1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 1994 Linus Torvalds
4 *
5 * 29 dec 2001 - Fixed oopses caused by unchecked access to the vm86
6 * stack - Manfred Spraul <manfred@colorfullife.com>
7 *
8 * 22 mar 2002 - Manfred detected the stackfaults, but didn't handle
9 * them correctly. Now the emulation will be in a
10 * consistent state after stackfaults - Kasper Dupont
11 * <kasperd@daimi.au.dk>
12 *
13 * 22 mar 2002 - Added missing clear_IF in set_vflags_* Kasper Dupont
14 * <kasperd@daimi.au.dk>
15 *
16 * ?? ??? 2002 - Fixed premature returns from handle_vm86_fault
17 * caused by Kasper Dupont's changes - Stas Sergeev
18 *
19 * 4 apr 2002 - Fixed CHECK_IF_IN_TRAP broken by Stas' changes.
20 * Kasper Dupont <kasperd@daimi.au.dk>
21 *
22 * 9 apr 2002 - Changed syntax of macros in handle_vm86_fault.
23 * Kasper Dupont <kasperd@daimi.au.dk>
24 *
25 * 9 apr 2002 - Changed stack access macros to jump to a label
26 * instead of returning to userspace. This simplifies
27 * do_int, and is needed by handle_vm6_fault. Kasper
28 * Dupont <kasperd@daimi.au.dk>
29 *
30 */
31
32 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
33
34 #include <linux/capability.h>
35 #include <linux/errno.h>
36 #include <linux/interrupt.h>
37 #include <linux/syscalls.h>
38 #include <linux/sched.h>
39 #include <linux/sched/task_stack.h>
40 #include <linux/kernel.h>
41 #include <linux/signal.h>
42 #include <linux/string.h>
43 #include <linux/mm.h>
44 #include <linux/smp.h>
45 #include <linux/highmem.h>
46 #include <linux/ptrace.h>
47 #include <linux/audit.h>
48 #include <linux/stddef.h>
49 #include <linux/slab.h>
50 #include <linux/security.h>
51
52 #include <linux/uaccess.h>
53 #include <asm/io.h>
54 #include <asm/tlbflush.h>
55 #include <asm/irq.h>
56 #include <asm/traps.h>
57 #include <asm/vm86.h>
58 #include <asm/switch_to.h>
59
60 /*
61 * Known problems:
62 *
63 * Interrupt handling is not guaranteed:
64 * - a real x86 will disable all interrupts for one instruction
65 * after a "mov ss,xx" to make stack handling atomic even without
66 * the 'lss' instruction. We can't guarantee this in v86 mode,
67 * as the next instruction might result in a page fault or similar.
68 * - a real x86 will have interrupts disabled for one instruction
69 * past the 'sti' that enables them. We don't bother with all the
70 * details yet.
71 *
72 * Let's hope these problems do not actually matter for anything.
73 */
74
75
76 /*
77 * 8- and 16-bit register defines..
78 */
79 #define AL(regs) (((unsigned char *)&((regs)->pt.ax))[0])
80 #define AH(regs) (((unsigned char *)&((regs)->pt.ax))[1])
81 #define IP(regs) (*(unsigned short *)&((regs)->pt.ip))
82 #define SP(regs) (*(unsigned short *)&((regs)->pt.sp))
83
84 /*
85 * virtual flags (16 and 32-bit versions)
86 */
87 #define VFLAGS (*(unsigned short *)&(current->thread.vm86->veflags))
88 #define VEFLAGS (current->thread.vm86->veflags)
89
90 #define set_flags(X, new, mask) \
91 ((X) = ((X) & ~(mask)) | ((new) & (mask)))
92
93 #define SAFE_MASK (0xDD5)
94 #define RETURN_MASK (0xDFF)
95
save_v86_state(struct kernel_vm86_regs * regs,int retval)96 void save_v86_state(struct kernel_vm86_regs *regs, int retval)
97 {
98 struct task_struct *tsk = current;
99 struct vm86plus_struct __user *user;
100 struct vm86 *vm86 = current->thread.vm86;
101
102 /*
103 * This gets called from entry.S with interrupts disabled, but
104 * from process context. Enable interrupts here, before trying
105 * to access user space.
