• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /******************************************************************************
3  * rtl871x_security.c
4  *
5  * Copyright(c) 2007 - 2010 Realtek Corporation. All rights reserved.
6  * Linux device driver for RTL8192SU
7  *
8  * Modifications for inclusion into the Linux staging tree are
9  * Copyright(c) 2010 Larry Finger. All rights reserved.
10  *
11  * Contact information:
12  * WLAN FAE <wlanfae@realtek.com>
13  * Larry Finger <Larry.Finger@lwfinger.net>
14  *
15  ******************************************************************************/
16 
17 #define  _RTL871X_SECURITY_C_
18 
19 #include <linux/compiler.h>
20 #include <linux/kernel.h>
21 #include <linux/errno.h>
22 #include <linux/slab.h>
23 #include <linux/module.h>
24 #include <linux/kref.h>
25 #include <linux/netdevice.h>
26 #include <linux/skbuff.h>
27 #include <linux/circ_buf.h>
28 #include <linux/uaccess.h>
29 #include <asm/byteorder.h>
30 #include <linux/atomic.h>
31 #include <linux/crc32poly.h>
32 #include <linux/semaphore.h>
33 #include <linux/ieee80211.h>
34 
35 #include "osdep_service.h"
36 #include "drv_types.h"
37 #include "osdep_intf.h"
38 
39 /* =====WEP related===== */
40 
41 struct arc4context {
42 	u32 x;
43 	u32 y;
44 	u8 state[256];
45 };
46 
arcfour_init(struct arc4context * parc4ctx,u8 * key,u32 key_len)47 static void arcfour_init(struct arc4context *parc4ctx, u8 *key, u32 key_len)
48 {
49 	u32	t, u;
50 	u32	keyindex;
51 	u32	stateindex;
52 	u8 *state;
53 	u32	counter;
54 
55 	state = parc4ctx->state;
56 	parc4ctx->x = 0;
57 	parc4ctx->y = 0;
58 	for (counter = 0; counter < 256; counter++)
59 		state[counter] = (u8)counter;
60 	keyindex = 0;
61 	stateindex = 0;
62 	for (counter = 0; counter < 256; counter++) {
63 		t = state[counter];
64 		stateindex = (stateindex + key[keyindex] + t) & 0xff;
65 		u = state[stateindex];
66 		state[stateindex] = (u8)t;
67 		state[counter] = (u8)u;
68 		if (++keyindex >= key_len)
69 			keyindex = 0;
70 	}
71 }
72 
arcfour_byte(struct arc4context * parc4ctx)73 static u32 arcfour_byte(struct arc4context *parc4ctx)
74 {
75 	u32 x;
76 	u32 y;
77 	u32 sx, sy;
78 	u8 *state;
79 
80 	state = parc4ctx->state;
81 	x = (parc4ctx->x + 1) & 0xff;
82 	sx = state[x];
83 	y = (sx + parc4ctx->y) & 0xff;
84 	sy = state[y];
85 	parc4ctx->x = x;
86 	parc4ctx->y = y;
87 	state[y] = (u8)sx;
88 	state[x] = (u8)sy;
89 	return state[(sx + sy) & 0xff];
90 }
91 
arcfour_encrypt(struct arc4context * parc4ctx,u8 * dest,u8 * src,u32 len)92 static void arcfour_encrypt(struct arc4context	*parc4ctx,
93 		     u8 *dest, u8 *src, u32 len)
94 {
95 	u32 i;
96 
97 	for (i = 0; i < len; i++)
98 		dest[i] = src[i] ^ (unsigned char)arcfour_byte(parc4ctx);
99 }
100 
101 static sint bcrc32initialized;
102 static u32 crc32_table[256];
103 
crc32_reverseBit(u8 data)104 static u8 crc32_reverseBit(u8 data)
105 {
106 	return ((u8)(data << 7) & 0x80) | ((data << 5) & 0x40) | ((data << 3)
107 		 & 0x20) | ((data << 1) & 0x10) | ((data >> 1) & 0x08) |
108 		 ((data >> 3) & 0x04) | ((data >> 5) & 0x02) | ((data >> 7) &
109 		 0x01);
110 }
111 
crc32_init(void)112 static void crc32_init(void)
113 {
114 	sint i, j;
115 	u32 c;
116 	u8 *p = (u8 *)&c, *p1;
117 	u8 k;
118 
119 	if (bcrc32initialized == 1)
120 		return;
121 
122 	for (i = 0; i < 256; ++i) {
123 		k = crc32_reverseBit((u8)i);
124 		for (c = ((u32)k) << 24, j = 8; j > 0; --j)
125 			c = c & 0x80000000 ? (c << 1) ^ CRC32_POLY_BE : (c << 1);
126 		p1 = (u8 *)&crc32_table[i];
127 		p1[0] = crc32_reverseBit(p[3]);
128 		p1[1] = crc32_reverseBit(p[2]);
129 		p1[2] = crc32_reverseBit(p[1]);
130 		p1[3] = crc32_reverseBit(p[0]);
131 	}
132 	bcrc32initialized = 1;
133 }
134 
getcrc32(u8 * buf,u32 len)135 static u32 getcrc32(u8 *buf, u32 len)
136 {
137 	u8 *p;
138 	u32  crc;
139 
140 	if (!bcrc32initialized)
141 		crc32_init();
142 	crc = 0xffffffff; /* preload shift register, per CRC-32 spec */
143 	for (p = buf; len > 0; ++p, --len)
144 		crc = crc32_table[(crc ^ *p) & 0xff] ^ (crc >> 8);
145 	return ~crc;    /* transmit complement, per CRC-32 spec */
146 }
147 
148 /*
149  * Need to consider the fragment situation
150  */
r8712_wep_encrypt(struct _adapter * padapter,u8 * pxmitframe)151 void r8712_wep_encrypt(struct _adapter *padapter, u8 *pxmitframe)
152 {	/* exclude ICV */
153 	unsigned char	crc[4];
154 	struct arc4context  mycontext;
155 	u32 curfragnum, length, keylength, pki;
156 	u8 *pframe, *payload, *iv;    /*,*wepkey*/
157 	u8 wepkey[16];
158 	struct	pkt_attrib  *pattrib = &((struct xmit_frame *)
159 				       pxmitframe)->attrib;
160 	struct	security_priv *psecuritypriv = &padapter->securitypriv;
161 	struct	xmit_priv *pxmitpriv = &padapter->xmitpriv;
162 
163 	if (((struct xmit_frame *)pxmitframe)->buf_addr == NULL)
164 		return;
165 	pframe = ((struct xmit_frame *)pxmitframe)->buf_addr + TXDESC_OFFSET;
166 	/*start to encrypt each fragment*/
167 	if ((pattrib->encrypt == _WEP40_) || (pattrib->encrypt == _WEP104_)) {
168 		pki = psecuritypriv->PrivacyKeyIndex;
169 		keylength = psecuritypriv->DefKeylen[pki];
170 		for (curfragnum = 0; curfragnum < pattrib->nr_frags;
171 		     curfragnum++) {
172 			iv = pframe + pattrib->hdrlen;
173 			memcpy(&wepkey[0], iv, 3);
174 			memcpy(&wepkey[3], &psecuritypriv->DefKey[
175 				psecuritypriv->PrivacyKeyIndex].skey[0],
176 				keylength);
177 			payload = pframe + pattrib->iv_len + pattrib->hdrlen;
178 			if ((curfragnum + 1) == pattrib->nr_frags) {
179 				length = pattrib->last_txcmdsz -
180 					pattrib->hdrlen -
181 					pattrib->iv_len -
182 					pattrib->icv_len;
183 				*((__le32 *)crc) = cpu_to_le32(getcrc32(
184 						payload, length));
185 				arcfour_init(&mycontext, wepkey, 3 + keylength);
186 				arcfour_encrypt(&mycontext, payload, payload,
187 						length);
188 				arcfour_encrypt(&mycontext, payload + length,
189 						crc, 4);
190 			} else {
191 				length = pxmitpriv->frag_len -
192 					 pattrib->hdrlen - pattrib->iv_len -
193 					 pattrib->icv_len;
194 				*((__le32 *)crc) = cpu_to_le32(getcrc32(
195 						payload, length));
