1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * PS3 address space management.
4 *
5 * Copyright (C) 2006 Sony Computer Entertainment Inc.
6 * Copyright 2006 Sony Corp.
7 */
8
9 #include <linux/dma-mapping.h>
10 #include <linux/kernel.h>
11 #include <linux/export.h>
12 #include <linux/memblock.h>
13 #include <linux/slab.h>
14
15 #include <asm/cell-regs.h>
16 #include <asm/firmware.h>
17 #include <asm/prom.h>
18 #include <asm/udbg.h>
19 #include <asm/lv1call.h>
20 #include <asm/setup.h>
21
22 #include "platform.h"
23
24 #if defined(DEBUG)
25 #define DBG udbg_printf
26 #else
27 #define DBG pr_devel
28 #endif
29
30 enum {
31 #if defined(CONFIG_PS3_DYNAMIC_DMA)
32 USE_DYNAMIC_DMA = 1,
33 #else
34 USE_DYNAMIC_DMA = 0,
35 #endif
36 };
37
38 enum {
39 PAGE_SHIFT_4K = 12U,
40 PAGE_SHIFT_64K = 16U,
41 PAGE_SHIFT_16M = 24U,
42 };
43
make_page_sizes(unsigned long a,unsigned long b)44 static unsigned long make_page_sizes(unsigned long a, unsigned long b)
45 {
46 return (a << 56) | (b << 48);
47 }
48
49 enum {
50 ALLOCATE_MEMORY_TRY_ALT_UNIT = 0X04,
51 ALLOCATE_MEMORY_ADDR_ZERO = 0X08,
52 };
53
54 /* valid htab sizes are {18,19,20} = 256K, 512K, 1M */
55
56 enum {
57 HTAB_SIZE_MAX = 20U, /* HV limit of 1MB */
58 HTAB_SIZE_MIN = 18U, /* CPU limit of 256KB */
59 };
60
61 /*============================================================================*/
62 /* virtual address space routines */
63 /*============================================================================*/
64
65 /**
66 * struct mem_region - memory region structure
67 * @base: base address
68 * @size: size in bytes
69 * @offset: difference between base and rm.size
70 * @destroy: flag if region should be destroyed upon shutdown
71 */
72
73 struct mem_region {
74 u64 base;
75 u64 size;
76 unsigned long offset;
77 int destroy;
78 };
79
80 /**
81 * struct map - address space state variables holder
82 * @total: total memory available as reported by HV
83 * @vas_id - HV virtual address space id
84 * @htab_size: htab size in bytes
85 *
86 * The HV virtual address space (vas) allows for hotplug memory regions.
87 * Memory regions can be created and destroyed in the vas at runtime.
88 * @rm: real mode (bootmem) region
89 * @r1: highmem region(s)
90 *
91 * ps3 addresses
92 * virt_addr: a cpu 'translated' effective address
93 * phys_addr: an address in what Linux thinks is the physical address space
94 * lpar_addr: an address in the HV virtual address space
95 * bus_addr: an io controller 'translated' address on a device bus
96 */
97
98 struct map {
99 u64 total;
100 u64 vas_id;
101 u64 htab_size;
102 struct mem_region rm;
103 struct mem_region r1;
104 };
105
106 #define debug_dump_map(x) _debug_dump_map(x, __func__, __LINE__)
_debug_dump_map(const struct map * m,const char * func,int line)107 static void __maybe_unused _debug_dump_map(const struct map *m,
108 const char *func, int line)
109 {
110 DBG("%s:%d: map.total = %llxh\n", func, line, m->total);
111 DBG("%s:%d: map.rm.size = %llxh\n", func, line, m->rm.size);
112 DBG("%s:%d: map.vas_id = %llu\n", func, line, m->vas_id);
113 DBG("%s:%d: map.htab_size = %llxh\n", func, line, m->htab_size);
114 DBG("%s:%d: map.r1.base = %llxh\n", func, line, m->r1.base);
115 DBG("%s:%d: map.r1.offset = %lxh\n", func, line, m->r1.offset);
116 DBG("%s:%d: map.r1.size = %llxh\n", func, line, m->r1.size);
117 }
118
119 static struct map map;
120
121 /**
122 * ps3_mm_phys_to_lpar - translate a linux physical address to lpar address
123 * @phys_addr: linux physical address
124 */
125
ps3_mm_phys_to_lpar(unsigned long phys_addr)126 unsigned long ps3_mm_phys_to_lpar(unsigned long phys_addr)
127 {
128 BUG_ON(is_kernel_addr(phys_addr));
129 return (phys_addr < map.rm.size || phys_addr >= map.total)
130 ? phys_addr : phys_addr + map.r1.offset;
131 }
132
133 EXPORT_SYMBOL(ps3_mm_phys_to_lpar);
134
135 /**
136 * ps3_mm_vas_create - create the virtual address space
137 */
138
ps3_mm_vas_create(unsigned long * htab_size)139 void __init ps3_mm_vas_create(unsigned long* htab_size)
140 {
141 int result;
142 u64 start_address;
143 u64 size;
144 u64 access_right;
145 u64 max_page_size;
146 u64 flags;
147
148 result = lv1_query_logical_partition_address_region_info(0,
149 &start_address, &size, &access_right, &max_page_size,
150 &flags);
151
152 if (result) {
153 DBG("%s:%d: lv1_query_logical_partition_address_region_info "
154 "failed: %s\n", __func__, __LINE__,
155 ps3_result(result));
156 goto fail;
157 }
158
159 if (max_page_size < PAGE_SHIFT_16M) {
160 DBG("%s:%d: bad max_page_size %llxh\n", __func__, __LINE__,
161 max_page_size);
162 goto fail;
163 }
164
165 BUILD_BUG_ON(CONFIG_PS3_HTAB_SIZE > HTAB_SIZE_MAX);
166 BUILD_BUG_ON(CONFIG_PS3_HTAB_SIZE < HTAB_SIZE_MIN);
167
168 result = lv1_construct_virtual_address_space(CONFIG_PS3_HTAB_SIZE,
169 2, make_page_sizes(PAGE_SHIFT_16M, PAGE_SHIFT_64K),
170 &map.vas_id, &map.htab_size);
171
172 if (result) {
173 DBG("%s:%d: lv1_construct_virtual_address_space failed: %s\n",
174 __func__, __LINE__, ps3_result(result));
175 goto fail;
176 }
177
178 result = lv1_select_virtual_address_space(map.vas_id);
179
180 if (result) {
181 DBG("%s:%d: lv1_select_virtual_address_space failed: %s\n",
182 __func__, __LINE__, ps3_result(result));
183 goto fail;
184 }
185
186 *htab_size = map.htab_size;
187
188 debug_dump_map(&map);
189
190 return;
191
192 fail:
193 panic("ps3_mm_vas_create failed");
194 }
195
196 /**
197 * ps3_mm_vas_destroy -
198 *
199 * called during kexec sequence with MMU off.
