1 /* SPDX-License-Identifier: GPL-2.0+ */
2 /*
3 * Read-Copy Update mechanism for mutual exclusion
4 *
5 * Copyright IBM Corporation, 2001
6 *
7 * Author: Dipankar Sarma <dipankar@in.ibm.com>
8 *
9 * Based on the original work by Paul McKenney <paulmck@vnet.ibm.com>
10 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
11 * Papers:
12 * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf
13 * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001)
14 *
15 * For detailed explanation of Read-Copy Update mechanism see -
16 * http://lse.sourceforge.net/locking/rcupdate.html
17 *
18 */
19
20 #ifndef __LINUX_RCUPDATE_H
21 #define __LINUX_RCUPDATE_H
22
23 #include <linux/types.h>
24 #include <linux/compiler.h>
25 #include <linux/atomic.h>
26 #include <linux/irqflags.h>
27 #include <linux/preempt.h>
28 #include <linux/bottom_half.h>
29 #include <linux/lockdep.h>
30 #include <asm/processor.h>
31 #include <linux/cpumask.h>
32
33 #define ULONG_CMP_GE(a, b) (ULONG_MAX / 2 >= (a) - (b))
34 #define ULONG_CMP_LT(a, b) (ULONG_MAX / 2 < (a) - (b))
35 #define ulong2long(a) (*(long *)(&(a)))
36 #define USHORT_CMP_GE(a, b) (USHRT_MAX / 2 >= (unsigned short)((a) - (b)))
37 #define USHORT_CMP_LT(a, b) (USHRT_MAX / 2 < (unsigned short)((a) - (b)))
38
39 /* Exported common interfaces */
40 void call_rcu(struct rcu_head *head, rcu_callback_t func);
41 void rcu_barrier_tasks(void);
42 void rcu_barrier_tasks_rude(void);
43 void synchronize_rcu(void);
44
45 #ifdef CONFIG_PREEMPT_RCU
46
47 void __rcu_read_lock(void);
48 void __rcu_read_unlock(void);
49
50 /*
51 * Defined as a macro as it is a very low level header included from
52 * areas that don't even know about current. This gives the rcu_read_lock()
53 * nesting depth, but makes sense only if CONFIG_PREEMPT_RCU -- in other
54 * types of kernel builds, the rcu_read_lock() nesting depth is unknowable.
55 */
56 #define rcu_preempt_depth() READ_ONCE(current->rcu_read_lock_nesting)
57
58 #else /* #ifdef CONFIG_PREEMPT_RCU */
59
60 #ifdef CONFIG_TINY_RCU
61 #define rcu_read_unlock_strict() do { } while (0)
62 #else
63 void rcu_read_unlock_strict(void);
64 #endif
65
__rcu_read_lock(void)66 static inline void __rcu_read_lock(void)
67 {
68 preempt_disable();
69 }
70
__rcu_read_unlock(void)71 static inline void __rcu_read_unlock(void)
72 {
73 preempt_enable();
74 rcu_read_unlock_strict();
75 }
76
rcu_preempt_depth(void)77 static inline int rcu_preempt_depth(void)
78 {
79 return 0;
80 }
81
82 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */
83
84 #ifdef CONFIG_RCU_LAZY
85 void call_rcu_hurry(struct rcu_head *head, rcu_callback_t func);
86 #else
call_rcu_hurry(struct rcu_head * head,rcu_callback_t func)87 static inline void call_rcu_hurry(struct rcu_head *head, rcu_callback_t func)
88 {
89 call_rcu(head, func);
90 }
91 #endif
92
93 /* Internal to kernel */
94 void rcu_init(void);
95 extern int rcu_scheduler_active __read_mostly;
96 void rcu_sched_clock_irq(int user);
97 void rcu_report_dead(unsigned int cpu);
98 void rcutree_migrate_callbacks(int cpu);
99
100 #ifdef CONFIG_TASKS_RCU_GENERIC
101 void rcu_init_tasks_generic(void);
102 #else
rcu_init_tasks_generic(void)103 static inline void rcu_init_tasks_generic(void) { }
104 #endif
105
106 #ifdef CONFIG_RCU_STALL_COMMON
107 void rcu_sysrq_start(void);
108 void rcu_sysrq_end(void);
109 #else /* #ifdef CONFIG_RCU_STALL_COMMON */
rcu_sysrq_start(void)110 static inline void rcu_sysrq_start(void) { }
rcu_sysrq_end(void)111 static inline void rcu_sysrq_end(void) { }
112 #endif /* #else #ifdef CONFIG_RCU_STALL_COMMON */
113
114 #ifdef CONFIG_NO_HZ_FULL
115 void rcu_user_enter(void);
116 void rcu_user_exit(void);
117 #else
rcu_user_enter(void)118 static inline void rcu_user_enter(void) { }
rcu_user_exit(void)119 static inline void rcu_user_exit(void) { }
120 #endif /* CONFIG_NO_HZ_FULL */
121
122 #ifdef CONFIG_RCU_NOCB_CPU
123 void rcu_init_nohz(void);
124 int rcu_nocb_cpu_offload(int cpu);
125 int rcu_nocb_cpu_deoffload(int cpu);
126 void rcu_nocb_flush_deferred_wakeup(void);
127 #else /* #ifdef CONFIG_RCU_NOCB_CPU */
rcu_init_nohz(void)128 static inline void rcu_init_nohz(void) { }
rcu_nocb_cpu_offload(int cpu)129 static inline int rcu_nocb_cpu_offload(int cpu) { return -EINVAL; }
rcu_nocb_cpu_deoffload(int cpu)130 static inline int rcu_nocb_cpu_deoffload(int cpu) { return 0; }
rcu_nocb_flush_deferred_wakeup(void)131 static inline void rcu_nocb_flush_deferred_wakeup(void) { }
132 #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
133
134 /**
135 * RCU_NONIDLE - Indicate idle-loop code that needs RCU readers
136 * @a: Code that RCU needs to pay attention to.