106 */
107 local_irq_enable();
108
109 if (!vm86 || !vm86->user_vm86) {
110 pr_alert("no user_vm86: BAD\n");
111 do_exit(SIGSEGV);
112 }
113 set_flags(regs->pt.flags, VEFLAGS, X86_EFLAGS_VIF | vm86->veflags_mask);
114 user = vm86->user_vm86;
115
116 if (!user_access_begin(user, vm86->vm86plus.is_vm86pus ?
117 sizeof(struct vm86plus_struct) :
118 sizeof(struct vm86_struct)))
119 goto Efault;
120
121 unsafe_put_user(regs->pt.bx, &user->regs.ebx, Efault_end);
122 unsafe_put_user(regs->pt.cx, &user->regs.ecx, Efault_end);
123 unsafe_put_user(regs->pt.dx, &user->regs.edx, Efault_end);
124 unsafe_put_user(regs->pt.si, &user->regs.esi, Efault_end);
125 unsafe_put_user(regs->pt.di, &user->regs.edi, Efault_end);
126 unsafe_put_user(regs->pt.bp, &user->regs.ebp, Efault_end);
127 unsafe_put_user(regs->pt.ax, &user->regs.eax, Efault_end);
128 unsafe_put_user(regs->pt.ip, &user->regs.eip, Efault_end);
129 unsafe_put_user(regs->pt.cs, &user->regs.cs, Efault_end);
130 unsafe_put_user(regs->pt.flags, &user->regs.eflags, Efault_end);
131 unsafe_put_user(regs->pt.sp, &user->regs.esp, Efault_end);
132 unsafe_put_user(regs->pt.ss, &user->regs.ss, Efault_end);
133 unsafe_put_user(regs->es, &user->regs.es, Efault_end);
134 unsafe_put_user(regs->ds, &user->regs.ds, Efault_end);
135 unsafe_put_user(regs->fs, &user->regs.fs, Efault_end);
136 unsafe_put_user(regs->gs, &user->regs.gs, Efault_end);
137
138 /*
139 * Don't write screen_bitmap in case some user had a value there
140 * and expected it to remain unchanged.
141 */
142
143 user_access_end();
144
145 exit_vm86:
146 preempt_disable();
147 tsk->thread.sp0 = vm86->saved_sp0;
148 tsk->thread.sysenter_cs = __KERNEL_CS;
149 update_task_stack(tsk);
150 refresh_sysenter_cs(&tsk->thread);
151 vm86->saved_sp0 = 0;
152 preempt_enable();
153
154 memcpy(®s->pt, &vm86->regs32, sizeof(struct pt_regs));
155
156 lazy_load_gs(vm86->regs32.gs);
157
158 regs->pt.ax = retval;
159 return;
160
161 Efault_end:
162 user_access_end();
163 Efault:
164 pr_alert("could not access userspace vm86 info\n");
165 force_exit_sig(SIGSEGV);
166 goto exit_vm86;
167 }
168
169 static int do_vm86_irq_handling(int subfunction, int irqnumber);
170 static long do_sys_vm86(struct vm86plus_struct __user *user_vm86, bool plus);
171
SYSCALL_DEFINE1(vm86old,struct vm86_struct __user *,user_vm86)172 SYSCALL_DEFINE1(vm86old, struct vm86_struct __user *, user_vm86)
173 {
174 return do_sys_vm86((struct vm86plus_struct __user *) user_vm86, false);
175 }
176
177
SYSCALL_DEFINE2(vm86,unsigned long,cmd,unsigned long,arg)178 SYSCALL_DEFINE2(vm86, unsigned long, cmd, unsigned long, arg)
179 {
180 switch (cmd) {
181 case VM86_REQUEST_IRQ:
182 case VM86_FREE_IRQ:
183 case VM86_GET_IRQ_BITS:
184 case VM86_GET_AND_RESET_IRQ:
185 return do_vm86_irq_handling(cmd, (int)arg);
186 case VM86_PLUS_INSTALL_CHECK:
187 /*
188 * NOTE: on old vm86 stuff this will return the error
189 * from access_ok(), because the subfunction is
190 * interpreted as (invalid) address to vm86_struct.
191 * So the installation check works.
