1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * mm/mmap.c
4 *
5 * Written by obz.
6 *
7 * Address space accounting code <alan@lxorguk.ukuu.org.uk>
8 */
9
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11
12 #include <linux/kernel.h>
13 #include <linux/slab.h>
14 #include <linux/backing-dev.h>
15 #include <linux/mm.h>
16 #include <linux/mm_inline.h>
17 #include <linux/vmacache.h>
18 #include <linux/shm.h>
19 #include <linux/mman.h>
20 #include <linux/pagemap.h>
21 #include <linux/swap.h>
22 #include <linux/syscalls.h>
23 #include <linux/capability.h>
24 #include <linux/init.h>
25 #include <linux/file.h>
26 #include <linux/fs.h>
27 #include <linux/pgsize_migration.h>
28 #include <linux/personality.h>
29 #include <linux/security.h>
30 #include <linux/hugetlb.h>
31 #include <linux/shmem_fs.h>
32 #include <linux/profile.h>
33 #include <linux/export.h>
34 #include <linux/mount.h>
35 #include <linux/mempolicy.h>
36 #include <linux/rmap.h>
37 #include <linux/mmu_notifier.h>
38 #include <linux/mmdebug.h>
39 #include <linux/perf_event.h>
40 #include <linux/audit.h>
41 #include <linux/khugepaged.h>
42 #include <linux/uprobes.h>
43 #include <linux/rbtree_augmented.h>
44 #include <linux/notifier.h>
45 #include <linux/memory.h>
46 #include <linux/printk.h>
47 #include <linux/userfaultfd_k.h>
48 #include <linux/moduleparam.h>
49 #include <linux/pkeys.h>
50 #include <linux/oom.h>
51 #include <linux/sched/mm.h>
52
53 #include <linux/uaccess.h>
54 #include <asm/cacheflush.h>
55 #include <asm/tlb.h>
56 #include <asm/mmu_context.h>
57
58 #define CREATE_TRACE_POINTS
59 #include <trace/events/mmap.h>
60 #undef CREATE_TRACE_POINTS
61 #include <trace/hooks/mm.h>
62
63 #include "internal.h"
64
65 #ifndef arch_mmap_check
66 #define arch_mmap_check(addr, len, flags) (0)
67 #endif
68
69 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
70 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
71 const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX;
72 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
73 #endif
74 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
75 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
76 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
77 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
78 #endif
79
80 static bool ignore_rlimit_data;
81 core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644);
82
83 static void unmap_region(struct mm_struct *mm,
84 struct vm_area_struct *vma, struct vm_area_struct *prev,
85 unsigned long start, unsigned long end);
86
87 /* description of effects of mapping type and prot in current implementation.
88 * this is due to the limited x86 page protection hardware. The expected
89 * behavior is in parens:
90 *
91 * map_type prot
92 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC
93 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes
94 * w: (no) no w: (no) no w: (yes) yes w: (no) no
95 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
96 *
97 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes
98 * w: (no) no w: (no) no w: (copy) copy w: (no) no
99 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
100 *
101 * On arm64, PROT_EXEC has the following behaviour for both MAP_SHARED and
102 * MAP_PRIVATE (with Enhanced PAN supported):
103 * r: (no) no
104 * w: (no) no
105 * x: (yes) yes
106 */
107 pgprot_t protection_map[16] __ro_after_init = {
108 __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
109 __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
110 };
111
112 #ifndef CONFIG_ARCH_HAS_FILTER_PGPROT
arch_filter_pgprot(pgprot_t prot)113 static inline pgprot_t arch_filter_pgprot(pgprot_t prot)
114 {
115 return prot;
116 }
117 #endif
118
vm_get_page_prot(unsigned long vm_flags)119 pgprot_t vm_get_page_prot(unsigned long vm_flags)
120 {
121 pgprot_t ret = __pgprot(pgprot_val(protection_map[vm_flags &
122 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
123 pgprot_val(arch_vm_get_page_prot(vm_flags)));
124
125 return arch_filter_pgprot(ret);
126 }
127 EXPORT_SYMBOL(vm_get_page_prot);
128
vm_pgprot_modify(pgprot_t oldprot,unsigned long vm_flags)129 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
130 {
131 return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
132 }
133
134 /* Update vma->vm_page_prot to reflect vma->vm_flags. */
vma_set_page_prot(struct vm_area_struct * vma)135 void vma_set_page_prot(struct vm_area_struct *vma)
136 {
137 unsigned long vm_flags = vma->vm_flags;
138 pgprot_t vm_page_prot;
139
140 vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
141 if (vma_wants_writenotify(vma, vm_page_prot)) {
142 vm_flags &= ~VM_SHARED;
143 vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags);
144 }
145 /* remove_protection_ptes reads vma->vm_page_prot without mmap_lock */
146 WRITE_ONCE(vma->vm_page_prot, vm_page_prot);
147 }
148
149 /*
150 * Requires inode->i_mapping->i_mmap_rwsem
151 */
__remove_shared_vm_struct(struct vm_area_struct * vma,struct file * file,struct address_space * mapping)152 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
153 struct file *file, struct address_space *mapping)
154 {
155 if (vma->vm_flags & VM_SHARED)
156 mapping_unmap_writable(mapping);
157
158 flush_dcache_mmap_lock(mapping);
159 vma_interval_tree_remove(vma, &mapping->i_mmap);
160 flush_dcache_mmap_unlock(mapping);
161 }
162
163 /*
164 * Unlink a file-based vm structure from its interval tree, to hide
165 * vma from rmap and vmtruncate before freeing its page tables.
166 */
unlink_file_vma(struct vm_area_struct * vma)167 void unlink_file_vma(struct vm_area_struct *vma)
168 {
169 struct file *file = vma->vm_file;
170
171 if (file) {
172 struct address_space *mapping = file->f_mapping;
173 i_mmap_lock_write(mapping);
174 __remove_shared_vm_struct(vma, file, mapping);
175 i_mmap_unlock_write(mapping);
176 }
177 }
178
179 /*
180 * Close a vm structure and free it, returning the next.
181 */
remove_vma(struct vm_area_struct * vma)182 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
183 {
184 struct vm_area_struct *next = vma->vm_next;
185
186 might_sleep();
187 if (vma->vm_ops && vma->vm_ops->close)
188 vma->vm_ops->close(vma);
189 mpol_put(vma_policy(vma));
190 /* fput(vma->vm_file) happens in vm_area_free after an RCU delay. */
191 vm_area_free(vma);
192 return next;
193 }
194
195 static int do_brk_flags(unsigned long addr, unsigned long request, unsigned long flags,
196 struct list_head *uf);
SYSCALL_DEFINE1(brk,unsigned long,brk)197 SYSCALL_DEFINE1(brk, unsigned long, brk)
198 {
199 unsigned long newbrk, oldbrk, origbrk;
200 struct mm_struct *mm = current->mm;
201 struct vm_area_struct *next;
202 unsigned long min_brk;
203 bool populate;
204 bool downgraded = false;
205 LIST_HEAD(uf);
206
207 if (mmap_write_lock_killable(mm))
208 return -EINTR;
209
210 origbrk = mm->brk;
211
212 #ifdef CONFIG_COMPAT_BRK
213 /*
214 * CONFIG_COMPAT_BRK can still be overridden by setting
215 * randomize_va_space to 2, which will still cause mm->start_brk
216 * to be arbitrarily shifted
217 */
218 if (current->brk_randomized)
219 min_brk = mm->start_brk;
220 else
221 min_brk = mm->end_data;
222 #else
223 min_brk = mm->start_brk;
224 #endif
225 if (brk < min_brk)
226 goto out;
227
228 /*
229 * Check against rlimit here. If this check is done later after the test
230 * of oldbrk with newbrk then it can escape the test and let the data
231 * segment grow beyond its set limit the in case where the limit is
232 * not page aligned -Ram Gupta
233 */
234 if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
235 mm->end_data, mm->start_data))
236 goto out;
237
238 newbrk = PAGE_ALIGN(brk);
239 oldbrk = PAGE_ALIGN(mm->brk);
240 if (oldbrk == newbrk) {
241 mm->brk = brk;
242 goto success;
243 }
244
245 /*
246 * Always allow shrinking brk.
247 * __do_munmap() may downgrade mmap_lock to read.
248 */
249 if (brk <= mm->brk) {
250 int ret;
251
252 /*
253 * mm->brk must to be protected by write mmap_lock so update it
254 * before downgrading mmap_lock. When __do_munmap() fails,
255 * mm->brk will be restored from origbrk.
256 */
257 mm->brk = brk;
258 ret = __do_munmap(mm, newbrk, oldbrk-newbrk, &uf, true);
259 if (ret < 0) {
260 mm->brk = origbrk;
261 goto out;
262 } else if (ret == 1) {
263 downgraded = true;
264 }
265 goto success;
266 }
267
268 /* Check against existing mmap mappings. */
269 next = find_vma(mm, oldbrk);
270 if (next && newbrk + PAGE_SIZE > vm_start_gap(next))
271 goto out;
272
273 /* Ok, looks good - let it rip. */
274 if (do_brk_flags(oldbrk, newbrk-oldbrk, 0, &uf) < 0)
275 goto out;
276 mm->brk = brk;
277
278 success:
279 populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
280 if (downgraded)
281 mmap_read_unlock(mm);
282 else
283 mmap_write_unlock(mm);
284 userfaultfd_unmap_complete(mm, &uf);
285 if (populate)
286 mm_populate(oldbrk, newbrk - oldbrk);
287 return brk;
288
289 out:
290 mmap_write_unlock(mm);
291 return origbrk;
292 }
293
vma_compute_gap(struct vm_area_struct * vma)294 static inline unsigned long vma_compute_gap(struct vm_area_struct *vma)
295 {
296 unsigned long gap, prev_end;
297
298 /*
299 * Note: in the rare case of a VM_GROWSDOWN above a VM_GROWSUP, we
300 * allow two stack_guard_gaps between them here, and when choosing
301 * an unmapped area; whereas when expanding we only require one.
302 * That's a little inconsistent, but keeps the code here simpler.
303 */
304 gap = vm_start_gap(vma);
305 if (vma->vm_prev) {
306 prev_end = vm_end_gap(vma->vm_prev);
307 if (gap > prev_end)
308 gap -= prev_end;
309 else
310 gap = 0;
311 }
312 return gap;
313 }
314
315 #ifdef CONFIG_DEBUG_VM_RB
vma_compute_subtree_gap(struct vm_area_struct * vma)316 static unsigned long vma_compute_subtree_gap(struct vm_area_struct *vma)
317 {
318 unsigned long max = vma_compute_gap(vma), subtree_gap;
319 if (vma->vm_rb.rb_left) {
320 subtree_gap = rb_entry(vma->vm_rb.rb_left,
321 struct vm_area_struct, vm_rb)->rb_subtree_gap;
322 if (subtree_gap > max)
323 max = subtree_gap;
324 }
325 if (vma->vm_rb.rb_right) {
326 subtree_gap = rb_entry(vma->vm_rb.rb_right,
327 struct vm_area_struct, vm_rb)->rb_subtree_gap;
328 if (subtree_gap > max)
329 max = subtree_gap;
330 }
331 return max;
332 }
333
browse_rb(struct mm_struct * mm)334 static int browse_rb(struct mm_struct *mm)
335 {
336 struct rb_root *root = &mm->mm_rb;
337 int i = 0, j, bug = 0;
338 struct rb_node *nd, *pn = NULL;
339 unsigned long prev = 0, pend = 0;
340
341 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
342 struct vm_area_struct *vma;
343 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
344 if (vma->vm_start < prev) {
345 pr_emerg("vm_start %lx < prev %lx\n",
346 vma->vm_start, prev);
347 bug = 1;
348 }
349 if (vma->vm_start < pend) {
350 pr_emerg("vm_start %lx < pend %lx\n",
351 vma->vm_start, pend);
352 bug = 1;
353 }
354 if (vma->vm_start > vma->vm_end) {
355 pr_emerg("vm_start %lx > vm_end %lx\n",
356 vma->vm_start, vma->vm_end);
357 bug = 1;
358 }
359 spin_lock(&mm->page_table_lock);
360 if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
361 pr_emerg("free gap %lx, correct %lx\n",
362 vma->rb_subtree_gap,
363 vma_compute_subtree_gap(vma));
364 bug = 1;
365 }
366 spin_unlock(&mm->page_table_lock);
367 i++;
368 pn = nd;
369 prev = vma->vm_start;
370 pend = vma->vm_end;
371 }
372 j = 0;
373 for (nd = pn; nd; nd = rb_prev(nd))
374 j++;
375 if (i != j) {
376 pr_emerg("backwards %d, forwards %d\n", j, i);
377 bug = 1;
378 }
379 return bug ? -1 : i;
380 }
381
validate_mm_rb(struct rb_root * root,struct vm_area_struct * ignore)382 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
383 {
384 struct rb_node *nd;
385
386 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
387 struct vm_area_struct *vma;
388 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
389 VM_BUG_ON_VMA(vma != ignore &&
390 vma->rb_subtree_gap != vma_compute_subtree_gap(vma),
391 vma);
392 }
393 }
394
validate_mm(struct mm_struct * mm)395 static void validate_mm(struct mm_struct *mm)
396 {
397 int bug = 0;
398 int i = 0;
399 unsigned long highest_address = 0;
400 struct vm_area_struct *vma = mm->mmap;
401
402 while (vma) {
403 struct anon_vma *anon_vma = vma->anon_vma;
404 struct anon_vma_chain *avc;
405
406 if (anon_vma) {
407 anon_vma_lock_read(anon_vma);
408 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
409 anon_vma_interval_tree_verify(avc);
410 anon_vma_unlock_read(anon_vma);
411 }
412
413 highest_address = vm_end_gap(vma);
414 vma = vma->vm_next;
415 i++;
416 }
417 if (i != mm->map_count) {
418 pr_emerg("map_count %d vm_next %d\n", mm->map_count, i);
419 bug = 1;
420 }
421 if (highest_address != mm->highest_vm_end) {
422 pr_emerg("mm->highest_vm_end %lx, found %lx\n",
423 mm->highest_vm_end, highest_address);
424 bug = 1;
425 }
426 i = browse_rb(mm);
427 if (i != mm->map_count) {
428 if (i != -1)
429 pr_emerg("map_count %d rb %d\n", mm->map_count, i);
430 bug = 1;
431 }
432 VM_BUG_ON_MM(bug, mm);
433 }
434 #else
435 #define validate_mm_rb(root, ignore) do { } while (0)
436 #define validate_mm(mm) do { } while (0)
437 #endif
438
RB_DECLARE_CALLBACKS_MAX(static,vma_gap_callbacks,struct vm_area_struct,vm_rb,unsigned long,rb_subtree_gap,vma_compute_gap)439 RB_DECLARE_CALLBACKS_MAX(static, vma_gap_callbacks,
440 struct vm_area_struct, vm_rb,
441 unsigned long, rb_subtree_gap, vma_compute_gap)
442
443 /*
444 * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
445 * vma->vm_prev->vm_end values changed, without modifying the vma's position
446 * in the rbtree.
447 */
448 static void vma_gap_update(struct vm_area_struct *vma)
449 {
450 /*
451 * As it turns out, RB_DECLARE_CALLBACKS_MAX() already created
452 * a callback function that does exactly what we want.
453 */
454 vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
455 }
456
vma_rb_insert(struct vm_area_struct * vma,struct rb_root * root)457 static inline void vma_rb_insert(struct vm_area_struct *vma,
458 struct rb_root *root)
459 {
460 /* All rb_subtree_gap values must be consistent prior to insertion */
461 validate_mm_rb(root, NULL);
462
463 rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
464 }
465
__vma_rb_erase(struct vm_area_struct * vma,struct rb_root * root)466 static void __vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
467 {
468 /*
469 * Note rb_erase_augmented is a fairly large inline function,
470 * so make sure we instantiate it only once with our desired
471 * augmented rbtree callbacks.
472 */
473 rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
474 }
475
vma_rb_erase_ignore(struct vm_area_struct * vma,struct rb_root * root,struct vm_area_struct * ignore)476 static __always_inline void vma_rb_erase_ignore(struct vm_area_struct *vma,
477 struct rb_root *root,
478 struct vm_area_struct *ignore)
479 {
480 /*
481 * All rb_subtree_gap values must be consistent prior to erase,
482 * with the possible exception of
483 *
484 * a. the "next" vma being erased if next->vm_start was reduced in
485 * __vma_adjust() -> __vma_unlink()
486 * b. the vma being erased in detach_vmas_to_be_unmapped() ->
487 * vma_rb_erase()
488 */
489 validate_mm_rb(root, ignore);
490
491 __vma_rb_erase(vma, root);
492 }
493
vma_rb_erase(struct vm_area_struct * vma,struct rb_root * root)494 static __always_inline void vma_rb_erase(struct vm_area_struct *vma,
495 struct rb_root *root)
496 {
497 vma_rb_erase_ignore(vma, root, vma);
498 }
499
500 /*
501 * vma has some anon_vma assigned, and is already inserted on that
502 * anon_vma's interval trees.
503 *
504 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
505 * vma must be removed from the anon_vma's interval trees using
506 * anon_vma_interval_tree_pre_update_vma().
