1 /*
2 * Copyright 2009 Jerome Glisse.
3 * All Rights Reserved.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the
7 * "Software"), to deal in the Software without restriction, including
8 * without limitation the rights to use, copy, modify, merge, publish,
9 * distribute, sub license, and/or sell copies of the Software, and to
10 * permit persons to whom the Software is furnished to do so, subject to
11 * the following conditions:
12 *
13 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
15 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
16 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
17 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
18 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
19 * USE OR OTHER DEALINGS IN THE SOFTWARE.
20 *
21 * The above copyright notice and this permission notice (including the
22 * next paragraph) shall be included in all copies or substantial portions
23 * of the Software.
24 *
25 */
26 /*
27 * Authors:
28 * Jerome Glisse <glisse@freedesktop.org>
29 * Dave Airlie
30 */
31
32 #include <linux/atomic.h>
33 #include <linux/firmware.h>
34 #include <linux/kref.h>
35 #include <linux/sched/signal.h>
36 #include <linux/seq_file.h>
37 #include <linux/slab.h>
38 #include <linux/wait.h>
39
40 #include <drm/drm_device.h>
41 #include <drm/drm_file.h>
42
43 #include "radeon.h"
44 #include "radeon_reg.h"
45 #include "radeon_trace.h"
46
47 /*
48 * Fences
49 * Fences mark an event in the GPUs pipeline and are used
50 * for GPU/CPU synchronization. When the fence is written,
51 * it is expected that all buffers associated with that fence
52 * are no longer in use by the associated ring on the GPU and
53 * that the relevant GPU caches have been flushed. Whether
54 * we use a scratch register or memory location depends on the asic
55 * and whether writeback is enabled.
56 */
57
58 /**
59 * radeon_fence_write - write a fence value
60 *
61 * @rdev: radeon_device pointer
62 * @seq: sequence number to write
63 * @ring: ring index the fence is associated with
64 *
65 * Writes a fence value to memory or a scratch register (all asics).
66 */
radeon_fence_write(struct radeon_device * rdev,u32 seq,int ring)67 static void radeon_fence_write(struct radeon_device *rdev, u32 seq, int ring)
68 {
69 struct radeon_fence_driver *drv = &rdev->fence_drv[ring];
70 if (likely(rdev->wb.enabled || !drv->scratch_reg)) {
71 if (drv->cpu_addr) {
72 *drv->cpu_addr = cpu_to_le32(seq);
73 }
74 } else {
75 WREG32(drv->scratch_reg, seq);
76 }
77 }
78
79 /**
80 * radeon_fence_read - read a fence value
81 *
82 * @rdev: radeon_device pointer
83 * @ring: ring index the fence is associated with
84 *
85 * Reads a fence value from memory or a scratch register (all asics).
86 * Returns the value of the fence read from memory or register.
87 */
radeon_fence_read(struct radeon_device * rdev,int ring)88 static u32 radeon_fence_read(struct radeon_device *rdev, int ring)
89 {
90 struct radeon_fence_driver *drv = &rdev->fence_drv[ring];
91 u32 seq = 0;
92
93 if (likely(rdev->wb.enabled || !drv->scratch_reg)) {
94 if (drv->cpu_addr) {
95 seq = le32_to_cpu(*drv->cpu_addr);
96 } else {
97 seq = lower_32_bits(atomic64_read(&drv->last_seq));
98 }
99 } else {
100 seq = RREG32(drv->scratch_reg);
101 }
102 return seq;
103 }
104
105 /**
106 * radeon_fence_schedule_check - schedule lockup check
107 *
108 * @rdev: radeon_device pointer
109 * @ring: ring index we should work with
110 *
111 * Queues a delayed work item to check for lockups.
112 */
radeon_fence_schedule_check(struct radeon_device * rdev,int ring)113 static void radeon_fence_schedule_check(struct radeon_device *rdev, int ring)
114 {
115 /*
116 * Do not reset the timer here with mod_delayed_work,
117 * this can livelock in an interaction with TTM delayed destroy.
118 */
119 queue_delayed_work(system_power_efficient_wq,
120 &rdev->fence_drv[ring].lockup_work,
121 RADEON_FENCE_JIFFIES_TIMEOUT);
122 }
123
124 /**
125 * radeon_fence_emit - emit a fence on the requested ring
126 *
127 * @rdev: radeon_device pointer
128 * @fence: radeon fence object
129 * @ring: ring index the fence is associated with
130 *
131 * Emits a fence command on the requested ring (all asics).
132 * Returns 0 on success, -ENOMEM on failure.
133 */
radeon_fence_emit(struct radeon_device * rdev,struct radeon_fence ** fence,int ring)134 int radeon_fence_emit(struct radeon_device *rdev,
135 struct radeon_fence **fence,
136 int ring)
137 {
138 u64 seq;
139
140 /* we are protected by the ring emission mutex */
141 *fence = kmalloc(sizeof(struct radeon_fence), GFP_KERNEL);
142 if ((*fence) == NULL) {
143 return -ENOMEM;
144 }
145 (*fence)->rdev = rdev;
146 (*fence)->seq = seq = ++rdev->fence_drv[ring].sync_seq[ring];
147 (*fence)->ring = ring;
148 (*fence)->is_vm_update = false;
149 dma_fence_init(&(*fence)->base, &radeon_fence_ops,
150 &rdev->fence_queue.lock,
151 rdev->fence_context + ring,
152 seq);
153 radeon_fence_ring_emit(rdev, ring, *fence);
154 trace_radeon_fence_emit(rdev->ddev, ring, (*fence)->seq);
155 radeon_fence_schedule_check(rdev, ring);
156 return 0;
157 }
158
159 /*
160 * radeon_fence_check_signaled - callback from fence_queue
161 *
162 * this function is called with fence_queue lock held, which is also used
163 * for the fence locking itself, so unlocked variants are used for
164 * fence_signal, and remove_wait_queue.