192 */
193 return 0;
194 }
195
196 /* we come here only for functions VM86_ENTER, VM86_ENTER_NO_BYPASS */
197 return do_sys_vm86((struct vm86plus_struct __user *) arg, true);
198 }
199
200
do_sys_vm86(struct vm86plus_struct __user * user_vm86,bool plus)201 static long do_sys_vm86(struct vm86plus_struct __user *user_vm86, bool plus)
202 {
203 struct task_struct *tsk = current;
204 struct vm86 *vm86 = tsk->thread.vm86;
205 struct kernel_vm86_regs vm86regs;
206 struct pt_regs *regs = current_pt_regs();
207 unsigned long err = 0;
208 struct vm86_struct v;
209
210 err = security_mmap_addr(0);
211 if (err) {
212 /*
213 * vm86 cannot virtualize the address space, so vm86 users
214 * need to manage the low 1MB themselves using mmap. Given
215 * that BIOS places important data in the first page, vm86
216 * is essentially useless if mmap_min_addr != 0. DOSEMU,
217 * for example, won't even bother trying to use vm86 if it
218 * can't map a page at virtual address 0.
219 *
220 * To reduce the available kernel attack surface, simply
221 * disallow vm86(old) for users who cannot mmap at va 0.
222 *
223 * The implementation of security_mmap_addr will allow
224 * suitably privileged users to map va 0 even if
225 * vm.mmap_min_addr is set above 0, and we want this
226 * behavior for vm86 as well, as it ensures that legacy
227 * tools like vbetool will not fail just because of
228 * vm.mmap_min_addr.
229 */
230 pr_info_once("Denied a call to vm86(old) from %s[%d] (uid: %d). Set the vm.mmap_min_addr sysctl to 0 and/or adjust LSM mmap_min_addr policy to enable vm86 if you are using a vm86-based DOS emulator.\n",
231 current->comm, task_pid_nr(current),
232 from_kuid_munged(&init_user_ns, current_uid()));
233 return -EPERM;
234 }
235
236 if (!vm86) {
237 if (!(vm86 = kzalloc(sizeof(*vm86), GFP_KERNEL)))
238 return -ENOMEM;
239 tsk->thread.vm86 = vm86;
240 }
241 if (vm86->saved_sp0)
242 return -EPERM;
243
244 if (copy_from_user(&v, user_vm86,
245 offsetof(struct vm86_struct, int_revectored)))
246 return -EFAULT;
247
248
249 /* VM86_SCREEN_BITMAP had numerous bugs and appears to have no users. */
250 if (v.flags & VM86_SCREEN_BITMAP) {
251 char comm[TASK_COMM_LEN];
252
253 pr_info_once("vm86: '%s' uses VM86_SCREEN_BITMAP, which is no longer supported\n", get_task_comm(comm, current));
254 return -EINVAL;
255 }
256
257 memset(&vm86regs, 0, sizeof(vm86regs));
258
259 vm86regs.pt.bx = v.regs.ebx;
260 vm86regs.pt.cx = v.regs.ecx;
261 vm86regs.pt.dx = v.regs.edx;
262 vm86regs.pt.si = v.regs.esi;
263 vm86regs.pt.di = v.regs.edi;
264 vm86regs.pt.bp = v.regs.ebp;
265 vm86regs.pt.ax = v.regs.eax;
266 vm86regs.pt.ip = v.regs.eip;
267 vm86regs.pt.cs = v.regs.cs;
268 vm86regs.pt.flags = v.regs.eflags;
269 vm86regs.pt.sp = v.regs.esp;
270 vm86regs.pt.ss = v.regs.ss;
271 vm86regs.es = v.regs.es;
272 vm86regs.ds = v.regs.ds;
273 vm86regs.fs = v.regs.fs;
274 vm86regs.gs = v.regs.gs;
275
276 vm86->flags = v.flags;
277 vm86->cpu_type = v.cpu_type;
278
279 if (copy_from_user(&vm86->int_revectored,
280 &user_vm86->int_revectored,
281 sizeof(struct revectored_struct)))
282 return -EFAULT;
283 if (copy_from_user(&vm86->int21_revectored,
284 &user_vm86->int21_revectored,
285 sizeof(struct revectored_struct)))
286 return -EFAULT;
287 if (plus) {
288 if (copy_from_user(&vm86->vm86plus, &user_vm86->vm86plus,
289 sizeof(struct vm86plus_info_struct)))
290 return -EFAULT;
291 vm86->vm86plus.is_vm86pus = 1;
292 } else
293 memset(&vm86->vm86plus, 0,
294 sizeof(struct vm86plus_info_struct));
295
296 memcpy(&vm86->regs32, regs, sizeof(struct pt_regs));
297 vm86->user_vm86 = user_vm86;
298
299 /*
300 * The flags register is also special: we cannot trust that the user
301 * has set it up safely, so this makes sure interrupt etc flags are
302 * inherited from protected mode.