137 *
138 * RCU read-side critical sections are forbidden in the inner idle loop,
139 * that is, between the rcu_idle_enter() and the rcu_idle_exit() -- RCU
140 * will happily ignore any such read-side critical sections. However,
141 * things like powertop need tracepoints in the inner idle loop.
142 *
143 * This macro provides the way out: RCU_NONIDLE(do_something_with_RCU())
144 * will tell RCU that it needs to pay attention, invoke its argument
145 * (in this example, calling the do_something_with_RCU() function),
146 * and then tell RCU to go back to ignoring this CPU. It is permissible
147 * to nest RCU_NONIDLE() wrappers, but not indefinitely (but the limit is
148 * on the order of a million or so, even on 32-bit systems). It is
149 * not legal to block within RCU_NONIDLE(), nor is it permissible to
150 * transfer control either into or out of RCU_NONIDLE()'s statement.
151 */
152 #define RCU_NONIDLE(a) \
153 do { \
154 rcu_irq_enter_irqson(); \
155 do { a; } while (0); \
156 rcu_irq_exit_irqson(); \
157 } while (0)
158
159 /*
160 * Note a quasi-voluntary context switch for RCU-tasks's benefit.
161 * This is a macro rather than an inline function to avoid #include hell.
162 */
163 #ifdef CONFIG_TASKS_RCU_GENERIC
164
165 # ifdef CONFIG_TASKS_RCU
166 # define rcu_tasks_classic_qs(t, preempt) \
167 do { \
168 if (!(preempt) && READ_ONCE((t)->rcu_tasks_holdout)) \
169 WRITE_ONCE((t)->rcu_tasks_holdout, false); \
170 } while (0)
171 void call_rcu_tasks(struct rcu_head *head, rcu_callback_t func);
172 void synchronize_rcu_tasks(void);
173 # else
174 # define rcu_tasks_classic_qs(t, preempt) do { } while (0)
175 # define call_rcu_tasks call_rcu
176 # define synchronize_rcu_tasks synchronize_rcu
177 # endif
178
179 # ifdef CONFIG_TASKS_TRACE_RCU
180 # define rcu_tasks_trace_qs(t) \
181 do { \
182 if (!likely(READ_ONCE((t)->trc_reader_checked)) && \
183 !unlikely(READ_ONCE((t)->trc_reader_nesting))) { \
184 smp_store_release(&(t)->trc_reader_checked, true); \
185 smp_mb(); /* Readers partitioned by store. */ \
186 } \
187 } while (0)
188 # else
189 # define rcu_tasks_trace_qs(t) do { } while (0)
190 # endif
191
192 #define rcu_tasks_qs(t, preempt) \
193 do { \
194 rcu_tasks_classic_qs((t), (preempt)); \
195 rcu_tasks_trace_qs((t)); \
196 } while (0)
197
198 # ifdef CONFIG_TASKS_RUDE_RCU
199 void call_rcu_tasks_rude(struct rcu_head *head, rcu_callback_t func);
200 void synchronize_rcu_tasks_rude(void);
201 # endif
202
203 #define rcu_note_voluntary_context_switch(t) rcu_tasks_qs(t, false)
204 void exit_tasks_rcu_start(void);
205 void exit_tasks_rcu_stop(void);
206 void exit_tasks_rcu_finish(void);
207 #else /* #ifdef CONFIG_TASKS_RCU_GENERIC */
208 #define rcu_tasks_qs(t, preempt) do { } while (0)
209 #define rcu_note_voluntary_context_switch(t) do { } while (0)
210 #define call_rcu_tasks call_rcu
211 #define synchronize_rcu_tasks synchronize_rcu
exit_tasks_rcu_start(void)212 static inline void exit_tasks_rcu_start(void) { }
exit_tasks_rcu_stop(void)213 static inline void exit_tasks_rcu_stop(void) { }
exit_tasks_rcu_finish(void)214 static inline void exit_tasks_rcu_finish(void) { }
215 #endif /* #else #ifdef CONFIG_TASKS_RCU_GENERIC */
216
217 /**
218 * cond_resched_tasks_rcu_qs - Report potential quiescent states to RCU
219 *
220 * This macro resembles cond_resched(), except that it is defined to
221 * report potential quiescent states to RCU-tasks even if the cond_resched()
222 * machinery were to be shut off, as some advocate for PREEMPTION kernels.
223 */
224 #define cond_resched_tasks_rcu_qs() \
225 do { \
226 rcu_tasks_qs(current, false); \
227 cond_resched(); \
228 } while (0)
229
230 /*
231 * Infrastructure to implement the synchronize_() primitives in
232 * TREE_RCU and rcu_barrier_() primitives in TINY_RCU.
233 */
234
235 #if defined(CONFIG_TREE_RCU)
236 #include <linux/rcutree.h>
237 #elif defined(CONFIG_TINY_RCU)
238 #include <linux/rcutiny.h>
239 #else
240 #error "Unknown RCU implementation specified to kernel configuration"
241 #endif
242
243 /*
244 * The init_rcu_head_on_stack() and destroy_rcu_head_on_stack() calls
245 * are needed for dynamic initialization and destruction of rcu_head
246 * on the stack, and init_rcu_head()/destroy_rcu_head() are needed for
247 * dynamic initialization and destruction of statically allocated rcu_head
248 * structures. However, rcu_head structures allocated dynamically in the
249 * heap don't need any initialization.
