				      offsetof(struct sock_common, skc_daddr));
9686 		break;
9687 
9688 	case offsetof(struct bpf_sock_ops, local_ip4):
9689 		BUILD_BUG_ON(sizeof_field(struct sock_common,
9690 					  skc_rcv_saddr) != 4);
9691 
9692 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9693 					      struct bpf_sock_ops_kern, sk),
9694 				      si->dst_reg, si->src_reg,
9695 				      offsetof(struct bpf_sock_ops_kern, sk));
9696 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9697 				      offsetof(struct sock_common,
9698 					       skc_rcv_saddr));
9699 		break;
9700 
9701 	case offsetof(struct bpf_sock_ops, remote_ip6[0]) ...
9702 	     offsetof(struct bpf_sock_ops, remote_ip6[3]):
9703 #if IS_ENABLED(CONFIG_IPV6)
9704 		BUILD_BUG_ON(sizeof_field(struct sock_common,
9705 					  skc_v6_daddr.s6_addr32[0]) != 4);
9706 
9707 		off = si->off;
9708 		off -= offsetof(struct bpf_sock_ops, remote_ip6[0]);
9709 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9710 						struct bpf_sock_ops_kern, sk),
9711 				      si->dst_reg, si->src_reg,
9712 				      offsetof(struct bpf_sock_ops_kern, sk));
9713 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9714 				      offsetof(struct sock_common,
9715 					       skc_v6_daddr.s6_addr32[0]) +
9716 				      off);
9717 #else
9718 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9719 #endif
9720 		break;
9721 
9722 	case offsetof(struct bpf_sock_ops, local_ip6[0]) ...
9723 	     offsetof(struct bpf_sock_ops, local_ip6[3]):
9724 #if IS_ENABLED(CONFIG_IPV6)
9725 		BUILD_BUG_ON(sizeof_field(struct sock_common,
9726 					  skc_v6_rcv_saddr.s6_addr32[0]) != 4);
9727 
9728 		off = si->off;
9729 		off -= offsetof(struct bpf_sock_ops, local_ip6[0]);
9730 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9731 						struct bpf_sock_ops_kern, sk),
9732 				      si->dst_reg, si->src_reg,
9733 				      offsetof(struct bpf_sock_ops_kern, sk));
9734 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9735 				      offsetof(struct sock_common,
9736 					       skc_v6_rcv_saddr.s6_addr32[0]) +
9737 				      off);
9738 #else
9739 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9740 #endif
9741 		break;
9742 
9743 	case offsetof(struct bpf_sock_ops, remote_port):
9744 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
9745 
9746 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9747 						struct bpf_sock_ops_kern, sk),
9748 				      si->dst_reg, si->src_reg,
9749 				      offsetof(struct bpf_sock_ops_kern, sk));
9750 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9751 				      offsetof(struct sock_common, skc_dport));
9752 #ifndef __BIG_ENDIAN_BITFIELD
9753 		*insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
9754 #endif
9755 		break;
9756 
9757 	case offsetof(struct bpf_sock_ops, local_port):
9758 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
9759 
9760 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9761 						struct bpf_sock_ops_kern, sk),
9762 				      si->dst_reg, si->src_reg,
9763 				      offsetof(struct bpf_sock_ops_kern, sk));
9764 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9765 				      offsetof(struct sock_common, skc_num));
9766 		break;
9767 
9768 	case offsetof(struct bpf_sock_ops, is_fullsock):
9769 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9770 						struct bpf_sock_ops_kern,
9771 						is_fullsock),
9772 				      si->dst_reg, si->src_reg,
9773 				      offsetof(struct bpf_sock_ops_kern,
9774 					       is_fullsock));
9775 		break;
9776 
9777 	case offsetof(struct bpf_sock_ops, state):
9778 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_state) != 1);
9779 
9780 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9781 						struct bpf_sock_ops_kern, sk),
9782 				      si->dst_reg, si->src_reg,
9783 				      offsetof(struct bpf_sock_ops_kern, sk));
9784 		*insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->dst_reg,
9785 				      offsetof(struct sock_common, skc_state));
9786 		break;
9787 
9788 	case offsetof(struct bpf_sock_ops, rtt_min):
9789 		BUILD_BUG_ON(sizeof_field(struct tcp_sock, rtt_min) !=
9790 			     sizeof(struct minmax));
9791 		BUILD_BUG_ON(sizeof(struct minmax) <
9792 			     sizeof(struct minmax_sample));
9793 
9794 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9795 						struct bpf_sock_ops_kern, sk),
9796 				      si->dst_reg, si->src_reg,
9797 				      offsetof(struct bpf_sock_ops_kern, sk));
9798 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9799 				      offsetof(struct tcp_sock, rtt_min) +
9800 				      sizeof_field(struct minmax_sample, t));
9801 		break;
9802 
9803 	case offsetof(struct bpf_sock_ops, bpf_sock_ops_cb_flags):
9804 		SOCK_OPS_GET_FIELD(bpf_sock_ops_cb_flags, bpf_sock_ops_cb_flags,
9805 				   struct tcp_sock);
9806 		break;
9807 
9808 	case offsetof(struct bpf_sock_ops, sk_txhash):
9809 		SOCK_OPS_GET_OR_SET_FIELD(sk_txhash, sk_txhash,
9810 					  struct sock, type);
9811 		break;
9812 	case offsetof(struct bpf_sock_ops, snd_cwnd):
9813 		SOCK_OPS_GET_TCP_SOCK_FIELD(snd_cwnd);
9814 		break;
9815 	case offsetof(struct bpf_sock_ops, srtt_us):
9816 		SOCK_OPS_GET_TCP_SOCK_FIELD(srtt_us);
9817 		break;
9818 	case offsetof(struct bpf_sock_ops, snd_ssthresh):
9819 		SOCK_OPS_GET_TCP_SOCK_FIELD(snd_ssthresh);
9820 		break;
9821 	case offsetof(struct bpf_sock_ops, rcv_nxt):
9822 		SOCK_OPS_GET_TCP_SOCK_FIELD(rcv_nxt);
9823 		break;
9824 	case offsetof(struct bpf_sock_ops, snd_nxt):
9825 		SOCK_OPS_GET_TCP_SOCK_FIELD(snd_nxt);
9826 		break;
9827 	case offsetof(struct bpf_sock_ops, snd_una):
9828 		SOCK_OPS_GET_TCP_SOCK_FIELD(snd_una);
9829 		break;
9830 	case offsetof(struct bpf_sock_ops, mss_cache):
9831 		SOCK_OPS_GET_TCP_SOCK_FIELD(mss_cache);
9832 		break;
9833 	case offsetof(struct bpf_sock_ops, ecn_flags):
9834 		SOCK_OPS_GET_TCP_SOCK_FIELD(ecn_flags);
9835 		break;