303 */
304 VEFLAGS = vm86regs.pt.flags;
305 vm86regs.pt.flags &= SAFE_MASK;
306 vm86regs.pt.flags |= regs->flags & ~SAFE_MASK;
307 vm86regs.pt.flags |= X86_VM_MASK;
308
309 vm86regs.pt.orig_ax = regs->orig_ax;
310
311 switch (vm86->cpu_type) {
312 case CPU_286:
313 vm86->veflags_mask = 0;
314 break;
315 case CPU_386:
316 vm86->veflags_mask = X86_EFLAGS_NT | X86_EFLAGS_IOPL;
317 break;
318 case CPU_486:
319 vm86->veflags_mask = X86_EFLAGS_AC | X86_EFLAGS_NT | X86_EFLAGS_IOPL;
320 break;
321 default:
322 vm86->veflags_mask = X86_EFLAGS_ID | X86_EFLAGS_AC | X86_EFLAGS_NT | X86_EFLAGS_IOPL;
323 break;
324 }
325
326 /*
327 * Save old state
328 */
329 vm86->saved_sp0 = tsk->thread.sp0;
330 lazy_save_gs(vm86->regs32.gs);
331
332 /* make room for real-mode segments */
333 preempt_disable();
334 tsk->thread.sp0 += 16;
335
336 if (boot_cpu_has(X86_FEATURE_SEP)) {
337 tsk->thread.sysenter_cs = 0;
338 refresh_sysenter_cs(&tsk->thread);
339 }
340
341 update_task_stack(tsk);
342 preempt_enable();
343
344 memcpy((struct kernel_vm86_regs *)regs, &vm86regs, sizeof(vm86regs));
345 return regs->ax;
346 }
347
set_IF(struct kernel_vm86_regs * regs)348 static inline void set_IF(struct kernel_vm86_regs *regs)
349 {
350 VEFLAGS |= X86_EFLAGS_VIF;
351 }
352
clear_IF(struct kernel_vm86_regs * regs)353 static inline void clear_IF(struct kernel_vm86_regs *regs)
354 {
355 VEFLAGS &= ~X86_EFLAGS_VIF;
356 }
357
clear_TF(struct kernel_vm86_regs * regs)358 static inline void clear_TF(struct kernel_vm86_regs *regs)
359 {
360 regs->pt.flags &= ~X86_EFLAGS_TF;
361 }
362
clear_AC(struct kernel_vm86_regs * regs)363 static inline void clear_AC(struct kernel_vm86_regs *regs)
364 {
365 regs->pt.flags &= ~X86_EFLAGS_AC;
366 }
367
368 /*
369 * It is correct to call set_IF(regs) from the set_vflags_*
370 * functions. However someone forgot to call clear_IF(regs)
371 * in the opposite case.
372 * After the command sequence CLI PUSHF STI POPF you should
373 * end up with interrupts disabled, but you ended up with
374 * interrupts enabled.