250 */
251 #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
252 void init_rcu_head(struct rcu_head *head);
253 void destroy_rcu_head(struct rcu_head *head);
254 void init_rcu_head_on_stack(struct rcu_head *head);
255 void destroy_rcu_head_on_stack(struct rcu_head *head);
256 #else /* !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
init_rcu_head(struct rcu_head * head)257 static inline void init_rcu_head(struct rcu_head *head) { }
destroy_rcu_head(struct rcu_head * head)258 static inline void destroy_rcu_head(struct rcu_head *head) { }
init_rcu_head_on_stack(struct rcu_head * head)259 static inline void init_rcu_head_on_stack(struct rcu_head *head) { }
destroy_rcu_head_on_stack(struct rcu_head * head)260 static inline void destroy_rcu_head_on_stack(struct rcu_head *head) { }
261 #endif /* #else !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
262
263 #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU)
264 bool rcu_lockdep_current_cpu_online(void);
265 #else /* #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */
rcu_lockdep_current_cpu_online(void)266 static inline bool rcu_lockdep_current_cpu_online(void) { return true; }
267 #endif /* #else #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */
268
269 extern struct lockdep_map rcu_lock_map;
270 extern struct lockdep_map rcu_bh_lock_map;
271 extern struct lockdep_map rcu_sched_lock_map;
272 extern struct lockdep_map rcu_callback_map;
273
274 #ifdef CONFIG_DEBUG_LOCK_ALLOC
275
rcu_lock_acquire(struct lockdep_map * map)276 static inline void rcu_lock_acquire(struct lockdep_map *map)
277 {
278 lock_acquire(map, 0, 0, 2, 0, NULL, _THIS_IP_);
279 }
280
rcu_lock_release(struct lockdep_map * map)281 static inline void rcu_lock_release(struct lockdep_map *map)
282 {
283 lock_release(map, _THIS_IP_);
284 }
285
286 int debug_lockdep_rcu_enabled(void);
287 int rcu_read_lock_held(void);
288 int rcu_read_lock_bh_held(void);
289 int rcu_read_lock_sched_held(void);
290 int rcu_read_lock_any_held(void);
291
292 #else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
293
294 # define rcu_lock_acquire(a) do { } while (0)
295 # define rcu_lock_release(a) do { } while (0)
296
rcu_read_lock_held(void)297 static inline int rcu_read_lock_held(void)
298 {
299 return 1;
300 }
301
rcu_read_lock_bh_held(void)302 static inline int rcu_read_lock_bh_held(void)
303 {
304 return 1;
305 }
306
rcu_read_lock_sched_held(void)307 static inline int rcu_read_lock_sched_held(void)
308 {
309 return !preemptible();
310 }
311
rcu_read_lock_any_held(void)312 static inline int rcu_read_lock_any_held(void)
313 {
314 return !preemptible();
315 }
316
317 #endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */
318
319 #ifdef CONFIG_PROVE_RCU
320
321 /**
322 * RCU_LOCKDEP_WARN - emit lockdep splat if specified condition is met
323 * @c: condition to check
324 * @s: informative message
325 *
326 * This checks debug_lockdep_rcu_enabled() before checking (c) to
327 * prevent early boot splats due to lockdep not yet being initialized,
328 * and rechecks it after checking (c) to prevent false-positive splats
329 * due to races with lockdep being disabled. See commit 3066820034b5dd
330 * ("rcu: Reject RCU_LOCKDEP_WARN() false positives") for more detail.
331 */
332 #define RCU_LOCKDEP_WARN(c, s) \
333 do { \
334 static bool __section(".data.unlikely") __warned; \
335 if (debug_lockdep_rcu_enabled() && (c) && \
336 debug_lockdep_rcu_enabled() && !__warned) { \
337 __warned = true; \
338 lockdep_rcu_suspicious(__FILE__, __LINE__, s); \
339 } \
340 } while (0)
341
342 #if defined(CONFIG_PROVE_RCU) && !defined(CONFIG_PREEMPT_RCU)
rcu_preempt_sleep_check(void)343 static inline void rcu_preempt_sleep_check(void)
344 {
345 RCU_LOCKDEP_WARN(lock_is_held(&rcu_lock_map),
346 "Illegal context switch in RCU read-side critical section");
347 }
348 #else /* #ifdef CONFIG_PROVE_RCU */
rcu_preempt_sleep_check(void)349 static inline void rcu_preempt_sleep_check(void) { }
350 #endif /* #else #ifdef CONFIG_PROVE_RCU */
351
352 #define rcu_sleep_check() \
353 do { \
354 rcu_preempt_sleep_check(); \
355 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) \
356 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map), \
357 "Illegal context switch in RCU-bh read-side critical section"); \
358 RCU_LOCKDEP_WARN(lock_is_held(&rcu_sched_lock_map), \
359 "Illegal context switch in RCU-sched read-side critical section"); \
360 } while (0)
361
362 #else /* #ifdef CONFIG_PROVE_RCU */
363
364 #define RCU_LOCKDEP_WARN(c, s) do { } while (0 && (c))
365 #define rcu_sleep_check() do { } while (0)
366
367 #endif /* #else #ifdef CONFIG_PROVE_RCU */
368
369 /*
370 * Helper functions for rcu_dereference_check(), rcu_dereference_protected()
371 * and rcu_assign_pointer(). Some of these could be folded into their
372 * callers, but they are left separate in order to ease introduction of
373 * multiple pointers markings to match different RCU implementations
374 * (e.g., __srcu), should this make sense in the future.
375 */
376
377 #ifdef __CHECKER__
378 #define rcu_check_sparse(p, space) \
379 ((void)(((typeof(*p) space *)p) == p))
380 #else /* #ifdef __CHECKER__ */
381 #define rcu_check_sparse(p, space)
382 #endif /* #else #ifdef __CHECKER__ */
383
384 /**
385 * unrcu_pointer - mark a pointer as not being RCU protected
386 * @p: pointer needing to lose its __rcu property
387 *
388 * Converts @p from an __rcu pointer to a __kernel pointer.
389 * This allows an __rcu pointer to be used with xchg() and friends.
