• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/signal.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  *
7  *  1997-11-02  Modified for POSIX.1b signals by Richard Henderson
8  *
9  *  2003-06-02  Jim Houston - Concurrent Computer Corp.
10  *		Changes to use preallocated sigqueue structures
11  *		to allow signals to be sent reliably.
12  */
13 
14 #include <linux/slab.h>
15 #include <linux/export.h>
16 #include <linux/init.h>
17 #include <linux/sched/mm.h>
18 #include <linux/sched/user.h>
19 #include <linux/sched/debug.h>
20 #include <linux/sched/task.h>
21 #include <linux/sched/task_stack.h>
22 #include <linux/sched/cputime.h>
23 #include <linux/file.h>
24 #include <linux/fs.h>
25 #include <linux/proc_fs.h>
26 #include <linux/tty.h>
27 #include <linux/binfmts.h>
28 #include <linux/coredump.h>
29 #include <linux/security.h>
30 #include <linux/syscalls.h>
31 #include <linux/ptrace.h>
32 #include <linux/signal.h>
33 #include <linux/signalfd.h>
34 #include <linux/ratelimit.h>
35 #include <linux/tracehook.h>
36 #include <linux/capability.h>
37 #include <linux/freezer.h>
38 #include <linux/pid_namespace.h>
39 #include <linux/nsproxy.h>
40 #include <linux/user_namespace.h>
41 #include <linux/uprobes.h>
42 #include <linux/compat.h>
43 #include <linux/cn_proc.h>
44 #include <linux/compiler.h>
45 #include <linux/posix-timers.h>
46 #include <linux/cgroup.h>
47 #include <linux/audit.h>
48 
49 #define CREATE_TRACE_POINTS
50 #include <trace/events/signal.h>
51 
52 #include <asm/param.h>
53 #include <linux/uaccess.h>
54 #include <asm/unistd.h>
55 #include <asm/siginfo.h>
56 #include <asm/cacheflush.h>
57 #include <asm/syscall.h>	/* for syscall_get_* */
58 
59 #undef CREATE_TRACE_POINTS
60 #include <trace/hooks/signal.h>
61 /*
62  * SLAB caches for signal bits.
63  */
64 
65 static struct kmem_cache *sigqueue_cachep;
66 
67 int print_fatal_signals __read_mostly;
68 
sig_handler(struct task_struct * t,int sig)69 static void __user *sig_handler(struct task_struct *t, int sig)
70 {
71 	return t->sighand->action[sig - 1].sa.sa_handler;
72 }
73 
sig_handler_ignored(void __user * handler,int sig)74 static inline bool sig_handler_ignored(void __user *handler, int sig)
75 {
76 	/* Is it explicitly or implicitly ignored? */
77 	return handler == SIG_IGN ||
78 	       (handler == SIG_DFL && sig_kernel_ignore(sig));
79 }
80 
sig_task_ignored(struct task_struct * t,int sig,bool force)81 static bool sig_task_ignored(struct task_struct *t, int sig, bool force)
82 {
83 	void __user *handler;
84 
85 	handler = sig_handler(t, sig);
86 
87 	/* SIGKILL and SIGSTOP may not be sent to the global init */
88 	if (unlikely(is_global_init(t) && sig_kernel_only(sig)))
89 		return true;
90 
91 	if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
92 	    handler == SIG_DFL && !(force && sig_kernel_only(sig)))
93 		return true;
94 
95 	/* Only allow kernel generated signals to this kthread */
96 	if (unlikely((t->flags & PF_KTHREAD) &&
97 		     (handler == SIG_KTHREAD_KERNEL) && !force))
98 		return true;
99 
100 	return sig_handler_ignored(handler, sig);
101 }
102 
sig_ignored(struct task_struct * t,int sig,bool force)103 static bool sig_ignored(struct task_struct *t, int sig, bool force)
104 {
105 	/*
106 	 * Blocked signals are never ignored, since the
107 	 * signal handler may change by the time it is
108 	 * unblocked.
109 	 */
110 	if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
111 		return false;
112 
113 	/*
114 	 * Tracers may want to know about even ignored signal unless it
115 	 * is SIGKILL which can't be reported anyway but can be ignored
116 	 * by SIGNAL_UNKILLABLE task.
117 	 */
118 	if (t->ptrace && sig != SIGKILL)
119 		return false;
120 
121 	return sig_task_ignored(t, sig, force);
122 }
123 
124 /*
125  * Re-calculate pending state from the set of locally pending
126  * signals, globally pending signals, and blocked signals.
127  */
has_pending_signals(sigset_t * signal,sigset_t * blocked)128 static inline bool has_pending_signals(sigset_t *signal, sigset_t *blocked)
129 {
130 	unsigned long ready;
131 	long i;
132 
133 	switch (_NSIG_WORDS) {
134 	default:
135 		for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
136 			ready |= signal->sig[i] &~ blocked->sig[i];
137 		break;
138 
139 	case 4: ready  = signal->sig[3] &~ blocked->sig[3];
140 		ready |= signal->sig[2] &~ blocked->sig[2];
141 		ready |= signal->sig[1] &~ blocked->sig[1];
142 		ready |= signal->sig[0] &~ blocked->sig[0];
143 		break;
144 
145 	case 2: ready  = signal->sig[1] &~ blocked->sig[1];
146 		ready |= signal->sig[0] &~ blocked->sig[0];
147 		break;
148 
149 	case 1: ready  = signal->sig[0] &~ blocked->sig[0];
150 	}
151 	return ready !=	0;
152 }
153 
154 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
155 
recalc_sigpending_tsk(struct task_struct * t)156 static bool recalc_sigpending_tsk(struct task_struct *t)
157 {
158 	if ((t->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) ||
159 	    PENDING(&t->pending, &t->blocked) ||
160 	    PENDING(&t->signal->shared_pending, &t->blocked) ||
161 	    cgroup_task_frozen(t)) {
162 		set_tsk_thread_flag(t, TIF_SIGPENDING);
163 		return true;
164 	}
165 
166 	/*
167 	 * We must never clear the flag in another thread, or in current
168 	 * when it's possible the current syscall is returning -ERESTART*.
169 	 * So we don't clear it here, and only callers who know they should do.
170 	 */
171 	return false;
172 }
173 
174 /*
175  * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
176  * This is superfluous when called on current, the wakeup is a harmless no-op.
177  */
recalc_sigpending_and_wake(struct task_struct * t)178 void recalc_sigpending_and_wake(struct task_struct *t)
179 {
180 	if (recalc_sigpending_tsk(t))
181 		signal_wake_up(t, 0);
182 }
183 
recalc_sigpending(void)184 void recalc_sigpending(void)
185 {
186 	if (!recalc_sigpending_tsk(current) && !freezing(current))
187 		clear_thread_flag(TIF_SIGPENDING);
188 
189 }
190 EXPORT_SYMBOL(recalc_sigpending);
191 
calculate_sigpending(void)192 void calculate_sigpending(void)
193 {
194 	/* Have any signals or users of TIF_SIGPENDING been delayed
195 	 * until after fork?
196 	 */
197 	spin_lock_irq(&current->sighand->siglock);
198 	set_tsk_thread_flag(current, TIF_SIGPENDING);
199 	recalc_sigpending();
200 	spin_unlock_irq(&current->sighand->siglock);
201 }
202 
203 /* Given the mask, find the first available signal that should be serviced. */
204 
205 #define SYNCHRONOUS_MASK \
206 	(sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
207 	 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS))
208 
next_signal(struct sigpending * pending,sigset_t * mask)209 int next_signal(struct sigpending *pending, sigset_t *mask)
210 {
211 	unsigned long i, *s, *m, x;
212 	int sig = 0;
213 
214 	s = pending->signal.sig;
215 	m = mask->sig;
216 
217 	/*
218 	 * Handle the first word specially: it contains the
219 	 * synchronous signals that need to be dequeued first.
220 	 */
221 	x = *s &~ *m;
222 	if (x) {
223 		if (x & SYNCHRONOUS_MASK)
224 			x &= SYNCHRONOUS_MASK;
225 		sig = ffz(~x) + 1;
226 		return sig;
227 	}
228 
229 	switch (_NSIG_WORDS) {
230 	default:
231 		for (i = 1; i < _NSIG_WORDS; ++i) {
232 			x = *++s &~ *++m;
233 			if (!x)
234 				continue;
235 			sig = ffz(~x) + i*_NSIG_BPW + 1;
236 			break;
237 		}
238 		break;
239 
240 	case 2:
241 		x = s[1] &~ m[1];
242 		if (!x)
243 			break;
244 		sig = ffz(~x) + _NSIG_BPW + 1;
245 		break;
246 
247 	case 1:
248 		/* Nothing to do */
249 		break;
250 	}
251 
252 	return sig;
253 }
254 
print_dropped_signal(int sig)255 static inline void print_dropped_signal(int sig)
256 {
257 	static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
258 
259 	if (!print_fatal_signals)
260 		return;
261 
262 	if (!__ratelimit(&ratelimit_state))
263 		return;
264 
265 	pr_info("%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
266 				current->comm, current->pid, sig);
267 }
268 
269 /**
270  * task_set_jobctl_pending - set jobctl pending bits
271  * @task: target task
272  * @mask: pending bits to set
273  *
274  * Clear @mask from @task->jobctl.  @mask must be subset of
275  * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK |
276  * %JOBCTL_TRAPPING.  If stop signo is being set, the existing signo is
277  * cleared.  If @task is already being killed or exiting, this function
278  * becomes noop.
279  *
280  * CONTEXT:
281  * Must be called with @task->sighand->siglock held.
282  *
283  * RETURNS:
284  * %true if @mask is set, %false if made noop because @task was dying.
285  */
task_set_jobctl_pending(struct task_struct * task,unsigned long mask)286 bool task_set_jobctl_pending(struct task_struct *task, unsigned long mask)
287 {
288 	BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME |
289 			JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING));
290 	BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK));
291 
292 	if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING)))
293 		return false;
294 
295 	if (mask & JOBCTL_STOP_SIGMASK)
296 		task->jobctl &= ~JOBCTL_STOP_SIGMASK;
297 
298 	task->jobctl |= mask;
299 	return true;
300 }
301 
302 /**
303  * task_clear_jobctl_trapping - clear jobctl trapping bit
304  * @task: target task
305  *
306  * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED.