165 */
radeon_fence_check_signaled(wait_queue_entry_t * wait,unsigned mode,int flags,void * key)166 static int radeon_fence_check_signaled(wait_queue_entry_t *wait, unsigned mode, int flags, void *key)
167 {
168 struct radeon_fence *fence;
169 u64 seq;
170
171 fence = container_of(wait, struct radeon_fence, fence_wake);
172
173 /*
174 * We cannot use radeon_fence_process here because we're already
175 * in the waitqueue, in a call from wake_up_all.
176 */
177 seq = atomic64_read(&fence->rdev->fence_drv[fence->ring].last_seq);
178 if (seq >= fence->seq) {
179 int ret = dma_fence_signal_locked(&fence->base);
180
181 if (!ret)
182 DMA_FENCE_TRACE(&fence->base, "signaled from irq context\n");
183 else
184 DMA_FENCE_TRACE(&fence->base, "was already signaled\n");
185
186 radeon_irq_kms_sw_irq_put(fence->rdev, fence->ring);
187 __remove_wait_queue(&fence->rdev->fence_queue, &fence->fence_wake);
188 dma_fence_put(&fence->base);
189 } else
190 DMA_FENCE_TRACE(&fence->base, "pending\n");
191 return 0;
192 }
193
194 /**
195 * radeon_fence_activity - check for fence activity
196 *
197 * @rdev: radeon_device pointer
198 * @ring: ring index the fence is associated with
199 *
200 * Checks the current fence value and calculates the last
201 * signalled fence value. Returns true if activity occured
202 * on the ring, and the fence_queue should be waken up.
203 */
radeon_fence_activity(struct radeon_device * rdev,int ring)204 static bool radeon_fence_activity(struct radeon_device *rdev, int ring)
205 {
206 uint64_t seq, last_seq, last_emitted;
207 unsigned count_loop = 0;
208 bool wake = false;
209
210 /* Note there is a scenario here for an infinite loop but it's
211 * very unlikely to happen. For it to happen, the current polling
212 * process need to be interrupted by another process and another
213 * process needs to update the last_seq btw the atomic read and
214 * xchg of the current process.
215 *
216 * More over for this to go in infinite loop there need to be
217 * continuously new fence signaled ie radeon_fence_read needs
218 * to return a different value each time for both the currently
219 * polling process and the other process that xchg the last_seq
220 * btw atomic read and xchg of the current process. And the
221 * value the other process set as last seq must be higher than
222 * the seq value we just read. Which means that current process
223 * need to be interrupted after radeon_fence_read and before
224 * atomic xchg.
225 *
226 * To be even more safe we count the number of time we loop and
227 * we bail after 10 loop just accepting the fact that we might
228 * have temporarly set the last_seq not to the true real last
229 * seq but to an older one.
230 */
231 last_seq = atomic64_read(&rdev->fence_drv[ring].last_seq);
232 do {
233 last_emitted = rdev->fence_drv[ring].sync_seq[ring];
234 seq = radeon_fence_read(rdev, ring);
235 seq |= last_seq & 0xffffffff00000000LL;
236 if (seq < last_seq) {
237 seq &= 0xffffffff;
238 seq |= last_emitted & 0xffffffff00000000LL;
239 }
240
241 if (seq <= last_seq || seq > last_emitted) {
242 break;
243 }
244 /* If we loop over we don't want to return without
245 * checking if a fence is signaled as it means that the
246 * seq we just read is different from the previous on.
247 */
248 wake = true;
249 last_seq = seq;
250 if ((count_loop++) > 10) {
251 /* We looped over too many time leave with the
252 * fact that we might have set an older fence
253 * seq then the current real last seq as signaled
254 * by the hw.
255 */
256 break;
257 }
258 } while (atomic64_xchg(&rdev->fence_drv[ring].last_seq, seq) > seq);
259
260 if (seq < last_emitted)
261 radeon_fence_schedule_check(rdev, ring);
262
263 return wake;
264 }
265
266 /**
267 * radeon_fence_check_lockup - check for hardware lockup
268 *
269 * @work: delayed work item
270 *
271 * Checks for fence activity and if there is none probe
272 * the hardware if a lockup occured.
