• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * journal.c
4  *
5  * Defines functions of journalling api
6  *
7  * Copyright (C) 2003, 2004 Oracle.  All rights reserved.
8  */
9 
10 #include <linux/fs.h>
11 #include <linux/types.h>
12 #include <linux/slab.h>
13 #include <linux/highmem.h>
14 #include <linux/kthread.h>
15 #include <linux/time.h>
16 #include <linux/random.h>
17 #include <linux/delay.h>
18 
19 #include <cluster/masklog.h>
20 
21 #include "ocfs2.h"
22 
23 #include "alloc.h"
24 #include "blockcheck.h"
25 #include "dir.h"
26 #include "dlmglue.h"
27 #include "extent_map.h"
28 #include "heartbeat.h"
29 #include "inode.h"
30 #include "journal.h"
31 #include "localalloc.h"
32 #include "slot_map.h"
33 #include "super.h"
34 #include "sysfile.h"
35 #include "uptodate.h"
36 #include "quota.h"
37 #include "file.h"
38 #include "namei.h"
39 
40 #include "buffer_head_io.h"
41 #include "ocfs2_trace.h"
42 
43 DEFINE_SPINLOCK(trans_inc_lock);
44 
45 #define ORPHAN_SCAN_SCHEDULE_TIMEOUT 300000
46 
47 static int ocfs2_force_read_journal(struct inode *inode);
48 static int ocfs2_recover_node(struct ocfs2_super *osb,
49 			      int node_num, int slot_num);
50 static int __ocfs2_recovery_thread(void *arg);
51 static int ocfs2_commit_cache(struct ocfs2_super *osb);
52 static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota);
53 static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
54 				      int dirty, int replayed);
55 static int ocfs2_trylock_journal(struct ocfs2_super *osb,
56 				 int slot_num);
57 static int ocfs2_recover_orphans(struct ocfs2_super *osb,
58 				 int slot,
59 				 enum ocfs2_orphan_reco_type orphan_reco_type);
60 static int ocfs2_commit_thread(void *arg);
61 static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal,
62 					    int slot_num,
63 					    struct ocfs2_dinode *la_dinode,
64 					    struct ocfs2_dinode *tl_dinode,
65 					    struct ocfs2_quota_recovery *qrec,
66 					    enum ocfs2_orphan_reco_type orphan_reco_type);
67 
ocfs2_wait_on_mount(struct ocfs2_super * osb)68 static inline int ocfs2_wait_on_mount(struct ocfs2_super *osb)
69 {
70 	return __ocfs2_wait_on_mount(osb, 0);
71 }
72 
ocfs2_wait_on_quotas(struct ocfs2_super * osb)73 static inline int ocfs2_wait_on_quotas(struct ocfs2_super *osb)
74 {
75 	return __ocfs2_wait_on_mount(osb, 1);
76 }
77 
78 /*
79  * This replay_map is to track online/offline slots, so we could recover
80  * offline slots during recovery and mount
81  */
82 
83 enum ocfs2_replay_state {
84 	REPLAY_UNNEEDED = 0,	/* Replay is not needed, so ignore this map */
85 	REPLAY_NEEDED, 		/* Replay slots marked in rm_replay_slots */
86 	REPLAY_DONE 		/* Replay was already queued */
87 };
88 
89 struct ocfs2_replay_map {
90 	unsigned int rm_slots;
91 	enum ocfs2_replay_state rm_state;
92 	unsigned char rm_replay_slots[];
93 };
94 
ocfs2_replay_map_set_state(struct ocfs2_super * osb,int state)95 static void ocfs2_replay_map_set_state(struct ocfs2_super *osb, int state)
96 {
97 	if (!osb->replay_map)
98 		return;
99 
100 	/* If we've already queued the replay, we don't have any more to do */
101 	if (osb->replay_map->rm_state == REPLAY_DONE)
102 		return;
103 
104 	osb->replay_map->rm_state = state;
105 }
106 
ocfs2_compute_replay_slots(struct ocfs2_super * osb)107 int ocfs2_compute_replay_slots(struct ocfs2_super *osb)
108 {
109 	struct ocfs2_replay_map *replay_map;
110 	int i, node_num;
111 
112 	/* If replay map is already set, we don't do it again */
113 	if (osb->replay_map)
114 		return 0;
115 
116 	replay_map = kzalloc(sizeof(struct ocfs2_replay_map) +
117 			     (osb->max_slots * sizeof(char)), GFP_KERNEL);
118 
119 	if (!replay_map) {
120 		mlog_errno(-ENOMEM);
121 		return -ENOMEM;
122 	}
123 
124 	spin_lock(&osb->osb_lock);
125 
126 	replay_map->rm_slots = osb->max_slots;
127 	replay_map->rm_state = REPLAY_UNNEEDED;
128 
129 	/* set rm_replay_slots for offline slot(s) */
130 	for (i = 0; i < replay_map->rm_slots; i++) {
131 		if (ocfs2_slot_to_node_num_locked(osb, i, &node_num) == -ENOENT)
132 			replay_map->rm_replay_slots[i] = 1;
133 	}
134 
135 	osb->replay_map = replay_map;
136 	spin_unlock(&osb->osb_lock);
137 	return 0;
138 }
139 
ocfs2_queue_replay_slots(struct ocfs2_super * osb,enum ocfs2_orphan_reco_type orphan_reco_type)140 static void ocfs2_queue_replay_slots(struct ocfs2_super *osb,
141 		enum ocfs2_orphan_reco_type orphan_reco_type)
142 {
143 	struct ocfs2_replay_map *replay_map = osb->replay_map;
144 	int i;
145 
146 	if (!replay_map)
147 		return;
148 
149 	if (replay_map->rm_state != REPLAY_NEEDED)
150 		return;
151 
152 	for (i = 0; i < replay_map->rm_slots; i++)
153 		if (replay_map->rm_replay_slots[i])
154 			ocfs2_queue_recovery_completion(osb->journal, i, NULL,
155 							NULL, NULL,
156 							orphan_reco_type);
157 	replay_map->rm_state = REPLAY_DONE;
158 }
159 
ocfs2_free_replay_slots(struct ocfs2_super * osb)160 void ocfs2_free_replay_slots(struct ocfs2_super *osb)
161 {
162 	struct ocfs2_replay_map *replay_map = osb->replay_map;
163 
164 	if (!osb->replay_map)
165 		return;
166 
167 	kfree(replay_map);
168 	osb->replay_map = NULL;
169 }
170 
ocfs2_recovery_init(struct ocfs2_super * osb)171 int ocfs2_recovery_init(struct ocfs2_super *osb)
172 {
173 	struct ocfs2_recovery_map *rm;
174 
175 	mutex_init(&osb->recovery_lock);
176 	osb->disable_recovery = 0;
177 	osb->recovery_thread_task = NULL;
178 	init_waitqueue_head(&osb->recovery_event);
179 
180 	rm = kzalloc(sizeof(struct ocfs2_recovery_map) +
181 		     osb->max_slots * sizeof(unsigned int),
182 		     GFP_KERNEL);
183 	if (!rm) {
184 		mlog_errno(-ENOMEM);
185 		return -ENOMEM;
186 	}
187 
188 	rm->rm_entries = (unsigned int *)((char *)rm +
189 					  sizeof(struct ocfs2_recovery_map));
190 	osb->recovery_map = rm;
191 
192 	return 0;
193 }
194 
195 /* we can't grab the goofy sem lock from inside wait_event, so we use
196  * memory barriers to make sure that we'll see the null task before
197  * being woken up */
ocfs2_recovery_thread_running(struct ocfs2_super * osb)198 static int ocfs2_recovery_thread_running(struct ocfs2_super *osb)
199 {
200 	mb();
201 	return osb->recovery_thread_task != NULL;
202 }
203 
ocfs2_recovery_exit(struct ocfs2_super * osb)204 void ocfs2_recovery_exit(struct ocfs2_super *osb)
205 {
206 	struct ocfs2_recovery_map *rm;
207 
208 	/* disable any new recovery threads and wait for any currently
209 	 * running ones to exit. Do this before setting the vol_state. */
210 	mutex_lock(&osb->recovery_lock);
211 	osb->disable_recovery = 1;
212 	mutex_unlock(&osb->recovery_lock);
213 	wait_event(osb->recovery_event, !ocfs2_recovery_thread_running(osb));
214 
215 	/* At this point, we know that no more recovery threads can be
216 	 * launched, so wait for any recovery completion work to
217 	 * complete. */
218 	if (osb->ocfs2_wq)
219 		flush_workqueue(osb->ocfs2_wq);
220 
221 	/*
222 	 * Now that recovery is shut down, and the osb is about to be
223 	 * freed,  the osb_lock is not taken here.
224 	 */
225 	rm = osb->recovery_map;
226 	/* XXX: Should we bug if there are dirty entries? */
227 
228 	kfree(rm);
229 }
230 
__ocfs2_recovery_map_test(struct ocfs2_super * osb,unsigned int node_num)231 static int __ocfs2_recovery_map_test(struct ocfs2_super *osb,
232 				     unsigned int node_num)
233 {
234 	int i;
235 	struct ocfs2_recovery_map *rm = osb->recovery_map;
236 
237 	assert_spin_locked(&osb->osb_lock);
238 
239 	for (i = 0; i < rm->rm_used; i++) {
240 		if (rm->rm_entries[i] == node_num)
241 			return 1;
242 	}
243 
244 	return 0;
245 }
246 
247 /* Behaves like test-and-set.  Returns the previous value */
ocfs2_recovery_map_set(struct ocfs2_super * osb,unsigned int node_num)248 static int ocfs2_recovery_map_set(struct ocfs2_super *osb,
249 				  unsigned int node_num)
250 {
251 	struct ocfs2_recovery_map *rm = osb->recovery_map;
252 
253 	spin_lock(&osb->osb_lock);
254 	if (__ocfs2_recovery_map_test(osb, node_num)) {
255 		spin_unlock(&osb->osb_lock);
256 		return 1;
257 	}
258 
259 	/* XXX: Can this be exploited? Not from o2dlm... */
260 	BUG_ON(rm->rm_used >= osb->max_slots);
261 
262 	rm->rm_entries[rm->rm_used] = node_num;
263 	rm->rm_used++;
264 	spin_unlock(&osb->osb_lock);
265 
266 	return 0;
267 }
268 
ocfs2_recovery_map_clear(struct ocfs2_super * osb,unsigned int node_num)269 static void ocfs2_recovery_map_clear(struct ocfs2_super *osb,
270 				     unsigned int node_num)
271 {
272 	int i;
273 	struct ocfs2_recovery_map *rm = osb->recovery_map;
274 
275 	spin_lock(&osb->osb_lock);
276 
277 	for (i = 0; i < rm->rm_used; i++) {
278 		if (rm->rm_entries[i] == node_num)
279 			break;
280 	}
281 
282 	if (i < rm->rm_used) {
283 		/* XXX: be careful with the pointer math */
284 		memmove(&(rm->rm_entries[i]), &(rm->rm_entries[i + 1]),
285 			(rm->rm_used - i - 1) * sizeof(unsigned int));
286 		rm->rm_used--;
287 	}
288 
289 	spin_unlock(&osb->osb_lock);
290 }
291 
ocfs2_commit_cache(struct ocfs2_super * osb)292 static int ocfs2_commit_cache(struct ocfs2_super *osb)
293 {
294 	int status = 0;
295 	unsigned int flushed;
296 	struct ocfs2_journal *journal = NULL;
297 
298 	journal = osb->journal;
299 
300 	/* Flush all pending commits and checkpoint the journal. */
301 	down_write(&journal->j_trans_barrier);
302 
303 	flushed = atomic_read(&journal->j_num_trans);
304 	trace_ocfs2_commit_cache_begin(flushed);
305 	if (flushed == 0) {
306 		up_write(&journal->j_trans_barrier);
307 		goto finally;
308 	}
309 
310 	jbd2_journal_lock_updates(journal->j_journal);
311 	status = jbd2_journal_flush(journal->j_journal, 0);
312 	jbd2_journal_unlock_updates(journal->j_journal);
313 	if (status < 0) {
314 		up_write(&journal->j_trans_barrier);
315 		mlog_errno(status);
316 		goto finally;
317 	}
318 
319 	ocfs2_inc_trans_id(journal);
320 
321 	flushed = atomic_read(&journal->j_num_trans);
322 	atomic_set(&journal->j_num_trans, 0);
323 	up_write(&journal->j_trans_barrier);
324 
325 	trace_ocfs2_commit_cache_end(journal->j_trans_id, flushed);
326 
327 	ocfs2_wake_downconvert_thread(osb);
328 	wake_up(&journal->j_checkpointed);
329 finally:
330 	return status;
331 }
332 
ocfs2_start_trans(struct ocfs2_super * osb,int max_buffs)333 handle_t *ocfs2_start_trans(struct ocfs2_super *osb, int max_buffs)
334 {
335 	journal_t *journal = osb->journal->j_journal;
336 	handle_t *handle;
337 
338 	BUG_ON(!osb || !osb->journal->j_journal);
339 
340 	if (ocfs2_is_hard_readonly(osb))
341 		return ERR_PTR(-EROFS);
342 
343 	BUG_ON(osb->journal->j_state == OCFS2_JOURNAL_FREE);
344 	BUG_ON(max_buffs <= 0);
345 
346 	/* Nested transaction? Just return the handle... */
347 	if (journal_current_handle())
348 		return jbd2_journal_start(journal, max_buffs);
349 
350 	sb_start_intwrite(osb->sb);
351 
352 	down_read(&osb->journal->j_trans_barrier);
353 
354 	handle = jbd2_journal_start(journal, max_buffs);
355 	if (IS_ERR(handle)) {
356 		up_read(&osb->journal->j_trans_barrier);
357 		sb_end_intwrite(osb->sb);
358 
359 		mlog_errno(PTR_ERR(handle));
360 
361 		if (is_journal_aborted(journal)) {
362 			ocfs2_abort(osb->sb, "Detected aborted journal\n");
363 			handle = ERR_PTR(-EROFS);
364 		}
365 	} else {
366 		if (!ocfs2_mount_local(osb))
367 			atomic_inc(&(osb->journal->j_num_trans));
368 	}
369 
370 	return handle;
371 }
372 
ocfs2_commit_trans(struct ocfs2_super * osb,handle_t * handle)373 int ocfs2_commit_trans(struct ocfs2_super *osb,
374 		       handle_t *handle)
375 {
376 	int ret, nested;
377 	struct ocfs2_journal *journal = osb->journal;
378 
379 	BUG_ON(!handle);
380 
381 	nested = handle->h_ref > 1;
382 	ret = jbd2_journal_stop(handle);
383 	if (ret < 0)
384 		mlog_errno(ret);
385 
386 	if (!nested) {
387 		up_read(&journal->j_trans_barrier);
388 		sb_end_intwrite(osb->sb);
389 	}
390 
391 	return ret;
392 }
393 
394 /*
395  * 'nblocks' is what you want to add to the current transaction.