200 */
201
ps3_mm_vas_destroy(void)202 notrace void ps3_mm_vas_destroy(void)
203 {
204 int result;
205
206 if (map.vas_id) {
207 result = lv1_select_virtual_address_space(0);
208 result += lv1_destruct_virtual_address_space(map.vas_id);
209
210 if (result) {
211 lv1_panic(0);
212 }
213
214 map.vas_id = 0;
215 }
216 }
217
ps3_mm_get_repository_highmem(struct mem_region * r)218 static int ps3_mm_get_repository_highmem(struct mem_region *r)
219 {
220 int result;
221
222 /* Assume a single highmem region. */
223
224 result = ps3_repository_read_highmem_info(0, &r->base, &r->size);
225
226 if (result)
227 goto zero_region;
228
229 if (!r->base || !r->size) {
230 result = -1;
231 goto zero_region;
232 }
233
234 r->offset = r->base - map.rm.size;
235
236 DBG("%s:%d: Found high region in repository: %llxh %llxh\n",
237 __func__, __LINE__, r->base, r->size);
238
239 return 0;
240
241 zero_region:
242 DBG("%s:%d: No high region in repository.\n", __func__, __LINE__);
243
244 r->size = r->base = r->offset = 0;
245 return result;
246 }
247
ps3_mm_set_repository_highmem(const struct mem_region * r)248 static int ps3_mm_set_repository_highmem(const struct mem_region *r)
249 {
250 /* Assume a single highmem region. */
251
252 return r ? ps3_repository_write_highmem_info(0, r->base, r->size) :
253 ps3_repository_write_highmem_info(0, 0, 0);
254 }
255
256 /**
257 * ps3_mm_region_create - create a memory region in the vas
258 * @r: pointer to a struct mem_region to accept initialized values
259 * @size: requested region size
260 *
261 * This implementation creates the region with the vas large page size.
262 * @size is rounded down to a multiple of the vas large page size.
263 */
264
ps3_mm_region_create(struct mem_region * r,unsigned long size)265 static int ps3_mm_region_create(struct mem_region *r, unsigned long size)
266 {
267 int result;
268 u64 muid;
269
270 r->size = ALIGN_DOWN(size, 1 << PAGE_SHIFT_16M);
271
272 DBG("%s:%d requested %lxh\n", __func__, __LINE__, size);
273 DBG("%s:%d actual %llxh\n", __func__, __LINE__, r->size);
274 DBG("%s:%d difference %llxh (%lluMB)\n", __func__, __LINE__,
275 size - r->size, (size - r->size) / 1024 / 1024);
276
277 if (r->size == 0) {
278 DBG("%s:%d: size == 0\n", __func__, __LINE__);
279 result = -1;
280 goto zero_region;
281 }
282
283 result = lv1_allocate_memory(r->size, PAGE_SHIFT_16M, 0,
284 ALLOCATE_MEMORY_TRY_ALT_UNIT, &r->base, &muid);
285
286 if (result || r->base < map.rm.size) {
287 DBG("%s:%d: lv1_allocate_memory failed: %s\n",
288 __func__, __LINE__, ps3_result(result));
289 goto zero_region;
290 }
291
292 r->destroy = 1;
293 r->offset = r->base - map.rm.size;
294 return result;
295
296 zero_region:
297 r->size = r->base = r->offset = 0;
298 return result;
299 }
300
301 /**
302 * ps3_mm_region_destroy - destroy a memory region
303 * @r: pointer to struct mem_region
304 */
305
ps3_mm_region_destroy(struct mem_region * r)306 static void ps3_mm_region_destroy(struct mem_region *r)
307 {
308 int result;
309
310 if (!r->destroy) {
311 return;
312 }
313
314 if (r->base) {
315 result = lv1_release_memory(r->base);
316
317 if (result) {
318 lv1_panic(0);
319 }
320
321 r->size = r->base = r->offset = 0;
322 map.total = map.rm.size;
323 }
324
325 ps3_mm_set_repository_highmem(NULL);
326 }
327
328 /*============================================================================*/
329 /* dma routines */
330 /*============================================================================*/
331
332 /**
333 * dma_sb_lpar_to_bus - Translate an lpar address to ioc mapped bus address.
334 * @r: pointer to dma region structure
335 * @lpar_addr: HV lpar address
336 */
337
dma_sb_lpar_to_bus(struct ps3_dma_region * r,unsigned long lpar_addr)338 static unsigned long dma_sb_lpar_to_bus(struct ps3_dma_region *r,
339 unsigned long lpar_addr)
340 {
341 if (lpar_addr >= map.rm.size)
342 lpar_addr -= map.r1.offset;
343 BUG_ON(lpar_addr < r->offset);
344 BUG_ON(lpar_addr >= r->offset + r->len);
345 return r->bus_addr + lpar_addr - r->offset;
346 }
347
348 #define dma_dump_region(_a) _dma_dump_region(_a, __func__, __LINE__)
_dma_dump_region(const struct ps3_dma_region * r,const char * func,int line)349 static void __maybe_unused _dma_dump_region(const struct ps3_dma_region *r,
350 const char *func, int line)
351 {
352 DBG("%s:%d: dev %llu:%llu\n", func, line, r->dev->bus_id,
353 r->dev->dev_id);
354 DBG("%s:%d: page_size %u\n", func, line, r->page_size);
355 DBG("%s:%d: bus_addr %lxh\n", func, line, r->bus_addr);
356 DBG("%s:%d: len %lxh\n", func, line, r->len);
357 DBG("%s:%d: offset %lxh\n", func, line, r->offset);
358 }
359
360 /**
361 * dma_chunk - A chunk of dma pages mapped by the io controller.
