1 // SPDX-License-Identifier: GPL-2.0-only
2 /* bpf/cpumap.c
3 *
4 * Copyright (c) 2017 Jesper Dangaard Brouer, Red Hat Inc.
5 */
6
7 /* The 'cpumap' is primarily used as a backend map for XDP BPF helper
8 * call bpf_redirect_map() and XDP_REDIRECT action, like 'devmap'.
9 *
10 * Unlike devmap which redirects XDP frames out another NIC device,
11 * this map type redirects raw XDP frames to another CPU. The remote
12 * CPU will do SKB-allocation and call the normal network stack.
13 *
14 * This is a scalability and isolation mechanism, that allow
15 * separating the early driver network XDP layer, from the rest of the
16 * netstack, and assigning dedicated CPUs for this stage. This
17 * basically allows for 10G wirespeed pre-filtering via bpf.
18 */
19 #include <linux/bitops.h>
20 #include <linux/bpf.h>
21 #include <linux/filter.h>
22 #include <linux/ptr_ring.h>
23 #include <net/xdp.h>
24
25 #include <linux/sched.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/capability.h>
29 #include <linux/completion.h>
30 #include <trace/events/xdp.h>
31
32 #include <linux/netdevice.h> /* netif_receive_skb_list */
33 #include <linux/etherdevice.h> /* eth_type_trans */
34
35 /* General idea: XDP packets getting XDP redirected to another CPU,
36 * will maximum be stored/queued for one driver ->poll() call. It is
37 * guaranteed that queueing the frame and the flush operation happen on
38 * same CPU. Thus, cpu_map_flush operation can deduct via this_cpu_ptr()
39 * which queue in bpf_cpu_map_entry contains packets.
40 */
41
42 #define CPU_MAP_BULK_SIZE 8 /* 8 == one cacheline on 64-bit archs */
43 struct bpf_cpu_map_entry;
44 struct bpf_cpu_map;
45
46 struct xdp_bulk_queue {
47 void *q[CPU_MAP_BULK_SIZE];
48 struct list_head flush_node;
49 struct bpf_cpu_map_entry *obj;
50 unsigned int count;
51 };
52
53 /* Struct for every remote "destination" CPU in map */
54 struct bpf_cpu_map_entry {
55 u32 cpu; /* kthread CPU and map index */
56 int map_id; /* Back reference to map */
57
58 /* XDP can run multiple RX-ring queues, need __percpu enqueue store */
59 struct xdp_bulk_queue __percpu *bulkq;
60
61 struct bpf_cpu_map *cmap;
62
63 /* Queue with potential multi-producers, and single-consumer kthread */
64 struct ptr_ring *queue;
65 struct task_struct *kthread;
66
67 struct bpf_cpumap_val value;
68 struct bpf_prog *prog;
69
70 atomic_t refcnt; /* Control when this struct can be free'ed */
71 struct rcu_head rcu;
72
73 struct work_struct kthread_stop_wq;
74 struct completion kthread_running;
75 };
76
77 struct bpf_cpu_map {
78 struct bpf_map map;
79 /* Below members specific for map type */
80 struct bpf_cpu_map_entry __rcu **cpu_map;
81 };
82
83 static DEFINE_PER_CPU(struct list_head, cpu_map_flush_list);
84