396  *
397  * This might call jbd2_journal_restart() which will commit dirty buffers
398  * and then restart the transaction. Before calling
399  * ocfs2_extend_trans(), any changed blocks should have been
400  * dirtied. After calling it, all blocks which need to be changed must
401  * go through another set of journal_access/journal_dirty calls.
402  *
403  * WARNING: This will not release any semaphores or disk locks taken
404  * during the transaction, so make sure they were taken *before*
405  * start_trans or we'll have ordering deadlocks.
406  *
407  * WARNING2: Note that we do *not* drop j_trans_barrier here. This is
408  * good because transaction ids haven't yet been recorded on the
409  * cluster locks associated with this handle.
410  */
ocfs2_extend_trans(handle_t * handle,int nblocks)411 int ocfs2_extend_trans(handle_t *handle, int nblocks)
412 {
413 	int status, old_nblocks;
414 
415 	BUG_ON(!handle);
416 	BUG_ON(nblocks < 0);
417 
418 	if (!nblocks)
419 		return 0;
420 
421 	old_nblocks = jbd2_handle_buffer_credits(handle);
422 
423 	trace_ocfs2_extend_trans(old_nblocks, nblocks);
424 
425 #ifdef CONFIG_OCFS2_DEBUG_FS
426 	status = 1;
427 #else
428 	status = jbd2_journal_extend(handle, nblocks, 0);
429 	if (status < 0) {
430 		mlog_errno(status);
431 		goto bail;
432 	}
433 #endif
434 
435 	if (status > 0) {
436 		trace_ocfs2_extend_trans_restart(old_nblocks + nblocks);
437 		status = jbd2_journal_restart(handle,
438 					      old_nblocks + nblocks);
439 		if (status < 0) {
440 			mlog_errno(status);
441 			goto bail;
442 		}
443 	}
444 
445 	status = 0;
446 bail:
447 	return status;
448 }
449 
450 /*
451  * If we have fewer than thresh credits, extend by OCFS2_MAX_TRANS_DATA.
452  * If that fails, restart the transaction & regain write access for the
453  * buffer head which is used for metadata modifications.
454  * Taken from Ext4: extend_or_restart_transaction()
455  */
ocfs2_allocate_extend_trans(handle_t * handle,int thresh)456 int ocfs2_allocate_extend_trans(handle_t *handle, int thresh)
457 {
458 	int status, old_nblks;
459 
460 	BUG_ON(!handle);
461 
462 	old_nblks = jbd2_handle_buffer_credits(handle);
463 	trace_ocfs2_allocate_extend_trans(old_nblks, thresh);
464 
465 	if (old_nblks < thresh)
466 		return 0;
467 
468 	status = jbd2_journal_extend(handle, OCFS2_MAX_TRANS_DATA, 0);
469 	if (status < 0) {
470 		mlog_errno(status);
471 		goto bail;
472 	}
473 
474 	if (status > 0) {
475 		status = jbd2_journal_restart(handle, OCFS2_MAX_TRANS_DATA);
476 		if (status < 0)
477 			mlog_errno(status);
478 	}
479 
480 bail:
481 	return status;
482 }
483 
484 
485 struct ocfs2_triggers {
486 	struct jbd2_buffer_trigger_type	ot_triggers;
487 	int				ot_offset;
488 };
489 
to_ocfs2_trigger(struct jbd2_buffer_trigger_type * triggers)490 static inline struct ocfs2_triggers *to_ocfs2_trigger(struct jbd2_buffer_trigger_type *triggers)
491 {
492 	return container_of(triggers, struct ocfs2_triggers, ot_triggers);
493 }
494 
ocfs2_frozen_trigger(struct jbd2_buffer_trigger_type * triggers,struct buffer_head * bh,void * data,size_t size)495 static void ocfs2_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
496 				 struct buffer_head *bh,
497 				 void *data, size_t size)
498 {
499 	struct ocfs2_triggers *ot = to_ocfs2_trigger(triggers);
500 
501 	/*
502 	 * We aren't guaranteed to have the superblock here, so we
503 	 * must unconditionally compute the ecc data.
504 	 * __ocfs2_journal_access() will only set the triggers if
505 	 * metaecc is enabled.
506 	 */
507 	ocfs2_block_check_compute(data, size, data + ot->ot_offset);
508 }
509 
510 /*
511  * Quota blocks have their own trigger because the struct ocfs2_block_check
512  * offset depends on the blocksize.
513  */
ocfs2_dq_frozen_trigger(struct jbd2_buffer_trigger_type * triggers,struct buffer_head * bh,void * data,size_t size)514 static void ocfs2_dq_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
515 				 struct buffer_head *bh,
516 				 void *data, size_t size)
517 {
518 	struct ocfs2_disk_dqtrailer *dqt =
519 		ocfs2_block_dqtrailer(size, data);
520 
521 	/*
522 	 * We aren't guaranteed to have the superblock here, so we
523 	 * must unconditionally compute the ecc data.
524 	 * __ocfs2_journal_access() will only set the triggers if
525 	 * metaecc is enabled.
526 	 */
527 	ocfs2_block_check_compute(data, size, &dqt->dq_check);
528 }
529 
530 /*
531  * Directory blocks also have their own trigger because the
532  * struct ocfs2_block_check offset depends on the blocksize.
533  */
ocfs2_db_frozen_trigger(struct jbd2_buffer_trigger_type * triggers,struct buffer_head * bh,void * data,size_t size)534 static void ocfs2_db_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
535 				 struct buffer_head *bh,
536 				 void *data, size_t size)
537 {
538 	struct ocfs2_dir_block_trailer *trailer =
539 		ocfs2_dir_trailer_from_size(size, data);
540 
541 	/*
542 	 * We aren't guaranteed to have the superblock here, so we
543 	 * must unconditionally compute the ecc data.
544 	 * __ocfs2_journal_access() will only set the triggers if
545 	 * metaecc is enabled.
546 	 */
547 	ocfs2_block_check_compute(data, size, &trailer->db_check);
548 }
549 
ocfs2_abort_trigger(struct jbd2_buffer_trigger_type * triggers,struct buffer_head * bh)550 static void ocfs2_abort_trigger(struct jbd2_buffer_trigger_type *triggers,
551 				struct buffer_head *bh)
552 {
553 	mlog(ML_ERROR,
554 	     "ocfs2_abort_trigger called by JBD2.  bh = 0x%lx, "
555 	     "bh->b_blocknr = %llu\n",
556 	     (unsigned long)bh,
557 	     (unsigned long long)bh->b_blocknr);
558 
559 	ocfs2_error(bh->b_bdev->bd_super,
560 		    "JBD2 has aborted our journal, ocfs2 cannot continue\n");
561 }
562 
563 static struct ocfs2_triggers di_triggers = {
564 	.ot_triggers = {
565 		.t_frozen = ocfs2_frozen_trigger,
566 		.t_abort = ocfs2_abort_trigger,
567 	},
568 	.ot_offset	= offsetof(struct ocfs2_dinode, i_check),
569 };
570 
571 static struct ocfs2_triggers eb_triggers = {
572 	.ot_triggers = {
573 		.t_frozen = ocfs2_frozen_trigger,
574 		.t_abort = ocfs2_abort_trigger,
575 	},
576 	.ot_offset	= offsetof(struct ocfs2_extent_block, h_check),
577 };
578 
579 static struct ocfs2_triggers rb_triggers = {
580 	.ot_triggers = {
581 		.t_frozen = ocfs2_frozen_trigger,
582 		.t_abort = ocfs2_abort_trigger,
583 	},
584 	.ot_offset	= offsetof(struct ocfs2_refcount_block, rf_check),
585 };
586 
587 static struct ocfs2_triggers gd_triggers = {
588 	.ot_triggers = {
589 		.t_frozen = ocfs2_frozen_trigger,
590 		.t_abort = ocfs2_abort_trigger,
591 	},
592 	.ot_offset	= offsetof(struct ocfs2_group_desc, bg_check),
593 };
594 
595 static struct ocfs2_triggers db_triggers = {
596 	.ot_triggers = {
597 		.t_frozen = ocfs2_db_frozen_trigger,
598 		.t_abort = ocfs2_abort_trigger,
599 	},
600 };
601 
602 static struct ocfs2_triggers xb_triggers = {
603 	.ot_triggers = {
604 		.t_frozen = ocfs2_frozen_trigger,
605 		.t_abort = ocfs2_abort_trigger,
606 	},
607 	.ot_offset	= offsetof(struct ocfs2_xattr_block, xb_check),
608 };
609 
610 static struct ocfs2_triggers dq_triggers = {
611 	.ot_triggers = {
612 		.t_frozen = ocfs2_dq_frozen_trigger,
613 		.t_abort = ocfs2_abort_trigger,
614 	},
615 };
616 
617 static struct ocfs2_triggers dr_triggers = {
618 	.ot_triggers = {
619 		.t_frozen = ocfs2_frozen_trigger,
620 		.t_abort = ocfs2_abort_trigger,
621 	},
622 	.ot_offset	= offsetof(struct ocfs2_dx_root_block, dr_check),
623 };
624 
625 static struct ocfs2_triggers dl_triggers = {
626 	.ot_triggers = {
627 		.t_frozen = ocfs2_frozen_trigger,
628 		.t_abort = ocfs2_abort_trigger,
629 	},
630 	.ot_offset	= offsetof(struct ocfs2_dx_leaf, dl_check),
631 };
632 
__ocfs2_journal_access(handle_t * handle,struct ocfs2_caching_info * ci,struct buffer_head * bh,struct ocfs2_triggers * triggers,int type)633 static int __ocfs2_journal_access(handle_t *handle,
634 				  struct ocfs2_caching_info *ci,
635 				  struct buffer_head *bh,
636 				  struct ocfs2_triggers *triggers,
637 				  int type)
638 {
639 	int status;
640 	struct ocfs2_super *osb =
641 		OCFS2_SB(ocfs2_metadata_cache_get_super(ci));
642 
643 	BUG_ON(!ci || !ci->ci_ops);
644 	BUG_ON(!handle);
645 	BUG_ON(!bh);
646 
647 	trace_ocfs2_journal_access(
648 		(unsigned long long)ocfs2_metadata_cache_owner(ci),
649 		(unsigned long long)bh->b_blocknr, type, bh->b_size);
650 
651 	/* we can safely remove this assertion after testing. */
652 	if (!buffer_uptodate(bh)) {
653 		mlog(ML_ERROR, "giving me a buffer that's not uptodate!\n");
654 		mlog(ML_ERROR, "b_blocknr=%llu, b_state=0x%lx\n",
655 		     (unsigned long long)bh->b_blocknr, bh->b_state);
656 
657 		lock_buffer(bh);
658 		/*
659 		 * A previous transaction with a couple of buffer heads fail
660 		 * to checkpoint, so all the bhs are marked as BH_Write_EIO.
