1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/pagewalk.h>
3 #include <linux/vmacache.h>
4 #include <linux/mm_inline.h>
5 #include <linux/hugetlb.h>
6 #include <linux/huge_mm.h>
7 #include <linux/mount.h>
8 #include <linux/seq_file.h>
9 #include <linux/highmem.h>
10 #include <linux/ptrace.h>
11 #include <linux/slab.h>
12 #include <linux/pagemap.h>
13 #include <linux/pgsize_migration.h>
14 #include <linux/mempolicy.h>
15 #include <linux/rmap.h>
16 #include <linux/swap.h>
17 #include <linux/sched/mm.h>
18 #include <linux/swapops.h>
19 #include <linux/mmu_notifier.h>
20 #include <linux/page_idle.h>
21 #include <linux/shmem_fs.h>
22 #include <linux/uaccess.h>
23 #include <linux/pkeys.h>
24
25 #include <asm/elf.h>
26 #include <asm/tlb.h>
27 #include <asm/tlbflush.h>
28 #include "internal.h"
29
30 #define SEQ_PUT_DEC(str, val) \
31 seq_put_decimal_ull_width(m, str, (val) << (PAGE_SHIFT-10), 8)
task_mem(struct seq_file * m,struct mm_struct * mm)32 void task_mem(struct seq_file *m, struct mm_struct *mm)
33 {
34 unsigned long text, lib, swap, anon, file, shmem;
35 unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss;
36
37 anon = get_mm_counter(mm, MM_ANONPAGES);
38 file = get_mm_counter(mm, MM_FILEPAGES);
39 shmem = get_mm_counter(mm, MM_SHMEMPAGES);
40
41 /*
42 * Note: to minimize their overhead, mm maintains hiwater_vm and
43 * hiwater_rss only when about to *lower* total_vm or rss. Any
44 * collector of these hiwater stats must therefore get total_vm
45 * and rss too, which will usually be the higher. Barriers? not
46 * worth the effort, such snapshots can always be inconsistent.
47 */
48 hiwater_vm = total_vm = mm->total_vm;
49 if (hiwater_vm < mm->hiwater_vm)
50 hiwater_vm = mm->hiwater_vm;
51 hiwater_rss = total_rss = anon + file + shmem;
52 if (hiwater_rss < mm->hiwater_rss)
53 hiwater_rss = mm->hiwater_rss;
54
55 /* split executable areas between text and lib */
56 text = PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK);
57 text = min(text, mm->exec_vm << PAGE_SHIFT);
58 lib = (mm->exec_vm << PAGE_SHIFT) - text;
59
60 swap = get_mm_counter(mm, MM_SWAPENTS);
61 SEQ_PUT_DEC("VmPeak:\t", hiwater_vm);
62 SEQ_PUT_DEC(" kB\nVmSize:\t", total_vm);
63 SEQ_PUT_DEC(" kB\nVmLck:\t", mm->locked_vm);
64 SEQ_PUT_DEC(" kB\nVmPin:\t", atomic64_read(&mm->pinned_vm));
65 SEQ_PUT_DEC(" kB\nVmHWM:\t", hiwater_rss);
66 SEQ_PUT_DEC(" kB\nVmRSS:\t", total_rss);
67 SEQ_PUT_DEC(" kB\nRssAnon:\t", anon);
68 SEQ_PUT_DEC(" kB\nRssFile:\t", file);
69 SEQ_PUT_DEC(" kB\nRssShmem:\t", shmem);
70 SEQ_PUT_DEC(" kB\nVmData:\t", mm->data_vm);
71 SEQ_PUT_DEC(" kB\nVmStk:\t", mm->stack_vm);
72 seq_put_decimal_ull_width(m,
73 " kB\nVmExe:\t", text >> 10, 8);
74 seq_put_decimal_ull_width(m,
75 " kB\nVmLib:\t", lib >> 10, 8);
76 seq_put_decimal_ull_width(m,
77 " kB\nVmPTE:\t", mm_pgtables_bytes(mm) >> 10, 8);
78 SEQ_PUT_DEC(" kB\nVmSwap:\t", swap);
79 seq_puts(m, " kB\n");
80 hugetlb_report_usage(m, mm);
81 }
82 #undef SEQ_PUT_DEC
83
task_vsize(struct mm_struct * mm)84 unsigned long task_vsize(struct mm_struct *mm)
85 {
86 return PAGE_SIZE * mm->total_vm;
87 }
88
task_statm(struct mm_struct * mm,unsigned long * shared,unsigned long * text,unsigned long * data,unsigned long * resident)89 unsigned long task_statm(struct mm_struct *mm,
90 unsigned long *shared, unsigned long *text,
91 unsigned long *data, unsigned long *resident)
92 {
93 *shared = get_mm_counter(mm, MM_FILEPAGES) +
94 get_mm_counter(mm, MM_SHMEMPAGES);
95 *text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK))
96 >> PAGE_SHIFT;
97 *data = mm->data_vm + mm->stack_vm;
98 *resident = *shared + get_mm_counter(mm, MM_ANONPAGES);
99 return mm->total_vm;
100 }
101
102 #ifdef CONFIG_NUMA
103 /*
104 * Save get_task_policy() for show_numa_map().
105 */
hold_task_mempolicy(struct proc_maps_private * priv)106 static void hold_task_mempolicy(struct proc_maps_private *priv)
107 {
108 struct task_struct *task = priv->task;
109
110 task_lock(task);
111 priv->task_mempolicy = get_task_policy(task);
112 mpol_get(priv->task_mempolicy);
113 task_unlock(task);
114 }
release_task_mempolicy(struct proc_maps_private * priv)115 static void release_task_mempolicy(struct proc_maps_private *priv)
116 {
117 mpol_put(priv->task_mempolicy);
118 }
119 #else
hold_task_mempolicy(struct proc_maps_private * priv)120 static void hold_task_mempolicy(struct proc_maps_private *priv)
121 {
122 }
release_task_mempolicy(struct proc_maps_private * priv)123 static void release_task_mempolicy(struct proc_maps_private *priv)
124 {
125 }
126 #endif
127
m_start(struct seq_file * m,loff_t * ppos)128 static void *m_start(struct seq_file *m, loff_t *ppos)
129 {
130 struct proc_maps_private *priv = m->private;
131 unsigned long last_addr = *ppos;
132 struct mm_struct *mm;
133 struct vm_area_struct *vma;
134
135 /* See m_next(). Zero at the start or after lseek. */
136 if (last_addr == -1UL)
137 return NULL;
138
139 priv->task = get_proc_task(priv->inode);
140 if (!priv->task)
141 return ERR_PTR(-ESRCH);
142
143 mm = priv->mm;
144 if (!mm || !mmget_not_zero(mm)) {
145 put_task_struct(priv->task);
146 priv->task = NULL;
147 return NULL;
148 }
149
150 if (mmap_read_lock_killable(mm)) {
151 mmput(mm);
152 put_task_struct(priv->task);
153 priv->task = NULL;
154 return ERR_PTR(-EINTR);
155 }
156
157 hold_task_mempolicy(priv);
158 priv->tail_vma = get_gate_vma(mm);
159
160 vma = find_vma(mm, last_addr);
161 if (vma)
162 return vma;
163
164 return priv->tail_vma;
165 }
166
m_next(struct seq_file * m,void * v,loff_t * ppos)167 static void *m_next(struct seq_file *m, void *v, loff_t *ppos)
168 {
169 struct proc_maps_private *priv = m->private;
170 struct vm_area_struct *next, *vma = v;
171
172 if (vma == priv->tail_vma)
173 next = NULL;
174 else if (vma->vm_next)
175 next = vma->vm_next;
176 else
177 next = priv->tail_vma;
178
179 *ppos = next ? next->vm_start : -1UL;
180
181 return next;
182 }
183
m_stop(struct seq_file * m,void * v)184 static void m_stop(struct seq_file *m, void *v)
185 {
186 struct proc_maps_private *priv = m->private;
187 struct mm_struct *mm = priv->mm;
188
189 if (!priv->task)
190 return;
191
192 release_task_mempolicy(priv);
193 mmap_read_unlock(mm);
194 mmput(mm);
195 put_task_struct(priv->task);
196 priv->task = NULL;
197 }
198
proc_maps_open(struct inode * inode,struct file * file,const struct seq_operations * ops,int psize)199 static int proc_maps_open(struct inode *inode, struct file *file,
200 const struct seq_operations *ops, int psize)
201 {
202 struct proc_maps_private *priv = __seq_open_private(file, ops, psize);
203
204 if (!priv)
205 return -ENOMEM;
206
207 priv->inode = inode;
208 priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
209 if (IS_ERR(priv->mm)) {
210 int err = PTR_ERR(priv->mm);
211
212 seq_release_private(inode, file);
213 return err;
214 }
215
216 return 0;
217 }
218
proc_map_release(struct inode * inode,struct file * file)219 static int proc_map_release(struct inode *inode, struct file *file)
220 {
221 struct seq_file *seq = file->private_data;
222 struct proc_maps_private *priv = seq->private;
223
224 if (priv->mm)
225 mmdrop(priv->mm);
226
227 return seq_release_private(inode, file);
228 }
229
do_maps_open(struct inode * inode,struct file * file,const struct seq_operations * ops)230 static int do_maps_open(struct inode *inode, struct file *file,
231 const struct seq_operations *ops)
232 {
233 return proc_maps_open(inode, file, ops,
234 sizeof(struct proc_maps_private));
235 }
236
237 /*
238 * Indicate if the VMA is a stack for the given task; for
239 * /proc/PID/maps that is the stack of the main task.
240 */
is_stack(struct vm_area_struct * vma)241 static int is_stack(struct vm_area_struct *vma)
242 {
243 /*
244 * We make no effort to guess what a given thread considers to be
245 * its "stack". It's not even well-defined for programs written
246 * languages like Go.