cpu_map_alloc(union bpf_attr * attr)85 static struct bpf_map *cpu_map_alloc(union bpf_attr *attr)
86 {
87 u32 value_size = attr->value_size;
88 struct bpf_cpu_map *cmap;
89 int err = -ENOMEM;
90
91 if (!bpf_capable())
92 return ERR_PTR(-EPERM);
93
94 /* check sanity of attributes */
95 if (attr->max_entries == 0 || attr->key_size != 4 ||
96 (value_size != offsetofend(struct bpf_cpumap_val, qsize) &&
97 value_size != offsetofend(struct bpf_cpumap_val, bpf_prog.fd)) ||
98 attr->map_flags & ~BPF_F_NUMA_NODE)
99 return ERR_PTR(-EINVAL);
100
101 cmap = kzalloc(sizeof(*cmap), GFP_USER | __GFP_ACCOUNT);
102 if (!cmap)
103 return ERR_PTR(-ENOMEM);
104
105 bpf_map_init_from_attr(&cmap->map, attr);
106
107 /* Pre-limit array size based on NR_CPUS, not final CPU check */
108 if (cmap->map.max_entries > NR_CPUS) {
109 err = -E2BIG;
110 goto free_cmap;
111 }
112
113 /* Alloc array for possible remote "destination" CPUs */
114 cmap->cpu_map = bpf_map_area_alloc(cmap->map.max_entries *
115 sizeof(struct bpf_cpu_map_entry *),
116 cmap->map.numa_node);
117 if (!cmap->cpu_map)
118 goto free_cmap;
119
120 return &cmap->map;
121 free_cmap:
122 kfree(cmap);
123 return ERR_PTR(err);
124 }
125
get_cpu_map_entry(struct bpf_cpu_map_entry * rcpu)126 static void get_cpu_map_entry(struct bpf_cpu_map_entry *rcpu)
127 {
128 atomic_inc(&rcpu->refcnt);
129 }
130
__cpu_map_ring_cleanup(struct ptr_ring * ring)131 static void __cpu_map_ring_cleanup(struct ptr_ring *ring)
132 {
133 /* The tear-down procedure should have made sure that queue is
134 * empty. See __cpu_map_entry_replace() and work-queue
135 * invoked cpu_map_kthread_stop(). Catch any broken behaviour
136 * gracefully and warn once.
137 */
138 void *ptr;
139
140 while ((ptr = ptr_ring_consume(ring))) {
141 WARN_ON_ONCE(1);
142 if (unlikely(__ptr_test_bit(0, &ptr))) {
143 __ptr_clear_bit(0, &ptr);
144 kfree_skb(ptr);
145 continue;
146 }
147 xdp_return_frame(ptr);
148 }
149 }
150
put_cpu_map_entry(struct bpf_cpu_map_entry * rcpu)151 static void put_cpu_map_entry(struct bpf_cpu_map_entry *rcpu)
152 {
153 if (atomic_dec_and_test(&rcpu->refcnt)) {
154 if (rcpu->prog)
155 bpf_prog_put(rcpu->prog);
156 /* The queue should be empty at this point */
157 __cpu_map_ring_cleanup(rcpu->queue);
158 ptr_ring_cleanup(rcpu->queue, NULL);
159 kfree(rcpu->queue);
160 kfree(rcpu);
161 }
162 }
163
164 /* called from workqueue, to workaround syscall using preempt_disable */
cpu_map_kthread_stop(struct work_struct * work)165 static void cpu_map_kthread_stop(struct work_struct *work)
166 {
167 struct bpf_cpu_map_entry *rcpu;
168
169 rcpu = container_of(work, struct bpf_cpu_map_entry, kthread_stop_wq);
170
171 /* Wait for flush in __cpu_map_entry_free(), via full RCU barrier,
172 * as it waits until all in-flight call_rcu() callbacks complete.