661 		 * For current transaction, the bh is just among those error
662 		 * bhs which previous transaction handle. We can't just clear
663 		 * its BH_Write_EIO and reuse directly, since other bhs are
664 		 * not written to disk yet and that will cause metadata
665 		 * inconsistency. So we should set fs read-only to avoid
666 		 * further damage.
667 		 */
668 		if (buffer_write_io_error(bh) && !buffer_uptodate(bh)) {
669 			unlock_buffer(bh);
670 			return ocfs2_error(osb->sb, "A previous attempt to "
671 					"write this buffer head failed\n");
672 		}
673 		unlock_buffer(bh);
674 	}
675 
676 	/* Set the current transaction information on the ci so
677 	 * that the locking code knows whether it can drop it's locks
678 	 * on this ci or not. We're protected from the commit
679 	 * thread updating the current transaction id until
680 	 * ocfs2_commit_trans() because ocfs2_start_trans() took
681 	 * j_trans_barrier for us. */
682 	ocfs2_set_ci_lock_trans(osb->journal, ci);
683 
684 	ocfs2_metadata_cache_io_lock(ci);
685 	switch (type) {
686 	case OCFS2_JOURNAL_ACCESS_CREATE:
687 	case OCFS2_JOURNAL_ACCESS_WRITE:
688 		status = jbd2_journal_get_write_access(handle, bh);
689 		break;
690 
691 	case OCFS2_JOURNAL_ACCESS_UNDO:
692 		status = jbd2_journal_get_undo_access(handle, bh);
693 		break;
694 
695 	default:
696 		status = -EINVAL;
697 		mlog(ML_ERROR, "Unknown access type!\n");
698 	}
699 	if (!status && ocfs2_meta_ecc(osb) && triggers)
700 		jbd2_journal_set_triggers(bh, &triggers->ot_triggers);
701 	ocfs2_metadata_cache_io_unlock(ci);
702 
703 	if (status < 0)
704 		mlog(ML_ERROR, "Error %d getting %d access to buffer!\n",
705 		     status, type);
706 
707 	return status;
708 }
709 
ocfs2_journal_access_di(handle_t * handle,struct ocfs2_caching_info * ci,struct buffer_head * bh,int type)710 int ocfs2_journal_access_di(handle_t *handle, struct ocfs2_caching_info *ci,
711 			    struct buffer_head *bh, int type)
712 {
713 	return __ocfs2_journal_access(handle, ci, bh, &di_triggers, type);
714 }
715 
ocfs2_journal_access_eb(handle_t * handle,struct ocfs2_caching_info * ci,struct buffer_head * bh,int type)716 int ocfs2_journal_access_eb(handle_t *handle, struct ocfs2_caching_info *ci,
717 			    struct buffer_head *bh, int type)
718 {
719 	return __ocfs2_journal_access(handle, ci, bh, &eb_triggers, type);
720 }
721 
ocfs2_journal_access_rb(handle_t * handle,struct ocfs2_caching_info * ci,struct buffer_head * bh,int type)722 int ocfs2_journal_access_rb(handle_t *handle, struct ocfs2_caching_info *ci,
723 			    struct buffer_head *bh, int type)
724 {
725 	return __ocfs2_journal_access(handle, ci, bh, &rb_triggers,
726 				      type);
727 }
728 
ocfs2_journal_access_gd(handle_t * handle,struct ocfs2_caching_info * ci,struct buffer_head * bh,int type)729 int ocfs2_journal_access_gd(handle_t *handle, struct ocfs2_caching_info *ci,
730 			    struct buffer_head *bh, int type)
731 {
732 	return __ocfs2_journal_access(handle, ci, bh, &gd_triggers, type);
733 }
734 
ocfs2_journal_access_db(handle_t * handle,struct ocfs2_caching_info * ci,struct buffer_head * bh,int type)735 int ocfs2_journal_access_db(handle_t *handle, struct ocfs2_caching_info *ci,
736 			    struct buffer_head *bh, int type)
737 {
738 	return __ocfs2_journal_access(handle, ci, bh, &db_triggers, type);
739 }
740 
ocfs2_journal_access_xb(handle_t * handle,struct ocfs2_caching_info * ci,struct buffer_head * bh,int type)741 int ocfs2_journal_access_xb(handle_t *handle, struct ocfs2_caching_info *ci,
742 			    struct buffer_head *bh, int type)
743 {
744 	return __ocfs2_journal_access(handle, ci, bh, &xb_triggers, type);
745 }
746 
ocfs2_journal_access_dq(handle_t * handle,struct ocfs2_caching_info * ci,struct buffer_head * bh,int type)747 int ocfs2_journal_access_dq(handle_t *handle, struct ocfs2_caching_info *ci,
748 			    struct buffer_head *bh, int type)
749 {
750 	return __ocfs2_journal_access(handle, ci, bh, &dq_triggers, type);
751 }
752 
ocfs2_journal_access_dr(handle_t * handle,struct ocfs2_caching_info * ci,struct buffer_head * bh,int type)753 int ocfs2_journal_access_dr(handle_t *handle, struct ocfs2_caching_info *ci,
754 			    struct buffer_head *bh, int type)
755 {
756 	return __ocfs2_journal_access(handle, ci, bh, &dr_triggers, type);
757 }
758 
ocfs2_journal_access_dl(handle_t * handle,struct ocfs2_caching_info * ci,struct buffer_head * bh,int type)759 int ocfs2_journal_access_dl(handle_t *handle, struct ocfs2_caching_info *ci,
760 			    struct buffer_head *bh, int type)
761 {
762 	return __ocfs2_journal_access(handle, ci, bh, &dl_triggers, type);
763 }
764 
ocfs2_journal_access(handle_t * handle,struct ocfs2_caching_info * ci,struct buffer_head * bh,int type)765 int ocfs2_journal_access(handle_t *handle, struct ocfs2_caching_info *ci,
766 			 struct buffer_head *bh, int type)
767 {
768 	return __ocfs2_journal_access(handle, ci, bh, NULL, type);
769 }
770 
ocfs2_journal_dirty(handle_t * handle,struct buffer_head * bh)771 void ocfs2_journal_dirty(handle_t *handle, struct buffer_head *bh)
772 {
773 	int status;
774 
775 	trace_ocfs2_journal_dirty((unsigned long long)bh->b_blocknr);
776 
777 	status = jbd2_journal_dirty_metadata(handle, bh);
778 	if (status) {
779 		mlog_errno(status);
780 		if (!is_handle_aborted(handle)) {
781 			journal_t *journal = handle->h_transaction->t_journal;
782 			struct super_block *sb = bh->b_bdev->bd_super;
783 
784 			mlog(ML_ERROR, "jbd2_journal_dirty_metadata failed. "
785 					"Aborting transaction and journal.\n");
786 			handle->h_err = status;
787 			jbd2_journal_abort_handle(handle);
788 			jbd2_journal_abort(journal, status);
789 			ocfs2_abort(sb, "Journal already aborted.\n");
790 		}
791 	}
792 }
793 
794 #define OCFS2_DEFAULT_COMMIT_INTERVAL	(HZ * JBD2_DEFAULT_MAX_COMMIT_AGE)
795 
ocfs2_set_journal_params(struct ocfs2_super * osb)796 void ocfs2_set_journal_params(struct ocfs2_super *osb)
797 {
798 	journal_t *journal = osb->journal->j_journal;
799 	unsigned long commit_interval = OCFS2_DEFAULT_COMMIT_INTERVAL;
800 
801 	if (osb->osb_commit_interval)
802 		commit_interval = osb->osb_commit_interval;
803 
804 	write_lock(&journal->j_state_lock);
805 	journal->j_commit_interval = commit_interval;
806 	if (osb->s_mount_opt & OCFS2_MOUNT_BARRIER)
807 		journal->j_flags |= JBD2_BARRIER;
808 	else
809 		journal->j_flags &= ~JBD2_BARRIER;
810 	write_unlock(&journal->j_state_lock);
811 }
812 
ocfs2_journal_init(struct ocfs2_journal * journal,int * dirty)813 int ocfs2_journal_init(struct ocfs2_journal *journal, int *dirty)
814 {
815 	int status = -1;
816 	struct inode *inode = NULL; /* the journal inode */
817 	journal_t *j_journal = NULL;
818 	struct ocfs2_dinode *di = NULL;
819 	struct buffer_head *bh = NULL;
820 	struct ocfs2_super *osb;
821 	int inode_lock = 0;
822 
823 	BUG_ON(!journal);
824 
825 	osb = journal->j_osb;
826 
827 	/* already have the inode for our journal */
828 	inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
829 					    osb->slot_num);
830 	if (inode == NULL) {
831 		status = -EACCES;
832 		mlog_errno(status);
833 		goto done;
834 	}
835 	if (is_bad_inode(inode)) {
836 		mlog(ML_ERROR, "access error (bad inode)\n");
837 		iput(inode);
838 		inode = NULL;
839 		status = -EACCES;
840 		goto done;
841 	}
842 
843 	SET_INODE_JOURNAL(inode);
844 	OCFS2_I(inode)->ip_open_count++;
845 
846 	/* Skip recovery waits here - journal inode metadata never
847 	 * changes in a live cluster so it can be considered an
848 	 * exception to the rule. */
849 	status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY);
850 	if (status < 0) {
851 		if (status != -ERESTARTSYS)
852 			mlog(ML_ERROR, "Could not get lock on journal!\n");
853 		goto done;
854 	}
855 
856 	inode_lock = 1;
857 	di = (struct ocfs2_dinode *)bh->b_data;
858 
859 	if (i_size_read(inode) <  OCFS2_MIN_JOURNAL_SIZE) {
860 		mlog(ML_ERROR, "Journal file size (%lld) is too small!\n",
861 		     i_size_read(inode));
862 		status = -EINVAL;
863 		goto done;
864 	}
865 
866 	trace_ocfs2_journal_init(i_size_read(inode),
867 				 (unsigned long long)inode->i_blocks,
868 				 OCFS2_I(inode)->ip_clusters);
869 
870 	/* call the kernels journal init function now */
871 	j_journal = jbd2_journal_init_inode(inode);
872 	if (j_journal == NULL) {
873 		mlog(ML_ERROR, "Linux journal layer error\n");
874 		status = -EINVAL;
875 		goto done;
876 	}
877 
878 	trace_ocfs2_journal_init_maxlen(j_journal->j_total_len);
879 
880 	*dirty = (le32_to_cpu(di->id1.journal1.ij_flags) &
881 		  OCFS2_JOURNAL_DIRTY_FL);
882 
883 	journal->j_journal = j_journal;
884 	journal->j_journal->j_submit_inode_data_buffers =
885 		jbd2_journal_submit_inode_data_buffers;
886 	journal->j_journal->j_finish_inode_data_buffers =
887 		jbd2_journal_finish_inode_data_buffers;
888 	journal->j_inode = inode;
889 	journal->j_bh = bh;
890 
891 	ocfs2_set_journal_params(osb);
892 
893 	journal->j_state = OCFS2_JOURNAL_LOADED;
894 
895 	status = 0;
896 done:
897 	if (status < 0) {
898 		if (inode_lock)
899 			ocfs2_inode_unlock(inode, 1);
900 		brelse(bh);
901 		if (inode) {
902 			OCFS2_I(inode)->ip_open_count--;
903 			iput(inode);
904 		}
905 	}
906 
907 	return status;
908 }
909 
ocfs2_bump_recovery_generation(struct ocfs2_dinode * di)910 static void ocfs2_bump_recovery_generation(struct ocfs2_dinode *di)
911 {
912 	le32_add_cpu(&(di->id1.journal1.ij_recovery_generation), 1);
913 }
914 
ocfs2_get_recovery_generation(struct ocfs2_dinode * di)915 static u32 ocfs2_get_recovery_generation(struct ocfs2_dinode *di)
916 {
917 	return le32_to_cpu(di->id1.journal1.ij_recovery_generation);
918 }
919 
ocfs2_journal_toggle_dirty(struct ocfs2_super * osb,int dirty,int replayed)920 static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
921 				      int dirty, int replayed)
922 {
923 	int status;
924 	unsigned int flags;
925 	struct ocfs2_journal *journal = osb->journal;
926 	struct buffer_head *bh = journal->j_bh;
927 	struct ocfs2_dinode *fe;
928 
929 	fe = (struct ocfs2_dinode *)bh->b_data;
930 
931 	/* The journal bh on the osb always comes from ocfs2_journal_init()
932 	 * and was validated there inside ocfs2_inode_lock_full().  It's a
933 	 * code bug if we mess it up. */
934 	BUG_ON(!OCFS2_IS_VALID_DINODE(fe));
935 
936 	flags = le32_to_cpu(fe->id1.journal1.ij_flags);
937 	if (dirty)
938 		flags |= OCFS2_JOURNAL_DIRTY_FL;
939 	else
940 		flags &= ~OCFS2_JOURNAL_DIRTY_FL;
941 	fe->id1.journal1.ij_flags = cpu_to_le32(flags);
942 
943 	if (replayed)
944 		ocfs2_bump_recovery_generation(fe);
945 
946 	ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check);
947 	status = ocfs2_write_block(osb, bh, INODE_CACHE(journal->j_inode));
948 	if (status < 0)
949 		mlog_errno(status);
950 
951 	return status;
952 }
953 
954 /*
955  * If the journal has been kmalloc'd it needs to be freed after this
956  * call.