390 */
391 #define unrcu_pointer(p) \
392 ({ \
393 typeof(*p) *_________p1 = (typeof(*p) *__force)(p); \
394 rcu_check_sparse(p, __rcu); \
395 ((typeof(*p) __force __kernel *)(_________p1)); \
396 })
397
398 #define __rcu_access_pointer(p, space) \
399 ({ \
400 typeof(*p) *_________p1 = (typeof(*p) *__force)READ_ONCE(p); \
401 rcu_check_sparse(p, space); \
402 ((typeof(*p) __force __kernel *)(_________p1)); \
403 })
404 #define __rcu_dereference_check(p, c, space) \
405 ({ \
406 /* Dependency order vs. p above. */ \
407 typeof(*p) *________p1 = (typeof(*p) *__force)READ_ONCE(p); \
408 RCU_LOCKDEP_WARN(!(c), "suspicious rcu_dereference_check() usage"); \
409 rcu_check_sparse(p, space); \
410 ((typeof(*p) __force __kernel *)(________p1)); \
411 })
412 #define __rcu_dereference_protected(p, c, space) \
413 ({ \
414 RCU_LOCKDEP_WARN(!(c), "suspicious rcu_dereference_protected() usage"); \
415 rcu_check_sparse(p, space); \
416 ((typeof(*p) __force __kernel *)(p)); \
417 })
418 #define rcu_dereference_raw(p) \
419 ({ \
420 /* Dependency order vs. p above. */ \
421 typeof(p) ________p1 = READ_ONCE(p); \
422 ((typeof(*p) __force __kernel *)(________p1)); \
423 })
424
425 /**
426 * RCU_INITIALIZER() - statically initialize an RCU-protected global variable
427 * @v: The value to statically initialize with.
428 */
429 #define RCU_INITIALIZER(v) (typeof(*(v)) __force __rcu *)(v)
430
431 /**
432 * rcu_assign_pointer() - assign to RCU-protected pointer
433 * @p: pointer to assign to
434 * @v: value to assign (publish)
435 *
436 * Assigns the specified value to the specified RCU-protected
437 * pointer, ensuring that any concurrent RCU readers will see
438 * any prior initialization.
439 *
440 * Inserts memory barriers on architectures that require them
441 * (which is most of them), and also prevents the compiler from
442 * reordering the code that initializes the structure after the pointer
443 * assignment. More importantly, this call documents which pointers
444 * will be dereferenced by RCU read-side code.
445 *
446 * In some special cases, you may use RCU_INIT_POINTER() instead
447 * of rcu_assign_pointer(). RCU_INIT_POINTER() is a bit faster due
448 * to the fact that it does not constrain either the CPU or the compiler.
449 * That said, using RCU_INIT_POINTER() when you should have used
450 * rcu_assign_pointer() is a very bad thing that results in
451 * impossible-to-diagnose memory corruption. So please be careful.
452 * See the RCU_INIT_POINTER() comment header for details.
453 *
454 * Note that rcu_assign_pointer() evaluates each of its arguments only
455 * once, appearances notwithstanding. One of the "extra" evaluations
456 * is in typeof() and the other visible only to sparse (__CHECKER__),
457 * neither of which actually execute the argument. As with most cpp
458 * macros, this execute-arguments-only-once property is important, so
459 * please be careful when making changes to rcu_assign_pointer() and the
460 * other macros that it invokes.
461 */
462 #define rcu_assign_pointer(p, v) \
463 do { \
464 uintptr_t _r_a_p__v = (uintptr_t)(v); \
465 rcu_check_sparse(p, __rcu); \
466 \
467 if (__builtin_constant_p(v) && (_r_a_p__v) == (uintptr_t)NULL) \
468 WRITE_ONCE((p), (typeof(p))(_r_a_p__v)); \
469 else \
470 smp_store_release(&p, RCU_INITIALIZER((typeof(p))_r_a_p__v)); \
471 } while (0)
472
473 /**
474 * rcu_replace_pointer() - replace an RCU pointer, returning its old value
475 * @rcu_ptr: RCU pointer, whose old value is returned
476 * @ptr: regular pointer
477 * @c: the lockdep conditions under which the dereference will take place
478 *
479 * Perform a replacement, where @rcu_ptr is an RCU-annotated
480 * pointer and @c is the lockdep argument that is passed to the
481 * rcu_dereference_protected() call used to read that pointer. The old
482 * value of @rcu_ptr is returned, and @rcu_ptr is set to @ptr.
483 */
484 #define rcu_replace_pointer(rcu_ptr, ptr, c) \
485 ({ \
486 typeof(ptr) __tmp = rcu_dereference_protected((rcu_ptr), (c)); \
487 rcu_assign_pointer((rcu_ptr), (ptr)); \
488 __tmp; \
489 })
490
491 /**
492 * rcu_access_pointer() - fetch RCU pointer with no dereferencing
493 * @p: The pointer to read
494 *
495 * Return the value of the specified RCU-protected pointer, but omit the
496 * lockdep checks for being in an RCU read-side critical section. This is
497 * useful when the value of this pointer is accessed, but the pointer is
498 * not dereferenced, for example, when testing an RCU-protected pointer
499 * against NULL. Although rcu_access_pointer() may also be used in cases
500 * where update-side locks prevent the value of the pointer from changing,
501 * you should instead use rcu_dereference_protected() for this use case.
502 *
503 * It is also permissible to use rcu_access_pointer() when read-side
504 * access to the pointer was removed at least one grace period ago, as
505 * is the case in the context of the RCU callback that is freeing up
506 * the data, or after a synchronize_rcu() returns. This can be useful
507 * when tearing down multi-linked structures after a grace period
508 * has elapsed.