507 *
508 * After the update, the vma will be reinserted using
509 * anon_vma_interval_tree_post_update_vma().
510 *
511 * The entire update must be protected by exclusive mmap_lock and by
512 * the root anon_vma's mutex.
513 */
514 static inline void
anon_vma_interval_tree_pre_update_vma(struct vm_area_struct * vma)515 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
516 {
517 struct anon_vma_chain *avc;
518
519 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
520 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
521 }
522
523 static inline void
anon_vma_interval_tree_post_update_vma(struct vm_area_struct * vma)524 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
525 {
526 struct anon_vma_chain *avc;
527
528 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
529 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
530 }
531
find_vma_links(struct mm_struct * mm,unsigned long addr,unsigned long end,struct vm_area_struct ** pprev,struct rb_node *** rb_link,struct rb_node ** rb_parent)532 static int find_vma_links(struct mm_struct *mm, unsigned long addr,
533 unsigned long end, struct vm_area_struct **pprev,
534 struct rb_node ***rb_link, struct rb_node **rb_parent)
535 {
536 struct rb_node **__rb_link, *__rb_parent, *rb_prev;
537
538 mmap_assert_locked(mm);
539 __rb_link = &mm->mm_rb.rb_node;
540 rb_prev = __rb_parent = NULL;
541
542 while (*__rb_link) {
543 struct vm_area_struct *vma_tmp;
544
545 __rb_parent = *__rb_link;
546 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
547
548 if (vma_tmp->vm_end > addr) {
549 /* Fail if an existing vma overlaps the area */
550 if (vma_tmp->vm_start < end)
551 return -ENOMEM;
552 __rb_link = &__rb_parent->rb_left;
553 } else {
554 rb_prev = __rb_parent;
555 __rb_link = &__rb_parent->rb_right;
556 }
557 }
558
559 *pprev = NULL;
560 if (rb_prev)
561 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
562 *rb_link = __rb_link;
563 *rb_parent = __rb_parent;
564 return 0;
565 }
566
567 /*
568 * vma_next() - Get the next VMA.
569 * @mm: The mm_struct.
570 * @vma: The current vma.
571 *
572 * If @vma is NULL, return the first vma in the mm.
573 *
574 * Returns: The next VMA after @vma.
575 */
vma_next(struct mm_struct * mm,struct vm_area_struct * vma)576 static inline struct vm_area_struct *vma_next(struct mm_struct *mm,
577 struct vm_area_struct *vma)
578 {
579 if (!vma)
580 return mm->mmap;
581
582 return vma->vm_next;
583 }
584
585 /*
586 * munmap_vma_range() - munmap VMAs that overlap a range.
587 * @mm: The mm struct
588 * @start: The start of the range.
589 * @len: The length of the range.
590 * @pprev: pointer to the pointer that will be set to previous vm_area_struct
591 * @rb_link: the rb_node
592 * @rb_parent: the parent rb_node
593 *
594 * Find all the vm_area_struct that overlap from @start to
595 * @end and munmap them. Set @pprev to the previous vm_area_struct.
596 *
597 * Returns: -ENOMEM on munmap failure or 0 on success.
598 */
599 static inline int
munmap_vma_range(struct mm_struct * mm,unsigned long start,unsigned long len,struct vm_area_struct ** pprev,struct rb_node *** link,struct rb_node ** parent,struct list_head * uf)600 munmap_vma_range(struct mm_struct *mm, unsigned long start, unsigned long len,
601 struct vm_area_struct **pprev, struct rb_node ***link,
602 struct rb_node **parent, struct list_head *uf)
603 {
604
605 while (find_vma_links(mm, start, start + len, pprev, link, parent))
606 if (do_munmap(mm, start, len, uf))
607 return -ENOMEM;
608
609 return 0;
610 }
count_vma_pages_range(struct mm_struct * mm,unsigned long addr,unsigned long end)611 static unsigned long count_vma_pages_range(struct mm_struct *mm,
612 unsigned long addr, unsigned long end)
613 {
614 unsigned long nr_pages = 0;
615 struct vm_area_struct *vma;
616
617 /* Find first overlapping mapping */
618 vma = find_vma_intersection(mm, addr, end);
619 if (!vma)
620 return 0;
621
622 nr_pages = (min(end, vma->vm_end) -
623 max(addr, vma->vm_start)) >> PAGE_SHIFT;
624
625 /* Iterate over the rest of the overlaps */
626 for (vma = vma->vm_next; vma; vma = vma->vm_next) {
627 unsigned long overlap_len;
628
629 if (vma->vm_start > end)
630 break;
631
632 overlap_len = min(end, vma->vm_end) - vma->vm_start;
633 nr_pages += overlap_len >> PAGE_SHIFT;
634 }
635
636 return nr_pages;
637 }
638
__vma_link_rb(struct mm_struct * mm,struct vm_area_struct * vma,struct rb_node ** rb_link,struct rb_node * rb_parent)639 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
640 struct rb_node **rb_link, struct rb_node *rb_parent)
641 {
642 /* Update tracking information for the gap following the new vma. */
643 if (vma->vm_next)
644 vma_gap_update(vma->vm_next);
645 else
646 mm->highest_vm_end = vm_end_gap(vma);
647
648 /*
649 * vma->vm_prev wasn't known when we followed the rbtree to find the
650 * correct insertion point for that vma. As a result, we could not
651 * update the vma vm_rb parents rb_subtree_gap values on the way down.
652 * So, we first insert the vma with a zero rb_subtree_gap value
653 * (to be consistent with what we did on the way down), and then
654 * immediately update the gap to the correct value. Finally we
655 * rebalance the rbtree after all augmented values have been set.
656 */
657 rb_link_node(&vma->vm_rb, rb_parent, rb_link);
658 vma->rb_subtree_gap = 0;
659 vma_gap_update(vma);
660 vma_rb_insert(vma, &mm->mm_rb);
661 }
662
__vma_link_file(struct vm_area_struct * vma)663 static void __vma_link_file(struct vm_area_struct *vma)
664 {
665 struct file *file;
666
667 file = vma->vm_file;
668 if (file) {
669 struct address_space *mapping = file->f_mapping;
670
671 if (vma->vm_flags & VM_SHARED)
672 mapping_allow_writable(mapping);
673
674 flush_dcache_mmap_lock(mapping);
675 vma_interval_tree_insert(vma, &mapping->i_mmap);
676 flush_dcache_mmap_unlock(mapping);
677 }
678 }
679
680 static void
__vma_link(struct mm_struct * mm,struct vm_area_struct * vma,struct vm_area_struct * prev,struct rb_node ** rb_link,struct rb_node * rb_parent)681 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
682 struct vm_area_struct *prev, struct rb_node **rb_link,
683 struct rb_node *rb_parent)
684 {
685 __vma_link_list(mm, vma, prev);
686 __vma_link_rb(mm, vma, rb_link, rb_parent);
687 }
688
vma_link(struct mm_struct * mm,struct vm_area_struct * vma,struct vm_area_struct * prev,struct rb_node ** rb_link,struct rb_node * rb_parent)689 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
690 struct vm_area_struct *prev, struct rb_node **rb_link,
691 struct rb_node *rb_parent)
692 {
693 struct address_space *mapping = NULL;
694
695 if (vma->vm_file) {
696 mapping = vma->vm_file->f_mapping;
697 i_mmap_lock_write(mapping);
698 }
699
700 __vma_link(mm, vma, prev, rb_link, rb_parent);
701 __vma_link_file(vma);
702
703 if (mapping)
704 i_mmap_unlock_write(mapping);
705
706 mm->map_count++;
707 validate_mm(mm);
708 }
709
710 /*
711 * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
712 * mm's list and rbtree. It has already been inserted into the interval tree.
713 */
__insert_vm_struct(struct mm_struct * mm,struct vm_area_struct * vma)714 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
715 {
716 struct vm_area_struct *prev;
717 struct rb_node **rb_link, *rb_parent;
718
719 if (find_vma_links(mm, vma->vm_start, vma->vm_end,
720 &prev, &rb_link, &rb_parent))
721 BUG();
722 __vma_link(mm, vma, prev, rb_link, rb_parent);
723 mm->map_count++;
724 }
725
__vma_unlink(struct mm_struct * mm,struct vm_area_struct * vma,struct vm_area_struct * ignore)726 static __always_inline void __vma_unlink(struct mm_struct *mm,
727 struct vm_area_struct *vma,
728 struct vm_area_struct *ignore)
729 {
730 vma_rb_erase_ignore(vma, &mm->mm_rb, ignore);
731 __vma_unlink_list(mm, vma);
732 /* Kill the cache */
733 vmacache_invalidate(mm);
734 }
735
736 /*
737 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
738 * is already present in an i_mmap tree without adjusting the tree.
739 * The following helper function should be used when such adjustments
740 * are necessary. The "insert" vma (if any) is to be inserted
741 * before we drop the necessary locks.
742 */
__vma_adjust(struct vm_area_struct * vma,unsigned long start,unsigned long end,pgoff_t pgoff,struct vm_area_struct * insert,struct vm_area_struct * expand)743 int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
744 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
745 struct vm_area_struct *expand)
746 {
747 struct mm_struct *mm = vma->vm_mm;
748 struct vm_area_struct *next = vma->vm_next, *orig_vma = vma;
749 struct address_space *mapping = NULL;
750 struct rb_root_cached *root = NULL;
751 struct anon_vma *anon_vma = NULL;
752 struct file *file = vma->vm_file;
753 bool start_changed = false, end_changed = false;
754 long adjust_next = 0;
755 int remove_next = 0;
756
757 if (next && !insert) {
758 struct vm_area_struct *exporter = NULL, *importer = NULL;
759
760 if (end >= next->vm_end) {
761 /*
762 * vma expands, overlapping all the next, and
763 * perhaps the one after too (mprotect case 6).
764 * The only other cases that gets here are
765 * case 1, case 7 and case 8.
766 */
767 if (next == expand) {
768 /*
769 * The only case where we don't expand "vma"
770 * and we expand "next" instead is case 8.
771 */
772 VM_WARN_ON(end != next->vm_end);
773 /*
774 * remove_next == 3 means we're
775 * removing "vma" and that to do so we
776 * swapped "vma" and "next".
777 */
778 remove_next = 3;
779 VM_WARN_ON(file != next->vm_file);
780 swap(vma, next);
781 } else {
782 VM_WARN_ON(expand != vma);
783 /*
784 * case 1, 6, 7, remove_next == 2 is case 6,
785 * remove_next == 1 is case 1 or 7.
786 */
787 remove_next = 1 + (end > next->vm_end);
788 VM_WARN_ON(remove_next == 2 &&
789 end != next->vm_next->vm_end);
790 /* trim end to next, for case 6 first pass */
791 end = next->vm_end;
792 }
793
794 exporter = next;
795 importer = vma;
796
797 /*
798 * If next doesn't have anon_vma, import from vma after
799 * next, if the vma overlaps with it.
800 */
801 if (remove_next == 2 && !next->anon_vma)
802 exporter = next->vm_next;
803
804 } else if (end > next->vm_start) {
805 /*
806 * vma expands, overlapping part of the next:
807 * mprotect case 5 shifting the boundary up.
808 */
809 adjust_next = (end - next->vm_start);
810 exporter = next;
811 importer = vma;
812 VM_WARN_ON(expand != importer);
813 } else if (end < vma->vm_end) {
814 /*
815 * vma shrinks, and !insert tells it's not
816 * split_vma inserting another: so it must be
817 * mprotect case 4 shifting the boundary down.
818 */
819 adjust_next = -(vma->vm_end - end);
820 exporter = vma;
821 importer = next;
822 VM_WARN_ON(expand != importer);
823 }
824
825 /*
826 * Easily overlooked: when mprotect shifts the boundary,
827 * make sure the expanding vma has anon_vma set if the
828 * shrinking vma had, to cover any anon pages imported.
829 */
830 if (exporter && exporter->anon_vma && !importer->anon_vma) {
831 int error;
832
833 importer->anon_vma = exporter->anon_vma;
834 error = anon_vma_clone(importer, exporter);
835 if (error)
836 return error;
837 }
838 }
839 again:
840 vma_adjust_trans_huge(orig_vma, start, end, adjust_next);
841
842 if (file) {
843 mapping = file->f_mapping;
844 root = &mapping->i_mmap;
845 uprobe_munmap(vma, vma->vm_start, vma->vm_end);
846
847 if (adjust_next)
848 uprobe_munmap(next, next->vm_start, next->vm_end);
849
850 i_mmap_lock_write(mapping);
851 if (insert) {
852 /*
853 * Put into interval tree now, so instantiated pages
854 * are visible to arm/parisc __flush_dcache_page
855 * throughout; but we cannot insert into address
856 * space until vma start or end is updated.
857 */
858 __vma_link_file(insert);
859 }
860 }
861
862 anon_vma = vma->anon_vma;
863 if (!anon_vma && adjust_next)
864 anon_vma = next->anon_vma;
865 if (anon_vma) {
866 VM_WARN_ON(adjust_next && next->anon_vma &&
867 anon_vma != next->anon_vma);
868 anon_vma_lock_write(anon_vma);
869 anon_vma_interval_tree_pre_update_vma(vma);
870 if (adjust_next)
871 anon_vma_interval_tree_pre_update_vma(next);
872 }
873
874 if (file) {
875 flush_dcache_mmap_lock(mapping);
876 vma_interval_tree_remove(vma, root);
877 if (adjust_next)
878 vma_interval_tree_remove(next, root);
879 }
880
881 if (start != vma->vm_start) {
882 vma->vm_start = start;
883 start_changed = true;
884 }
885 if (end != vma->vm_end) {
886 vma->vm_end = end;
887 end_changed = true;
888 }
889 vma->vm_pgoff = pgoff;
890 if (adjust_next) {
891 next->vm_start += adjust_next;
892 next->vm_pgoff += adjust_next >> PAGE_SHIFT;
893 }
894
895 if (file) {
896 if (adjust_next)
897 vma_interval_tree_insert(next, root);
898 vma_interval_tree_insert(vma, root);
899 flush_dcache_mmap_unlock(mapping);
900 }
901
902 if (remove_next) {
903 /*
904 * vma_merge has merged next into vma, and needs
905 * us to remove next before dropping the locks.
906 */
907 if (remove_next != 3)
908 __vma_unlink(mm, next, next);
909 else
910 /*
911 * vma is not before next if they've been
912 * swapped.
913 *
914 * pre-swap() next->vm_start was reduced so
915 * tell validate_mm_rb to ignore pre-swap()
916 * "next" (which is stored in post-swap()
917 * "vma").
918 */
919 __vma_unlink(mm, next, vma);
920 if (file)
921 __remove_shared_vm_struct(next, file, mapping);
922 } else if (insert) {
923 /*
924 * split_vma has split insert from vma, and needs
925 * us to insert it before dropping the locks
926 * (it may either follow vma or precede it).
927 */
928 __insert_vm_struct(mm, insert);
929 } else {
930 if (start_changed)
931 vma_gap_update(vma);
932 if (end_changed) {
933 if (!next)
934 mm->highest_vm_end = vm_end_gap(vma);
935 else if (!adjust_next)
936 vma_gap_update(next);
937 }
938 }
939
940 if (anon_vma) {
941 anon_vma_interval_tree_post_update_vma(vma);
942 if (adjust_next)
943 anon_vma_interval_tree_post_update_vma(next);
944 anon_vma_unlock_write(anon_vma);
945 }
946
947 if (file) {
948 i_mmap_unlock_write(mapping);
949 uprobe_mmap(vma);
950
951 if (adjust_next)
952 uprobe_mmap(next);
953 }
954
955 if (remove_next) {
956 if (file) {
957 uprobe_munmap(next, next->vm_start, next->vm_end);
958 /* fput(file) happens whthin vm_area_free(next) */
959 VM_BUG_ON(file != next->vm_file);
960 }
961 if (next->anon_vma)
962 anon_vma_merge(vma, next);
963 mm->map_count--;
964 mpol_put(vma_policy(next));
965 vm_area_free(next);
966 /*
967 * In mprotect's case 6 (see comments on vma_merge),
968 * we must remove another next too. It would clutter
969 * up the code too much to do both in one go.
970 */
971 if (remove_next != 3) {
972 /*
973 * If "next" was removed and vma->vm_end was
974 * expanded (up) over it, in turn
975 * "next->vm_prev->vm_end" changed and the
976 * "vma->vm_next" gap must be updated.
977 */
978 next = vma->vm_next;
979 } else {
980 /*
981 * For the scope of the comment "next" and
982 * "vma" considered pre-swap(): if "vma" was
983 * removed, next->vm_start was expanded (down)
984 * over it and the "next" gap must be updated.
985 * Because of the swap() the post-swap() "vma"
986 * actually points to pre-swap() "next"
987 * (post-swap() "next" as opposed is now a
988 * dangling pointer).
989 */
990 next = vma;
991 }
992 if (remove_next == 2) {
993 remove_next = 1;
994 end = next->vm_end;
995 goto again;
996 }
997 else if (next)
998 vma_gap_update(next);
999 else {
1000 /*
1001 * If remove_next == 2 we obviously can't
1002 * reach this path.
1003 *
1004 * If remove_next == 3 we can't reach this
1005 * path because pre-swap() next is always not
1006 * NULL. pre-swap() "next" is not being
1007 * removed and its next->vm_end is not altered
1008 * (and furthermore "end" already matches
1009 * next->vm_end in remove_next == 3).