173 */
174 rcu_barrier();
175
176 /* kthread_stop will wake_up_process and wait for it to complete */
177 kthread_stop(rcpu->kthread);
178 }
179
cpu_map_bpf_prog_run_skb(struct bpf_cpu_map_entry * rcpu,struct list_head * listp,struct xdp_cpumap_stats * stats)180 static void cpu_map_bpf_prog_run_skb(struct bpf_cpu_map_entry *rcpu,
181 struct list_head *listp,
182 struct xdp_cpumap_stats *stats)
183 {
184 struct sk_buff *skb, *tmp;
185 struct xdp_buff xdp;
186 u32 act;
187 int err;
188
189 list_for_each_entry_safe(skb, tmp, listp, list) {
190 act = bpf_prog_run_generic_xdp(skb, &xdp, rcpu->prog);
191 switch (act) {
192 case XDP_PASS:
193 break;
194 case XDP_REDIRECT:
195 skb_list_del_init(skb);
196 err = xdp_do_generic_redirect(skb->dev, skb, &xdp,
197 rcpu->prog);
198 if (unlikely(err)) {
199 kfree_skb(skb);
200 stats->drop++;
201 } else {
202 stats->redirect++;
203 }
204 return;
205 default:
206 bpf_warn_invalid_xdp_action(act);
207 fallthrough;
208 case XDP_ABORTED:
209 trace_xdp_exception(skb->dev, rcpu->prog, act);
210 fallthrough;
211 case XDP_DROP:
212 skb_list_del_init(skb);
213 kfree_skb(skb);
214 stats->drop++;
215 return;
216 }
217 }
218 }
219
cpu_map_bpf_prog_run_xdp(struct bpf_cpu_map_entry * rcpu,void ** frames,int n,struct xdp_cpumap_stats * stats)220 static int cpu_map_bpf_prog_run_xdp(struct bpf_cpu_map_entry *rcpu,
221 void **frames, int n,
222 struct xdp_cpumap_stats *stats)
223 {
224 struct xdp_rxq_info rxq;
225 struct xdp_buff xdp;
226 int i, nframes = 0;
227
228 xdp_set_return_frame_no_direct();
229 xdp.rxq = &rxq;
230
231 for (i = 0; i < n; i++) {
232 struct xdp_frame *xdpf = frames[i];
233 u32 act;
234 int err;
235
236 rxq.dev = xdpf->dev_rx;
237 rxq.mem = xdpf->mem;
238 /* TODO: report queue_index to xdp_rxq_info */
239
240 xdp_convert_frame_to_buff(xdpf, &xdp);
241
242 act = bpf_prog_run_xdp(rcpu->prog, &xdp);
243 switch (act) {
244 case XDP_PASS:
245 err = xdp_update_frame_from_buff(&xdp, xdpf);
246 if (err < 0) {
247 xdp_return_frame(xdpf);
248 stats->drop++;
249 } else {
250 frames[nframes++] = xdpf;
251 stats->pass++;
252 }
253 break;
254 case XDP_REDIRECT:
255 err = xdp_do_redirect(xdpf->dev_rx, &xdp,
256 rcpu->prog);
257 if (unlikely(err)) {
258 xdp_return_frame(xdpf);
259 stats->drop++;
260 } else {
261 stats->redirect++;
262 }
263 break;
264 default:
265 bpf_warn_invalid_xdp_action(act);
266 fallthrough;
267 case XDP_DROP:
268 xdp_return_frame(xdpf);
269 stats->drop++;
270 break;
271 }
272 }
273
274 xdp_clear_return_frame_no_direct();
275
276 return nframes;
277 }
278
279 #define CPUMAP_BATCH 8
280
cpu_map_bpf_prog_run(struct bpf_cpu_map_entry * rcpu,void ** frames,int xdp_n,struct xdp_cpumap_stats * stats,struct list_head * list)281 static int cpu_map_bpf_prog_run(struct bpf_cpu_map_entry *rcpu, void **frames,
282 int xdp_n, struct xdp_cpumap_stats *stats,
283 struct list_head *list)
284 {
285 int nframes;
286
287 if (!rcpu->prog)
288 return xdp_n;
289
290 rcu_read_lock_bh();
291
292 nframes = cpu_map_bpf_prog_run_xdp(rcpu, frames, xdp_n, stats);
293
294 if (stats->redirect)
295 xdp_do_flush();
296
297 if (unlikely(!list_empty(list)))
298 cpu_map_bpf_prog_run_skb(rcpu, list, stats);
299
300 rcu_read_unlock_bh(); /* resched point, may call do_softirq() */
301
302 return nframes;
303 }
304
cpu_map_kthread_run(void * data)305 static int cpu_map_kthread_run(void *data)
306 {
307 struct bpf_cpu_map_entry *rcpu = data;
308
309 complete(&rcpu->kthread_running);
310 set_current_state(TASK_INTERRUPTIBLE);
311
312 /* When kthread gives stop order, then rcpu have been disconnected
313 * from map, thus no new packets can enter. Remaining in-flight
314 * per CPU stored packets are flushed to this queue. Wait honoring
315 * kthread_stop signal until queue is empty.