509 */
510 #define rcu_access_pointer(p) __rcu_access_pointer((p), __rcu)
511
512 /**
513 * rcu_dereference_check() - rcu_dereference with debug checking
514 * @p: The pointer to read, prior to dereferencing
515 * @c: The conditions under which the dereference will take place
516 *
517 * Do an rcu_dereference(), but check that the conditions under which the
518 * dereference will take place are correct. Typically the conditions
519 * indicate the various locking conditions that should be held at that
520 * point. The check should return true if the conditions are satisfied.
521 * An implicit check for being in an RCU read-side critical section
522 * (rcu_read_lock()) is included.
523 *
524 * For example:
525 *
526 * bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock));
527 *
528 * could be used to indicate to lockdep that foo->bar may only be dereferenced
529 * if either rcu_read_lock() is held, or that the lock required to replace
530 * the bar struct at foo->bar is held.
531 *
532 * Note that the list of conditions may also include indications of when a lock
533 * need not be held, for example during initialisation or destruction of the
534 * target struct:
535 *
536 * bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock) ||
537 * atomic_read(&foo->usage) == 0);
538 *
539 * Inserts memory barriers on architectures that require them
540 * (currently only the Alpha), prevents the compiler from refetching
541 * (and from merging fetches), and, more importantly, documents exactly
542 * which pointers are protected by RCU and checks that the pointer is
543 * annotated as __rcu.
544 */
545 #define rcu_dereference_check(p, c) \
546 __rcu_dereference_check((p), (c) || rcu_read_lock_held(), __rcu)
547
548 /**
549 * rcu_dereference_bh_check() - rcu_dereference_bh with debug checking
550 * @p: The pointer to read, prior to dereferencing
551 * @c: The conditions under which the dereference will take place
552 *
553 * This is the RCU-bh counterpart to rcu_dereference_check(). However,
554 * please note that starting in v5.0 kernels, vanilla RCU grace periods
555 * wait for local_bh_disable() regions of code in addition to regions of
556 * code demarked by rcu_read_lock() and rcu_read_unlock(). This means
557 * that synchronize_rcu(), call_rcu, and friends all take not only
558 * rcu_read_lock() but also rcu_read_lock_bh() into account.
559 */
560 #define rcu_dereference_bh_check(p, c) \
561 __rcu_dereference_check((p), (c) || rcu_read_lock_bh_held(), __rcu)
562
563 /**
564 * rcu_dereference_sched_check() - rcu_dereference_sched with debug checking
565 * @p: The pointer to read, prior to dereferencing
566 * @c: The conditions under which the dereference will take place
567 *
568 * This is the RCU-sched counterpart to rcu_dereference_check().
569 * However, please note that starting in v5.0 kernels, vanilla RCU grace
570 * periods wait for preempt_disable() regions of code in addition to
571 * regions of code demarked by rcu_read_lock() and rcu_read_unlock().
572 * This means that synchronize_rcu(), call_rcu, and friends all take not
573 * only rcu_read_lock() but also rcu_read_lock_sched() into account.
574 */
575 #define rcu_dereference_sched_check(p, c) \
576 __rcu_dereference_check((p), (c) || rcu_read_lock_sched_held(), \
577 __rcu)
578
579 /*
580 * The tracing infrastructure traces RCU (we want that), but unfortunately
581 * some of the RCU checks causes tracing to lock up the system.
582 *
583 * The no-tracing version of rcu_dereference_raw() must not call
584 * rcu_read_lock_held().
585 */
586 #define rcu_dereference_raw_check(p) __rcu_dereference_check((p), 1, __rcu)
587
588 /**
589 * rcu_dereference_protected() - fetch RCU pointer when updates prevented
590 * @p: The pointer to read, prior to dereferencing
591 * @c: The conditions under which the dereference will take place
592 *
593 * Return the value of the specified RCU-protected pointer, but omit
594 * the READ_ONCE(). This is useful in cases where update-side locks
595 * prevent the value of the pointer from changing. Please note that this
596 * primitive does *not* prevent the compiler from repeating this reference
597 * or combining it with other references, so it should not be used without
598 * protection of appropriate locks.
599 *
600 * This function is only for update-side use. Using this function
601 * when protected only by rcu_read_lock() will result in infrequent
602 * but very ugly failures.
603 */
604 #define rcu_dereference_protected(p, c) \
605 __rcu_dereference_protected((p), (c), __rcu)
606
607
608 /**
609 * rcu_dereference() - fetch RCU-protected pointer for dereferencing
610 * @p: The pointer to read, prior to dereferencing
611 *
612 * This is a simple wrapper around rcu_dereference_check().
613 */
614 #define rcu_dereference(p) rcu_dereference_check(p, 0)
615
616 /**
617 * rcu_dereference_bh() - fetch an RCU-bh-protected pointer for dereferencing
618 * @p: The pointer to read, prior to dereferencing
619 *
620 * Makes rcu_dereference_check() do the dirty work.
621 */
622 #define rcu_dereference_bh(p) rcu_dereference_bh_check(p, 0)
623
624 /**
625 * rcu_dereference_sched() - fetch RCU-sched-protected pointer for dereferencing
626 * @p: The pointer to read, prior to dereferencing
627 *
628 * Makes rcu_dereference_check() do the dirty work.