957  */
ocfs2_journal_shutdown(struct ocfs2_super * osb)958 void ocfs2_journal_shutdown(struct ocfs2_super *osb)
959 {
960 	struct ocfs2_journal *journal = NULL;
961 	int status = 0;
962 	struct inode *inode = NULL;
963 	int num_running_trans = 0;
964 
965 	BUG_ON(!osb);
966 
967 	journal = osb->journal;
968 	if (!journal)
969 		goto done;
970 
971 	inode = journal->j_inode;
972 
973 	if (journal->j_state != OCFS2_JOURNAL_LOADED)
974 		goto done;
975 
976 	/* need to inc inode use count - jbd2_journal_destroy will iput. */
977 	if (!igrab(inode))
978 		BUG();
979 
980 	num_running_trans = atomic_read(&(osb->journal->j_num_trans));
981 	trace_ocfs2_journal_shutdown(num_running_trans);
982 
983 	/* Do a commit_cache here. It will flush our journal, *and*
984 	 * release any locks that are still held.
985 	 * set the SHUTDOWN flag and release the trans lock.
986 	 * the commit thread will take the trans lock for us below. */
987 	journal->j_state = OCFS2_JOURNAL_IN_SHUTDOWN;
988 
989 	/* The OCFS2_JOURNAL_IN_SHUTDOWN will signal to commit_cache to not
990 	 * drop the trans_lock (which we want to hold until we
991 	 * completely destroy the journal. */
992 	if (osb->commit_task) {
993 		/* Wait for the commit thread */
994 		trace_ocfs2_journal_shutdown_wait(osb->commit_task);
995 		kthread_stop(osb->commit_task);
996 		osb->commit_task = NULL;
997 	}
998 
999 	BUG_ON(atomic_read(&(osb->journal->j_num_trans)) != 0);
1000 
1001 	if (ocfs2_mount_local(osb)) {
1002 		jbd2_journal_lock_updates(journal->j_journal);
1003 		status = jbd2_journal_flush(journal->j_journal, 0);
1004 		jbd2_journal_unlock_updates(journal->j_journal);
1005 		if (status < 0)
1006 			mlog_errno(status);
1007 	}
1008 
1009 	/* Shutdown the kernel journal system */
1010 	if (!jbd2_journal_destroy(journal->j_journal) && !status) {
1011 		/*
1012 		 * Do not toggle if flush was unsuccessful otherwise
1013 		 * will leave dirty metadata in a "clean" journal
1014 		 */
1015 		status = ocfs2_journal_toggle_dirty(osb, 0, 0);
1016 		if (status < 0)
1017 			mlog_errno(status);
1018 	}
1019 	journal->j_journal = NULL;
1020 
1021 	OCFS2_I(inode)->ip_open_count--;
1022 
1023 	/* unlock our journal */
1024 	ocfs2_inode_unlock(inode, 1);
1025 
1026 	brelse(journal->j_bh);
1027 	journal->j_bh = NULL;
1028 
1029 	journal->j_state = OCFS2_JOURNAL_FREE;
1030 
1031 //	up_write(&journal->j_trans_barrier);
1032 done:
1033 	iput(inode);
1034 }
1035 
ocfs2_clear_journal_error(struct super_block * sb,journal_t * journal,int slot)1036 static void ocfs2_clear_journal_error(struct super_block *sb,
1037 				      journal_t *journal,
1038 				      int slot)
1039 {
1040 	int olderr;
1041 
1042 	olderr = jbd2_journal_errno(journal);
1043 	if (olderr) {
1044 		mlog(ML_ERROR, "File system error %d recorded in "
1045 		     "journal %u.\n", olderr, slot);
1046 		mlog(ML_ERROR, "File system on device %s needs checking.\n",
1047 		     sb->s_id);
1048 
1049 		jbd2_journal_ack_err(journal);
1050 		jbd2_journal_clear_err(journal);
1051 	}
1052 }
1053 
ocfs2_journal_load(struct ocfs2_journal * journal,int local,int replayed)1054 int ocfs2_journal_load(struct ocfs2_journal *journal, int local, int replayed)
1055 {
1056 	int status = 0;
1057 	struct ocfs2_super *osb;
1058 
1059 	BUG_ON(!journal);
1060 
1061 	osb = journal->j_osb;
1062 
1063 	status = jbd2_journal_load(journal->j_journal);
1064 	if (status < 0) {
1065 		mlog(ML_ERROR, "Failed to load journal!\n");
1066 		goto done;
1067 	}
1068 
1069 	ocfs2_clear_journal_error(osb->sb, journal->j_journal, osb->slot_num);
1070 
1071 	if (replayed) {
1072 		jbd2_journal_lock_updates(journal->j_journal);
1073 		status = jbd2_journal_flush(journal->j_journal, 0);
1074 		jbd2_journal_unlock_updates(journal->j_journal);
1075 		if (status < 0)
1076 			mlog_errno(status);
1077 	}
1078 
1079 	status = ocfs2_journal_toggle_dirty(osb, 1, replayed);
1080 	if (status < 0) {
1081 		mlog_errno(status);
1082 		goto done;
1083 	}
1084 
1085 	/* Launch the commit thread */
1086 	if (!local) {
1087 		osb->commit_task = kthread_run(ocfs2_commit_thread, osb,
1088 				"ocfs2cmt-%s", osb->uuid_str);
1089 		if (IS_ERR(osb->commit_task)) {
1090 			status = PTR_ERR(osb->commit_task);
1091 			osb->commit_task = NULL;
1092 			mlog(ML_ERROR, "unable to launch ocfs2commit thread, "
1093 			     "error=%d", status);
1094 			goto done;
1095 		}
1096 	} else
1097 		osb->commit_task = NULL;
1098 
1099 done:
1100 	return status;
1101 }
1102 
1103 
1104 /* 'full' flag tells us whether we clear out all blocks or if we just
1105  * mark the journal clean */
ocfs2_journal_wipe(struct ocfs2_journal * journal,int full)1106 int ocfs2_journal_wipe(struct ocfs2_journal *journal, int full)
1107 {
1108 	int status;
1109 
1110 	BUG_ON(!journal);
1111 
1112 	status = jbd2_journal_wipe(journal->j_journal, full);
1113 	if (status < 0) {
1114 		mlog_errno(status);
1115 		goto bail;
1116 	}
1117 
1118 	status = ocfs2_journal_toggle_dirty(journal->j_osb, 0, 0);
1119 	if (status < 0)
1120 		mlog_errno(status);
1121 
1122 bail:
1123 	return status;
1124 }
1125 
ocfs2_recovery_completed(struct ocfs2_super * osb)1126 static int ocfs2_recovery_completed(struct ocfs2_super *osb)
1127 {
1128 	int empty;
1129 	struct ocfs2_recovery_map *rm = osb->recovery_map;
1130 
1131 	spin_lock(&osb->osb_lock);
1132 	empty = (rm->rm_used == 0);
1133 	spin_unlock(&osb->osb_lock);
1134 
1135 	return empty;
1136 }
1137 
ocfs2_wait_for_recovery(struct ocfs2_super * osb)1138 void ocfs2_wait_for_recovery(struct ocfs2_super *osb)
1139 {
1140 	wait_event(osb->recovery_event, ocfs2_recovery_completed(osb));
1141 }
1142 
1143 /*
1144  * JBD Might read a cached version of another nodes journal file. We
1145  * don't want this as this file changes often and we get no
1146  * notification on those changes. The only way to be sure that we've
1147  * got the most up to date version of those blocks then is to force
1148  * read them off disk. Just searching through the buffer cache won't
1149  * work as there may be pages backing this file which are still marked
1150  * up to date. We know things can't change on this file underneath us
1151  * as we have the lock by now :)
1152  */
ocfs2_force_read_journal(struct inode * inode)1153 static int ocfs2_force_read_journal(struct inode *inode)
1154 {
1155 	int status = 0;
1156 	int i;
1157 	u64 v_blkno, p_blkno, p_blocks, num_blocks;
1158 	struct buffer_head *bh = NULL;
1159 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1160 
1161 	num_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
1162 	v_blkno = 0;
1163 	while (v_blkno < num_blocks) {
1164 		status = ocfs2_extent_map_get_blocks(inode, v_blkno,
1165 						     &p_blkno, &p_blocks, NULL);
1166 		if (status < 0) {
1167 			mlog_errno(status);
1168 			goto bail;
1169 		}
1170 
1171 		for (i = 0; i < p_blocks; i++, p_blkno++) {
1172 			bh = __find_get_block(osb->sb->s_bdev, p_blkno,
1173 					osb->sb->s_blocksize);
1174 			/* block not cached. */
1175 			if (!bh)
1176 				continue;
1177 
1178 			brelse(bh);
1179 			bh = NULL;
1180 			/* We are reading journal data which should not
1181 			 * be put in the uptodate cache.
1182 			 */
1183 			status = ocfs2_read_blocks_sync(osb, p_blkno, 1, &bh);
1184 			if (status < 0) {
1185 				mlog_errno(status);
1186 				goto bail;
1187 			}
1188 
1189 			brelse(bh);
1190 			bh = NULL;
1191 		}
1192 
1193 		v_blkno += p_blocks;
1194 	}
1195 
1196 bail:
1197 	return status;
1198 }
1199 
1200 struct ocfs2_la_recovery_item {
1201 	struct list_head	lri_list;
1202 	int			lri_slot;
1203 	struct ocfs2_dinode	*lri_la_dinode;
1204 	struct ocfs2_dinode	*lri_tl_dinode;
1205 	struct ocfs2_quota_recovery *lri_qrec;
1206 	enum ocfs2_orphan_reco_type  lri_orphan_reco_type;
1207 };
1208 
1209 /* Does the second half of the recovery process. By this point, the
1210  * node is marked clean and can actually be considered recovered,
1211  * hence it's no longer in the recovery map, but there's still some
1212  * cleanup we can do which shouldn't happen within the recovery thread
1213  * as locking in that context becomes very difficult if we are to take
1214  * recovering nodes into account.
1215  *
1216  * NOTE: This function can and will sleep on recovery of other nodes
1217  * during cluster locking, just like any other ocfs2 process.