316 */
317 while (!kthread_should_stop() || !__ptr_ring_empty(rcpu->queue)) {
318 struct xdp_cpumap_stats stats = {}; /* zero stats */
319 unsigned int kmem_alloc_drops = 0, sched = 0;
320 gfp_t gfp = __GFP_ZERO | GFP_ATOMIC;
321 int i, n, m, nframes, xdp_n;
322 void *frames[CPUMAP_BATCH];
323 void *skbs[CPUMAP_BATCH];
324 LIST_HEAD(list);
325
326 /* Release CPU reschedule checks */
327 if (__ptr_ring_empty(rcpu->queue)) {
328 set_current_state(TASK_INTERRUPTIBLE);
329 /* Recheck to avoid lost wake-up */
330 if (__ptr_ring_empty(rcpu->queue)) {
331 schedule();
332 sched = 1;
333 } else {
334 __set_current_state(TASK_RUNNING);
335 }
336 } else {
337 sched = cond_resched();
338 }
339
340 /*
341 * The bpf_cpu_map_entry is single consumer, with this
342 * kthread CPU pinned. Lockless access to ptr_ring
343 * consume side valid as no-resize allowed of queue.
344 */
345 n = __ptr_ring_consume_batched(rcpu->queue, frames,
346 CPUMAP_BATCH);
347 for (i = 0, xdp_n = 0; i < n; i++) {
348 void *f = frames[i];
349 struct page *page;
350
351 if (unlikely(__ptr_test_bit(0, &f))) {
352 struct sk_buff *skb = f;
353
354 __ptr_clear_bit(0, &skb);
355 list_add_tail(&skb->list, &list);
356 continue;
357 }
358
359 frames[xdp_n++] = f;
360 page = virt_to_page(f);
361
362 /* Bring struct page memory area to curr CPU. Read by
363 * build_skb_around via page_is_pfmemalloc(), and when
364 * freed written by page_frag_free call.
365 */
366 prefetchw(page);
367 }
368
369 /* Support running another XDP prog on this CPU */
370 nframes = cpu_map_bpf_prog_run(rcpu, frames, xdp_n, &stats, &list);
371 if (nframes) {
372 m = kmem_cache_alloc_bulk(skbuff_head_cache, gfp, nframes, skbs);
373 if (unlikely(m == 0)) {
374 for (i = 0; i < nframes; i++)
375 skbs[i] = NULL; /* effect: xdp_return_frame */
376 kmem_alloc_drops += nframes;
377 }
378 }
379
380 local_bh_disable();
381 for (i = 0; i < nframes; i++) {
382 struct xdp_frame *xdpf = frames[i];
383 struct sk_buff *skb = skbs[i];
384
385 skb = __xdp_build_skb_from_frame(xdpf, skb,
386 xdpf->dev_rx);
387 if (!skb) {
388 xdp_return_frame(xdpf);
389 continue;
390 }
391
392 list_add_tail(&skb->list, &list);
393 }
394 netif_receive_skb_list(&list);
395
396 /* Feedback loop via tracepoint */
397 trace_xdp_cpumap_kthread(rcpu->map_id, n, kmem_alloc_drops,
398 sched, &stats);
399
400 local_bh_enable(); /* resched point, may call do_softirq() */
401 }
402 __set_current_state(TASK_RUNNING);
403
404 put_cpu_map_entry(rcpu);
405 return 0;
406 }
407
__cpu_map_load_bpf_program(struct bpf_cpu_map_entry * rcpu,int fd)408 static int __cpu_map_load_bpf_program(struct bpf_cpu_map_entry *rcpu, int fd)
409 {
410 struct bpf_prog *prog;
411
412 prog = bpf_prog_get_type(fd, BPF_PROG_TYPE_XDP);
413 if (IS_ERR(prog))
414 return PTR_ERR(prog);
415
416 if (prog->expected_attach_type != BPF_XDP_CPUMAP) {
417 bpf_prog_put(prog);
418 return -EINVAL;
419 }
420
421 rcpu->value.bpf_prog.id = prog->aux->id;
422 rcpu->prog = prog;
423
424 return 0;
425 }
426
427 static struct bpf_cpu_map_entry *
__cpu_map_entry_alloc(struct bpf_map * map,struct bpf_cpumap_val * value,u32 cpu)428 __cpu_map_entry_alloc(struct bpf_map *map, struct bpf_cpumap_val *value,
429 u32 cpu)