629 */
630 #define rcu_dereference_sched(p) rcu_dereference_sched_check(p, 0)
631
632 /**
633 * rcu_pointer_handoff() - Hand off a pointer from RCU to other mechanism
634 * @p: The pointer to hand off
635 *
636 * This is simply an identity function, but it documents where a pointer
637 * is handed off from RCU to some other synchronization mechanism, for
638 * example, reference counting or locking. In C11, it would map to
639 * kill_dependency(). It could be used as follows::
640 *
641 * rcu_read_lock();
642 * p = rcu_dereference(gp);
643 * long_lived = is_long_lived(p);
644 * if (long_lived) {
645 * if (!atomic_inc_not_zero(p->refcnt))
646 * long_lived = false;
647 * else
648 * p = rcu_pointer_handoff(p);
649 * }
650 * rcu_read_unlock();
651 */
652 #define rcu_pointer_handoff(p) (p)
653
654 /**
655 * rcu_read_lock() - mark the beginning of an RCU read-side critical section
656 *
657 * When synchronize_rcu() is invoked on one CPU while other CPUs
658 * are within RCU read-side critical sections, then the
659 * synchronize_rcu() is guaranteed to block until after all the other
660 * CPUs exit their critical sections. Similarly, if call_rcu() is invoked
661 * on one CPU while other CPUs are within RCU read-side critical
662 * sections, invocation of the corresponding RCU callback is deferred
663 * until after the all the other CPUs exit their critical sections.
664 *
665 * In v5.0 and later kernels, synchronize_rcu() and call_rcu() also
666 * wait for regions of code with preemption disabled, including regions of
667 * code with interrupts or softirqs disabled. In pre-v5.0 kernels, which
668 * define synchronize_sched(), only code enclosed within rcu_read_lock()
669 * and rcu_read_unlock() are guaranteed to be waited for.
670 *
671 * Note, however, that RCU callbacks are permitted to run concurrently
672 * with new RCU read-side critical sections. One way that this can happen
673 * is via the following sequence of events: (1) CPU 0 enters an RCU
674 * read-side critical section, (2) CPU 1 invokes call_rcu() to register
675 * an RCU callback, (3) CPU 0 exits the RCU read-side critical section,
676 * (4) CPU 2 enters a RCU read-side critical section, (5) the RCU
677 * callback is invoked. This is legal, because the RCU read-side critical
678 * section that was running concurrently with the call_rcu() (and which
679 * therefore might be referencing something that the corresponding RCU
680 * callback would free up) has completed before the corresponding
681 * RCU callback is invoked.
682 *
683 * RCU read-side critical sections may be nested. Any deferred actions
684 * will be deferred until the outermost RCU read-side critical section
685 * completes.
686 *
687 * You can avoid reading and understanding the next paragraph by
688 * following this rule: don't put anything in an rcu_read_lock() RCU
689 * read-side critical section that would block in a !PREEMPTION kernel.
690 * But if you want the full story, read on!
691 *
692 * In non-preemptible RCU implementations (pure TREE_RCU and TINY_RCU),
693 * it is illegal to block while in an RCU read-side critical section.
694 * In preemptible RCU implementations (PREEMPT_RCU) in CONFIG_PREEMPTION
695 * kernel builds, RCU read-side critical sections may be preempted,
696 * but explicit blocking is illegal. Finally, in preemptible RCU
697 * implementations in real-time (with -rt patchset) kernel builds, RCU
698 * read-side critical sections may be preempted and they may also block, but
699 * only when acquiring spinlocks that are subject to priority inheritance.
700 */
rcu_read_lock(void)701 static __always_inline void rcu_read_lock(void)
702 {
703 __rcu_read_lock();
704 __acquire(RCU);
705 rcu_lock_acquire(&rcu_lock_map);
706 RCU_LOCKDEP_WARN(!rcu_is_watching(),
707 "rcu_read_lock() used illegally while idle");
708 }
709
710 /*
711 * So where is rcu_write_lock()? It does not exist, as there is no
712 * way for writers to lock out RCU readers. This is a feature, not
713 * a bug -- this property is what provides RCU's performance benefits.
714 * Of course, writers must coordinate with each other. The normal
715 * spinlock primitives work well for this, but any other technique may be
716 * used as well. RCU does not care how the writers keep out of each
717 * others' way, as long as they do so.
718 */
719
720 /**
721 * rcu_read_unlock() - marks the end of an RCU read-side critical section.
722 *
723 * In almost all situations, rcu_read_unlock() is immune from deadlock.
724 * In recent kernels that have consolidated synchronize_sched() and
725 * synchronize_rcu_bh() into synchronize_rcu(), this deadlock immunity
726 * also extends to the scheduler's runqueue and priority-inheritance
727 * spinlocks, courtesy of the quiescent-state deferral that is carried
728 * out when rcu_read_unlock() is invoked with interrupts disabled.
729 *
730 * See rcu_read_lock() for more information.
731 */
rcu_read_unlock(void)732 static inline void rcu_read_unlock(void)
733 {
734 RCU_LOCKDEP_WARN(!rcu_is_watching(),
735 "rcu_read_unlock() used illegally while idle");
736 __release(RCU);
737 __rcu_read_unlock();
738 rcu_lock_release(&rcu_lock_map); /* Keep acq info for rls diags. */
739 }
740
741 /**
742 * rcu_read_lock_bh() - mark the beginning of an RCU-bh critical section
743 *
744 * This is equivalent to rcu_read_lock(), but also disables softirqs.
745 * Note that anything else that disables softirqs can also serve as an RCU
746 * read-side critical section. However, please note that this equivalence
747 * applies only to v5.0 and later. Before v5.0, rcu_read_lock() and
748 * rcu_read_lock_bh() were unrelated.
749 *
750 * Note that rcu_read_lock_bh() and the matching rcu_read_unlock_bh()
751 * must occur in the same context, for example, it is illegal to invoke
752 * rcu_read_unlock_bh() from one task if the matching rcu_read_lock_bh()
753 * was invoked from some other task.
754 */
rcu_read_lock_bh(void)755 static inline void rcu_read_lock_bh(void)
756 {
757 local_bh_disable();
758 __acquire(RCU_BH);
759 rcu_lock_acquire(&rcu_bh_lock_map);
760 RCU_LOCKDEP_WARN(!rcu_is_watching(),
761 "rcu_read_lock_bh() used illegally while idle");
762 }
763
764 /**
765 * rcu_read_unlock_bh() - marks the end of a softirq-only RCU critical section
766 *
767 * See rcu_read_lock_bh() for more information.