9836 	case offsetof(struct bpf_sock_ops, rate_delivered):
9837 		SOCK_OPS_GET_TCP_SOCK_FIELD(rate_delivered);
9838 		break;
9839 	case offsetof(struct bpf_sock_ops, rate_interval_us):
9840 		SOCK_OPS_GET_TCP_SOCK_FIELD(rate_interval_us);
9841 		break;
9842 	case offsetof(struct bpf_sock_ops, packets_out):
9843 		SOCK_OPS_GET_TCP_SOCK_FIELD(packets_out);
9844 		break;
9845 	case offsetof(struct bpf_sock_ops, retrans_out):
9846 		SOCK_OPS_GET_TCP_SOCK_FIELD(retrans_out);
9847 		break;
9848 	case offsetof(struct bpf_sock_ops, total_retrans):
9849 		SOCK_OPS_GET_TCP_SOCK_FIELD(total_retrans);
9850 		break;
9851 	case offsetof(struct bpf_sock_ops, segs_in):
9852 		SOCK_OPS_GET_TCP_SOCK_FIELD(segs_in);
9853 		break;
9854 	case offsetof(struct bpf_sock_ops, data_segs_in):
9855 		SOCK_OPS_GET_TCP_SOCK_FIELD(data_segs_in);
9856 		break;
9857 	case offsetof(struct bpf_sock_ops, segs_out):
9858 		SOCK_OPS_GET_TCP_SOCK_FIELD(segs_out);
9859 		break;
9860 	case offsetof(struct bpf_sock_ops, data_segs_out):
9861 		SOCK_OPS_GET_TCP_SOCK_FIELD(data_segs_out);
9862 		break;
9863 	case offsetof(struct bpf_sock_ops, lost_out):
9864 		SOCK_OPS_GET_TCP_SOCK_FIELD(lost_out);
9865 		break;
9866 	case offsetof(struct bpf_sock_ops, sacked_out):
9867 		SOCK_OPS_GET_TCP_SOCK_FIELD(sacked_out);
9868 		break;
9869 	case offsetof(struct bpf_sock_ops, bytes_received):
9870 		SOCK_OPS_GET_TCP_SOCK_FIELD(bytes_received);
9871 		break;
9872 	case offsetof(struct bpf_sock_ops, bytes_acked):
9873 		SOCK_OPS_GET_TCP_SOCK_FIELD(bytes_acked);
9874 		break;
9875 	case offsetof(struct bpf_sock_ops, sk):
9876 		SOCK_OPS_GET_SK();
9877 		break;
9878 	case offsetof(struct bpf_sock_ops, skb_data_end):
9879 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
9880 						       skb_data_end),
9881 				      si->dst_reg, si->src_reg,
9882 				      offsetof(struct bpf_sock_ops_kern,
9883 					       skb_data_end));
9884 		break;
9885 	case offsetof(struct bpf_sock_ops, skb_data):
9886 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
9887 						       skb),
9888 				      si->dst_reg, si->src_reg,
9889 				      offsetof(struct bpf_sock_ops_kern,
9890 					       skb));
9891 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
9892 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
9893 				      si->dst_reg, si->dst_reg,
9894 				      offsetof(struct sk_buff, data));
9895 		break;
9896 	case offsetof(struct bpf_sock_ops, skb_len):
9897 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
9898 						       skb),
9899 				      si->dst_reg, si->src_reg,
9900 				      offsetof(struct bpf_sock_ops_kern,
9901 					       skb));
9902 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
9903 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, len),
9904 				      si->dst_reg, si->dst_reg,
9905 				      offsetof(struct sk_buff, len));
9906 		break;
9907 	case offsetof(struct bpf_sock_ops, skb_tcp_flags):
9908 		off = offsetof(struct sk_buff, cb);
9909 		off += offsetof(struct tcp_skb_cb, tcp_flags);
9910 		*target_size = sizeof_field(struct tcp_skb_cb, tcp_flags);
9911 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
9912 						       skb),
9913 				      si->dst_reg, si->src_reg,
9914 				      offsetof(struct bpf_sock_ops_kern,
9915 					       skb));
9916 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
9917 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct tcp_skb_cb,
9918 						       tcp_flags),
9919 				      si->dst_reg, si->dst_reg, off);
9920 		break;
9921 	}
9922 	return insn - insn_buf;
9923 }
9924 
9925 /* data_end = skb->data + skb_headlen() */
bpf_convert_data_end_access(const struct bpf_insn * si,struct bpf_insn * insn)9926 static struct bpf_insn *bpf_convert_data_end_access(const struct bpf_insn *si,
9927 						    struct bpf_insn *insn)
9928 {
9929 	int reg;
9930 	int temp_reg_off = offsetof(struct sk_buff, cb) +
9931 			   offsetof(struct sk_skb_cb, temp_reg);
9932 
9933 	if (si->src_reg == si->dst_reg) {
9934 		/* We need an extra register, choose and save a register. */
9935 		reg = BPF_REG_9;
9936 		if (si->src_reg == reg || si->dst_reg == reg)
9937 			reg--;
9938 		if (si->src_reg == reg || si->dst_reg == reg)
9939 			reg--;
9940 		*insn++ = BPF_STX_MEM(BPF_DW, si->src_reg, reg, temp_reg_off);
9941 	} else {
9942 		reg = si->dst_reg;
9943 	}
9944 
9945 	/* reg = skb->data */
9946 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
9947 			      reg, si->src_reg,
9948 			      offsetof(struct sk_buff, data));
9949 	/* AX = skb->len */
9950 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, len),
9951 			      BPF_REG_AX, si->src_reg,
9952 			      offsetof(struct sk_buff, len));
9953 	/* reg = skb->data + skb->len */
9954 	*insn++ = BPF_ALU64_REG(BPF_ADD, reg, BPF_REG_AX);
9955 	/* AX = skb->data_len */
9956 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data_len),
9957 			      BPF_REG_AX, si->src_reg,
9958 			      offsetof(struct sk_buff, data_len));
9959 
9960 	/* reg = skb->data + skb->len - skb->data_len */
9961 	*insn++ = BPF_ALU64_REG(BPF_SUB, reg, BPF_REG_AX);
9962 
9963 	if (si->src_reg == si->dst_reg) {
9964 		/* Restore the saved register */
9965 		*insn++ = BPF_MOV64_REG(BPF_REG_AX, si->src_reg);
9966 		*insn++ = BPF_MOV64_REG(si->dst_reg, reg);
9967 		*insn++ = BPF_LDX_MEM(BPF_DW, reg, BPF_REG_AX, temp_reg_off);
9968 	}
9969 
9970 	return insn;
9971 }
9972 
sk_skb_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)9973 static u32 sk_skb_convert_ctx_access(enum bpf_access_type type,
9974 				     const struct bpf_insn *si,
9975 				     struct bpf_insn *insn_buf,
9976 				     struct bpf_prog *prog, u32 *target_size)
9977 {
9978 	struct bpf_insn *insn = insn_buf;
9979 	int off;
9980 
9981 	switch (si->off) {
9982 	case offsetof(struct __sk_buff, data_end):
9983 		insn = bpf_convert_data_end_access(si, insn);
9984 		break;
9985 	case offsetof(struct __sk_buff, cb[0]) ...