362 * @region - The dma region that owns this chunk.
363 * @lpar_addr: Starting lpar address of the area to map.
364 * @bus_addr: Starting ioc bus address of the area to map.
365 * @len: Length in bytes of the area to map.
366 * @link: A struct list_head used with struct ps3_dma_region.chunk_list, the
367 * list of all chuncks owned by the region.
368 *
369 * This implementation uses a very simple dma page manager
370 * based on the dma_chunk structure. This scheme assumes
371 * that all drivers use very well behaved dma ops.
372 */
373
374 struct dma_chunk {
375 struct ps3_dma_region *region;
376 unsigned long lpar_addr;
377 unsigned long bus_addr;
378 unsigned long len;
379 struct list_head link;
380 unsigned int usage_count;
381 };
382
383 #define dma_dump_chunk(_a) _dma_dump_chunk(_a, __func__, __LINE__)
_dma_dump_chunk(const struct dma_chunk * c,const char * func,int line)384 static void _dma_dump_chunk (const struct dma_chunk* c, const char* func,
385 int line)
386 {
387 DBG("%s:%d: r.dev %llu:%llu\n", func, line,
388 c->region->dev->bus_id, c->region->dev->dev_id);
389 DBG("%s:%d: r.bus_addr %lxh\n", func, line, c->region->bus_addr);
390 DBG("%s:%d: r.page_size %u\n", func, line, c->region->page_size);
391 DBG("%s:%d: r.len %lxh\n", func, line, c->region->len);
392 DBG("%s:%d: r.offset %lxh\n", func, line, c->region->offset);
393 DBG("%s:%d: c.lpar_addr %lxh\n", func, line, c->lpar_addr);
394 DBG("%s:%d: c.bus_addr %lxh\n", func, line, c->bus_addr);
395 DBG("%s:%d: c.len %lxh\n", func, line, c->len);
396 }
397
dma_find_chunk(struct ps3_dma_region * r,unsigned long bus_addr,unsigned long len)398 static struct dma_chunk * dma_find_chunk(struct ps3_dma_region *r,
399 unsigned long bus_addr, unsigned long len)
400 {
401 struct dma_chunk *c;
402 unsigned long aligned_bus = ALIGN_DOWN(bus_addr, 1 << r->page_size);
403 unsigned long aligned_len = ALIGN(len+bus_addr-aligned_bus,
404 1 << r->page_size);
405
406 list_for_each_entry(c, &r->chunk_list.head, link) {
407 /* intersection */
408 if (aligned_bus >= c->bus_addr &&
409 aligned_bus + aligned_len <= c->bus_addr + c->len)
410 return c;
411
412 /* below */
413 if (aligned_bus + aligned_len <= c->bus_addr)
414 continue;
415
416 /* above */
417 if (aligned_bus >= c->bus_addr + c->len)
418 continue;
419
420 /* we don't handle the multi-chunk case for now */
421 dma_dump_chunk(c);
422 BUG();
423 }
424 return NULL;
425 }
426
dma_find_chunk_lpar(struct ps3_dma_region * r,unsigned long lpar_addr,unsigned long len)427 static struct dma_chunk *dma_find_chunk_lpar(struct ps3_dma_region *r,
428 unsigned long lpar_addr, unsigned long len)
429 {
430 struct dma_chunk *c;
431 unsigned long aligned_lpar = ALIGN_DOWN(lpar_addr, 1 << r->page_size);
432 unsigned long aligned_len = ALIGN(len + lpar_addr - aligned_lpar,
433 1 << r->page_size);
434
435 list_for_each_entry(c, &r->chunk_list.head, link) {
436 /* intersection */
437 if (c->lpar_addr <= aligned_lpar &&
438 aligned_lpar < c->lpar_addr + c->len) {
439 if (aligned_lpar + aligned_len <= c->lpar_addr + c->len)
440 return c;
441 else {
442 dma_dump_chunk(c);
443 BUG();
444 }
445 }
446 /* below */
447 if (aligned_lpar + aligned_len <= c->lpar_addr) {
448 continue;
449 }
450 /* above */
451 if (c->lpar_addr + c->len <= aligned_lpar) {
452 continue;
453 }
454 }
455 return NULL;
456 }
457
dma_sb_free_chunk(struct dma_chunk * c)458 static int dma_sb_free_chunk(struct dma_chunk *c)
459 {
460 int result = 0;
461
462 if (c->bus_addr) {
463 result = lv1_unmap_device_dma_region(c->region->dev->bus_id,
464 c->region->dev->dev_id, c->bus_addr, c->len);
465 BUG_ON(result);
466 }
467
468 kfree(c);
469 return result;
470 }
471
dma_ioc0_free_chunk(struct dma_chunk * c)472 static int dma_ioc0_free_chunk(struct dma_chunk *c)
473 {
474 int result = 0;
475 int iopage;
476 unsigned long offset;
477 struct ps3_dma_region *r = c->region;
478
479 DBG("%s:start\n", __func__);
480 for (iopage = 0; iopage < (c->len >> r->page_size); iopage++) {
481 offset = (1 << r->page_size) * iopage;
482 /* put INVALID entry */
483 result = lv1_put_iopte(0,
484 c->bus_addr + offset,
485 c->lpar_addr + offset,
486 r->ioid,
487 0);
488 DBG("%s: bus=%#lx, lpar=%#lx, ioid=%d\n", __func__,
489 c->bus_addr + offset,
490 c->lpar_addr + offset,
491 r->ioid);
492
493 if (result) {
494 DBG("%s:%d: lv1_put_iopte failed: %s\n", __func__,
495 __LINE__, ps3_result(result));
496 }
497 }
498 kfree(c);
499 DBG("%s:end\n", __func__);
500 return result;
501 }
502
503 /**
504 * dma_sb_map_pages - Maps dma pages into the io controller bus address space.
505 * @r: Pointer to a struct ps3_dma_region.
506 * @phys_addr: Starting physical address of the area to map.