768 */
rcu_read_unlock_bh(void)769 static inline void rcu_read_unlock_bh(void)
770 {
771 RCU_LOCKDEP_WARN(!rcu_is_watching(),
772 "rcu_read_unlock_bh() used illegally while idle");
773 rcu_lock_release(&rcu_bh_lock_map);
774 __release(RCU_BH);
775 local_bh_enable();
776 }
777
778 /**
779 * rcu_read_lock_sched() - mark the beginning of a RCU-sched critical section
780 *
781 * This is equivalent to rcu_read_lock(), but also disables preemption.
782 * Read-side critical sections can also be introduced by anything else that
783 * disables preemption, including local_irq_disable() and friends. However,
784 * please note that the equivalence to rcu_read_lock() applies only to
785 * v5.0 and later. Before v5.0, rcu_read_lock() and rcu_read_lock_sched()
786 * were unrelated.
787 *
788 * Note that rcu_read_lock_sched() and the matching rcu_read_unlock_sched()
789 * must occur in the same context, for example, it is illegal to invoke
790 * rcu_read_unlock_sched() from process context if the matching
791 * rcu_read_lock_sched() was invoked from an NMI handler.
792 */
rcu_read_lock_sched(void)793 static inline void rcu_read_lock_sched(void)
794 {
795 preempt_disable();
796 __acquire(RCU_SCHED);
797 rcu_lock_acquire(&rcu_sched_lock_map);
798 RCU_LOCKDEP_WARN(!rcu_is_watching(),
799 "rcu_read_lock_sched() used illegally while idle");
800 }
801
802 /* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */
rcu_read_lock_sched_notrace(void)803 static inline notrace void rcu_read_lock_sched_notrace(void)
804 {
805 preempt_disable_notrace();
806 __acquire(RCU_SCHED);
807 }
808
809 /**
810 * rcu_read_unlock_sched() - marks the end of a RCU-classic critical section
811 *
812 * See rcu_read_lock_sched() for more information.
813 */
rcu_read_unlock_sched(void)814 static inline void rcu_read_unlock_sched(void)
815 {
816 RCU_LOCKDEP_WARN(!rcu_is_watching(),
817 "rcu_read_unlock_sched() used illegally while idle");
818 rcu_lock_release(&rcu_sched_lock_map);
819 __release(RCU_SCHED);
820 preempt_enable();
821 }
822
823 /* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */
rcu_read_unlock_sched_notrace(void)824 static inline notrace void rcu_read_unlock_sched_notrace(void)
825 {
826 __release(RCU_SCHED);
827 preempt_enable_notrace();
828 }
829
830 /**
831 * RCU_INIT_POINTER() - initialize an RCU protected pointer
832 * @p: The pointer to be initialized.
833 * @v: The value to initialized the pointer to.
834 *
835 * Initialize an RCU-protected pointer in special cases where readers
836 * do not need ordering constraints on the CPU or the compiler. These
837 * special cases are:
838 *
839 * 1. This use of RCU_INIT_POINTER() is NULLing out the pointer *or*
840 * 2. The caller has taken whatever steps are required to prevent
841 * RCU readers from concurrently accessing this pointer *or*
842 * 3. The referenced data structure has already been exposed to
843 * readers either at compile time or via rcu_assign_pointer() *and*
844 *
845 * a. You have not made *any* reader-visible changes to
846 * this structure since then *or*
847 * b. It is OK for readers accessing this structure from its
848 * new location to see the old state of the structure. (For
849 * example, the changes were to statistical counters or to
850 * other state where exact synchronization is not required.)
851 *
852 * Failure to follow these rules governing use of RCU_INIT_POINTER() will
853 * result in impossible-to-diagnose memory corruption. As in the structures
854 * will look OK in crash dumps, but any concurrent RCU readers might
855 * see pre-initialized values of the referenced data structure. So
856 * please be very careful how you use RCU_INIT_POINTER()!!!
857 *
858 * If you are creating an RCU-protected linked structure that is accessed
859 * by a single external-to-structure RCU-protected pointer, then you may
860 * use RCU_INIT_POINTER() to initialize the internal RCU-protected
861 * pointers, but you must use rcu_assign_pointer() to initialize the
862 * external-to-structure pointer *after* you have completely initialized
863 * the reader-accessible portions of the linked structure.
864 *
865 * Note that unlike rcu_assign_pointer(), RCU_INIT_POINTER() provides no
866 * ordering guarantees for either the CPU or the compiler.
867 */
868 #define RCU_INIT_POINTER(p, v) \
869 do { \
870 rcu_check_sparse(p, __rcu); \
871 WRITE_ONCE(p, RCU_INITIALIZER(v)); \
872 } while (0)
873
874 /**
875 * RCU_POINTER_INITIALIZER() - statically initialize an RCU protected pointer
876 * @p: The pointer to be initialized.
877 * @v: The value to initialized the pointer to.
878 *
879 * GCC-style initialization for an RCU-protected pointer in a structure field.
880 */
881 #define RCU_POINTER_INITIALIZER(p, v) \
882 .p = RCU_INITIALIZER(v)
883
884 /*
885 * Does the specified offset indicate that the corresponding rcu_head
886 * structure can be handled by kvfree_rcu()?
887 */
888 #define __is_kvfree_rcu_offset(offset) ((offset) < 4096)
889
890 /**
891 * kfree_rcu() - kfree an object after a grace period.
892 * @ptr: pointer to kfree for both single- and double-argument invocations.
893 * @rhf: the name of the struct rcu_head within the type of @ptr,
894 * but only for double-argument invocations.
895 *
896 * Many rcu callbacks functions just call kfree() on the base structure.
897 * These functions are trivial, but their size adds up, and furthermore
898 * when they are used in a kernel module, that module must invoke the
899 * high-latency rcu_barrier() function at module-unload time.