247 */
248 return vma->vm_start <= vma->vm_mm->start_stack &&
249 vma->vm_end >= vma->vm_mm->start_stack;
250 }
251
show_vma_header_prefix(struct seq_file * m,unsigned long start,unsigned long end,vm_flags_t flags,unsigned long long pgoff,dev_t dev,unsigned long ino)252 static void show_vma_header_prefix(struct seq_file *m,
253 unsigned long start, unsigned long end,
254 vm_flags_t flags, unsigned long long pgoff,
255 dev_t dev, unsigned long ino)
256 {
257 seq_setwidth(m, 25 + sizeof(void *) * 6 - 1);
258 seq_put_hex_ll(m, NULL, start, 8);
259 seq_put_hex_ll(m, "-", end, 8);
260 seq_putc(m, ' ');
261 seq_putc(m, flags & VM_READ ? 'r' : '-');
262 seq_putc(m, flags & VM_WRITE ? 'w' : '-');
263 seq_putc(m, flags & VM_EXEC ? 'x' : '-');
264 seq_putc(m, flags & VM_MAYSHARE ? 's' : 'p');
265 seq_put_hex_ll(m, " ", pgoff, 8);
266 seq_put_hex_ll(m, " ", MAJOR(dev), 2);
267 seq_put_hex_ll(m, ":", MINOR(dev), 2);
268 seq_put_decimal_ull(m, " ", ino);
269 seq_putc(m, ' ');
270 }
271
272 static void
show_map_vma(struct seq_file * m,struct vm_area_struct * vma)273 show_map_vma(struct seq_file *m, struct vm_area_struct *vma)
274 {
275 struct mm_struct *mm = vma->vm_mm;
276 struct file *file = vma->vm_file;
277 vm_flags_t flags = vma->vm_flags;
278 unsigned long ino = 0;
279 unsigned long long pgoff = 0;
280 unsigned long start, end;
281 dev_t dev = 0;
282 const char *name = NULL;
283
284 if (file) {
285 struct inode *inode = file_inode(vma->vm_file);
286 dev = inode->i_sb->s_dev;
287 ino = inode->i_ino;
288 pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT;
289 }
290
291 start = vma->vm_start;
292 end = vma->vm_end;
293 show_vma_header_prefix(m, start, end, flags, pgoff, dev, ino);
294
295 /*
296 * Print the dentry name for named mappings, and a
297 * special [heap] marker for the heap:
298 */
299 if (file) {
300 seq_pad(m, ' ');
301 seq_file_path(m, file, "\n");
302 goto done;
303 }
304
305 if (vma->vm_ops && vma->vm_ops->name) {
306 name = vma->vm_ops->name(vma);
307 if (name)
308 goto done;
309 }
310
311 name = arch_vma_name(vma);
312 if (!name) {
313 struct anon_vma_name *anon_name;
314
315 if (!mm) {
316 name = "[vdso]";
317 goto done;
318 }
319
320 if (vma->vm_start <= mm->brk &&
321 vma->vm_end >= mm->start_brk) {
322 name = "[heap]";
323 goto done;
324 }
325
326 if (is_stack(vma)) {
327 name = "[stack]";
328 goto done;
329 }
330
331 anon_name = anon_vma_name(vma);
332 if (anon_name) {
333 seq_pad(m, ' ');
334 seq_printf(m, "[anon:%s]", anon_name->name);
335 }
336 }
337
338 done:
339 if (name) {
340 seq_pad(m, ' ');
341 seq_puts(m, name);
342 }
343 seq_putc(m, '\n');
344 }
345
show_map(struct seq_file * m,void * v)346 static int show_map(struct seq_file *m, void *v)
347 {
348 struct vm_area_struct *pad_vma = get_pad_vma(v);
349 struct vm_area_struct *vma = get_data_vma(v);
350
351 if (vma_pages(vma))
352 show_map_vma(m, vma);
353
354 show_map_pad_vma(vma, pad_vma, m, show_map_vma);
355
356 return 0;
357 }
358
359 static const struct seq_operations proc_pid_maps_op = {
360 .start = m_start,
361 .next = m_next,
362 .stop = m_stop,
363 .show = show_map
364 };
365
pid_maps_open(struct inode * inode,struct file * file)366 static int pid_maps_open(struct inode *inode, struct file *file)
367 {
368 return do_maps_open(inode, file, &proc_pid_maps_op);
369 }
370
371 const struct file_operations proc_pid_maps_operations = {
372 .open = pid_maps_open,
373 .read = seq_read,
374 .llseek = seq_lseek,
375 .release = proc_map_release,
376 };
377
378 /*
379 * Proportional Set Size(PSS): my share of RSS.
380 *
381 * PSS of a process is the count of pages it has in memory, where each
382 * page is divided by the number of processes sharing it. So if a
383 * process has 1000 pages all to itself, and 1000 shared with one other
384 * process, its PSS will be 1500.
385 *
386 * To keep (accumulated) division errors low, we adopt a 64bit
387 * fixed-point pss counter to minimize division errors. So (pss >>
388 * PSS_SHIFT) would be the real byte count.
389 *
390 * A shift of 12 before division means (assuming 4K page size):
391 * - 1M 3-user-pages add up to 8KB errors;
392 * - supports mapcount up to 2^24, or 16M;
393 * - supports PSS up to 2^52 bytes, or 4PB.
394 */
395 #define PSS_SHIFT 12
396
397 #ifdef CONFIG_PROC_PAGE_MONITOR
398 struct mem_size_stats {
399 unsigned long resident;
400 unsigned long shared_clean;
401 unsigned long shared_dirty;
402 unsigned long private_clean;
403 unsigned long private_dirty;
404 unsigned long referenced;
405 unsigned long anonymous;
406 unsigned long lazyfree;
407 unsigned long anonymous_thp;
408 unsigned long shmem_thp;
409 unsigned long file_thp;
410 unsigned long swap;
411 unsigned long shared_hugetlb;
412 unsigned long private_hugetlb;
413 u64 pss;
414 u64 pss_anon;
415 u64 pss_file;
416 u64 pss_shmem;
417 u64 pss_locked;
418 u64 swap_pss;
419 bool check_shmem_swap;
420 };
421
smaps_page_accumulate(struct mem_size_stats * mss,struct page * page,unsigned long size,unsigned long pss,bool dirty,bool locked,bool private)422 static void smaps_page_accumulate(struct mem_size_stats *mss,
423 struct page *page, unsigned long size, unsigned long pss,
424 bool dirty, bool locked, bool private)
425 {
426 mss->pss += pss;
427
428 if (PageAnon(page))
429 mss->pss_anon += pss;
430 else if (PageSwapBacked(page))
431 mss->pss_shmem += pss;
432 else
433 mss->pss_file += pss;
434
435 if (locked)
436 mss->pss_locked += pss;
437
438 if (dirty || PageDirty(page)) {
439 if (private)
440 mss->private_dirty += size;
441 else
442 mss->shared_dirty += size;
443 } else {
444 if (private)
445 mss->private_clean += size;
446 else
447 mss->shared_clean += size;
448 }
449 }
450
smaps_account(struct mem_size_stats * mss,struct page * page,bool compound,bool young,bool dirty,bool locked,bool migration)451 static void smaps_account(struct mem_size_stats *mss, struct page *page,
452 bool compound, bool young, bool dirty, bool locked,
453 bool migration)
454 {
455 int i, nr = compound ? compound_nr(page) : 1;
456 unsigned long size = nr * PAGE_SIZE;
457
458 /*
459 * First accumulate quantities that depend only on |size| and the type
460 * of the compound page.
461 */
462 if (PageAnon(page)) {
463 mss->anonymous += size;
464 if (!PageSwapBacked(page) && !dirty && !PageDirty(page))
465 mss->lazyfree += size;
466 }
467
468 mss->resident += size;
469 /* Accumulate the size in pages that have been accessed. */
470 if (young || page_is_young(page) || PageReferenced(page))
471 mss->referenced += size;
472
473 /*
474 * Then accumulate quantities that may depend on sharing, or that may
475 * differ page-by-page.
476 *
477 * page_count(page) == 1 guarantees the page is mapped exactly once.
478 * If any subpage of the compound page mapped with PTE it would elevate
479 * page_count().
480 *
481 * The page_mapcount() is called to get a snapshot of the mapcount.
482 * Without holding the page lock this snapshot can be slightly wrong as
483 * we cannot always read the mapcount atomically. It is not safe to
484 * call page_mapcount() even with PTL held if the page is not mapped,
485 * especially for migration entries. Treat regular migration entries
486 * as mapcount == 1.