273 */
radeon_fence_check_lockup(struct work_struct * work)274 static void radeon_fence_check_lockup(struct work_struct *work)
275 {
276 struct radeon_fence_driver *fence_drv;
277 struct radeon_device *rdev;
278 int ring;
279
280 fence_drv = container_of(work, struct radeon_fence_driver,
281 lockup_work.work);
282 rdev = fence_drv->rdev;
283 ring = fence_drv - &rdev->fence_drv[0];
284
285 if (!down_read_trylock(&rdev->exclusive_lock)) {
286 /* just reschedule the check if a reset is going on */
287 radeon_fence_schedule_check(rdev, ring);
288 return;
289 }
290
291 if (fence_drv->delayed_irq && rdev->irq.installed) {
292 unsigned long irqflags;
293
294 fence_drv->delayed_irq = false;
295 spin_lock_irqsave(&rdev->irq.lock, irqflags);
296 radeon_irq_set(rdev);
297 spin_unlock_irqrestore(&rdev->irq.lock, irqflags);
298 }
299
300 if (radeon_fence_activity(rdev, ring))
301 wake_up_all(&rdev->fence_queue);
302
303 else if (radeon_ring_is_lockup(rdev, ring, &rdev->ring[ring])) {
304
305 /* good news we believe it's a lockup */
306 dev_warn(rdev->dev, "GPU lockup (current fence id "
307 "0x%016llx last fence id 0x%016llx on ring %d)\n",
308 (uint64_t)atomic64_read(&fence_drv->last_seq),
309 fence_drv->sync_seq[ring], ring);
310
311 /* remember that we need an reset */
312 rdev->needs_reset = true;
313 wake_up_all(&rdev->fence_queue);
314 }
315 up_read(&rdev->exclusive_lock);
316 }
317
318 /**
319 * radeon_fence_process - process a fence
320 *
321 * @rdev: radeon_device pointer
322 * @ring: ring index the fence is associated with
323 *
324 * Checks the current fence value and wakes the fence queue
325 * if the sequence number has increased (all asics).
326 */
radeon_fence_process(struct radeon_device * rdev,int ring)327 void radeon_fence_process(struct radeon_device *rdev, int ring)
328 {
329 if (radeon_fence_activity(rdev, ring))
330 wake_up_all(&rdev->fence_queue);
331 }
332
333 /**
334 * radeon_fence_seq_signaled - check if a fence sequence number has signaled
335 *
336 * @rdev: radeon device pointer
337 * @seq: sequence number
338 * @ring: ring index the fence is associated with
339 *
340 * Check if the last signaled fence sequnce number is >= the requested
341 * sequence number (all asics).
342 * Returns true if the fence has signaled (current fence value
343 * is >= requested value) or false if it has not (current fence
344 * value is < the requested value. Helper function for
345 * radeon_fence_signaled().
346 */
radeon_fence_seq_signaled(struct radeon_device * rdev,u64 seq,unsigned ring)347 static bool radeon_fence_seq_signaled(struct radeon_device *rdev,
348 u64 seq, unsigned ring)
349 {
350 if (atomic64_read(&rdev->fence_drv[ring].last_seq) >= seq) {
351 return true;
352 }
353 /* poll new last sequence at least once */
354 radeon_fence_process(rdev, ring);
355 if (atomic64_read(&rdev->fence_drv[ring].last_seq) >= seq) {
356 return true;
357 }
358 return false;
359 }
360
radeon_fence_is_signaled(struct dma_fence * f)361 static bool radeon_fence_is_signaled(struct dma_fence *f)
362 {
363 struct radeon_fence *fence = to_radeon_fence(f);
364 struct radeon_device *rdev = fence->rdev;
365 unsigned ring = fence->ring;
366 u64 seq = fence->seq;
367
368 if (atomic64_read(&rdev->fence_drv[ring].last_seq) >= seq) {
369 return true;
370 }
371
372 if (down_read_trylock(&rdev->exclusive_lock)) {
373 radeon_fence_process(rdev, ring);
374 up_read(&rdev->exclusive_lock);
375
376 if (atomic64_read(&rdev->fence_drv[ring].last_seq) >= seq) {
377 return true;
378 }
379 }
380 return false;
381 }
382
383 /**
384 * radeon_fence_enable_signaling - enable signalling on fence
385 * @f: fence
386 *
387 * This function is called with fence_queue lock held, and adds a callback
388 * to fence_queue that checks if this fence is signaled, and if so it
389 * signals the fence and removes itself.
390 */
radeon_fence_enable_signaling(struct dma_fence * f)391 static bool radeon_fence_enable_signaling(struct dma_fence *f)
392 {
393 struct radeon_fence *fence = to_radeon_fence(f);
394 struct radeon_device *rdev = fence->rdev;
395
396 if (atomic64_read(&rdev->fence_drv[fence->ring].last_seq) >= fence->seq)
397 return false;
398
399 if (down_read_trylock(&rdev->exclusive_lock)) {
400 radeon_irq_kms_sw_irq_get(rdev, fence->ring);
401
402 if (radeon_fence_activity(rdev, fence->ring))
403 wake_up_all_locked(&rdev->fence_queue);
404
405 /* did fence get signaled after we enabled the sw irq? */
406 if (atomic64_read(&rdev->fence_drv[fence->ring].last_seq) >= fence->seq) {
407 radeon_irq_kms_sw_irq_put(rdev, fence->ring);
408 up_read(&rdev->exclusive_lock);
409 return false;
410 }
411
412 up_read(&rdev->exclusive_lock);
413 } else {
414 /* we're probably in a lockup, lets not fiddle too much */
415 if (radeon_irq_kms_sw_irq_get_delayed(rdev, fence->ring))
416 rdev->fence_drv[fence->ring].delayed_irq = true;
417 radeon_fence_schedule_check(rdev, fence->ring);
418 }
419
420 fence->fence_wake.flags = 0;
421 fence->fence_wake.private = NULL;
422 fence->fence_wake.func = radeon_fence_check_signaled;
423 __add_wait_queue(&rdev->fence_queue, &fence->fence_wake);
424 dma_fence_get(f);
425
426 DMA_FENCE_TRACE(&fence->base, "armed on ring %i!\n", fence->ring);
427 return true;
428 }
429
430 /**
431 * radeon_fence_signaled - check if a fence has signaled
432 *
433 * @fence: radeon fence object
434 *
435 * Check if the requested fence has signaled (all asics).