430 {
431 int numa, err, i, fd = value->bpf_prog.fd;
432 gfp_t gfp = GFP_KERNEL | __GFP_NOWARN;
433 struct bpf_cpu_map_entry *rcpu;
434 struct xdp_bulk_queue *bq;
435
436 /* Have map->numa_node, but choose node of redirect target CPU */
437 numa = cpu_to_node(cpu);
438
439 rcpu = bpf_map_kmalloc_node(map, sizeof(*rcpu), gfp | __GFP_ZERO, numa);
440 if (!rcpu)
441 return NULL;
442
443 /* Alloc percpu bulkq */
444 rcpu->bulkq = bpf_map_alloc_percpu(map, sizeof(*rcpu->bulkq),
445 sizeof(void *), gfp);
446 if (!rcpu->bulkq)
447 goto free_rcu;
448
449 for_each_possible_cpu(i) {
450 bq = per_cpu_ptr(rcpu->bulkq, i);
451 bq->obj = rcpu;
452 }
453
454 /* Alloc queue */
455 rcpu->queue = bpf_map_kmalloc_node(map, sizeof(*rcpu->queue), gfp,
456 numa);
457 if (!rcpu->queue)
458 goto free_bulkq;
459
460 err = ptr_ring_init(rcpu->queue, value->qsize, gfp);
461 if (err)
462 goto free_queue;
463
464 rcpu->cpu = cpu;
465 rcpu->map_id = map->id;
466 rcpu->value.qsize = value->qsize;
467
468 if (fd > 0 && __cpu_map_load_bpf_program(rcpu, fd))
469 goto free_ptr_ring;
470
471 /* Setup kthread */
472 init_completion(&rcpu->kthread_running);
473 rcpu->kthread = kthread_create_on_node(cpu_map_kthread_run, rcpu, numa,
474 "cpumap/%d/map:%d", cpu,
475 map->id);
476 if (IS_ERR(rcpu->kthread))
477 goto free_prog;
478
479 get_cpu_map_entry(rcpu); /* 1-refcnt for being in cmap->cpu_map[] */
480 get_cpu_map_entry(rcpu); /* 1-refcnt for kthread */
481
482 /* Make sure kthread runs on a single CPU */
483 kthread_bind(rcpu->kthread, cpu);
484 wake_up_process(rcpu->kthread);
485
486 /* Make sure kthread has been running, so kthread_stop() will not
487 * stop the kthread prematurely and all pending frames or skbs
488 * will be handled by the kthread before kthread_stop() returns.
489 */
490 wait_for_completion(&rcpu->kthread_running);
491
492 return rcpu;
493
494 free_prog:
495 if (rcpu->prog)
496 bpf_prog_put(rcpu->prog);
497 free_ptr_ring:
498 ptr_ring_cleanup(rcpu->queue, NULL);
499 free_queue:
500 kfree(rcpu->queue);
501 free_bulkq:
502 free_percpu(rcpu->bulkq);
503 free_rcu:
504 kfree(rcpu);
505 return NULL;
506 }
507
__cpu_map_entry_free(struct rcu_head * rcu)508 static void __cpu_map_entry_free(struct rcu_head *rcu)
509 {
510 struct bpf_cpu_map_entry *rcpu;
511
512 /* This cpu_map_entry have been disconnected from map and one
513 * RCU grace-period have elapsed. Thus, XDP cannot queue any
514 * new packets and cannot change/set flush_needed that can
515 * find this entry.
516 */
517 rcpu = container_of(rcu, struct bpf_cpu_map_entry, rcu);
518
519 free_percpu(rcpu->bulkq);
520 /* Cannot kthread_stop() here, last put free rcpu resources */
521 put_cpu_map_entry(rcpu);
522 }
523
524 /* After xchg pointer to bpf_cpu_map_entry, use the call_rcu() to
525 * ensure any driver rcu critical sections have completed, but this
526 * does not guarantee a flush has happened yet. Because driver side
527 * rcu_read_lock/unlock only protects the running XDP program. The
528 * atomic xchg and NULL-ptr check in __cpu_map_flush() makes sure a
529 * pending flush op doesn't fail.