507 * @len: Length in bytes of the area to map.
508 * c_out: A pointer to receive an allocated struct dma_chunk for this area.
509 *
510 * This is the lowest level dma mapping routine, and is the one that will
511 * make the HV call to add the pages into the io controller address space.
512 */
513
dma_sb_map_pages(struct ps3_dma_region * r,unsigned long phys_addr,unsigned long len,struct dma_chunk ** c_out,u64 iopte_flag)514 static int dma_sb_map_pages(struct ps3_dma_region *r, unsigned long phys_addr,
515 unsigned long len, struct dma_chunk **c_out, u64 iopte_flag)
516 {
517 int result;
518 struct dma_chunk *c;
519
520 c = kzalloc(sizeof(*c), GFP_ATOMIC);
521 if (!c) {
522 result = -ENOMEM;
523 goto fail_alloc;
524 }
525
526 c->region = r;
527 c->lpar_addr = ps3_mm_phys_to_lpar(phys_addr);
528 c->bus_addr = dma_sb_lpar_to_bus(r, c->lpar_addr);
529 c->len = len;
530
531 BUG_ON(iopte_flag != 0xf800000000000000UL);
532 result = lv1_map_device_dma_region(c->region->dev->bus_id,
533 c->region->dev->dev_id, c->lpar_addr,
534 c->bus_addr, c->len, iopte_flag);
535 if (result) {
536 DBG("%s:%d: lv1_map_device_dma_region failed: %s\n",
537 __func__, __LINE__, ps3_result(result));
538 goto fail_map;
539 }
540
541 list_add(&c->link, &r->chunk_list.head);
542
543 *c_out = c;
544 return 0;
545
546 fail_map:
547 kfree(c);
548 fail_alloc:
549 *c_out = NULL;
550 DBG(" <- %s:%d\n", __func__, __LINE__);
551 return result;
552 }
553
dma_ioc0_map_pages(struct ps3_dma_region * r,unsigned long phys_addr,unsigned long len,struct dma_chunk ** c_out,u64 iopte_flag)554 static int dma_ioc0_map_pages(struct ps3_dma_region *r, unsigned long phys_addr,
555 unsigned long len, struct dma_chunk **c_out,
556 u64 iopte_flag)
557 {
558 int result;
559 struct dma_chunk *c, *last;
560 int iopage, pages;
561 unsigned long offset;
562
563 DBG(KERN_ERR "%s: phy=%#lx, lpar%#lx, len=%#lx\n", __func__,
564 phys_addr, ps3_mm_phys_to_lpar(phys_addr), len);
565 c = kzalloc(sizeof(*c), GFP_ATOMIC);
566 if (!c) {
567 result = -ENOMEM;
568 goto fail_alloc;
569 }
570
571 c->region = r;
572 c->len = len;
573 c->lpar_addr = ps3_mm_phys_to_lpar(phys_addr);
574 /* allocate IO address */
575 if (list_empty(&r->chunk_list.head)) {
576 /* first one */
577 c->bus_addr = r->bus_addr;
578 } else {
579 /* derive from last bus addr*/
580 last = list_entry(r->chunk_list.head.next,
581 struct dma_chunk, link);
582 c->bus_addr = last->bus_addr + last->len;
583 DBG("%s: last bus=%#lx, len=%#lx\n", __func__,
584 last->bus_addr, last->len);
585 }
586
587 /* FIXME: check whether length exceeds region size */
588
589 /* build ioptes for the area */
590 pages = len >> r->page_size;
591 DBG("%s: pgsize=%#x len=%#lx pages=%#x iopteflag=%#llx\n", __func__,
592 r->page_size, r->len, pages, iopte_flag);
593 for (iopage = 0; iopage < pages; iopage++) {
594 offset = (1 << r->page_size) * iopage;
595 result = lv1_put_iopte(0,
596 c->bus_addr + offset,
597 c->lpar_addr + offset,
598 r->ioid,
599 iopte_flag);
600 if (result) {
601 pr_warn("%s:%d: lv1_put_iopte failed: %s\n",
602 __func__, __LINE__, ps3_result(result));
603 goto fail_map;
604 }
605 DBG("%s: pg=%d bus=%#lx, lpar=%#lx, ioid=%#x\n", __func__,
606 iopage, c->bus_addr + offset, c->lpar_addr + offset,
607 r->ioid);
608 }
609
610 /* be sure that last allocated one is inserted at head */
611 list_add(&c->link, &r->chunk_list.head);
612
613 *c_out = c;
614 DBG("%s: end\n", __func__);
615 return 0;
616
617 fail_map:
618 for (iopage--; 0 <= iopage; iopage--) {
619 lv1_put_iopte(0,
620 c->bus_addr + offset,
621 c->lpar_addr + offset,
622 r->ioid,
623 0);
624 }
625 kfree(c);
626 fail_alloc:
627 *c_out = NULL;
628 return result;
629 }
630
631 /**
632 * dma_sb_region_create - Create a device dma region.
633 * @r: Pointer to a struct ps3_dma_region.
634 *
635 * This is the lowest level dma region create routine, and is the one that
636 * will make the HV call to create the region.