1218  */
ocfs2_complete_recovery(struct work_struct * work)1219 void ocfs2_complete_recovery(struct work_struct *work)
1220 {
1221 	int ret = 0;
1222 	struct ocfs2_journal *journal =
1223 		container_of(work, struct ocfs2_journal, j_recovery_work);
1224 	struct ocfs2_super *osb = journal->j_osb;
1225 	struct ocfs2_dinode *la_dinode, *tl_dinode;
1226 	struct ocfs2_la_recovery_item *item, *n;
1227 	struct ocfs2_quota_recovery *qrec;
1228 	enum ocfs2_orphan_reco_type orphan_reco_type;
1229 	LIST_HEAD(tmp_la_list);
1230 
1231 	trace_ocfs2_complete_recovery(
1232 		(unsigned long long)OCFS2_I(journal->j_inode)->ip_blkno);
1233 
1234 	spin_lock(&journal->j_lock);
1235 	list_splice_init(&journal->j_la_cleanups, &tmp_la_list);
1236 	spin_unlock(&journal->j_lock);
1237 
1238 	list_for_each_entry_safe(item, n, &tmp_la_list, lri_list) {
1239 		list_del_init(&item->lri_list);
1240 
1241 		ocfs2_wait_on_quotas(osb);
1242 
1243 		la_dinode = item->lri_la_dinode;
1244 		tl_dinode = item->lri_tl_dinode;
1245 		qrec = item->lri_qrec;
1246 		orphan_reco_type = item->lri_orphan_reco_type;
1247 
1248 		trace_ocfs2_complete_recovery_slot(item->lri_slot,
1249 			la_dinode ? le64_to_cpu(la_dinode->i_blkno) : 0,
1250 			tl_dinode ? le64_to_cpu(tl_dinode->i_blkno) : 0,
1251 			qrec);
1252 
1253 		if (la_dinode) {
1254 			ret = ocfs2_complete_local_alloc_recovery(osb,
1255 								  la_dinode);
1256 			if (ret < 0)
1257 				mlog_errno(ret);
1258 
1259 			kfree(la_dinode);
1260 		}
1261 
1262 		if (tl_dinode) {
1263 			ret = ocfs2_complete_truncate_log_recovery(osb,
1264 								   tl_dinode);
1265 			if (ret < 0)
1266 				mlog_errno(ret);
1267 
1268 			kfree(tl_dinode);
1269 		}
1270 
1271 		ret = ocfs2_recover_orphans(osb, item->lri_slot,
1272 				orphan_reco_type);
1273 		if (ret < 0)
1274 			mlog_errno(ret);
1275 
1276 		if (qrec) {
1277 			ret = ocfs2_finish_quota_recovery(osb, qrec,
1278 							  item->lri_slot);
1279 			if (ret < 0)
1280 				mlog_errno(ret);
1281 			/* Recovery info is already freed now */
1282 		}
1283 
1284 		kfree(item);
1285 	}
1286 
1287 	trace_ocfs2_complete_recovery_end(ret);
1288 }
1289 
1290 /* NOTE: This function always eats your references to la_dinode and
1291  * tl_dinode, either manually on error, or by passing them to
1292  * ocfs2_complete_recovery */
ocfs2_queue_recovery_completion(struct ocfs2_journal * journal,int slot_num,struct ocfs2_dinode * la_dinode,struct ocfs2_dinode * tl_dinode,struct ocfs2_quota_recovery * qrec,enum ocfs2_orphan_reco_type orphan_reco_type)1293 static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal,
1294 					    int slot_num,
1295 					    struct ocfs2_dinode *la_dinode,
1296 					    struct ocfs2_dinode *tl_dinode,
1297 					    struct ocfs2_quota_recovery *qrec,
1298 					    enum ocfs2_orphan_reco_type orphan_reco_type)
1299 {
1300 	struct ocfs2_la_recovery_item *item;
1301 
1302 	item = kmalloc(sizeof(struct ocfs2_la_recovery_item), GFP_NOFS);
1303 	if (!item) {
1304 		/* Though we wish to avoid it, we are in fact safe in
1305 		 * skipping local alloc cleanup as fsck.ocfs2 is more
1306 		 * than capable of reclaiming unused space. */
1307 		kfree(la_dinode);
1308 		kfree(tl_dinode);
1309 
1310 		if (qrec)
1311 			ocfs2_free_quota_recovery(qrec);
1312 
1313 		mlog_errno(-ENOMEM);
1314 		return;
1315 	}
1316 
1317 	INIT_LIST_HEAD(&item->lri_list);
1318 	item->lri_la_dinode = la_dinode;
1319 	item->lri_slot = slot_num;
1320 	item->lri_tl_dinode = tl_dinode;
1321 	item->lri_qrec = qrec;
1322 	item->lri_orphan_reco_type = orphan_reco_type;
1323 
1324 	spin_lock(&journal->j_lock);
1325 	list_add_tail(&item->lri_list, &journal->j_la_cleanups);
1326 	queue_work(journal->j_osb->ocfs2_wq, &journal->j_recovery_work);
1327 	spin_unlock(&journal->j_lock);
1328 }
1329 
1330 /* Called by the mount code to queue recovery the last part of
1331  * recovery for it's own and offline slot(s). */
ocfs2_complete_mount_recovery(struct ocfs2_super * osb)1332 void ocfs2_complete_mount_recovery(struct ocfs2_super *osb)
1333 {
1334 	struct ocfs2_journal *journal = osb->journal;
1335 
1336 	if (ocfs2_is_hard_readonly(osb))
1337 		return;
1338 
1339 	/* No need to queue up our truncate_log as regular cleanup will catch
1340 	 * that */
1341 	ocfs2_queue_recovery_completion(journal, osb->slot_num,
1342 					osb->local_alloc_copy, NULL, NULL,
1343 					ORPHAN_NEED_TRUNCATE);
1344 	ocfs2_schedule_truncate_log_flush(osb, 0);
1345 
1346 	osb->local_alloc_copy = NULL;
1347 
1348 	/* queue to recover orphan slots for all offline slots */
1349 	ocfs2_replay_map_set_state(osb, REPLAY_NEEDED);
1350 	ocfs2_queue_replay_slots(osb, ORPHAN_NEED_TRUNCATE);
1351 	ocfs2_free_replay_slots(osb);
1352 }
1353 
ocfs2_complete_quota_recovery(struct ocfs2_super * osb)1354 void ocfs2_complete_quota_recovery(struct ocfs2_super *osb)
1355 {
1356 	if (osb->quota_rec) {
1357 		ocfs2_queue_recovery_completion(osb->journal,
1358 						osb->slot_num,
1359 						NULL,
1360 						NULL,
1361 						osb->quota_rec,
1362 						ORPHAN_NEED_TRUNCATE);
1363 		osb->quota_rec = NULL;
1364 	}
1365 }
1366 
__ocfs2_recovery_thread(void * arg)1367 static int __ocfs2_recovery_thread(void *arg)
1368 {
1369 	int status, node_num, slot_num;
1370 	struct ocfs2_super *osb = arg;
1371 	struct ocfs2_recovery_map *rm = osb->recovery_map;
1372 	int *rm_quota = NULL;
1373 	int rm_quota_used = 0, i;
1374 	struct ocfs2_quota_recovery *qrec;
1375 
1376 	/* Whether the quota supported. */
1377 	int quota_enabled = OCFS2_HAS_RO_COMPAT_FEATURE(osb->sb,
1378 			OCFS2_FEATURE_RO_COMPAT_USRQUOTA)
1379 		|| OCFS2_HAS_RO_COMPAT_FEATURE(osb->sb,
1380 			OCFS2_FEATURE_RO_COMPAT_GRPQUOTA);
1381 
1382 	status = ocfs2_wait_on_mount(osb);
1383 	if (status < 0) {
1384 		goto bail;
1385 	}
1386 
1387 	if (quota_enabled) {
1388 		rm_quota = kcalloc(osb->max_slots, sizeof(int), GFP_NOFS);
1389 		if (!rm_quota) {
1390 			status = -ENOMEM;
1391 			goto bail;
1392 		}
1393 	}
1394 restart:
1395 	status = ocfs2_super_lock(osb, 1);
1396 	if (status < 0) {
1397 		mlog_errno(status);
1398 		goto bail;
1399 	}
1400 
1401 	status = ocfs2_compute_replay_slots(osb);
1402 	if (status < 0)
1403 		mlog_errno(status);
1404 
1405 	/* queue recovery for our own slot */
1406 	ocfs2_queue_recovery_completion(osb->journal, osb->slot_num, NULL,
1407 					NULL, NULL, ORPHAN_NO_NEED_TRUNCATE);
1408 
1409 	spin_lock(&osb->osb_lock);
1410 	while (rm->rm_used) {
1411 		/* It's always safe to remove entry zero, as we won't
1412 		 * clear it until ocfs2_recover_node() has succeeded. */
1413 		node_num = rm->rm_entries[0];
1414 		spin_unlock(&osb->osb_lock);
1415 		slot_num = ocfs2_node_num_to_slot(osb, node_num);
1416 		trace_ocfs2_recovery_thread_node(node_num, slot_num);
1417 		if (slot_num == -ENOENT) {
1418 			status = 0;
1419 			goto skip_recovery;
1420 		}
1421 
1422 		/* It is a bit subtle with quota recovery. We cannot do it
1423 		 * immediately because we have to obtain cluster locks from
1424 		 * quota files and we also don't want to just skip it because
1425 		 * then quota usage would be out of sync until some node takes
1426 		 * the slot. So we remember which nodes need quota recovery
1427 		 * and when everything else is done, we recover quotas. */
1428 		if (quota_enabled) {
1429 			for (i = 0; i < rm_quota_used
1430 					&& rm_quota[i] != slot_num; i++)
1431 				;
1432 
1433 			if (i == rm_quota_used)
1434 				rm_quota[rm_quota_used++] = slot_num;
1435 		}
1436 
1437 		status = ocfs2_recover_node(osb, node_num, slot_num);
1438 skip_recovery:
1439 		if (!status) {
1440 			ocfs2_recovery_map_clear(osb, node_num);
1441 		} else {
1442 			mlog(ML_ERROR,
1443 			     "Error %d recovering node %d on device (%u,%u)!\n",
1444 			     status, node_num,
1445 			     MAJOR(osb->sb->s_dev), MINOR(osb->sb->s_dev));
1446 			mlog(ML_ERROR, "Volume requires unmount.\n");
1447 		}
1448 
1449 		spin_lock(&osb->osb_lock);
1450 	}
1451 	spin_unlock(&osb->osb_lock);
1452 	trace_ocfs2_recovery_thread_end(status);
1453 
1454 	/* Refresh all journal recovery generations from disk */
1455 	status = ocfs2_check_journals_nolocks(osb);
1456 	status = (status == -EROFS) ? 0 : status;
1457 	if (status < 0)
1458 		mlog_errno(status);
1459 
1460 	/* Now it is right time to recover quotas... We have to do this under
1461 	 * superblock lock so that no one can start using the slot (and crash)
1462 	 * before we recover it */
1463 	if (quota_enabled) {
1464 		for (i = 0; i < rm_quota_used; i++) {
1465 			qrec = ocfs2_begin_quota_recovery(osb, rm_quota[i]);
1466 			if (IS_ERR(qrec)) {
1467 				status = PTR_ERR(qrec);
1468 				mlog_errno(status);
1469 				continue;
1470 			}
1471 			ocfs2_queue_recovery_completion(osb->journal,
1472 					rm_quota[i],
1473 					NULL, NULL, qrec,
1474 					ORPHAN_NEED_TRUNCATE);
1475 		}
1476 	}
1477 
1478 	ocfs2_super_unlock(osb, 1);
1479 
1480 	/* queue recovery for offline slots */
1481 	ocfs2_queue_replay_slots(osb, ORPHAN_NEED_TRUNCATE);
1482 
1483 bail:
1484 	mutex_lock(&osb->recovery_lock);
1485 	if (!status && !ocfs2_recovery_completed(osb)) {
1486 		mutex_unlock(&osb->recovery_lock);
1487 		goto restart;
1488 	}
1489 
1490 	ocfs2_free_replay_slots(osb);
1491 	osb->recovery_thread_task = NULL;
1492 	mb(); /* sync with ocfs2_recovery_thread_running */
1493 	wake_up(&osb->recovery_event);
1494 
1495 	mutex_unlock(&osb->recovery_lock);
1496 
1497 	if (quota_enabled)
1498 		kfree(rm_quota);
1499 
1500 	/* no one is callint kthread_stop() for us so the kthread() api
1501 	 * requires that we call do_exit().  And it isn't exported, but
1502 	 * complete_and_exit() seems to be a minimal wrapper around it. */
1503 	complete_and_exit(NULL, status);
1504 }
1505 
ocfs2_recovery_thread(struct ocfs2_super * osb,int node_num)1506 void ocfs2_recovery_thread(struct ocfs2_super *osb, int node_num)
1507 {
1508 	mutex_lock(&osb->recovery_lock);
1509 
1510 	trace_ocfs2_recovery_thread(node_num, osb->node_num,
1511 		osb->disable_recovery, osb->recovery_thread_task,
1512 		osb->disable_recovery ?