307  * Clear it and wake up the ptracer.  Note that we don't need any further
308  * locking.  @task->siglock guarantees that @task->parent points to the
309  * ptracer.
310  *
311  * CONTEXT:
312  * Must be called with @task->sighand->siglock held.
313  */
task_clear_jobctl_trapping(struct task_struct * task)314 void task_clear_jobctl_trapping(struct task_struct *task)
315 {
316 	if (unlikely(task->jobctl & JOBCTL_TRAPPING)) {
317 		task->jobctl &= ~JOBCTL_TRAPPING;
318 		smp_mb();	/* advised by wake_up_bit() */
319 		wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT);
320 	}
321 }
322 
323 /**
324  * task_clear_jobctl_pending - clear jobctl pending bits
325  * @task: target task
326  * @mask: pending bits to clear
327  *
328  * Clear @mask from @task->jobctl.  @mask must be subset of
329  * %JOBCTL_PENDING_MASK.  If %JOBCTL_STOP_PENDING is being cleared, other
330  * STOP bits are cleared together.
331  *
332  * If clearing of @mask leaves no stop or trap pending, this function calls
333  * task_clear_jobctl_trapping().
334  *
335  * CONTEXT:
336  * Must be called with @task->sighand->siglock held.
337  */
task_clear_jobctl_pending(struct task_struct * task,unsigned long mask)338 void task_clear_jobctl_pending(struct task_struct *task, unsigned long mask)
339 {
340 	BUG_ON(mask & ~JOBCTL_PENDING_MASK);
341 
342 	if (mask & JOBCTL_STOP_PENDING)
343 		mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED;
344 
345 	task->jobctl &= ~mask;
346 
347 	if (!(task->jobctl & JOBCTL_PENDING_MASK))
348 		task_clear_jobctl_trapping(task);
349 }
350 
351 /**
352  * task_participate_group_stop - participate in a group stop
353  * @task: task participating in a group stop
354  *
355  * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop.
356  * Group stop states are cleared and the group stop count is consumed if
357  * %JOBCTL_STOP_CONSUME was set.  If the consumption completes the group
358  * stop, the appropriate `SIGNAL_*` flags are set.
359  *
360  * CONTEXT:
361  * Must be called with @task->sighand->siglock held.
362  *
363  * RETURNS:
364  * %true if group stop completion should be notified to the parent, %false
365  * otherwise.
366  */
task_participate_group_stop(struct task_struct * task)367 static bool task_participate_group_stop(struct task_struct *task)
368 {
369 	struct signal_struct *sig = task->signal;
370 	bool consume = task->jobctl & JOBCTL_STOP_CONSUME;
371 
372 	WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING));
373 
374 	task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING);
375 
376 	if (!consume)
377 		return false;
378 
379 	if (!WARN_ON_ONCE(sig->group_stop_count == 0))
380 		sig->group_stop_count--;
381 
382 	/*
383 	 * Tell the caller to notify completion iff we are entering into a
384 	 * fresh group stop.  Read comment in do_signal_stop() for details.
385 	 */
386 	if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) {
387 		signal_set_stop_flags(sig, SIGNAL_STOP_STOPPED);
388 		return true;
389 	}
390 	return false;
391 }
392 
task_join_group_stop(struct task_struct * task)393 void task_join_group_stop(struct task_struct *task)
394 {
395 	unsigned long mask = current->jobctl & JOBCTL_STOP_SIGMASK;
396 	struct signal_struct *sig = current->signal;
397 
398 	if (sig->group_stop_count) {
399 		sig->group_stop_count++;
400 		mask |= JOBCTL_STOP_CONSUME;
401 	} else if (!(sig->flags & SIGNAL_STOP_STOPPED))
402 		return;
403 
404 	/* Have the new thread join an on-going signal group stop */
405 	task_set_jobctl_pending(task, mask | JOBCTL_STOP_PENDING);
406 }
407 
408 /*
409  * allocate a new signal queue record
410  * - this may be called without locks if and only if t == current, otherwise an
411  *   appropriate lock must be held to stop the target task from exiting
412  */
413 static struct sigqueue *
__sigqueue_alloc(int sig,struct task_struct * t,gfp_t gfp_flags,int override_rlimit,const unsigned int sigqueue_flags)414 __sigqueue_alloc(int sig, struct task_struct *t, gfp_t gfp_flags,
415 		 int override_rlimit, const unsigned int sigqueue_flags)
416 {
417 	struct sigqueue *q = NULL;
418 	struct ucounts *ucounts = NULL;
419 	long sigpending;
420 
421 	/*
422 	 * Protect access to @t credentials. This can go away when all
423 	 * callers hold rcu read lock.
424 	 *
425 	 * NOTE! A pending signal will hold on to the user refcount,
426 	 * and we get/put the refcount only when the sigpending count
427 	 * changes from/to zero.
428 	 */
429 	rcu_read_lock();
430 	ucounts = task_ucounts(t);
431 	sigpending = inc_rlimit_get_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING);
432 	rcu_read_unlock();
433 	if (!sigpending)
434 		return NULL;
435 
436 	if (override_rlimit || likely(sigpending <= task_rlimit(t, RLIMIT_SIGPENDING))) {
437 		q = kmem_cache_alloc(sigqueue_cachep, gfp_flags);
438 	} else {
439 		print_dropped_signal(sig);
440 	}
441 
442 	if (unlikely(q == NULL)) {
443 		dec_rlimit_put_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING);
444 	} else {
445 		INIT_LIST_HEAD(&q->list);
446 		q->flags = sigqueue_flags;
447 		q->ucounts = ucounts;
448 	}
449 	return q;
450 }
451 
__sigqueue_free(struct sigqueue * q)452 static void __sigqueue_free(struct sigqueue *q)
453 {
454 	if (q->flags & SIGQUEUE_PREALLOC)
455 		return;
456 	if (q->ucounts) {
457 		dec_rlimit_put_ucounts(q->ucounts, UCOUNT_RLIMIT_SIGPENDING);
458 		q->ucounts = NULL;
459 	}
460 	kmem_cache_free(sigqueue_cachep, q);
461 }
462 
flush_sigqueue(struct sigpending * queue)463 void flush_sigqueue(struct sigpending *queue)
464 {
465 	struct sigqueue *q;
466 
467 	sigemptyset(&queue->signal);
468 	while (!list_empty(&queue->list)) {
469 		q = list_entry(queue->list.next, struct sigqueue , list);
470 		list_del_init(&q->list);
471 		__sigqueue_free(q);
472 	}
473 }
474 
475 /*
476  * Flush all pending signals for this kthread.
477  */
flush_signals(struct task_struct * t)478 void flush_signals(struct task_struct *t)
479 {
480 	unsigned long flags;
481 
482 	spin_lock_irqsave(&t->sighand->siglock, flags);
483 	clear_tsk_thread_flag(t, TIF_SIGPENDING);
484 	flush_sigqueue(&t->pending);
485 	flush_sigqueue(&t->signal->shared_pending);
486 	spin_unlock_irqrestore(&t->sighand->siglock, flags);
487 }
488 EXPORT_SYMBOL(flush_signals);
489 
490 #ifdef CONFIG_POSIX_TIMERS
__flush_itimer_signals(struct sigpending * pending)491 static void __flush_itimer_signals(struct sigpending *pending)
492 {
493 	sigset_t signal, retain;
494 	struct sigqueue *q, *n;
495 
496 	signal = pending->signal;
497 	sigemptyset(&retain);
498 
499 	list_for_each_entry_safe(q, n, &pending->list, list) {
500 		int sig = q->info.si_signo;
501 
502 		if (likely(q->info.si_code != SI_TIMER)) {
503 			sigaddset(&retain, sig);
504 		} else {
505 			sigdelset(&signal, sig);
506 			list_del_init(&q->list);
507 			__sigqueue_free(q);
508 		}
509 	}
510 
511 	sigorsets(&pending->signal, &signal, &retain);
512 }
513 
flush_itimer_signals(void)514 void flush_itimer_signals(void)
515 {
516 	struct task_struct *tsk = current;
517 	unsigned long flags;
518 
519 	spin_lock_irqsave(&tsk->sighand->siglock, flags);
520 	__flush_itimer_signals(&tsk->pending);
521 	__flush_itimer_signals(&tsk->signal->shared_pending);
522 	spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
523 }
524 #endif
525 
ignore_signals(struct task_struct * t)526 void ignore_signals(struct task_struct *t)
527 {
528 	int i;
529 
530 	for (i = 0; i < _NSIG; ++i)
531 		t->sighand->action[i].sa.sa_handler = SIG_IGN;
532 
533 	flush_signals(t);
534 }
535 
536 /*
537  * Flush all handlers for a task.
538  */
539 
540 void
flush_signal_handlers(struct task_struct * t,int force_default)541 flush_signal_handlers(struct task_struct *t, int force_default)
542 {
543 	int i;
544 	struct k_sigaction *ka = &t->sighand->action[0];
545 	for (i = _NSIG ; i != 0 ; i--) {
546 		if (force_default || ka->sa.sa_handler != SIG_IGN)
547 			ka->sa.sa_handler = SIG_DFL;
548 		ka->sa.sa_flags = 0;
549 #ifdef __ARCH_HAS_SA_RESTORER
550 		ka->sa.sa_restorer = NULL;
551 #endif
552 		sigemptyset(&ka->sa.sa_mask);
553 		ka++;
554 	}
555 }
556 
unhandled_signal(struct task_struct * tsk,int sig)557 bool unhandled_signal(struct task_struct *tsk, int sig)
558 {
559 	void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
560 	if (is_global_init(tsk))
561 		return true;
562 
563 	if (handler != SIG_IGN && handler != SIG_DFL)
564 		return false;
565 
566 	/* if ptraced, let the tracer determine */
567 	return !tsk->ptrace;
568 }
569 
collect_signal(int sig,struct sigpending * list,kernel_siginfo_t * info,bool * resched_timer)570 static void collect_signal(int sig, struct sigpending *list, kernel_siginfo_t *info,
571 			   bool *resched_timer)
572 {
573 	struct sigqueue *q, *first = NULL;
574 
575 	/*
576 	 * Collect the siginfo appropriate to this signal.  Check if
577 	 * there is another siginfo for the same signal.