487 */
488 if ((page_count(page) == 1) || migration) {
489 smaps_page_accumulate(mss, page, size, size << PSS_SHIFT, dirty,
490 locked, true);
491 return;
492 }
493 for (i = 0; i < nr; i++, page++) {
494 int mapcount = page_mapcount(page);
495 unsigned long pss = PAGE_SIZE << PSS_SHIFT;
496 if (mapcount >= 2)
497 pss /= mapcount;
498 smaps_page_accumulate(mss, page, PAGE_SIZE, pss, dirty, locked,
499 mapcount < 2);
500 }
501 }
502
503 #ifdef CONFIG_SHMEM
smaps_pte_hole(unsigned long addr,unsigned long end,__always_unused int depth,struct mm_walk * walk)504 static int smaps_pte_hole(unsigned long addr, unsigned long end,
505 __always_unused int depth, struct mm_walk *walk)
506 {
507 struct mem_size_stats *mss = walk->private;
508
509 mss->swap += shmem_partial_swap_usage(
510 walk->vma->vm_file->f_mapping, addr, end);
511
512 return 0;
513 }
514 #else
515 #define smaps_pte_hole NULL
516 #endif /* CONFIG_SHMEM */
517
smaps_pte_entry(pte_t * pte,unsigned long addr,struct mm_walk * walk)518 static void smaps_pte_entry(pte_t *pte, unsigned long addr,
519 struct mm_walk *walk)
520 {
521 struct mem_size_stats *mss = walk->private;
522 struct vm_area_struct *vma = walk->vma;
523 bool locked = !!(vma->vm_flags & VM_LOCKED);
524 struct page *page = NULL;
525 bool migration = false, young = false, dirty = false;
526
527 if (pte_present(*pte)) {
528 page = vm_normal_page(vma, addr, *pte);
529 young = pte_young(*pte);
530 dirty = pte_dirty(*pte);
531 } else if (is_swap_pte(*pte)) {
532 swp_entry_t swpent = pte_to_swp_entry(*pte);
533
534 if (!non_swap_entry(swpent)) {
535 int mapcount;
536
537 mss->swap += PAGE_SIZE;
538 mapcount = swp_swapcount(swpent);
539 if (mapcount >= 2) {
540 u64 pss_delta = (u64)PAGE_SIZE << PSS_SHIFT;
541
542 do_div(pss_delta, mapcount);
543 mss->swap_pss += pss_delta;
544 } else {
545 mss->swap_pss += (u64)PAGE_SIZE << PSS_SHIFT;
546 }
547 } else if (is_pfn_swap_entry(swpent)) {
548 if (is_migration_entry(swpent))
549 migration = true;
550 page = pfn_swap_entry_to_page(swpent);
551 }
552 } else if (unlikely(IS_ENABLED(CONFIG_SHMEM) && mss->check_shmem_swap
553 && pte_none(*pte))) {
554 page = xa_load(&vma->vm_file->f_mapping->i_pages,
555 linear_page_index(vma, addr));
556 if (xa_is_value(page))
557 mss->swap += PAGE_SIZE;
558 return;
559 }
560
561 if (!page)
562 return;
563
564 smaps_account(mss, page, false, young, dirty, locked, migration);
565 }
566
567 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
smaps_pmd_entry(pmd_t * pmd,unsigned long addr,struct mm_walk * walk)568 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
569 struct mm_walk *walk)
570 {
571 struct mem_size_stats *mss = walk->private;
572 struct vm_area_struct *vma = walk->vma;
573 bool locked = !!(vma->vm_flags & VM_LOCKED);
574 struct page *page = NULL;
575 bool migration = false;
576
577 if (pmd_present(*pmd)) {
578 /* FOLL_DUMP will return -EFAULT on huge zero page */
579 page = follow_trans_huge_pmd(vma, addr, pmd, FOLL_DUMP);
580 } else if (unlikely(thp_migration_supported() && is_swap_pmd(*pmd))) {
581 swp_entry_t entry = pmd_to_swp_entry(*pmd);
582
583 if (is_migration_entry(entry)) {
584 migration = true;
585 page = pfn_swap_entry_to_page(entry);
586 }
587 }
588 if (IS_ERR_OR_NULL(page))
589 return;
590 if (PageAnon(page))
591 mss->anonymous_thp += HPAGE_PMD_SIZE;
592 else if (PageSwapBacked(page))
593 mss->shmem_thp += HPAGE_PMD_SIZE;
594 else if (is_zone_device_page(page))
595 /* pass */;
596 else
597 mss->file_thp += HPAGE_PMD_SIZE;
598
599 smaps_account(mss, page, true, pmd_young(*pmd), pmd_dirty(*pmd),
600 locked, migration);
601 }
602 #else
smaps_pmd_entry(pmd_t * pmd,unsigned long addr,struct mm_walk * walk)603 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
604 struct mm_walk *walk)
605 {
606 }
607 #endif
608
smaps_pte_range(pmd_t * pmd,unsigned long addr,unsigned long end,struct mm_walk * walk)609 static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
610 struct mm_walk *walk)
611 {
612 struct vm_area_struct *vma = walk->vma;
613 pte_t *pte;
614 spinlock_t *ptl;
615
616 ptl = pmd_trans_huge_lock(pmd, vma);
617 if (ptl) {
618 smaps_pmd_entry(pmd, addr, walk);
619 spin_unlock(ptl);
620 goto out;
621 }
622
623 if (pmd_trans_unstable(pmd))
624 goto out;
625 /*
626 * The mmap_lock held all the way back in m_start() is what
627 * keeps khugepaged out of here and from collapsing things
628 * in here.
629 */
630 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
631 for (; addr != end; pte++, addr += PAGE_SIZE)
632 smaps_pte_entry(pte, addr, walk);
633 pte_unmap_unlock(pte - 1, ptl);
634 out:
635 cond_resched();
636 return 0;
637 }
638
show_smap_vma_flags(struct seq_file * m,struct vm_area_struct * vma)639 static void show_smap_vma_flags(struct seq_file *m, struct vm_area_struct *vma)
640 {
641 /*
642 * Don't forget to update Documentation/ on changes.
643 */
644 static const char mnemonics[BITS_PER_LONG][2] = {
645 /*
646 * In case if we meet a flag we don't know about.
647 */
648 [0 ... (BITS_PER_LONG-1)] = "??",
649
650 [ilog2(VM_READ)] = "rd",
651 [ilog2(VM_WRITE)] = "wr",
652 [ilog2(VM_EXEC)] = "ex",
653 [ilog2(VM_SHARED)] = "sh",
654 [ilog2(VM_MAYREAD)] = "mr",
655 [ilog2(VM_MAYWRITE)] = "mw",
656 [ilog2(VM_MAYEXEC)] = "me",
657 [ilog2(VM_MAYSHARE)] = "ms",
658 [ilog2(VM_GROWSDOWN)] = "gd",
659 [ilog2(VM_PFNMAP)] = "pf",
660 [ilog2(VM_LOCKED)] = "lo",
661 [ilog2(VM_IO)] = "io",
662 [ilog2(VM_SEQ_READ)] = "sr",
663 [ilog2(VM_RAND_READ)] = "rr",
664 [ilog2(VM_DONTCOPY)] = "dc",
665 [ilog2(VM_DONTEXPAND)] = "de",
666 [ilog2(VM_ACCOUNT)] = "ac",
667 [ilog2(VM_NORESERVE)] = "nr",
668 [ilog2(VM_HUGETLB)] = "ht",
669 [ilog2(VM_SYNC)] = "sf",
670 [ilog2(VM_ARCH_1)] = "ar",
671 [ilog2(VM_WIPEONFORK)] = "wf",
672 [ilog2(VM_DONTDUMP)] = "dd",
673 #ifdef CONFIG_ARM64_BTI
674 [ilog2(VM_ARM64_BTI)] = "bt",
675 #endif
676 #ifdef CONFIG_MEM_SOFT_DIRTY
677 [ilog2(VM_SOFTDIRTY)] = "sd",
678 #endif
679 [ilog2(VM_MIXEDMAP)] = "mm",
680 [ilog2(VM_HUGEPAGE)] = "hg",
681 [ilog2(VM_NOHUGEPAGE)] = "nh",
682 [ilog2(VM_MERGEABLE)] = "mg",
683 [ilog2(VM_UFFD_MISSING)]= "um",
684 [ilog2(VM_UFFD_WP)] = "uw",
685 #ifdef CONFIG_ARM64_MTE
686 [ilog2(VM_MTE)] = "mt",
687 [ilog2(VM_MTE_ALLOWED)] = "",
688 #endif
689 #ifdef CONFIG_ARCH_HAS_PKEYS
690 /* These come out via ProtectionKey: */
691 [ilog2(VM_PKEY_BIT0)] = "",
692 [ilog2(VM_PKEY_BIT1)] = "",
693 [ilog2(VM_PKEY_BIT2)] = "",
694 [ilog2(VM_PKEY_BIT3)] = "",
695 #if VM_PKEY_BIT4
696 [ilog2(VM_PKEY_BIT4)] = "",
697 #endif
698 #endif /* CONFIG_ARCH_HAS_PKEYS */
699 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
700 [ilog2(VM_UFFD_MINOR)] = "ui",
701 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
702 };
703 size_t i;
704
705 seq_puts(m, "VmFlags: ");
706 for (i = 0; i < BITS_PER_LONG; i++) {
707 if (!mnemonics[i][0])
708 continue;
709 if (vma->vm_flags & (1UL << i)) {
710 seq_putc(m, mnemonics[i][0]);
711 seq_putc(m, mnemonics[i][1]);
712 seq_putc(m, ' ');
713 }
714 }
715 seq_putc(m, '\n');
716 }
717
718 #ifdef CONFIG_HUGETLB_PAGE
smaps_hugetlb_range(pte_t * pte,unsigned long hmask,unsigned long addr,unsigned long end,struct mm_walk * walk)719 static int smaps_hugetlb_range(pte_t *pte, unsigned long hmask,
720 unsigned long addr, unsigned long end,
721 struct mm_walk *walk)
722 {
723 struct mem_size_stats *mss = walk->private;
724 struct vm_area_struct *vma = walk->vma;
725 struct page *page = NULL;
726
727 if (pte_present(*pte)) {
728 page = vm_normal_page(vma, addr, *pte);
729 } else if (is_swap_pte(*pte)) {
730 swp_entry_t swpent = pte_to_swp_entry(*pte);
731
732 if (is_pfn_swap_entry(swpent))
733 page = pfn_swap_entry_to_page(swpent);
734 }
735 if (page) {
736 if (page_mapcount(page) >= 2 || hugetlb_pmd_shared(pte))
737 mss->shared_hugetlb += huge_page_size(hstate_vma(vma));
738 else
739 mss->private_hugetlb += huge_page_size(hstate_vma(vma));
740 }
741 return 0;
742 }
743 #else
744 #define smaps_hugetlb_range NULL
745 #endif /* HUGETLB_PAGE */
746
747 static const struct mm_walk_ops smaps_walk_ops = {
748 .pmd_entry = smaps_pte_range,
749 .hugetlb_entry = smaps_hugetlb_range,
750 };
751
752 static const struct mm_walk_ops smaps_shmem_walk_ops = {
753 .pmd_entry = smaps_pte_range,
754 .hugetlb_entry = smaps_hugetlb_range,
755 .pte_hole = smaps_pte_hole,
756 };
757
758 /*
759 * Gather mem stats from @vma with the indicated beginning
760 * address @start, and keep them in @mss.