9986 	     offsetofend(struct __sk_buff, cb[4]) - 1:
9987 		BUILD_BUG_ON(sizeof_field(struct sk_skb_cb, data) < 20);
9988 		BUILD_BUG_ON((offsetof(struct sk_buff, cb) +
9989 			      offsetof(struct sk_skb_cb, data)) %
9990 			     sizeof(__u64));
9991 
9992 		prog->cb_access = 1;
9993 		off  = si->off;
9994 		off -= offsetof(struct __sk_buff, cb[0]);
9995 		off += offsetof(struct sk_buff, cb);
9996 		off += offsetof(struct sk_skb_cb, data);
9997 		if (type == BPF_WRITE)
9998 			*insn++ = BPF_STX_MEM(BPF_SIZE(si->code), si->dst_reg,
9999 					      si->src_reg, off);
10000 		else
10001 			*insn++ = BPF_LDX_MEM(BPF_SIZE(si->code), si->dst_reg,
10002 					      si->src_reg, off);
10003 		break;
10004 
10005 
10006 	default:
10007 		return bpf_convert_ctx_access(type, si, insn_buf, prog,
10008 					      target_size);
10009 	}
10010 
10011 	return insn - insn_buf;
10012 }
10013 
sk_msg_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)10014 static u32 sk_msg_convert_ctx_access(enum bpf_access_type type,
10015 				     const struct bpf_insn *si,
10016 				     struct bpf_insn *insn_buf,
10017 				     struct bpf_prog *prog, u32 *target_size)
10018 {
10019 	struct bpf_insn *insn = insn_buf;
10020 #if IS_ENABLED(CONFIG_IPV6)
10021 	int off;
10022 #endif
10023 
10024 	/* convert ctx uses the fact sg element is first in struct */
10025 	BUILD_BUG_ON(offsetof(struct sk_msg, sg) != 0);
10026 
10027 	switch (si->off) {
10028 	case offsetof(struct sk_msg_md, data):
10029 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, data),
10030 				      si->dst_reg, si->src_reg,
10031 				      offsetof(struct sk_msg, data));
10032 		break;
10033 	case offsetof(struct sk_msg_md, data_end):
10034 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, data_end),
10035 				      si->dst_reg, si->src_reg,
10036 				      offsetof(struct sk_msg, data_end));
10037 		break;
10038 	case offsetof(struct sk_msg_md, family):
10039 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
10040 
10041 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10042 					      struct sk_msg, sk),
10043 				      si->dst_reg, si->src_reg,
10044 				      offsetof(struct sk_msg, sk));
10045 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10046 				      offsetof(struct sock_common, skc_family));
10047 		break;
10048 
10049 	case offsetof(struct sk_msg_md, remote_ip4):
10050 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
10051 
10052 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10053 						struct sk_msg, sk),
10054 				      si->dst_reg, si->src_reg,
10055 				      offsetof(struct sk_msg, sk));
10056 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10057 				      offsetof(struct sock_common, skc_daddr));
10058 		break;
10059 
10060 	case offsetof(struct sk_msg_md, local_ip4):
10061 		BUILD_BUG_ON(sizeof_field(struct sock_common,
10062 					  skc_rcv_saddr) != 4);
10063 
10064 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10065 					      struct sk_msg, sk),
10066 				      si->dst_reg, si->src_reg,
10067 				      offsetof(struct sk_msg, sk));
10068 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10069 				      offsetof(struct sock_common,
10070 					       skc_rcv_saddr));
10071 		break;
10072 
10073 	case offsetof(struct sk_msg_md, remote_ip6[0]) ...
10074 	     offsetof(struct sk_msg_md, remote_ip6[3]):
10075 #if IS_ENABLED(CONFIG_IPV6)
10076 		BUILD_BUG_ON(sizeof_field(struct sock_common,
10077 					  skc_v6_daddr.s6_addr32[0]) != 4);
10078 
10079 		off = si->off;
10080 		off -= offsetof(struct sk_msg_md, remote_ip6[0]);
10081 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10082 						struct sk_msg, sk),
10083 				      si->dst_reg, si->src_reg,
10084 				      offsetof(struct sk_msg, sk));
10085 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10086 				      offsetof(struct sock_common,
10087 					       skc_v6_daddr.s6_addr32[0]) +
10088 				      off);
10089 #else
10090 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10091 #endif
10092 		break;
10093 
10094 	case offsetof(struct sk_msg_md, local_ip6[0]) ...
10095 	     offsetof(struct sk_msg_md, local_ip6[3]):
10096 #if IS_ENABLED(CONFIG_IPV6)
10097 		BUILD_BUG_ON(sizeof_field(struct sock_common,
10098 					  skc_v6_rcv_saddr.s6_addr32[0]) != 4);
10099 
10100 		off = si->off;
10101 		off -= offsetof(struct sk_msg_md, local_ip6[0]);
10102 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10103 						struct sk_msg, sk),
10104 				      si->dst_reg, si->src_reg,
10105 				      offsetof(struct sk_msg, sk));
10106 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10107 				      offsetof(struct sock_common,
10108 					       skc_v6_rcv_saddr.s6_addr32[0]) +
10109 				      off);
10110 #else
10111 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10112 #endif
10113 		break;
10114 
10115 	case offsetof(struct sk_msg_md, remote_port):
10116 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
10117 
10118 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10119 						struct sk_msg, sk),
10120 				      si->dst_reg, si->src_reg,
10121 				      offsetof(struct sk_msg, sk));
10122 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10123 				      offsetof(struct sock_common, skc_dport));
10124 #ifndef __BIG_ENDIAN_BITFIELD
10125 		*insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
10126 #endif
10127 		break;
10128 
10129 	case offsetof(struct sk_msg_md, local_port):
10130 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
10131 
10132 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10133 						struct sk_msg, sk),
10134 				      si->dst_reg, si->src_reg,
10135 				      offsetof(struct sk_msg, sk));
10136 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10137 				      offsetof(struct sock_common, skc_num));
10138 		break;
10139 
10140 	case offsetof(struct sk_msg_md, size):
10141 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg_sg, size),
10142 				      si->dst_reg, si->src_reg,
10143 				      offsetof(struct sk_msg_sg, size));
10144 		break;
10145 
10146 	case offsetof(struct sk_msg_md, sk):
10147 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, sk),
10148 				      si->dst_reg, si->src_reg,
10149 				      offsetof(struct sk_msg, sk));
10150 		break;
10151 	}
10152 
10153 	return insn - insn_buf;
10154 }
10155 
10156 const struct bpf_verifier_ops sk_filter_verifier_ops = {
10157 	.get_func_proto		= sk_filter_func_proto,
10158 	.is_valid_access	= sk_filter_is_valid_access,