1010 *
1011 * We reach this only in the remove_next == 1
1012 * case if the "next" vma that was removed was
1013 * the highest vma of the mm. However in such
1014 * case next->vm_end == "end" and the extended
1015 * "vma" has vma->vm_end == next->vm_end so
1016 * mm->highest_vm_end doesn't need any update
1017 * in remove_next == 1 case.
1018 */
1019 VM_WARN_ON(mm->highest_vm_end != vm_end_gap(vma));
1020 }
1021 }
1022 if (insert && file)
1023 uprobe_mmap(insert);
1024
1025 validate_mm(mm);
1026
1027 return 0;
1028 }
1029
1030 /*
1031 * If the vma has a ->close operation then the driver probably needs to release
1032 * per-vma resources, so we don't attempt to merge those.
1033 */
is_mergeable_vma(struct vm_area_struct * vma,struct file * file,unsigned long vm_flags,struct vm_userfaultfd_ctx vm_userfaultfd_ctx,struct anon_vma_name * anon_name)1034 static inline int is_mergeable_vma(struct vm_area_struct *vma,
1035 struct file *file, unsigned long vm_flags,
1036 struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
1037 struct anon_vma_name *anon_name)
1038 {
1039 /*
1040 * VM_SOFTDIRTY should not prevent from VMA merging, if we
1041 * match the flags but dirty bit -- the caller should mark
1042 * merged VMA as dirty. If dirty bit won't be excluded from
1043 * comparison, we increase pressure on the memory system forcing
1044 * the kernel to generate new VMAs when old one could be
1045 * extended instead.
1046 */
1047 if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
1048 return 0;
1049 if (vma->vm_file != file)
1050 return 0;
1051 if (vma->vm_ops && vma->vm_ops->close)
1052 return 0;
1053 if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx))
1054 return 0;
1055 if (!anon_vma_name_eq(anon_vma_name(vma), anon_name))
1056 return 0;
1057 if (!is_mergable_pad_vma(vma, vm_flags))
1058 return 0;
1059 return 1;
1060 }
1061
is_mergeable_anon_vma(struct anon_vma * anon_vma1,struct anon_vma * anon_vma2,struct vm_area_struct * vma)1062 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
1063 struct anon_vma *anon_vma2,
1064 struct vm_area_struct *vma)
1065 {
1066 /*
1067 * The list_is_singular() test is to avoid merging VMA cloned from
1068 * parents. This can improve scalability caused by anon_vma lock.
1069 */
1070 if ((!anon_vma1 || !anon_vma2) && (!vma ||
1071 list_is_singular(&vma->anon_vma_chain)))
1072 return 1;
1073 return anon_vma1 == anon_vma2;
1074 }
1075
1076 /*
1077 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1078 * in front of (at a lower virtual address and file offset than) the vma.
1079 *
1080 * We cannot merge two vmas if they have differently assigned (non-NULL)
1081 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1082 *
1083 * We don't check here for the merged mmap wrapping around the end of pagecache
1084 * indices (16TB on ia32) because do_mmap() does not permit mmap's which
1085 * wrap, nor mmaps which cover the final page at index -1UL.
1086 */
1087 static int
can_vma_merge_before(struct vm_area_struct * vma,unsigned long vm_flags,struct anon_vma * anon_vma,struct file * file,pgoff_t vm_pgoff,struct vm_userfaultfd_ctx vm_userfaultfd_ctx,struct anon_vma_name * anon_name)1088 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
1089 struct anon_vma *anon_vma, struct file *file,
1090 pgoff_t vm_pgoff,
1091 struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
1092 struct anon_vma_name *anon_name)
1093 {
1094 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name) &&
1095 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1096 if (vma->vm_pgoff == vm_pgoff)
1097 return 1;
1098 }
1099 return 0;
1100 }
1101
1102 /*
1103 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1104 * beyond (at a higher virtual address and file offset than) the vma.
1105 *
1106 * We cannot merge two vmas if they have differently assigned (non-NULL)
1107 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1108 */
1109 static int
can_vma_merge_after(struct vm_area_struct * vma,unsigned long vm_flags,struct anon_vma * anon_vma,struct file * file,pgoff_t vm_pgoff,struct vm_userfaultfd_ctx vm_userfaultfd_ctx,struct anon_vma_name * anon_name)1110 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
1111 struct anon_vma *anon_vma, struct file *file,
1112 pgoff_t vm_pgoff,
1113 struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
1114 struct anon_vma_name *anon_name)
1115 {
1116 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name) &&
1117 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1118 pgoff_t vm_pglen;
1119 vm_pglen = vma_pages(vma);
1120 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
1121 return 1;
1122 }
1123 return 0;
1124 }
1125
1126 /*
1127 * Given a mapping request (addr,end,vm_flags,file,pgoff,anon_name),
1128 * figure out whether that can be merged with its predecessor or its
1129 * successor. Or both (it neatly fills a hole).
1130 *
1131 * In most cases - when called for mmap, brk or mremap - [addr,end) is
1132 * certain not to be mapped by the time vma_merge is called; but when
1133 * called for mprotect, it is certain to be already mapped (either at
1134 * an offset within prev, or at the start of next), and the flags of
1135 * this area are about to be changed to vm_flags - and the no-change
1136 * case has already been eliminated.
1137 *
1138 * The following mprotect cases have to be considered, where AAAA is
1139 * the area passed down from mprotect_fixup, never extending beyond one
1140 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
1141 *
1142 * AAAA AAAA AAAA
1143 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN
1144 * cannot merge might become might become
1145 * PPNNNNNNNNNN PPPPPPPPPPNN
1146 * mmap, brk or case 4 below case 5 below
1147 * mremap move:
1148 * AAAA AAAA
1149 * PPPP NNNN PPPPNNNNXXXX
1150 * might become might become
1151 * PPPPPPPPPPPP 1 or PPPPPPPPPPPP 6 or
1152 * PPPPPPPPNNNN 2 or PPPPPPPPXXXX 7 or
1153 * PPPPNNNNNNNN 3 PPPPXXXXXXXX 8
1154 *
1155 * It is important for case 8 that the vma NNNN overlapping the
1156 * region AAAA is never going to extended over XXXX. Instead XXXX must
1157 * be extended in region AAAA and NNNN must be removed. This way in
1158 * all cases where vma_merge succeeds, the moment vma_adjust drops the
1159 * rmap_locks, the properties of the merged vma will be already
1160 * correct for the whole merged range. Some of those properties like
1161 * vm_page_prot/vm_flags may be accessed by rmap_walks and they must
1162 * be correct for the whole merged range immediately after the
1163 * rmap_locks are released. Otherwise if XXXX would be removed and
1164 * NNNN would be extended over the XXXX range, remove_migration_ptes
1165 * or other rmap walkers (if working on addresses beyond the "end"
1166 * parameter) may establish ptes with the wrong permissions of NNNN
1167 * instead of the right permissions of XXXX.
1168 */
vma_merge(struct mm_struct * mm,struct vm_area_struct * prev,unsigned long addr,unsigned long end,unsigned long vm_flags,struct anon_vma * anon_vma,struct file * file,pgoff_t pgoff,struct mempolicy * policy,struct vm_userfaultfd_ctx vm_userfaultfd_ctx,struct anon_vma_name * anon_name)1169 struct vm_area_struct *vma_merge(struct mm_struct *mm,
1170 struct vm_area_struct *prev, unsigned long addr,
1171 unsigned long end, unsigned long vm_flags,
1172 struct anon_vma *anon_vma, struct file *file,
1173 pgoff_t pgoff, struct mempolicy *policy,
1174 struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
1175 struct anon_vma_name *anon_name)
1176 {
1177 pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
1178 struct vm_area_struct *area, *next;
1179 int err;
1180
1181 /*
1182 * We later require that vma->vm_flags == vm_flags,
1183 * so this tests vma->vm_flags & VM_SPECIAL, too.
1184 */
1185 if (vm_flags & VM_SPECIAL)
1186 return NULL;
1187
1188 next = vma_next(mm, prev);
1189 area = next;
1190 if (area && area->vm_end == end) /* cases 6, 7, 8 */
1191 next = next->vm_next;
1192
1193 /* verify some invariant that must be enforced by the caller */
1194 VM_WARN_ON(prev && addr <= prev->vm_start);
1195 VM_WARN_ON(area && end > area->vm_end);
1196 VM_WARN_ON(addr >= end);
1197
1198 /*
1199 * Can it merge with the predecessor?
1200 */
1201 if (prev && prev->vm_end == addr &&
1202 mpol_equal(vma_policy(prev), policy) &&
1203 can_vma_merge_after(prev, vm_flags,
1204 anon_vma, file, pgoff,
1205 vm_userfaultfd_ctx, anon_name)) {
1206 /*
1207 * OK, it can. Can we now merge in the successor as well?
1208 */
1209 if (next && end == next->vm_start &&
1210 mpol_equal(policy, vma_policy(next)) &&
1211 can_vma_merge_before(next, vm_flags,
1212 anon_vma, file,
1213 pgoff+pglen,
1214 vm_userfaultfd_ctx, anon_name) &&
1215 is_mergeable_anon_vma(prev->anon_vma,
1216 next->anon_vma, NULL)) {
1217 /* cases 1, 6 */
1218 err = __vma_adjust(prev, prev->vm_start,
1219 next->vm_end, prev->vm_pgoff, NULL,
1220 prev);
1221 } else /* cases 2, 5, 7 */
1222 err = __vma_adjust(prev, prev->vm_start,
1223 end, prev->vm_pgoff, NULL, prev);
1224 if (err)
1225 return NULL;
1226 khugepaged_enter_vma_merge(prev, vm_flags);
1227 return prev;
1228 }
1229
1230 /*
1231 * Can this new request be merged in front of next?
1232 */
1233 if (next && end == next->vm_start &&
1234 mpol_equal(policy, vma_policy(next)) &&
1235 can_vma_merge_before(next, vm_flags,
1236 anon_vma, file, pgoff+pglen,
1237 vm_userfaultfd_ctx, anon_name)) {
1238 if (prev && addr < prev->vm_end) /* case 4 */
1239 err = __vma_adjust(prev, prev->vm_start,
1240 addr, prev->vm_pgoff, NULL, next);
1241 else { /* cases 3, 8 */
1242 err = __vma_adjust(area, addr, next->vm_end,
1243 next->vm_pgoff - pglen, NULL, next);
1244 /*
1245 * In case 3 area is already equal to next and
1246 * this is a noop, but in case 8 "area" has
1247 * been removed and next was expanded over it.
1248 */
1249 area = next;
1250 }
1251 if (err)
1252 return NULL;
1253 khugepaged_enter_vma_merge(area, vm_flags);
1254 return area;
1255 }
1256
1257 return NULL;
1258 }
1259
1260 /*
1261 * Rough compatibility check to quickly see if it's even worth looking
1262 * at sharing an anon_vma.
1263 *
1264 * They need to have the same vm_file, and the flags can only differ
1265 * in things that mprotect may change.
1266 *
1267 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1268 * we can merge the two vma's. For example, we refuse to merge a vma if
1269 * there is a vm_ops->close() function, because that indicates that the
1270 * driver is doing some kind of reference counting. But that doesn't
1271 * really matter for the anon_vma sharing case.
1272 */
anon_vma_compatible(struct vm_area_struct * a,struct vm_area_struct * b)1273 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1274 {
1275 return a->vm_end == b->vm_start &&
1276 mpol_equal(vma_policy(a), vma_policy(b)) &&
1277 a->vm_file == b->vm_file &&
1278 !((a->vm_flags ^ b->vm_flags) & ~(VM_ACCESS_FLAGS | VM_SOFTDIRTY)) &&
1279 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1280 }
1281
1282 /*
1283 * Do some basic sanity checking to see if we can re-use the anon_vma
1284 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1285 * the same as 'old', the other will be the new one that is trying
1286 * to share the anon_vma.
1287 *
1288 * NOTE! This runs with mm_sem held for reading, so it is possible that
1289 * the anon_vma of 'old' is concurrently in the process of being set up
1290 * by another page fault trying to merge _that_. But that's ok: if it
1291 * is being set up, that automatically means that it will be a singleton
1292 * acceptable for merging, so we can do all of this optimistically. But
1293 * we do that READ_ONCE() to make sure that we never re-load the pointer.
1294 *
1295 * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1296 * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1297 * is to return an anon_vma that is "complex" due to having gone through
1298 * a fork).
1299 *
1300 * We also make sure that the two vma's are compatible (adjacent,
1301 * and with the same memory policies). That's all stable, even with just
1302 * a read lock on the mm_sem.
1303 */
reusable_anon_vma(struct vm_area_struct * old,struct vm_area_struct * a,struct vm_area_struct * b)1304 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1305 {
1306 if (anon_vma_compatible(a, b)) {
1307 struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1308
1309 if (anon_vma && list_is_singular(&old->anon_vma_chain))
1310 return anon_vma;
1311 }
1312 return NULL;
1313 }
1314
1315 /*
1316 * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1317 * neighbouring vmas for a suitable anon_vma, before it goes off
1318 * to allocate a new anon_vma. It checks because a repetitive
1319 * sequence of mprotects and faults may otherwise lead to distinct
1320 * anon_vmas being allocated, preventing vma merge in subsequent
1321 * mprotect.
1322 */
find_mergeable_anon_vma(struct vm_area_struct * vma)1323 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1324 {
1325 struct anon_vma *anon_vma = NULL;
1326
1327 /* Try next first. */
1328 if (vma->vm_next) {
1329 anon_vma = reusable_anon_vma(vma->vm_next, vma, vma->vm_next);
1330 if (anon_vma)
1331 return anon_vma;
1332 }
1333
1334 /* Try prev next. */
1335 if (vma->vm_prev)
1336 anon_vma = reusable_anon_vma(vma->vm_prev, vma->vm_prev, vma);
1337
1338 /*
1339 * We might reach here with anon_vma == NULL if we can't find
1340 * any reusable anon_vma.
1341 * There's no absolute need to look only at touching neighbours:
1342 * we could search further afield for "compatible" anon_vmas.
1343 * But it would probably just be a waste of time searching,
1344 * or lead to too many vmas hanging off the same anon_vma.
1345 * We're trying to allow mprotect remerging later on,
1346 * not trying to minimize memory used for anon_vmas.
1347 */
1348 return anon_vma;
1349 }
1350
1351 /*
1352 * If a hint addr is less than mmap_min_addr change hint to be as
1353 * low as possible but still greater than mmap_min_addr
1354 */
round_hint_to_min(unsigned long hint)1355 static inline unsigned long round_hint_to_min(unsigned long hint)
1356 {
1357 hint &= PAGE_MASK;
1358 if (((void *)hint != NULL) &&
1359 (hint < mmap_min_addr))
1360 return PAGE_ALIGN(mmap_min_addr);
1361 return hint;
1362 }
1363
mlock_future_check(struct mm_struct * mm,unsigned long flags,unsigned long len)1364 int mlock_future_check(struct mm_struct *mm, unsigned long flags,
1365 unsigned long len)
1366 {
1367 unsigned long locked, lock_limit;
1368
1369 /* mlock MCL_FUTURE? */
1370 if (flags & VM_LOCKED) {
1371 locked = len >> PAGE_SHIFT;
1372 locked += mm->locked_vm;
1373 lock_limit = rlimit(RLIMIT_MEMLOCK);
1374 lock_limit >>= PAGE_SHIFT;
1375 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1376 return -EAGAIN;
1377 }
1378 return 0;
1379 }
1380
file_mmap_size_max(struct file * file,struct inode * inode)1381 static inline u64 file_mmap_size_max(struct file *file, struct inode *inode)
1382 {
1383 if (S_ISREG(inode->i_mode))
1384 return MAX_LFS_FILESIZE;
1385
1386 if (S_ISBLK(inode->i_mode))
1387 return MAX_LFS_FILESIZE;
1388
1389 if (S_ISSOCK(inode->i_mode))
1390 return MAX_LFS_FILESIZE;
1391
1392 /* Special "we do even unsigned file positions" case */
1393 if (file->f_mode & FMODE_UNSIGNED_OFFSET)
1394 return 0;
1395
1396 /* Yes, random drivers might want more. But I'm tired of buggy drivers */
1397 return ULONG_MAX;
1398 }
1399
file_mmap_ok(struct file * file,struct inode * inode,unsigned long pgoff,unsigned long len)1400 static inline bool file_mmap_ok(struct file *file, struct inode *inode,
1401 unsigned long pgoff, unsigned long len)
1402 {
1403 u64 maxsize = file_mmap_size_max(file, inode);
1404
1405 if (maxsize && len > maxsize)
1406 return false;
1407 maxsize -= len;
1408 if (pgoff > maxsize >> PAGE_SHIFT)
1409 return false;
1410 return true;
1411 }
1412
1413 /*
1414 * The caller must write-lock current->mm->mmap_lock.