196 				arcfour_init(&mycontext, wepkey, 3 + keylength);
197 				arcfour_encrypt(&mycontext, payload, payload,
198 						length);
199 				arcfour_encrypt(&mycontext, payload + length,
200 						crc, 4);
201 				pframe += pxmitpriv->frag_len;
202 				pframe = (u8 *)RND4((addr_t)(pframe));
203 			}
204 		}
205 	}
206 }
207 
r8712_wep_decrypt(struct _adapter * padapter,u8 * precvframe)208 void r8712_wep_decrypt(struct _adapter  *padapter, u8 *precvframe)
209 {
210 	/* exclude ICV */
211 	u8 crc[4];
212 	struct arc4context  mycontext;
213 	u32 length, keylength;
214 	u8 *pframe, *payload, *iv, wepkey[16];
215 	u8  keyindex;
216 	struct rx_pkt_attrib  *prxattrib = &(((union recv_frame *)
217 					  precvframe)->u.hdr.attrib);
218 	struct security_priv *psecuritypriv = &padapter->securitypriv;
219 
220 	pframe = (unsigned char *)((union recv_frame *)precvframe)->
221 		  u.hdr.rx_data;
222 	/* start to decrypt recvframe */
223 	if ((prxattrib->encrypt == _WEP40_) || (prxattrib->encrypt ==
224 	     _WEP104_)) {
225 		iv = pframe + prxattrib->hdrlen;
226 		keyindex = (iv[3] & 0x3);
227 		keylength = psecuritypriv->DefKeylen[keyindex];
228 		memcpy(&wepkey[0], iv, 3);
229 		memcpy(&wepkey[3], &psecuritypriv->DefKey[
230 			psecuritypriv->PrivacyKeyIndex].skey[0],
231 			keylength);
232 		length = ((union recv_frame *)precvframe)->
233 			   u.hdr.len - prxattrib->hdrlen - prxattrib->iv_len;
234 		payload = pframe + prxattrib->iv_len + prxattrib->hdrlen;
235 		/* decrypt payload include icv */
236 		arcfour_init(&mycontext, wepkey, 3 + keylength);
237 		arcfour_encrypt(&mycontext, payload, payload,  length);
238 		/* calculate icv and compare the icv */
239 		*((__le32 *)crc) = cpu_to_le32(getcrc32(payload, length - 4));
240 	}
241 }
242 
243 /* 3 =====TKIP related===== */
244 
secmicgetuint32(u8 * p)245 static u32 secmicgetuint32(u8 *p)
246 /* Convert from Byte[] to Us4Byte32 in a portable way */
247 {
248 	s32 i;
249 	u32 res = 0;
250 
251 	for (i = 0; i < 4; i++)
252 		res |= ((u32)(*p++)) << (8 * i);
253 	return res;
254 }
255 
secmicputuint32(u8 * p,u32 val)256 static void secmicputuint32(u8 *p, u32 val)
257 /* Convert from Us4Byte32 to Byte[] in a portable way */
258 {
259 	long i;
260 
261 	for (i = 0; i < 4; i++) {
262 		*p++ = (u8)(val & 0xff);
263 		val >>= 8;
264 	}
265 }
266 
secmicclear(struct mic_data * pmicdata)267 static void secmicclear(struct mic_data *pmicdata)
268 {
269 /* Reset the state to the empty message. */
270 	pmicdata->L = pmicdata->K0;
271 	pmicdata->R = pmicdata->K1;
272 	pmicdata->nBytesInM = 0;
273 	pmicdata->M = 0;
274 }
275 
r8712_secmicsetkey(struct mic_data * pmicdata,u8 * key)276 void r8712_secmicsetkey(struct mic_data *pmicdata, u8 *key)
277 {
278 	/* Set the key */
279 	pmicdata->K0 = secmicgetuint32(key);
280 	pmicdata->K1 = secmicgetuint32(key + 4);
281 	/* and reset the message */
282 	secmicclear(pmicdata);
283 }
284 
secmicappendbyte(struct mic_data * pmicdata,u8 b)285 static void secmicappendbyte(struct mic_data *pmicdata, u8 b)
286 {
287 	/* Append the byte to our word-sized buffer */
288 	pmicdata->M |= ((u32)b) << (8 * pmicdata->nBytesInM);
289 	pmicdata->nBytesInM++;
290 	/* Process the word if it is full. */
291 	if (pmicdata->nBytesInM >= 4) {
292 		pmicdata->L ^= pmicdata->M;
293 		pmicdata->R ^= ROL32(pmicdata->L, 17);
294 		pmicdata->L += pmicdata->R;
295 		pmicdata->R ^= ((pmicdata->L & 0xff00ff00) >> 8) |
296 			       ((pmicdata->L & 0x00ff00ff) << 8);
297 		pmicdata->L += pmicdata->R;
298 		pmicdata->R ^= ROL32(pmicdata->L, 3);
299 		pmicdata->L += pmicdata->R;
300 		pmicdata->R ^= ROR32(pmicdata->L, 2);
301 		pmicdata->L += pmicdata->R;
302 		/* Clear the buffer */
303 		pmicdata->M = 0;
304 		pmicdata->nBytesInM = 0;
305 	}
306 }
307 
r8712_secmicappend(struct mic_data * pmicdata,u8 * src,u32 nbytes)308 void r8712_secmicappend(struct mic_data *pmicdata, u8 *src, u32 nbytes)
309 {
310 	/* This is simple */
311 	while (nbytes > 0) {
312 		secmicappendbyte(pmicdata, *src++);
313 		nbytes--;
314 	}
315 }
316 
r8712_secgetmic(struct mic_data * pmicdata,u8 * dst)317 void r8712_secgetmic(struct mic_data *pmicdata, u8 *dst)
318 {
319 	/* Append the minimum padding */
320 	secmicappendbyte(pmicdata, 0x5a);
321 	secmicappendbyte(pmicdata, 0);
322 	secmicappendbyte(pmicdata, 0);
323 	secmicappendbyte(pmicdata, 0);
324 	secmicappendbyte(pmicdata, 0);
325 	/* and then zeroes until the length is a multiple of 4 */
326 	while (pmicdata->nBytesInM != 0)
327 		secmicappendbyte(pmicdata, 0);
328 	/* The appendByte function has already computed the result. */
329 	secmicputuint32(dst, pmicdata->L);
330 	secmicputuint32(dst + 4, pmicdata->R);
331 	/* Reset to the empty message. */
332 	secmicclear(pmicdata);
333 }
334 
seccalctkipmic(u8 * key,u8 * header,u8 * data,u32 data_len,u8 * mic_code,u8 pri)335 void seccalctkipmic(u8 *key, u8 *header, u8 *data, u32 data_len, u8 *mic_code,
336 		    u8 pri)
337 {
338 
339 	struct mic_data	micdata;
340 	u8 priority[4] = {0x0, 0x0, 0x0, 0x0};
341 
342 	r8712_secmicsetkey(&micdata, key);
343 	priority[0] = pri;
344 	/* Michael MIC pseudo header: DA, SA, 3 x 0, Priority */
345 	if (header[1] & 1) {   /* ToDS==1 */
346 		r8712_secmicappend(&micdata, &header[16], 6);  /* DA */
347 		if (header[1] & 2)  /* From Ds==1 */
348 			r8712_secmicappend(&micdata, &header[24], 6);
349 		else
350 			r8712_secmicappend(&micdata, &header[10], 6);
351 	} else {	/* ToDS==0 */
352 		r8712_secmicappend(&micdata, &header[4], 6);   /* DA */
353 		if (header[1] & 2)  /* From Ds==1 */
354 			r8712_secmicappend(&micdata, &header[16], 6);
355 		else
356 			r8712_secmicappend(&micdata, &header[10], 6);
357 	}
358 	r8712_secmicappend(&micdata, &priority[0], 4);
359 	r8712_secmicappend(&micdata, data, data_len);
360 	r8712_secgetmic(&micdata, mic_code);
361 }
362 
363 /* macros for extraction/creation of unsigned char/unsigned short values  */
364 #define RotR1(v16)   ((((v16) >> 1) & 0x7FFF) ^ (((v16) & 1) << 15))
365 #define   Lo8(v16)   ((u8)((v16) & 0x00FF))
366 #define   Hi8(v16)   ((u8)(((v16) >> 8) & 0x00FF))
367 #define  Lo16(v32)   ((u16)((v32) & 0xFFFF))