10159 	.convert_ctx_access	= bpf_convert_ctx_access,
10160 	.gen_ld_abs		= bpf_gen_ld_abs,
10161 };
10162 
10163 const struct bpf_prog_ops sk_filter_prog_ops = {
10164 	.test_run		= bpf_prog_test_run_skb,
10165 };
10166 
10167 const struct bpf_verifier_ops tc_cls_act_verifier_ops = {
10168 	.get_func_proto		= tc_cls_act_func_proto,
10169 	.is_valid_access	= tc_cls_act_is_valid_access,
10170 	.convert_ctx_access	= tc_cls_act_convert_ctx_access,
10171 	.gen_prologue		= tc_cls_act_prologue,
10172 	.gen_ld_abs		= bpf_gen_ld_abs,
10173 	.check_kfunc_call	= bpf_prog_test_check_kfunc_call,
10174 };
10175 
10176 const struct bpf_prog_ops tc_cls_act_prog_ops = {
10177 	.test_run		= bpf_prog_test_run_skb,
10178 };
10179 
10180 const struct bpf_verifier_ops xdp_verifier_ops = {
10181 	.get_func_proto		= xdp_func_proto,
10182 	.is_valid_access	= xdp_is_valid_access,
10183 	.convert_ctx_access	= xdp_convert_ctx_access,
10184 	.gen_prologue		= bpf_noop_prologue,
10185 };
10186 
10187 const struct bpf_prog_ops xdp_prog_ops = {
10188 	.test_run		= bpf_prog_test_run_xdp,
10189 };
10190 
10191 const struct bpf_verifier_ops cg_skb_verifier_ops = {
10192 	.get_func_proto		= cg_skb_func_proto,
10193 	.is_valid_access	= cg_skb_is_valid_access,
10194 	.convert_ctx_access	= bpf_convert_ctx_access,
10195 };
10196 
10197 const struct bpf_prog_ops cg_skb_prog_ops = {
10198 	.test_run		= bpf_prog_test_run_skb,
10199 };
10200 
10201 const struct bpf_verifier_ops lwt_in_verifier_ops = {
10202 	.get_func_proto		= lwt_in_func_proto,
10203 	.is_valid_access	= lwt_is_valid_access,
10204 	.convert_ctx_access	= bpf_convert_ctx_access,
10205 };
10206 
10207 const struct bpf_prog_ops lwt_in_prog_ops = {
10208 	.test_run		= bpf_prog_test_run_skb,
10209 };
10210 
10211 const struct bpf_verifier_ops lwt_out_verifier_ops = {
10212 	.get_func_proto		= lwt_out_func_proto,
10213 	.is_valid_access	= lwt_is_valid_access,
10214 	.convert_ctx_access	= bpf_convert_ctx_access,
10215 };
10216 
10217 const struct bpf_prog_ops lwt_out_prog_ops = {
10218 	.test_run		= bpf_prog_test_run_skb,
10219 };
10220 
10221 const struct bpf_verifier_ops lwt_xmit_verifier_ops = {
10222 	.get_func_proto		= lwt_xmit_func_proto,
10223 	.is_valid_access	= lwt_is_valid_access,
10224 	.convert_ctx_access	= bpf_convert_ctx_access,
10225 	.gen_prologue		= tc_cls_act_prologue,
10226 };
10227 
10228 const struct bpf_prog_ops lwt_xmit_prog_ops = {
10229 	.test_run		= bpf_prog_test_run_skb,
10230 };
10231 
10232 const struct bpf_verifier_ops lwt_seg6local_verifier_ops = {
10233 	.get_func_proto		= lwt_seg6local_func_proto,
10234 	.is_valid_access	= lwt_is_valid_access,
10235 	.convert_ctx_access	= bpf_convert_ctx_access,
10236 };
10237 
10238 const struct bpf_prog_ops lwt_seg6local_prog_ops = {
10239 	.test_run		= bpf_prog_test_run_skb,
10240 };
10241 
10242 const struct bpf_verifier_ops cg_sock_verifier_ops = {
10243 	.get_func_proto		= sock_filter_func_proto,
10244 	.is_valid_access	= sock_filter_is_valid_access,
10245 	.convert_ctx_access	= bpf_sock_convert_ctx_access,
10246 };
10247 
10248 const struct bpf_prog_ops cg_sock_prog_ops = {
10249 };
10250 
10251 const struct bpf_verifier_ops cg_sock_addr_verifier_ops = {
10252 	.get_func_proto		= sock_addr_func_proto,
10253 	.is_valid_access	= sock_addr_is_valid_access,
10254 	.convert_ctx_access	= sock_addr_convert_ctx_access,
10255 };
10256 
10257 const struct bpf_prog_ops cg_sock_addr_prog_ops = {
10258 };
10259 
10260 const struct bpf_verifier_ops sock_ops_verifier_ops = {
10261 	.get_func_proto		= sock_ops_func_proto,
10262 	.is_valid_access	= sock_ops_is_valid_access,
10263 	.convert_ctx_access	= sock_ops_convert_ctx_access,
10264 };
10265 
10266 const struct bpf_prog_ops sock_ops_prog_ops = {
10267 };
10268 
10269 const struct bpf_verifier_ops sk_skb_verifier_ops = {
10270 	.get_func_proto		= sk_skb_func_proto,
10271 	.is_valid_access	= sk_skb_is_valid_access,
10272 	.convert_ctx_access	= sk_skb_convert_ctx_access,
10273 	.gen_prologue		= sk_skb_prologue,
10274 };
10275 
10276 const struct bpf_prog_ops sk_skb_prog_ops = {
10277 };
10278 
10279 const struct bpf_verifier_ops sk_msg_verifier_ops = {
10280 	.get_func_proto		= sk_msg_func_proto,
10281 	.is_valid_access	= sk_msg_is_valid_access,
10282 	.convert_ctx_access	= sk_msg_convert_ctx_access,
10283 	.gen_prologue		= bpf_noop_prologue,
10284 };
10285 
10286 const struct bpf_prog_ops sk_msg_prog_ops = {
10287 };
10288 
10289 const struct bpf_verifier_ops flow_dissector_verifier_ops = {
10290 	.get_func_proto		= flow_dissector_func_proto,
10291 	.is_valid_access	= flow_dissector_is_valid_access,
10292 	.convert_ctx_access	= flow_dissector_convert_ctx_access,
10293 };
10294 
10295 const struct bpf_prog_ops flow_dissector_prog_ops = {
10296 	.test_run		= bpf_prog_test_run_flow_dissector,
10297 };
10298 
sk_detach_filter(struct sock * sk)10299 int sk_detach_filter(struct sock *sk)
10300 {
10301 	int ret = -ENOENT;
10302 	struct sk_filter *filter;
10303 
10304 	if (sock_flag(sk, SOCK_FILTER_LOCKED))
10305 		return -EPERM;
10306 
10307 	filter = rcu_dereference_protected(sk->sk_filter,
10308 					   lockdep_sock_is_held(sk));
10309 	if (filter) {
10310 		RCU_INIT_POINTER(sk->sk_filter, NULL);
10311 		sk_filter_uncharge(sk, filter);
10312 		ret = 0;
10313 	}
10314 
10315 	return ret;
10316 }
10317 EXPORT_SYMBOL_GPL(sk_detach_filter);
10318 
sk_get_filter(struct sock * sk,struct sock_filter __user * ubuf,unsigned int len)10319 int sk_get_filter(struct sock *sk, struct sock_filter __user *ubuf,
10320 		  unsigned int len)
10321 {
10322 	struct sock_fprog_kern *fprog;
10323 	struct sk_filter *filter;
10324 	int ret = 0;
10325 
10326 	lock_sock(sk);
10327 	filter = rcu_dereference_protected(sk->sk_filter,
10328 					   lockdep_sock_is_held(sk));
10329 	if (!filter)
10330 		goto out;
10331 
10332 	/* We're copying the filter that has been originally attached,
10333 	 * so no conversion/decode needed anymore. eBPF programs that
10334 	 * have no original program cannot be dumped through this.
10335 	 */
10336 	ret = -EACCES;
10337 	fprog = filter->prog->orig_prog;
10338 	if (!fprog)
10339 		goto out;
10340 
10341 	ret = fprog->len;
10342 	if (!len)
10343 		/* User space only enquires number of filter blocks. */
10344 		goto out;
10345 
10346 	ret = -EINVAL;
10347 	if (len < fprog->len)
10348 		goto out;
10349 
10350 	ret = -EFAULT;
10351 	if (copy_to_user(ubuf, fprog->filter, bpf_classic_proglen(fprog)))
10352 		goto out;
10353 
10354 	/* Instead of bytes, the API requests to return the number
10355 	 * of filter blocks.