900 *
901 * The kfree_rcu() function handles this issue. Rather than encoding a
902 * function address in the embedded rcu_head structure, kfree_rcu() instead
903 * encodes the offset of the rcu_head structure within the base structure.
904 * Because the functions are not allowed in the low-order 4096 bytes of
905 * kernel virtual memory, offsets up to 4095 bytes can be accommodated.
906 * If the offset is larger than 4095 bytes, a compile-time error will
907 * be generated in kvfree_rcu_arg_2(). If this error is triggered, you can
908 * either fall back to use of call_rcu() or rearrange the structure to
909 * position the rcu_head structure into the first 4096 bytes.
910 *
911 * Note that the allowable offset might decrease in the future, for example,
912 * to allow something like kmem_cache_free_rcu().
913 *
914 * The BUILD_BUG_ON check must not involve any function calls, hence the
915 * checks are done in macros here.
916 */
917 #define kfree_rcu(ptr, rhf...) kvfree_rcu(ptr, ## rhf)
918
919 /**
920 * kvfree_rcu() - kvfree an object after a grace period.
921 *
922 * This macro consists of one or two arguments and it is
923 * based on whether an object is head-less or not. If it
924 * has a head then a semantic stays the same as it used
925 * to be before:
926 *
927 * kvfree_rcu(ptr, rhf);
928 *
929 * where @ptr is a pointer to kvfree(), @rhf is the name
930 * of the rcu_head structure within the type of @ptr.
931 *
932 * When it comes to head-less variant, only one argument
933 * is passed and that is just a pointer which has to be
934 * freed after a grace period. Therefore the semantic is
935 *
936 * kvfree_rcu(ptr);
937 *
938 * where @ptr is a pointer to kvfree().
939 *
940 * Please note, head-less way of freeing is permitted to
941 * use from a context that has to follow might_sleep()
942 * annotation. Otherwise, please switch and embed the
943 * rcu_head structure within the type of @ptr.
944 */
945 #define kvfree_rcu(...) KVFREE_GET_MACRO(__VA_ARGS__, \
946 kvfree_rcu_arg_2, kvfree_rcu_arg_1)(__VA_ARGS__)
947
948 #define KVFREE_GET_MACRO(_1, _2, NAME, ...) NAME
949 #define kvfree_rcu_arg_2(ptr, rhf) \
950 do { \
951 typeof (ptr) ___p = (ptr); \
952 \
953 if (___p) { \
954 BUILD_BUG_ON(!__is_kvfree_rcu_offset(offsetof(typeof(*(ptr)), rhf))); \
955 kvfree_call_rcu(&((___p)->rhf), (rcu_callback_t)(unsigned long) \
956 (offsetof(typeof(*(ptr)), rhf))); \
957 } \
958 } while (0)
959
960 #define kvfree_rcu_arg_1(ptr) \
961 do { \
962 typeof(ptr) ___p = (ptr); \
963 \
964 if (___p) \
965 kvfree_call_rcu(NULL, (rcu_callback_t) (___p)); \
966 } while (0)
967
968 /*
969 * Place this after a lock-acquisition primitive to guarantee that
970 * an UNLOCK+LOCK pair acts as a full barrier. This guarantee applies
971 * if the UNLOCK and LOCK are executed by the same CPU or if the
972 * UNLOCK and LOCK operate on the same lock variable.
973 */
974 #ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE
975 #define smp_mb__after_unlock_lock() smp_mb() /* Full ordering for lock. */
976 #else /* #ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE */
977 #define smp_mb__after_unlock_lock() do { } while (0)
978 #endif /* #else #ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE */
979
980
981 /* Has the specified rcu_head structure been handed to call_rcu()? */
982
983 /**
984 * rcu_head_init - Initialize rcu_head for rcu_head_after_call_rcu()
985 * @rhp: The rcu_head structure to initialize.
986 *
987 * If you intend to invoke rcu_head_after_call_rcu() to test whether a
988 * given rcu_head structure has already been passed to call_rcu(), then
989 * you must also invoke this rcu_head_init() function on it just after
990 * allocating that structure. Calls to this function must not race with
991 * calls to call_rcu(), rcu_head_after_call_rcu(), or callback invocation.
992 */
rcu_head_init(struct rcu_head * rhp)993 static inline void rcu_head_init(struct rcu_head *rhp)
994 {
995 rhp->func = (rcu_callback_t)~0L;
996 }
997
998 /**
999 * rcu_head_after_call_rcu() - Has this rcu_head been passed to call_rcu()?
1000 * @rhp: The rcu_head structure to test.
1001 * @f: The function passed to call_rcu() along with @rhp.
1002 *
1003 * Returns @true if the @rhp has been passed to call_rcu() with @func,
1004 * and @false otherwise. Emits a warning in any other case, including
1005 * the case where @rhp has already been invoked after a grace period.
1006 * Calls to this function must not race with callback invocation. One way
1007 * to avoid such races is to enclose the call to rcu_head_after_call_rcu()
1008 * in an RCU read-side critical section that includes a read-side fetch
1009 * of the pointer to the structure containing @rhp.
1010 */
1011 static inline bool
rcu_head_after_call_rcu(struct rcu_head * rhp,rcu_callback_t f)1012 rcu_head_after_call_rcu(struct rcu_head *rhp, rcu_callback_t f)
1013 {
1014 rcu_callback_t func = READ_ONCE(rhp->func);
1015
1016 if (func == f)
1017 return true;
1018 WARN_ON_ONCE(func != (rcu_callback_t)~0L);
1019 return false;
1020 }
1021
1022 /* kernel/ksysfs.c definitions */
1023 extern int rcu_expedited;
1024 extern int rcu_normal;
1025
1026 #endif /* __LINUX_RCUPDATE_H */
1027