530 *
531 * The bpf_cpu_map_entry is still used by the kthread, and there can
532 * still be pending packets (in queue and percpu bulkq). A refcnt
533 * makes sure to last user (kthread_stop vs. call_rcu) free memory
534 * resources.
535 *
536 * The rcu callback __cpu_map_entry_free flush remaining packets in
537 * percpu bulkq to queue. Due to caller map_delete_elem() disable
538 * preemption, cannot call kthread_stop() to make sure queue is empty.
539 * Instead a work_queue is started for stopping kthread,
540 * cpu_map_kthread_stop, which waits for an RCU grace period before
541 * stopping kthread, emptying the queue.
542 */
__cpu_map_entry_replace(struct bpf_cpu_map * cmap,u32 key_cpu,struct bpf_cpu_map_entry * rcpu)543 static void __cpu_map_entry_replace(struct bpf_cpu_map *cmap,
544 u32 key_cpu, struct bpf_cpu_map_entry *rcpu)
545 {
546 struct bpf_cpu_map_entry *old_rcpu;
547
548 old_rcpu = unrcu_pointer(xchg(&cmap->cpu_map[key_cpu], RCU_INITIALIZER(rcpu)));
549 if (old_rcpu) {
550 call_rcu(&old_rcpu->rcu, __cpu_map_entry_free);
551 INIT_WORK(&old_rcpu->kthread_stop_wq, cpu_map_kthread_stop);
552 schedule_work(&old_rcpu->kthread_stop_wq);
553 }
554 }
555
cpu_map_delete_elem(struct bpf_map * map,void * key)556 static int cpu_map_delete_elem(struct bpf_map *map, void *key)
557 {
558 struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
559 u32 key_cpu = *(u32 *)key;
560
561 if (key_cpu >= map->max_entries)
562 return -EINVAL;
563
564 /* notice caller map_delete_elem() use preempt_disable() */
565 __cpu_map_entry_replace(cmap, key_cpu, NULL);
566 return 0;
567 }
568
cpu_map_update_elem(struct bpf_map * map,void * key,void * value,u64 map_flags)569 static int cpu_map_update_elem(struct bpf_map *map, void *key, void *value,
570 u64 map_flags)
571 {
572 struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
573 struct bpf_cpumap_val cpumap_value = {};
574 struct bpf_cpu_map_entry *rcpu;
575 /* Array index key correspond to CPU number */
576 u32 key_cpu = *(u32 *)key;
577
578 memcpy(&cpumap_value, value, map->value_size);
579
580 if (unlikely(map_flags > BPF_EXIST))
581 return -EINVAL;
582 if (unlikely(key_cpu >= cmap->map.max_entries))
583 return -E2BIG;
584 if (unlikely(map_flags == BPF_NOEXIST))
585 return -EEXIST;
586 if (unlikely(cpumap_value.qsize > 16384)) /* sanity limit on qsize */
587 return -EOVERFLOW;
588
589 /* Make sure CPU is a valid possible cpu */
590 if (key_cpu >= nr_cpumask_bits || !cpu_possible(key_cpu))
591 return -ENODEV;
592
593 if (cpumap_value.qsize == 0) {
594 rcpu = NULL; /* Same as deleting */
595 } else {
596 /* Updating qsize cause re-allocation of bpf_cpu_map_entry */
597 rcpu = __cpu_map_entry_alloc(map, &cpumap_value, key_cpu);
598 if (!rcpu)
599 return -ENOMEM;
600 rcpu->cmap = cmap;
601 }
602 rcu_read_lock();
603 __cpu_map_entry_replace(cmap, key_cpu, rcpu);
604 rcu_read_unlock();
605 return 0;
606 }
607
cpu_map_free(struct bpf_map * map)608 static void cpu_map_free(struct bpf_map *map)
609 {
610 struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
611 u32 i;
612
613 /* At this point bpf_prog->aux->refcnt == 0 and this map->refcnt == 0,
614 * so the bpf programs (can be more than one that used this map) were
615 * disconnected from events. Wait for outstanding critical sections in
616 * these programs to complete. The rcu critical section only guarantees
617 * no further "XDP/bpf-side" reads against bpf_cpu_map->cpu_map.