578 	*/
579 	list_for_each_entry(q, &list->list, list) {
580 		if (q->info.si_signo == sig) {
581 			if (first)
582 				goto still_pending;
583 			first = q;
584 		}
585 	}
586 
587 	sigdelset(&list->signal, sig);
588 
589 	if (first) {
590 still_pending:
591 		list_del_init(&first->list);
592 		copy_siginfo(info, &first->info);
593 
594 		*resched_timer =
595 			(first->flags & SIGQUEUE_PREALLOC) &&
596 			(info->si_code == SI_TIMER) &&
597 			(info->si_sys_private);
598 
599 		__sigqueue_free(first);
600 	} else {
601 		/*
602 		 * Ok, it wasn't in the queue.  This must be
603 		 * a fast-pathed signal or we must have been
604 		 * out of queue space.  So zero out the info.
605 		 */
606 		clear_siginfo(info);
607 		info->si_signo = sig;
608 		info->si_errno = 0;
609 		info->si_code = SI_USER;
610 		info->si_pid = 0;
611 		info->si_uid = 0;
612 	}
613 }
614 
__dequeue_signal(struct sigpending * pending,sigset_t * mask,kernel_siginfo_t * info,bool * resched_timer)615 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
616 			kernel_siginfo_t *info, bool *resched_timer)
617 {
618 	int sig = next_signal(pending, mask);
619 
620 	if (sig)
621 		collect_signal(sig, pending, info, resched_timer);
622 	return sig;
623 }
624 
625 /*
626  * Dequeue a signal and return the element to the caller, which is
627  * expected to free it.
628  *
629  * All callers have to hold the siglock.
630  */
dequeue_signal(struct task_struct * tsk,sigset_t * mask,kernel_siginfo_t * info)631 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, kernel_siginfo_t *info)
632 {
633 	bool resched_timer = false;
634 	int signr;
635 
636 	/* We only dequeue private signals from ourselves, we don't let
637 	 * signalfd steal them
638 	 */
639 	signr = __dequeue_signal(&tsk->pending, mask, info, &resched_timer);
640 	if (!signr) {
641 		signr = __dequeue_signal(&tsk->signal->shared_pending,
642 					 mask, info, &resched_timer);
643 #ifdef CONFIG_POSIX_TIMERS
644 		/*
645 		 * itimer signal ?
646 		 *
647 		 * itimers are process shared and we restart periodic
648 		 * itimers in the signal delivery path to prevent DoS
649 		 * attacks in the high resolution timer case. This is
650 		 * compliant with the old way of self-restarting
651 		 * itimers, as the SIGALRM is a legacy signal and only
652 		 * queued once. Changing the restart behaviour to
653 		 * restart the timer in the signal dequeue path is
654 		 * reducing the timer noise on heavy loaded !highres
655 		 * systems too.
656 		 */
657 		if (unlikely(signr == SIGALRM)) {
658 			struct hrtimer *tmr = &tsk->signal->real_timer;
659 
660 			if (!hrtimer_is_queued(tmr) &&
661 			    tsk->signal->it_real_incr != 0) {
662 				hrtimer_forward(tmr, tmr->base->get_time(),
663 						tsk->signal->it_real_incr);
664 				hrtimer_restart(tmr);
665 			}
666 		}
667 #endif
668 	}
669 
670 	recalc_sigpending();
671 	if (!signr)
672 		return 0;
673 
674 	if (unlikely(sig_kernel_stop(signr))) {
675 		/*
676 		 * Set a marker that we have dequeued a stop signal.  Our
677 		 * caller might release the siglock and then the pending
678 		 * stop signal it is about to process is no longer in the
679 		 * pending bitmasks, but must still be cleared by a SIGCONT
680 		 * (and overruled by a SIGKILL).  So those cases clear this
681 		 * shared flag after we've set it.  Note that this flag may
682 		 * remain set after the signal we return is ignored or
683 		 * handled.  That doesn't matter because its only purpose
684 		 * is to alert stop-signal processing code when another
685 		 * processor has come along and cleared the flag.
686 		 */
687 		current->jobctl |= JOBCTL_STOP_DEQUEUED;
688 	}
689 #ifdef CONFIG_POSIX_TIMERS
690 	if (resched_timer) {
691 		/*
692 		 * Release the siglock to ensure proper locking order
693 		 * of timer locks outside of siglocks.  Note, we leave
694 		 * irqs disabled here, since the posix-timers code is
695 		 * about to disable them again anyway.
696 		 */
697 		spin_unlock(&tsk->sighand->siglock);
698 		posixtimer_rearm(info);
699 		spin_lock(&tsk->sighand->siglock);
700 
701 		/* Don't expose the si_sys_private value to userspace */
702 		info->si_sys_private = 0;
703 	}
704 #endif
705 	return signr;
706 }
707 EXPORT_SYMBOL_GPL(dequeue_signal);
708 
dequeue_synchronous_signal(kernel_siginfo_t * info)709 static int dequeue_synchronous_signal(kernel_siginfo_t *info)
710 {
711 	struct task_struct *tsk = current;
712 	struct sigpending *pending = &tsk->pending;
713 	struct sigqueue *q, *sync = NULL;
714 
715 	/*
716 	 * Might a synchronous signal be in the queue?
717 	 */
718 	if (!((pending->signal.sig[0] & ~tsk->blocked.sig[0]) & SYNCHRONOUS_MASK))
719 		return 0;
720 
721 	/*
722 	 * Return the first synchronous signal in the queue.
723 	 */
724 	list_for_each_entry(q, &pending->list, list) {
725 		/* Synchronous signals have a positive si_code */
726 		if ((q->info.si_code > SI_USER) &&
727 		    (sigmask(q->info.si_signo) & SYNCHRONOUS_MASK)) {
728 			sync = q;
729 			goto next;
730 		}
731 	}
732 	return 0;
733 next:
734 	/*
735 	 * Check if there is another siginfo for the same signal.
736 	 */
737 	list_for_each_entry_continue(q, &pending->list, list) {
738 		if (q->info.si_signo == sync->info.si_signo)
739 			goto still_pending;
740 	}
741 
742 	sigdelset(&pending->signal, sync->info.si_signo);
743 	recalc_sigpending();
744 still_pending:
745 	list_del_init(&sync->list);
746 	copy_siginfo(info, &sync->info);
747 	__sigqueue_free(sync);
748 	return info->si_signo;
749 }
750 
751 /*
752  * Tell a process that it has a new active signal..
753  *
754  * NOTE! we rely on the previous spin_lock to
755  * lock interrupts for us! We can only be called with
756  * "siglock" held, and the local interrupt must
757  * have been disabled when that got acquired!
758  *
759  * No need to set need_resched since signal event passing
760  * goes through ->blocked
761  */
signal_wake_up_state(struct task_struct * t,unsigned int state)762 void signal_wake_up_state(struct task_struct *t, unsigned int state)
763 {
764 	set_tsk_thread_flag(t, TIF_SIGPENDING);
765 	/*
766 	 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable
767 	 * case. We don't check t->state here because there is a race with it
768 	 * executing another processor and just now entering stopped state.
769 	 * By using wake_up_state, we ensure the process will wake up and
770 	 * handle its death signal.
771 	 */
772 	if (!wake_up_state(t, state | TASK_INTERRUPTIBLE))
773 		kick_process(t);
774 }
775 
776 /*
777  * Remove signals in mask from the pending set and queue.
778  * Returns 1 if any signals were found.
779  *
780  * All callers must be holding the siglock.
781  */
flush_sigqueue_mask(sigset_t * mask,struct sigpending * s)782 static void flush_sigqueue_mask(sigset_t *mask, struct sigpending *s)
783 {
784 	struct sigqueue *q, *n;
785 	sigset_t m;
786 
787 	sigandsets(&m, mask, &s->signal);
788 	if (sigisemptyset(&m))
789 		return;
790 
791 	sigandnsets(&s->signal, &s->signal, mask);
792 	list_for_each_entry_safe(q, n, &s->list, list) {
793 		if (sigismember(mask, q->info.si_signo)) {
794 			list_del_init(&q->list);
795 			__sigqueue_free(q);
796 		}
797 	}
798 }
799 
is_si_special(const struct kernel_siginfo * info)800 static inline int is_si_special(const struct kernel_siginfo *info)
801 {
802 	return info <= SEND_SIG_PRIV;
803 }
804 
si_fromuser(const struct kernel_siginfo * info)805 static inline bool si_fromuser(const struct kernel_siginfo *info)
806 {
807 	return info == SEND_SIG_NOINFO ||
808 		(!is_si_special(info) && SI_FROMUSER(info));
809 }
810 
811 /*
812  * called with RCU read lock from check_kill_permission()
813  */
kill_ok_by_cred(struct task_struct * t)814 static bool kill_ok_by_cred(struct task_struct *t)
815 {
816 	const struct cred *cred = current_cred();
817 	const struct cred *tcred = __task_cred(t);
818 
819 	return uid_eq(cred->euid, tcred->suid) ||
820 	       uid_eq(cred->euid, tcred->uid) ||
821 	       uid_eq(cred->uid, tcred->suid) ||
822 	       uid_eq(cred->uid, tcred->uid) ||
823 	       ns_capable(tcred->user_ns, CAP_KILL);
824 }
825 
826 /*
827  * Bad permissions for sending the signal
828  * - the caller must hold the RCU read lock
829  */
check_kill_permission(int sig,struct kernel_siginfo * info,struct task_struct * t)830 static int check_kill_permission(int sig, struct kernel_siginfo *info,
831 				 struct task_struct *t)
832 {
833 	struct pid *sid;
834 	int error;
835 
836 	if (!valid_signal(sig))
837 		return -EINVAL;
838 
839 	if (!si_fromuser(info))
840 		return 0;
841 
842 	error = audit_signal_info(sig, t); /* Let audit system see the signal */
843 	if (error)
844 		return error;
845 
846 	if (!same_thread_group(current, t) &&
847 	    !kill_ok_by_cred(t)) {
848 		switch (sig) {
849 		case SIGCONT:
850 			sid = task_session(t);
851 			/*
852 			 * We don't return the error if sid == NULL. The
853 			 * task was unhashed, the caller must notice this.