436 * Returns true if the fence has signaled or false if it has not.
437 */
radeon_fence_signaled(struct radeon_fence * fence)438 bool radeon_fence_signaled(struct radeon_fence *fence)
439 {
440 if (!fence)
441 return true;
442
443 if (radeon_fence_seq_signaled(fence->rdev, fence->seq, fence->ring)) {
444 int ret;
445
446 ret = dma_fence_signal(&fence->base);
447 if (!ret)
448 DMA_FENCE_TRACE(&fence->base, "signaled from radeon_fence_signaled\n");
449 return true;
450 }
451 return false;
452 }
453
454 /**
455 * radeon_fence_any_seq_signaled - check if any sequence number is signaled
456 *
457 * @rdev: radeon device pointer
458 * @seq: sequence numbers
459 *
460 * Check if the last signaled fence sequnce number is >= the requested
461 * sequence number (all asics).
462 * Returns true if any has signaled (current value is >= requested value)
463 * or false if it has not. Helper function for radeon_fence_wait_seq.
464 */
radeon_fence_any_seq_signaled(struct radeon_device * rdev,u64 * seq)465 static bool radeon_fence_any_seq_signaled(struct radeon_device *rdev, u64 *seq)
466 {
467 unsigned i;
468
469 for (i = 0; i < RADEON_NUM_RINGS; ++i) {
470 if (seq[i] && radeon_fence_seq_signaled(rdev, seq[i], i))
471 return true;
472 }
473 return false;
474 }
475
476 /**
477 * radeon_fence_wait_seq_timeout - wait for a specific sequence numbers
478 *
479 * @rdev: radeon device pointer
480 * @target_seq: sequence number(s) we want to wait for
481 * @intr: use interruptable sleep
482 * @timeout: maximum time to wait, or MAX_SCHEDULE_TIMEOUT for infinite wait
483 *
484 * Wait for the requested sequence number(s) to be written by any ring
485 * (all asics). Sequnce number array is indexed by ring id.
486 * @intr selects whether to use interruptable (true) or non-interruptable
487 * (false) sleep when waiting for the sequence number. Helper function
488 * for radeon_fence_wait_*().
489 * Returns remaining time if the sequence number has passed, 0 when
490 * the wait timeout, or an error for all other cases.
491 * -EDEADLK is returned when a GPU lockup has been detected.
492 */
radeon_fence_wait_seq_timeout(struct radeon_device * rdev,u64 * target_seq,bool intr,long timeout)493 static long radeon_fence_wait_seq_timeout(struct radeon_device *rdev,
494 u64 *target_seq, bool intr,
495 long timeout)
496 {
497 long r;
498 int i;
499
500 if (radeon_fence_any_seq_signaled(rdev, target_seq))
501 return timeout;
502
503 /* enable IRQs and tracing */
504 for (i = 0; i < RADEON_NUM_RINGS; ++i) {
505 if (!target_seq[i])
506 continue;
507
508 trace_radeon_fence_wait_begin(rdev->ddev, i, target_seq[i]);
509 radeon_irq_kms_sw_irq_get(rdev, i);
510 }
511
512 if (intr) {
513 r = wait_event_interruptible_timeout(rdev->fence_queue, (
514 radeon_fence_any_seq_signaled(rdev, target_seq)
515 || rdev->needs_reset), timeout);
516 } else {
517 r = wait_event_timeout(rdev->fence_queue, (
518 radeon_fence_any_seq_signaled(rdev, target_seq)
519 || rdev->needs_reset), timeout);
520 }
521
522 if (rdev->needs_reset)
523 r = -EDEADLK;
524
525 for (i = 0; i < RADEON_NUM_RINGS; ++i) {
526 if (!target_seq[i])
527 continue;
528
529 radeon_irq_kms_sw_irq_put(rdev, i);
530 trace_radeon_fence_wait_end(rdev->ddev, i, target_seq[i]);
531 }
532
533 return r;
534 }
535
536 /**
537 * radeon_fence_wait_timeout - wait for a fence to signal with timeout
538 *
539 * @fence: radeon fence object
540 * @intr: use interruptible sleep
541 *
542 * Wait for the requested fence to signal (all asics).
543 * @intr selects whether to use interruptable (true) or non-interruptable
544 * (false) sleep when waiting for the fence.
545 * @timeout: maximum time to wait, or MAX_SCHEDULE_TIMEOUT for infinite wait
546 * Returns remaining time if the sequence number has passed, 0 when
547 * the wait timeout, or an error for all other cases.
548 */
radeon_fence_wait_timeout(struct radeon_fence * fence,bool intr,long timeout)549 long radeon_fence_wait_timeout(struct radeon_fence *fence, bool intr, long timeout)
550 {
551 uint64_t seq[RADEON_NUM_RINGS] = {};
552 long r;
553 int r_sig;
554
555 /*
556 * This function should not be called on !radeon fences.
557 * If this is the case, it would mean this function can
558 * also be called on radeon fences belonging to another card.
559 * exclusive_lock is not held in that case.
560 */
561 if (WARN_ON_ONCE(!to_radeon_fence(&fence->base)))
562 return dma_fence_wait(&fence->base, intr);
563
564 seq[fence->ring] = fence->seq;
565 r = radeon_fence_wait_seq_timeout(fence->rdev, seq, intr, timeout);
566 if (r <= 0) {
567 return r;
568 }
569
570 r_sig = dma_fence_signal(&fence->base);
571 if (!r_sig)
572 DMA_FENCE_TRACE(&fence->base, "signaled from fence_wait\n");
573 return r;
574 }
575
576 /**
577 * radeon_fence_wait - wait for a fence to signal
578 *
579 * @fence: radeon fence object
580 * @intr: use interruptible sleep
581 *
582 * Wait for the requested fence to signal (all asics).