375 * ( I was testing my own changes, but the only bug I
376 * could find was in a function I had not changed. )
377 * [KD]
378 */
379
set_vflags_long(unsigned long flags,struct kernel_vm86_regs * regs)380 static inline void set_vflags_long(unsigned long flags, struct kernel_vm86_regs *regs)
381 {
382 set_flags(VEFLAGS, flags, current->thread.vm86->veflags_mask);
383 set_flags(regs->pt.flags, flags, SAFE_MASK);
384 if (flags & X86_EFLAGS_IF)
385 set_IF(regs);
386 else
387 clear_IF(regs);
388 }
389
set_vflags_short(unsigned short flags,struct kernel_vm86_regs * regs)390 static inline void set_vflags_short(unsigned short flags, struct kernel_vm86_regs *regs)
391 {
392 set_flags(VFLAGS, flags, current->thread.vm86->veflags_mask);
393 set_flags(regs->pt.flags, flags, SAFE_MASK);
394 if (flags & X86_EFLAGS_IF)
395 set_IF(regs);
396 else
397 clear_IF(regs);
398 }
399
get_vflags(struct kernel_vm86_regs * regs)400 static inline unsigned long get_vflags(struct kernel_vm86_regs *regs)
401 {
402 unsigned long flags = regs->pt.flags & RETURN_MASK;
403
404 if (VEFLAGS & X86_EFLAGS_VIF)
405 flags |= X86_EFLAGS_IF;
406 flags |= X86_EFLAGS_IOPL;
407 return flags | (VEFLAGS & current->thread.vm86->veflags_mask);
408 }
409
is_revectored(int nr,struct revectored_struct * bitmap)410 static inline int is_revectored(int nr, struct revectored_struct *bitmap)
411 {
412 return test_bit(nr, bitmap->__map);
413 }
414
415 #define val_byte(val, n) (((__u8 *)&val)[n])
416
417 #define pushb(base, ptr, val, err_label) \
418 do { \
419 __u8 __val = val; \
420 ptr--; \
421 if (put_user(__val, base + ptr) < 0) \
422 goto err_label; \
423 } while (0)
424
425 #define pushw(base, ptr, val, err_label) \
426 do { \
427 __u16 __val = val; \
428 ptr--; \
429 if (put_user(val_byte(__val, 1), base + ptr) < 0) \
430 goto err_label; \
431 ptr--; \
432 if (put_user(val_byte(__val, 0), base + ptr) < 0) \
433 goto err_label; \
434 } while (0)
435
436 #define pushl(base, ptr, val, err_label) \
437 do { \
438 __u32 __val = val; \
439 ptr--; \
440 if (put_user(val_byte(__val, 3), base + ptr) < 0) \
441 goto err_label; \
442 ptr--; \
443 if (put_user(val_byte(__val, 2), base + ptr) < 0) \
444 goto err_label; \
445 ptr--; \
446 if (put_user(val_byte(__val, 1), base + ptr) < 0) \
447 goto err_label; \
448 ptr--; \
449 if (put_user(val_byte(__val, 0), base + ptr) < 0) \
450 goto err_label; \
451 } while (0)
452
453 #define popb(base, ptr, err_label) \
454 ({ \
455 __u8 __res; \
456 if (get_user(__res, base + ptr) < 0) \
457 goto err_label; \
458 ptr++; \
459 __res; \
460 })
461
462 #define popw(base, ptr, err_label) \
463 ({ \
464 __u16 __res; \
465 if (get_user(val_byte(__res, 0), base + ptr) < 0) \
466 goto err_label; \
467 ptr++; \
468 if (get_user(val_byte(__res, 1), base + ptr) < 0) \
469 goto err_label; \
470 ptr++; \
471 __res; \
472 })
473
474 #define popl(base, ptr, err_label) \
475 ({ \
476 __u32 __res; \
477 if (get_user(val_byte(__res, 0), base + ptr) < 0) \
478 goto err_label; \
479 ptr++; \
480 if (get_user(val_byte(__res, 1), base + ptr) < 0) \
481 goto err_label; \
482 ptr++; \
483 if (get_user(val_byte(__res, 2), base + ptr) < 0) \
484 goto err_label; \
485 ptr++; \