854 			 */
855 			if (!sid || sid == task_session(current))
856 				break;
857 			fallthrough;
858 		default:
859 			return -EPERM;
860 		}
861 	}
862 
863 	return security_task_kill(t, info, sig, NULL);
864 }
865 
866 /**
867  * ptrace_trap_notify - schedule trap to notify ptracer
868  * @t: tracee wanting to notify tracer
869  *
870  * This function schedules sticky ptrace trap which is cleared on the next
871  * TRAP_STOP to notify ptracer of an event.  @t must have been seized by
872  * ptracer.
873  *
874  * If @t is running, STOP trap will be taken.  If trapped for STOP and
875  * ptracer is listening for events, tracee is woken up so that it can
876  * re-trap for the new event.  If trapped otherwise, STOP trap will be
877  * eventually taken without returning to userland after the existing traps
878  * are finished by PTRACE_CONT.
879  *
880  * CONTEXT:
881  * Must be called with @task->sighand->siglock held.
882  */
ptrace_trap_notify(struct task_struct * t)883 static void ptrace_trap_notify(struct task_struct *t)
884 {
885 	WARN_ON_ONCE(!(t->ptrace & PT_SEIZED));
886 	assert_spin_locked(&t->sighand->siglock);
887 
888 	task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY);
889 	ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING);
890 }
891 
892 /*
893  * Handle magic process-wide effects of stop/continue signals. Unlike
894  * the signal actions, these happen immediately at signal-generation
895  * time regardless of blocking, ignoring, or handling.  This does the
896  * actual continuing for SIGCONT, but not the actual stopping for stop
897  * signals. The process stop is done as a signal action for SIG_DFL.
898  *
899  * Returns true if the signal should be actually delivered, otherwise
900  * it should be dropped.
901  */
prepare_signal(int sig,struct task_struct * p,bool force)902 static bool prepare_signal(int sig, struct task_struct *p, bool force)
903 {
904 	struct signal_struct *signal = p->signal;
905 	struct task_struct *t;
906 	sigset_t flush;
907 
908 	if (signal->flags & (SIGNAL_GROUP_EXIT | SIGNAL_GROUP_COREDUMP)) {
909 		if (!(signal->flags & SIGNAL_GROUP_EXIT))
910 			return sig == SIGKILL;
911 		/*
912 		 * The process is in the middle of dying, nothing to do.
913 		 */
914 	} else if (sig_kernel_stop(sig)) {
915 		/*
916 		 * This is a stop signal.  Remove SIGCONT from all queues.
917 		 */
918 		siginitset(&flush, sigmask(SIGCONT));
919 		flush_sigqueue_mask(&flush, &signal->shared_pending);
920 		for_each_thread(p, t)
921 			flush_sigqueue_mask(&flush, &t->pending);
922 	} else if (sig == SIGCONT) {
923 		unsigned int why;
924 		/*
925 		 * Remove all stop signals from all queues, wake all threads.
926 		 */
927 		siginitset(&flush, SIG_KERNEL_STOP_MASK);
928 		flush_sigqueue_mask(&flush, &signal->shared_pending);
929 		for_each_thread(p, t) {
930 			flush_sigqueue_mask(&flush, &t->pending);
931 			task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING);
932 			if (likely(!(t->ptrace & PT_SEIZED)))
933 				wake_up_state(t, __TASK_STOPPED);
934 			else
935 				ptrace_trap_notify(t);
936 		}
937 
938 		/*
939 		 * Notify the parent with CLD_CONTINUED if we were stopped.
940 		 *
941 		 * If we were in the middle of a group stop, we pretend it
942 		 * was already finished, and then continued. Since SIGCHLD
943 		 * doesn't queue we report only CLD_STOPPED, as if the next
944 		 * CLD_CONTINUED was dropped.
945 		 */
946 		why = 0;
947 		if (signal->flags & SIGNAL_STOP_STOPPED)
948 			why |= SIGNAL_CLD_CONTINUED;
949 		else if (signal->group_stop_count)
950 			why |= SIGNAL_CLD_STOPPED;
951 
952 		if (why) {
953 			/*
954 			 * The first thread which returns from do_signal_stop()
955 			 * will take ->siglock, notice SIGNAL_CLD_MASK, and
956 			 * notify its parent. See get_signal().
957 			 */
958 			signal_set_stop_flags(signal, why | SIGNAL_STOP_CONTINUED);
959 			signal->group_stop_count = 0;
960 			signal->group_exit_code = 0;
961 		}
962 	}
963 
964 	return !sig_ignored(p, sig, force);
965 }
966 
967 /*
968  * Test if P wants to take SIG.  After we've checked all threads with this,
969  * it's equivalent to finding no threads not blocking SIG.  Any threads not
970  * blocking SIG were ruled out because they are not running and already
971  * have pending signals.  Such threads will dequeue from the shared queue
972  * as soon as they're available, so putting the signal on the shared queue
973  * will be equivalent to sending it to one such thread.
974  */
wants_signal(int sig,struct task_struct * p)975 static inline bool wants_signal(int sig, struct task_struct *p)
976 {
977 	if (sigismember(&p->blocked, sig))
978 		return false;
979 
980 	if (p->flags & PF_EXITING)
981 		return false;
982 
983 	if (sig == SIGKILL)
984 		return true;
985 
986 	if (task_is_stopped_or_traced(p))
987 		return false;
988 
989 	return task_curr(p) || !task_sigpending(p);
990 }
991 
complete_signal(int sig,struct task_struct * p,enum pid_type type)992 static void complete_signal(int sig, struct task_struct *p, enum pid_type type)
993 {
994 	struct signal_struct *signal = p->signal;
995 	struct task_struct *t;
996 
997 	/*
998 	 * Now find a thread we can wake up to take the signal off the queue.
999 	 *
1000 	 * If the main thread wants the signal, it gets first crack.
1001 	 * Probably the least surprising to the average bear.
1002 	 */
1003 	if (wants_signal(sig, p))
1004 		t = p;
1005 	else if ((type == PIDTYPE_PID) || thread_group_empty(p))
1006 		/*
1007 		 * There is just one thread and it does not need to be woken.
1008 		 * It will dequeue unblocked signals before it runs again.
1009 		 */
1010 		return;
1011 	else {
1012 		/*
1013 		 * Otherwise try to find a suitable thread.
1014 		 */
1015 		t = signal->curr_target;
1016 		while (!wants_signal(sig, t)) {
1017 			t = next_thread(t);
1018 			if (t == signal->curr_target)
1019 				/*
1020 				 * No thread needs to be woken.
1021 				 * Any eligible threads will see
1022 				 * the signal in the queue soon.
1023 				 */
1024 				return;
1025 		}
1026 		signal->curr_target = t;
1027 	}
1028 
1029 	/*
1030 	 * Found a killable thread.  If the signal will be fatal,
1031 	 * then start taking the whole group down immediately.
1032 	 */
1033 	if (sig_fatal(p, sig) &&
1034 	    !(signal->flags & SIGNAL_GROUP_EXIT) &&
1035 	    !sigismember(&t->real_blocked, sig) &&
1036 	    (sig == SIGKILL || !p->ptrace)) {
1037 		/*
1038 		 * This signal will be fatal to the whole group.
1039 		 */
1040 		if (!sig_kernel_coredump(sig)) {
1041 			/*
1042 			 * Start a group exit and wake everybody up.
1043 			 * This way we don't have other threads
1044 			 * running and doing things after a slower
1045 			 * thread has the fatal signal pending.
1046 			 */
1047 			signal->flags = SIGNAL_GROUP_EXIT;
1048 			signal->group_exit_code = sig;
1049 			signal->group_stop_count = 0;
1050 			t = p;
1051 			do {
1052 				trace_android_vh_exit_signal(t);
1053 				task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1054 				sigaddset(&t->pending.signal, SIGKILL);
1055 				signal_wake_up(t, 1);
1056 			} while_each_thread(p, t);
1057 			return;
1058 		}
1059 	}
1060 
1061 	/*
1062 	 * The signal is already in the shared-pending queue.
1063 	 * Tell the chosen thread to wake up and dequeue it.
1064 	 */
1065 	signal_wake_up(t, sig == SIGKILL);
1066 	return;
1067 }
1068 
legacy_queue(struct sigpending * signals,int sig)1069 static inline bool legacy_queue(struct sigpending *signals, int sig)
1070 {
1071 	return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
1072 }
1073 
__send_signal(int sig,struct kernel_siginfo * info,struct task_struct * t,enum pid_type type,bool force)1074 static int __send_signal(int sig, struct kernel_siginfo *info, struct task_struct *t,
1075 			enum pid_type type, bool force)
1076 {
1077 	struct sigpending *pending;
1078 	struct sigqueue *q;
1079 	int override_rlimit;
1080 	int ret = 0, result;
1081 
1082 	assert_spin_locked(&t->sighand->siglock);
1083 
1084 	result = TRACE_SIGNAL_IGNORED;
1085 	if (!prepare_signal(sig, t, force))
1086 		goto ret;
1087 
1088 	pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
1089 	/*
1090 	 * Short-circuit ignored signals and support queuing
1091 	 * exactly one non-rt signal, so that we can get more
1092 	 * detailed information about the cause of the signal.
1093 	 */
1094 	result = TRACE_SIGNAL_ALREADY_PENDING;
1095 	if (legacy_queue(pending, sig))
1096 		goto ret;
1097 
1098 	result = TRACE_SIGNAL_DELIVERED;
1099 	/*
1100 	 * Skip useless siginfo allocation for SIGKILL and kernel threads.