368 #define  Hi16(v32)   ((u16)(((v32) >> 16) & 0xFFFF))
369 #define  Mk16(hi, lo) ((lo) ^ (((u16)(hi)) << 8))
370 
371 /* select the Nth 16-bit word of the temporal key unsigned char array TK[]   */
372 #define  TK16(N)  Mk16(tk[2 * (N) + 1], tk[2 * (N)])
373 
374 /* S-box lookup: 16 bits --> 16 bits */
375 #define _S_(v16)  (Sbox1[0][Lo8(v16)] ^ Sbox1[1][Hi8(v16)])
376 
377 /* fixed algorithm "parameters" */
378 #define PHASE1_LOOP_CNT   8    /* this needs to be "big enough"     */
379 #define TA_SIZE           6    /*  48-bit transmitter address       */
380 #define TK_SIZE          16    /* 128-bit temporal key              */
381 #define P1K_SIZE         10    /*  80-bit Phase1 key                */
382 #define RC4_KEY_SIZE     16    /* 128-bit RC4KEY (104 bits unknown) */
383 
384 
385 /* 2-unsigned char by 2-unsigned char subset of the full AES S-box table */
386 static const unsigned short Sbox1[2][256] = {/* Sbox for hash (can be in ROM) */
387 	{
388 	0xC6A5, 0xF884, 0xEE99, 0xF68D, 0xFF0D, 0xD6BD, 0xDEB1, 0x9154,
389 	0x6050, 0x0203, 0xCEA9, 0x567D, 0xE719, 0xB562, 0x4DE6, 0xEC9A,
390 	0x8F45, 0x1F9D, 0x8940, 0xFA87, 0xEF15, 0xB2EB, 0x8EC9, 0xFB0B,
391 	0x41EC, 0xB367, 0x5FFD, 0x45EA, 0x23BF, 0x53F7, 0xE496, 0x9B5B,
392 	0x75C2, 0xE11C, 0x3DAE, 0x4C6A, 0x6C5A, 0x7E41, 0xF502, 0x834F,
393 	0x685C, 0x51F4, 0xD134, 0xF908, 0xE293, 0xAB73, 0x6253, 0x2A3F,
394 	0x080C, 0x9552, 0x4665, 0x9D5E, 0x3028, 0x37A1, 0x0A0F, 0x2FB5,
395 	0x0E09, 0x2436, 0x1B9B, 0xDF3D, 0xCD26, 0x4E69, 0x7FCD, 0xEA9F,
396 	0x121B, 0x1D9E, 0x5874, 0x342E, 0x362D, 0xDCB2, 0xB4EE, 0x5BFB,
397 	0xA4F6, 0x764D, 0xB761, 0x7DCE, 0x527B, 0xDD3E, 0x5E71, 0x1397,
398 	0xA6F5, 0xB968, 0x0000, 0xC12C, 0x4060, 0xE31F, 0x79C8, 0xB6ED,
399 	0xD4BE, 0x8D46, 0x67D9, 0x724B, 0x94DE, 0x98D4, 0xB0E8, 0x854A,
400 	0xBB6B, 0xC52A, 0x4FE5, 0xED16, 0x86C5, 0x9AD7, 0x6655, 0x1194,
401 	0x8ACF, 0xE910, 0x0406, 0xFE81, 0xA0F0, 0x7844, 0x25BA, 0x4BE3,
402 	0xA2F3, 0x5DFE, 0x80C0, 0x058A, 0x3FAD, 0x21BC, 0x7048, 0xF104,
403 	0x63DF, 0x77C1, 0xAF75, 0x4263, 0x2030, 0xE51A, 0xFD0E, 0xBF6D,
404 	0x814C, 0x1814, 0x2635, 0xC32F, 0xBEE1, 0x35A2, 0x88CC, 0x2E39,
405 	0x9357, 0x55F2, 0xFC82, 0x7A47, 0xC8AC, 0xBAE7, 0x322B, 0xE695,
406 	0xC0A0, 0x1998, 0x9ED1, 0xA37F, 0x4466, 0x547E, 0x3BAB, 0x0B83,
407 	0x8CCA, 0xC729, 0x6BD3, 0x283C, 0xA779, 0xBCE2, 0x161D, 0xAD76,
408 	0xDB3B, 0x6456, 0x744E, 0x141E, 0x92DB, 0x0C0A, 0x486C, 0xB8E4,
409 	0x9F5D, 0xBD6E, 0x43EF, 0xC4A6, 0x39A8, 0x31A4, 0xD337, 0xF28B,
410 	0xD532, 0x8B43, 0x6E59, 0xDAB7, 0x018C, 0xB164, 0x9CD2, 0x49E0,
411 	0xD8B4, 0xACFA, 0xF307, 0xCF25, 0xCAAF, 0xF48E, 0x47E9, 0x1018,
412 	0x6FD5, 0xF088, 0x4A6F, 0x5C72, 0x3824, 0x57F1, 0x73C7, 0x9751,
413 	0xCB23, 0xA17C, 0xE89C, 0x3E21, 0x96DD, 0x61DC, 0x0D86, 0x0F85,
414 	0xE090, 0x7C42, 0x71C4, 0xCCAA, 0x90D8, 0x0605, 0xF701, 0x1C12,
415 	0xC2A3, 0x6A5F, 0xAEF9, 0x69D0, 0x1791, 0x9958, 0x3A27, 0x27B9,
416 	0xD938, 0xEB13, 0x2BB3, 0x2233, 0xD2BB, 0xA970, 0x0789, 0x33A7,
417 	0x2DB6, 0x3C22, 0x1592, 0xC920, 0x8749, 0xAAFF, 0x5078, 0xA57A,
418 	0x038F, 0x59F8, 0x0980, 0x1A17, 0x65DA, 0xD731, 0x84C6, 0xD0B8,
419 	0x82C3, 0x29B0, 0x5A77, 0x1E11, 0x7BCB, 0xA8FC, 0x6DD6, 0x2C3A,
420 	},
421 	{  /* second half is unsigned char-reversed version of first! */
422 	0xA5C6, 0x84F8, 0x99EE, 0x8DF6, 0x0DFF, 0xBDD6, 0xB1DE, 0x5491,
423 	0x5060, 0x0302, 0xA9CE, 0x7D56, 0x19E7, 0x62B5, 0xE64D, 0x9AEC,
424 	0x458F, 0x9D1F, 0x4089, 0x87FA, 0x15EF, 0xEBB2, 0xC98E, 0x0BFB,
425 	0xEC41, 0x67B3, 0xFD5F, 0xEA45, 0xBF23, 0xF753, 0x96E4, 0x5B9B,
426 	0xC275, 0x1CE1, 0xAE3D, 0x6A4C, 0x5A6C, 0x417E, 0x02F5, 0x4F83,
427 	0x5C68, 0xF451, 0x34D1, 0x08F9, 0x93E2, 0x73AB, 0x5362, 0x3F2A,
428 	0x0C08, 0x5295, 0x6546, 0x5E9D, 0x2830, 0xA137, 0x0F0A, 0xB52F,
429 	0x090E, 0x3624, 0x9B1B, 0x3DDF, 0x26CD, 0x694E, 0xCD7F, 0x9FEA,
430 	0x1B12, 0x9E1D, 0x7458, 0x2E34, 0x2D36, 0xB2DC, 0xEEB4, 0xFB5B,
431 	0xF6A4, 0x4D76, 0x61B7, 0xCE7D, 0x7B52, 0x3EDD, 0x715E, 0x9713,
432 	0xF5A6, 0x68B9, 0x0000, 0x2CC1, 0x6040, 0x1FE3, 0xC879, 0xEDB6,
433 	0xBED4, 0x468D, 0xD967, 0x4B72, 0xDE94, 0xD498, 0xE8B0, 0x4A85,
434 	0x6BBB, 0x2AC5, 0xE54F, 0x16ED, 0xC586, 0xD79A, 0x5566, 0x9411,
435 	0xCF8A, 0x10E9, 0x0604, 0x81FE, 0xF0A0, 0x4478, 0xBA25, 0xE34B,
436 	0xF3A2, 0xFE5D, 0xC080, 0x8A05, 0xAD3F, 0xBC21, 0x4870, 0x04F1,
437 	0xDF63, 0xC177, 0x75AF, 0x6342, 0x3020, 0x1AE5, 0x0EFD, 0x6DBF,
438 	0x4C81, 0x1418, 0x3526, 0x2FC3, 0xE1BE, 0xA235, 0xCC88, 0x392E,
439 	0x5793, 0xF255, 0x82FC, 0x477A, 0xACC8, 0xE7BA, 0x2B32, 0x95E6,
440 	0xA0C0, 0x9819, 0xD19E, 0x7FA3, 0x6644, 0x7E54, 0xAB3B, 0x830B,
441 	0xCA8C, 0x29C7, 0xD36B, 0x3C28, 0x79A7, 0xE2BC, 0x1D16, 0x76AD,
442 	0x3BDB, 0x5664, 0x4E74, 0x1E14, 0xDB92, 0x0A0C, 0x6C48, 0xE4B8,
443 	0x5D9F, 0x6EBD, 0xEF43, 0xA6C4, 0xA839, 0xA431, 0x37D3, 0x8BF2,
444 	0x32D5, 0x438B, 0x596E, 0xB7DA, 0x8C01, 0x64B1, 0xD29C, 0xE049,
445 	0xB4D8, 0xFAAC, 0x07F3, 0x25CF, 0xAFCA, 0x8EF4, 0xE947, 0x1810,
446 	0xD56F, 0x88F0, 0x6F4A, 0x725C, 0x2438, 0xF157, 0xC773, 0x5197,
447 	0x23CB, 0x7CA1, 0x9CE8, 0x213E, 0xDD96, 0xDC61, 0x860D, 0x850F,
448 	0x90E0, 0x427C, 0xC471, 0xAACC, 0xD890, 0x0506, 0x01F7, 0x121C,
449 	0xA3C2, 0x5F6A, 0xF9AE, 0xD069, 0x9117, 0x5899, 0x273A, 0xB927,
450 	0x38D9, 0x13EB, 0xB32B, 0x3322, 0xBBD2, 0x70A9, 0x8907, 0xA733,
451 	0xB62D, 0x223C, 0x9215, 0x20C9, 0x4987, 0xFFAA, 0x7850, 0x7AA5,
452 	0x8F03, 0xF859, 0x8009, 0x171A, 0xDA65, 0x31D7, 0xC684, 0xB8D0,
453 	0xC382, 0xB029, 0x775A, 0x111E, 0xCB7B, 0xFCA8, 0xD66D, 0x3A2C,
454 	}
455 };
456 
457 /*
458  **********************************************************************
459  * Routine: Phase 1 -- generate P1K, given TA, TK, IV32
460  *
461  * Inputs:
462  *     tk[]      = temporal key                         [128 bits]
463  *     ta[]      = transmitter's MAC address            [ 48 bits]
464  *     iv32      = upper 32 bits of IV                  [ 32 bits]
465  * Output:
466  *     p1k[]     = Phase 1 key                          [ 80 bits]
467  *
468  * Note:
469  *     This function only needs to be called every 2**16 packets,
470  *     although in theory it could be called every packet.