583 * @intr selects whether to use interruptable (true) or non-interruptable
584 * (false) sleep when waiting for the fence.
585 * Returns 0 if the fence has passed, error for all other cases.
586 */
radeon_fence_wait(struct radeon_fence * fence,bool intr)587 int radeon_fence_wait(struct radeon_fence *fence, bool intr)
588 {
589 long r = radeon_fence_wait_timeout(fence, intr, MAX_SCHEDULE_TIMEOUT);
590 if (r > 0) {
591 return 0;
592 } else {
593 return r;
594 }
595 }
596
597 /**
598 * radeon_fence_wait_any - wait for a fence to signal on any ring
599 *
600 * @rdev: radeon device pointer
601 * @fences: radeon fence object(s)
602 * @intr: use interruptable sleep
603 *
604 * Wait for any requested fence to signal (all asics). Fence
605 * array is indexed by ring id. @intr selects whether to use
606 * interruptable (true) or non-interruptable (false) sleep when
607 * waiting for the fences. Used by the suballocator.
608 * Returns 0 if any fence has passed, error for all other cases.
609 */
radeon_fence_wait_any(struct radeon_device * rdev,struct radeon_fence ** fences,bool intr)610 int radeon_fence_wait_any(struct radeon_device *rdev,
611 struct radeon_fence **fences,
612 bool intr)
613 {
614 uint64_t seq[RADEON_NUM_RINGS];
615 unsigned i, num_rings = 0;
616 long r;
617
618 for (i = 0; i < RADEON_NUM_RINGS; ++i) {
619 seq[i] = 0;
620
621 if (!fences[i]) {
622 continue;
623 }
624
625 seq[i] = fences[i]->seq;
626 ++num_rings;
627 }
628
629 /* nothing to wait for ? */
630 if (num_rings == 0)
631 return -ENOENT;
632
633 r = radeon_fence_wait_seq_timeout(rdev, seq, intr, MAX_SCHEDULE_TIMEOUT);
634 if (r < 0) {
635 return r;
636 }
637 return 0;
638 }
639
640 /**
641 * radeon_fence_wait_next - wait for the next fence to signal
642 *
643 * @rdev: radeon device pointer
644 * @ring: ring index the fence is associated with
645 *
646 * Wait for the next fence on the requested ring to signal (all asics).
647 * Returns 0 if the next fence has passed, error for all other cases.
648 * Caller must hold ring lock.
649 */
radeon_fence_wait_next(struct radeon_device * rdev,int ring)650 int radeon_fence_wait_next(struct radeon_device *rdev, int ring)
651 {
652 uint64_t seq[RADEON_NUM_RINGS] = {};
653 long r;
654
655 seq[ring] = atomic64_read(&rdev->fence_drv[ring].last_seq) + 1ULL;
656 if (seq[ring] >= rdev->fence_drv[ring].sync_seq[ring]) {
657 /* nothing to wait for, last_seq is
658 already the last emited fence */
659 return -ENOENT;
660 }
661 r = radeon_fence_wait_seq_timeout(rdev, seq, false, MAX_SCHEDULE_TIMEOUT);
662 if (r < 0)
663 return r;
664 return 0;
665 }
666
667 /**
668 * radeon_fence_wait_empty - wait for all fences to signal
669 *
670 * @rdev: radeon device pointer
671 * @ring: ring index the fence is associated with
672 *
673 * Wait for all fences on the requested ring to signal (all asics).
674 * Returns 0 if the fences have passed, error for all other cases.
675 * Caller must hold ring lock.
676 */
radeon_fence_wait_empty(struct radeon_device * rdev,int ring)677 int radeon_fence_wait_empty(struct radeon_device *rdev, int ring)
678 {
679 uint64_t seq[RADEON_NUM_RINGS] = {};
680 long r;
681
682 seq[ring] = rdev->fence_drv[ring].sync_seq[ring];
683 if (!seq[ring])
684 return 0;
685
686 r = radeon_fence_wait_seq_timeout(rdev, seq, false, MAX_SCHEDULE_TIMEOUT);
687 if (r < 0) {
688 if (r == -EDEADLK)
689 return -EDEADLK;
690
691 dev_err(rdev->dev, "error waiting for ring[%d] to become idle (%ld)\n",
692 ring, r);
693 }
694 return 0;
695 }
696
697 /**
698 * radeon_fence_ref - take a ref on a fence
699 *
700 * @fence: radeon fence object
701 *
702 * Take a reference on a fence (all asics).
703 * Returns the fence.
704 */
radeon_fence_ref(struct radeon_fence * fence)705 struct radeon_fence *radeon_fence_ref(struct radeon_fence *fence)
706 {
707 dma_fence_get(&fence->base);
708 return fence;
709 }
710
711 /**
712 * radeon_fence_unref - remove a ref on a fence
713 *
714 * @fence: radeon fence object
715 *
716 * Remove a reference on a fence (all asics).