637 */
638
dma_sb_region_create(struct ps3_dma_region * r)639 static int dma_sb_region_create(struct ps3_dma_region *r)
640 {
641 int result;
642 u64 bus_addr;
643
644 DBG(" -> %s:%d:\n", __func__, __LINE__);
645
646 BUG_ON(!r);
647
648 if (!r->dev->bus_id) {
649 pr_info("%s:%d: %llu:%llu no dma\n", __func__, __LINE__,
650 r->dev->bus_id, r->dev->dev_id);
651 return 0;
652 }
653
654 DBG("%s:%u: len = 0x%lx, page_size = %u, offset = 0x%lx\n", __func__,
655 __LINE__, r->len, r->page_size, r->offset);
656
657 BUG_ON(!r->len);
658 BUG_ON(!r->page_size);
659 BUG_ON(!r->region_ops);
660
661 INIT_LIST_HEAD(&r->chunk_list.head);
662 spin_lock_init(&r->chunk_list.lock);
663
664 result = lv1_allocate_device_dma_region(r->dev->bus_id, r->dev->dev_id,
665 roundup_pow_of_two(r->len), r->page_size, r->region_type,
666 &bus_addr);
667 r->bus_addr = bus_addr;
668
669 if (result) {
670 DBG("%s:%d: lv1_allocate_device_dma_region failed: %s\n",
671 __func__, __LINE__, ps3_result(result));
672 r->len = r->bus_addr = 0;
673 }
674
675 return result;
676 }
677
dma_ioc0_region_create(struct ps3_dma_region * r)678 static int dma_ioc0_region_create(struct ps3_dma_region *r)
679 {
680 int result;
681 u64 bus_addr;
682
683 INIT_LIST_HEAD(&r->chunk_list.head);
684 spin_lock_init(&r->chunk_list.lock);
685
686 result = lv1_allocate_io_segment(0,
687 r->len,
688 r->page_size,
689 &bus_addr);
690 r->bus_addr = bus_addr;
691 if (result) {
692 DBG("%s:%d: lv1_allocate_io_segment failed: %s\n",
693 __func__, __LINE__, ps3_result(result));
694 r->len = r->bus_addr = 0;
695 }
696 DBG("%s: len=%#lx, pg=%d, bus=%#lx\n", __func__,
697 r->len, r->page_size, r->bus_addr);
698 return result;
699 }
700
701 /**
702 * dma_region_free - Free a device dma region.
703 * @r: Pointer to a struct ps3_dma_region.
704 *
705 * This is the lowest level dma region free routine, and is the one that
706 * will make the HV call to free the region.
707 */
708
dma_sb_region_free(struct ps3_dma_region * r)709 static int dma_sb_region_free(struct ps3_dma_region *r)
710 {
711 int result;
712 struct dma_chunk *c;
713 struct dma_chunk *tmp;
714
715 BUG_ON(!r);
716
717 if (!r->dev->bus_id) {
718 pr_info("%s:%d: %llu:%llu no dma\n", __func__, __LINE__,
719 r->dev->bus_id, r->dev->dev_id);
720 return 0;
721 }
722
723 list_for_each_entry_safe(c, tmp, &r->chunk_list.head, link) {
724 list_del(&c->link);
725 dma_sb_free_chunk(c);
726 }
727
728 result = lv1_free_device_dma_region(r->dev->bus_id, r->dev->dev_id,
729 r->bus_addr);
730
731 if (result)
732 DBG("%s:%d: lv1_free_device_dma_region failed: %s\n",
733 __func__, __LINE__, ps3_result(result));
734
735 r->bus_addr = 0;
736
737 return result;
738 }
739
dma_ioc0_region_free(struct ps3_dma_region * r)740 static int dma_ioc0_region_free(struct ps3_dma_region *r)
741 {
742 int result;
743 struct dma_chunk *c, *n;
744
745 DBG("%s: start\n", __func__);
746 list_for_each_entry_safe(c, n, &r->chunk_list.head, link) {
747 list_del(&c->link);
748 dma_ioc0_free_chunk(c);
749 }
750
751 result = lv1_release_io_segment(0, r->bus_addr);
752
753 if (result)
754 DBG("%s:%d: lv1_free_device_dma_region failed: %s\n",
755 __func__, __LINE__, ps3_result(result));
756
757 r->bus_addr = 0;
758 DBG("%s: end\n", __func__);
759
760 return result;
761 }
762
763 /**
764 * dma_sb_map_area - Map an area of memory into a device dma region.
765 * @r: Pointer to a struct ps3_dma_region.
766 * @virt_addr: Starting virtual address of the area to map.
767 * @len: Length in bytes of the area to map.
768 * @bus_addr: A pointer to return the starting ioc bus address of the area to
769 * map.
770 *
771 * This is the common dma mapping routine.
772 */
773
dma_sb_map_area(struct ps3_dma_region * r,unsigned long virt_addr,unsigned long len,dma_addr_t * bus_addr,u64 iopte_flag)774 static int dma_sb_map_area(struct ps3_dma_region *r, unsigned long virt_addr,
775 unsigned long len, dma_addr_t *bus_addr,
776 u64 iopte_flag)
777 {
778 int result;
779 unsigned long flags;
780 struct dma_chunk *c;
781 unsigned long phys_addr = is_kernel_addr(virt_addr) ? __pa(virt_addr)
782 : virt_addr;
783 unsigned long aligned_phys = ALIGN_DOWN(phys_addr, 1 << r->page_size);
784 unsigned long aligned_len = ALIGN(len + phys_addr - aligned_phys,
785 1 << r->page_size);
786 *bus_addr = dma_sb_lpar_to_bus(r, ps3_mm_phys_to_lpar(phys_addr));
787
788 if (!USE_DYNAMIC_DMA) {
789 unsigned long lpar_addr = ps3_mm_phys_to_lpar(phys_addr);
790 DBG(" -> %s:%d\n", __func__, __LINE__);
791 DBG("%s:%d virt_addr %lxh\n", __func__, __LINE__,
792 virt_addr);
793 DBG("%s:%d phys_addr %lxh\n", __func__, __LINE__,
794 phys_addr);
795 DBG("%s:%d lpar_addr %lxh\n", __func__, __LINE__,
796 lpar_addr);
797 DBG("%s:%d len %lxh\n", __func__, __LINE__, len);
798 DBG("%s:%d bus_addr %llxh (%lxh)\n", __func__, __LINE__,
799 *bus_addr, len);
800 }
801
802 spin_lock_irqsave(&r->chunk_list.lock, flags);
803 c = dma_find_chunk(r, *bus_addr, len);
804
805 if (c) {