1513 		-1 : ocfs2_recovery_map_set(osb, node_num));
1514 
1515 	if (osb->disable_recovery)
1516 		goto out;
1517 
1518 	if (osb->recovery_thread_task)
1519 		goto out;
1520 
1521 	osb->recovery_thread_task =  kthread_run(__ocfs2_recovery_thread, osb,
1522 			"ocfs2rec-%s", osb->uuid_str);
1523 	if (IS_ERR(osb->recovery_thread_task)) {
1524 		mlog_errno((int)PTR_ERR(osb->recovery_thread_task));
1525 		osb->recovery_thread_task = NULL;
1526 	}
1527 
1528 out:
1529 	mutex_unlock(&osb->recovery_lock);
1530 	wake_up(&osb->recovery_event);
1531 }
1532 
ocfs2_read_journal_inode(struct ocfs2_super * osb,int slot_num,struct buffer_head ** bh,struct inode ** ret_inode)1533 static int ocfs2_read_journal_inode(struct ocfs2_super *osb,
1534 				    int slot_num,
1535 				    struct buffer_head **bh,
1536 				    struct inode **ret_inode)
1537 {
1538 	int status = -EACCES;
1539 	struct inode *inode = NULL;
1540 
1541 	BUG_ON(slot_num >= osb->max_slots);
1542 
1543 	inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
1544 					    slot_num);
1545 	if (!inode || is_bad_inode(inode)) {
1546 		mlog_errno(status);
1547 		goto bail;
1548 	}
1549 	SET_INODE_JOURNAL(inode);
1550 
1551 	status = ocfs2_read_inode_block_full(inode, bh, OCFS2_BH_IGNORE_CACHE);
1552 	if (status < 0) {
1553 		mlog_errno(status);
1554 		goto bail;
1555 	}
1556 
1557 	status = 0;
1558 
1559 bail:
1560 	if (inode) {
1561 		if (status || !ret_inode)
1562 			iput(inode);
1563 		else
1564 			*ret_inode = inode;
1565 	}
1566 	return status;
1567 }
1568 
1569 /* Does the actual journal replay and marks the journal inode as
1570  * clean. Will only replay if the journal inode is marked dirty. */
ocfs2_replay_journal(struct ocfs2_super * osb,int node_num,int slot_num)1571 static int ocfs2_replay_journal(struct ocfs2_super *osb,
1572 				int node_num,
1573 				int slot_num)
1574 {
1575 	int status;
1576 	int got_lock = 0;
1577 	unsigned int flags;
1578 	struct inode *inode = NULL;
1579 	struct ocfs2_dinode *fe;
1580 	journal_t *journal = NULL;
1581 	struct buffer_head *bh = NULL;
1582 	u32 slot_reco_gen;
1583 
1584 	status = ocfs2_read_journal_inode(osb, slot_num, &bh, &inode);
1585 	if (status) {
1586 		mlog_errno(status);
1587 		goto done;
1588 	}
1589 
1590 	fe = (struct ocfs2_dinode *)bh->b_data;
1591 	slot_reco_gen = ocfs2_get_recovery_generation(fe);
1592 	brelse(bh);
1593 	bh = NULL;
1594 
1595 	/*
1596 	 * As the fs recovery is asynchronous, there is a small chance that
1597 	 * another node mounted (and recovered) the slot before the recovery
1598 	 * thread could get the lock. To handle that, we dirty read the journal
1599 	 * inode for that slot to get the recovery generation. If it is
1600 	 * different than what we expected, the slot has been recovered.
1601 	 * If not, it needs recovery.
1602 	 */
1603 	if (osb->slot_recovery_generations[slot_num] != slot_reco_gen) {
1604 		trace_ocfs2_replay_journal_recovered(slot_num,
1605 		     osb->slot_recovery_generations[slot_num], slot_reco_gen);
1606 		osb->slot_recovery_generations[slot_num] = slot_reco_gen;
1607 		status = -EBUSY;
1608 		goto done;
1609 	}
1610 
1611 	/* Continue with recovery as the journal has not yet been recovered */
1612 
1613 	status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY);
1614 	if (status < 0) {
1615 		trace_ocfs2_replay_journal_lock_err(status);
1616 		if (status != -ERESTARTSYS)
1617 			mlog(ML_ERROR, "Could not lock journal!\n");
1618 		goto done;
1619 	}
1620 	got_lock = 1;
1621 
1622 	fe = (struct ocfs2_dinode *) bh->b_data;
1623 
1624 	flags = le32_to_cpu(fe->id1.journal1.ij_flags);
1625 	slot_reco_gen = ocfs2_get_recovery_generation(fe);
1626 
1627 	if (!(flags & OCFS2_JOURNAL_DIRTY_FL)) {
1628 		trace_ocfs2_replay_journal_skip(node_num);
1629 		/* Refresh recovery generation for the slot */
1630 		osb->slot_recovery_generations[slot_num] = slot_reco_gen;
1631 		goto done;
1632 	}
1633 
1634 	/* we need to run complete recovery for offline orphan slots */
1635 	ocfs2_replay_map_set_state(osb, REPLAY_NEEDED);
1636 
1637 	printk(KERN_NOTICE "ocfs2: Begin replay journal (node %d, slot %d) on "\
1638 	       "device (%u,%u)\n", node_num, slot_num, MAJOR(osb->sb->s_dev),
1639 	       MINOR(osb->sb->s_dev));
1640 
1641 	OCFS2_I(inode)->ip_clusters = le32_to_cpu(fe->i_clusters);
1642 
1643 	status = ocfs2_force_read_journal(inode);
1644 	if (status < 0) {
1645 		mlog_errno(status);
1646 		goto done;
1647 	}
1648 
1649 	journal = jbd2_journal_init_inode(inode);
1650 	if (journal == NULL) {
1651 		mlog(ML_ERROR, "Linux journal layer error\n");
1652 		status = -EIO;
1653 		goto done;
1654 	}
1655 
1656 	status = jbd2_journal_load(journal);
1657 	if (status < 0) {
1658 		mlog_errno(status);
1659 		if (!igrab(inode))
1660 			BUG();
1661 		jbd2_journal_destroy(journal);
1662 		goto done;
1663 	}
1664 
1665 	ocfs2_clear_journal_error(osb->sb, journal, slot_num);
1666 
1667 	/* wipe the journal */
1668 	jbd2_journal_lock_updates(journal);
1669 	status = jbd2_journal_flush(journal, 0);
1670 	jbd2_journal_unlock_updates(journal);
1671 	if (status < 0)
1672 		mlog_errno(status);
1673 
1674 	/* This will mark the node clean */
1675 	flags = le32_to_cpu(fe->id1.journal1.ij_flags);
1676 	flags &= ~OCFS2_JOURNAL_DIRTY_FL;
1677 	fe->id1.journal1.ij_flags = cpu_to_le32(flags);
1678 
1679 	/* Increment recovery generation to indicate successful recovery */
1680 	ocfs2_bump_recovery_generation(fe);
1681 	osb->slot_recovery_generations[slot_num] =
1682 					ocfs2_get_recovery_generation(fe);
1683 
1684 	ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check);
1685 	status = ocfs2_write_block(osb, bh, INODE_CACHE(inode));
1686 	if (status < 0)
1687 		mlog_errno(status);
1688 
1689 	if (!igrab(inode))
1690 		BUG();
1691 
1692 	jbd2_journal_destroy(journal);
1693 
1694 	printk(KERN_NOTICE "ocfs2: End replay journal (node %d, slot %d) on "\
1695 	       "device (%u,%u)\n", node_num, slot_num, MAJOR(osb->sb->s_dev),
1696 	       MINOR(osb->sb->s_dev));
1697 done:
1698 	/* drop the lock on this nodes journal */
1699 	if (got_lock)
1700 		ocfs2_inode_unlock(inode, 1);
1701 
1702 	iput(inode);
1703 	brelse(bh);
1704 
1705 	return status;
1706 }
1707 
1708 /*
1709  * Do the most important parts of node recovery:
1710  *  - Replay it's journal
1711  *  - Stamp a clean local allocator file
1712  *  - Stamp a clean truncate log
1713  *  - Mark the node clean
1714  *
1715  * If this function completes without error, a node in OCFS2 can be
1716  * said to have been safely recovered. As a result, failure during the
1717  * second part of a nodes recovery process (local alloc recovery) is
1718  * far less concerning.
1719  */
ocfs2_recover_node(struct ocfs2_super * osb,int node_num,int slot_num)1720 static int ocfs2_recover_node(struct ocfs2_super *osb,
1721 			      int node_num, int slot_num)
1722 {
1723 	int status = 0;
1724 	struct ocfs2_dinode *la_copy = NULL;
1725 	struct ocfs2_dinode *tl_copy = NULL;
1726 
1727 	trace_ocfs2_recover_node(node_num, slot_num, osb->node_num);
1728 
1729 	/* Should not ever be called to recover ourselves -- in that
1730 	 * case we should've called ocfs2_journal_load instead. */
1731 	BUG_ON(osb->node_num == node_num);
1732 
1733 	status = ocfs2_replay_journal(osb, node_num, slot_num);
1734 	if (status < 0) {
1735 		if (status == -EBUSY) {
1736 			trace_ocfs2_recover_node_skip(slot_num, node_num);
1737 			status = 0;
1738 			goto done;
1739 		}
1740 		mlog_errno(status);
1741 		goto done;
1742 	}
1743 
1744 	/* Stamp a clean local alloc file AFTER recovering the journal... */
1745 	status = ocfs2_begin_local_alloc_recovery(osb, slot_num, &la_copy);
1746 	if (status < 0) {
1747 		mlog_errno(status);
1748 		goto done;
1749 	}
1750 
1751 	/* An error from begin_truncate_log_recovery is not
1752 	 * serious enough to warrant halting the rest of
1753 	 * recovery. */
1754 	status = ocfs2_begin_truncate_log_recovery(osb, slot_num, &tl_copy);
1755 	if (status < 0)
1756 		mlog_errno(status);
1757 
1758 	/* Likewise, this would be a strange but ultimately not so
1759 	 * harmful place to get an error... */
1760 	status = ocfs2_clear_slot(osb, slot_num);
1761 	if (status < 0)
1762 		mlog_errno(status);
1763 
1764 	/* This will kfree the memory pointed to by la_copy and tl_copy */
1765 	ocfs2_queue_recovery_completion(osb->journal, slot_num, la_copy,
1766 					tl_copy, NULL, ORPHAN_NEED_TRUNCATE);
1767 
1768 	status = 0;
1769 done:
1770 
1771 	return status;
1772 }
1773 
1774 /* Test node liveness by trylocking his journal. If we get the lock,
1775  * we drop it here. Return 0 if we got the lock, -EAGAIN if node is
1776  * still alive (we couldn't get the lock) and < 0 on error. */
ocfs2_trylock_journal(struct ocfs2_super * osb,int slot_num)1777 static int ocfs2_trylock_journal(struct ocfs2_super *osb,
1778 				 int slot_num)
1779 {
1780 	int status, flags;
1781 	struct inode *inode = NULL;
1782 
1783 	inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
1784 					    slot_num);
1785 	if (inode == NULL) {
1786 		mlog(ML_ERROR, "access error\n");
1787 		status = -EACCES;
1788 		goto bail;
1789 	}
1790 	if (is_bad_inode(inode)) {
1791 		mlog(ML_ERROR, "access error (bad inode)\n");
1792 		iput(inode);
1793 		inode = NULL;
1794 		status = -EACCES;
1795 		goto bail;
1796 	}
1797 	SET_INODE_JOURNAL(inode);
1798 
1799 	flags = OCFS2_META_LOCK_RECOVERY | OCFS2_META_LOCK_NOQUEUE;
1800 	status = ocfs2_inode_lock_full(inode, NULL, 1, flags);
1801 	if (status < 0) {
1802 		if (status != -EAGAIN)
1803 			mlog_errno(status);
1804 		goto bail;
1805 	}
1806 
1807 	ocfs2_inode_unlock(inode, 1);
1808 bail:
1809 	iput(inode);
1810 
1811 	return status;
1812 }
1813 
1814 /* Call this underneath ocfs2_super_lock. It also assumes that the
1815  * slot info struct has been updated from disk. */
ocfs2_mark_dead_nodes(struct ocfs2_super * osb)1816 int ocfs2_mark_dead_nodes(struct ocfs2_super *osb)
1817 {
1818 	unsigned int node_num;
1819 	int status, i;
1820 	u32 gen;
1821 	struct buffer_head *bh = NULL;
1822 	struct ocfs2_dinode *di;
1823 
1824 	/* This is called with the super block cluster lock, so we
1825 	 * know that the slot map can't change underneath us. */
1826 
1827 	for (i = 0; i < osb->max_slots; i++) {
1828 		/* Read journal inode to get the recovery generation */
1829 		status = ocfs2_read_journal_inode(osb, i, &bh, NULL);
1830 		if (status) {
1831 			mlog_errno(status);
1832 			goto bail;
1833 		}
1834 		di = (struct ocfs2_dinode *)bh->b_data;
1835 		gen = ocfs2_get_recovery_generation(di);
1836 		brelse(bh);
1837 		bh = NULL;
1838 
1839 		spin_lock(&osb->osb_lock);
1840 		osb->slot_recovery_generations[i] = gen;
1841 
1842 		trace_ocfs2_mark_dead_nodes(i,
1843 					    osb->slot_recovery_generations[i]);
1844 
1845 		if (i == osb->slot_num) {
1846 			spin_unlock(&osb->osb_lock);
1847 			continue;
1848 		}
1849 
1850 		status = ocfs2_slot_to_node_num_locked(osb, i, &node_num);
1851 		if (status == -ENOENT) {
1852 			spin_unlock(&osb->osb_lock);
1853 			continue;
1854 		}
1855 
1856 		if (__ocfs2_recovery_map_test(osb, node_num)) {
1857 			spin_unlock(&osb->osb_lock);
1858 			continue;
1859 		}
1860 		spin_unlock(&osb->osb_lock);
1861 
1862 		/* Ok, we have a slot occupied by another node which
1863 		 * is not in the recovery map. We trylock his journal
1864 		 * file here to test if he's alive. */
1865 		status = ocfs2_trylock_journal(osb, i);
1866 		if (!status) {
1867 			/* Since we're called from mount, we know that
1868 			 * the recovery thread can't race us on
1869 			 * setting / checking the recovery bits. */
1870 			ocfs2_recovery_thread(osb, node_num);
1871 		} else if ((status < 0) && (status != -EAGAIN)) {
1872 			mlog_errno(status);
1873 			goto bail;
1874 		}
1875 	}
1876 
1877 	status = 0;
1878 bail:
1879 	return status;
1880 }
1881 
1882 /*
1883  * Scan timer should get fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT. Add some
1884  * randomness to the timeout to minimize multple nodes firing the timer at the
1885  * same time.