618 * It does __not__ ensure pending flush operations (if any) are
619 * complete.
620 */
621
622 synchronize_rcu();
623
624 /* For cpu_map the remote CPUs can still be using the entries
625 * (struct bpf_cpu_map_entry).
626 */
627 for (i = 0; i < cmap->map.max_entries; i++) {
628 struct bpf_cpu_map_entry *rcpu;
629
630 rcpu = rcu_dereference_raw(cmap->cpu_map[i]);
631 if (!rcpu)
632 continue;
633
634 /* bq flush and cleanup happens after RCU grace-period */
635 __cpu_map_entry_replace(cmap, i, NULL); /* call_rcu */
636 }
637 bpf_map_area_free(cmap->cpu_map);
638 kfree(cmap);
639 }
640
641 /* Elements are kept alive by RCU; either by rcu_read_lock() (from syscall) or
642 * by local_bh_disable() (from XDP calls inside NAPI). The
643 * rcu_read_lock_bh_held() below makes lockdep accept both.
644 */
__cpu_map_lookup_elem(struct bpf_map * map,u32 key)645 static void *__cpu_map_lookup_elem(struct bpf_map *map, u32 key)
646 {
647 struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
648 struct bpf_cpu_map_entry *rcpu;
649
650 if (key >= map->max_entries)
651 return NULL;
652
653 rcpu = rcu_dereference_check(cmap->cpu_map[key],
654 rcu_read_lock_bh_held());
655 return rcpu;
656 }
657
cpu_map_lookup_elem(struct bpf_map * map,void * key)658 static void *cpu_map_lookup_elem(struct bpf_map *map, void *key)
659 {
660 struct bpf_cpu_map_entry *rcpu =
661 __cpu_map_lookup_elem(map, *(u32 *)key);
662
663 return rcpu ? &rcpu->value : NULL;
664 }
665
cpu_map_get_next_key(struct bpf_map * map,void * key,void * next_key)666 static int cpu_map_get_next_key(struct bpf_map *map, void *key, void *next_key)
667 {
668 struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
669 u32 index = key ? *(u32 *)key : U32_MAX;
670 u32 *next = next_key;
671
672 if (index >= cmap->map.max_entries) {
673 *next = 0;
674 return 0;
675 }
676
677 if (index == cmap->map.max_entries - 1)
678 return -ENOENT;
679 *next = index + 1;
680 return 0;
681 }
682
cpu_map_redirect(struct bpf_map * map,u32 ifindex,u64 flags)683 static int cpu_map_redirect(struct bpf_map *map, u32 ifindex, u64 flags)
684 {
685 return __bpf_xdp_redirect_map(map, ifindex, flags, 0,
686 __cpu_map_lookup_elem);
687 }
688
689 static int cpu_map_btf_id;
690 const struct bpf_map_ops cpu_map_ops = {
691 .map_meta_equal = bpf_map_meta_equal,
692 .map_alloc = cpu_map_alloc,
693 .map_free = cpu_map_free,
694 .map_delete_elem = cpu_map_delete_elem,
695 .map_update_elem = cpu_map_update_elem,
696 .map_lookup_elem = cpu_map_lookup_elem,
697 .map_get_next_key = cpu_map_get_next_key,
698 .map_check_btf = map_check_no_btf,
699 .map_btf_name = "bpf_cpu_map",
700 .map_btf_id = &cpu_map_btf_id,
701 .map_redirect = cpu_map_redirect,
702 };
703
bq_flush_to_queue(struct xdp_bulk_queue * bq)704 static void bq_flush_to_queue(struct xdp_bulk_queue *bq)
705 {
706 struct bpf_cpu_map_entry *rcpu = bq->obj;
707 unsigned int processed = 0, drops = 0;
708 const int to_cpu = rcpu->cpu;
709 struct ptr_ring *q;
710 int i;
711
712 if (unlikely(!bq->count))
713 return;
714
715 q = rcpu->queue;
716 spin_lock(&q->producer_lock);
717
718 for (i = 0; i < bq->count; i++) {
719 struct xdp_frame *xdpf = bq->q[i];
720 int err;
721
722 err = __ptr_ring_produce(q, xdpf);
723 if (err) {
724 drops++;
725 xdp_return_frame_rx_napi(xdpf);
726 }
727 processed++;
728 }
729 bq->count = 0;
730 spin_unlock(&q->producer_lock);
731
732 __list_del_clearprev(&bq->flush_node);
733
734 /* Feedback loop via tracepoints */
735 trace_xdp_cpumap_enqueue(rcpu->map_id, processed, drops, to_cpu);
736 }
737
738 /* Runs under RCU-read-side, plus in softirq under NAPI protection.