471  *
472  **********************************************************************
473  */
phase1(u16 * p1k,const u8 * tk,const u8 * ta,u32 iv32)474 static void phase1(u16 *p1k, const u8 *tk, const u8 *ta, u32 iv32)
475 {
476 	sint  i;
477 
478 	/* Initialize the 80 bits of P1K[] from IV32 and TA[0..5]     */
479 	p1k[0] = Lo16(iv32);
480 	p1k[1] = Hi16(iv32);
481 	p1k[2] = Mk16(ta[1], ta[0]); /* use TA[] as little-endian */
482 	p1k[3] = Mk16(ta[3], ta[2]);
483 	p1k[4] = Mk16(ta[5], ta[4]);
484 	/* Now compute an unbalanced Feistel cipher with 80-bit block */
485 	/* size on the 80-bit block P1K[], using the 128-bit key TK[] */
486 	for (i = 0; i < PHASE1_LOOP_CNT; i++) {  /* Each add is mod 2**16 */
487 		p1k[0] += _S_(p1k[4] ^ TK16((i & 1) + 0));
488 		p1k[1] += _S_(p1k[0] ^ TK16((i & 1) + 2));
489 		p1k[2] += _S_(p1k[1] ^ TK16((i & 1) + 4));
490 		p1k[3] += _S_(p1k[2] ^ TK16((i & 1) + 6));
491 		p1k[4] += _S_(p1k[3] ^ TK16((i & 1) + 0));
492 		p1k[4] +=  (unsigned short)i;	/* avoid "slide attacks" */
493 	}
494 }
495 
496 /*
497  **********************************************************************
498  * Routine: Phase 2 -- generate RC4KEY, given TK, P1K, IV16
499  *
500  * Inputs:
501  *     tk[]      = Temporal key                         [128 bits]
502  *     p1k[]     = Phase 1 output key                   [ 80 bits]
503  *     iv16      = low 16 bits of IV counter            [ 16 bits]
504  * Output:
505  *     rc4key[]  = the key used to encrypt the packet   [128 bits]
506  *
507  * Note:
508  *     The value {TA,IV32,IV16} for Phase1/Phase2 must be unique
509  *     across all packets using the same key TK value. Then, for a
510  *     given value of TK[], this TKIP48 construction guarantees that
511  *     the final RC4KEY value is unique across all packets.
512  *
513  * Suggested implementation optimization: if PPK[] is "overlaid"
514  *     appropriately on RC4KEY[], there is no need for the final
515  *     for loop below that copies the PPK[] result into RC4KEY[].
516  *
517  **********************************************************************
518  */
phase2(u8 * rc4key,const u8 * tk,const u16 * p1k,u16 iv16)519 static void phase2(u8 *rc4key, const u8 *tk, const u16 *p1k, u16 iv16)
520 {
521 	sint  i;
522 	u16 PPK[6];			/* temporary key for mixing    */
523 
524 	/* Note: all adds in the PPK[] equations below are mod 2**16 */
525 	for (i = 0; i < 5; i++)
526 		PPK[i] = p1k[i]; /* first, copy P1K to PPK */
527 	PPK[5]  =  p1k[4] + iv16; /* next,  add in IV16 */
528 	/* Bijective non-linear mixing of the 96 bits of PPK[0..5] */
529 	PPK[0] += _S_(PPK[5] ^ TK16(0));   /* Mix key in each "round" */
530 	PPK[1] += _S_(PPK[0] ^ TK16(1));
531 	PPK[2] += _S_(PPK[1] ^ TK16(2));
532 	PPK[3] += _S_(PPK[2] ^ TK16(3));
533 	PPK[4] += _S_(PPK[3] ^ TK16(4));
534 	PPK[5] += _S_(PPK[4] ^ TK16(5));   /* Total # S-box lookups == 6  */
535 	/* Final sweep: bijective, "linear". Rotates kill LSB correlations   */
536 	PPK[0] +=  RotR1(PPK[5] ^ TK16(6));
537 	PPK[1] +=  RotR1(PPK[0] ^ TK16(7));   /* Use all of TK[] in Phase2   */
538 	PPK[2] +=  RotR1(PPK[1]);
539 	PPK[3] +=  RotR1(PPK[2]);
540 	PPK[4] +=  RotR1(PPK[3]);
541 	PPK[5] +=  RotR1(PPK[4]);
542 	/* Note: At this point, for a given key TK[0..15], the 96-bit output */
543 	/* value PPK[0..5] is guaranteed to be unique, as a function   */
544 	/* of the 96-bit "input" value   {TA,IV32,IV16}. That is, P1K  */
545 	/* is now a keyed permutation of {TA,IV32,IV16}. */
546 	/* Set RC4KEY[0..3], which includes "cleartext" portion of RC4 key   */
547 	rc4key[0] = Hi8(iv16); /* RC4KEY[0..2] is the WEP IV  */
548 	rc4key[1] = (Hi8(iv16) | 0x20) & 0x7F; /* Help avoid weak (FMS) keys  */
549 	rc4key[2] = Lo8(iv16);
550 	rc4key[3] = Lo8((PPK[5] ^ TK16(0)) >> 1);
551 	/* Copy 96 bits of PPK[0..5] to RC4KEY[4..15]  (little-endian) */
552 	for (i = 0; i < 6; i++) {
553 		rc4key[4 + 2 * i] = Lo8(PPK[i]);
554 		rc4key[5 + 2 * i] = Hi8(PPK[i]);
555 	}
556 }
557 
558 /*The hlen isn't include the IV*/
r8712_tkip_encrypt(struct _adapter * padapter,u8 * pxmitframe)559 u32 r8712_tkip_encrypt(struct _adapter *padapter, u8 *pxmitframe)
560 {	/*  exclude ICV */
561 	u16 pnl;
562 	u32 pnh;
563 	u8 rc4key[16];
564 	u8 ttkey[16];
565 	u8 crc[4];
566 	struct arc4context mycontext;
567 	u32 curfragnum, length;
568 
569 	u8 *pframe, *payload, *iv, *prwskey;
570 	union pn48 txpn;
571 	struct sta_info *stainfo;
572 	struct pkt_attrib *pattrib = &((struct xmit_frame *)pxmitframe)->attrib;
573 	struct xmit_priv *pxmitpriv = &padapter->xmitpriv;
574 	u32 res = _SUCCESS;
575 
576 	if (((struct xmit_frame *)pxmitframe)->buf_addr == NULL)
577 		return _FAIL;
578 
579 	pframe = ((struct xmit_frame *)pxmitframe)->buf_addr + TXDESC_OFFSET;
580 	/* 4 start to encrypt each fragment */
581 	if (pattrib->encrypt == _TKIP_) {
582 		if (pattrib->psta)
583 			stainfo = pattrib->psta;
584 		else
585 			stainfo = r8712_get_stainfo(&padapter->stapriv,
586 				  &pattrib->ra[0]);
587 		if (stainfo) {
588 			prwskey = &stainfo->x_UncstKey.skey[0];
589 			for (curfragnum = 0; curfragnum < pattrib->nr_frags;
590 			     curfragnum++) {
591 				iv = pframe + pattrib->hdrlen;
592 				payload = pframe + pattrib->iv_len +
593 					  pattrib->hdrlen;
594 				GET_TKIP_PN(iv, txpn);
595 				pnl = (u16)(txpn.val);
596 				pnh = (u32)(txpn.val >> 16);
597 				phase1((u16 *)&ttkey[0], prwskey,
598 				       &pattrib->ta[0], pnh);
599 				phase2(&rc4key[0], prwskey, (u16 *)&ttkey[0],
600 				       pnl);
601 				if ((curfragnum + 1) == pattrib->nr_frags) {
602 					/* 4 the last fragment */
603 					length = pattrib->last_txcmdsz -
604 					     pattrib->hdrlen -
605 					     pattrib->iv_len -
606 					     pattrib->icv_len;
607 					*((__le32 *)crc) = cpu_to_le32(
608 						getcrc32(payload, length));
609 					arcfour_init(&mycontext, rc4key, 16);
610 					arcfour_encrypt(&mycontext, payload,
611 							payload, length);
612 					arcfour_encrypt(&mycontext, payload +
613 							length, crc, 4);
614 				} else {
615 					length = pxmitpriv->frag_len -
616 						 pattrib->hdrlen -
617 						 pattrib->iv_len -
618 						 pattrib->icv_len;
619 					*((__le32 *)crc) = cpu_to_le32(getcrc32(
620 							payload, length));
621 					arcfour_init(&mycontext, rc4key, 16);
622 					arcfour_encrypt(&mycontext, payload,
623 							 payload, length);
624 					arcfour_encrypt(&mycontext,
625 							payload + length, crc,
626 							4);
627 					pframe += pxmitpriv->frag_len;
628 					pframe = (u8 *)RND4((addr_t)(pframe));
629 				}
630 			}
631 		} else {
632 			res = _FAIL;
633 		}
634 	}
635 	return res;
636 }
637 
638 /* The hlen doesn't include the IV */
r8712_tkip_decrypt(struct _adapter * padapter,u8 * precvframe)639 void r8712_tkip_decrypt(struct _adapter *padapter, u8 *precvframe)
640 {	/* exclude ICV */
641 	u16 pnl;
642 	u32 pnh;
643 	u8 rc4key[16];
644 	u8 ttkey[16];