761 *
762 * Use vm_start of @vma as the beginning address if @start is 0.
763 */
smap_gather_stats(struct vm_area_struct * vma,struct mem_size_stats * mss,unsigned long start)764 static void smap_gather_stats(struct vm_area_struct *vma,
765 struct mem_size_stats *mss, unsigned long start)
766 {
767 const struct mm_walk_ops *ops = &smaps_walk_ops;
768
769 /* Invalid start */
770 if (start >= vma->vm_end)
771 return;
772
773 #ifdef CONFIG_SHMEM
774 /* In case of smaps_rollup, reset the value from previous vma */
775 mss->check_shmem_swap = false;
776 if (vma->vm_file && shmem_mapping(vma->vm_file->f_mapping)) {
777 /*
778 * For shared or readonly shmem mappings we know that all
779 * swapped out pages belong to the shmem object, and we can
780 * obtain the swap value much more efficiently. For private
781 * writable mappings, we might have COW pages that are
782 * not affected by the parent swapped out pages of the shmem
783 * object, so we have to distinguish them during the page walk.
784 * Unless we know that the shmem object (or the part mapped by
785 * our VMA) has no swapped out pages at all.
786 */
787 unsigned long shmem_swapped = shmem_swap_usage(vma);
788
789 if (!start && (!shmem_swapped || (vma->vm_flags & VM_SHARED) ||
790 !(vma->vm_flags & VM_WRITE))) {
791 mss->swap += shmem_swapped;
792 } else {
793 mss->check_shmem_swap = true;
794 ops = &smaps_shmem_walk_ops;
795 }
796 }
797 #endif
798 /* mmap_lock is held in m_start */
799 if (!start)
800 walk_page_vma(vma, ops, mss);
801 else
802 walk_page_range(vma->vm_mm, start, vma->vm_end, ops, mss);
803 }
804
805 #define SEQ_PUT_DEC(str, val) \
806 seq_put_decimal_ull_width(m, str, (val) >> 10, 8)
807
808 /* Show the contents common for smaps and smaps_rollup */
__show_smap(struct seq_file * m,const struct mem_size_stats * mss,bool rollup_mode)809 static void __show_smap(struct seq_file *m, const struct mem_size_stats *mss,
810 bool rollup_mode)
811 {
812 SEQ_PUT_DEC("Rss: ", mss->resident);
813 SEQ_PUT_DEC(" kB\nPss: ", mss->pss >> PSS_SHIFT);
814 if (rollup_mode) {
815 /*
816 * These are meaningful only for smaps_rollup, otherwise two of
817 * them are zero, and the other one is the same as Pss.
818 */
819 SEQ_PUT_DEC(" kB\nPss_Anon: ",
820 mss->pss_anon >> PSS_SHIFT);
821 SEQ_PUT_DEC(" kB\nPss_File: ",
822 mss->pss_file >> PSS_SHIFT);
823 SEQ_PUT_DEC(" kB\nPss_Shmem: ",
824 mss->pss_shmem >> PSS_SHIFT);
825 }
826 SEQ_PUT_DEC(" kB\nShared_Clean: ", mss->shared_clean);
827 SEQ_PUT_DEC(" kB\nShared_Dirty: ", mss->shared_dirty);
828 SEQ_PUT_DEC(" kB\nPrivate_Clean: ", mss->private_clean);
829 SEQ_PUT_DEC(" kB\nPrivate_Dirty: ", mss->private_dirty);
830 SEQ_PUT_DEC(" kB\nReferenced: ", mss->referenced);
831 SEQ_PUT_DEC(" kB\nAnonymous: ", mss->anonymous);
832 SEQ_PUT_DEC(" kB\nLazyFree: ", mss->lazyfree);
833 SEQ_PUT_DEC(" kB\nAnonHugePages: ", mss->anonymous_thp);
834 SEQ_PUT_DEC(" kB\nShmemPmdMapped: ", mss->shmem_thp);
835 SEQ_PUT_DEC(" kB\nFilePmdMapped: ", mss->file_thp);
836 SEQ_PUT_DEC(" kB\nShared_Hugetlb: ", mss->shared_hugetlb);
837 seq_put_decimal_ull_width(m, " kB\nPrivate_Hugetlb: ",
838 mss->private_hugetlb >> 10, 7);
839 SEQ_PUT_DEC(" kB\nSwap: ", mss->swap);
840 SEQ_PUT_DEC(" kB\nSwapPss: ",
841 mss->swap_pss >> PSS_SHIFT);
842 SEQ_PUT_DEC(" kB\nLocked: ",
843 mss->pss_locked >> PSS_SHIFT);
844 seq_puts(m, " kB\n");
845 }
846
show_smap(struct seq_file * m,void * v)847 static int show_smap(struct seq_file *m, void *v)
848 {
849 struct vm_area_struct *pad_vma = get_pad_vma(v);
850 struct vm_area_struct *vma = get_data_vma(v);
851 struct mem_size_stats mss;
852
853 memset(&mss, 0, sizeof(mss));
854
855 if (!vma_pages(vma))
856 goto show_pad;
857
858 smap_gather_stats(vma, &mss, 0);
859
860 show_map_vma(m, vma);
861
862 SEQ_PUT_DEC("Size: ", vma->vm_end - vma->vm_start);
863 SEQ_PUT_DEC(" kB\nKernelPageSize: ", vma_kernel_pagesize(vma));
864 SEQ_PUT_DEC(" kB\nMMUPageSize: ", vma_mmu_pagesize(vma));
865 seq_puts(m, " kB\n");
866
867 __show_smap(m, &mss, false);
868
869 seq_printf(m, "THPeligible: %d\n",
870 transparent_hugepage_active(vma));
871
872 if (arch_pkeys_enabled())
873 seq_printf(m, "ProtectionKey: %8u\n", vma_pkey(vma));
874 show_smap_vma_flags(m, vma);
875
876 show_pad:
877 show_map_pad_vma(vma, pad_vma, m, (show_pad_vma_fn)show_smap);
878
879 return 0;
880 }
881
show_smaps_rollup(struct seq_file * m,void * v)882 static int show_smaps_rollup(struct seq_file *m, void *v)
883 {
884 struct proc_maps_private *priv = m->private;
885 struct mem_size_stats mss;
886 struct mm_struct *mm;
887 struct vm_area_struct *vma;
888 unsigned long last_vma_end = 0;
889 int ret = 0;
890
891 priv->task = get_proc_task(priv->inode);
892 if (!priv->task)
893 return -ESRCH;
894
895 mm = priv->mm;
896 if (!mm || !mmget_not_zero(mm)) {
897 ret = -ESRCH;
898 goto out_put_task;
899 }
900
901 memset(&mss, 0, sizeof(mss));
902
903 ret = mmap_read_lock_killable(mm);
904 if (ret)
905 goto out_put_mm;
906
907 hold_task_mempolicy(priv);
908
909 for (vma = priv->mm->mmap; vma;) {
910 smap_gather_stats(vma, &mss, 0);
911 last_vma_end = vma->vm_end;
912
913 /*
914 * Release mmap_lock temporarily if someone wants to
915 * access it for write request.
916 */
917 if (mmap_lock_is_contended(mm)) {
918 mmap_read_unlock(mm);
919 ret = mmap_read_lock_killable(mm);
920 if (ret) {
921 release_task_mempolicy(priv);
922 goto out_put_mm;
923 }
924
925 /*
926 * After dropping the lock, there are four cases to
927 * consider. See the following example for explanation.
928 *
929 * +------+------+-----------+
930 * | VMA1 | VMA2 | VMA3 |
931 * +------+------+-----------+
932 * | | | |
933 * 4k 8k 16k 400k
934 *
935 * Suppose we drop the lock after reading VMA2 due to
936 * contention, then we get:
937 *
938 * last_vma_end = 16k
939 *
940 * 1) VMA2 is freed, but VMA3 exists:
941 *
942 * find_vma(mm, 16k - 1) will return VMA3.
943 * In this case, just continue from VMA3.
944 *
945 * 2) VMA2 still exists:
946 *
947 * find_vma(mm, 16k - 1) will return VMA2.
948 * Iterate the loop like the original one.
949 *
950 * 3) No more VMAs can be found:
951 *
952 * find_vma(mm, 16k - 1) will return NULL.
953 * No more things to do, just break.
954 *
955 * 4) (last_vma_end - 1) is the middle of a vma (VMA'):
956 *
957 * find_vma(mm, 16k - 1) will return VMA' whose range
958 * contains last_vma_end.
959 * Iterate VMA' from last_vma_end.