10356 	 */
10357 	ret = fprog->len;
10358 out:
10359 	release_sock(sk);
10360 	return ret;
10361 }
10362 
10363 #ifdef CONFIG_INET
bpf_init_reuseport_kern(struct sk_reuseport_kern * reuse_kern,struct sock_reuseport * reuse,struct sock * sk,struct sk_buff * skb,struct sock * migrating_sk,u32 hash)10364 static void bpf_init_reuseport_kern(struct sk_reuseport_kern *reuse_kern,
10365 				    struct sock_reuseport *reuse,
10366 				    struct sock *sk, struct sk_buff *skb,
10367 				    struct sock *migrating_sk,
10368 				    u32 hash)
10369 {
10370 	reuse_kern->skb = skb;
10371 	reuse_kern->sk = sk;
10372 	reuse_kern->selected_sk = NULL;
10373 	reuse_kern->migrating_sk = migrating_sk;
10374 	reuse_kern->data_end = skb->data + skb_headlen(skb);
10375 	reuse_kern->hash = hash;
10376 	reuse_kern->reuseport_id = reuse->reuseport_id;
10377 	reuse_kern->bind_inany = reuse->bind_inany;
10378 }
10379 
bpf_run_sk_reuseport(struct sock_reuseport * reuse,struct sock * sk,struct bpf_prog * prog,struct sk_buff * skb,struct sock * migrating_sk,u32 hash)10380 struct sock *bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk,
10381 				  struct bpf_prog *prog, struct sk_buff *skb,
10382 				  struct sock *migrating_sk,
10383 				  u32 hash)
10384 {
10385 	struct sk_reuseport_kern reuse_kern;
10386 	enum sk_action action;
10387 
10388 	bpf_init_reuseport_kern(&reuse_kern, reuse, sk, skb, migrating_sk, hash);
10389 	action = bpf_prog_run(prog, &reuse_kern);
10390 
10391 	if (action == SK_PASS)
10392 		return reuse_kern.selected_sk;
10393 	else
10394 		return ERR_PTR(-ECONNREFUSED);
10395 }
10396 
BPF_CALL_4(sk_select_reuseport,struct sk_reuseport_kern *,reuse_kern,struct bpf_map *,map,void *,key,u32,flags)10397 BPF_CALL_4(sk_select_reuseport, struct sk_reuseport_kern *, reuse_kern,
10398 	   struct bpf_map *, map, void *, key, u32, flags)
10399 {
10400 	bool is_sockarray = map->map_type == BPF_MAP_TYPE_REUSEPORT_SOCKARRAY;
10401 	struct sock_reuseport *reuse;
10402 	struct sock *selected_sk;
10403 
10404 	selected_sk = map->ops->map_lookup_elem(map, key);
10405 	if (!selected_sk)
10406 		return -ENOENT;
10407 
10408 	reuse = rcu_dereference(selected_sk->sk_reuseport_cb);
10409 	if (!reuse) {
10410 		/* Lookup in sock_map can return TCP ESTABLISHED sockets. */
10411 		if (sk_is_refcounted(selected_sk))
10412 			sock_put(selected_sk);
10413 
10414 		/* reuseport_array has only sk with non NULL sk_reuseport_cb.
10415 		 * The only (!reuse) case here is - the sk has already been
10416 		 * unhashed (e.g. by close()), so treat it as -ENOENT.
10417 		 *
10418 		 * Other maps (e.g. sock_map) do not provide this guarantee and
10419 		 * the sk may never be in the reuseport group to begin with.
10420 		 */
10421 		return is_sockarray ? -ENOENT : -EINVAL;
10422 	}
10423 
10424 	if (unlikely(reuse->reuseport_id != reuse_kern->reuseport_id)) {
10425 		struct sock *sk = reuse_kern->sk;
10426 
10427 		if (sk->sk_protocol != selected_sk->sk_protocol)
10428 			return -EPROTOTYPE;
10429 		else if (sk->sk_family != selected_sk->sk_family)
10430 			return -EAFNOSUPPORT;
10431 
10432 		/* Catch all. Likely bound to a different sockaddr. */
10433 		return -EBADFD;
10434 	}
10435 
10436 	reuse_kern->selected_sk = selected_sk;
10437 
10438 	return 0;
10439 }
10440 
10441 static const struct bpf_func_proto sk_select_reuseport_proto = {
10442 	.func           = sk_select_reuseport,
10443 	.gpl_only       = false,
10444 	.ret_type       = RET_INTEGER,
10445 	.arg1_type	= ARG_PTR_TO_CTX,
10446 	.arg2_type      = ARG_CONST_MAP_PTR,
10447 	.arg3_type      = ARG_PTR_TO_MAP_KEY,
10448 	.arg4_type	= ARG_ANYTHING,
10449 };
10450 
BPF_CALL_4(sk_reuseport_load_bytes,const struct sk_reuseport_kern *,reuse_kern,u32,offset,void *,to,u32,len)10451 BPF_CALL_4(sk_reuseport_load_bytes,
10452 	   const struct sk_reuseport_kern *, reuse_kern, u32, offset,
10453 	   void *, to, u32, len)
10454 {
10455 	return ____bpf_skb_load_bytes(reuse_kern->skb, offset, to, len);
10456 }
10457 
10458 static const struct bpf_func_proto sk_reuseport_load_bytes_proto = {
10459 	.func		= sk_reuseport_load_bytes,
10460 	.gpl_only	= false,
10461 	.ret_type	= RET_INTEGER,
10462 	.arg1_type	= ARG_PTR_TO_CTX,
10463 	.arg2_type	= ARG_ANYTHING,
10464 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
10465 	.arg4_type	= ARG_CONST_SIZE,
10466 };
10467 
BPF_CALL_5(sk_reuseport_load_bytes_relative,const struct sk_reuseport_kern *,reuse_kern,u32,offset,void *,to,u32,len,u32,start_header)10468 BPF_CALL_5(sk_reuseport_load_bytes_relative,
10469 	   const struct sk_reuseport_kern *, reuse_kern, u32, offset,
10470 	   void *, to, u32, len, u32, start_header)
10471 {
10472 	return ____bpf_skb_load_bytes_relative(reuse_kern->skb, offset, to,
10473 					       len, start_header);
10474 }
10475 
10476 static const struct bpf_func_proto sk_reuseport_load_bytes_relative_proto = {
10477 	.func		= sk_reuseport_load_bytes_relative,
10478 	.gpl_only	= false,
10479 	.ret_type	= RET_INTEGER,
10480 	.arg1_type	= ARG_PTR_TO_CTX,
10481 	.arg2_type	= ARG_ANYTHING,
10482 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
10483 	.arg4_type	= ARG_CONST_SIZE,
10484 	.arg5_type	= ARG_ANYTHING,
10485 };
10486 
10487 static const struct bpf_func_proto *
sk_reuseport_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)10488 sk_reuseport_func_proto(enum bpf_func_id func_id,
10489 			const struct bpf_prog *prog)
10490 {
10491 	switch (func_id) {
10492 	case BPF_FUNC_sk_select_reuseport:
10493 		return &sk_select_reuseport_proto;
10494 	case BPF_FUNC_skb_load_bytes:
10495 		return &sk_reuseport_load_bytes_proto;
10496 	case BPF_FUNC_skb_load_bytes_relative:
10497 		return &sk_reuseport_load_bytes_relative_proto;
10498 	case BPF_FUNC_get_socket_cookie:
10499 		return &bpf_get_socket_ptr_cookie_proto;
10500 	case BPF_FUNC_ktime_get_coarse_ns:
10501 		return &bpf_ktime_get_coarse_ns_proto;
10502 	default:
10503 		return bpf_base_func_proto(func_id);
10504 	}
10505 }
10506 
10507 static bool
sk_reuseport_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)10508 sk_reuseport_is_valid_access(int off, int size,
10509 			     enum bpf_access_type type,
10510 			     const struct bpf_prog *prog,
10511 			     struct bpf_insn_access_aux *info)
10512 {
10513 	const u32 size_default = sizeof(__u32);
10514 
10515 	if (off < 0 || off >= sizeof(struct sk_reuseport_md) ||
10516 	    off % size || type != BPF_READ)
10517 		return false;
10518 
10519 	switch (off) {
10520 	case offsetof(struct sk_reuseport_md, data):
10521 		info->reg_type = PTR_TO_PACKET;
10522 		return size == sizeof(__u64);
10523 
10524 	case offsetof(struct sk_reuseport_md, data_end):
10525 		info->reg_type = PTR_TO_PACKET_END;
10526 		return size == sizeof(__u64);
10527 