645 	u8 crc[4];
646 	struct arc4context mycontext;
647 	u32 length;
648 	u8 *pframe, *payload, *iv, *prwskey, idx = 0;
649 	union pn48 txpn;
650 	struct	sta_info *stainfo;
651 	struct	rx_pkt_attrib *prxattrib = &((union recv_frame *)
652 					   precvframe)->u.hdr.attrib;
653 	struct	security_priv	*psecuritypriv = &padapter->securitypriv;
654 
655 	pframe = (unsigned char *)((union recv_frame *)
656 				   precvframe)->u.hdr.rx_data;
657 	/* 4 start to decrypt recvframe */
658 	if (prxattrib->encrypt == _TKIP_) {
659 		stainfo = r8712_get_stainfo(&padapter->stapriv,
660 					    &prxattrib->ta[0]);
661 		if (stainfo) {
662 			iv = pframe + prxattrib->hdrlen;
663 			payload = pframe + prxattrib->iv_len +
664 				  prxattrib->hdrlen;
665 			length = ((union recv_frame *)precvframe)->
666 				 u.hdr.len - prxattrib->hdrlen -
667 				 prxattrib->iv_len;
668 			if (is_multicast_ether_addr(prxattrib->ra)) {
669 				idx = iv[3];
670 				prwskey = &psecuritypriv->XGrpKey[
671 					 ((idx >> 6) & 0x3) - 1].skey[0];
672 				if (!psecuritypriv->binstallGrpkey)
673 					return;
674 			} else {
675 				prwskey = &stainfo->x_UncstKey.skey[0];
676 			}
677 			GET_TKIP_PN(iv, txpn);
678 			pnl = (u16)(txpn.val);
679 			pnh = (u32)(txpn.val >> 16);
680 			phase1((u16 *)&ttkey[0], prwskey, &prxattrib->ta[0],
681 				pnh);
682 			phase2(&rc4key[0], prwskey, (unsigned short *)
683 			       &ttkey[0], pnl);
684 			/* 4 decrypt payload include icv */
685 			arcfour_init(&mycontext, rc4key, 16);
686 			arcfour_encrypt(&mycontext, payload, payload, length);
687 			*((__le32 *)crc) = cpu_to_le32(getcrc32(payload,
688 					length - 4));
689 		}
690 	}
691 }
692 
693 /* 3 =====AES related===== */
694 
695 #define MAX_MSG_SIZE	2048
696 /*****************************/
697 /******** SBOX Table *********/
698 /*****************************/
699 
700 static const u8 sbox_table[256] = {
701 	0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5,
702 	0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76,
703 	0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0,
704 	0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0,
705 	0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc,
706 	0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15,
707 	0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a,
708 	0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75,
709 	0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0,
710 	0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84,
711 	0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b,
712 	0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf,
713 	0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85,
714 	0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8,
715 	0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5,
716 	0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2,
717 	0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17,
718 	0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73,
719 	0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88,
720 	0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb,
721 	0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c,
722 	0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79,
723 	0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9,
724 	0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08,
725 	0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6,
726 	0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a,
727 	0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e,
728 	0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e,
729 	0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94,
730 	0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf,
731 	0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68,
732 	0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16
733 };
734 
735 /****************************************/
736 /* aes128k128d()                        */
737 /* Performs a 128 bit AES encrypt with  */
738 /* 128 bit data.                        */
739 /****************************************/
xor_128(u8 * a,u8 * b,u8 * out)740 static void xor_128(u8 *a, u8 *b, u8 *out)
741 {
742 	sint i;
743 
744 	for (i = 0; i < 16; i++)
745 		out[i] = a[i] ^ b[i];
746 }
747 
xor_32(u8 * a,u8 * b,u8 * out)748 static void xor_32(u8 *a, u8 *b, u8 *out)
749 {
750 	sint i;
751 
752 	for (i = 0; i < 4; i++)
753 		out[i] = a[i] ^ b[i];
754 }
755 
sbox(u8 a)756 static u8 sbox(u8 a)
757 {
758 	return sbox_table[(sint)a];
759 }
760 
next_key(u8 * key,sint round)761 static void next_key(u8 *key, sint round)
762 {
763 	u8 rcon;
764 	u8 sbox_key[4];
765 	static const u8 rcon_table[12] = {
766 		0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
767 		0x1b, 0x36, 0x36, 0x36
768 	};
769 
770 	sbox_key[0] = sbox(key[13]);
771 	sbox_key[1] = sbox(key[14]);
772 	sbox_key[2] = sbox(key[15]);
773 	sbox_key[3] = sbox(key[12]);
774 	rcon = rcon_table[round];
775 	xor_32(&key[0], sbox_key, &key[0]);
776 	key[0] = key[0] ^ rcon;
777 	xor_32(&key[4], &key[0], &key[4]);
778 	xor_32(&key[8], &key[4], &key[8]);
779 	xor_32(&key[12], &key[8], &key[12]);
780 }
781 
byte_sub(u8 * in,u8 * out)782 static void byte_sub(u8 *in, u8 *out)
783 {
784 	sint i;
785 
786 	for (i = 0; i < 16; i++)
787 		out[i] = sbox(in[i]);
788 }
789 
shift_row(u8 * in,u8 * out)790 static void shift_row(u8 *in, u8 *out)
791 {
792 	out[0] =  in[0];
793 	out[1] =  in[5];
794 	out[2] =  in[10];
795 	out[3] =  in[15];
796 	out[4] =  in[4];
797 	out[5] =  in[9];
798 	out[6] =  in[14];
799 	out[7] =  in[3];
800 	out[8] =  in[8];
801 	out[9] =  in[13];
802 	out[10] = in[2];
803 	out[11] = in[7];
804 	out[12] = in[12];
805 	out[13] = in[1];
806 	out[14] = in[6];
807 	out[15] = in[11];
808 }
809 
mix_column(u8 * in,u8 * out)810 static void mix_column(u8 *in, u8 *out)
811 {
812 	sint i;
813 	u8 add1b[4];
814 	u8 add1bf7[4];
815 	u8 rotl[4];
816 	u8 swap_halves[4];
817 	u8 andf7[4];
818 	u8 rotr[4];
819 	u8 temp[4];
820 	u8 tempb[4];
821 
822 	for (i = 0; i < 4; i++) {
823 		if ((in[i] & 0x80) == 0x80)
824 			add1b[i] = 0x1b;
825 		else
826 			add1b[i] = 0x00;
827 	}
828 	swap_halves[0] = in[2];    /* Swap halves */
829 	swap_halves[1] = in[3];
830 	swap_halves[2] = in[0];
831 	swap_halves[3] = in[1];
832 	rotl[0] = in[3];        /* Rotate left 8 bits */
833 	rotl[1] = in[0];
834 	rotl[2] = in[1];
835 	rotl[3] = in[2];
836 	andf7[0] = in[0] & 0x7f;
837 	andf7[1] = in[1] & 0x7f;
838 	andf7[2] = in[2] & 0x7f;
839 	andf7[3] = in[3] & 0x7f;
840 	for (i = 3; i > 0; i--) {   /* logical shift left 1 bit */
841 		andf7[i] = andf7[i] << 1;
842 		if ((andf7[i - 1] & 0x80) == 0x80)
843 			andf7[i] = (andf7[i] | 0x01);
844 	}
845 	andf7[0] = andf7[0] << 1;
846 	andf7[0] = andf7[0] & 0xfe;
847 	xor_32(add1b, andf7, add1bf7);
848 	xor_32(in, add1bf7, rotr);