1415 */
do_mmap(struct file * file,unsigned long addr,unsigned long len,unsigned long prot,unsigned long flags,unsigned long pgoff,unsigned long * populate,struct list_head * uf)1416 unsigned long do_mmap(struct file *file, unsigned long addr,
1417 unsigned long len, unsigned long prot,
1418 unsigned long flags, unsigned long pgoff,
1419 unsigned long *populate, struct list_head *uf)
1420 {
1421 struct mm_struct *mm = current->mm;
1422 vm_flags_t vm_flags;
1423 int pkey = 0;
1424
1425 *populate = 0;
1426
1427 if (!len)
1428 return -EINVAL;
1429
1430 /*
1431 * Does the application expect PROT_READ to imply PROT_EXEC?
1432 *
1433 * (the exception is when the underlying filesystem is noexec
1434 * mounted, in which case we dont add PROT_EXEC.)
1435 */
1436 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1437 if (!(file && path_noexec(&file->f_path)))
1438 prot |= PROT_EXEC;
1439
1440 /* force arch specific MAP_FIXED handling in get_unmapped_area */
1441 if (flags & MAP_FIXED_NOREPLACE)
1442 flags |= MAP_FIXED;
1443
1444 if (!(flags & MAP_FIXED))
1445 addr = round_hint_to_min(addr);
1446
1447 /* Careful about overflows.. */
1448 len = PAGE_ALIGN(len);
1449 if (!len)
1450 return -ENOMEM;
1451
1452 /* offset overflow? */
1453 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1454 return -EOVERFLOW;
1455
1456 /* Too many mappings? */
1457 if (mm->map_count > sysctl_max_map_count)
1458 return -ENOMEM;
1459
1460 /* Obtain the address to map to. we verify (or select) it and ensure
1461 * that it represents a valid section of the address space.
1462 */
1463 addr = get_unmapped_area(file, addr, len, pgoff, flags);
1464 if (IS_ERR_VALUE(addr))
1465 return addr;
1466
1467 if (flags & MAP_FIXED_NOREPLACE) {
1468 if (find_vma_intersection(mm, addr, addr + len))
1469 return -EEXIST;
1470 }
1471
1472 if (prot == PROT_EXEC) {
1473 pkey = execute_only_pkey(mm);
1474 if (pkey < 0)
1475 pkey = 0;
1476 }
1477
1478 /* Do simple checking here so the lower-level routines won't have
1479 * to. we assume access permissions have been handled by the open
1480 * of the memory object, so we don't do any here.
1481 */
1482 vm_flags = calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) |
1483 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1484
1485 if (flags & MAP_LOCKED)
1486 if (!can_do_mlock())
1487 return -EPERM;
1488
1489 if (mlock_future_check(mm, vm_flags, len))
1490 return -EAGAIN;
1491
1492 if (file) {
1493 struct inode *inode = file_inode(file);
1494 unsigned long flags_mask;
1495
1496 if (!file_mmap_ok(file, inode, pgoff, len))
1497 return -EOVERFLOW;
1498
1499 flags_mask = LEGACY_MAP_MASK | file->f_op->mmap_supported_flags;
1500
1501 switch (flags & MAP_TYPE) {
1502 case MAP_SHARED:
1503 /*
1504 * Force use of MAP_SHARED_VALIDATE with non-legacy
1505 * flags. E.g. MAP_SYNC is dangerous to use with
1506 * MAP_SHARED as you don't know which consistency model
1507 * you will get. We silently ignore unsupported flags
1508 * with MAP_SHARED to preserve backward compatibility.
1509 */
1510 flags &= LEGACY_MAP_MASK;
1511 fallthrough;
1512 case MAP_SHARED_VALIDATE:
1513 if (flags & ~flags_mask)
1514 return -EOPNOTSUPP;
1515 if (prot & PROT_WRITE) {
1516 if (!(file->f_mode & FMODE_WRITE))
1517 return -EACCES;
1518 if (IS_SWAPFILE(file->f_mapping->host))
1519 return -ETXTBSY;
1520 }
1521
1522 /*
1523 * Make sure we don't allow writing to an append-only
1524 * file..
1525 */
1526 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1527 return -EACCES;
1528
1529 vm_flags |= VM_SHARED | VM_MAYSHARE;
1530 if (!(file->f_mode & FMODE_WRITE))
1531 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1532 fallthrough;
1533 case MAP_PRIVATE:
1534 if (!(file->f_mode & FMODE_READ))
1535 return -EACCES;
1536 if (path_noexec(&file->f_path)) {
1537 if (vm_flags & VM_EXEC)
1538 return -EPERM;
1539 vm_flags &= ~VM_MAYEXEC;
1540 }
1541
1542 if (!file->f_op->mmap)
1543 return -ENODEV;
1544 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1545 return -EINVAL;
1546 break;
1547
1548 default:
1549 return -EINVAL;
1550 }
1551 } else {
1552 switch (flags & MAP_TYPE) {
1553 case MAP_SHARED:
1554 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1555 return -EINVAL;
1556 /*
1557 * Ignore pgoff.
1558 */
1559 pgoff = 0;
1560 vm_flags |= VM_SHARED | VM_MAYSHARE;
1561 break;
1562 case MAP_PRIVATE:
1563 /*
1564 * Set pgoff according to addr for anon_vma.
1565 */
1566 pgoff = addr >> PAGE_SHIFT;
1567 break;
1568 default:
1569 return -EINVAL;
1570 }
1571 }
1572
1573 /*
1574 * Set 'VM_NORESERVE' if we should not account for the
1575 * memory use of this mapping.
1576 */
1577 if (flags & MAP_NORESERVE) {
1578 /* We honor MAP_NORESERVE if allowed to overcommit */
1579 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1580 vm_flags |= VM_NORESERVE;
1581
1582 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1583 if (file && is_file_hugepages(file))
1584 vm_flags |= VM_NORESERVE;
1585 }
1586
1587 addr = mmap_region(file, addr, len, vm_flags, pgoff, uf);
1588 if (!IS_ERR_VALUE(addr) &&
1589 ((vm_flags & VM_LOCKED) ||
1590 (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1591 *populate = len;
1592 return addr;
1593 }
1594
ksys_mmap_pgoff(unsigned long addr,unsigned long len,unsigned long prot,unsigned long flags,unsigned long fd,unsigned long pgoff)1595 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
1596 unsigned long prot, unsigned long flags,
1597 unsigned long fd, unsigned long pgoff)
1598 {
1599 struct file *file = NULL;
1600 unsigned long retval;
1601
1602 if (!(flags & MAP_ANONYMOUS)) {
1603 audit_mmap_fd(fd, flags);
1604 file = fget(fd);
1605 if (!file)
1606 return -EBADF;
1607 if (is_file_hugepages(file)) {
1608 len = ALIGN(len, huge_page_size(hstate_file(file)));
1609 } else if (unlikely(flags & MAP_HUGETLB)) {
1610 retval = -EINVAL;
1611 goto out_fput;
1612 }
1613 } else if (flags & MAP_HUGETLB) {
1614 struct ucounts *ucounts = NULL;
1615 struct hstate *hs;
1616
1617 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1618 if (!hs)
1619 return -EINVAL;
1620
1621 len = ALIGN(len, huge_page_size(hs));
1622 /*
1623 * VM_NORESERVE is used because the reservations will be
1624 * taken when vm_ops->mmap() is called
1625 * A dummy user value is used because we are not locking
1626 * memory so no accounting is necessary
1627 */
1628 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1629 VM_NORESERVE,
1630 &ucounts, HUGETLB_ANONHUGE_INODE,
1631 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1632 if (IS_ERR(file))
1633 return PTR_ERR(file);
1634 }
1635
1636 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1637 out_fput:
1638 if (file)
1639 fput(file);
1640 return retval;
1641 }
1642
SYSCALL_DEFINE6(mmap_pgoff,unsigned long,addr,unsigned long,len,unsigned long,prot,unsigned long,flags,unsigned long,fd,unsigned long,pgoff)1643 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1644 unsigned long, prot, unsigned long, flags,
1645 unsigned long, fd, unsigned long, pgoff)
1646 {
1647 return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
1648 }
1649
1650 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1651 struct mmap_arg_struct {
1652 unsigned long addr;
1653 unsigned long len;
1654 unsigned long prot;
1655 unsigned long flags;
1656 unsigned long fd;
1657 unsigned long offset;
1658 };
1659
SYSCALL_DEFINE1(old_mmap,struct mmap_arg_struct __user *,arg)1660 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1661 {
1662 struct mmap_arg_struct a;
1663
1664 if (copy_from_user(&a, arg, sizeof(a)))
1665 return -EFAULT;
1666 if (offset_in_page(a.offset))
1667 return -EINVAL;
1668
1669 return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1670 a.offset >> PAGE_SHIFT);
1671 }
1672 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1673
1674 /*
1675 * Some shared mappings will want the pages marked read-only
1676 * to track write events. If so, we'll downgrade vm_page_prot
1677 * to the private version (using protection_map[] without the
1678 * VM_SHARED bit).
1679 */
vma_wants_writenotify(struct vm_area_struct * vma,pgprot_t vm_page_prot)1680 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot)
1681 {
1682 vm_flags_t vm_flags = vma->vm_flags;
1683 const struct vm_operations_struct *vm_ops = vma->vm_ops;
1684
1685 /* If it was private or non-writable, the write bit is already clear */
1686 if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1687 return 0;
1688
1689 /* The backer wishes to know when pages are first written to? */
1690 if (vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite))
1691 return 1;
1692
1693 /* The open routine did something to the protections that pgprot_modify
1694 * won't preserve? */
1695 if (pgprot_val(vm_page_prot) !=
1696 pgprot_val(vm_pgprot_modify(vm_page_prot, vm_flags)))
1697 return 0;
1698
1699 /*
1700 * Do we need to track softdirty? hugetlb does not support softdirty
1701 * tracking yet.
1702 */
1703 if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY) && !(vm_flags & VM_SOFTDIRTY) &&
1704 !is_vm_hugetlb_page(vma))
1705 return 1;
1706
1707 /* Specialty mapping? */
1708 if (vm_flags & VM_PFNMAP)
1709 return 0;
1710
1711 /* Can the mapping track the dirty pages? */
1712 return vma->vm_file && vma->vm_file->f_mapping &&
1713 mapping_can_writeback(vma->vm_file->f_mapping);
1714 }
1715
1716 /*
1717 * We account for memory if it's a private writeable mapping,
1718 * not hugepages and VM_NORESERVE wasn't set.
1719 */
accountable_mapping(struct file * file,vm_flags_t vm_flags)1720 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1721 {
1722 /*
1723 * hugetlb has its own accounting separate from the core VM
1724 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1725 */
1726 if (file && is_file_hugepages(file))
1727 return 0;
1728
1729 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1730 }
1731
mmap_region(struct file * file,unsigned long addr,unsigned long len,vm_flags_t vm_flags,unsigned long pgoff,struct list_head * uf)1732 unsigned long mmap_region(struct file *file, unsigned long addr,
1733 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
1734 struct list_head *uf)
1735 {
1736 struct mm_struct *mm = current->mm;
1737 struct vm_area_struct *vma, *prev, *merge;
1738 int error;
1739 struct rb_node **rb_link, *rb_parent;
1740 unsigned long charged = 0;
1741
1742 /* Check against address space limit. */
1743 if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) {
1744 unsigned long nr_pages;
1745
1746 /*
1747 * MAP_FIXED may remove pages of mappings that intersects with
1748 * requested mapping. Account for the pages it would unmap.
1749 */
1750 nr_pages = count_vma_pages_range(mm, addr, addr + len);
1751
1752 if (!may_expand_vm(mm, vm_flags,
1753 (len >> PAGE_SHIFT) - nr_pages))
1754 return -ENOMEM;
1755 }
1756
1757 /* Clear old maps, set up prev, rb_link, rb_parent, and uf */
1758 if (munmap_vma_range(mm, addr, len, &prev, &rb_link, &rb_parent, uf))
1759 return -ENOMEM;
1760 /*
1761 * Private writable mapping: check memory availability
1762 */
1763 if (accountable_mapping(file, vm_flags)) {
1764 charged = len >> PAGE_SHIFT;
1765 if (security_vm_enough_memory_mm(mm, charged))
1766 return -ENOMEM;
1767 vm_flags |= VM_ACCOUNT;
1768 }
1769
1770 /*
1771 * Can we just expand an old mapping?
1772 */
1773 vma = vma_merge(mm, prev, addr, addr + len, vm_flags,
1774 NULL, file, pgoff, NULL, NULL_VM_UFFD_CTX, NULL);
1775 if (vma)
1776 goto out;
1777
1778 /*
1779 * Determine the object being mapped and call the appropriate
1780 * specific mapper. the address has already been validated, but
1781 * not unmapped, but the maps are removed from the list.
1782 */
1783 vma = vm_area_alloc(mm);
1784 if (!vma) {
1785 error = -ENOMEM;
1786 goto unacct_error;
1787 }
1788
1789 vma->vm_start = addr;
1790 vma->vm_end = addr + len;
1791 vma->vm_flags = vm_flags;
1792 vma->vm_page_prot = vm_get_page_prot(vm_flags);
1793 vma->vm_pgoff = pgoff;
1794
1795 if (file) {
1796 if (vm_flags & VM_SHARED) {
1797 error = mapping_map_writable(file->f_mapping);
1798 if (error)
1799 goto free_vma;
1800 }
1801
1802 vma->vm_file = get_file(file);
1803 error = call_mmap(file, vma);
1804 if (error)
1805 goto unmap_and_free_vma;
1806
1807 /* Can addr have changed??
1808 *
1809 * Answer: Yes, several device drivers can do it in their
1810 * f_op->mmap method. -DaveM
1811 * Bug: If addr is changed, prev, rb_link, rb_parent should
1812 * be updated for vma_link()
1813 */
1814 WARN_ON_ONCE(addr != vma->vm_start);
1815
1816 addr = vma->vm_start;
1817
1818 /* If vm_flags changed after call_mmap(), we should try merge vma again
1819 * as we may succeed this time.
1820 */
1821 if (unlikely(vm_flags != vma->vm_flags && prev)) {
1822 merge = vma_merge(mm, prev, vma->vm_start, vma->vm_end, vma->vm_flags,
1823 NULL, vma->vm_file, vma->vm_pgoff, NULL, NULL_VM_UFFD_CTX, NULL);
1824 if (merge) {
1825 /* ->mmap() can change vma->vm_file and fput the original file. So
1826 * fput the vma->vm_file here or we would add an extra fput for file
1827 * and cause general protection fault ultimately.
1828 */
1829 /* fput happens within vm_area_free */
1830 vm_area_free(vma);
1831 vma = merge;
1832 /* Update vm_flags to pick up the change. */
1833 vm_flags = vma->vm_flags;
1834 goto unmap_writable;
1835 }
1836 }
1837
1838 vm_flags = vma->vm_flags;
1839 } else if (vm_flags & VM_SHARED) {
1840 error = shmem_zero_setup(vma);
1841 if (error)
1842 goto free_vma;
1843 } else {
1844 vma_set_anonymous(vma);
1845 }
1846
1847 /* Allow architectures to sanity-check the vm_flags */
1848 if (!arch_validate_flags(vma->vm_flags)) {
1849 error = -EINVAL;
1850 if (file)
1851 goto close_and_free_vma;
1852 else
1853 goto free_vma;
1854 }
1855
1856 vma_link(mm, vma, prev, rb_link, rb_parent);
1857 /* Once vma denies write, undo our temporary denial count */
1858 unmap_writable:
1859 if (file && vm_flags & VM_SHARED)
1860 mapping_unmap_writable(file->f_mapping);
1861 file = vma->vm_file;
1862 out:
1863 perf_event_mmap(vma);
1864
1865 vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT);
1866 if (vm_flags & VM_LOCKED) {
1867 if ((vm_flags & VM_SPECIAL) || vma_is_dax(vma) ||
1868 is_vm_hugetlb_page(vma) ||
1869 vma == get_gate_vma(current->mm))
1870 vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
1871 else
1872 mm->locked_vm += (len >> PAGE_SHIFT);
1873 }
1874
1875 if (file)
1876 uprobe_mmap(vma);
1877
1878 /*
1879 * New (or expanded) vma always get soft dirty status.
1880 * Otherwise user-space soft-dirty page tracker won't
1881 * be able to distinguish situation when vma area unmapped,
1882 * then new mapped in-place (which must be aimed as
1883 * a completely new data area).