717 */
radeon_fence_unref(struct radeon_fence ** fence)718 void radeon_fence_unref(struct radeon_fence **fence)
719 {
720 struct radeon_fence *tmp = *fence;
721
722 *fence = NULL;
723 if (tmp) {
724 dma_fence_put(&tmp->base);
725 }
726 }
727
728 /**
729 * radeon_fence_count_emitted - get the count of emitted fences
730 *
731 * @rdev: radeon device pointer
732 * @ring: ring index the fence is associated with
733 *
734 * Get the number of fences emitted on the requested ring (all asics).
735 * Returns the number of emitted fences on the ring. Used by the
736 * dynpm code to ring track activity.
737 */
radeon_fence_count_emitted(struct radeon_device * rdev,int ring)738 unsigned radeon_fence_count_emitted(struct radeon_device *rdev, int ring)
739 {
740 uint64_t emitted;
741
742 /* We are not protected by ring lock when reading the last sequence
743 * but it's ok to report slightly wrong fence count here.
744 */
745 radeon_fence_process(rdev, ring);
746 emitted = rdev->fence_drv[ring].sync_seq[ring]
747 - atomic64_read(&rdev->fence_drv[ring].last_seq);
748 /* to avoid 32bits warp around */
749 if (emitted > 0x10000000) {
750 emitted = 0x10000000;
751 }
752 return (unsigned)emitted;
753 }
754
755 /**
756 * radeon_fence_need_sync - do we need a semaphore
757 *
758 * @fence: radeon fence object
759 * @dst_ring: which ring to check against
760 *
761 * Check if the fence needs to be synced against another ring
762 * (all asics). If so, we need to emit a semaphore.
763 * Returns true if we need to sync with another ring, false if
764 * not.
765 */
radeon_fence_need_sync(struct radeon_fence * fence,int dst_ring)766 bool radeon_fence_need_sync(struct radeon_fence *fence, int dst_ring)
767 {
768 struct radeon_fence_driver *fdrv;
769
770 if (!fence) {
771 return false;
772 }
773
774 if (fence->ring == dst_ring) {
775 return false;
776 }
777
778 /* we are protected by the ring mutex */
779 fdrv = &fence->rdev->fence_drv[dst_ring];
780 if (fence->seq <= fdrv->sync_seq[fence->ring]) {
781 return false;
782 }
783
784 return true;
785 }
786
787 /**
788 * radeon_fence_note_sync - record the sync point
789 *
790 * @fence: radeon fence object
791 * @dst_ring: which ring to check against
792 *
793 * Note the sequence number at which point the fence will
794 * be synced with the requested ring (all asics).
795 */
radeon_fence_note_sync(struct radeon_fence * fence,int dst_ring)796 void radeon_fence_note_sync(struct radeon_fence *fence, int dst_ring)
797 {
798 struct radeon_fence_driver *dst, *src;
799 unsigned i;
800
801 if (!fence) {
802 return;
803 }
804
805 if (fence->ring == dst_ring) {
806 return;
807 }
808
809 /* we are protected by the ring mutex */
810 src = &fence->rdev->fence_drv[fence->ring];
811 dst = &fence->rdev->fence_drv[dst_ring];
812 for (i = 0; i < RADEON_NUM_RINGS; ++i) {
813 if (i == dst_ring) {
814 continue;
815 }
816 dst->sync_seq[i] = max(dst->sync_seq[i], src->sync_seq[i]);
817 }
818 }
819
820 /**
821 * radeon_fence_driver_start_ring - make the fence driver
822 * ready for use on the requested ring.
823 *
824 * @rdev: radeon device pointer
825 * @ring: ring index to start the fence driver on
826 *
827 * Make the fence driver ready for processing (all asics).
828 * Not all asics have all rings, so each asic will only
829 * start the fence driver on the rings it has.
830 * Returns 0 for success, errors for failure.
831 */
radeon_fence_driver_start_ring(struct radeon_device * rdev,int ring)832 int radeon_fence_driver_start_ring(struct radeon_device *rdev, int ring)
833 {
834 uint64_t index;
835 int r;
836
837 radeon_scratch_free(rdev, rdev->fence_drv[ring].scratch_reg);
838 if (rdev->wb.use_event || !radeon_ring_supports_scratch_reg(rdev, &rdev->ring[ring])) {
839 rdev->fence_drv[ring].scratch_reg = 0;
840 if (ring != R600_RING_TYPE_UVD_INDEX) {
841 index = R600_WB_EVENT_OFFSET + ring * 4;
842 rdev->fence_drv[ring].cpu_addr = &rdev->wb.wb[index/4];
843 rdev->fence_drv[ring].gpu_addr = rdev->wb.gpu_addr +
844 index;
845
846 } else {
847 /* put fence directly behind firmware */
848 index = ALIGN(rdev->uvd_fw->size, 8);
849 rdev->fence_drv[ring].cpu_addr = rdev->uvd.cpu_addr + index;
850 rdev->fence_drv[ring].gpu_addr = rdev->uvd.gpu_addr + index;
851 }
852
853 } else {
854 r = radeon_scratch_get(rdev, &rdev->fence_drv[ring].scratch_reg);
855 if (r) {
856 dev_err(rdev->dev, "fence failed to get scratch register\n");
857 return r;
858 }
859 index = RADEON_WB_SCRATCH_OFFSET +
860 rdev->fence_drv[ring].scratch_reg -
861 rdev->scratch.reg_base;
862 rdev->fence_drv[ring].cpu_addr = &rdev->wb.wb[index/4];
863 rdev->fence_drv[ring].gpu_addr = rdev->wb.gpu_addr + index;
864 }
865 radeon_fence_write(rdev, atomic64_read(&rdev->fence_drv[ring].last_seq), ring);
866 rdev->fence_drv[ring].initialized = true;
867 dev_info(rdev->dev, "fence driver on ring %d use gpu addr 0x%016llx\n",
868 ring, rdev->fence_drv[ring].gpu_addr);
869 return 0;
870 }
871
872 /**
873 * radeon_fence_driver_init_ring - init the fence driver
874 * for the requested ring.