1101 	 */
1102 	if ((sig == SIGKILL) || (t->flags & PF_KTHREAD))
1103 		goto out_set;
1104 
1105 	/*
1106 	 * Real-time signals must be queued if sent by sigqueue, or
1107 	 * some other real-time mechanism.  It is implementation
1108 	 * defined whether kill() does so.  We attempt to do so, on
1109 	 * the principle of least surprise, but since kill is not
1110 	 * allowed to fail with EAGAIN when low on memory we just
1111 	 * make sure at least one signal gets delivered and don't
1112 	 * pass on the info struct.
1113 	 */
1114 	if (sig < SIGRTMIN)
1115 		override_rlimit = (is_si_special(info) || info->si_code >= 0);
1116 	else
1117 		override_rlimit = 0;
1118 
1119 	q = __sigqueue_alloc(sig, t, GFP_ATOMIC, override_rlimit, 0);
1120 
1121 	if (q) {
1122 		list_add_tail(&q->list, &pending->list);
1123 		switch ((unsigned long) info) {
1124 		case (unsigned long) SEND_SIG_NOINFO:
1125 			clear_siginfo(&q->info);
1126 			q->info.si_signo = sig;
1127 			q->info.si_errno = 0;
1128 			q->info.si_code = SI_USER;
1129 			q->info.si_pid = task_tgid_nr_ns(current,
1130 							task_active_pid_ns(t));
1131 			rcu_read_lock();
1132 			q->info.si_uid =
1133 				from_kuid_munged(task_cred_xxx(t, user_ns),
1134 						 current_uid());
1135 			rcu_read_unlock();
1136 			break;
1137 		case (unsigned long) SEND_SIG_PRIV:
1138 			clear_siginfo(&q->info);
1139 			q->info.si_signo = sig;
1140 			q->info.si_errno = 0;
1141 			q->info.si_code = SI_KERNEL;
1142 			q->info.si_pid = 0;
1143 			q->info.si_uid = 0;
1144 			break;
1145 		default:
1146 			copy_siginfo(&q->info, info);
1147 			break;
1148 		}
1149 	} else if (!is_si_special(info) &&
1150 		   sig >= SIGRTMIN && info->si_code != SI_USER) {
1151 		/*
1152 		 * Queue overflow, abort.  We may abort if the
1153 		 * signal was rt and sent by user using something
1154 		 * other than kill().
1155 		 */
1156 		result = TRACE_SIGNAL_OVERFLOW_FAIL;
1157 		ret = -EAGAIN;
1158 		goto ret;
1159 	} else {
1160 		/*
1161 		 * This is a silent loss of information.  We still
1162 		 * send the signal, but the *info bits are lost.
1163 		 */
1164 		result = TRACE_SIGNAL_LOSE_INFO;
1165 	}
1166 
1167 out_set:
1168 	signalfd_notify(t, sig);
1169 	sigaddset(&pending->signal, sig);
1170 
1171 	/* Let multiprocess signals appear after on-going forks */
1172 	if (type > PIDTYPE_TGID) {
1173 		struct multiprocess_signals *delayed;
1174 		hlist_for_each_entry(delayed, &t->signal->multiprocess, node) {
1175 			sigset_t *signal = &delayed->signal;
1176 			/* Can't queue both a stop and a continue signal */
1177 			if (sig == SIGCONT)
1178 				sigdelsetmask(signal, SIG_KERNEL_STOP_MASK);
1179 			else if (sig_kernel_stop(sig))
1180 				sigdelset(signal, SIGCONT);
1181 			sigaddset(signal, sig);
1182 		}
1183 	}
1184 
1185 	complete_signal(sig, t, type);
1186 ret:
1187 	trace_signal_generate(sig, info, t, type != PIDTYPE_PID, result);
1188 	return ret;
1189 }
1190 
has_si_pid_and_uid(struct kernel_siginfo * info)1191 static inline bool has_si_pid_and_uid(struct kernel_siginfo *info)
1192 {
1193 	bool ret = false;
1194 	switch (siginfo_layout(info->si_signo, info->si_code)) {
1195 	case SIL_KILL:
1196 	case SIL_CHLD:
1197 	case SIL_RT:
1198 		ret = true;
1199 		break;
1200 	case SIL_TIMER:
1201 	case SIL_POLL:
1202 	case SIL_FAULT:
1203 	case SIL_FAULT_TRAPNO:
1204 	case SIL_FAULT_MCEERR:
1205 	case SIL_FAULT_BNDERR:
1206 	case SIL_FAULT_PKUERR:
1207 	case SIL_FAULT_PERF_EVENT:
1208 	case SIL_SYS:
1209 		ret = false;
1210 		break;
1211 	}
1212 	return ret;
1213 }
1214 
send_signal(int sig,struct kernel_siginfo * info,struct task_struct * t,enum pid_type type)1215 static int send_signal(int sig, struct kernel_siginfo *info, struct task_struct *t,
1216 			enum pid_type type)
1217 {
1218 	/* Should SIGKILL or SIGSTOP be received by a pid namespace init? */
1219 	bool force = false;
1220 
1221 	if (info == SEND_SIG_NOINFO) {
1222 		/* Force if sent from an ancestor pid namespace */
1223 		force = !task_pid_nr_ns(current, task_active_pid_ns(t));
1224 	} else if (info == SEND_SIG_PRIV) {
1225 		/* Don't ignore kernel generated signals */
1226 		force = true;
1227 	} else if (has_si_pid_and_uid(info)) {
1228 		/* SIGKILL and SIGSTOP is special or has ids */
1229 		struct user_namespace *t_user_ns;
1230 
1231 		rcu_read_lock();
1232 		t_user_ns = task_cred_xxx(t, user_ns);
1233 		if (current_user_ns() != t_user_ns) {
1234 			kuid_t uid = make_kuid(current_user_ns(), info->si_uid);
1235 			info->si_uid = from_kuid_munged(t_user_ns, uid);
1236 		}
1237 		rcu_read_unlock();
1238 
1239 		/* A kernel generated signal? */
1240 		force = (info->si_code == SI_KERNEL);
1241 
1242 		/* From an ancestor pid namespace? */
1243 		if (!task_pid_nr_ns(current, task_active_pid_ns(t))) {
1244 			info->si_pid = 0;
1245 			force = true;
1246 		}
1247 	}
1248 	return __send_signal(sig, info, t, type, force);
1249 }
1250 
print_fatal_signal(int signr)1251 static void print_fatal_signal(int signr)
1252 {
1253 	struct pt_regs *regs = signal_pt_regs();
1254 	pr_info("potentially unexpected fatal signal %d.\n", signr);
1255 
1256 #if defined(__i386__) && !defined(__arch_um__)
1257 	pr_info("code at %08lx: ", regs->ip);
1258 	{
1259 		int i;
1260 		for (i = 0; i < 16; i++) {
1261 			unsigned char insn;
1262 
1263 			if (get_user(insn, (unsigned char *)(regs->ip + i)))
1264 				break;
1265 			pr_cont("%02x ", insn);
1266 		}
1267 	}
1268 	pr_cont("\n");
1269 #endif
1270 	preempt_disable();
1271 	show_regs(regs);
1272 	preempt_enable();
1273 }
1274 
setup_print_fatal_signals(char * str)1275 static int __init setup_print_fatal_signals(char *str)
1276 {
1277 	get_option (&str, &print_fatal_signals);
1278 
1279 	return 1;
1280 }
1281 
1282 __setup("print-fatal-signals=", setup_print_fatal_signals);
1283 
1284 int
__group_send_sig_info(int sig,struct kernel_siginfo * info,struct task_struct * p)1285 __group_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p)
1286 {
1287 	return send_signal(sig, info, p, PIDTYPE_TGID);
1288 }
1289 
do_send_sig_info(int sig,struct kernel_siginfo * info,struct task_struct * p,enum pid_type type)1290 int do_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p,
1291 			enum pid_type type)
1292 {
1293 	unsigned long flags;
1294 	int ret = -ESRCH;
1295 	trace_android_vh_do_send_sig_info(sig, current, p);
1296 	if (lock_task_sighand(p, &flags)) {
1297 		ret = send_signal(sig, info, p, type);
1298 		unlock_task_sighand(p, &flags);
1299 	}
1300 
1301 	return ret;
1302 }
1303 
1304 enum sig_handler {
1305 	HANDLER_CURRENT, /* If reachable use the current handler */
1306 	HANDLER_SIG_DFL, /* Always use SIG_DFL handler semantics */
1307 	HANDLER_EXIT,	 /* Only visible as the process exit code */
1308 };
1309 
1310 /*
1311  * Force a signal that the process can't ignore: if necessary
1312  * we unblock the signal and change any SIG_IGN to SIG_DFL.
1313  *
1314  * Note: If we unblock the signal, we always reset it to SIG_DFL,
1315  * since we do not want to have a signal handler that was blocked
1316  * be invoked when user space had explicitly blocked it.
1317  *
1318  * We don't want to have recursive SIGSEGV's etc, for example,
1319  * that is why we also clear SIGNAL_UNKILLABLE.
1320  */
1321 static int
force_sig_info_to_task(struct kernel_siginfo * info,struct task_struct * t,enum sig_handler handler)1322 force_sig_info_to_task(struct kernel_siginfo *info, struct task_struct *t,
1323 	enum sig_handler handler)
1324 {
1325 	unsigned long int flags;
1326 	int ret, blocked, ignored;
1327 	struct k_sigaction *action;
1328 	int sig = info->si_signo;
1329 
1330 	spin_lock_irqsave(&t->sighand->siglock, flags);
1331 	action = &t->sighand->action[sig-1];
1332 	ignored = action->sa.sa_handler == SIG_IGN;
1333 	blocked = sigismember(&t->blocked, sig);
1334 	if (blocked || ignored || (handler != HANDLER_CURRENT)) {
1335 		action->sa.sa_handler = SIG_DFL;
1336 		if (handler == HANDLER_EXIT)
1337 			action->sa.sa_flags |= SA_IMMUTABLE;
1338 		if (blocked) {
1339 			sigdelset(&t->blocked, sig);
1340 			recalc_sigpending_and_wake(t);
1341 		}
1342 	}
1343 	/*
1344 	 * Don't clear SIGNAL_UNKILLABLE for traced tasks, users won't expect
1345 	 * debugging to leave init killable. But HANDLER_EXIT is always fatal.