806 DBG("%s:%d: reusing mapped chunk", __func__, __LINE__);
807 dma_dump_chunk(c);
808 c->usage_count++;
809 spin_unlock_irqrestore(&r->chunk_list.lock, flags);
810 return 0;
811 }
812
813 result = dma_sb_map_pages(r, aligned_phys, aligned_len, &c, iopte_flag);
814
815 if (result) {
816 *bus_addr = 0;
817 DBG("%s:%d: dma_sb_map_pages failed (%d)\n",
818 __func__, __LINE__, result);
819 spin_unlock_irqrestore(&r->chunk_list.lock, flags);
820 return result;
821 }
822
823 c->usage_count = 1;
824
825 spin_unlock_irqrestore(&r->chunk_list.lock, flags);
826 return result;
827 }
828
dma_ioc0_map_area(struct ps3_dma_region * r,unsigned long virt_addr,unsigned long len,dma_addr_t * bus_addr,u64 iopte_flag)829 static int dma_ioc0_map_area(struct ps3_dma_region *r, unsigned long virt_addr,
830 unsigned long len, dma_addr_t *bus_addr,
831 u64 iopte_flag)
832 {
833 int result;
834 unsigned long flags;
835 struct dma_chunk *c;
836 unsigned long phys_addr = is_kernel_addr(virt_addr) ? __pa(virt_addr)
837 : virt_addr;
838 unsigned long aligned_phys = ALIGN_DOWN(phys_addr, 1 << r->page_size);
839 unsigned long aligned_len = ALIGN(len + phys_addr - aligned_phys,
840 1 << r->page_size);
841
842 DBG(KERN_ERR "%s: vaddr=%#lx, len=%#lx\n", __func__,
843 virt_addr, len);
844 DBG(KERN_ERR "%s: ph=%#lx a_ph=%#lx a_l=%#lx\n", __func__,
845 phys_addr, aligned_phys, aligned_len);
846
847 spin_lock_irqsave(&r->chunk_list.lock, flags);
848 c = dma_find_chunk_lpar(r, ps3_mm_phys_to_lpar(phys_addr), len);
849
850 if (c) {
851 /* FIXME */
852 BUG();
853 *bus_addr = c->bus_addr + phys_addr - aligned_phys;
854 c->usage_count++;
855 spin_unlock_irqrestore(&r->chunk_list.lock, flags);
856 return 0;
857 }
858
859 result = dma_ioc0_map_pages(r, aligned_phys, aligned_len, &c,
860 iopte_flag);
861
862 if (result) {
863 *bus_addr = 0;
864 DBG("%s:%d: dma_ioc0_map_pages failed (%d)\n",
865 __func__, __LINE__, result);
866 spin_unlock_irqrestore(&r->chunk_list.lock, flags);
867 return result;
868 }
869 *bus_addr = c->bus_addr + phys_addr - aligned_phys;
870 DBG("%s: va=%#lx pa=%#lx a_pa=%#lx bus=%#llx\n", __func__,
871 virt_addr, phys_addr, aligned_phys, *bus_addr);
872 c->usage_count = 1;
873
874 spin_unlock_irqrestore(&r->chunk_list.lock, flags);
875 return result;
876 }
877
878 /**
879 * dma_sb_unmap_area - Unmap an area of memory from a device dma region.
880 * @r: Pointer to a struct ps3_dma_region.
881 * @bus_addr: The starting ioc bus address of the area to unmap.
882 * @len: Length in bytes of the area to unmap.
883 *
884 * This is the common dma unmap routine.
885 */
886
dma_sb_unmap_area(struct ps3_dma_region * r,dma_addr_t bus_addr,unsigned long len)887 static int dma_sb_unmap_area(struct ps3_dma_region *r, dma_addr_t bus_addr,
888 unsigned long len)
889 {
890 unsigned long flags;
891 struct dma_chunk *c;
892
893 spin_lock_irqsave(&r->chunk_list.lock, flags);
894 c = dma_find_chunk(r, bus_addr, len);
895
896 if (!c) {
897 unsigned long aligned_bus = ALIGN_DOWN(bus_addr,
898 1 << r->page_size);
899 unsigned long aligned_len = ALIGN(len + bus_addr
900 - aligned_bus, 1 << r->page_size);
901 DBG("%s:%d: not found: bus_addr %llxh\n",
902 __func__, __LINE__, bus_addr);
903 DBG("%s:%d: not found: len %lxh\n",
904 __func__, __LINE__, len);
905 DBG("%s:%d: not found: aligned_bus %lxh\n",
906 __func__, __LINE__, aligned_bus);
907 DBG("%s:%d: not found: aligned_len %lxh\n",
908 __func__, __LINE__, aligned_len);
909 BUG();
910 }
911
912 c->usage_count--;
913
914 if (!c->usage_count) {
915 list_del(&c->link);
916 dma_sb_free_chunk(c);
917 }
918
919 spin_unlock_irqrestore(&r->chunk_list.lock, flags);
920 return 0;
921 }
922
dma_ioc0_unmap_area(struct ps3_dma_region * r,dma_addr_t bus_addr,unsigned long len)923 static int dma_ioc0_unmap_area(struct ps3_dma_region *r,
924 dma_addr_t bus_addr, unsigned long len)
925 {
926 unsigned long flags;
927 struct dma_chunk *c;
928
929 DBG("%s: start a=%#llx l=%#lx\n", __func__, bus_addr, len);
930 spin_lock_irqsave(&r->chunk_list.lock, flags);
931 c = dma_find_chunk(r, bus_addr, len);
932
933 if (!c) {
934 unsigned long aligned_bus = ALIGN_DOWN(bus_addr,
935 1 << r->page_size);
936 unsigned long aligned_len = ALIGN(len + bus_addr
937 - aligned_bus,
938 1 << r->page_size);
939 DBG("%s:%d: not found: bus_addr %llxh\n",
940 __func__, __LINE__, bus_addr);
941 DBG("%s:%d: not found: len %lxh\n",
942 __func__, __LINE__, len);
943 DBG("%s:%d: not found: aligned_bus %lxh\n",
944 __func__, __LINE__, aligned_bus);
945 DBG("%s:%d: not found: aligned_len %lxh\n",
946 __func__, __LINE__, aligned_len);
947 BUG();
948 }
949
950 c->usage_count--;
951
952 if (!c->usage_count) {
953 list_del(&c->link);
954 dma_ioc0_free_chunk(c);
955 }
956
957 spin_unlock_irqrestore(&r->chunk_list.lock, flags);
958 DBG("%s: end\n", __func__);
959 return 0;
960 }
961
962 /**
963 * dma_sb_region_create_linear - Setup a linear dma mapping for a device.
964 * @r: Pointer to a struct ps3_dma_region.