1886  */
ocfs2_orphan_scan_timeout(void)1887 static inline unsigned long ocfs2_orphan_scan_timeout(void)
1888 {
1889 	unsigned long time;
1890 
1891 	get_random_bytes(&time, sizeof(time));
1892 	time = ORPHAN_SCAN_SCHEDULE_TIMEOUT + (time % 5000);
1893 	return msecs_to_jiffies(time);
1894 }
1895 
1896 /*
1897  * ocfs2_queue_orphan_scan calls ocfs2_queue_recovery_completion for
1898  * every slot, queuing a recovery of the slot on the ocfs2_wq thread. This
1899  * is done to catch any orphans that are left over in orphan directories.
1900  *
1901  * It scans all slots, even ones that are in use. It does so to handle the
1902  * case described below:
1903  *
1904  *   Node 1 has an inode it was using. The dentry went away due to memory
1905  *   pressure.  Node 1 closes the inode, but it's on the free list. The node
1906  *   has the open lock.
1907  *   Node 2 unlinks the inode. It grabs the dentry lock to notify others,
1908  *   but node 1 has no dentry and doesn't get the message. It trylocks the
1909  *   open lock, sees that another node has a PR, and does nothing.
1910  *   Later node 2 runs its orphan dir. It igets the inode, trylocks the
1911  *   open lock, sees the PR still, and does nothing.
1912  *   Basically, we have to trigger an orphan iput on node 1. The only way
1913  *   for this to happen is if node 1 runs node 2's orphan dir.
1914  *
1915  * ocfs2_queue_orphan_scan gets called every ORPHAN_SCAN_SCHEDULE_TIMEOUT
1916  * seconds.  It gets an EX lock on os_lockres and checks sequence number
1917  * stored in LVB. If the sequence number has changed, it means some other
1918  * node has done the scan.  This node skips the scan and tracks the
1919  * sequence number.  If the sequence number didn't change, it means a scan
1920  * hasn't happened.  The node queues a scan and increments the
1921  * sequence number in the LVB.
1922  */
ocfs2_queue_orphan_scan(struct ocfs2_super * osb)1923 static void ocfs2_queue_orphan_scan(struct ocfs2_super *osb)
1924 {
1925 	struct ocfs2_orphan_scan *os;
1926 	int status, i;
1927 	u32 seqno = 0;
1928 
1929 	os = &osb->osb_orphan_scan;
1930 
1931 	if (atomic_read(&os->os_state) == ORPHAN_SCAN_INACTIVE)
1932 		goto out;
1933 
1934 	trace_ocfs2_queue_orphan_scan_begin(os->os_count, os->os_seqno,
1935 					    atomic_read(&os->os_state));
1936 
1937 	status = ocfs2_orphan_scan_lock(osb, &seqno);
1938 	if (status < 0) {
1939 		if (status != -EAGAIN)
1940 			mlog_errno(status);
1941 		goto out;
1942 	}
1943 
1944 	/* Do no queue the tasks if the volume is being umounted */
1945 	if (atomic_read(&os->os_state) == ORPHAN_SCAN_INACTIVE)
1946 		goto unlock;
1947 
1948 	if (os->os_seqno != seqno) {
1949 		os->os_seqno = seqno;
1950 		goto unlock;
1951 	}
1952 
1953 	for (i = 0; i < osb->max_slots; i++)
1954 		ocfs2_queue_recovery_completion(osb->journal, i, NULL, NULL,
1955 						NULL, ORPHAN_NO_NEED_TRUNCATE);
1956 	/*
1957 	 * We queued a recovery on orphan slots, increment the sequence
1958 	 * number and update LVB so other node will skip the scan for a while
1959 	 */
1960 	seqno++;
1961 	os->os_count++;
1962 	os->os_scantime = ktime_get_seconds();
1963 unlock:
1964 	ocfs2_orphan_scan_unlock(osb, seqno);
1965 out:
1966 	trace_ocfs2_queue_orphan_scan_end(os->os_count, os->os_seqno,
1967 					  atomic_read(&os->os_state));
1968 	return;
1969 }
1970 
1971 /* Worker task that gets fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT millsec */
ocfs2_orphan_scan_work(struct work_struct * work)1972 static void ocfs2_orphan_scan_work(struct work_struct *work)
1973 {
1974 	struct ocfs2_orphan_scan *os;
1975 	struct ocfs2_super *osb;
1976 
1977 	os = container_of(work, struct ocfs2_orphan_scan,
1978 			  os_orphan_scan_work.work);
1979 	osb = os->os_osb;
1980 
1981 	mutex_lock(&os->os_lock);
1982 	ocfs2_queue_orphan_scan(osb);
1983 	if (atomic_read(&os->os_state) == ORPHAN_SCAN_ACTIVE)
1984 		queue_delayed_work(osb->ocfs2_wq, &os->os_orphan_scan_work,
1985 				      ocfs2_orphan_scan_timeout());
1986 	mutex_unlock(&os->os_lock);
1987 }
1988 
ocfs2_orphan_scan_stop(struct ocfs2_super * osb)1989 void ocfs2_orphan_scan_stop(struct ocfs2_super *osb)
1990 {
1991 	struct ocfs2_orphan_scan *os;
1992 
1993 	os = &osb->osb_orphan_scan;
1994 	if (atomic_read(&os->os_state) == ORPHAN_SCAN_ACTIVE) {
1995 		atomic_set(&os->os_state, ORPHAN_SCAN_INACTIVE);
1996 		mutex_lock(&os->os_lock);
1997 		cancel_delayed_work(&os->os_orphan_scan_work);
1998 		mutex_unlock(&os->os_lock);
1999 	}
2000 }
2001 
ocfs2_orphan_scan_init(struct ocfs2_super * osb)2002 void ocfs2_orphan_scan_init(struct ocfs2_super *osb)
2003 {
2004 	struct ocfs2_orphan_scan *os;
2005 
2006 	os = &osb->osb_orphan_scan;
2007 	os->os_osb = osb;
2008 	os->os_count = 0;
2009 	os->os_seqno = 0;
2010 	mutex_init(&os->os_lock);
2011 	INIT_DELAYED_WORK(&os->os_orphan_scan_work, ocfs2_orphan_scan_work);
2012 }
2013 
ocfs2_orphan_scan_start(struct ocfs2_super * osb)2014 void ocfs2_orphan_scan_start(struct ocfs2_super *osb)
2015 {
2016 	struct ocfs2_orphan_scan *os;
2017 
2018 	os = &osb->osb_orphan_scan;
2019 	os->os_scantime = ktime_get_seconds();
2020 	if (ocfs2_is_hard_readonly(osb) || ocfs2_mount_local(osb))
2021 		atomic_set(&os->os_state, ORPHAN_SCAN_INACTIVE);
2022 	else {
2023 		atomic_set(&os->os_state, ORPHAN_SCAN_ACTIVE);
2024 		queue_delayed_work(osb->ocfs2_wq, &os->os_orphan_scan_work,
2025 				   ocfs2_orphan_scan_timeout());
2026 	}
2027 }
2028 
2029 struct ocfs2_orphan_filldir_priv {
2030 	struct dir_context	ctx;
2031 	struct inode		*head;
2032 	struct ocfs2_super	*osb;
2033 	enum ocfs2_orphan_reco_type orphan_reco_type;
2034 };
2035 
ocfs2_orphan_filldir(struct dir_context * ctx,const char * name,int name_len,loff_t pos,u64 ino,unsigned type)2036 static int ocfs2_orphan_filldir(struct dir_context *ctx, const char *name,
2037 				int name_len, loff_t pos, u64 ino,
2038 				unsigned type)
2039 {
2040 	struct ocfs2_orphan_filldir_priv *p =
2041 		container_of(ctx, struct ocfs2_orphan_filldir_priv, ctx);
2042 	struct inode *iter;
2043 
2044 	if (name_len == 1 && !strncmp(".", name, 1))
2045 		return 0;
2046 	if (name_len == 2 && !strncmp("..", name, 2))
2047 		return 0;
2048 
2049 	/* do not include dio entry in case of orphan scan */
2050 	if ((p->orphan_reco_type == ORPHAN_NO_NEED_TRUNCATE) &&
2051 			(!strncmp(name, OCFS2_DIO_ORPHAN_PREFIX,
2052 			OCFS2_DIO_ORPHAN_PREFIX_LEN)))
2053 		return 0;
2054 
2055 	/* Skip bad inodes so that recovery can continue */
2056 	iter = ocfs2_iget(p->osb, ino,
2057 			  OCFS2_FI_FLAG_ORPHAN_RECOVERY, 0);
2058 	if (IS_ERR(iter))
2059 		return 0;
2060 
2061 	if (!strncmp(name, OCFS2_DIO_ORPHAN_PREFIX,
2062 			OCFS2_DIO_ORPHAN_PREFIX_LEN))
2063 		OCFS2_I(iter)->ip_flags |= OCFS2_INODE_DIO_ORPHAN_ENTRY;
2064 
2065 	/* Skip inodes which are already added to recover list, since dio may
2066 	 * happen concurrently with unlink/rename */
2067 	if (OCFS2_I(iter)->ip_next_orphan) {
2068 		iput(iter);
2069 		return 0;
2070 	}
2071 
2072 	trace_ocfs2_orphan_filldir((unsigned long long)OCFS2_I(iter)->ip_blkno);
2073 	/* No locking is required for the next_orphan queue as there
2074 	 * is only ever a single process doing orphan recovery. */
2075 	OCFS2_I(iter)->ip_next_orphan = p->head;
2076 	p->head = iter;
2077 
2078 	return 0;
2079 }
2080 
ocfs2_queue_orphans(struct ocfs2_super * osb,int slot,struct inode ** head,enum ocfs2_orphan_reco_type orphan_reco_type)2081 static int ocfs2_queue_orphans(struct ocfs2_super *osb,
2082 			       int slot,
2083 			       struct inode **head,
2084 			       enum ocfs2_orphan_reco_type orphan_reco_type)
2085 {
2086 	int status;
2087 	struct inode *orphan_dir_inode = NULL;
2088 	struct ocfs2_orphan_filldir_priv priv = {
2089 		.ctx.actor = ocfs2_orphan_filldir,
2090 		.osb = osb,
2091 		.head = *head,
2092 		.orphan_reco_type = orphan_reco_type
2093 	};
2094 
2095 	orphan_dir_inode = ocfs2_get_system_file_inode(osb,
2096 						       ORPHAN_DIR_SYSTEM_INODE,
2097 						       slot);
2098 	if  (!orphan_dir_inode) {
2099 		status = -ENOENT;
2100 		mlog_errno(status);
2101 		return status;
2102 	}
2103 
2104 	inode_lock(orphan_dir_inode);
2105 	status = ocfs2_inode_lock(orphan_dir_inode, NULL, 0);
2106 	if (status < 0) {
2107 		mlog_errno(status);
2108 		goto out;
2109 	}
2110 
2111 	status = ocfs2_dir_foreach(orphan_dir_inode, &priv.ctx);
2112 	if (status) {
2113 		mlog_errno(status);
2114 		goto out_cluster;
2115 	}
2116 
2117 	*head = priv.head;
2118 
2119 out_cluster:
2120 	ocfs2_inode_unlock(orphan_dir_inode, 0);
2121 out:
2122 	inode_unlock(orphan_dir_inode);
2123 	iput(orphan_dir_inode);
2124 	return status;
2125 }
2126 
ocfs2_orphan_recovery_can_continue(struct ocfs2_super * osb,int slot)2127 static int ocfs2_orphan_recovery_can_continue(struct ocfs2_super *osb,
2128 					      int slot)
2129 {
2130 	int ret;
2131 
2132 	spin_lock(&osb->osb_lock);
2133 	ret = !osb->osb_orphan_wipes[slot];
2134 	spin_unlock(&osb->osb_lock);
2135 	return ret;
2136 }
2137 
ocfs2_mark_recovering_orphan_dir(struct ocfs2_super * osb,int slot)2138 static void ocfs2_mark_recovering_orphan_dir(struct ocfs2_super *osb,
2139 					     int slot)
2140 {
2141 	spin_lock(&osb->osb_lock);
2142 	/* Mark ourselves such that new processes in delete_inode()
2143 	 * know to quit early. */
2144 	ocfs2_node_map_set_bit(osb, &osb->osb_recovering_orphan_dirs, slot);
2145 	while (osb->osb_orphan_wipes[slot]) {
2146 		/* If any processes are already in the middle of an
2147 		 * orphan wipe on this dir, then we need to wait for
2148 		 * them. */
2149 		spin_unlock(&osb->osb_lock);
2150 		wait_event_interruptible(osb->osb_wipe_event,
2151 					 ocfs2_orphan_recovery_can_continue(osb, slot));
2152 		spin_lock(&osb->osb_lock);
2153 	}
2154 	spin_unlock(&osb->osb_lock);
2155 }
2156 
ocfs2_clear_recovering_orphan_dir(struct ocfs2_super * osb,int slot)2157 static void ocfs2_clear_recovering_orphan_dir(struct ocfs2_super *osb,
2158 					      int slot)
2159 {
2160 	ocfs2_node_map_clear_bit(osb, &osb->osb_recovering_orphan_dirs, slot);
2161 }
2162 
2163 /*
2164  * Orphan recovery. Each mounted node has it's own orphan dir which we
2165  * must run during recovery. Our strategy here is to build a list of
2166  * the inodes in the orphan dir and iget/iput them. The VFS does
2167  * (most) of the rest of the work.