1884 */
1885 vma->vm_flags |= VM_SOFTDIRTY;
1886
1887 vma_set_page_prot(vma);
1888
1889 trace_android_vh_mmap_region(vma, addr);
1890
1891 return addr;
1892
1893 close_and_free_vma:
1894 if (vma->vm_ops && vma->vm_ops->close)
1895 vma->vm_ops->close(vma);
1896 unmap_and_free_vma:
1897 fput(vma->vm_file);
1898 vma->vm_file = NULL;
1899
1900 /* Undo any partial mapping done by a device driver. */
1901 unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1902 if (vm_flags & VM_SHARED)
1903 mapping_unmap_writable(file->f_mapping);
1904 free_vma:
1905 VM_BUG_ON(vma->vm_file);
1906 vm_area_free(vma);
1907 unacct_error:
1908 if (charged)
1909 vm_unacct_memory(charged);
1910 return error;
1911 }
1912
unmapped_area(struct vm_unmapped_area_info * info)1913 static unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1914 {
1915 /*
1916 * We implement the search by looking for an rbtree node that
1917 * immediately follows a suitable gap. That is,
1918 * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1919 * - gap_end = vma->vm_start >= info->low_limit + length;
1920 * - gap_end - gap_start >= length
1921 */
1922
1923 struct mm_struct *mm = current->mm;
1924 struct vm_area_struct *vma;
1925 unsigned long length, low_limit, high_limit, gap_start, gap_end;
1926
1927 /* Adjust search length to account for worst case alignment overhead */
1928 length = info->length + info->align_mask;
1929 if (length < info->length)
1930 return -ENOMEM;
1931
1932 /* Adjust search limits by the desired length */
1933 if (info->high_limit < length)
1934 return -ENOMEM;
1935 high_limit = info->high_limit - length;
1936
1937 if (info->low_limit > high_limit)
1938 return -ENOMEM;
1939 low_limit = info->low_limit + length;
1940
1941 /* Check if rbtree root looks promising */
1942 if (RB_EMPTY_ROOT(&mm->mm_rb))
1943 goto check_highest;
1944 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1945 if (vma->rb_subtree_gap < length)
1946 goto check_highest;
1947
1948 while (true) {
1949 /* Visit left subtree if it looks promising */
1950 gap_end = vm_start_gap(vma);
1951 if (gap_end >= low_limit && vma->vm_rb.rb_left) {
1952 struct vm_area_struct *left =
1953 rb_entry(vma->vm_rb.rb_left,
1954 struct vm_area_struct, vm_rb);
1955 if (left->rb_subtree_gap >= length) {
1956 vma = left;
1957 continue;
1958 }
1959 }
1960
1961 gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
1962 check_current:
1963 /* Check if current node has a suitable gap */
1964 if (gap_start > high_limit)
1965 return -ENOMEM;
1966 if (gap_end >= low_limit &&
1967 gap_end > gap_start && gap_end - gap_start >= length)
1968 goto found;
1969
1970 /* Visit right subtree if it looks promising */
1971 if (vma->vm_rb.rb_right) {
1972 struct vm_area_struct *right =
1973 rb_entry(vma->vm_rb.rb_right,
1974 struct vm_area_struct, vm_rb);
1975 if (right->rb_subtree_gap >= length) {
1976 vma = right;
1977 continue;
1978 }
1979 }
1980
1981 /* Go back up the rbtree to find next candidate node */
1982 while (true) {
1983 struct rb_node *prev = &vma->vm_rb;
1984 if (!rb_parent(prev))
1985 goto check_highest;
1986 vma = rb_entry(rb_parent(prev),
1987 struct vm_area_struct, vm_rb);
1988 if (prev == vma->vm_rb.rb_left) {
1989 gap_start = vm_end_gap(vma->vm_prev);
1990 gap_end = vm_start_gap(vma);
1991 goto check_current;
1992 }
1993 }
1994 }
1995
1996 check_highest:
1997 /* Check highest gap, which does not precede any rbtree node */
1998 gap_start = mm->highest_vm_end;
1999 gap_end = ULONG_MAX; /* Only for VM_BUG_ON below */
2000 if (gap_start > high_limit)
2001 return -ENOMEM;
2002
2003 found:
2004 /* We found a suitable gap. Clip it with the original low_limit. */
2005 if (gap_start < info->low_limit)
2006 gap_start = info->low_limit;
2007
2008 /* Adjust gap address to the desired alignment */
2009 gap_start += (info->align_offset - gap_start) & info->align_mask;
2010
2011 VM_BUG_ON(gap_start + info->length > info->high_limit);
2012 VM_BUG_ON(gap_start + info->length > gap_end);
2013 return gap_start;
2014 }
2015
unmapped_area_topdown(struct vm_unmapped_area_info * info)2016 static unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
2017 {
2018 struct mm_struct *mm = current->mm;
2019 struct vm_area_struct *vma;
2020 unsigned long length, low_limit, high_limit, gap_start, gap_end;
2021
2022 /* Adjust search length to account for worst case alignment overhead */
2023 length = info->length + info->align_mask;
2024 if (length < info->length)
2025 return -ENOMEM;
2026
2027 /*
2028 * Adjust search limits by the desired length.
2029 * See implementation comment at top of unmapped_area().
2030 */
2031 gap_end = info->high_limit;
2032 if (gap_end < length)
2033 return -ENOMEM;
2034 high_limit = gap_end - length;
2035
2036 if (info->low_limit > high_limit)
2037 return -ENOMEM;
2038 low_limit = info->low_limit + length;
2039
2040 /* Check highest gap, which does not precede any rbtree node */
2041 gap_start = mm->highest_vm_end;
2042 if (gap_start <= high_limit)
2043 goto found_highest;
2044
2045 /* Check if rbtree root looks promising */
2046 if (RB_EMPTY_ROOT(&mm->mm_rb))
2047 return -ENOMEM;
2048 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
2049 if (vma->rb_subtree_gap < length)
2050 return -ENOMEM;
2051
2052 while (true) {
2053 /* Visit right subtree if it looks promising */
2054 gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
2055 if (gap_start <= high_limit && vma->vm_rb.rb_right) {
2056 struct vm_area_struct *right =
2057 rb_entry(vma->vm_rb.rb_right,
2058 struct vm_area_struct, vm_rb);
2059 if (right->rb_subtree_gap >= length) {
2060 vma = right;
2061 continue;
2062 }
2063 }
2064
2065 check_current:
2066 /* Check if current node has a suitable gap */
2067 gap_end = vm_start_gap(vma);
2068 if (gap_end < low_limit)
2069 return -ENOMEM;
2070 if (gap_start <= high_limit &&
2071 gap_end > gap_start && gap_end - gap_start >= length)
2072 goto found;
2073
2074 /* Visit left subtree if it looks promising */
2075 if (vma->vm_rb.rb_left) {
2076 struct vm_area_struct *left =
2077 rb_entry(vma->vm_rb.rb_left,
2078 struct vm_area_struct, vm_rb);
2079 if (left->rb_subtree_gap >= length) {
2080 vma = left;
2081 continue;
2082 }
2083 }
2084
2085 /* Go back up the rbtree to find next candidate node */
2086 while (true) {
2087 struct rb_node *prev = &vma->vm_rb;
2088 if (!rb_parent(prev))
2089 return -ENOMEM;
2090 vma = rb_entry(rb_parent(prev),
2091 struct vm_area_struct, vm_rb);
2092 if (prev == vma->vm_rb.rb_right) {
2093 gap_start = vma->vm_prev ?
2094 vm_end_gap(vma->vm_prev) : 0;
2095 goto check_current;
2096 }
2097 }
2098 }
2099
2100 found:
2101 /* We found a suitable gap. Clip it with the original high_limit. */
2102 if (gap_end > info->high_limit)
2103 gap_end = info->high_limit;
2104
2105 found_highest:
2106 /* Compute highest gap address at the desired alignment */
2107 gap_end -= info->length;
2108 gap_end -= (gap_end - info->align_offset) & info->align_mask;
2109
2110 VM_BUG_ON(gap_end < info->low_limit);
2111 VM_BUG_ON(gap_end < gap_start);
2112 return gap_end;
2113 }
2114
2115 /*
2116 * Search for an unmapped address range.
2117 *
2118 * We are looking for a range that:
2119 * - does not intersect with any VMA;
2120 * - is contained within the [low_limit, high_limit) interval;
2121 * - is at least the desired size.
2122 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
2123 */
vm_unmapped_area(struct vm_unmapped_area_info * info)2124 unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info)
2125 {
2126 unsigned long addr;
2127
2128 if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
2129 addr = unmapped_area_topdown(info);
2130 else
2131 addr = unmapped_area(info);
2132
2133 trace_vm_unmapped_area(addr, info);
2134 return addr;
2135 }
2136
2137 /* Get an address range which is currently unmapped.
2138 * For shmat() with addr=0.
2139 *
2140 * Ugly calling convention alert:
2141 * Return value with the low bits set means error value,
2142 * ie
2143 * if (ret & ~PAGE_MASK)
2144 * error = ret;
2145 *
2146 * This function "knows" that -ENOMEM has the bits set.
2147 */
2148 #ifndef HAVE_ARCH_UNMAPPED_AREA
2149 unsigned long
arch_get_unmapped_area(struct file * filp,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)2150 arch_get_unmapped_area(struct file *filp, unsigned long addr,
2151 unsigned long len, unsigned long pgoff, unsigned long flags)
2152 {
2153 struct mm_struct *mm = current->mm;
2154 struct vm_area_struct *vma, *prev;
2155 struct vm_unmapped_area_info info;
2156 const unsigned long mmap_end = arch_get_mmap_end(addr);
2157
2158 if (len > mmap_end - mmap_min_addr)
2159 return -ENOMEM;
2160
2161 if (flags & MAP_FIXED)
2162 return addr;
2163
2164 if (addr) {
2165 addr = PAGE_ALIGN(addr);
2166 vma = find_vma_prev(mm, addr, &prev);
2167 if (mmap_end - len >= addr && addr >= mmap_min_addr &&
2168 (!vma || addr + len <= vm_start_gap(vma)) &&
2169 (!prev || addr >= vm_end_gap(prev)))
2170 return addr;
2171 }
2172
2173 info.flags = 0;
2174 info.length = len;
2175 info.low_limit = mm->mmap_base;
2176 info.high_limit = mmap_end;
2177 info.align_mask = 0;
2178 info.align_offset = 0;
2179 return vm_unmapped_area(&info);
2180 }
2181 #endif
2182
2183 /*
2184 * This mmap-allocator allocates new areas top-down from below the
2185 * stack's low limit (the base):
2186 */
2187 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
2188 unsigned long
arch_get_unmapped_area_topdown(struct file * filp,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)2189 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
2190 unsigned long len, unsigned long pgoff,
2191 unsigned long flags)
2192 {
2193 struct vm_area_struct *vma, *prev;
2194 struct mm_struct *mm = current->mm;
2195 struct vm_unmapped_area_info info;
2196 const unsigned long mmap_end = arch_get_mmap_end(addr);
2197
2198 /* requested length too big for entire address space */
2199 if (len > mmap_end - mmap_min_addr)
2200 return -ENOMEM;
2201
2202 if (flags & MAP_FIXED)
2203 return addr;
2204
2205 /* requesting a specific address */
2206 if (addr) {
2207 addr = PAGE_ALIGN(addr);
2208 vma = find_vma_prev(mm, addr, &prev);
2209 if (mmap_end - len >= addr && addr >= mmap_min_addr &&
2210 (!vma || addr + len <= vm_start_gap(vma)) &&
2211 (!prev || addr >= vm_end_gap(prev)))
2212 return addr;
2213 }
2214
2215 info.flags = VM_UNMAPPED_AREA_TOPDOWN;
2216 info.length = len;
2217 info.low_limit = max(PAGE_SIZE, mmap_min_addr);
2218 info.high_limit = arch_get_mmap_base(addr, mm->mmap_base);
2219 info.align_mask = 0;
2220 info.align_offset = 0;
2221 addr = vm_unmapped_area(&info);
2222
2223 /*
2224 * A failed mmap() very likely causes application failure,
2225 * so fall back to the bottom-up function here. This scenario
2226 * can happen with large stack limits and large mmap()
2227 * allocations.
2228 */
2229 if (offset_in_page(addr)) {
2230 VM_BUG_ON(addr != -ENOMEM);
2231 info.flags = 0;
2232 info.low_limit = TASK_UNMAPPED_BASE;
2233 info.high_limit = mmap_end;
2234 addr = vm_unmapped_area(&info);
2235 }
2236
2237 return addr;
2238 }
2239 #endif
2240
2241 unsigned long
get_unmapped_area(struct file * file,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)2242 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
2243 unsigned long pgoff, unsigned long flags)
2244 {
2245 unsigned long (*get_area)(struct file *, unsigned long,
2246 unsigned long, unsigned long, unsigned long);
2247
2248 unsigned long error = arch_mmap_check(addr, len, flags);
2249 if (error)
2250 return error;
2251
2252 /* Careful about overflows.. */
2253 if (len > TASK_SIZE)
2254 return -ENOMEM;
2255
2256 get_area = current->mm->get_unmapped_area;
2257 if (file) {
2258 if (file->f_op->get_unmapped_area)
2259 get_area = file->f_op->get_unmapped_area;
2260 } else if (flags & MAP_SHARED) {
2261 /*
2262 * mmap_region() will call shmem_zero_setup() to create a file,
2263 * so use shmem's get_unmapped_area in case it can be huge.
2264 * do_mmap() will clear pgoff, so match alignment.
2265 */
2266 pgoff = 0;
2267 get_area = shmem_get_unmapped_area;
2268 }
2269
2270 addr = get_area(file, addr, len, pgoff, flags);
2271 if (IS_ERR_VALUE(addr))
2272 return addr;
2273
2274 if (addr > TASK_SIZE - len)
2275 return -ENOMEM;
2276 if (offset_in_page(addr))
2277 return -EINVAL;
2278
2279 error = security_mmap_addr(addr);
2280 return error ? error : addr;
2281 }
2282
2283 EXPORT_SYMBOL(get_unmapped_area);
2284
find_vma_from_tree(struct mm_struct * mm,unsigned long addr)2285 struct vm_area_struct *find_vma_from_tree(struct mm_struct *mm, unsigned long addr)
2286 {
2287 struct rb_node *rb_node;
2288 struct vm_area_struct *vma = NULL;
2289
2290 rb_node = mm->mm_rb.rb_node;
2291
2292 while (rb_node) {
2293 struct vm_area_struct *tmp;
2294
2295 tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2296
2297 if (tmp->vm_end > addr) {
2298 vma = tmp;
2299 if (tmp->vm_start <= addr)
2300 break;
2301 rb_node = rb_node->rb_left;
2302 } else
2303 rb_node = rb_node->rb_right;
2304 }
2305
2306 return vma;
2307 }
2308
2309 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
__find_vma(struct mm_struct * mm,unsigned long addr)2310 struct vm_area_struct *__find_vma(struct mm_struct *mm, unsigned long addr)
2311 {
2312 struct vm_area_struct *vma;
2313
2314 /* Check the cache first. */
2315 vma = vmacache_find(mm, addr);
2316 if (likely(vma))
2317 return vma;
2318
2319 vma = find_vma_from_tree(mm, addr);
2320
2321 if (vma)
2322 vmacache_update(addr, vma);
2323 return vma;
2324 }
2325
2326 EXPORT_SYMBOL(__find_vma);
2327
2328 /*
2329 * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
2330 */
2331 struct vm_area_struct *
find_vma_prev(struct mm_struct * mm,unsigned long addr,struct vm_area_struct ** pprev)2332 find_vma_prev(struct mm_struct *mm, unsigned long addr,
2333 struct vm_area_struct **pprev)
2334 {
2335 struct vm_area_struct *vma;
2336
2337 vma = find_vma(mm, addr);
2338 if (vma) {
2339 *pprev = vma->vm_prev;
2340 } else {
2341 struct rb_node *rb_node = rb_last(&mm->mm_rb);
2342
2343 *pprev = rb_node ? rb_entry(rb_node, struct vm_area_struct, vm_rb) : NULL;
2344 }
2345 return vma;
2346 }
2347
2348 /*
2349 * Verify that the stack growth is acceptable and
2350 * update accounting. This is shared with both the
2351 * grow-up and grow-down cases.
2352 */
acct_stack_growth(struct vm_area_struct * vma,unsigned long size,unsigned long grow)2353 static int acct_stack_growth(struct vm_area_struct *vma,
2354 unsigned long size, unsigned long grow)
2355 {
2356 struct mm_struct *mm = vma->vm_mm;
2357 unsigned long new_start;
2358
2359 /* address space limit tests */
2360 if (!may_expand_vm(mm, vma->vm_flags, grow))
2361 return -ENOMEM;
2362
2363 /* Stack limit test */
2364 if (size > rlimit(RLIMIT_STACK))
2365 return -ENOMEM;
2366
2367 /* mlock limit tests */
2368 if (vma->vm_flags & VM_LOCKED) {
2369 unsigned long locked;
2370 unsigned long limit;
2371 locked = mm->locked_vm + grow;
2372 limit = rlimit(RLIMIT_MEMLOCK);
2373 limit >>= PAGE_SHIFT;
2374 if (locked > limit && !capable(CAP_IPC_LOCK))
2375 return -ENOMEM;
2376 }
2377
2378 /* Check to ensure the stack will not grow into a hugetlb-only region */
2379 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2380 vma->vm_end - size;
2381 if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2382 return -EFAULT;
2383
2384 /*
2385 * Overcommit.. This must be the final test, as it will
2386 * update security statistics.
2387 */
2388 if (security_vm_enough_memory_mm(mm, grow))
2389 return -ENOMEM;
2390
2391 return 0;
2392 }
2393
2394 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2395 /*
2396 * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2397 * vma is the last one with address > vma->vm_end. Have to extend vma.