10528 	case offsetof(struct sk_reuseport_md, hash):
10529 		return size == size_default;
10530 
10531 	case offsetof(struct sk_reuseport_md, sk):
10532 		info->reg_type = PTR_TO_SOCKET;
10533 		return size == sizeof(__u64);
10534 
10535 	case offsetof(struct sk_reuseport_md, migrating_sk):
10536 		info->reg_type = PTR_TO_SOCK_COMMON_OR_NULL;
10537 		return size == sizeof(__u64);
10538 
10539 	/* Fields that allow narrowing */
10540 	case bpf_ctx_range(struct sk_reuseport_md, eth_protocol):
10541 		if (size < sizeof_field(struct sk_buff, protocol))
10542 			return false;
10543 		fallthrough;
10544 	case bpf_ctx_range(struct sk_reuseport_md, ip_protocol):
10545 	case bpf_ctx_range(struct sk_reuseport_md, bind_inany):
10546 	case bpf_ctx_range(struct sk_reuseport_md, len):
10547 		bpf_ctx_record_field_size(info, size_default);
10548 		return bpf_ctx_narrow_access_ok(off, size, size_default);
10549 
10550 	default:
10551 		return false;
10552 	}
10553 }
10554 
10555 #define SK_REUSEPORT_LOAD_FIELD(F) ({					\
10556 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_reuseport_kern, F), \
10557 			      si->dst_reg, si->src_reg,			\
10558 			      bpf_target_off(struct sk_reuseport_kern, F, \
10559 					     sizeof_field(struct sk_reuseport_kern, F), \
10560 					     target_size));		\
10561 	})
10562 
10563 #define SK_REUSEPORT_LOAD_SKB_FIELD(SKB_FIELD)				\
10564 	SOCK_ADDR_LOAD_NESTED_FIELD(struct sk_reuseport_kern,		\
10565 				    struct sk_buff,			\
10566 				    skb,				\
10567 				    SKB_FIELD)
10568 
10569 #define SK_REUSEPORT_LOAD_SK_FIELD(SK_FIELD)				\
10570 	SOCK_ADDR_LOAD_NESTED_FIELD(struct sk_reuseport_kern,		\
10571 				    struct sock,			\
10572 				    sk,					\
10573 				    SK_FIELD)
10574 
sk_reuseport_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)10575 static u32 sk_reuseport_convert_ctx_access(enum bpf_access_type type,
10576 					   const struct bpf_insn *si,
10577 					   struct bpf_insn *insn_buf,
10578 					   struct bpf_prog *prog,
10579 					   u32 *target_size)
10580 {
10581 	struct bpf_insn *insn = insn_buf;
10582 
10583 	switch (si->off) {
10584 	case offsetof(struct sk_reuseport_md, data):
10585 		SK_REUSEPORT_LOAD_SKB_FIELD(data);
10586 		break;
10587 
10588 	case offsetof(struct sk_reuseport_md, len):
10589 		SK_REUSEPORT_LOAD_SKB_FIELD(len);
10590 		break;
10591 
10592 	case offsetof(struct sk_reuseport_md, eth_protocol):
10593 		SK_REUSEPORT_LOAD_SKB_FIELD(protocol);
10594 		break;
10595 
10596 	case offsetof(struct sk_reuseport_md, ip_protocol):
10597 		SK_REUSEPORT_LOAD_SK_FIELD(sk_protocol);
10598 		break;
10599 
10600 	case offsetof(struct sk_reuseport_md, data_end):
10601 		SK_REUSEPORT_LOAD_FIELD(data_end);
10602 		break;
10603 
10604 	case offsetof(struct sk_reuseport_md, hash):
10605 		SK_REUSEPORT_LOAD_FIELD(hash);
10606 		break;
10607 
10608 	case offsetof(struct sk_reuseport_md, bind_inany):
10609 		SK_REUSEPORT_LOAD_FIELD(bind_inany);
10610 		break;
10611 
10612 	case offsetof(struct sk_reuseport_md, sk):
10613 		SK_REUSEPORT_LOAD_FIELD(sk);
10614 		break;
10615 
10616 	case offsetof(struct sk_reuseport_md, migrating_sk):
10617 		SK_REUSEPORT_LOAD_FIELD(migrating_sk);
10618 		break;
10619 	}
10620 
10621 	return insn - insn_buf;
10622 }
10623 
10624 const struct bpf_verifier_ops sk_reuseport_verifier_ops = {
10625 	.get_func_proto		= sk_reuseport_func_proto,
10626 	.is_valid_access	= sk_reuseport_is_valid_access,
10627 	.convert_ctx_access	= sk_reuseport_convert_ctx_access,
10628 };
10629 
10630 const struct bpf_prog_ops sk_reuseport_prog_ops = {
10631 };
10632 
10633 DEFINE_STATIC_KEY_FALSE(bpf_sk_lookup_enabled);
10634 EXPORT_SYMBOL(bpf_sk_lookup_enabled);
10635 
BPF_CALL_3(bpf_sk_lookup_assign,struct bpf_sk_lookup_kern *,ctx,struct sock *,sk,u64,flags)10636 BPF_CALL_3(bpf_sk_lookup_assign, struct bpf_sk_lookup_kern *, ctx,
10637 	   struct sock *, sk, u64, flags)
10638 {
10639 	if (unlikely(flags & ~(BPF_SK_LOOKUP_F_REPLACE |
10640 			       BPF_SK_LOOKUP_F_NO_REUSEPORT)))
10641 		return -EINVAL;
10642 	if (unlikely(sk && sk_is_refcounted(sk)))
10643 		return -ESOCKTNOSUPPORT; /* reject non-RCU freed sockets */
10644 	if (unlikely(sk && sk->sk_state == TCP_ESTABLISHED))
10645 		return -ESOCKTNOSUPPORT; /* reject connected sockets */
10646 
10647 	/* Check if socket is suitable for packet L3/L4 protocol */
10648 	if (sk && sk->sk_protocol != ctx->protocol)
10649 		return -EPROTOTYPE;
10650 	if (sk && sk->sk_family != ctx->family &&
10651 	    (sk->sk_family == AF_INET || ipv6_only_sock(sk)))
10652 		return -EAFNOSUPPORT;
10653 
10654 	if (ctx->selected_sk && !(flags & BPF_SK_LOOKUP_F_REPLACE))
10655 		return -EEXIST;
10656 
10657 	/* Select socket as lookup result */
10658 	ctx->selected_sk = sk;
10659 	ctx->no_reuseport = flags & BPF_SK_LOOKUP_F_NO_REUSEPORT;
10660 	return 0;
10661 }
10662 
10663 static const struct bpf_func_proto bpf_sk_lookup_assign_proto = {
10664 	.func		= bpf_sk_lookup_assign,
10665 	.gpl_only	= false,
10666 	.ret_type	= RET_INTEGER,
10667 	.arg1_type	= ARG_PTR_TO_CTX,
10668 	.arg2_type	= ARG_PTR_TO_SOCKET_OR_NULL,
10669 	.arg3_type	= ARG_ANYTHING,
10670 };
10671 
10672 static const struct bpf_func_proto *
sk_lookup_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)10673 sk_lookup_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
10674 {
10675 	switch (func_id) {
10676 	case BPF_FUNC_perf_event_output:
10677 		return &bpf_event_output_data_proto;
10678 	case BPF_FUNC_sk_assign:
10679 		return &bpf_sk_lookup_assign_proto;
10680 	case BPF_FUNC_sk_release:
10681 		return &bpf_sk_release_proto;
10682 	default:
10683 		return bpf_sk_base_func_proto(func_id);
10684 	}
10685 }
10686 
sk_lookup_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)10687 static bool sk_lookup_is_valid_access(int off, int size,
10688 				      enum bpf_access_type type,
10689 				      const struct bpf_prog *prog,
10690 				      struct bpf_insn_access_aux *info)
10691 {
10692 	if (off < 0 || off >= sizeof(struct bpf_sk_lookup))
10693 		return false;
10694 	if (off % size != 0)
10695 		return false;
10696 	if (type != BPF_READ)
10697 		return false;
10698 
10699 	switch (off) {
10700 	case offsetof(struct bpf_sk_lookup, sk):
10701 		info->reg_type = PTR_TO_SOCKET_OR_NULL;
10702 		return size == sizeof(__u64);
10703 
10704 	case bpf_ctx_range(struct bpf_sk_lookup, family):
10705 	case bpf_ctx_range(struct bpf_sk_lookup, protocol):
10706 	case bpf_ctx_range(struct bpf_sk_lookup, remote_ip4):
10707 	case bpf_ctx_range(struct bpf_sk_lookup, local_ip4):
10708 	case bpf_ctx_range_till(struct bpf_sk_lookup, remote_ip6[0], remote_ip6[3]):
10709 	case bpf_ctx_range_till(struct bpf_sk_lookup, local_ip6[0], local_ip6[3]):
10710 	case offsetof(struct bpf_sk_lookup, remote_port) ...