1346 	 */
1347 	if (action->sa.sa_handler == SIG_DFL &&
1348 	    (!t->ptrace || (handler == HANDLER_EXIT)))
1349 		t->signal->flags &= ~SIGNAL_UNKILLABLE;
1350 	ret = send_signal(sig, info, t, PIDTYPE_PID);
1351 	spin_unlock_irqrestore(&t->sighand->siglock, flags);
1352 
1353 	return ret;
1354 }
1355 
force_sig_info(struct kernel_siginfo * info)1356 int force_sig_info(struct kernel_siginfo *info)
1357 {
1358 	return force_sig_info_to_task(info, current, HANDLER_CURRENT);
1359 }
1360 
1361 /*
1362  * Nuke all other threads in the group.
1363  */
zap_other_threads(struct task_struct * p)1364 int zap_other_threads(struct task_struct *p)
1365 {
1366 	struct task_struct *t = p;
1367 	int count = 0;
1368 
1369 	p->signal->group_stop_count = 0;
1370 
1371 	while_each_thread(p, t) {
1372 		task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1373 		count++;
1374 
1375 		/* Don't bother with already dead threads */
1376 		if (t->exit_state)
1377 			continue;
1378 		sigaddset(&t->pending.signal, SIGKILL);
1379 		signal_wake_up(t, 1);
1380 	}
1381 
1382 	return count;
1383 }
1384 
__lock_task_sighand(struct task_struct * tsk,unsigned long * flags)1385 struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
1386 					   unsigned long *flags)
1387 {
1388 	struct sighand_struct *sighand;
1389 
1390 	rcu_read_lock();
1391 	for (;;) {
1392 		sighand = rcu_dereference(tsk->sighand);
1393 		if (unlikely(sighand == NULL))
1394 			break;
1395 
1396 		/*
1397 		 * This sighand can be already freed and even reused, but
1398 		 * we rely on SLAB_TYPESAFE_BY_RCU and sighand_ctor() which
1399 		 * initializes ->siglock: this slab can't go away, it has
1400 		 * the same object type, ->siglock can't be reinitialized.
1401 		 *
1402 		 * We need to ensure that tsk->sighand is still the same
1403 		 * after we take the lock, we can race with de_thread() or
1404 		 * __exit_signal(). In the latter case the next iteration
1405 		 * must see ->sighand == NULL.
1406 		 */
1407 		spin_lock_irqsave(&sighand->siglock, *flags);
1408 		if (likely(sighand == rcu_access_pointer(tsk->sighand)))
1409 			break;
1410 		spin_unlock_irqrestore(&sighand->siglock, *flags);
1411 	}
1412 	rcu_read_unlock();
1413 
1414 	return sighand;
1415 }
1416 
1417 #ifdef CONFIG_LOCKDEP
lockdep_assert_task_sighand_held(struct task_struct * task)1418 void lockdep_assert_task_sighand_held(struct task_struct *task)
1419 {
1420 	struct sighand_struct *sighand;
1421 
1422 	rcu_read_lock();
1423 	sighand = rcu_dereference(task->sighand);
1424 	if (sighand)
1425 		lockdep_assert_held(&sighand->siglock);
1426 	else
1427 		WARN_ON_ONCE(1);
1428 	rcu_read_unlock();
1429 }
1430 #endif
1431 
1432 /*
1433  * send signal info to all the members of a group
1434  */
group_send_sig_info(int sig,struct kernel_siginfo * info,struct task_struct * p,enum pid_type type)1435 int group_send_sig_info(int sig, struct kernel_siginfo *info,
1436 			struct task_struct *p, enum pid_type type)
1437 {
1438 	int ret;
1439 
1440 	rcu_read_lock();
1441 	ret = check_kill_permission(sig, info, p);
1442 	rcu_read_unlock();
1443 
1444 	if (!ret && sig)
1445 		ret = do_send_sig_info(sig, info, p, type);
1446 
1447 	return ret;
1448 }
1449 
1450 /*
1451  * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1452  * control characters do (^C, ^Z etc)
1453  * - the caller must hold at least a readlock on tasklist_lock
1454  */
__kill_pgrp_info(int sig,struct kernel_siginfo * info,struct pid * pgrp)1455 int __kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp)
1456 {
1457 	struct task_struct *p = NULL;
1458 	int retval, success;
1459 
1460 	success = 0;
1461 	retval = -ESRCH;
1462 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1463 		int err = group_send_sig_info(sig, info, p, PIDTYPE_PGID);
1464 		success |= !err;
1465 		retval = err;
1466 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1467 	return success ? 0 : retval;
1468 }
1469 
kill_pid_info(int sig,struct kernel_siginfo * info,struct pid * pid)1470 int kill_pid_info(int sig, struct kernel_siginfo *info, struct pid *pid)
1471 {
1472 	int error = -ESRCH;
1473 	struct task_struct *p;
1474 
1475 	for (;;) {
1476 		rcu_read_lock();
1477 		p = pid_task(pid, PIDTYPE_PID);
1478 		if (p)
1479 			error = group_send_sig_info(sig, info, p, PIDTYPE_TGID);
1480 		rcu_read_unlock();
1481 		if (likely(!p || error != -ESRCH))
1482 			return error;
1483 
1484 		/*
1485 		 * The task was unhashed in between, try again.  If it
1486 		 * is dead, pid_task() will return NULL, if we race with
1487 		 * de_thread() it will find the new leader.
1488 		 */
1489 	}
1490 }
1491 
kill_proc_info(int sig,struct kernel_siginfo * info,pid_t pid)1492 static int kill_proc_info(int sig, struct kernel_siginfo *info, pid_t pid)
1493 {
1494 	int error;
1495 	rcu_read_lock();
1496 	error = kill_pid_info(sig, info, find_vpid(pid));
1497 	rcu_read_unlock();
1498 	return error;
1499 }
1500 
kill_as_cred_perm(const struct cred * cred,struct task_struct * target)1501 static inline bool kill_as_cred_perm(const struct cred *cred,
1502 				     struct task_struct *target)
1503 {
1504 	const struct cred *pcred = __task_cred(target);
1505 
1506 	return uid_eq(cred->euid, pcred->suid) ||
1507 	       uid_eq(cred->euid, pcred->uid) ||
1508 	       uid_eq(cred->uid, pcred->suid) ||
1509 	       uid_eq(cred->uid, pcred->uid);
1510 }
1511 
1512 /*
1513  * The usb asyncio usage of siginfo is wrong.  The glibc support
1514  * for asyncio which uses SI_ASYNCIO assumes the layout is SIL_RT.
1515  * AKA after the generic fields:
1516  *	kernel_pid_t	si_pid;
1517  *	kernel_uid32_t	si_uid;
1518  *	sigval_t	si_value;
1519  *
1520  * Unfortunately when usb generates SI_ASYNCIO it assumes the layout
1521  * after the generic fields is:
1522  *	void __user 	*si_addr;
1523  *
1524  * This is a practical problem when there is a 64bit big endian kernel
1525  * and a 32bit userspace.  As the 32bit address will encoded in the low
1526  * 32bits of the pointer.  Those low 32bits will be stored at higher
1527  * address than appear in a 32 bit pointer.  So userspace will not
1528  * see the address it was expecting for it's completions.
1529  *
1530  * There is nothing in the encoding that can allow
1531  * copy_siginfo_to_user32 to detect this confusion of formats, so
1532  * handle this by requiring the caller of kill_pid_usb_asyncio to
1533  * notice when this situration takes place and to store the 32bit
1534  * pointer in sival_int, instead of sival_addr of the sigval_t addr
1535  * parameter.
1536  */
kill_pid_usb_asyncio(int sig,int errno,sigval_t addr,struct pid * pid,const struct cred * cred)1537 int kill_pid_usb_asyncio(int sig, int errno, sigval_t addr,
1538 			 struct pid *pid, const struct cred *cred)
1539 {
1540 	struct kernel_siginfo info;
1541 	struct task_struct *p;
1542 	unsigned long flags;
1543 	int ret = -EINVAL;
1544 
1545 	if (!valid_signal(sig))
1546 		return ret;
1547 
1548 	clear_siginfo(&info);
1549 	info.si_signo = sig;
1550 	info.si_errno = errno;
1551 	info.si_code = SI_ASYNCIO;
1552 	*((sigval_t *)&info.si_pid) = addr;
1553 
1554 	rcu_read_lock();
1555 	p = pid_task(pid, PIDTYPE_PID);
1556 	if (!p) {
1557 		ret = -ESRCH;
1558 		goto out_unlock;
1559 	}
1560 	if (!kill_as_cred_perm(cred, p)) {
1561 		ret = -EPERM;
1562 		goto out_unlock;
1563 	}
1564 	ret = security_task_kill(p, &info, sig, cred);
1565 	if (ret)
1566 		goto out_unlock;
1567 
1568 	if (sig) {
1569 		if (lock_task_sighand(p, &flags)) {
1570 			ret = __send_signal(sig, &info, p, PIDTYPE_TGID, false);
1571 			unlock_task_sighand(p, &flags);
1572 		} else
1573 			ret = -ESRCH;
1574 	}
1575 out_unlock:
1576 	rcu_read_unlock();
1577 	return ret;
1578 }
1579 EXPORT_SYMBOL_GPL(kill_pid_usb_asyncio);
1580 
1581 /*
1582  * kill_something_info() interprets pid in interesting ways just like kill(2).
1583  *
1584  * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1585  * is probably wrong.  Should make it like BSD or SYSV.