2398 */
expand_upwards(struct vm_area_struct * vma,unsigned long address)2399 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2400 {
2401 struct mm_struct *mm = vma->vm_mm;
2402 struct vm_area_struct *next;
2403 unsigned long gap_addr;
2404 int error = 0;
2405
2406 if (!(vma->vm_flags & VM_GROWSUP))
2407 return -EFAULT;
2408
2409 /* Guard against exceeding limits of the address space. */
2410 address &= PAGE_MASK;
2411 if (address >= (TASK_SIZE & PAGE_MASK))
2412 return -ENOMEM;
2413 address += PAGE_SIZE;
2414
2415 /* Enforce stack_guard_gap */
2416 gap_addr = address + stack_guard_gap;
2417
2418 /* Guard against overflow */
2419 if (gap_addr < address || gap_addr > TASK_SIZE)
2420 gap_addr = TASK_SIZE;
2421
2422 next = vma->vm_next;
2423 if (next && next->vm_start < gap_addr && vma_is_accessible(next)) {
2424 if (!(next->vm_flags & VM_GROWSUP))
2425 return -ENOMEM;
2426 /* Check that both stack segments have the same anon_vma? */
2427 }
2428
2429 /* We must make sure the anon_vma is allocated. */
2430 if (unlikely(anon_vma_prepare(vma)))
2431 return -ENOMEM;
2432
2433 /*
2434 * vma->vm_start/vm_end cannot change under us because the caller
2435 * is required to hold the mmap_lock in read mode. We need the
2436 * anon_vma lock to serialize against concurrent expand_stacks.
2437 */
2438 anon_vma_lock_write(vma->anon_vma);
2439
2440 /* Somebody else might have raced and expanded it already */
2441 if (address > vma->vm_end) {
2442 unsigned long size, grow;
2443
2444 size = address - vma->vm_start;
2445 grow = (address - vma->vm_end) >> PAGE_SHIFT;
2446
2447 error = -ENOMEM;
2448 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2449 error = acct_stack_growth(vma, size, grow);
2450 if (!error) {
2451 /*
2452 * vma_gap_update() doesn't support concurrent
2453 * updates, but we only hold a shared mmap_lock
2454 * lock here, so we need to protect against
2455 * concurrent vma expansions.
2456 * anon_vma_lock_write() doesn't help here, as
2457 * we don't guarantee that all growable vmas
2458 * in a mm share the same root anon vma.
2459 * So, we reuse mm->page_table_lock to guard
2460 * against concurrent vma expansions.
2461 */
2462 spin_lock(&mm->page_table_lock);
2463 if (vma->vm_flags & VM_LOCKED)
2464 mm->locked_vm += grow;
2465 vm_stat_account(mm, vma->vm_flags, grow);
2466 anon_vma_interval_tree_pre_update_vma(vma);
2467 vma->vm_end = address;
2468 anon_vma_interval_tree_post_update_vma(vma);
2469 if (vma->vm_next)
2470 vma_gap_update(vma->vm_next);
2471 else
2472 mm->highest_vm_end = vm_end_gap(vma);
2473 spin_unlock(&mm->page_table_lock);
2474
2475 perf_event_mmap(vma);
2476 }
2477 }
2478 }
2479 anon_vma_unlock_write(vma->anon_vma);
2480 khugepaged_enter_vma_merge(vma, vma->vm_flags);
2481 validate_mm(mm);
2482 return error;
2483 }
2484 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2485
2486 /*
2487 * vma is the first one with address < vma->vm_start. Have to extend vma.
2488 */
expand_downwards(struct vm_area_struct * vma,unsigned long address)2489 int expand_downwards(struct vm_area_struct *vma,
2490 unsigned long address)
2491 {
2492 struct mm_struct *mm = vma->vm_mm;
2493 struct vm_area_struct *prev;
2494 int error = 0;
2495
2496 address &= PAGE_MASK;
2497 if (address < mmap_min_addr)
2498 return -EPERM;
2499
2500 /* Enforce stack_guard_gap */
2501 prev = vma->vm_prev;
2502 /* Check that both stack segments have the same anon_vma? */
2503 if (prev && !(prev->vm_flags & VM_GROWSDOWN) &&
2504 vma_is_accessible(prev)) {
2505 if (address - prev->vm_end < stack_guard_gap)
2506 return -ENOMEM;
2507 }
2508
2509 /* We must make sure the anon_vma is allocated. */
2510 if (unlikely(anon_vma_prepare(vma)))
2511 return -ENOMEM;
2512
2513 /*
2514 * vma->vm_start/vm_end cannot change under us because the caller
2515 * is required to hold the mmap_lock in read mode. We need the
2516 * anon_vma lock to serialize against concurrent expand_stacks.
2517 */
2518 anon_vma_lock_write(vma->anon_vma);
2519
2520 /* Somebody else might have raced and expanded it already */
2521 if (address < vma->vm_start) {
2522 unsigned long size, grow;
2523
2524 size = vma->vm_end - address;
2525 grow = (vma->vm_start - address) >> PAGE_SHIFT;
2526
2527 error = -ENOMEM;
2528 if (grow <= vma->vm_pgoff) {
2529 error = acct_stack_growth(vma, size, grow);
2530 if (!error) {
2531 /*
2532 * vma_gap_update() doesn't support concurrent
2533 * updates, but we only hold a shared mmap_lock
2534 * lock here, so we need to protect against
2535 * concurrent vma expansions.
2536 * anon_vma_lock_write() doesn't help here, as
2537 * we don't guarantee that all growable vmas
2538 * in a mm share the same root anon vma.
2539 * So, we reuse mm->page_table_lock to guard
2540 * against concurrent vma expansions.
2541 */
2542 spin_lock(&mm->page_table_lock);
2543 if (vma->vm_flags & VM_LOCKED)
2544 mm->locked_vm += grow;
2545 vm_stat_account(mm, vma->vm_flags, grow);
2546 anon_vma_interval_tree_pre_update_vma(vma);
2547 vma->vm_start = address;
2548 vma->vm_pgoff -= grow;
2549 anon_vma_interval_tree_post_update_vma(vma);
2550 vma_gap_update(vma);
2551 spin_unlock(&mm->page_table_lock);
2552
2553 perf_event_mmap(vma);
2554 }
2555 }
2556 }
2557 anon_vma_unlock_write(vma->anon_vma);
2558 khugepaged_enter_vma_merge(vma, vma->vm_flags);
2559 validate_mm(mm);
2560 return error;
2561 }
2562
2563 /* enforced gap between the expanding stack and other mappings. */
2564 unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT;
2565
cmdline_parse_stack_guard_gap(char * p)2566 static int __init cmdline_parse_stack_guard_gap(char *p)
2567 {
2568 unsigned long val;
2569 char *endptr;
2570
2571 val = simple_strtoul(p, &endptr, 10);
2572 if (!*endptr)
2573 stack_guard_gap = val << PAGE_SHIFT;
2574
2575 return 1;
2576 }
2577 __setup("stack_guard_gap=", cmdline_parse_stack_guard_gap);
2578
2579 #ifdef CONFIG_STACK_GROWSUP
expand_stack(struct vm_area_struct * vma,unsigned long address)2580 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2581 {
2582 return expand_upwards(vma, address);
2583 }
2584
2585 struct vm_area_struct *
find_extend_vma(struct mm_struct * mm,unsigned long addr)2586 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2587 {
2588 struct vm_area_struct *vma, *prev;
2589
2590 addr &= PAGE_MASK;
2591 vma = find_vma_prev(mm, addr, &prev);
2592 if (vma && (vma->vm_start <= addr))
2593 return vma;
2594 /* don't alter vm_end if the coredump is running */
2595 if (!prev || expand_stack(prev, addr))
2596 return NULL;
2597 if (prev->vm_flags & VM_LOCKED)
2598 populate_vma_page_range(prev, addr, prev->vm_end, NULL);
2599 return prev;
2600 }
2601 #else
expand_stack(struct vm_area_struct * vma,unsigned long address)2602 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2603 {
2604 return expand_downwards(vma, address);
2605 }
2606
2607 struct vm_area_struct *
find_extend_vma(struct mm_struct * mm,unsigned long addr)2608 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2609 {
2610 struct vm_area_struct *vma;
2611 unsigned long start;
2612
2613 addr &= PAGE_MASK;
2614 vma = find_vma(mm, addr);
2615 if (!vma)
2616 return NULL;
2617 if (vma->vm_start <= addr)
2618 return vma;
2619 if (!(vma->vm_flags & VM_GROWSDOWN))
2620 return NULL;
2621 start = vma->vm_start;
2622 if (expand_stack(vma, addr))
2623 return NULL;
2624 if (vma->vm_flags & VM_LOCKED)
2625 populate_vma_page_range(vma, addr, start, NULL);
2626 return vma;
2627 }
2628 #endif
2629
2630 EXPORT_SYMBOL_GPL(find_extend_vma);
2631
2632 /*
2633 * Ok - we have the memory areas we should free on the vma list,
2634 * so release them, and do the vma updates.
2635 *
2636 * Called with the mm semaphore held.
2637 */
remove_vma_list(struct mm_struct * mm,struct vm_area_struct * vma)2638 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
2639 {
2640 unsigned long nr_accounted = 0;
2641
2642 /* Update high watermark before we lower total_vm */
2643 update_hiwater_vm(mm);
2644 do {
2645 long nrpages = vma_pages(vma);
2646
2647 if (vma->vm_flags & VM_ACCOUNT)
2648 nr_accounted += nrpages;
2649 vm_stat_account(mm, vma->vm_flags, -nrpages);
2650 vma = remove_vma(vma);
2651 } while (vma);
2652 vm_unacct_memory(nr_accounted);
2653 validate_mm(mm);
2654 }
2655
2656 /*
2657 * Get rid of page table information in the indicated region.
2658 *
2659 * Called with the mm semaphore held.
2660 */
unmap_region(struct mm_struct * mm,struct vm_area_struct * vma,struct vm_area_struct * prev,unsigned long start,unsigned long end)2661 static void unmap_region(struct mm_struct *mm,
2662 struct vm_area_struct *vma, struct vm_area_struct *prev,
2663 unsigned long start, unsigned long end)
2664 {
2665 struct vm_area_struct *next = vma_next(mm, prev);
2666 struct mmu_gather tlb;
2667 struct vm_area_struct *cur_vma;
2668
2669 lru_add_drain();
2670 tlb_gather_mmu(&tlb, mm);
2671 update_hiwater_rss(mm);
2672 unmap_vmas(&tlb, vma, start, end);
2673
2674 /*
2675 * Ensure we have no stale TLB entries by the time this mapping is
2676 * removed from the rmap.
2677 * Note that we don't have to worry about nested flushes here because
2678 * we're holding the mm semaphore for removing the mapping - so any
2679 * concurrent flush in this region has to be coming through the rmap,
2680 * and we synchronize against that using the rmap lock.
2681 */
2682 for (cur_vma = vma; cur_vma; cur_vma = cur_vma->vm_next) {
2683 if ((cur_vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) != 0) {
2684 tlb_flush_mmu(&tlb);
2685 break;
2686 }
2687 }
2688
2689 free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2690 next ? next->vm_start : USER_PGTABLES_CEILING);
2691 tlb_finish_mmu(&tlb);
2692 }
2693
2694 /*
2695 * Create a list of vma's touched by the unmap, removing them from the mm's
2696 * vma list as we go..
2697 */
2698 static bool
detach_vmas_to_be_unmapped(struct mm_struct * mm,struct vm_area_struct * vma,struct vm_area_struct * prev,unsigned long end)2699 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2700 struct vm_area_struct *prev, unsigned long end)
2701 {
2702 struct vm_area_struct **insertion_point;
2703 struct vm_area_struct *tail_vma = NULL;
2704
2705 insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2706 vma->vm_prev = NULL;
2707 do {
2708 vma_rb_erase(vma, &mm->mm_rb);
2709 mm->map_count--;
2710 tail_vma = vma;
2711 vma = vma->vm_next;
2712 } while (vma && vma->vm_start < end);
2713 *insertion_point = vma;
2714 if (vma) {
2715 vma->vm_prev = prev;
2716 vma_gap_update(vma);
2717 } else
2718 mm->highest_vm_end = prev ? vm_end_gap(prev) : 0;
2719 tail_vma->vm_next = NULL;
2720
2721 /* Kill the cache */
2722 vmacache_invalidate(mm);
2723
2724 /*
2725 * Do not downgrade mmap_lock if we are next to VM_GROWSDOWN or
2726 * VM_GROWSUP VMA. Such VMAs can change their size under
2727 * down_read(mmap_lock) and collide with the VMA we are about to unmap.
2728 */
2729 if (vma && (vma->vm_flags & VM_GROWSDOWN))
2730 return false;
2731 if (prev && (prev->vm_flags & VM_GROWSUP))
2732 return false;
2733 return true;
2734 }
2735
2736 /*
2737 * __split_vma() bypasses sysctl_max_map_count checking. We use this where it
2738 * has already been checked or doesn't make sense to fail.
2739 */
__split_vma(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr,int new_below)2740 int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2741 unsigned long addr, int new_below)
2742 {
2743 struct vm_area_struct *new;
2744 int err;
2745
2746 if (vma->vm_ops && vma->vm_ops->may_split) {
2747 err = vma->vm_ops->may_split(vma, addr);
2748 if (err)
2749 return err;
2750 }
2751
2752 new = vm_area_dup(vma);
2753 if (!new)
2754 return -ENOMEM;
2755
2756 if (new_below)
2757 new->vm_end = addr;
2758 else {
2759 new->vm_start = addr;
2760 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2761 }
2762
2763 err = vma_dup_policy(vma, new);
2764 if (err)
2765 goto out_free_vma;
2766
2767 err = anon_vma_clone(new, vma);
2768 if (err)
2769 goto out_free_mpol;
2770
2771 if (new->vm_file)
2772 get_file(new->vm_file);
2773
2774 if (new->vm_ops && new->vm_ops->open)
2775 new->vm_ops->open(new);
2776
2777 if (new_below)
2778 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2779 ((addr - new->vm_start) >> PAGE_SHIFT), new);
2780 else
2781 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2782
2783 /* Success. */
2784 if (!err) {
2785 split_pad_vma(vma, new, addr, new_below);
2786 return 0;
2787 }
2788
2789 /* Clean everything up if vma_adjust failed. */
2790 if (new->vm_ops && new->vm_ops->close)
2791 new->vm_ops->close(new);
2792 if (new->vm_file)
2793 fput(new->vm_file);
2794 unlink_anon_vmas(new);
2795 out_free_mpol:
2796 mpol_put(vma_policy(new));
2797 out_free_vma:
2798 new->vm_file = NULL; /* prevents fput within vm_area_free() */
2799 vm_area_free(new);
2800 return err;
2801 }
2802
2803 /*
2804 * Split a vma into two pieces at address 'addr', a new vma is allocated
2805 * either for the first part or the tail.
2806 */
split_vma(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr,int new_below)2807 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2808 unsigned long addr, int new_below)
2809 {
2810 if (mm->map_count >= sysctl_max_map_count)
2811 return -ENOMEM;
2812
2813 return __split_vma(mm, vma, addr, new_below);
2814 }
2815
2816 static inline void
unlock_range(struct vm_area_struct * start,unsigned long limit)2817 unlock_range(struct vm_area_struct *start, unsigned long limit)
2818 {
2819 struct mm_struct *mm = start->vm_mm;
2820 struct vm_area_struct *tmp = start;
2821
2822 while (tmp && tmp->vm_start < limit) {
2823 if (tmp->vm_flags & VM_LOCKED) {
2824 mm->locked_vm -= vma_pages(tmp);
2825 munlock_vma_pages_all(tmp);
2826 }
2827
2828 tmp = tmp->vm_next;
2829 }
2830 }
2831
2832 /* Munmap is split into 2 main parts -- this part which finds
2833 * what needs doing, and the areas themselves, which do the
2834 * work. This now handles partial unmappings.
2835 * Jeremy Fitzhardinge <jeremy@goop.org>
2836 */
__do_munmap(struct mm_struct * mm,unsigned long start,size_t len,struct list_head * uf,bool downgrade)2837 int __do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2838 struct list_head *uf, bool downgrade)
2839 {
2840 unsigned long end;
2841 struct vm_area_struct *vma, *prev, *last;
2842
2843 if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
2844 return -EINVAL;
2845
2846 len = PAGE_ALIGN(len);
2847 end = start + len;
2848 if (len == 0)
2849 return -EINVAL;
2850
2851 /*
2852 * arch_unmap() might do unmaps itself. It must be called
2853 * and finish any rbtree manipulation before this code
2854 * runs and also starts to manipulate the rbtree.
2855 */
2856 arch_unmap(mm, start, end);
2857
2858 /* Find the first overlapping VMA where start < vma->vm_end */
2859 vma = find_vma_intersection(mm, start, end);
2860 if (!vma)
2861 return 0;
2862 prev = vma->vm_prev;
2863
2864 /*
2865 * If we need to split any vma, do it now to save pain later.
2866 *
2867 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2868 * unmapped vm_area_struct will remain in use: so lower split_vma
2869 * places tmp vma above, and higher split_vma places tmp vma below.
2870 */
2871 if (start > vma->vm_start) {
2872 int error;
2873
2874 /*
2875 * Make sure that map_count on return from munmap() will
2876 * not exceed its limit; but let map_count go just above
2877 * its limit temporarily, to help free resources as expected.