960 */
961 vma = find_vma(mm, last_vma_end - 1);
962 /* Case 3 above */
963 if (!vma)
964 break;
965
966 /* Case 1 above */
967 if (vma->vm_start >= last_vma_end)
968 continue;
969
970 /* Case 4 above */
971 if (vma->vm_end > last_vma_end)
972 smap_gather_stats(vma, &mss, last_vma_end);
973 }
974 /* Case 2 above */
975 vma = vma->vm_next;
976 }
977
978 show_vma_header_prefix(m, priv->mm->mmap ? priv->mm->mmap->vm_start : 0,
979 last_vma_end, 0, 0, 0, 0);
980 seq_pad(m, ' ');
981 seq_puts(m, "[rollup]\n");
982
983 __show_smap(m, &mss, true);
984
985 release_task_mempolicy(priv);
986 mmap_read_unlock(mm);
987
988 out_put_mm:
989 mmput(mm);
990 out_put_task:
991 put_task_struct(priv->task);
992 priv->task = NULL;
993
994 return ret;
995 }
996 #undef SEQ_PUT_DEC
997
998 static const struct seq_operations proc_pid_smaps_op = {
999 .start = m_start,
1000 .next = m_next,
1001 .stop = m_stop,
1002 .show = show_smap
1003 };
1004
pid_smaps_open(struct inode * inode,struct file * file)1005 static int pid_smaps_open(struct inode *inode, struct file *file)
1006 {
1007 return do_maps_open(inode, file, &proc_pid_smaps_op);
1008 }
1009
smaps_rollup_open(struct inode * inode,struct file * file)1010 static int smaps_rollup_open(struct inode *inode, struct file *file)
1011 {
1012 int ret;
1013 struct proc_maps_private *priv;
1014
1015 priv = kzalloc(sizeof(*priv), GFP_KERNEL_ACCOUNT);
1016 if (!priv)
1017 return -ENOMEM;
1018
1019 ret = single_open(file, show_smaps_rollup, priv);
1020 if (ret)
1021 goto out_free;
1022
1023 priv->inode = inode;
1024 priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
1025 if (IS_ERR(priv->mm)) {
1026 ret = PTR_ERR(priv->mm);
1027
1028 single_release(inode, file);
1029 goto out_free;
1030 }
1031
1032 return 0;
1033
1034 out_free:
1035 kfree(priv);
1036 return ret;
1037 }
1038
smaps_rollup_release(struct inode * inode,struct file * file)1039 static int smaps_rollup_release(struct inode *inode, struct file *file)
1040 {
1041 struct seq_file *seq = file->private_data;
1042 struct proc_maps_private *priv = seq->private;
1043
1044 if (priv->mm)
1045 mmdrop(priv->mm);
1046
1047 kfree(priv);
1048 return single_release(inode, file);
1049 }
1050
1051 const struct file_operations proc_pid_smaps_operations = {
1052 .open = pid_smaps_open,
1053 .read = seq_read,
1054 .llseek = seq_lseek,
1055 .release = proc_map_release,
1056 };
1057
1058 const struct file_operations proc_pid_smaps_rollup_operations = {
1059 .open = smaps_rollup_open,
1060 .read = seq_read,
1061 .llseek = seq_lseek,
1062 .release = smaps_rollup_release,
1063 };
1064
1065 enum clear_refs_types {
1066 CLEAR_REFS_ALL = 1,
1067 CLEAR_REFS_ANON,
1068 CLEAR_REFS_MAPPED,
1069 CLEAR_REFS_SOFT_DIRTY,
1070 CLEAR_REFS_MM_HIWATER_RSS,
1071 CLEAR_REFS_LAST,
1072 };
1073
1074 struct clear_refs_private {
1075 enum clear_refs_types type;
1076 };
1077
1078 #ifdef CONFIG_MEM_SOFT_DIRTY
1079
pte_is_pinned(struct vm_area_struct * vma,unsigned long addr,pte_t pte)1080 static inline bool pte_is_pinned(struct vm_area_struct *vma, unsigned long addr, pte_t pte)
1081 {
1082 struct page *page;
1083
1084 if (!pte_write(pte))
1085 return false;
1086 if (!is_cow_mapping(vma->vm_flags))
1087 return false;
1088 if (likely(!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags)))
1089 return false;
1090 page = vm_normal_page(vma, addr, pte);
1091 if (!page)
1092 return false;
1093 return page_maybe_dma_pinned(page);
1094 }
1095
clear_soft_dirty(struct vm_area_struct * vma,unsigned long addr,pte_t * pte)1096 static inline void clear_soft_dirty(struct vm_area_struct *vma,
1097 unsigned long addr, pte_t *pte)
1098 {
1099 /*
1100 * The soft-dirty tracker uses #PF-s to catch writes
1101 * to pages, so write-protect the pte as well. See the
1102 * Documentation/admin-guide/mm/soft-dirty.rst for full description
1103 * of how soft-dirty works.
1104 */
1105 pte_t ptent = *pte;
1106
1107 if (pte_present(ptent)) {
1108 pte_t old_pte;
1109
1110 if (pte_is_pinned(vma, addr, ptent))
1111 return;
1112 old_pte = ptep_modify_prot_start(vma, addr, pte);
1113 ptent = pte_wrprotect(old_pte);
1114 ptent = pte_clear_soft_dirty(ptent);
1115 ptep_modify_prot_commit(vma, addr, pte, old_pte, ptent);
1116 } else if (is_swap_pte(ptent)) {
1117 ptent = pte_swp_clear_soft_dirty(ptent);
1118 set_pte_at(vma->vm_mm, addr, pte, ptent);
1119 }
1120 }
1121 #else
clear_soft_dirty(struct vm_area_struct * vma,unsigned long addr,pte_t * pte)1122 static inline void clear_soft_dirty(struct vm_area_struct *vma,
1123 unsigned long addr, pte_t *pte)
1124 {
1125 }
1126 #endif
1127
1128 #if defined(CONFIG_MEM_SOFT_DIRTY) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
clear_soft_dirty_pmd(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmdp)1129 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
1130 unsigned long addr, pmd_t *pmdp)
1131 {
1132 pmd_t old, pmd = *pmdp;
1133
1134 if (pmd_present(pmd)) {
1135 /* See comment in change_huge_pmd() */
1136 old = pmdp_invalidate(vma, addr, pmdp);
1137 if (pmd_dirty(old))
1138 pmd = pmd_mkdirty(pmd);
1139 if (pmd_young(old))
1140 pmd = pmd_mkyoung(pmd);
1141
1142 pmd = pmd_wrprotect(pmd);
1143 pmd = pmd_clear_soft_dirty(pmd);
1144
1145 set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
1146 } else if (is_migration_entry(pmd_to_swp_entry(pmd))) {
1147 pmd = pmd_swp_clear_soft_dirty(pmd);
1148 set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
1149 }
1150 }
1151 #else
clear_soft_dirty_pmd(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmdp)1152 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
1153 unsigned long addr, pmd_t *pmdp)
1154 {
1155 }
1156 #endif
1157
clear_refs_pte_range(pmd_t * pmd,unsigned long addr,unsigned long end,struct mm_walk * walk)1158 static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr,
1159 unsigned long end, struct mm_walk *walk)
1160 {
1161 struct clear_refs_private *cp = walk->private;
1162 struct vm_area_struct *vma = walk->vma;
1163 pte_t *pte, ptent;
1164 spinlock_t *ptl;
1165 struct page *page;
1166
1167 ptl = pmd_trans_huge_lock(pmd, vma);
1168 if (ptl) {
1169 if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
1170 clear_soft_dirty_pmd(vma, addr, pmd);
1171 goto out;
1172 }
1173
1174 if (!pmd_present(*pmd))
1175 goto out;
1176
1177 page = pmd_page(*pmd);
1178
1179 /* Clear accessed and referenced bits. */
1180 pmdp_test_and_clear_young(vma, addr, pmd);
1181 test_and_clear_page_young(page);
1182 ClearPageReferenced(page);
1183 out:
1184 spin_unlock(ptl);
1185 return 0;
1186 }
1187
1188 if (pmd_trans_unstable(pmd))
1189 return 0;
1190
1191 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1192 for (; addr != end; pte++, addr += PAGE_SIZE) {
1193 ptent = *pte;
1194
1195 if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
1196 clear_soft_dirty(vma, addr, pte);
1197 continue;
1198 }
1199
1200 if (!pte_present(ptent))
1201 continue;
1202
1203 page = vm_normal_page(vma, addr, ptent);
1204 if (!page)
1205 continue;
1206
1207 /* Clear accessed and referenced bits. */
1208 ptep_test_and_clear_young(vma, addr, pte);
1209 test_and_clear_page_young(page);
1210 ClearPageReferenced(page);
1211 }
1212 pte_unmap_unlock(pte - 1, ptl);
1213 cond_resched();
1214 return 0;
1215 }
1216
clear_refs_test_walk(unsigned long start,unsigned long end,struct mm_walk * walk)1217 static int clear_refs_test_walk(unsigned long start, unsigned long end,
1218 struct mm_walk *walk)
1219 {
1220 struct clear_refs_private *cp = walk->private;
1221 struct vm_area_struct *vma = walk->vma;
1222
1223 if (vma->vm_flags & VM_PFNMAP)
1224 return 1;
1225
1226 /*
1227 * Writing 1 to /proc/pid/clear_refs affects all pages.
1228 * Writing 2 to /proc/pid/clear_refs only affects anonymous pages.
1229 * Writing 3 to /proc/pid/clear_refs only affects file mapped pages.
1230 * Writing 4 to /proc/pid/clear_refs affects all pages.