486 if (get_user(val_byte(__res, 3), base + ptr) < 0) \
487 goto err_label; \
488 ptr++; \
489 __res; \
490 })
491
492 /* There are so many possible reasons for this function to return
493 * VM86_INTx, so adding another doesn't bother me. We can expect
494 * userspace programs to be able to handle it. (Getting a problem
495 * in userspace is always better than an Oops anyway.) [KD]
496 */
do_int(struct kernel_vm86_regs * regs,int i,unsigned char __user * ssp,unsigned short sp)497 static void do_int(struct kernel_vm86_regs *regs, int i,
498 unsigned char __user *ssp, unsigned short sp)
499 {
500 unsigned long __user *intr_ptr;
501 unsigned long segoffs;
502 struct vm86 *vm86 = current->thread.vm86;
503
504 if (regs->pt.cs == BIOSSEG)
505 goto cannot_handle;
506 if (is_revectored(i, &vm86->int_revectored))
507 goto cannot_handle;
508 if (i == 0x21 && is_revectored(AH(regs), &vm86->int21_revectored))
509 goto cannot_handle;
510 intr_ptr = (unsigned long __user *) (i << 2);
511 if (get_user(segoffs, intr_ptr))
512 goto cannot_handle;
513 if ((segoffs >> 16) == BIOSSEG)
514 goto cannot_handle;
515 pushw(ssp, sp, get_vflags(regs), cannot_handle);
516 pushw(ssp, sp, regs->pt.cs, cannot_handle);
517 pushw(ssp, sp, IP(regs), cannot_handle);
518 regs->pt.cs = segoffs >> 16;
519 SP(regs) -= 6;
520 IP(regs) = segoffs & 0xffff;
521 clear_TF(regs);
522 clear_IF(regs);
523 clear_AC(regs);
524 return;
525
526 cannot_handle:
527 save_v86_state(regs, VM86_INTx + (i << 8));
528 }
529
handle_vm86_trap(struct kernel_vm86_regs * regs,long error_code,int trapno)530 int handle_vm86_trap(struct kernel_vm86_regs *regs, long error_code, int trapno)
531 {
532 struct vm86 *vm86 = current->thread.vm86;
533
534 if (vm86->vm86plus.is_vm86pus) {
535 if ((trapno == 3) || (trapno == 1)) {
536 save_v86_state(regs, VM86_TRAP + (trapno << 8));
537 return 0;
538 }
539 do_int(regs, trapno, (unsigned char __user *) (regs->pt.ss << 4), SP(regs));
540 return 0;
541 }
542 if (trapno != 1)
543 return 1; /* we let this handle by the calling routine */
544 current->thread.trap_nr = trapno;
545 current->thread.error_code = error_code;
546 force_sig(SIGTRAP);
547 return 0;
548 }
549
handle_vm86_fault(struct kernel_vm86_regs * regs,long error_code)550 void handle_vm86_fault(struct kernel_vm86_regs *regs, long error_code)
551 {
552 unsigned char opcode;
553 unsigned char __user *csp;
554 unsigned char __user *ssp;
555 unsigned short ip, sp, orig_flags;
556 int data32, pref_done;
557 struct vm86plus_info_struct *vmpi = ¤t->thread.vm86->vm86plus;
558
559 #define CHECK_IF_IN_TRAP \
560 if (vmpi->vm86dbg_active && vmpi->vm86dbg_TFpendig) \
561 newflags |= X86_EFLAGS_TF
562
563 orig_flags = *(unsigned short *)®s->pt.flags;
564
565 csp = (unsigned char __user *) (regs->pt.cs << 4);
566 ssp = (unsigned char __user *) (regs->pt.ss << 4);
567 sp = SP(regs);
568 ip = IP(regs);
569
570 data32 = 0;
571 pref_done = 0;
572 do {
573 switch (opcode = popb(csp, ip, simulate_sigsegv)) {
574 case 0x66: /* 32-bit data */ data32 = 1; break;
575 case 0x67: /* 32-bit address */ break;
576 case 0x2e: /* CS */ break;
577 case 0x3e: /* DS */ break;
578 case 0x26: /* ES */ break;
579 case 0x36: /* SS */ break;