10711 	     offsetof(struct bpf_sk_lookup, local_ip4) - 1:
10712 	case bpf_ctx_range(struct bpf_sk_lookup, local_port):
10713 		bpf_ctx_record_field_size(info, sizeof(__u32));
10714 		return bpf_ctx_narrow_access_ok(off, size, sizeof(__u32));
10715 
10716 	default:
10717 		return false;
10718 	}
10719 }
10720 
sk_lookup_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)10721 static u32 sk_lookup_convert_ctx_access(enum bpf_access_type type,
10722 					const struct bpf_insn *si,
10723 					struct bpf_insn *insn_buf,
10724 					struct bpf_prog *prog,
10725 					u32 *target_size)
10726 {
10727 	struct bpf_insn *insn = insn_buf;
10728 
10729 	switch (si->off) {
10730 	case offsetof(struct bpf_sk_lookup, sk):
10731 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg,
10732 				      offsetof(struct bpf_sk_lookup_kern, selected_sk));
10733 		break;
10734 
10735 	case offsetof(struct bpf_sk_lookup, family):
10736 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
10737 				      bpf_target_off(struct bpf_sk_lookup_kern,
10738 						     family, 2, target_size));
10739 		break;
10740 
10741 	case offsetof(struct bpf_sk_lookup, protocol):
10742 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
10743 				      bpf_target_off(struct bpf_sk_lookup_kern,
10744 						     protocol, 2, target_size));
10745 		break;
10746 
10747 	case offsetof(struct bpf_sk_lookup, remote_ip4):
10748 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
10749 				      bpf_target_off(struct bpf_sk_lookup_kern,
10750 						     v4.saddr, 4, target_size));
10751 		break;
10752 
10753 	case offsetof(struct bpf_sk_lookup, local_ip4):
10754 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
10755 				      bpf_target_off(struct bpf_sk_lookup_kern,
10756 						     v4.daddr, 4, target_size));
10757 		break;
10758 
10759 	case bpf_ctx_range_till(struct bpf_sk_lookup,
10760 				remote_ip6[0], remote_ip6[3]): {
10761 #if IS_ENABLED(CONFIG_IPV6)
10762 		int off = si->off;
10763 
10764 		off -= offsetof(struct bpf_sk_lookup, remote_ip6[0]);
10765 		off += bpf_target_off(struct in6_addr, s6_addr32[0], 4, target_size);
10766 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg,
10767 				      offsetof(struct bpf_sk_lookup_kern, v6.saddr));
10768 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
10769 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, off);
10770 #else
10771 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10772 #endif
10773 		break;
10774 	}
10775 	case bpf_ctx_range_till(struct bpf_sk_lookup,
10776 				local_ip6[0], local_ip6[3]): {
10777 #if IS_ENABLED(CONFIG_IPV6)
10778 		int off = si->off;
10779 
10780 		off -= offsetof(struct bpf_sk_lookup, local_ip6[0]);
10781 		off += bpf_target_off(struct in6_addr, s6_addr32[0], 4, target_size);
10782 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg,
10783 				      offsetof(struct bpf_sk_lookup_kern, v6.daddr));
10784 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
10785 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, off);
10786 #else
10787 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10788 #endif
10789 		break;
10790 	}
10791 	case offsetof(struct bpf_sk_lookup, remote_port):
10792 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
10793 				      bpf_target_off(struct bpf_sk_lookup_kern,
10794 						     sport, 2, target_size));
10795 		break;
10796 
10797 	case offsetof(struct bpf_sk_lookup, local_port):
10798 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
10799 				      bpf_target_off(struct bpf_sk_lookup_kern,
10800 						     dport, 2, target_size));
10801 		break;
10802 	}
10803 
10804 	return insn - insn_buf;
10805 }
10806 
10807 const struct bpf_prog_ops sk_lookup_prog_ops = {
10808 	.test_run = bpf_prog_test_run_sk_lookup,
10809 };
10810 
10811 const struct bpf_verifier_ops sk_lookup_verifier_ops = {
10812 	.get_func_proto		= sk_lookup_func_proto,
10813 	.is_valid_access	= sk_lookup_is_valid_access,
10814 	.convert_ctx_access	= sk_lookup_convert_ctx_access,
10815 };
10816 
10817 #endif /* CONFIG_INET */
10818 
DEFINE_BPF_DISPATCHER(xdp)10819 DEFINE_BPF_DISPATCHER(xdp)
10820 
10821 void bpf_prog_change_xdp(struct bpf_prog *prev_prog, struct bpf_prog *prog)
10822 {
10823 	bpf_dispatcher_change_prog(BPF_DISPATCHER_PTR(xdp), prev_prog, prog);
10824 }
10825 
10826 #ifdef CONFIG_DEBUG_INFO_BTF
BTF_ID_LIST_GLOBAL(btf_sock_ids)10827 BTF_ID_LIST_GLOBAL(btf_sock_ids)
10828 #define BTF_SOCK_TYPE(name, type) BTF_ID(struct, type)
10829 BTF_SOCK_TYPE_xxx
10830 #undef BTF_SOCK_TYPE
10831 #else
10832 u32 btf_sock_ids[MAX_BTF_SOCK_TYPE];
10833 #endif
10834 
10835 BPF_CALL_1(bpf_skc_to_tcp6_sock, struct sock *, sk)
10836 {
10837 	/* tcp6_sock type is not generated in dwarf and hence btf,
10838 	 * trigger an explicit type generation here.