2878 */
2879 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2880 return -ENOMEM;
2881
2882 error = __split_vma(mm, vma, start, 0);
2883 if (error)
2884 return error;
2885 prev = vma;
2886 }
2887
2888 /* Does it split the last one? */
2889 last = find_vma(mm, end);
2890 if (last && end > last->vm_start) {
2891 int error = __split_vma(mm, last, end, 1);
2892 if (error)
2893 return error;
2894 }
2895 vma = vma_next(mm, prev);
2896
2897 if (unlikely(uf)) {
2898 /*
2899 * If userfaultfd_unmap_prep returns an error the vmas
2900 * will remain split, but userland will get a
2901 * highly unexpected error anyway. This is no
2902 * different than the case where the first of the two
2903 * __split_vma fails, but we don't undo the first
2904 * split, despite we could. This is unlikely enough
2905 * failure that it's not worth optimizing it for.
2906 */
2907 int error = userfaultfd_unmap_prep(vma, start, end, uf);
2908 if (error)
2909 return error;
2910 }
2911
2912 /*
2913 * unlock any mlock()ed ranges before detaching vmas
2914 */
2915 if (mm->locked_vm)
2916 unlock_range(vma, end);
2917
2918 /* Detach vmas from rbtree */
2919 if (!detach_vmas_to_be_unmapped(mm, vma, prev, end))
2920 downgrade = false;
2921
2922 if (downgrade)
2923 mmap_write_downgrade(mm);
2924
2925 unmap_region(mm, vma, prev, start, end);
2926
2927 /* Fix up all other VM information */
2928 remove_vma_list(mm, vma);
2929
2930 return downgrade ? 1 : 0;
2931 }
2932
do_munmap(struct mm_struct * mm,unsigned long start,size_t len,struct list_head * uf)2933 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2934 struct list_head *uf)
2935 {
2936 return __do_munmap(mm, start, len, uf, false);
2937 }
2938
__vm_munmap(unsigned long start,size_t len,bool downgrade)2939 static int __vm_munmap(unsigned long start, size_t len, bool downgrade)
2940 {
2941 int ret;
2942 struct mm_struct *mm = current->mm;
2943 LIST_HEAD(uf);
2944
2945 if (mmap_write_lock_killable(mm))
2946 return -EINTR;
2947
2948 ret = __do_munmap(mm, start, len, &uf, downgrade);
2949 /*
2950 * Returning 1 indicates mmap_lock is downgraded.
2951 * But 1 is not legal return value of vm_munmap() and munmap(), reset
2952 * it to 0 before return.
2953 */
2954 if (ret == 1) {
2955 mmap_read_unlock(mm);
2956 ret = 0;
2957 } else
2958 mmap_write_unlock(mm);
2959
2960 userfaultfd_unmap_complete(mm, &uf);
2961 return ret;
2962 }
2963
vm_munmap(unsigned long start,size_t len)2964 int vm_munmap(unsigned long start, size_t len)
2965 {
2966 return __vm_munmap(start, len, false);
2967 }
2968 EXPORT_SYMBOL(vm_munmap);
2969
SYSCALL_DEFINE2(munmap,unsigned long,addr,size_t,len)2970 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2971 {
2972 addr = untagged_addr(addr);
2973 profile_munmap(addr);
2974 return __vm_munmap(addr, len, true);
2975 }
2976
2977
2978 /*
2979 * Emulation of deprecated remap_file_pages() syscall.
2980 */
SYSCALL_DEFINE5(remap_file_pages,unsigned long,start,unsigned long,size,unsigned long,prot,unsigned long,pgoff,unsigned long,flags)2981 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
2982 unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
2983 {
2984
2985 struct mm_struct *mm = current->mm;
2986 struct vm_area_struct *vma;
2987 unsigned long populate = 0;
2988 unsigned long ret = -EINVAL;
2989 struct file *file;
2990
2991 pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/vm/remap_file_pages.rst.\n",
2992 current->comm, current->pid);
2993
2994 if (prot)
2995 return ret;
2996 start = start & PAGE_MASK;
2997 size = size & PAGE_MASK;
2998
2999 if (start + size <= start)
3000 return ret;
3001
3002 /* Does pgoff wrap? */
3003 if (pgoff + (size >> PAGE_SHIFT) < pgoff)
3004 return ret;
3005
3006 if (mmap_write_lock_killable(mm))
3007 return -EINTR;
3008
3009 vma = vma_lookup(mm, start);
3010
3011 if (!vma || !(vma->vm_flags & VM_SHARED))
3012 goto out;
3013
3014 if (start + size > vma->vm_end) {
3015 struct vm_area_struct *next;
3016
3017 for (next = vma->vm_next; next; next = next->vm_next) {
3018 /* hole between vmas ? */
3019 if (next->vm_start != next->vm_prev->vm_end)
3020 goto out;
3021
3022 if (next->vm_file != vma->vm_file)
3023 goto out;
3024
3025 if (next->vm_flags != vma->vm_flags)
3026 goto out;
3027
3028 if (start + size <= next->vm_end)
3029 break;
3030 }
3031
3032 if (!next)
3033 goto out;
3034 }
3035
3036 prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
3037 prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
3038 prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
3039
3040 flags &= MAP_NONBLOCK;
3041 flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
3042 if (vma->vm_flags & VM_LOCKED)
3043 flags |= MAP_LOCKED;
3044
3045 file = get_file(vma->vm_file);
3046 ret = do_mmap(vma->vm_file, start, size,
3047 prot, flags, pgoff, &populate, NULL);
3048 fput(file);
3049 out:
3050 mmap_write_unlock(mm);
3051 if (populate)
3052 mm_populate(ret, populate);
3053 if (!IS_ERR_VALUE(ret))
3054 ret = 0;
3055 return ret;
3056 }
3057
3058 /*
3059 * this is really a simplified "do_mmap". it only handles
3060 * anonymous maps. eventually we may be able to do some
3061 * brk-specific accounting here.
3062 */
do_brk_flags(unsigned long addr,unsigned long len,unsigned long flags,struct list_head * uf)3063 static int do_brk_flags(unsigned long addr, unsigned long len, unsigned long flags, struct list_head *uf)
3064 {
3065 struct mm_struct *mm = current->mm;
3066 struct vm_area_struct *vma, *prev;
3067 struct rb_node **rb_link, *rb_parent;
3068 pgoff_t pgoff = addr >> PAGE_SHIFT;
3069 int error;
3070 unsigned long mapped_addr;
3071
3072 /* Until we need other flags, refuse anything except VM_EXEC. */
3073 if ((flags & (~VM_EXEC)) != 0)
3074 return -EINVAL;
3075 flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
3076
3077 mapped_addr = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
3078 if (IS_ERR_VALUE(mapped_addr))
3079 return mapped_addr;
3080
3081 error = mlock_future_check(mm, mm->def_flags, len);
3082 if (error)
3083 return error;
3084
3085 /* Clear old maps, set up prev, rb_link, rb_parent, and uf */
3086 if (munmap_vma_range(mm, addr, len, &prev, &rb_link, &rb_parent, uf))
3087 return -ENOMEM;
3088
3089 /* Check against address space limits *after* clearing old maps... */
3090 if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT))
3091 return -ENOMEM;
3092
3093 if (mm->map_count > sysctl_max_map_count)
3094 return -ENOMEM;
3095
3096 if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
3097 return -ENOMEM;
3098
3099 /* Can we just expand an old private anonymous mapping? */
3100 vma = vma_merge(mm, prev, addr, addr + len, flags,
3101 NULL, NULL, pgoff, NULL, NULL_VM_UFFD_CTX, NULL);
3102 if (vma)
3103 goto out;
3104
3105 /*
3106 * create a vma struct for an anonymous mapping
3107 */
3108 vma = vm_area_alloc(mm);
3109 if (!vma) {
3110 vm_unacct_memory(len >> PAGE_SHIFT);
3111 return -ENOMEM;
3112 }
3113
3114 vma_set_anonymous(vma);
3115 vma->vm_start = addr;
3116 vma->vm_end = addr + len;
3117 vma->vm_pgoff = pgoff;
3118 vma->vm_flags = flags;
3119 vma->vm_page_prot = vm_get_page_prot(flags);
3120 vma_link(mm, vma, prev, rb_link, rb_parent);
3121 out:
3122 perf_event_mmap(vma);
3123 mm->total_vm += len >> PAGE_SHIFT;
3124 mm->data_vm += len >> PAGE_SHIFT;
3125 if (flags & VM_LOCKED)
3126 mm->locked_vm += (len >> PAGE_SHIFT);
3127 vma->vm_flags |= VM_SOFTDIRTY;
3128 return 0;
3129 }
3130
vm_brk_flags(unsigned long addr,unsigned long request,unsigned long flags)3131 int vm_brk_flags(unsigned long addr, unsigned long request, unsigned long flags)
3132 {
3133 struct mm_struct *mm = current->mm;
3134 unsigned long len;
3135 int ret;
3136 bool populate;
3137 LIST_HEAD(uf);
3138
3139 len = PAGE_ALIGN(request);
3140 if (len < request)
3141 return -ENOMEM;
3142 if (!len)
3143 return 0;
3144
3145 if (mmap_write_lock_killable(mm))
3146 return -EINTR;
3147
3148 ret = do_brk_flags(addr, len, flags, &uf);
3149 populate = ((mm->def_flags & VM_LOCKED) != 0);
3150 mmap_write_unlock(mm);
3151 userfaultfd_unmap_complete(mm, &uf);
3152 if (populate && !ret)
3153 mm_populate(addr, len);
3154 return ret;
3155 }
3156 EXPORT_SYMBOL(vm_brk_flags);
3157
vm_brk(unsigned long addr,unsigned long len)3158 int vm_brk(unsigned long addr, unsigned long len)
3159 {
3160 return vm_brk_flags(addr, len, 0);
3161 }
3162 EXPORT_SYMBOL(vm_brk);
3163
3164 /* Release all mmaps. */
exit_mmap(struct mm_struct * mm)3165 void exit_mmap(struct mm_struct *mm)
3166 {
3167 struct mmu_gather tlb;
3168 struct vm_area_struct *vma;
3169 unsigned long nr_accounted = 0;
3170
3171 /* mm's last user has gone, and its about to be pulled down */
3172 mmu_notifier_release(mm);
3173
3174 if (unlikely(mm_is_oom_victim(mm))) {
3175 /*
3176 * Manually reap the mm to free as much memory as possible.
3177 * Then, as the oom reaper does, set MMF_OOM_SKIP to disregard
3178 * this mm from further consideration. Taking mm->mmap_lock for
3179 * write after setting MMF_OOM_SKIP will guarantee that the oom
3180 * reaper will not run on this mm again after mmap_lock is
3181 * dropped.
3182 *
3183 * Nothing can be holding mm->mmap_lock here and the above call
3184 * to mmu_notifier_release(mm) ensures mmu notifier callbacks in
3185 * __oom_reap_task_mm() will not block.
3186 *
3187 * This needs to be done before calling unlock_range(),
3188 * which clears VM_LOCKED, otherwise the oom reaper cannot
3189 * reliably test it.
3190 */
3191 (void)__oom_reap_task_mm(mm);
3192
3193 set_bit(MMF_OOM_SKIP, &mm->flags);
3194 }
3195
3196 mmap_write_lock(mm);
3197 if (mm->locked_vm)
3198 unlock_range(mm->mmap, ULONG_MAX);
3199
3200 arch_exit_mmap(mm);
3201
3202 vma = mm->mmap;
3203 if (!vma) {
3204 /* Can happen if dup_mmap() received an OOM */
3205 mmap_write_unlock(mm);
3206 return;
3207 }
3208
3209 lru_add_drain();
3210 flush_cache_mm(mm);
3211 tlb_gather_mmu_fullmm(&tlb, mm);
3212 /* update_hiwater_rss(mm) here? but nobody should be looking */
3213 /* Use -1 here to ensure all VMAs in the mm are unmapped */
3214 unmap_vmas(&tlb, vma, 0, -1);
3215 free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
3216 tlb_finish_mmu(&tlb);
3217
3218 /* Walk the list again, actually closing and freeing it. */
3219 while (vma) {
3220 if (vma->vm_flags & VM_ACCOUNT)
3221 nr_accounted += vma_pages(vma);
3222 vma = remove_vma(vma);
3223 cond_resched();
3224 }
3225 mm->mmap = NULL;
3226 mmap_write_unlock(mm);
3227 vm_unacct_memory(nr_accounted);
3228 }
3229
3230 /* Insert vm structure into process list sorted by address
3231 * and into the inode's i_mmap tree. If vm_file is non-NULL
3232 * then i_mmap_rwsem is taken here.
3233 */
insert_vm_struct(struct mm_struct * mm,struct vm_area_struct * vma)3234 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
3235 {
3236 struct vm_area_struct *prev;
3237 struct rb_node **rb_link, *rb_parent;
3238
3239 if (find_vma_links(mm, vma->vm_start, vma->vm_end,
3240 &prev, &rb_link, &rb_parent))
3241 return -ENOMEM;
3242 if ((vma->vm_flags & VM_ACCOUNT) &&
3243 security_vm_enough_memory_mm(mm, vma_pages(vma)))
3244 return -ENOMEM;
3245
3246 /*
3247 * The vm_pgoff of a purely anonymous vma should be irrelevant
3248 * until its first write fault, when page's anon_vma and index
3249 * are set. But now set the vm_pgoff it will almost certainly
3250 * end up with (unless mremap moves it elsewhere before that
3251 * first wfault), so /proc/pid/maps tells a consistent story.
3252 *
3253 * By setting it to reflect the virtual start address of the
3254 * vma, merges and splits can happen in a seamless way, just
3255 * using the existing file pgoff checks and manipulations.
3256 * Similarly in do_mmap and in do_brk_flags.
3257 */
3258 if (vma_is_anonymous(vma)) {
3259 BUG_ON(vma->anon_vma);
3260 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
3261 }
3262
3263 vma_link(mm, vma, prev, rb_link, rb_parent);
3264 return 0;
3265 }
3266
3267 /*
3268 * Copy the vma structure to a new location in the same mm,
3269 * prior to moving page table entries, to effect an mremap move.
3270 */
copy_vma(struct vm_area_struct ** vmap,unsigned long addr,unsigned long len,pgoff_t pgoff,bool * need_rmap_locks)3271 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
3272 unsigned long addr, unsigned long len, pgoff_t pgoff,
3273 bool *need_rmap_locks)
3274 {
3275 struct vm_area_struct *vma = *vmap;
3276 unsigned long vma_start = vma->vm_start;
3277 struct mm_struct *mm = vma->vm_mm;
3278 struct vm_area_struct *new_vma, *prev;
3279 struct rb_node **rb_link, *rb_parent;
3280 bool faulted_in_anon_vma = true;
3281
3282 /*
3283 * If anonymous vma has not yet been faulted, update new pgoff
3284 * to match new location, to increase its chance of merging.
3285 */
3286 if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
3287 pgoff = addr >> PAGE_SHIFT;
3288 faulted_in_anon_vma = false;
3289 }
3290
3291 if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
3292 return NULL; /* should never get here */
3293 new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
3294 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
3295 vma->vm_userfaultfd_ctx, anon_vma_name(vma));
3296 if (new_vma) {
3297 /*
3298 * Source vma may have been merged into new_vma
3299 */
3300 if (unlikely(vma_start >= new_vma->vm_start &&
3301 vma_start < new_vma->vm_end)) {
3302 /*
3303 * The only way we can get a vma_merge with
3304 * self during an mremap is if the vma hasn't
3305 * been faulted in yet and we were allowed to
3306 * reset the dst vma->vm_pgoff to the
3307 * destination address of the mremap to allow
3308 * the merge to happen. mremap must change the
3309 * vm_pgoff linearity between src and dst vmas
3310 * (in turn preventing a vma_merge) to be
3311 * safe. It is only safe to keep the vm_pgoff
3312 * linear if there are no pages mapped yet.
3313 */
3314 VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
3315 *vmap = vma = new_vma;
3316 }
3317 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
3318 } else {
3319 new_vma = vm_area_dup(vma);
3320 if (!new_vma)
3321 goto out;
3322 new_vma->vm_start = addr;
3323 new_vma->vm_end = addr + len;
3324 new_vma->vm_pgoff = pgoff;
3325 if (vma_dup_policy(vma, new_vma))
3326 goto out_free_vma;
3327 if (anon_vma_clone(new_vma, vma))
3328 goto out_free_mempol;
3329 if (new_vma->vm_file)
3330 get_file(new_vma->vm_file);
3331 if (new_vma->vm_ops && new_vma->vm_ops->open)
3332 new_vma->vm_ops->open(new_vma);
3333 vma_link(mm, new_vma, prev, rb_link, rb_parent);
3334 *need_rmap_locks = false;
3335 }
3336 return new_vma;
3337
3338 out_free_mempol:
3339 mpol_put(vma_policy(new_vma));
3340 out_free_vma:
3341 new_vma->vm_file = NULL; /* Prevent fput within vm_area_free */
3342 vm_area_free(new_vma);
3343 out:
3344 return NULL;
3345 }
3346
3347 /*
3348 * Return true if the calling process may expand its vm space by the passed
3349 * number of pages
3350 */
may_expand_vm(struct mm_struct * mm,vm_flags_t flags,unsigned long npages)3351 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages)
3352 {
3353 if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT)
3354 return false;
3355
3356 if (is_data_mapping(flags) &&
3357 mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) {
3358 /* Workaround for Valgrind */
3359 if (rlimit(RLIMIT_DATA) == 0 &&
3360 mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT)
3361 return true;
3362
3363 pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits%s.\n",
3364 current->comm, current->pid,
3365 (mm->data_vm + npages) << PAGE_SHIFT,
3366 rlimit(RLIMIT_DATA),
3367 ignore_rlimit_data ? "" : " or use boot option ignore_rlimit_data");
3368
3369 if (!ignore_rlimit_data)
3370 return false;
3371 }
3372
3373 return true;
3374 }
3375
vm_stat_account(struct mm_struct * mm,vm_flags_t flags,long npages)3376 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages)
3377 {
3378 mm->total_vm += npages;
3379
3380 if (is_exec_mapping(flags))
3381 mm->exec_vm += npages;
3382 else if (is_stack_mapping(flags))
3383 mm->stack_vm += npages;
3384 else if (is_data_mapping(flags))
3385 mm->data_vm += npages;
3386 }
3387
3388 static vm_fault_t special_mapping_fault(struct vm_fault *vmf);
3389
3390 /*
3391 * Having a close hook prevents vma merging regardless of flags.