739 * Thus, safe percpu variable access.
740 */
bq_enqueue(struct bpf_cpu_map_entry * rcpu,struct xdp_frame * xdpf)741 static void bq_enqueue(struct bpf_cpu_map_entry *rcpu, struct xdp_frame *xdpf)
742 {
743 struct list_head *flush_list = this_cpu_ptr(&cpu_map_flush_list);
744 struct xdp_bulk_queue *bq = this_cpu_ptr(rcpu->bulkq);
745
746 if (unlikely(bq->count == CPU_MAP_BULK_SIZE))
747 bq_flush_to_queue(bq);
748
749 /* Notice, xdp_buff/page MUST be queued here, long enough for
750 * driver to code invoking us to finished, due to driver
751 * (e.g. ixgbe) recycle tricks based on page-refcnt.
752 *
753 * Thus, incoming xdp_frame is always queued here (else we race
754 * with another CPU on page-refcnt and remaining driver code).
755 * Queue time is very short, as driver will invoke flush
756 * operation, when completing napi->poll call.
757 */
758 bq->q[bq->count++] = xdpf;
759
760 if (!bq->flush_node.prev)
761 list_add(&bq->flush_node, flush_list);
762 }
763
cpu_map_enqueue(struct bpf_cpu_map_entry * rcpu,struct xdp_buff * xdp,struct net_device * dev_rx)764 int cpu_map_enqueue(struct bpf_cpu_map_entry *rcpu, struct xdp_buff *xdp,
765 struct net_device *dev_rx)
766 {
767 struct xdp_frame *xdpf;
768
769 xdpf = xdp_convert_buff_to_frame(xdp);
770 if (unlikely(!xdpf))
771 return -EOVERFLOW;
772
773 /* Info needed when constructing SKB on remote CPU */
774 xdpf->dev_rx = dev_rx;
775
776 bq_enqueue(rcpu, xdpf);
777 return 0;
778 }
779
cpu_map_generic_redirect(struct bpf_cpu_map_entry * rcpu,struct sk_buff * skb)780 int cpu_map_generic_redirect(struct bpf_cpu_map_entry *rcpu,
781 struct sk_buff *skb)
782 {
783 int ret;
784
785 __skb_pull(skb, skb->mac_len);
786 skb_set_redirected(skb, false);
787 __ptr_set_bit(0, &skb);
788
789 ret = ptr_ring_produce(rcpu->queue, skb);
790 if (ret < 0)
791 goto trace;
792
793 wake_up_process(rcpu->kthread);
794 trace:
795 trace_xdp_cpumap_enqueue(rcpu->map_id, !ret, !!ret, rcpu->cpu);
796 return ret;
797 }
798
__cpu_map_flush(void)799 void __cpu_map_flush(void)
800 {
801 struct list_head *flush_list = this_cpu_ptr(&cpu_map_flush_list);
802 struct xdp_bulk_queue *bq, *tmp;
803
804 list_for_each_entry_safe(bq, tmp, flush_list, flush_node) {
805 bq_flush_to_queue(bq);
806
807 /* If already running, costs spin_lock_irqsave + smb_mb */
808 wake_up_process(bq->obj->kthread);
809 }
810 }
811
cpu_map_init(void)812 static int __init cpu_map_init(void)
813 {
814 int cpu;
815
816 for_each_possible_cpu(cpu)
817 INIT_LIST_HEAD(&per_cpu(cpu_map_flush_list, cpu));
818 return 0;
819 }
820
821 subsys_initcall(cpu_map_init);
822