875 *
876 * @rdev: radeon device pointer
877 * @ring: ring index to start the fence driver on
878 *
879 * Init the fence driver for the requested ring (all asics).
880 * Helper function for radeon_fence_driver_init().
881 */
radeon_fence_driver_init_ring(struct radeon_device * rdev,int ring)882 static void radeon_fence_driver_init_ring(struct radeon_device *rdev, int ring)
883 {
884 int i;
885
886 rdev->fence_drv[ring].scratch_reg = -1;
887 rdev->fence_drv[ring].cpu_addr = NULL;
888 rdev->fence_drv[ring].gpu_addr = 0;
889 for (i = 0; i < RADEON_NUM_RINGS; ++i)
890 rdev->fence_drv[ring].sync_seq[i] = 0;
891 atomic64_set(&rdev->fence_drv[ring].last_seq, 0);
892 rdev->fence_drv[ring].initialized = false;
893 INIT_DELAYED_WORK(&rdev->fence_drv[ring].lockup_work,
894 radeon_fence_check_lockup);
895 rdev->fence_drv[ring].rdev = rdev;
896 }
897
898 /**
899 * radeon_fence_driver_init - init the fence driver
900 * for all possible rings.
901 *
902 * @rdev: radeon device pointer
903 *
904 * Init the fence driver for all possible rings (all asics).
905 * Not all asics have all rings, so each asic will only
906 * start the fence driver on the rings it has using
907 * radeon_fence_driver_start_ring().
908 */
radeon_fence_driver_init(struct radeon_device * rdev)909 void radeon_fence_driver_init(struct radeon_device *rdev)
910 {
911 int ring;
912
913 init_waitqueue_head(&rdev->fence_queue);
914 for (ring = 0; ring < RADEON_NUM_RINGS; ring++) {
915 radeon_fence_driver_init_ring(rdev, ring);
916 }
917
918 radeon_debugfs_fence_init(rdev);
919 }
920
921 /**
922 * radeon_fence_driver_fini - tear down the fence driver
923 * for all possible rings.
924 *
925 * @rdev: radeon device pointer
926 *
927 * Tear down the fence driver for all possible rings (all asics).
928 */
radeon_fence_driver_fini(struct radeon_device * rdev)929 void radeon_fence_driver_fini(struct radeon_device *rdev)
930 {
931 int ring, r;
932
933 mutex_lock(&rdev->ring_lock);
934 for (ring = 0; ring < RADEON_NUM_RINGS; ring++) {
935 if (!rdev->fence_drv[ring].initialized)
936 continue;
937 r = radeon_fence_wait_empty(rdev, ring);
938 if (r) {
939 /* no need to trigger GPU reset as we are unloading */
940 radeon_fence_driver_force_completion(rdev, ring);
941 }
942 cancel_delayed_work_sync(&rdev->fence_drv[ring].lockup_work);
943 wake_up_all(&rdev->fence_queue);
944 radeon_scratch_free(rdev, rdev->fence_drv[ring].scratch_reg);
945 rdev->fence_drv[ring].initialized = false;
946 }
947 mutex_unlock(&rdev->ring_lock);
948 }
949
950 /**
951 * radeon_fence_driver_force_completion - force all fence waiter to complete
952 *
953 * @rdev: radeon device pointer
954 * @ring: the ring to complete
955 *
956 * In case of GPU reset failure make sure no process keep waiting on fence
957 * that will never complete.
958 */
radeon_fence_driver_force_completion(struct radeon_device * rdev,int ring)959 void radeon_fence_driver_force_completion(struct radeon_device *rdev, int ring)
960 {
961 if (rdev->fence_drv[ring].initialized) {
962 radeon_fence_write(rdev, rdev->fence_drv[ring].sync_seq[ring], ring);
963 cancel_delayed_work_sync(&rdev->fence_drv[ring].lockup_work);
964 }
965 }
966
967
968 /*
969 * Fence debugfs
970 */
971 #if defined(CONFIG_DEBUG_FS)
radeon_debugfs_fence_info_show(struct seq_file * m,void * data)972 static int radeon_debugfs_fence_info_show(struct seq_file *m, void *data)
973 {
974 struct radeon_device *rdev = (struct radeon_device *)m->private;
975 int i, j;
976
977 for (i = 0; i < RADEON_NUM_RINGS; ++i) {
978 if (!rdev->fence_drv[i].initialized)
979 continue;
980
981 radeon_fence_process(rdev, i);
982
983 seq_printf(m, "--- ring %d ---\n", i);
984 seq_printf(m, "Last signaled fence 0x%016llx\n",
985 (unsigned long long)atomic64_read(&rdev->fence_drv[i].last_seq));
986 seq_printf(m, "Last emitted 0x%016llx\n",
987 rdev->fence_drv[i].sync_seq[i]);
988
989 for (j = 0; j < RADEON_NUM_RINGS; ++j) {
990 if (i != j && rdev->fence_drv[j].initialized)
991 seq_printf(m, "Last sync to ring %d 0x%016llx\n",
992 j, rdev->fence_drv[i].sync_seq[j]);
993 }
994 }
995 return 0;
996 }
997
998 /*
999 * radeon_debugfs_gpu_reset - manually trigger a gpu reset
1000 *
1001 * Manually trigger a gpu reset at the next fence wait.