3392 */
special_mapping_close(struct vm_area_struct * vma)3393 static void special_mapping_close(struct vm_area_struct *vma)
3394 {
3395 }
3396
special_mapping_name(struct vm_area_struct * vma)3397 static const char *special_mapping_name(struct vm_area_struct *vma)
3398 {
3399 return ((struct vm_special_mapping *)vma->vm_private_data)->name;
3400 }
3401
special_mapping_mremap(struct vm_area_struct * new_vma)3402 static int special_mapping_mremap(struct vm_area_struct *new_vma)
3403 {
3404 struct vm_special_mapping *sm = new_vma->vm_private_data;
3405
3406 if (WARN_ON_ONCE(current->mm != new_vma->vm_mm))
3407 return -EFAULT;
3408
3409 if (sm->mremap)
3410 return sm->mremap(sm, new_vma);
3411
3412 return 0;
3413 }
3414
special_mapping_split(struct vm_area_struct * vma,unsigned long addr)3415 static int special_mapping_split(struct vm_area_struct *vma, unsigned long addr)
3416 {
3417 /*
3418 * Forbid splitting special mappings - kernel has expectations over
3419 * the number of pages in mapping. Together with VM_DONTEXPAND
3420 * the size of vma should stay the same over the special mapping's
3421 * lifetime.
3422 */
3423 return -EINVAL;
3424 }
3425
3426 static const struct vm_operations_struct special_mapping_vmops = {
3427 .close = special_mapping_close,
3428 .fault = special_mapping_fault,
3429 .mremap = special_mapping_mremap,
3430 .name = special_mapping_name,
3431 /* vDSO code relies that VVAR can't be accessed remotely */
3432 .access = NULL,
3433 .may_split = special_mapping_split,
3434 };
3435
3436 static const struct vm_operations_struct legacy_special_mapping_vmops = {
3437 .close = special_mapping_close,
3438 .fault = special_mapping_fault,
3439 };
3440
special_mapping_fault(struct vm_fault * vmf)3441 static vm_fault_t special_mapping_fault(struct vm_fault *vmf)
3442 {
3443 struct vm_area_struct *vma = vmf->vma;
3444 pgoff_t pgoff;
3445 struct page **pages;
3446
3447 if (vma->vm_ops == &legacy_special_mapping_vmops) {
3448 pages = vma->vm_private_data;
3449 } else {
3450 struct vm_special_mapping *sm = vma->vm_private_data;
3451
3452 if (sm->fault)
3453 return sm->fault(sm, vmf->vma, vmf);
3454
3455 pages = sm->pages;
3456 }
3457
3458 for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
3459 pgoff--;
3460
3461 if (*pages) {
3462 struct page *page = *pages;
3463 get_page(page);
3464 vmf->page = page;
3465 return 0;
3466 }
3467
3468 return VM_FAULT_SIGBUS;
3469 }
3470
__install_special_mapping(struct mm_struct * mm,unsigned long addr,unsigned long len,unsigned long vm_flags,void * priv,const struct vm_operations_struct * ops)3471 static struct vm_area_struct *__install_special_mapping(
3472 struct mm_struct *mm,
3473 unsigned long addr, unsigned long len,
3474 unsigned long vm_flags, void *priv,
3475 const struct vm_operations_struct *ops)
3476 {
3477 int ret;
3478 struct vm_area_struct *vma;
3479
3480 vma = vm_area_alloc(mm);
3481 if (unlikely(vma == NULL))
3482 return ERR_PTR(-ENOMEM);
3483
3484 vma->vm_start = addr;
3485 vma->vm_end = addr + len;
3486
3487 vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY;
3488 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3489
3490 vma->vm_ops = ops;
3491 vma->vm_private_data = priv;
3492
3493 ret = insert_vm_struct(mm, vma);
3494 if (ret)
3495 goto out;
3496
3497 vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT);
3498
3499 perf_event_mmap(vma);
3500
3501 return vma;
3502
3503 out:
3504 vm_area_free(vma);
3505 return ERR_PTR(ret);
3506 }
3507
vma_is_special_mapping(const struct vm_area_struct * vma,const struct vm_special_mapping * sm)3508 bool vma_is_special_mapping(const struct vm_area_struct *vma,
3509 const struct vm_special_mapping *sm)
3510 {
3511 return vma->vm_private_data == sm &&
3512 (vma->vm_ops == &special_mapping_vmops ||
3513 vma->vm_ops == &legacy_special_mapping_vmops);
3514 }
3515
3516 /*
3517 * Called with mm->mmap_lock held for writing.
3518 * Insert a new vma covering the given region, with the given flags.
3519 * Its pages are supplied by the given array of struct page *.
3520 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3521 * The region past the last page supplied will always produce SIGBUS.
3522 * The array pointer and the pages it points to are assumed to stay alive
3523 * for as long as this mapping might exist.
3524 */
_install_special_mapping(struct mm_struct * mm,unsigned long addr,unsigned long len,unsigned long vm_flags,const struct vm_special_mapping * spec)3525 struct vm_area_struct *_install_special_mapping(
3526 struct mm_struct *mm,
3527 unsigned long addr, unsigned long len,
3528 unsigned long vm_flags, const struct vm_special_mapping *spec)
3529 {
3530 return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
3531 &special_mapping_vmops);
3532 }
3533
install_special_mapping(struct mm_struct * mm,unsigned long addr,unsigned long len,unsigned long vm_flags,struct page ** pages)3534 int install_special_mapping(struct mm_struct *mm,
3535 unsigned long addr, unsigned long len,
3536 unsigned long vm_flags, struct page **pages)
3537 {
3538 struct vm_area_struct *vma = __install_special_mapping(
3539 mm, addr, len, vm_flags, (void *)pages,
3540 &legacy_special_mapping_vmops);
3541
3542 return PTR_ERR_OR_ZERO(vma);
3543 }
3544
3545 static DEFINE_MUTEX(mm_all_locks_mutex);
3546
vm_lock_anon_vma(struct mm_struct * mm,struct anon_vma * anon_vma)3547 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3548 {
3549 if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3550 /*
3551 * The LSB of head.next can't change from under us
3552 * because we hold the mm_all_locks_mutex.
3553 */
3554 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_lock);
3555 /*
3556 * We can safely modify head.next after taking the
3557 * anon_vma->root->rwsem. If some other vma in this mm shares
3558 * the same anon_vma we won't take it again.
3559 *
3560 * No need of atomic instructions here, head.next
3561 * can't change from under us thanks to the
3562 * anon_vma->root->rwsem.
3563 */
3564 if (__test_and_set_bit(0, (unsigned long *)
3565 &anon_vma->root->rb_root.rb_root.rb_node))
3566 BUG();
3567 }
3568 }
3569
vm_lock_mapping(struct mm_struct * mm,struct address_space * mapping)3570 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3571 {
3572 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3573 /*
3574 * AS_MM_ALL_LOCKS can't change from under us because
3575 * we hold the mm_all_locks_mutex.
3576 *
3577 * Operations on ->flags have to be atomic because
3578 * even if AS_MM_ALL_LOCKS is stable thanks to the
3579 * mm_all_locks_mutex, there may be other cpus
3580 * changing other bitflags in parallel to us.
3581 */
3582 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3583 BUG();
3584 down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_lock);
3585 }
3586 }
3587
3588 /*
3589 * This operation locks against the VM for all pte/vma/mm related
3590 * operations that could ever happen on a certain mm. This includes
3591 * vmtruncate, try_to_unmap, and all page faults.
3592 *
3593 * The caller must take the mmap_lock in write mode before calling
3594 * mm_take_all_locks(). The caller isn't allowed to release the
3595 * mmap_lock until mm_drop_all_locks() returns.
3596 *
3597 * mmap_lock in write mode is required in order to block all operations
3598 * that could modify pagetables and free pages without need of
3599 * altering the vma layout. It's also needed in write mode to avoid new
3600 * anon_vmas to be associated with existing vmas.
3601 *
3602 * A single task can't take more than one mm_take_all_locks() in a row
3603 * or it would deadlock.
3604 *
3605 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3606 * mapping->flags avoid to take the same lock twice, if more than one
3607 * vma in this mm is backed by the same anon_vma or address_space.
3608 *
3609 * We take locks in following order, accordingly to comment at beginning
3610 * of mm/rmap.c:
3611 * - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
3612 * hugetlb mapping);
3613 * - all i_mmap_rwsem locks;
3614 * - all anon_vma->rwseml
3615 *
3616 * We can take all locks within these types randomly because the VM code
3617 * doesn't nest them and we protected from parallel mm_take_all_locks() by
3618 * mm_all_locks_mutex.
3619 *
3620 * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3621 * that may have to take thousand of locks.
3622 *
3623 * mm_take_all_locks() can fail if it's interrupted by signals.
3624 */
mm_take_all_locks(struct mm_struct * mm)3625 int mm_take_all_locks(struct mm_struct *mm)
3626 {
3627 struct vm_area_struct *vma;
3628 struct anon_vma_chain *avc;
3629
3630 BUG_ON(mmap_read_trylock(mm));
3631
3632 mutex_lock(&mm_all_locks_mutex);
3633
3634 #if defined(CONFIG_MMU_NOTIFIER) && defined(CONFIG_SPECULATIVE_PAGE_FAULT)
3635 percpu_down_write(mm->mmu_notifier_lock);
3636 #endif
3637
3638 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3639 if (signal_pending(current))
3640 goto out_unlock;
3641 if (vma->vm_file && vma->vm_file->f_mapping &&
3642 is_vm_hugetlb_page(vma))
3643 vm_lock_mapping(mm, vma->vm_file->f_mapping);
3644 }
3645
3646 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3647 if (signal_pending(current))
3648 goto out_unlock;
3649 if (vma->vm_file && vma->vm_file->f_mapping &&
3650 !is_vm_hugetlb_page(vma))
3651 vm_lock_mapping(mm, vma->vm_file->f_mapping);
3652 }
3653
3654 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3655 if (signal_pending(current))
3656 goto out_unlock;
3657 if (vma->anon_vma)
3658 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3659 vm_lock_anon_vma(mm, avc->anon_vma);
3660 }
3661
3662 return 0;
3663
3664 out_unlock:
3665 mm_drop_all_locks(mm);
3666 return -EINTR;
3667 }
3668
vm_unlock_anon_vma(struct anon_vma * anon_vma)3669 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3670 {
3671 if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3672 /*
3673 * The LSB of head.next can't change to 0 from under
3674 * us because we hold the mm_all_locks_mutex.
3675 *
3676 * We must however clear the bitflag before unlocking
3677 * the vma so the users using the anon_vma->rb_root will
3678 * never see our bitflag.
3679 *
3680 * No need of atomic instructions here, head.next
3681 * can't change from under us until we release the
3682 * anon_vma->root->rwsem.
3683 */
3684 if (!__test_and_clear_bit(0, (unsigned long *)
3685 &anon_vma->root->rb_root.rb_root.rb_node))
3686 BUG();
3687 anon_vma_unlock_write(anon_vma);
3688 }
3689 }
3690
vm_unlock_mapping(struct address_space * mapping)3691 static void vm_unlock_mapping(struct address_space *mapping)
3692 {
3693 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3694 /*
3695 * AS_MM_ALL_LOCKS can't change to 0 from under us
3696 * because we hold the mm_all_locks_mutex.
3697 */
3698 i_mmap_unlock_write(mapping);
3699 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3700 &mapping->flags))
3701 BUG();
3702 }
3703 }
3704
3705 /*
3706 * The mmap_lock cannot be released by the caller until
3707 * mm_drop_all_locks() returns.
3708 */
mm_drop_all_locks(struct mm_struct * mm)3709 void mm_drop_all_locks(struct mm_struct *mm)
3710 {
3711 struct vm_area_struct *vma;
3712 struct anon_vma_chain *avc;
3713
3714 BUG_ON(mmap_read_trylock(mm));
3715 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3716
3717 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3718 if (vma->anon_vma)
3719 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3720 vm_unlock_anon_vma(avc->anon_vma);
3721 if (vma->vm_file && vma->vm_file->f_mapping)
3722 vm_unlock_mapping(vma->vm_file->f_mapping);
3723 }
3724
3725 #if defined(CONFIG_MMU_NOTIFIER) && defined(CONFIG_SPECULATIVE_PAGE_FAULT)
3726 percpu_up_write(mm->mmu_notifier_lock);
3727 #endif
3728
3729 mutex_unlock(&mm_all_locks_mutex);
3730 }
3731
3732 /*
3733 * initialise the percpu counter for VM
3734 */
mmap_init(void)3735 void __init mmap_init(void)
3736 {
3737 int ret;
3738
3739 ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3740 VM_BUG_ON(ret);
3741 }
3742
3743 /*
3744 * Initialise sysctl_user_reserve_kbytes.
3745 *
3746 * This is intended to prevent a user from starting a single memory hogging
3747 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3748 * mode.
3749 *
3750 * The default value is min(3% of free memory, 128MB)
3751 * 128MB is enough to recover with sshd/login, bash, and top/kill.
3752 */
init_user_reserve(void)3753 static int init_user_reserve(void)
3754 {
3755 unsigned long free_kbytes;
3756
3757 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3758
3759 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3760 return 0;
3761 }
3762 subsys_initcall(init_user_reserve);
3763
3764 /*
3765 * Initialise sysctl_admin_reserve_kbytes.
3766 *
3767 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3768 * to log in and kill a memory hogging process.
3769 *
3770 * Systems with more than 256MB will reserve 8MB, enough to recover
3771 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3772 * only reserve 3% of free pages by default.
3773 */
init_admin_reserve(void)3774 static int init_admin_reserve(void)
3775 {
3776 unsigned long free_kbytes;
3777
3778 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3779
3780 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3781 return 0;
3782 }
3783 subsys_initcall(init_admin_reserve);
3784
3785 /*
3786 * Reinititalise user and admin reserves if memory is added or removed.
3787 *
3788 * The default user reserve max is 128MB, and the default max for the
3789 * admin reserve is 8MB. These are usually, but not always, enough to
3790 * enable recovery from a memory hogging process using login/sshd, a shell,
3791 * and tools like top. It may make sense to increase or even disable the
3792 * reserve depending on the existence of swap or variations in the recovery
3793 * tools. So, the admin may have changed them.
3794 *
3795 * If memory is added and the reserves have been eliminated or increased above
3796 * the default max, then we'll trust the admin.
3797 *
3798 * If memory is removed and there isn't enough free memory, then we
3799 * need to reset the reserves.
3800 *
3801 * Otherwise keep the reserve set by the admin.
3802 */
reserve_mem_notifier(struct notifier_block * nb,unsigned long action,void * data)3803 static int reserve_mem_notifier(struct notifier_block *nb,
3804 unsigned long action, void *data)
3805 {
3806 unsigned long tmp, free_kbytes;
3807
3808 switch (action) {
3809 case MEM_ONLINE:
3810 /* Default max is 128MB. Leave alone if modified by operator. */
3811 tmp = sysctl_user_reserve_kbytes;
3812 if (0 < tmp && tmp < (1UL << 17))
3813 init_user_reserve();
3814
3815 /* Default max is 8MB. Leave alone if modified by operator. */
3816 tmp = sysctl_admin_reserve_kbytes;
3817 if (0 < tmp && tmp < (1UL << 13))
3818 init_admin_reserve();
3819
3820 break;
3821 case MEM_OFFLINE:
3822 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3823
3824 if (sysctl_user_reserve_kbytes > free_kbytes) {
3825 init_user_reserve();
3826 pr_info("vm.user_reserve_kbytes reset to %lu\n",
3827 sysctl_user_reserve_kbytes);
3828 }
3829
3830 if (sysctl_admin_reserve_kbytes > free_kbytes) {
3831 init_admin_reserve();
3832 pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3833 sysctl_admin_reserve_kbytes);
3834 }
3835 break;
3836 default:
3837 break;
3838 }
3839 return NOTIFY_OK;
3840 }
3841
3842 static struct notifier_block reserve_mem_nb = {
3843 .notifier_call = reserve_mem_notifier,
3844 };
3845
init_reserve_notifier(void)3846 static int __meminit init_reserve_notifier(void)
3847 {
3848 if (register_hotmemory_notifier(&reserve_mem_nb))
3849 pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3850
3851 return 0;
3852 }
3853 subsys_initcall(init_reserve_notifier);
3854