849 	temp[0] = rotr[0];         /* Rotate right 8 bits */
850 	rotr[0] = rotr[1];
851 	rotr[1] = rotr[2];
852 	rotr[2] = rotr[3];
853 	rotr[3] = temp[0];
854 	xor_32(add1bf7, rotr, temp);
855 	xor_32(swap_halves, rotl, tempb);
856 	xor_32(temp, tempb, out);
857 }
858 
aes128k128d(u8 * key,u8 * data,u8 * ciphertext)859 static void aes128k128d(u8 *key, u8 *data, u8 *ciphertext)
860 {
861 	sint round;
862 	sint i;
863 	u8 intermediatea[16];
864 	u8 intermediateb[16];
865 	u8 round_key[16];
866 
867 	for (i = 0; i < 16; i++)
868 		round_key[i] = key[i];
869 	for (round = 0; round < 11; round++) {
870 		if (round == 0) {
871 			xor_128(round_key, data, ciphertext);
872 			next_key(round_key, round);
873 		} else if (round == 10) {
874 			byte_sub(ciphertext, intermediatea);
875 			shift_row(intermediatea, intermediateb);
876 			xor_128(intermediateb, round_key, ciphertext);
877 		} else {   /* 1 - 9 */
878 			byte_sub(ciphertext, intermediatea);
879 			shift_row(intermediatea, intermediateb);
880 			mix_column(&intermediateb[0], &intermediatea[0]);
881 			mix_column(&intermediateb[4], &intermediatea[4]);
882 			mix_column(&intermediateb[8], &intermediatea[8]);
883 			mix_column(&intermediateb[12], &intermediatea[12]);
884 			xor_128(intermediatea, round_key, ciphertext);
885 			next_key(round_key, round);
886 		}
887 	}
888 }
889 
890 /************************************************/
891 /* construct_mic_iv()                           */
892 /* Builds the MIC IV from header fields and PN  */
893 /************************************************/
construct_mic_iv(u8 * mic_iv,sint qc_exists,sint a4_exists,u8 * mpdu,uint payload_length,u8 * pn_vector)894 static void construct_mic_iv(u8 *mic_iv, sint qc_exists, sint a4_exists,
895 			     u8 *mpdu, uint payload_length, u8 *pn_vector)
896 {
897 	sint i;
898 
899 	mic_iv[0] = 0x59;
900 	if (qc_exists && a4_exists)
901 		mic_iv[1] = mpdu[30] & 0x0f;    /* QoS_TC           */
902 	if (qc_exists && !a4_exists)
903 		mic_iv[1] = mpdu[24] & 0x0f;   /* mute bits 7-4    */
904 	if (!qc_exists)
905 		mic_iv[1] = 0x00;
906 	for (i = 2; i < 8; i++)
907 		mic_iv[i] = mpdu[i + 8];
908 	for (i = 8; i < 14; i++)
909 		mic_iv[i] = pn_vector[13 - i]; /* mic_iv[8:13] = PN[5:0] */
910 	mic_iv[14] = (unsigned char)(payload_length / 256);
911 	mic_iv[15] = (unsigned char)(payload_length % 256);
912 }
913 
914 /************************************************/
915 /* construct_mic_header1()                      */
916 /* Builds the first MIC header block from       */
917 /* header fields.                               */
918 /************************************************/
construct_mic_header1(u8 * mic_header1,sint header_length,u8 * mpdu)919 static void construct_mic_header1(u8 *mic_header1, sint header_length, u8 *mpdu)
920 {
921 	mic_header1[0] = (u8)((header_length - 2) / 256);
922 	mic_header1[1] = (u8)((header_length - 2) % 256);
923 	mic_header1[2] = mpdu[0] & 0xcf;    /* Mute CF poll & CF ack bits */
924 	/* Mute retry, more data and pwr mgt bits */
925 	mic_header1[3] = mpdu[1] & 0xc7;
926 	mic_header1[4] = mpdu[4];       /* A1 */
927 	mic_header1[5] = mpdu[5];
928 	mic_header1[6] = mpdu[6];
929 	mic_header1[7] = mpdu[7];
930 	mic_header1[8] = mpdu[8];
931 	mic_header1[9] = mpdu[9];
932 	mic_header1[10] = mpdu[10];     /* A2 */
933 	mic_header1[11] = mpdu[11];
934 	mic_header1[12] = mpdu[12];
935 	mic_header1[13] = mpdu[13];
936 	mic_header1[14] = mpdu[14];
937 	mic_header1[15] = mpdu[15];
938 }
939 
940 /************************************************/
941 /* construct_mic_header2()                      */
942 /* Builds the last MIC header block from        */
943 /* header fields.                               */
944 /************************************************/
construct_mic_header2(u8 * mic_header2,u8 * mpdu,sint a4_exists,sint qc_exists)945 static void construct_mic_header2(u8 *mic_header2, u8 *mpdu, sint a4_exists,
946 			   sint qc_exists)
947 {
948 	sint i;
949 
950 	for (i = 0; i < 16; i++)
951 		mic_header2[i] = 0x00;
952 	mic_header2[0] = mpdu[16];    /* A3 */
953 	mic_header2[1] = mpdu[17];
954 	mic_header2[2] = mpdu[18];
955 	mic_header2[3] = mpdu[19];
956 	mic_header2[4] = mpdu[20];
957 	mic_header2[5] = mpdu[21];
958 	mic_header2[6] = 0x00;
959 	mic_header2[7] = 0x00; /* mpdu[23]; */
960 	if (!qc_exists && a4_exists)
961 		for (i = 0; i < 6; i++)
962 			mic_header2[8 + i] = mpdu[24 + i];   /* A4 */
963 	if (qc_exists && !a4_exists) {
964 		mic_header2[8] = mpdu[24] & 0x0f; /* mute bits 15 - 4 */
965 		mic_header2[9] = mpdu[25] & 0x00;
966 	}
967 	if (qc_exists && a4_exists) {
968 		for (i = 0; i < 6; i++)
969 			mic_header2[8 + i] = mpdu[24 + i];   /* A4 */
970 		mic_header2[14] = mpdu[30] & 0x0f;
971 		mic_header2[15] = mpdu[31] & 0x00;
972 	}
973 }
974 
975 /************************************************/
976 /* construct_mic_header2()                      */
977 /* Builds the last MIC header block from        */
978 /* header fields.                               */
979 /************************************************/
construct_ctr_preload(u8 * ctr_preload,sint a4_exists,sint qc_exists,u8 * mpdu,u8 * pn_vector,sint c)980 static void construct_ctr_preload(u8 *ctr_preload,
981 				  sint a4_exists, sint qc_exists,
982 				  u8 *mpdu, u8 *pn_vector, sint c)
983 {
984 	sint i;
985 
986 	for (i = 0; i < 16; i++)
987 		ctr_preload[i] = 0x00;
988 	i = 0;
989 	ctr_preload[0] = 0x01;    /* flag */
990 	if (qc_exists && a4_exists)
991 		ctr_preload[1] = mpdu[30] & 0x0f;
992 	if (qc_exists && !a4_exists)
993 		ctr_preload[1] = mpdu[24] & 0x0f;
994 	for (i = 2; i < 8; i++)
995 		ctr_preload[i] = mpdu[i + 8];
996 	for (i = 8; i < 14; i++)
997 		ctr_preload[i] = pn_vector[13 - i];
998 	ctr_preload[14] = (unsigned char)(c / 256); /* Ctr */
999 	ctr_preload[15] = (unsigned char)(c % 256);
1000 }
1001 
1002 /************************************/
1003 /* bitwise_xor()                    */
1004 /* A 128 bit, bitwise exclusive or  */
1005 /************************************/
bitwise_xor(u8 * ina,u8 * inb,u8 * out)1006 static void bitwise_xor(u8 *ina, u8 *inb, u8 *out)
1007 {
1008 	sint i;
1009 
1010 	for (i = 0; i < 16; i++)
1011 		out[i] = ina[i] ^ inb[i];
1012 }
1013 
aes_cipher(u8 * key,uint hdrlen,u8 * pframe,uint plen)1014 static void aes_cipher(u8 *key, uint hdrlen,
1015 		       u8 *pframe, uint plen)
1016 {
1017 	uint qc_exists, a4_exists, i, j, payload_remainder;
1018 	uint num_blocks, payload_index;
1019 
1020 	u8 pn_vector[6];
1021 	u8 mic_iv[16];
1022 	u8 mic_header1[16];
1023 	u8 mic_header2[16];
1024 	u8 ctr_preload[16];
1025 
1026 	/* Intermediate Buffers */
1027 	u8 chain_buffer[16];
1028 	u8 aes_out[16];
1029 	u8 padded_buffer[16];
1030 	u8 mic[8];
1031 	u16 frtype  = GetFrameType(pframe);
1032 	u16 frsubtype  = GetFrameSubType(pframe);
1033 
1034 	frsubtype >>= 4;
1035 	memset((void *)mic_iv, 0, 16);