10839 	 */
10840 	BTF_TYPE_EMIT(struct tcp6_sock);
10841 	if (sk && sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP &&
10842 	    sk->sk_family == AF_INET6)
10843 		return (unsigned long)sk;
10844 
10845 	return (unsigned long)NULL;
10846 }
10847 
10848 const struct bpf_func_proto bpf_skc_to_tcp6_sock_proto = {
10849 	.func			= bpf_skc_to_tcp6_sock,
10850 	.gpl_only		= false,
10851 	.ret_type		= RET_PTR_TO_BTF_ID_OR_NULL,
10852 	.arg1_type		= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
10853 	.ret_btf_id		= &btf_sock_ids[BTF_SOCK_TYPE_TCP6],
10854 };
10855 
BPF_CALL_1(bpf_skc_to_tcp_sock,struct sock *,sk)10856 BPF_CALL_1(bpf_skc_to_tcp_sock, struct sock *, sk)
10857 {
10858 	if (sk && sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP)
10859 		return (unsigned long)sk;
10860 
10861 	return (unsigned long)NULL;
10862 }
10863 
10864 const struct bpf_func_proto bpf_skc_to_tcp_sock_proto = {
10865 	.func			= bpf_skc_to_tcp_sock,
10866 	.gpl_only		= false,
10867 	.ret_type		= RET_PTR_TO_BTF_ID_OR_NULL,
10868 	.arg1_type		= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
10869 	.ret_btf_id		= &btf_sock_ids[BTF_SOCK_TYPE_TCP],
10870 };
10871 
BPF_CALL_1(bpf_skc_to_tcp_timewait_sock,struct sock *,sk)10872 BPF_CALL_1(bpf_skc_to_tcp_timewait_sock, struct sock *, sk)
10873 {
10874 	/* BTF types for tcp_timewait_sock and inet_timewait_sock are not
10875 	 * generated if CONFIG_INET=n. Trigger an explicit generation here.
10876 	 */
10877 	BTF_TYPE_EMIT(struct inet_timewait_sock);
10878 	BTF_TYPE_EMIT(struct tcp_timewait_sock);
10879 
10880 #ifdef CONFIG_INET
10881 	if (sk && sk->sk_prot == &tcp_prot && sk->sk_state == TCP_TIME_WAIT)
10882 		return (unsigned long)sk;
10883 #endif
10884 
10885 #if IS_BUILTIN(CONFIG_IPV6)
10886 	if (sk && sk->sk_prot == &tcpv6_prot && sk->sk_state == TCP_TIME_WAIT)
10887 		return (unsigned long)sk;
10888 #endif
10889 
10890 	return (unsigned long)NULL;
10891 }
10892 
10893 const struct bpf_func_proto bpf_skc_to_tcp_timewait_sock_proto = {
10894 	.func			= bpf_skc_to_tcp_timewait_sock,
10895 	.gpl_only		= false,
10896 	.ret_type		= RET_PTR_TO_BTF_ID_OR_NULL,
10897 	.arg1_type		= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
10898 	.ret_btf_id		= &btf_sock_ids[BTF_SOCK_TYPE_TCP_TW],
10899 };
10900 
BPF_CALL_1(bpf_skc_to_tcp_request_sock,struct sock *,sk)10901 BPF_CALL_1(bpf_skc_to_tcp_request_sock, struct sock *, sk)
10902 {
10903 #ifdef CONFIG_INET
10904 	if (sk && sk->sk_prot == &tcp_prot && sk->sk_state == TCP_NEW_SYN_RECV)
10905 		return (unsigned long)sk;
10906 #endif
10907 
10908 #if IS_BUILTIN(CONFIG_IPV6)
10909 	if (sk && sk->sk_prot == &tcpv6_prot && sk->sk_state == TCP_NEW_SYN_RECV)
10910 		return (unsigned long)sk;
10911 #endif
10912 
10913 	return (unsigned long)NULL;
10914 }
10915 
10916 const struct bpf_func_proto bpf_skc_to_tcp_request_sock_proto = {
10917 	.func			= bpf_skc_to_tcp_request_sock,
10918 	.gpl_only		= false,
10919 	.ret_type		= RET_PTR_TO_BTF_ID_OR_NULL,
10920 	.arg1_type		= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
10921 	.ret_btf_id		= &btf_sock_ids[BTF_SOCK_TYPE_TCP_REQ],
10922 };
10923 
BPF_CALL_1(bpf_skc_to_udp6_sock,struct sock *,sk)10924 BPF_CALL_1(bpf_skc_to_udp6_sock, struct sock *, sk)
10925 {
10926 	/* udp6_sock type is not generated in dwarf and hence btf,
10927 	 * trigger an explicit type generation here.
10928 	 */
10929 	BTF_TYPE_EMIT(struct udp6_sock);
10930 	if (sk && sk_fullsock(sk) && sk->sk_protocol == IPPROTO_UDP &&
10931 	    sk->sk_type == SOCK_DGRAM && sk->sk_family == AF_INET6)
10932 		return (unsigned long)sk;
10933 
10934 	return (unsigned long)NULL;
10935 }
10936 
10937 const struct bpf_func_proto bpf_skc_to_udp6_sock_proto = {
10938 	.func			= bpf_skc_to_udp6_sock,
10939 	.gpl_only		= false,
10940 	.ret_type		= RET_PTR_TO_BTF_ID_OR_NULL,
10941 	.arg1_type		= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
10942 	.ret_btf_id		= &btf_sock_ids[BTF_SOCK_TYPE_UDP6],
10943 };
10944 
BPF_CALL_1(bpf_sock_from_file,struct file *,file)10945 BPF_CALL_1(bpf_sock_from_file, struct file *, file)
10946 {
10947 	return (unsigned long)sock_from_file(file);
10948 }
10949 
10950 BTF_ID_LIST(bpf_sock_from_file_btf_ids)
10951 BTF_ID(struct, socket)
10952 BTF_ID(struct, file)
10953 
10954 const struct bpf_func_proto bpf_sock_from_file_proto = {
10955 	.func		= bpf_sock_from_file,
10956 	.gpl_only	= false,
10957 	.ret_type	= RET_PTR_TO_BTF_ID_OR_NULL,
10958 	.ret_btf_id	= &bpf_sock_from_file_btf_ids[0],
10959 	.arg1_type	= ARG_PTR_TO_BTF_ID,
10960 	.arg1_btf_id	= &bpf_sock_from_file_btf_ids[1],
10961 };
10962 
10963 static const struct bpf_func_proto *
bpf_sk_base_func_proto(enum bpf_func_id func_id)10964 bpf_sk_base_func_proto(enum bpf_func_id func_id)
10965 {
10966 	const struct bpf_func_proto *func;
10967 
10968 	switch (func_id) {
10969 	case BPF_FUNC_skc_to_tcp6_sock:
10970 		func = &bpf_skc_to_tcp6_sock_proto;
10971 		break;
10972 	case BPF_FUNC_skc_to_tcp_sock:
10973 		func = &bpf_skc_to_tcp_sock_proto;
10974 		break;
10975 	case BPF_FUNC_skc_to_tcp_timewait_sock:
10976 		func = &bpf_skc_to_tcp_timewait_sock_proto;
10977 		break;
10978 	case BPF_FUNC_skc_to_tcp_request_sock:
10979 		func = &bpf_skc_to_tcp_request_sock_proto;
10980 		break;
10981 	case BPF_FUNC_skc_to_udp6_sock:
10982 		func = &bpf_skc_to_udp6_sock_proto;
10983 		break;
10984 	case BPF_FUNC_ktime_get_coarse_ns:
10985 		return &bpf_ktime_get_coarse_ns_proto;
10986 	default:
10987 		return bpf_base_func_proto(func_id);
10988 	}
10989 
10990 	if (!perfmon_capable())
10991 		return NULL;
10992 
10993 	return func;
10994 }
10995