1586  */
1587 
kill_something_info(int sig,struct kernel_siginfo * info,pid_t pid)1588 static int kill_something_info(int sig, struct kernel_siginfo *info, pid_t pid)
1589 {
1590 	int ret;
1591 
1592 	if (pid > 0)
1593 		return kill_proc_info(sig, info, pid);
1594 
1595 	/* -INT_MIN is undefined.  Exclude this case to avoid a UBSAN warning */
1596 	if (pid == INT_MIN)
1597 		return -ESRCH;
1598 
1599 	read_lock(&tasklist_lock);
1600 	if (pid != -1) {
1601 		ret = __kill_pgrp_info(sig, info,
1602 				pid ? find_vpid(-pid) : task_pgrp(current));
1603 	} else {
1604 		int retval = 0, count = 0;
1605 		struct task_struct * p;
1606 
1607 		for_each_process(p) {
1608 			if (task_pid_vnr(p) > 1 &&
1609 					!same_thread_group(p, current)) {
1610 				int err = group_send_sig_info(sig, info, p,
1611 							      PIDTYPE_MAX);
1612 				++count;
1613 				if (err != -EPERM)
1614 					retval = err;
1615 			}
1616 		}
1617 		ret = count ? retval : -ESRCH;
1618 	}
1619 	read_unlock(&tasklist_lock);
1620 
1621 	return ret;
1622 }
1623 
1624 /*
1625  * These are for backward compatibility with the rest of the kernel source.
1626  */
1627 
send_sig_info(int sig,struct kernel_siginfo * info,struct task_struct * p)1628 int send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p)
1629 {
1630 	/*
1631 	 * Make sure legacy kernel users don't send in bad values
1632 	 * (normal paths check this in check_kill_permission).
1633 	 */
1634 	if (!valid_signal(sig))
1635 		return -EINVAL;
1636 
1637 	return do_send_sig_info(sig, info, p, PIDTYPE_PID);
1638 }
1639 EXPORT_SYMBOL(send_sig_info);
1640 
1641 #define __si_special(priv) \
1642 	((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1643 
1644 int
send_sig(int sig,struct task_struct * p,int priv)1645 send_sig(int sig, struct task_struct *p, int priv)
1646 {
1647 	return send_sig_info(sig, __si_special(priv), p);
1648 }
1649 EXPORT_SYMBOL(send_sig);
1650 
force_sig(int sig)1651 void force_sig(int sig)
1652 {
1653 	struct kernel_siginfo info;
1654 
1655 	clear_siginfo(&info);
1656 	info.si_signo = sig;
1657 	info.si_errno = 0;
1658 	info.si_code = SI_KERNEL;
1659 	info.si_pid = 0;
1660 	info.si_uid = 0;
1661 	force_sig_info(&info);
1662 }
1663 EXPORT_SYMBOL(force_sig);
1664 
force_fatal_sig(int sig)1665 void force_fatal_sig(int sig)
1666 {
1667 	struct kernel_siginfo info;
1668 
1669 	clear_siginfo(&info);
1670 	info.si_signo = sig;
1671 	info.si_errno = 0;
1672 	info.si_code = SI_KERNEL;
1673 	info.si_pid = 0;
1674 	info.si_uid = 0;
1675 	force_sig_info_to_task(&info, current, HANDLER_SIG_DFL);
1676 }
1677 
force_exit_sig(int sig)1678 void force_exit_sig(int sig)
1679 {
1680 	struct kernel_siginfo info;
1681 
1682 	clear_siginfo(&info);
1683 	info.si_signo = sig;
1684 	info.si_errno = 0;
1685 	info.si_code = SI_KERNEL;
1686 	info.si_pid = 0;
1687 	info.si_uid = 0;
1688 	force_sig_info_to_task(&info, current, HANDLER_EXIT);
1689 }
1690 
1691 /*
1692  * When things go south during signal handling, we
1693  * will force a SIGSEGV. And if the signal that caused
1694  * the problem was already a SIGSEGV, we'll want to
1695  * make sure we don't even try to deliver the signal..
1696  */
force_sigsegv(int sig)1697 void force_sigsegv(int sig)
1698 {
1699 	if (sig == SIGSEGV)
1700 		force_fatal_sig(SIGSEGV);
1701 	else
1702 		force_sig(SIGSEGV);
1703 }
1704 
force_sig_fault_to_task(int sig,int code,void __user * addr ___ARCH_SI_IA64 (int imm,unsigned int flags,unsigned long isr),struct task_struct * t)1705 int force_sig_fault_to_task(int sig, int code, void __user *addr
1706 	___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
1707 	, struct task_struct *t)
1708 {
1709 	struct kernel_siginfo info;
1710 
1711 	clear_siginfo(&info);
1712 	info.si_signo = sig;
1713 	info.si_errno = 0;
1714 	info.si_code  = code;
1715 	info.si_addr  = addr;
1716 #ifdef __ia64__
1717 	info.si_imm = imm;
1718 	info.si_flags = flags;
1719 	info.si_isr = isr;
1720 #endif
1721 	return force_sig_info_to_task(&info, t, HANDLER_CURRENT);
1722 }
1723 
force_sig_fault(int sig,int code,void __user * addr ___ARCH_SI_IA64 (int imm,unsigned int flags,unsigned long isr))1724 int force_sig_fault(int sig, int code, void __user *addr
1725 	___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr))
1726 {
1727 	return force_sig_fault_to_task(sig, code, addr
1728 				       ___ARCH_SI_IA64(imm, flags, isr), current);
1729 }
1730 
send_sig_fault(int sig,int code,void __user * addr ___ARCH_SI_IA64 (int imm,unsigned int flags,unsigned long isr),struct task_struct * t)1731 int send_sig_fault(int sig, int code, void __user *addr
1732 	___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
1733 	, struct task_struct *t)
1734 {
1735 	struct kernel_siginfo info;
1736 
1737 	clear_siginfo(&info);
1738 	info.si_signo = sig;
1739 	info.si_errno = 0;
1740 	info.si_code  = code;
1741 	info.si_addr  = addr;
1742 #ifdef __ia64__
1743 	info.si_imm = imm;
1744 	info.si_flags = flags;
1745 	info.si_isr = isr;
1746 #endif
1747 	return send_sig_info(info.si_signo, &info, t);
1748 }
1749 
force_sig_mceerr(int code,void __user * addr,short lsb)1750 int force_sig_mceerr(int code, void __user *addr, short lsb)
1751 {
1752 	struct kernel_siginfo info;
1753 
1754 	WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1755 	clear_siginfo(&info);
1756 	info.si_signo = SIGBUS;
1757 	info.si_errno = 0;
1758 	info.si_code = code;
1759 	info.si_addr = addr;
1760 	info.si_addr_lsb = lsb;
1761 	return force_sig_info(&info);
1762 }
1763 
send_sig_mceerr(int code,void __user * addr,short lsb,struct task_struct * t)1764 int send_sig_mceerr(int code, void __user *addr, short lsb, struct task_struct *t)
1765 {
1766 	struct kernel_siginfo info;
1767 
1768 	WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1769 	clear_siginfo(&info);
1770 	info.si_signo = SIGBUS;
1771 	info.si_errno = 0;
1772 	info.si_code = code;
1773 	info.si_addr = addr;
1774 	info.si_addr_lsb = lsb;
1775 	return send_sig_info(info.si_signo, &info, t);
1776 }
1777 EXPORT_SYMBOL(send_sig_mceerr);
1778 
force_sig_bnderr(void __user * addr,void __user * lower,void __user * upper)1779 int force_sig_bnderr(void __user *addr, void __user *lower, void __user *upper)
1780 {
1781 	struct kernel_siginfo info;
1782 
1783 	clear_siginfo(&info);
1784 	info.si_signo = SIGSEGV;
1785 	info.si_errno = 0;
1786 	info.si_code  = SEGV_BNDERR;
1787 	info.si_addr  = addr;
1788 	info.si_lower = lower;
1789 	info.si_upper = upper;
1790 	return force_sig_info(&info);
1791 }
1792 
1793 #ifdef SEGV_PKUERR
force_sig_pkuerr(void __user * addr,u32 pkey)1794 int force_sig_pkuerr(void __user *addr, u32 pkey)
1795 {
1796 	struct kernel_siginfo info;
1797 
1798 	clear_siginfo(&info);
1799 	info.si_signo = SIGSEGV;
1800 	info.si_errno = 0;
1801 	info.si_code  = SEGV_PKUERR;
1802 	info.si_addr  = addr;
1803 	info.si_pkey  = pkey;
1804 	return force_sig_info(&info);
1805 }
1806 #endif
1807 
send_sig_perf(void __user * addr,u32 type,u64 sig_data)1808 int send_sig_perf(void __user *addr, u32 type, u64 sig_data)
1809 {
1810 	struct kernel_siginfo info;
1811 
1812 	clear_siginfo(&info);
1813 	info.si_signo     = SIGTRAP;
1814 	info.si_errno     = 0;
1815 	info.si_code      = TRAP_PERF;
1816 	info.si_addr      = addr;
1817 	info.si_perf_data = sig_data;
1818 	info.si_perf_type = type;
1819 
1820 	/*
1821 	 * Signals generated by perf events should not terminate the whole
1822 	 * process if SIGTRAP is blocked, however, delivering the signal
1823 	 * asynchronously is better than not delivering at all. But tell user
1824 	 * space if the signal was asynchronous, so it can clearly be
1825 	 * distinguished from normal synchronous ones.
1826 	 */
1827 	info.si_perf_flags = sigismember(&current->blocked, info.si_signo) ?
1828 				     TRAP_PERF_FLAG_ASYNC :
1829 				     0;
1830 
1831 	return send_sig_info(info.si_signo, &info, current);
1832 }
1833 
1834 /**
1835  * force_sig_seccomp - signals the task to allow in-process syscall emulation
1836  * @syscall: syscall number to send to userland
1837  * @reason: filter-supplied reason code to send to userland (via si_errno)
1838  *
1839  * Forces a SIGSYS with a code of SYS_SECCOMP and related sigsys info.