1231 */
1232 if (cp->type == CLEAR_REFS_ANON && vma->vm_file)
1233 return 1;
1234 if (cp->type == CLEAR_REFS_MAPPED && !vma->vm_file)
1235 return 1;
1236 return 0;
1237 }
1238
1239 static const struct mm_walk_ops clear_refs_walk_ops = {
1240 .pmd_entry = clear_refs_pte_range,
1241 .test_walk = clear_refs_test_walk,
1242 };
1243
clear_refs_write(struct file * file,const char __user * buf,size_t count,loff_t * ppos)1244 static ssize_t clear_refs_write(struct file *file, const char __user *buf,
1245 size_t count, loff_t *ppos)
1246 {
1247 struct task_struct *task;
1248 char buffer[PROC_NUMBUF];
1249 struct mm_struct *mm;
1250 struct vm_area_struct *vma;
1251 enum clear_refs_types type;
1252 int itype;
1253 int rv;
1254
1255 memset(buffer, 0, sizeof(buffer));
1256 if (count > sizeof(buffer) - 1)
1257 count = sizeof(buffer) - 1;
1258 if (copy_from_user(buffer, buf, count))
1259 return -EFAULT;
1260 rv = kstrtoint(strstrip(buffer), 10, &itype);
1261 if (rv < 0)
1262 return rv;
1263 type = (enum clear_refs_types)itype;
1264 if (type < CLEAR_REFS_ALL || type >= CLEAR_REFS_LAST)
1265 return -EINVAL;
1266
1267 task = get_proc_task(file_inode(file));
1268 if (!task)
1269 return -ESRCH;
1270 mm = get_task_mm(task);
1271 if (mm) {
1272 struct mmu_notifier_range range;
1273 struct clear_refs_private cp = {
1274 .type = type,
1275 };
1276
1277 if (mmap_write_lock_killable(mm)) {
1278 count = -EINTR;
1279 goto out_mm;
1280 }
1281 if (type == CLEAR_REFS_MM_HIWATER_RSS) {
1282 /*
1283 * Writing 5 to /proc/pid/clear_refs resets the peak
1284 * resident set size to this mm's current rss value.
1285 */
1286 reset_mm_hiwater_rss(mm);
1287 goto out_unlock;
1288 }
1289
1290 if (type == CLEAR_REFS_SOFT_DIRTY) {
1291 for (vma = mm->mmap; vma; vma = vma->vm_next) {
1292 if (!(vma->vm_flags & VM_SOFTDIRTY))
1293 continue;
1294 vma->vm_flags &= ~VM_SOFTDIRTY;
1295 vma_set_page_prot(vma);
1296 }
1297
1298 inc_tlb_flush_pending(mm);
1299 mmu_notifier_range_init(&range, MMU_NOTIFY_SOFT_DIRTY,
1300 0, NULL, mm, 0, -1UL);
1301 mmu_notifier_invalidate_range_start(&range);
1302 }
1303 walk_page_range(mm, 0, mm->highest_vm_end, &clear_refs_walk_ops,
1304 &cp);
1305 if (type == CLEAR_REFS_SOFT_DIRTY) {
1306 mmu_notifier_invalidate_range_end(&range);
1307 flush_tlb_mm(mm);
1308 dec_tlb_flush_pending(mm);
1309 }
1310 out_unlock:
1311 mmap_write_unlock(mm);
1312 out_mm:
1313 mmput(mm);
1314 }
1315 put_task_struct(task);
1316
1317 return count;
1318 }
1319
1320 const struct file_operations proc_clear_refs_operations = {
1321 .write = clear_refs_write,
1322 .llseek = noop_llseek,
1323 };
1324
1325 typedef struct {
1326 u64 pme;
1327 } pagemap_entry_t;
1328
1329 struct pagemapread {
1330 int pos, len; /* units: PM_ENTRY_BYTES, not bytes */
1331 pagemap_entry_t *buffer;
1332 bool show_pfn;
1333 };
1334
1335 #define PAGEMAP_WALK_SIZE (PMD_SIZE)
1336 #define PAGEMAP_WALK_MASK (PMD_MASK)
1337
1338 #define PM_ENTRY_BYTES sizeof(pagemap_entry_t)
1339 #define PM_PFRAME_BITS 55
1340 #define PM_PFRAME_MASK GENMASK_ULL(PM_PFRAME_BITS - 1, 0)
1341 #define PM_SOFT_DIRTY BIT_ULL(55)
1342 #define PM_MMAP_EXCLUSIVE BIT_ULL(56)
1343 #define PM_UFFD_WP BIT_ULL(57)
1344 #define PM_FILE BIT_ULL(61)
1345 #define PM_SWAP BIT_ULL(62)
1346 #define PM_PRESENT BIT_ULL(63)
1347
1348 #define PM_END_OF_BUFFER 1
1349
make_pme(u64 frame,u64 flags)1350 static inline pagemap_entry_t make_pme(u64 frame, u64 flags)
1351 {
1352 return (pagemap_entry_t) { .pme = (frame & PM_PFRAME_MASK) | flags };
1353 }
1354
add_to_pagemap(unsigned long addr,pagemap_entry_t * pme,struct pagemapread * pm)1355 static int add_to_pagemap(unsigned long addr, pagemap_entry_t *pme,
1356 struct pagemapread *pm)
1357 {
1358 pm->buffer[pm->pos++] = *pme;
1359 if (pm->pos >= pm->len)
1360 return PM_END_OF_BUFFER;
1361 return 0;
1362 }
1363
pagemap_pte_hole(unsigned long start,unsigned long end,__always_unused int depth,struct mm_walk * walk)1364 static int pagemap_pte_hole(unsigned long start, unsigned long end,
1365 __always_unused int depth, struct mm_walk *walk)
1366 {
1367 struct pagemapread *pm = walk->private;
1368 unsigned long addr = start;
1369 int err = 0;
1370
1371 while (addr < end) {
1372 struct vm_area_struct *vma = find_vma(walk->mm, addr);
1373 pagemap_entry_t pme = make_pme(0, 0);
1374 /* End of address space hole, which we mark as non-present. */
1375 unsigned long hole_end;
1376
1377 if (vma)
1378 hole_end = min(end, vma->vm_start);
1379 else
1380 hole_end = end;
1381
1382 for (; addr < hole_end; addr += PAGE_SIZE) {
1383 err = add_to_pagemap(addr, &pme, pm);
1384 if (err)
1385 goto out;
1386 }
1387
1388 if (!vma)
1389 break;
1390
1391 /* Addresses in the VMA. */
1392 if (vma->vm_flags & VM_SOFTDIRTY)
1393 pme = make_pme(0, PM_SOFT_DIRTY);
1394 for (; addr < min(end, vma->vm_end); addr += PAGE_SIZE) {
1395 err = add_to_pagemap(addr, &pme, pm);
1396 if (err)
1397 goto out;
1398 }
1399 }
1400 out:
1401 return err;
1402 }
1403
pte_to_pagemap_entry(struct pagemapread * pm,struct vm_area_struct * vma,unsigned long addr,pte_t pte)1404 static pagemap_entry_t pte_to_pagemap_entry(struct pagemapread *pm,
1405 struct vm_area_struct *vma, unsigned long addr, pte_t pte)
1406 {
1407 u64 frame = 0, flags = 0;
1408 struct page *page = NULL;
1409 bool migration = false;
1410
1411 if (pte_present(pte)) {
1412 if (pm->show_pfn)
1413 frame = pte_pfn(pte);
1414 flags |= PM_PRESENT;
1415 page = vm_normal_page(vma, addr, pte);
1416 if (pte_soft_dirty(pte))
1417 flags |= PM_SOFT_DIRTY;
1418 if (pte_uffd_wp(pte))
1419 flags |= PM_UFFD_WP;
1420 } else if (is_swap_pte(pte)) {
1421 swp_entry_t entry;
1422 if (pte_swp_soft_dirty(pte))
1423 flags |= PM_SOFT_DIRTY;
1424 if (pte_swp_uffd_wp(pte))
1425 flags |= PM_UFFD_WP;
1426 entry = pte_to_swp_entry(pte);
1427 if (pm->show_pfn)
1428 frame = swp_type(entry) |
1429 (swp_offset(entry) << MAX_SWAPFILES_SHIFT);
1430 flags |= PM_SWAP;
1431 migration = is_migration_entry(entry);
1432 if (is_pfn_swap_entry(entry))
1433 page = pfn_swap_entry_to_page(entry);
1434 }
1435
1436 if (page && !PageAnon(page))
1437 flags |= PM_FILE;
1438 if (page && !migration && page_mapcount(page) == 1)
1439 flags |= PM_MMAP_EXCLUSIVE;
1440 if (vma->vm_flags & VM_SOFTDIRTY)
1441 flags |= PM_SOFT_DIRTY;
1442
1443 return make_pme(frame, flags);
1444 }
1445
pagemap_pmd_range(pmd_t * pmdp,unsigned long addr,unsigned long end,struct mm_walk * walk)1446 static int pagemap_pmd_range(pmd_t *pmdp, unsigned long addr, unsigned long end,
1447 struct mm_walk *walk)
1448 {
1449 struct vm_area_struct *vma = walk->vma;
1450 struct pagemapread *pm = walk->private;
1451 spinlock_t *ptl;
1452 pte_t *pte, *orig_pte;
1453 int err = 0;
1454 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1455 bool migration = false;
1456
1457 ptl = pmd_trans_huge_lock(pmdp, vma);
1458 if (ptl) {
1459 u64 flags = 0, frame = 0;
1460 pmd_t pmd = *pmdp;
1461 struct page *page = NULL;
1462
1463 if (vma->vm_flags & VM_SOFTDIRTY)
1464 flags |= PM_SOFT_DIRTY;
1465
1466 if (pmd_present(pmd)) {
1467 page = pmd_page(pmd);
1468
1469 flags |= PM_PRESENT;
1470 if (pmd_soft_dirty(pmd))
1471 flags |= PM_SOFT_DIRTY;
1472 if (pmd_uffd_wp(pmd))
1473 flags |= PM_UFFD_WP;
1474 if (pm->show_pfn)
1475 frame = pmd_pfn(pmd) +
1476 ((addr & ~PMD_MASK) >> PAGE_SHIFT);
1477 }
1478 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1479 else if (is_swap_pmd(pmd)) {
1480 swp_entry_t entry = pmd_to_swp_entry(pmd);
1481 unsigned long offset;
1482
1483 if (pm->show_pfn) {
1484 offset = swp_offset(entry) +
1485 ((addr & ~PMD_MASK) >> PAGE_SHIFT);
1486 frame = swp_type(entry) |
1487 (offset << MAX_SWAPFILES_SHIFT);
1488 }
1489 flags |= PM_SWAP;
1490 if (pmd_swp_soft_dirty(pmd))
1491 flags |= PM_SOFT_DIRTY;
1492 if (pmd_swp_uffd_wp(pmd))
1493 flags |= PM_UFFD_WP;
1494 VM_BUG_ON(!is_pmd_migration_entry(pmd));
1495 migration = is_migration_entry(entry);
1496 page = pfn_swap_entry_to_page(entry);
1497 }
1498 #endif
1499
1500 if (page && !migration && page_mapcount(page) == 1)
1501 flags |= PM_MMAP_EXCLUSIVE;
1502
1503 for (; addr != end; addr += PAGE_SIZE) {
1504 pagemap_entry_t pme = make_pme(frame, flags);
1505
1506 err = add_to_pagemap(addr, &pme, pm);
1507 if (err)
1508 break;
1509 if (pm->show_pfn) {
1510 if (flags & PM_PRESENT)
1511 frame++;
1512 else if (flags & PM_SWAP)
1513 frame += (1 << MAX_SWAPFILES_SHIFT);
1514 }
1515 }
1516 spin_unlock(ptl);
1517 return err;
1518 }
1519
1520 if (pmd_trans_unstable(pmdp))
1521 return 0;
1522 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1523
1524 /*
1525 * We can assume that @vma always points to a valid one and @end never
1526 * goes beyond vma->vm_end.