1036 	memset((void *)mic_header1, 0, 16);
1037 	memset((void *)mic_header2, 0, 16);
1038 	memset((void *)ctr_preload, 0, 16);
1039 	memset((void *)chain_buffer, 0, 16);
1040 	memset((void *)aes_out, 0, 16);
1041 	memset((void *)padded_buffer, 0, 16);
1042 
1043 	if ((hdrlen == WLAN_HDR_A3_LEN) || (hdrlen ==  WLAN_HDR_A3_QOS_LEN))
1044 		a4_exists = 0;
1045 	else
1046 		a4_exists = 1;
1047 
1048 	if ((frtype == (IEEE80211_FTYPE_DATA | IEEE80211_STYPE_DATA_CFACK)) ||
1049 	    (frtype == (IEEE80211_FTYPE_DATA | IEEE80211_STYPE_DATA_CFPOLL)) ||
1050 	    (frtype == (IEEE80211_FTYPE_DATA | IEEE80211_STYPE_DATA_CFACKPOLL))) {
1051 		qc_exists = 1;
1052 		if (hdrlen !=  WLAN_HDR_A3_QOS_LEN)
1053 			hdrlen += 2;
1054 	} else if ((frsubtype == 0x08) ||
1055 		   (frsubtype == 0x09) ||
1056 		   (frsubtype == 0x0a) ||
1057 		   (frsubtype == 0x0b)) {
1058 		if (hdrlen !=  WLAN_HDR_A3_QOS_LEN)
1059 			hdrlen += 2;
1060 		qc_exists = 1;
1061 	} else {
1062 		qc_exists = 0;
1063 	}
1064 	pn_vector[0] = pframe[hdrlen];
1065 	pn_vector[1] = pframe[hdrlen + 1];
1066 	pn_vector[2] = pframe[hdrlen + 4];
1067 	pn_vector[3] = pframe[hdrlen + 5];
1068 	pn_vector[4] = pframe[hdrlen + 6];
1069 	pn_vector[5] = pframe[hdrlen + 7];
1070 	construct_mic_iv(mic_iv, qc_exists, a4_exists, pframe, plen, pn_vector);
1071 	construct_mic_header1(mic_header1, hdrlen, pframe);
1072 	construct_mic_header2(mic_header2, pframe, a4_exists, qc_exists);
1073 	payload_remainder = plen % 16;
1074 	num_blocks = plen / 16;
1075 	/* Find start of payload */
1076 	payload_index = hdrlen + 8;
1077 	/* Calculate MIC */
1078 	aes128k128d(key, mic_iv, aes_out);
1079 	bitwise_xor(aes_out, mic_header1, chain_buffer);
1080 	aes128k128d(key, chain_buffer, aes_out);
1081 	bitwise_xor(aes_out, mic_header2, chain_buffer);
1082 	aes128k128d(key, chain_buffer, aes_out);
1083 	for (i = 0; i < num_blocks; i++) {
1084 		bitwise_xor(aes_out, &pframe[payload_index], chain_buffer);
1085 		payload_index += 16;
1086 		aes128k128d(key, chain_buffer, aes_out);
1087 	}
1088 	/* Add on the final payload block if it needs padding */
1089 	if (payload_remainder > 0) {
1090 		for (j = 0; j < 16; j++)
1091 			padded_buffer[j] = 0x00;
1092 		for (j = 0; j < payload_remainder; j++)
1093 			padded_buffer[j] = pframe[payload_index++];
1094 		bitwise_xor(aes_out, padded_buffer, chain_buffer);
1095 		aes128k128d(key, chain_buffer, aes_out);
1096 	}
1097 	for (j = 0; j < 8; j++)
1098 		mic[j] = aes_out[j];
1099 	/* Insert MIC into payload */
1100 	for (j = 0; j < 8; j++)
1101 		pframe[payload_index + j] = mic[j];
1102 	payload_index = hdrlen + 8;
1103 	for (i = 0; i < num_blocks; i++) {
1104 		construct_ctr_preload(ctr_preload, a4_exists, qc_exists,
1105 				      pframe, pn_vector, i + 1);
1106 		aes128k128d(key, ctr_preload, aes_out);
1107 		bitwise_xor(aes_out, &pframe[payload_index], chain_buffer);
1108 		for (j = 0; j < 16; j++)
1109 			pframe[payload_index++] = chain_buffer[j];
1110 	}
1111 	if (payload_remainder > 0) {  /* If short final block, then pad it,*/
1112 				      /* encrypt and copy unpadded part back */
1113 		construct_ctr_preload(ctr_preload, a4_exists, qc_exists,
1114 				      pframe, pn_vector, num_blocks + 1);
1115 		for (j = 0; j < 16; j++)
1116 			padded_buffer[j] = 0x00;
1117 		for (j = 0; j < payload_remainder; j++)
1118 			padded_buffer[j] = pframe[payload_index + j];
1119 		aes128k128d(key, ctr_preload, aes_out);
1120 		bitwise_xor(aes_out, padded_buffer, chain_buffer);
1121 		for (j = 0; j < payload_remainder; j++)
1122 			pframe[payload_index++] = chain_buffer[j];
1123 	}
1124 	/* Encrypt the MIC */
1125 	construct_ctr_preload(ctr_preload, a4_exists, qc_exists,
1126 			      pframe, pn_vector, 0);
1127 	for (j = 0; j < 16; j++)
1128 		padded_buffer[j] = 0x00;
1129 	for (j = 0; j < 8; j++)
1130 		padded_buffer[j] = pframe[j + hdrlen + 8 + plen];
1131 	aes128k128d(key, ctr_preload, aes_out);
1132 	bitwise_xor(aes_out, padded_buffer, chain_buffer);
1133 	for (j = 0; j < 8; j++)
1134 		pframe[payload_index++] = chain_buffer[j];
1135 }
1136 
r8712_aes_encrypt(struct _adapter * padapter,u8 * pxmitframe)1137 u32 r8712_aes_encrypt(struct _adapter *padapter, u8 *pxmitframe)
1138 {	/* exclude ICV */
1139 	/* Intermediate Buffers */
1140 	sint	curfragnum, length;
1141 	u8	*pframe, *prwskey;
1142 	struct	sta_info *stainfo;
1143 	struct	pkt_attrib  *pattrib = &((struct xmit_frame *)
1144 				       pxmitframe)->attrib;
1145 	struct	xmit_priv *pxmitpriv = &padapter->xmitpriv;
1146 	u32 res = _SUCCESS;
1147 
1148 	if (((struct xmit_frame *)pxmitframe)->buf_addr == NULL)
1149 		return _FAIL;
1150 	pframe = ((struct xmit_frame *)pxmitframe)->buf_addr + TXDESC_OFFSET;
1151 	/* 4 start to encrypt each fragment */
1152 	if (pattrib->encrypt == _AES_) {
1153 		if (pattrib->psta)
1154 			stainfo = pattrib->psta;
1155 		else
1156 			stainfo = r8712_get_stainfo(&padapter->stapriv,
1157 				  &pattrib->ra[0]);
1158 		if (stainfo) {
1159 			prwskey = &stainfo->x_UncstKey.skey[0];
1160 			for (curfragnum = 0; curfragnum < pattrib->nr_frags;
1161 			     curfragnum++) {
1162 				if ((curfragnum + 1) == pattrib->nr_frags) {
1163 					length = pattrib->last_txcmdsz -
1164 						 pattrib->hdrlen -
1165 						 pattrib->iv_len -
1166 						 pattrib->icv_len;
1167 					aes_cipher(prwskey, pattrib->hdrlen,
1168 						   pframe, length);
1169 				} else {
1170 					length = pxmitpriv->frag_len -
1171 						 pattrib->hdrlen -
1172 						 pattrib->iv_len -
1173 						 pattrib->icv_len;
1174 					aes_cipher(prwskey, pattrib->hdrlen,
1175 						   pframe, length);
1176 					pframe += pxmitpriv->frag_len;
1177 					pframe = (u8 *)RND4((addr_t)(pframe));
1178 				}
1179 			}
1180 		} else {
1181 			res = _FAIL;
1182 		}
1183 	}
1184 	return res;
1185 }
1186 
aes_decipher(u8 * key,uint hdrlen,u8 * pframe,uint plen)1187 static void aes_decipher(u8 *key, uint hdrlen,
1188 			 u8 *pframe, uint plen)
1189 {
1190 	static u8 message[MAX_MSG_SIZE];
1191 	uint qc_exists, a4_exists, i, j, payload_remainder;
1192 	uint num_blocks, payload_index;
1193 	u8 pn_vector[6];
1194 	u8 mic_iv[16];
1195 	u8 mic_header1[16];
1196 	u8 mic_header2[16];
1197 	u8 ctr_preload[16];
1198 	/* Intermediate Buffers */
1199 	u8 chain_buffer[16];
1200 	u8 aes_out[16];
1201 	u8 padded_buffer[16];
1202 	u8 mic[8];
1203 	uint frtype  = GetFrameType(pframe);
1204 	uint frsubtype  = GetFrameSubType(pframe);
1205 
1206 	frsubtype >>= 4;
1207 	memset((void *)mic_iv, 0, 16);
1208 	memset((void *)mic_header1, 0, 16);
1209 	memset((void *)mic_header2, 0, 16);
1210 	memset((void *)ctr_preload, 0, 16);
1211 	memset((void *)chain_buffer, 0, 16);
1212 	memset((void *)aes_out, 0, 16);
1213 	memset((void *)padded_buffer, 0, 16);
1214 	/* start to decrypt the payload */
1215 	/*(plen including llc, payload and mic) */
1216 	num_blocks = (plen - 8) / 16;
1217 	payload_remainder = (plen - 8) % 16;