1002 */
radeon_debugfs_gpu_reset(void * data,u64 * val)1003 static int radeon_debugfs_gpu_reset(void *data, u64 *val)
1004 {
1005 struct radeon_device *rdev = (struct radeon_device *)data;
1006
1007 down_read(&rdev->exclusive_lock);
1008 *val = rdev->needs_reset;
1009 rdev->needs_reset = true;
1010 wake_up_all(&rdev->fence_queue);
1011 up_read(&rdev->exclusive_lock);
1012
1013 return 0;
1014 }
1015 DEFINE_SHOW_ATTRIBUTE(radeon_debugfs_fence_info);
1016 DEFINE_DEBUGFS_ATTRIBUTE(radeon_debugfs_gpu_reset_fops,
1017 radeon_debugfs_gpu_reset, NULL, "%lld\n");
1018 #endif
1019
radeon_debugfs_fence_init(struct radeon_device * rdev)1020 void radeon_debugfs_fence_init(struct radeon_device *rdev)
1021 {
1022 #if defined(CONFIG_DEBUG_FS)
1023 struct dentry *root = rdev->ddev->primary->debugfs_root;
1024
1025 debugfs_create_file("radeon_gpu_reset", 0444, root, rdev,
1026 &radeon_debugfs_gpu_reset_fops);
1027 debugfs_create_file("radeon_fence_info", 0444, root, rdev,
1028 &radeon_debugfs_fence_info_fops);
1029
1030
1031 #endif
1032 }
1033
radeon_fence_get_driver_name(struct dma_fence * fence)1034 static const char *radeon_fence_get_driver_name(struct dma_fence *fence)
1035 {
1036 return "radeon";
1037 }
1038
radeon_fence_get_timeline_name(struct dma_fence * f)1039 static const char *radeon_fence_get_timeline_name(struct dma_fence *f)
1040 {
1041 struct radeon_fence *fence = to_radeon_fence(f);
1042 switch (fence->ring) {
1043 case RADEON_RING_TYPE_GFX_INDEX: return "radeon.gfx";
1044 case CAYMAN_RING_TYPE_CP1_INDEX: return "radeon.cp1";
1045 case CAYMAN_RING_TYPE_CP2_INDEX: return "radeon.cp2";
1046 case R600_RING_TYPE_DMA_INDEX: return "radeon.dma";
1047 case CAYMAN_RING_TYPE_DMA1_INDEX: return "radeon.dma1";
1048 case R600_RING_TYPE_UVD_INDEX: return "radeon.uvd";
1049 case TN_RING_TYPE_VCE1_INDEX: return "radeon.vce1";
1050 case TN_RING_TYPE_VCE2_INDEX: return "radeon.vce2";
1051 default: WARN_ON_ONCE(1); return "radeon.unk";
1052 }
1053 }
1054
radeon_test_signaled(struct radeon_fence * fence)1055 static inline bool radeon_test_signaled(struct radeon_fence *fence)
1056 {
1057 return test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->base.flags);
1058 }
1059
1060 struct radeon_wait_cb {
1061 struct dma_fence_cb base;
1062 struct task_struct *task;
1063 };
1064
1065 static void
radeon_fence_wait_cb(struct dma_fence * fence,struct dma_fence_cb * cb)1066 radeon_fence_wait_cb(struct dma_fence *fence, struct dma_fence_cb *cb)
1067 {
1068 struct radeon_wait_cb *wait =
1069 container_of(cb, struct radeon_wait_cb, base);
1070
1071 wake_up_process(wait->task);
1072 }
1073
radeon_fence_default_wait(struct dma_fence * f,bool intr,signed long t)1074 static signed long radeon_fence_default_wait(struct dma_fence *f, bool intr,
1075 signed long t)
1076 {
1077 struct radeon_fence *fence = to_radeon_fence(f);
1078 struct radeon_device *rdev = fence->rdev;
1079 struct radeon_wait_cb cb;
1080
1081 cb.task = current;
1082
1083 if (dma_fence_add_callback(f, &cb.base, radeon_fence_wait_cb))
1084 return t;
1085
1086 while (t > 0) {
1087 if (intr)
1088 set_current_state(TASK_INTERRUPTIBLE);
1089 else
1090 set_current_state(TASK_UNINTERRUPTIBLE);
1091
1092 /*
1093 * radeon_test_signaled must be called after
1094 * set_current_state to prevent a race with wake_up_process
1095 */
1096 if (radeon_test_signaled(fence))
1097 break;
1098
1099 if (rdev->needs_reset) {
1100 t = -EDEADLK;
1101 break;
1102 }
1103
1104 t = schedule_timeout(t);
1105
1106 if (t > 0 && intr && signal_pending(current))
1107 t = -ERESTARTSYS;
1108 }
1109
1110 __set_current_state(TASK_RUNNING);
1111 dma_fence_remove_callback(f, &cb.base);
1112
1113 return t;
1114 }
1115
1116 const struct dma_fence_ops radeon_fence_ops = {
1117 .get_driver_name = radeon_fence_get_driver_name,
1118 .get_timeline_name = radeon_fence_get_timeline_name,
1119 .enable_signaling = radeon_fence_enable_signaling,
1120 .signaled = radeon_fence_is_signaled,
1121 .wait = radeon_fence_default_wait,
1122 .release = NULL,
1123 };
1124