1527 */
1528 orig_pte = pte = pte_offset_map_lock(walk->mm, pmdp, addr, &ptl);
1529 for (; addr < end; pte++, addr += PAGE_SIZE) {
1530 pagemap_entry_t pme;
1531
1532 pme = pte_to_pagemap_entry(pm, vma, addr, *pte);
1533 err = add_to_pagemap(addr, &pme, pm);
1534 if (err)
1535 break;
1536 }
1537 pte_unmap_unlock(orig_pte, ptl);
1538
1539 cond_resched();
1540
1541 return err;
1542 }
1543
1544 #ifdef CONFIG_HUGETLB_PAGE
1545 /* This function walks within one hugetlb entry in the single call */
pagemap_hugetlb_range(pte_t * ptep,unsigned long hmask,unsigned long addr,unsigned long end,struct mm_walk * walk)1546 static int pagemap_hugetlb_range(pte_t *ptep, unsigned long hmask,
1547 unsigned long addr, unsigned long end,
1548 struct mm_walk *walk)
1549 {
1550 struct pagemapread *pm = walk->private;
1551 struct vm_area_struct *vma = walk->vma;
1552 u64 flags = 0, frame = 0;
1553 int err = 0;
1554 pte_t pte;
1555
1556 if (vma->vm_flags & VM_SOFTDIRTY)
1557 flags |= PM_SOFT_DIRTY;
1558
1559 pte = huge_ptep_get(ptep);
1560 if (pte_present(pte)) {
1561 struct page *page = pte_page(pte);
1562
1563 if (!PageAnon(page))
1564 flags |= PM_FILE;
1565
1566 if (page_mapcount(page) == 1)
1567 flags |= PM_MMAP_EXCLUSIVE;
1568
1569 flags |= PM_PRESENT;
1570 if (pm->show_pfn)
1571 frame = pte_pfn(pte) +
1572 ((addr & ~hmask) >> PAGE_SHIFT);
1573 }
1574
1575 for (; addr != end; addr += PAGE_SIZE) {
1576 pagemap_entry_t pme = make_pme(frame, flags);
1577
1578 err = add_to_pagemap(addr, &pme, pm);
1579 if (err)
1580 return err;
1581 if (pm->show_pfn && (flags & PM_PRESENT))
1582 frame++;
1583 }
1584
1585 cond_resched();
1586
1587 return err;
1588 }
1589 #else
1590 #define pagemap_hugetlb_range NULL
1591 #endif /* HUGETLB_PAGE */
1592
1593 static const struct mm_walk_ops pagemap_ops = {
1594 .pmd_entry = pagemap_pmd_range,
1595 .pte_hole = pagemap_pte_hole,
1596 .hugetlb_entry = pagemap_hugetlb_range,
1597 };
1598
1599 /*
1600 * /proc/pid/pagemap - an array mapping virtual pages to pfns
1601 *
1602 * For each page in the address space, this file contains one 64-bit entry
1603 * consisting of the following:
1604 *
1605 * Bits 0-54 page frame number (PFN) if present
1606 * Bits 0-4 swap type if swapped
1607 * Bits 5-54 swap offset if swapped
1608 * Bit 55 pte is soft-dirty (see Documentation/admin-guide/mm/soft-dirty.rst)
1609 * Bit 56 page exclusively mapped
1610 * Bit 57 pte is uffd-wp write-protected
1611 * Bits 58-60 zero
1612 * Bit 61 page is file-page or shared-anon
1613 * Bit 62 page swapped
1614 * Bit 63 page present
1615 *
1616 * If the page is not present but in swap, then the PFN contains an
1617 * encoding of the swap file number and the page's offset into the
1618 * swap. Unmapped pages return a null PFN. This allows determining
1619 * precisely which pages are mapped (or in swap) and comparing mapped
1620 * pages between processes.
1621 *
1622 * Efficient users of this interface will use /proc/pid/maps to
1623 * determine which areas of memory are actually mapped and llseek to
1624 * skip over unmapped regions.
1625 */
pagemap_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)1626 static ssize_t pagemap_read(struct file *file, char __user *buf,
1627 size_t count, loff_t *ppos)
1628 {
1629 struct mm_struct *mm = file->private_data;
1630 struct pagemapread pm;
1631 unsigned long src;
1632 unsigned long svpfn;
1633 unsigned long start_vaddr;
1634 unsigned long end_vaddr;
1635 int ret = 0, copied = 0;
1636
1637 if (!mm || !mmget_not_zero(mm))
1638 goto out;
1639
1640 ret = -EINVAL;
1641 /* file position must be aligned */
1642 if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES))
1643 goto out_mm;
1644
1645 ret = 0;
1646 if (!count)
1647 goto out_mm;
1648
1649 /* do not disclose physical addresses: attack vector */
1650 pm.show_pfn = file_ns_capable(file, &init_user_ns, CAP_SYS_ADMIN);
1651
1652 pm.len = (PAGEMAP_WALK_SIZE >> PAGE_SHIFT);
1653 pm.buffer = kmalloc_array(pm.len, PM_ENTRY_BYTES, GFP_KERNEL);
1654 ret = -ENOMEM;
1655 if (!pm.buffer)
1656 goto out_mm;
1657
1658 src = *ppos;
1659 svpfn = src / PM_ENTRY_BYTES;
1660 end_vaddr = mm->task_size;
1661
1662 /* watch out for wraparound */
1663 start_vaddr = end_vaddr;
1664 if (svpfn <= (ULONG_MAX >> PAGE_SHIFT))
1665 start_vaddr = untagged_addr(svpfn << PAGE_SHIFT);
1666
1667 /* Ensure the address is inside the task */
1668 if (start_vaddr > mm->task_size)
1669 start_vaddr = end_vaddr;
1670
1671 /*
1672 * The odds are that this will stop walking way
1673 * before end_vaddr, because the length of the
1674 * user buffer is tracked in "pm", and the walk
1675 * will stop when we hit the end of the buffer.