965 *
966 * This routine creates an HV dma region for the device and maps all available
967 * ram into the io controller bus address space.
968 */
969
dma_sb_region_create_linear(struct ps3_dma_region * r)970 static int dma_sb_region_create_linear(struct ps3_dma_region *r)
971 {
972 int result;
973 unsigned long virt_addr, len;
974 dma_addr_t tmp;
975
976 if (r->len > 16*1024*1024) { /* FIXME: need proper fix */
977 /* force 16M dma pages for linear mapping */
978 if (r->page_size != PS3_DMA_16M) {
979 pr_info("%s:%d: forcing 16M pages for linear map\n",
980 __func__, __LINE__);
981 r->page_size = PS3_DMA_16M;
982 r->len = ALIGN(r->len, 1 << r->page_size);
983 }
984 }
985
986 result = dma_sb_region_create(r);
987 BUG_ON(result);
988
989 if (r->offset < map.rm.size) {
990 /* Map (part of) 1st RAM chunk */
991 virt_addr = map.rm.base + r->offset;
992 len = map.rm.size - r->offset;
993 if (len > r->len)
994 len = r->len;
995 result = dma_sb_map_area(r, virt_addr, len, &tmp,
996 CBE_IOPTE_PP_W | CBE_IOPTE_PP_R | CBE_IOPTE_SO_RW |
997 CBE_IOPTE_M);
998 BUG_ON(result);
999 }
1000
1001 if (r->offset + r->len > map.rm.size) {
1002 /* Map (part of) 2nd RAM chunk */
1003 virt_addr = map.rm.size;
1004 len = r->len;
1005 if (r->offset >= map.rm.size)
1006 virt_addr += r->offset - map.rm.size;
1007 else
1008 len -= map.rm.size - r->offset;
1009 result = dma_sb_map_area(r, virt_addr, len, &tmp,
1010 CBE_IOPTE_PP_W | CBE_IOPTE_PP_R | CBE_IOPTE_SO_RW |
1011 CBE_IOPTE_M);
1012 BUG_ON(result);
1013 }
1014
1015 return result;
1016 }
1017
1018 /**
1019 * dma_sb_region_free_linear - Free a linear dma mapping for a device.
1020 * @r: Pointer to a struct ps3_dma_region.
1021 *
1022 * This routine will unmap all mapped areas and free the HV dma region.
1023 */
1024
dma_sb_region_free_linear(struct ps3_dma_region * r)1025 static int dma_sb_region_free_linear(struct ps3_dma_region *r)
1026 {
1027 int result;
1028 dma_addr_t bus_addr;
1029 unsigned long len, lpar_addr;
1030
1031 if (r->offset < map.rm.size) {
1032 /* Unmap (part of) 1st RAM chunk */
1033 lpar_addr = map.rm.base + r->offset;
1034 len = map.rm.size - r->offset;
1035 if (len > r->len)
1036 len = r->len;
1037 bus_addr = dma_sb_lpar_to_bus(r, lpar_addr);
1038 result = dma_sb_unmap_area(r, bus_addr, len);
1039 BUG_ON(result);
1040 }
1041
1042 if (r->offset + r->len > map.rm.size) {
1043 /* Unmap (part of) 2nd RAM chunk */
1044 lpar_addr = map.r1.base;
1045 len = r->len;
1046 if (r->offset >= map.rm.size)
1047 lpar_addr += r->offset - map.rm.size;
1048 else
1049 len -= map.rm.size - r->offset;
1050 bus_addr = dma_sb_lpar_to_bus(r, lpar_addr);
1051 result = dma_sb_unmap_area(r, bus_addr, len);
1052 BUG_ON(result);
1053 }
1054
1055 result = dma_sb_region_free(r);
1056 BUG_ON(result);
1057
1058 return result;
1059 }
1060
1061 /**
1062 * dma_sb_map_area_linear - Map an area of memory into a device dma region.
1063 * @r: Pointer to a struct ps3_dma_region.
1064 * @virt_addr: Starting virtual address of the area to map.
1065 * @len: Length in bytes of the area to map.
1066 * @bus_addr: A pointer to return the starting ioc bus address of the area to
1067 * map.
1068 *
1069 * This routine just returns the corresponding bus address. Actual mapping
1070 * occurs in dma_region_create_linear().
1071 */
1072
dma_sb_map_area_linear(struct ps3_dma_region * r,unsigned long virt_addr,unsigned long len,dma_addr_t * bus_addr,u64 iopte_flag)1073 static int dma_sb_map_area_linear(struct ps3_dma_region *r,
1074 unsigned long virt_addr, unsigned long len, dma_addr_t *bus_addr,
1075 u64 iopte_flag)
1076 {
1077 unsigned long phys_addr = is_kernel_addr(virt_addr) ? __pa(virt_addr)
1078 : virt_addr;
1079 *bus_addr = dma_sb_lpar_to_bus(r, ps3_mm_phys_to_lpar(phys_addr));
1080 return 0;
1081 }
1082
1083 /**
1084 * dma_unmap_area_linear - Unmap an area of memory from a device dma region.
1085 * @r: Pointer to a struct ps3_dma_region.
1086 * @bus_addr: The starting ioc bus address of the area to unmap.
1087 * @len: Length in bytes of the area to unmap.
1088 *
1089 * This routine does nothing. Unmapping occurs in dma_sb_region_free_linear().