1218 	pn_vector[0] = pframe[hdrlen];
1219 	pn_vector[1] = pframe[hdrlen + 1];
1220 	pn_vector[2] = pframe[hdrlen + 4];
1221 	pn_vector[3] = pframe[hdrlen + 5];
1222 	pn_vector[4] = pframe[hdrlen + 6];
1223 	pn_vector[5] = pframe[hdrlen + 7];
1224 	if ((hdrlen == WLAN_HDR_A3_LEN) || (hdrlen ==  WLAN_HDR_A3_QOS_LEN))
1225 		a4_exists = 0;
1226 	else
1227 		a4_exists = 1;
1228 	if ((frtype == (IEEE80211_FTYPE_DATA | IEEE80211_STYPE_DATA_CFACK)) ||
1229 	    (frtype == (IEEE80211_FTYPE_DATA | IEEE80211_STYPE_DATA_CFPOLL)) ||
1230 	    (frtype == (IEEE80211_FTYPE_DATA | IEEE80211_STYPE_DATA_CFACKPOLL))) {
1231 		qc_exists = 1;
1232 		if (hdrlen != WLAN_HDR_A3_QOS_LEN)
1233 			hdrlen += 2;
1234 	} else if ((frsubtype == 0x08) ||
1235 		   (frsubtype == 0x09) ||
1236 		   (frsubtype == 0x0a) ||
1237 		   (frsubtype == 0x0b)) {
1238 		if (hdrlen != WLAN_HDR_A3_QOS_LEN)
1239 			hdrlen += 2;
1240 		qc_exists = 1;
1241 	} else {
1242 		qc_exists = 0;
1243 	}
1244 	/* now, decrypt pframe with hdrlen offset and plen long */
1245 	payload_index = hdrlen + 8; /* 8 is for extiv */
1246 	for (i = 0; i < num_blocks; i++) {
1247 		construct_ctr_preload(ctr_preload, a4_exists, qc_exists,
1248 				      pframe, pn_vector, i + 1);
1249 		aes128k128d(key, ctr_preload, aes_out);
1250 		bitwise_xor(aes_out, &pframe[payload_index], chain_buffer);
1251 		for (j = 0; j < 16; j++)
1252 			pframe[payload_index++] = chain_buffer[j];
1253 	}
1254 	if (payload_remainder > 0) {  /* If short final block, pad it,*/
1255 		/* encrypt it and copy the unpadded part back   */
1256 		construct_ctr_preload(ctr_preload, a4_exists, qc_exists,
1257 				      pframe, pn_vector, num_blocks + 1);
1258 		for (j = 0; j < 16; j++)
1259 			padded_buffer[j] = 0x00;
1260 		for (j = 0; j < payload_remainder; j++)
1261 			padded_buffer[j] = pframe[payload_index + j];
1262 		aes128k128d(key, ctr_preload, aes_out);
1263 		bitwise_xor(aes_out, padded_buffer, chain_buffer);
1264 		for (j = 0; j < payload_remainder; j++)
1265 			pframe[payload_index++] = chain_buffer[j];
1266 	}
1267 	/* start to calculate the mic */
1268 	memcpy((void *)message, pframe, (hdrlen + plen + 8));
1269 	pn_vector[0] = pframe[hdrlen];
1270 	pn_vector[1] = pframe[hdrlen + 1];
1271 	pn_vector[2] = pframe[hdrlen + 4];
1272 	pn_vector[3] = pframe[hdrlen + 5];
1273 	pn_vector[4] = pframe[hdrlen + 6];
1274 	pn_vector[5] = pframe[hdrlen + 7];
1275 	construct_mic_iv(mic_iv, qc_exists, a4_exists, message, plen - 8,
1276 			 pn_vector);
1277 	construct_mic_header1(mic_header1, hdrlen, message);
1278 	construct_mic_header2(mic_header2, message, a4_exists, qc_exists);
1279 	payload_remainder = (plen - 8) % 16;
1280 	num_blocks = (plen - 8) / 16;
1281 	/* Find start of payload */
1282 	payload_index = hdrlen + 8;
1283 	/* Calculate MIC */
1284 	aes128k128d(key, mic_iv, aes_out);
1285 	bitwise_xor(aes_out, mic_header1, chain_buffer);
1286 	aes128k128d(key, chain_buffer, aes_out);
1287 	bitwise_xor(aes_out, mic_header2, chain_buffer);
1288 	aes128k128d(key, chain_buffer, aes_out);
1289 	for (i = 0; i < num_blocks; i++) {
1290 		bitwise_xor(aes_out, &message[payload_index], chain_buffer);
1291 		payload_index += 16;
1292 		aes128k128d(key, chain_buffer, aes_out);
1293 	}
1294 	/* Add on the final payload block if it needs padding */
1295 	if (payload_remainder > 0) {
1296 		for (j = 0; j < 16; j++)
1297 			padded_buffer[j] = 0x00;
1298 		for (j = 0; j < payload_remainder; j++)
1299 			padded_buffer[j] = message[payload_index++];
1300 		bitwise_xor(aes_out, padded_buffer, chain_buffer);
1301 		aes128k128d(key, chain_buffer, aes_out);
1302 	}
1303 	for (j = 0; j < 8; j++)
1304 		mic[j] = aes_out[j];
1305 	/* Insert MIC into payload */
1306 	for (j = 0; j < 8; j++)
1307 		message[payload_index + j] = mic[j];
1308 	payload_index = hdrlen + 8;
1309 	for (i = 0; i < num_blocks; i++) {
1310 		construct_ctr_preload(ctr_preload, a4_exists, qc_exists,
1311 				      message, pn_vector, i + 1);
1312 		aes128k128d(key, ctr_preload, aes_out);
1313 		bitwise_xor(aes_out, &message[payload_index], chain_buffer);
1314 		for (j = 0; j < 16; j++)
1315 			message[payload_index++] = chain_buffer[j];
1316 	}
1317 	if (payload_remainder > 0) { /* If short final block, pad it,*/
1318 				     /* encrypt and copy unpadded part back */
1319 		construct_ctr_preload(ctr_preload, a4_exists, qc_exists,
1320 				      message, pn_vector, num_blocks + 1);
1321 		for (j = 0; j < 16; j++)
1322 			padded_buffer[j] = 0x00;
1323 		for (j = 0; j < payload_remainder; j++)
1324 			padded_buffer[j] = message[payload_index + j];
1325 		aes128k128d(key, ctr_preload, aes_out);
1326 		bitwise_xor(aes_out, padded_buffer, chain_buffer);
1327 		for (j = 0; j < payload_remainder; j++)
1328 			message[payload_index++] = chain_buffer[j];
1329 	}
1330 	/* Encrypt the MIC */
1331 	construct_ctr_preload(ctr_preload, a4_exists, qc_exists, message,
1332 			      pn_vector, 0);
1333 	for (j = 0; j < 16; j++)
1334 		padded_buffer[j] = 0x00;
1335 	for (j = 0; j < 8; j++)
1336 		padded_buffer[j] = message[j + hdrlen + plen];
1337 	aes128k128d(key, ctr_preload, aes_out);
1338 	bitwise_xor(aes_out, padded_buffer, chain_buffer);
1339 	for (j = 0; j < 8; j++)
1340 		message[payload_index++] = chain_buffer[j];
1341 	/* compare the mic */
1342 }
1343 
r8712_aes_decrypt(struct _adapter * padapter,u8 * precvframe)1344 void r8712_aes_decrypt(struct _adapter *padapter, u8 *precvframe)
1345 {	/* exclude ICV */
1346 	/* Intermediate Buffers */
1347 	sint		length;
1348 	u8	*pframe, *prwskey, *iv, idx;
1349 	struct	sta_info *stainfo;
1350 	struct	rx_pkt_attrib *prxattrib = &((union recv_frame *)
1351 					   precvframe)->u.hdr.attrib;
1352 	struct	security_priv *psecuritypriv = &padapter->securitypriv;
1353 
1354 	pframe = (unsigned char *)((union recv_frame *)precvframe)->
1355 		 u.hdr.rx_data;
1356 	/* 4 start to encrypt each fragment */
1357 	if (prxattrib->encrypt == _AES_) {
1358 		stainfo = r8712_get_stainfo(&padapter->stapriv,
1359 					    &prxattrib->ta[0]);
1360 		if (stainfo) {
1361 			if (is_multicast_ether_addr(prxattrib->ra)) {
1362 				iv = pframe + prxattrib->hdrlen;
1363 				idx = iv[3];
1364 				prwskey = &psecuritypriv->XGrpKey[
1365 					  ((idx >> 6) & 0x3) - 1].skey[0];
1366 				if (!psecuritypriv->binstallGrpkey)
1367 					return;
1368 
1369 			} else {
1370 				prwskey = &stainfo->x_UncstKey.skey[0];
1371 			}
1372 			length = ((union recv_frame *)precvframe)->
1373 				 u.hdr.len - prxattrib->hdrlen -
1374 				 prxattrib->iv_len;
1375 			aes_decipher(prwskey, prxattrib->hdrlen, pframe,
1376 				     length);
1377 		}
1378 	}
1379 }
1380 
r8712_use_tkipkey_handler(struct timer_list * t)1381 void r8712_use_tkipkey_handler(struct timer_list *t)
1382 {
1383 	struct _adapter *padapter =
1384 		from_timer(padapter, t, securitypriv.tkip_timer);
1385 
1386 	padapter->securitypriv.busetkipkey = true;
1387 }
1388