1676 */
1677 ret = 0;
1678 while (count && (start_vaddr < end_vaddr)) {
1679 int len;
1680 unsigned long end;
1681
1682 pm.pos = 0;
1683 end = (start_vaddr + PAGEMAP_WALK_SIZE) & PAGEMAP_WALK_MASK;
1684 /* overflow ? */
1685 if (end < start_vaddr || end > end_vaddr)
1686 end = end_vaddr;
1687 ret = mmap_read_lock_killable(mm);
1688 if (ret)
1689 goto out_free;
1690 ret = walk_page_range(mm, start_vaddr, end, &pagemap_ops, &pm);
1691 mmap_read_unlock(mm);
1692 start_vaddr = end;
1693
1694 len = min(count, PM_ENTRY_BYTES * pm.pos);
1695 if (copy_to_user(buf, pm.buffer, len)) {
1696 ret = -EFAULT;
1697 goto out_free;
1698 }
1699 copied += len;
1700 buf += len;
1701 count -= len;
1702 }
1703 *ppos += copied;
1704 if (!ret || ret == PM_END_OF_BUFFER)
1705 ret = copied;
1706
1707 out_free:
1708 kfree(pm.buffer);
1709 out_mm:
1710 mmput(mm);
1711 out:
1712 return ret;
1713 }
1714
pagemap_open(struct inode * inode,struct file * file)1715 static int pagemap_open(struct inode *inode, struct file *file)
1716 {
1717 struct mm_struct *mm;
1718
1719 mm = proc_mem_open(inode, PTRACE_MODE_READ);
1720 if (IS_ERR(mm))
1721 return PTR_ERR(mm);
1722 file->private_data = mm;
1723 return 0;
1724 }
1725
pagemap_release(struct inode * inode,struct file * file)1726 static int pagemap_release(struct inode *inode, struct file *file)
1727 {
1728 struct mm_struct *mm = file->private_data;
1729
1730 if (mm)
1731 mmdrop(mm);
1732 return 0;
1733 }
1734
1735 const struct file_operations proc_pagemap_operations = {
1736 .llseek = mem_lseek, /* borrow this */
1737 .read = pagemap_read,
1738 .open = pagemap_open,
1739 .release = pagemap_release,
1740 };
1741 #endif /* CONFIG_PROC_PAGE_MONITOR */
1742
1743 #ifdef CONFIG_NUMA
1744
1745 struct numa_maps {
1746 unsigned long pages;
1747 unsigned long anon;
1748 unsigned long active;
1749 unsigned long writeback;
1750 unsigned long mapcount_max;
1751 unsigned long dirty;
1752 unsigned long swapcache;
1753 unsigned long node[MAX_NUMNODES];
1754 };
1755
1756 struct numa_maps_private {
1757 struct proc_maps_private proc_maps;
1758 struct numa_maps md;
1759 };
1760
gather_stats(struct page * page,struct numa_maps * md,int pte_dirty,unsigned long nr_pages)1761 static void gather_stats(struct page *page, struct numa_maps *md, int pte_dirty,
1762 unsigned long nr_pages)
1763 {
1764 int count = page_mapcount(page);
1765
1766 md->pages += nr_pages;
1767 if (pte_dirty || PageDirty(page))
1768 md->dirty += nr_pages;
1769
1770 if (PageSwapCache(page))
1771 md->swapcache += nr_pages;
1772
1773 if (PageActive(page) || PageUnevictable(page))
1774 md->active += nr_pages;
1775
1776 if (PageWriteback(page))
1777 md->writeback += nr_pages;
1778
1779 if (PageAnon(page))
1780 md->anon += nr_pages;
1781
1782 if (count > md->mapcount_max)
1783 md->mapcount_max = count;
1784
1785 md->node[page_to_nid(page)] += nr_pages;
1786 }
1787
can_gather_numa_stats(pte_t pte,struct vm_area_struct * vma,unsigned long addr)1788 static struct page *can_gather_numa_stats(pte_t pte, struct vm_area_struct *vma,
1789 unsigned long addr)
1790 {
1791 struct page *page;
1792 int nid;
1793
1794 if (!pte_present(pte))
1795 return NULL;
1796
1797 page = vm_normal_page(vma, addr, pte);
1798 if (!page)
1799 return NULL;
1800
1801 if (PageReserved(page))
1802 return NULL;
1803
1804 nid = page_to_nid(page);
1805 if (!node_isset(nid, node_states[N_MEMORY]))
1806 return NULL;
1807
1808 return page;
1809 }
1810
1811 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
can_gather_numa_stats_pmd(pmd_t pmd,struct vm_area_struct * vma,unsigned long addr)1812 static struct page *can_gather_numa_stats_pmd(pmd_t pmd,
1813 struct vm_area_struct *vma,
1814 unsigned long addr)
1815 {
1816 struct page *page;
1817 int nid;
1818
1819 if (!pmd_present(pmd))
1820 return NULL;
1821
1822 page = vm_normal_page_pmd(vma, addr, pmd);
1823 if (!page)
1824 return NULL;
1825
1826 if (PageReserved(page))
1827 return NULL;
1828
1829 nid = page_to_nid(page);
1830 if (!node_isset(nid, node_states[N_MEMORY]))
1831 return NULL;
1832
1833 return page;
1834 }
1835 #endif
1836
gather_pte_stats(pmd_t * pmd,unsigned long addr,unsigned long end,struct mm_walk * walk)1837 static int gather_pte_stats(pmd_t *pmd, unsigned long addr,
1838 unsigned long end, struct mm_walk *walk)
1839 {
1840 struct numa_maps *md = walk->private;
1841 struct vm_area_struct *vma = walk->vma;
1842 spinlock_t *ptl;
1843 pte_t *orig_pte;
1844 pte_t *pte;
1845
1846 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1847 ptl = pmd_trans_huge_lock(pmd, vma);
1848 if (ptl) {
1849 struct page *page;
1850
1851 page = can_gather_numa_stats_pmd(*pmd, vma, addr);
1852 if (page)
1853 gather_stats(page, md, pmd_dirty(*pmd),
1854 HPAGE_PMD_SIZE/PAGE_SIZE);
1855 spin_unlock(ptl);
1856 return 0;
1857 }
1858
1859 if (pmd_trans_unstable(pmd))
1860 return 0;
1861 #endif
1862 orig_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
1863 do {
1864 struct page *page = can_gather_numa_stats(*pte, vma, addr);
1865 if (!page)
1866 continue;
1867 gather_stats(page, md, pte_dirty(*pte), 1);
1868
1869 } while (pte++, addr += PAGE_SIZE, addr != end);
1870 pte_unmap_unlock(orig_pte, ptl);
1871 cond_resched();
1872 return 0;
1873 }
1874 #ifdef CONFIG_HUGETLB_PAGE
gather_hugetlb_stats(pte_t * pte,unsigned long hmask,unsigned long addr,unsigned long end,struct mm_walk * walk)1875 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
1876 unsigned long addr, unsigned long end, struct mm_walk *walk)
1877 {
1878 pte_t huge_pte = huge_ptep_get(pte);
1879 struct numa_maps *md;
1880 struct page *page;
1881
1882 if (!pte_present(huge_pte))
1883 return 0;
1884
1885 page = pte_page(huge_pte);
1886 if (!page)
1887 return 0;
1888
1889 md = walk->private;
1890 gather_stats(page, md, pte_dirty(huge_pte), 1);
1891 return 0;
1892 }
1893
1894 #else
gather_hugetlb_stats(pte_t * pte,unsigned long hmask,unsigned long addr,unsigned long end,struct mm_walk * walk)1895 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
1896 unsigned long addr, unsigned long end, struct mm_walk *walk)
1897 {
1898 return 0;
1899 }
1900 #endif
1901
1902 static const struct mm_walk_ops show_numa_ops = {
1903 .hugetlb_entry = gather_hugetlb_stats,
1904 .pmd_entry = gather_pte_stats,
1905 };
1906
1907 /*
1908 * Display pages allocated per node and memory policy via /proc.
1909 */
show_numa_map(struct seq_file * m,void * v)1910 static int show_numa_map(struct seq_file *m, void *v)
1911 {
1912 struct numa_maps_private *numa_priv = m->private;
1913 struct proc_maps_private *proc_priv = &numa_priv->proc_maps;
1914 struct vm_area_struct *vma = v;
1915 struct numa_maps *md = &numa_priv->md;
1916 struct file *file = vma->vm_file;
1917 struct mm_struct *mm = vma->vm_mm;
1918 struct mempolicy *pol;
1919 char buffer[64];
1920 int nid;
1921
1922 if (!mm)
1923 return 0;
1924
1925 /* Ensure we start with an empty set of numa_maps statistics. */
1926 memset(md, 0, sizeof(*md));
1927
1928 pol = __get_vma_policy(vma, vma->vm_start);
1929 if (pol) {
1930 mpol_to_str(buffer, sizeof(buffer), pol);
1931 mpol_cond_put(pol);
1932 } else {
1933 mpol_to_str(buffer, sizeof(buffer), proc_priv->task_mempolicy);
1934 }
1935
1936 seq_printf(m, "%08lx %s", vma->vm_start, buffer);
1937
1938 if (file) {
1939 seq_puts(m, " file=");
1940 seq_file_path(m, file, "\n\t= ");
1941 } else if (vma->vm_start <= mm->brk && vma->vm_end >= mm->start_brk) {
1942 seq_puts(m, " heap");
1943 } else if (is_stack(vma)) {
1944 seq_puts(m, " stack");
1945 }
1946
1947 if (is_vm_hugetlb_page(vma))
1948 seq_puts(m, " huge");
1949
1950 /* mmap_lock is held by m_start */
1951 walk_page_vma(vma, &show_numa_ops, md);
1952
1953 if (!md->pages)
1954 goto out;
1955
1956 if (md->anon)
1957 seq_printf(m, " anon=%lu", md->anon);
1958
1959 if (md->dirty)
1960 seq_printf(m, " dirty=%lu", md->dirty);
1961
1962 if (md->pages != md->anon && md->pages != md->dirty)
1963 seq_printf(m, " mapped=%lu", md->pages);
1964
1965 if (md->mapcount_max > 1)
1966 seq_printf(m, " mapmax=%lu", md->mapcount_max);
1967
1968 if (md->swapcache)
1969 seq_printf(m, " swapcache=%lu", md->swapcache);
1970
1971 if (md->active < md->pages && !is_vm_hugetlb_page(vma))
1972 seq_printf(m, " active=%lu", md->active);
1973
1974 if (md->writeback)
1975 seq_printf(m, " writeback=%lu", md->writeback);
1976
1977 for_each_node_state(nid, N_MEMORY)
1978 if (md->node[nid])
1979 seq_printf(m, " N%d=%lu", nid, md->node[nid]);
1980
1981 seq_printf(m, " kernelpagesize_kB=%lu", vma_kernel_pagesize(vma) >> 10);
1982 out:
1983 seq_putc(m, '\n');
1984 return 0;
1985 }
1986
1987 static const struct seq_operations proc_pid_numa_maps_op = {
1988 .start = m_start,
1989 .next = m_next,
1990 .stop = m_stop,
1991 .show = show_numa_map,
1992 };
1993
pid_numa_maps_open(struct inode * inode,struct file * file)1994 static int pid_numa_maps_open(struct inode *inode, struct file *file)
1995 {
1996 return proc_maps_open(inode, file, &proc_pid_numa_maps_op,
1997 sizeof(struct numa_maps_private));
1998 }
1999
2000 const struct file_operations proc_pid_numa_maps_operations = {
2001 .open = pid_numa_maps_open,
2002 .read = seq_read,
2003 .llseek = seq_lseek,
2004 .release = proc_map_release,
2005 };
2006
2007 #endif /* CONFIG_NUMA */
2008