1090 */
1091
dma_sb_unmap_area_linear(struct ps3_dma_region * r,dma_addr_t bus_addr,unsigned long len)1092 static int dma_sb_unmap_area_linear(struct ps3_dma_region *r,
1093 dma_addr_t bus_addr, unsigned long len)
1094 {
1095 return 0;
1096 };
1097
1098 static const struct ps3_dma_region_ops ps3_dma_sb_region_ops = {
1099 .create = dma_sb_region_create,
1100 .free = dma_sb_region_free,
1101 .map = dma_sb_map_area,
1102 .unmap = dma_sb_unmap_area
1103 };
1104
1105 static const struct ps3_dma_region_ops ps3_dma_sb_region_linear_ops = {
1106 .create = dma_sb_region_create_linear,
1107 .free = dma_sb_region_free_linear,
1108 .map = dma_sb_map_area_linear,
1109 .unmap = dma_sb_unmap_area_linear
1110 };
1111
1112 static const struct ps3_dma_region_ops ps3_dma_ioc0_region_ops = {
1113 .create = dma_ioc0_region_create,
1114 .free = dma_ioc0_region_free,
1115 .map = dma_ioc0_map_area,
1116 .unmap = dma_ioc0_unmap_area
1117 };
1118
ps3_dma_region_init(struct ps3_system_bus_device * dev,struct ps3_dma_region * r,enum ps3_dma_page_size page_size,enum ps3_dma_region_type region_type,void * addr,unsigned long len)1119 int ps3_dma_region_init(struct ps3_system_bus_device *dev,
1120 struct ps3_dma_region *r, enum ps3_dma_page_size page_size,
1121 enum ps3_dma_region_type region_type, void *addr, unsigned long len)
1122 {
1123 unsigned long lpar_addr;
1124 int result;
1125
1126 lpar_addr = addr ? ps3_mm_phys_to_lpar(__pa(addr)) : 0;
1127
1128 r->dev = dev;
1129 r->page_size = page_size;
1130 r->region_type = region_type;
1131 r->offset = lpar_addr;
1132 if (r->offset >= map.rm.size)
1133 r->offset -= map.r1.offset;
1134 r->len = len ? len : ALIGN(map.total, 1 << r->page_size);
1135
1136 dev->core.dma_mask = &r->dma_mask;
1137
1138 result = dma_set_mask_and_coherent(&dev->core, DMA_BIT_MASK(32));
1139
1140 if (result < 0) {
1141 dev_err(&dev->core, "%s:%d: dma_set_mask_and_coherent failed: %d\n",
1142 __func__, __LINE__, result);
1143 return result;
1144 }
1145
1146 switch (dev->dev_type) {
1147 case PS3_DEVICE_TYPE_SB:
1148 r->region_ops = (USE_DYNAMIC_DMA)
1149 ? &ps3_dma_sb_region_ops
1150 : &ps3_dma_sb_region_linear_ops;
1151 break;
1152 case PS3_DEVICE_TYPE_IOC0:
1153 r->region_ops = &ps3_dma_ioc0_region_ops;
1154 break;
1155 default:
1156 BUG();
1157 return -EINVAL;
1158 }
1159 return 0;
1160 }
1161 EXPORT_SYMBOL(ps3_dma_region_init);
1162
ps3_dma_region_create(struct ps3_dma_region * r)1163 int ps3_dma_region_create(struct ps3_dma_region *r)
1164 {
1165 BUG_ON(!r);
1166 BUG_ON(!r->region_ops);
1167 BUG_ON(!r->region_ops->create);
1168 return r->region_ops->create(r);
1169 }
1170 EXPORT_SYMBOL(ps3_dma_region_create);
1171
ps3_dma_region_free(struct ps3_dma_region * r)1172 int ps3_dma_region_free(struct ps3_dma_region *r)
1173 {
1174 BUG_ON(!r);
1175 BUG_ON(!r->region_ops);
1176 BUG_ON(!r->region_ops->free);
1177 return r->region_ops->free(r);
1178 }
1179 EXPORT_SYMBOL(ps3_dma_region_free);
1180
ps3_dma_map(struct ps3_dma_region * r,unsigned long virt_addr,unsigned long len,dma_addr_t * bus_addr,u64 iopte_flag)1181 int ps3_dma_map(struct ps3_dma_region *r, unsigned long virt_addr,
1182 unsigned long len, dma_addr_t *bus_addr,
1183 u64 iopte_flag)
1184 {
1185 return r->region_ops->map(r, virt_addr, len, bus_addr, iopte_flag);
1186 }
1187
ps3_dma_unmap(struct ps3_dma_region * r,dma_addr_t bus_addr,unsigned long len)1188 int ps3_dma_unmap(struct ps3_dma_region *r, dma_addr_t bus_addr,
1189 unsigned long len)
1190 {
1191 return r->region_ops->unmap(r, bus_addr, len);
1192 }
1193
1194 /*============================================================================*/
1195 /* system startup routines */
1196 /*============================================================================*/
1197
1198 /**
1199 * ps3_mm_init - initialize the address space state variables
1200 */
1201
ps3_mm_init(void)1202 void __init ps3_mm_init(void)
1203 {
1204 int result;
1205
1206 DBG(" -> %s:%d\n", __func__, __LINE__);
1207
1208 result = ps3_repository_read_mm_info(&map.rm.base, &map.rm.size,
1209 &map.total);
1210
1211 if (result)
1212 panic("ps3_repository_read_mm_info() failed");
1213
1214 map.rm.offset = map.rm.base;
1215 map.vas_id = map.htab_size = 0;
1216
1217 /* this implementation assumes map.rm.base is zero */
1218
1219 BUG_ON(map.rm.base);
1220 BUG_ON(!map.rm.size);
1221
1222 /* Check if we got the highmem region from an earlier boot step */
1223
1224 if (ps3_mm_get_repository_highmem(&map.r1)) {
1225 result = ps3_mm_region_create(&map.r1, map.total - map.rm.size);
1226
1227 if (!result)
1228 ps3_mm_set_repository_highmem(&map.r1);
1229 }
1230
1231 /* correct map.total for the real total amount of memory we use */
1232 map.total = map.rm.size + map.r1.size;
1233
1234 if (!map.r1.size) {
1235 DBG("%s:%d: No highmem region found\n", __func__, __LINE__);
1236 } else {
1237 DBG("%s:%d: Adding highmem region: %llxh %llxh\n",
1238 __func__, __LINE__, map.rm.size,
1239 map.total - map.rm.size);
1240 memblock_add(map.rm.size, map.total - map.rm.size);
1241 }
1242
1243 DBG(" <- %s:%d\n", __func__, __LINE__);
1244 }
1245
1246 /**
1247 * ps3_mm_shutdown - final cleanup of address space
1248 *
1249 * called during kexec sequence with MMU off.
1250 */
1251
ps3_mm_shutdown(void)1252 notrace void ps3_mm_shutdown(void)
1253 {
1254 ps3_mm_region_destroy(&map.r1);
1255 }
1256