580 case 0x65: /* GS */ break;
581 case 0x64: /* FS */ break;
582 case 0xf2: /* repnz */ break;
583 case 0xf3: /* rep */ break;
584 default: pref_done = 1;
585 }
586 } while (!pref_done);
587
588 switch (opcode) {
589
590 /* pushf */
591 case 0x9c:
592 if (data32) {
593 pushl(ssp, sp, get_vflags(regs), simulate_sigsegv);
594 SP(regs) -= 4;
595 } else {
596 pushw(ssp, sp, get_vflags(regs), simulate_sigsegv);
597 SP(regs) -= 2;
598 }
599 IP(regs) = ip;
600 goto vm86_fault_return;
601
602 /* popf */
603 case 0x9d:
604 {
605 unsigned long newflags;
606 if (data32) {
607 newflags = popl(ssp, sp, simulate_sigsegv);
608 SP(regs) += 4;
609 } else {
610 newflags = popw(ssp, sp, simulate_sigsegv);
611 SP(regs) += 2;
612 }
613 IP(regs) = ip;
614 CHECK_IF_IN_TRAP;
615 if (data32)
616 set_vflags_long(newflags, regs);
617 else
618 set_vflags_short(newflags, regs);
619
620 goto check_vip;
621 }
622
623 /* int xx */
624 case 0xcd: {
625 int intno = popb(csp, ip, simulate_sigsegv);
626 IP(regs) = ip;
627 if (vmpi->vm86dbg_active) {
628 if ((1 << (intno & 7)) & vmpi->vm86dbg_intxxtab[intno >> 3]) {
629 save_v86_state(regs, VM86_INTx + (intno << 8));
630 return;
631 }
632 }
633 do_int(regs, intno, ssp, sp);
634 return;
635 }
636
637 /* iret */
638 case 0xcf:
639 {
640 unsigned long newip;
641 unsigned long newcs;
642 unsigned long newflags;
643 if (data32) {
644 newip = popl(ssp, sp, simulate_sigsegv);
645 newcs = popl(ssp, sp, simulate_sigsegv);
646 newflags = popl(ssp, sp, simulate_sigsegv);
647 SP(regs) += 12;
648 } else {
649 newip = popw(ssp, sp, simulate_sigsegv);
650 newcs = popw(ssp, sp, simulate_sigsegv);
651 newflags = popw(ssp, sp, simulate_sigsegv);
652 SP(regs) += 6;
653 }
654 IP(regs) = newip;
655 regs->pt.cs = newcs;
656 CHECK_IF_IN_TRAP;
657 if (data32) {
658 set_vflags_long(newflags, regs);
659 } else {
660 set_vflags_short(newflags, regs);
661 }
662 goto check_vip;
663 }
664
665 /* cli */
666 case 0xfa:
667 IP(regs) = ip;
668 clear_IF(regs);
669 goto vm86_fault_return;
670
671 /* sti */
672 /*
673 * Damn. This is incorrect: the 'sti' instruction should actually
674 * enable interrupts after the /next/ instruction. Not good.
675 *
676 * Probably needs some horsing around with the TF flag. Aiee..
677 */
678 case 0xfb:
679 IP(regs) = ip;
680 set_IF(regs);
681 goto check_vip;
682
683 default:
684 save_v86_state(regs, VM86_UNKNOWN);
685 }
686
687 return;
688
689 check_vip:
690 if ((VEFLAGS & (X86_EFLAGS_VIP | X86_EFLAGS_VIF)) ==
691 (X86_EFLAGS_VIP | X86_EFLAGS_VIF)) {
692 save_v86_state(regs, VM86_STI);
693 return;
694 }
695
696 vm86_fault_return:
697 if (vmpi->force_return_for_pic && (VEFLAGS & (X86_EFLAGS_IF | X86_EFLAGS_VIF))) {
698 save_v86_state(regs, VM86_PICRETURN);
699 return;
700 }
701 if (orig_flags & X86_EFLAGS_TF)
702 handle_vm86_trap(regs, 0, X86_TRAP_DB);
703 return;
704
705 simulate_sigsegv:
706 /* FIXME: After a long discussion with Stas we finally
707 * agreed, that this is wrong. Here we should
708 * really send a SIGSEGV to the user program.
709 * But how do we create the correct context? We
710 * are inside a general protection fault handler
711 * and has just returned from a page fault handler.