2168  *
2169  * Orphan recovery can happen at any time, not just mount so we have a
2170  * couple of extra considerations.
2171  *
2172  * - We grab as many inodes as we can under the orphan dir lock -
2173  *   doing iget() outside the orphan dir risks getting a reference on
2174  *   an invalid inode.
2175  * - We must be sure not to deadlock with other processes on the
2176  *   system wanting to run delete_inode(). This can happen when they go
2177  *   to lock the orphan dir and the orphan recovery process attempts to
2178  *   iget() inside the orphan dir lock. This can be avoided by
2179  *   advertising our state to ocfs2_delete_inode().
2180  */
ocfs2_recover_orphans(struct ocfs2_super * osb,int slot,enum ocfs2_orphan_reco_type orphan_reco_type)2181 static int ocfs2_recover_orphans(struct ocfs2_super *osb,
2182 				 int slot,
2183 				 enum ocfs2_orphan_reco_type orphan_reco_type)
2184 {
2185 	int ret = 0;
2186 	struct inode *inode = NULL;
2187 	struct inode *iter;
2188 	struct ocfs2_inode_info *oi;
2189 	struct buffer_head *di_bh = NULL;
2190 	struct ocfs2_dinode *di = NULL;
2191 
2192 	trace_ocfs2_recover_orphans(slot);
2193 
2194 	ocfs2_mark_recovering_orphan_dir(osb, slot);
2195 	ret = ocfs2_queue_orphans(osb, slot, &inode, orphan_reco_type);
2196 	ocfs2_clear_recovering_orphan_dir(osb, slot);
2197 
2198 	/* Error here should be noted, but we want to continue with as
2199 	 * many queued inodes as we've got. */
2200 	if (ret)
2201 		mlog_errno(ret);
2202 
2203 	while (inode) {
2204 		oi = OCFS2_I(inode);
2205 		trace_ocfs2_recover_orphans_iput(
2206 					(unsigned long long)oi->ip_blkno);
2207 
2208 		iter = oi->ip_next_orphan;
2209 		oi->ip_next_orphan = NULL;
2210 
2211 		if (oi->ip_flags & OCFS2_INODE_DIO_ORPHAN_ENTRY) {
2212 			inode_lock(inode);
2213 			ret = ocfs2_rw_lock(inode, 1);
2214 			if (ret < 0) {
2215 				mlog_errno(ret);
2216 				goto unlock_mutex;
2217 			}
2218 			/*
2219 			 * We need to take and drop the inode lock to
2220 			 * force read inode from disk.
2221 			 */
2222 			ret = ocfs2_inode_lock(inode, &di_bh, 1);
2223 			if (ret) {
2224 				mlog_errno(ret);
2225 				goto unlock_rw;
2226 			}
2227 
2228 			di = (struct ocfs2_dinode *)di_bh->b_data;
2229 
2230 			if (di->i_flags & cpu_to_le32(OCFS2_DIO_ORPHANED_FL)) {
2231 				ret = ocfs2_truncate_file(inode, di_bh,
2232 						i_size_read(inode));
2233 				if (ret < 0) {
2234 					if (ret != -ENOSPC)
2235 						mlog_errno(ret);
2236 					goto unlock_inode;
2237 				}
2238 
2239 				ret = ocfs2_del_inode_from_orphan(osb, inode,
2240 						di_bh, 0, 0);
2241 				if (ret)
2242 					mlog_errno(ret);
2243 			}
2244 unlock_inode:
2245 			ocfs2_inode_unlock(inode, 1);
2246 			brelse(di_bh);
2247 			di_bh = NULL;
2248 unlock_rw:
2249 			ocfs2_rw_unlock(inode, 1);
2250 unlock_mutex:
2251 			inode_unlock(inode);
2252 
2253 			/* clear dio flag in ocfs2_inode_info */
2254 			oi->ip_flags &= ~OCFS2_INODE_DIO_ORPHAN_ENTRY;
2255 		} else {
2256 			spin_lock(&oi->ip_lock);
2257 			/* Set the proper information to get us going into
2258 			 * ocfs2_delete_inode. */
2259 			oi->ip_flags |= OCFS2_INODE_MAYBE_ORPHANED;
2260 			spin_unlock(&oi->ip_lock);
2261 		}
2262 
2263 		iput(inode);
2264 		inode = iter;
2265 	}
2266 
2267 	return ret;
2268 }
2269 
__ocfs2_wait_on_mount(struct ocfs2_super * osb,int quota)2270 static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota)
2271 {
2272 	/* This check is good because ocfs2 will wait on our recovery
2273 	 * thread before changing it to something other than MOUNTED
2274 	 * or DISABLED. */
2275 	wait_event(osb->osb_mount_event,
2276 		  (!quota && atomic_read(&osb->vol_state) == VOLUME_MOUNTED) ||
2277 		   atomic_read(&osb->vol_state) == VOLUME_MOUNTED_QUOTAS ||
2278 		   atomic_read(&osb->vol_state) == VOLUME_DISABLED);
2279 
2280 	/* If there's an error on mount, then we may never get to the
2281 	 * MOUNTED flag, but this is set right before
2282 	 * dismount_volume() so we can trust it. */
2283 	if (atomic_read(&osb->vol_state) == VOLUME_DISABLED) {
2284 		trace_ocfs2_wait_on_mount(VOLUME_DISABLED);
2285 		mlog(0, "mount error, exiting!\n");
2286 		return -EBUSY;
2287 	}
2288 
2289 	return 0;
2290 }
2291 
ocfs2_commit_thread(void * arg)2292 static int ocfs2_commit_thread(void *arg)
2293 {
2294 	int status;
2295 	struct ocfs2_super *osb = arg;
2296 	struct ocfs2_journal *journal = osb->journal;
2297 
2298 	/* we can trust j_num_trans here because _should_stop() is only set in
2299 	 * shutdown and nobody other than ourselves should be able to start
2300 	 * transactions.  committing on shutdown might take a few iterations
2301 	 * as final transactions put deleted inodes on the list */
2302 	while (!(kthread_should_stop() &&
2303 		 atomic_read(&journal->j_num_trans) == 0)) {
2304 
2305 		wait_event_interruptible(osb->checkpoint_event,
2306 					 atomic_read(&journal->j_num_trans)
2307 					 || kthread_should_stop());
2308 
2309 		status = ocfs2_commit_cache(osb);
2310 		if (status < 0) {
2311 			static unsigned long abort_warn_time;
2312 
2313 			/* Warn about this once per minute */
2314 			if (printk_timed_ratelimit(&abort_warn_time, 60*HZ))
2315 				mlog(ML_ERROR, "status = %d, journal is "
2316 						"already aborted.\n", status);
2317 			/*
2318 			 * After ocfs2_commit_cache() fails, j_num_trans has a
2319 			 * non-zero value.  Sleep here to avoid a busy-wait
2320 			 * loop.
2321 			 */
2322 			msleep_interruptible(1000);
2323 		}
2324 
2325 		if (kthread_should_stop() && atomic_read(&journal->j_num_trans)){
2326 			mlog(ML_KTHREAD,
2327 			     "commit_thread: %u transactions pending on "
2328 			     "shutdown\n",
2329 			     atomic_read(&journal->j_num_trans));
2330 		}
2331 	}
2332 
2333 	return 0;
2334 }
2335 
2336 /* Reads all the journal inodes without taking any cluster locks. Used
2337  * for hard readonly access to determine whether any journal requires
2338  * recovery. Also used to refresh the recovery generation numbers after
2339  * a journal has been recovered by another node.
2340  */
ocfs2_check_journals_nolocks(struct ocfs2_super * osb)2341 int ocfs2_check_journals_nolocks(struct ocfs2_super *osb)
2342 {
2343 	int ret = 0;
2344 	unsigned int slot;
2345 	struct buffer_head *di_bh = NULL;
2346 	struct ocfs2_dinode *di;
2347 	int journal_dirty = 0;
2348 
2349 	for(slot = 0; slot < osb->max_slots; slot++) {
2350 		ret = ocfs2_read_journal_inode(osb, slot, &di_bh, NULL);
2351 		if (ret) {
2352 			mlog_errno(ret);
2353 			goto out;
2354 		}
2355 
2356 		di = (struct ocfs2_dinode *) di_bh->b_data;
2357 
2358 		osb->slot_recovery_generations[slot] =
2359 					ocfs2_get_recovery_generation(di);
2360 
2361 		if (le32_to_cpu(di->id1.journal1.ij_flags) &
2362 		    OCFS2_JOURNAL_DIRTY_FL)
2363 			journal_dirty = 1;
2364 
2365 		brelse(di_bh);
2366 		di_bh = NULL;
2367 	}
2368 
2369 out:
2370 	if (journal_dirty)
2371 		ret = -EROFS;
2372 	return ret;
2373 }
2374