712 * The correct context for the signal handler
713 * should be a mixture of the two, but how do we
714 * get the information? [KD]
715 */
716 save_v86_state(regs, VM86_UNKNOWN);
717 }
718
719 /* ---------------- vm86 special IRQ passing stuff ----------------- */
720
721 #define VM86_IRQNAME "vm86irq"
722
723 static struct vm86_irqs {
724 struct task_struct *tsk;
725 int sig;
726 } vm86_irqs[16];
727
728 static DEFINE_SPINLOCK(irqbits_lock);
729 static int irqbits;
730
731 #define ALLOWED_SIGS (1 /* 0 = don't send a signal */ \
732 | (1 << SIGUSR1) | (1 << SIGUSR2) | (1 << SIGIO) | (1 << SIGURG) \
733 | (1 << SIGUNUSED))
734
irq_handler(int intno,void * dev_id)735 static irqreturn_t irq_handler(int intno, void *dev_id)
736 {
737 int irq_bit;
738 unsigned long flags;
739
740 spin_lock_irqsave(&irqbits_lock, flags);
741 irq_bit = 1 << intno;
742 if ((irqbits & irq_bit) || !vm86_irqs[intno].tsk)
743 goto out;
744 irqbits |= irq_bit;
745 if (vm86_irqs[intno].sig)
746 send_sig(vm86_irqs[intno].sig, vm86_irqs[intno].tsk, 1);
747 /*
748 * IRQ will be re-enabled when user asks for the irq (whether
749 * polling or as a result of the signal)
750 */
751 disable_irq_nosync(intno);
752 spin_unlock_irqrestore(&irqbits_lock, flags);
753 return IRQ_HANDLED;
754
755 out:
756 spin_unlock_irqrestore(&irqbits_lock, flags);
757 return IRQ_NONE;
758 }
759
free_vm86_irq(int irqnumber)760 static inline void free_vm86_irq(int irqnumber)
761 {
762 unsigned long flags;
763
764 free_irq(irqnumber, NULL);
765 vm86_irqs[irqnumber].tsk = NULL;
766
767 spin_lock_irqsave(&irqbits_lock, flags);
768 irqbits &= ~(1 << irqnumber);
769 spin_unlock_irqrestore(&irqbits_lock, flags);
770 }
771
release_vm86_irqs(struct task_struct * task)772 void release_vm86_irqs(struct task_struct *task)
773 {
774 int i;
775 for (i = FIRST_VM86_IRQ ; i <= LAST_VM86_IRQ; i++)
776 if (vm86_irqs[i].tsk == task)
777 free_vm86_irq(i);
778 }
779
get_and_reset_irq(int irqnumber)780 static inline int get_and_reset_irq(int irqnumber)
781 {
782 int bit;
783 unsigned long flags;
784 int ret = 0;
785
786 if (invalid_vm86_irq(irqnumber)) return 0;
787 if (vm86_irqs[irqnumber].tsk != current) return 0;
788 spin_lock_irqsave(&irqbits_lock, flags);
789 bit = irqbits & (1 << irqnumber);
790 irqbits &= ~bit;
791 if (bit) {
792 enable_irq(irqnumber);
793 ret = 1;
794 }
795
796 spin_unlock_irqrestore(&irqbits_lock, flags);
797 return ret;
798 }
799
800
do_vm86_irq_handling(int subfunction,int irqnumber)801 static int do_vm86_irq_handling(int subfunction, int irqnumber)
802 {
803 int ret;
804 switch (subfunction) {
805 case VM86_GET_AND_RESET_IRQ: {
806 return get_and_reset_irq(irqnumber);
807 }
808 case VM86_GET_IRQ_BITS: {
809 return irqbits;
810 }
811 case VM86_REQUEST_IRQ: {
812 int sig = irqnumber >> 8;
813 int irq = irqnumber & 255;
814 if (!capable(CAP_SYS_ADMIN)) return -EPERM;
815 if (!((1 << sig) & ALLOWED_SIGS)) return -EPERM;
816 if (invalid_vm86_irq(irq)) return -EPERM;
817 if (vm86_irqs[irq].tsk) return -EPERM;
818 ret = request_irq(irq, &irq_handler, 0, VM86_IRQNAME, NULL);
819 if (ret) return ret;
820 vm86_irqs[irq].sig = sig;
821 vm86_irqs[irq].tsk = current;
822 return irq;
823 }
824 case VM86_FREE_IRQ: {
825 if (invalid_vm86_irq(irqnumber)) return -EPERM;
826 if (!vm86_irqs[irqnumber].tsk) return 0;
827 if (vm86_irqs[irqnumber].tsk != current) return -EPERM;
828 free_vm86_irq(irqnumber);
829 return 0;
830 }
831 }
832 return -EINVAL;
833 }
834
835