1840  */
force_sig_seccomp(int syscall,int reason,bool force_coredump)1841 int force_sig_seccomp(int syscall, int reason, bool force_coredump)
1842 {
1843 	struct kernel_siginfo info;
1844 
1845 	clear_siginfo(&info);
1846 	info.si_signo = SIGSYS;
1847 	info.si_code = SYS_SECCOMP;
1848 	info.si_call_addr = (void __user *)KSTK_EIP(current);
1849 	info.si_errno = reason;
1850 	info.si_arch = syscall_get_arch(current);
1851 	info.si_syscall = syscall;
1852 	return force_sig_info_to_task(&info, current,
1853 		force_coredump ? HANDLER_EXIT : HANDLER_CURRENT);
1854 }
1855 
1856 /* For the crazy architectures that include trap information in
1857  * the errno field, instead of an actual errno value.
1858  */
force_sig_ptrace_errno_trap(int errno,void __user * addr)1859 int force_sig_ptrace_errno_trap(int errno, void __user *addr)
1860 {
1861 	struct kernel_siginfo info;
1862 
1863 	clear_siginfo(&info);
1864 	info.si_signo = SIGTRAP;
1865 	info.si_errno = errno;
1866 	info.si_code  = TRAP_HWBKPT;
1867 	info.si_addr  = addr;
1868 	return force_sig_info(&info);
1869 }
1870 
1871 /* For the rare architectures that include trap information using
1872  * si_trapno.
1873  */
force_sig_fault_trapno(int sig,int code,void __user * addr,int trapno)1874 int force_sig_fault_trapno(int sig, int code, void __user *addr, int trapno)
1875 {
1876 	struct kernel_siginfo info;
1877 
1878 	clear_siginfo(&info);
1879 	info.si_signo = sig;
1880 	info.si_errno = 0;
1881 	info.si_code  = code;
1882 	info.si_addr  = addr;
1883 	info.si_trapno = trapno;
1884 	return force_sig_info(&info);
1885 }
1886 
1887 /* For the rare architectures that include trap information using
1888  * si_trapno.
1889  */
send_sig_fault_trapno(int sig,int code,void __user * addr,int trapno,struct task_struct * t)1890 int send_sig_fault_trapno(int sig, int code, void __user *addr, int trapno,
1891 			  struct task_struct *t)
1892 {
1893 	struct kernel_siginfo info;
1894 
1895 	clear_siginfo(&info);
1896 	info.si_signo = sig;
1897 	info.si_errno = 0;
1898 	info.si_code  = code;
1899 	info.si_addr  = addr;
1900 	info.si_trapno = trapno;
1901 	return send_sig_info(info.si_signo, &info, t);
1902 }
1903 
kill_pgrp(struct pid * pid,int sig,int priv)1904 int kill_pgrp(struct pid *pid, int sig, int priv)
1905 {
1906 	int ret;
1907 
1908 	read_lock(&tasklist_lock);
1909 	ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1910 	read_unlock(&tasklist_lock);
1911 
1912 	return ret;
1913 }
1914 EXPORT_SYMBOL(kill_pgrp);
1915 
kill_pid(struct pid * pid,int sig,int priv)1916 int kill_pid(struct pid *pid, int sig, int priv)
1917 {
1918 	return kill_pid_info(sig, __si_special(priv), pid);
1919 }
1920 EXPORT_SYMBOL(kill_pid);
1921 
1922 /*
1923  * These functions support sending signals using preallocated sigqueue
1924  * structures.  This is needed "because realtime applications cannot
1925  * afford to lose notifications of asynchronous events, like timer
1926  * expirations or I/O completions".  In the case of POSIX Timers
1927  * we allocate the sigqueue structure from the timer_create.  If this
1928  * allocation fails we are able to report the failure to the application
1929  * with an EAGAIN error.
1930  */
sigqueue_alloc(void)1931 struct sigqueue *sigqueue_alloc(void)
1932 {
1933 	return __sigqueue_alloc(-1, current, GFP_KERNEL, 0, SIGQUEUE_PREALLOC);
1934 }
1935 
sigqueue_free(struct sigqueue * q)1936 void sigqueue_free(struct sigqueue *q)
1937 {
1938 	unsigned long flags;
1939 	spinlock_t *lock = &current->sighand->siglock;
1940 
1941 	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1942 	/*
1943 	 * We must hold ->siglock while testing q->list
1944 	 * to serialize with collect_signal() or with
1945 	 * __exit_signal()->flush_sigqueue().
1946 	 */
1947 	spin_lock_irqsave(lock, flags);
1948 	q->flags &= ~SIGQUEUE_PREALLOC;
1949 	/*
1950 	 * If it is queued it will be freed when dequeued,
1951 	 * like the "regular" sigqueue.
1952 	 */
1953 	if (!list_empty(&q->list))
1954 		q = NULL;
1955 	spin_unlock_irqrestore(lock, flags);
1956 
1957 	if (q)
1958 		__sigqueue_free(q);
1959 }
1960 
send_sigqueue(struct sigqueue * q,struct pid * pid,enum pid_type type)1961 int send_sigqueue(struct sigqueue *q, struct pid *pid, enum pid_type type)
1962 {
1963 	int sig = q->info.si_signo;
1964 	struct sigpending *pending;
1965 	struct task_struct *t;
1966 	unsigned long flags;
1967 	int ret, result;
1968 
1969 	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1970 
1971 	ret = -1;
1972 	rcu_read_lock();
1973 	t = pid_task(pid, type);
1974 	if (!t || !likely(lock_task_sighand(t, &flags)))
1975 		goto ret;
1976 
1977 	ret = 1; /* the signal is ignored */
1978 	result = TRACE_SIGNAL_IGNORED;
1979 	if (!prepare_signal(sig, t, false))
1980 		goto out;
1981 
1982 	ret = 0;
1983 	if (unlikely(!list_empty(&q->list))) {
1984 		/*
1985 		 * If an SI_TIMER entry is already queue just increment
1986 		 * the overrun count.
1987 		 */
1988 		BUG_ON(q->info.si_code != SI_TIMER);
1989 		q->info.si_overrun++;
1990 		result = TRACE_SIGNAL_ALREADY_PENDING;
1991 		goto out;
1992 	}
1993 	q->info.si_overrun = 0;
1994 
1995 	signalfd_notify(t, sig);
1996 	pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
1997 	list_add_tail(&q->list, &pending->list);
1998 	sigaddset(&pending->signal, sig);
1999 	complete_signal(sig, t, type);
2000 	result = TRACE_SIGNAL_DELIVERED;
2001 out:
2002 	trace_signal_generate(sig, &q->info, t, type != PIDTYPE_PID, result);
2003 	unlock_task_sighand(t, &flags);
2004 ret:
2005 	rcu_read_unlock();
2006 	return ret;
2007 }
2008 
do_notify_pidfd(struct task_struct * task)2009 static void do_notify_pidfd(struct task_struct *task)
2010 {
2011 	struct pid *pid;
2012 
2013 	WARN_ON(task->exit_state == 0);
2014 	pid = task_pid(task);
2015 	wake_up_all(&pid->wait_pidfd);
2016 }
2017 
2018 /*
2019  * Let a parent know about the death of a child.
2020  * For a stopped/continued status change, use do_notify_parent_cldstop instead.
2021  *
2022  * Returns true if our parent ignored us and so we've switched to
2023  * self-reaping.
2024  */
do_notify_parent(struct task_struct * tsk,int sig)2025 bool do_notify_parent(struct task_struct *tsk, int sig)
2026 {
2027 	struct kernel_siginfo info;
2028 	unsigned long flags;
2029 	struct sighand_struct *psig;
2030 	bool autoreap = false;
2031 	u64 utime, stime;
2032 
2033 	WARN_ON_ONCE(sig == -1);
2034 
2035 	/* do_notify_parent_cldstop should have been called instead.  */
2036 	WARN_ON_ONCE(task_is_stopped_or_traced(tsk));
2037 
2038 	WARN_ON_ONCE(!tsk->ptrace &&
2039 	       (tsk->group_leader != tsk || !thread_group_empty(tsk)));
2040 
2041 	/* Wake up all pidfd waiters */
2042 	do_notify_pidfd(tsk);
2043 
2044 	if (sig != SIGCHLD) {
2045 		/*
2046 		 * This is only possible if parent == real_parent.
2047 		 * Check if it has changed security domain.
2048 		 */
2049 		if (tsk->parent_exec_id != READ_ONCE(tsk->parent->self_exec_id))
2050 			sig = SIGCHLD;
2051 	}
2052 
2053 	clear_siginfo(&info);
2054 	info.si_signo = sig;
2055 	info.si_errno = 0;
2056 	/*
2057 	 * We are under tasklist_lock here so our parent is tied to
2058 	 * us and cannot change.
2059 	 *
2060 	 * task_active_pid_ns will always return the same pid namespace
2061 	 * until a task passes through release_task.
2062 	 *
2063 	 * write_lock() currently calls preempt_disable() which is the
2064 	 * same as rcu_read_lock(), but according to Oleg, this is not
2065 	 * correct to rely on this
2066 	 */
2067 	rcu_read_lock();
2068 	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent));
2069 	info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns),
2070 				       task_uid(tsk));
2071 	rcu_read_unlock();
2072 
2073 	task_cputime(tsk, &utime, &stime);
2074 	info.si_utime = nsec_to_clock_t(utime + tsk->signal->utime);
2075 	info.si_stime = nsec_to_clock_t(stime + tsk->signal->stime);
2076 
2077 	info.si_status = tsk->exit_code & 0x7f;
2078 	if (tsk->exit_code & 0x80)
2079 		info.si_code = CLD_DUMPED;
2080 	else if (tsk->exit_code & 0x7f)
2081 		info.si_code = CLD_KILLED;
2082 	else {
2083 		info.si_code = CLD_EXITED;
2084 		info.si_status = tsk->exit_code >> 8;
2085 	}
2086 
2087 	psig = tsk->parent->sighand;
2088 	spin_lock_irqsave(&psig->siglock, flags);
2089 	if (!tsk->ptrace && sig == SIGCHLD &&
2090 	    (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
2091 	     (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
2092 		/*
2093 		 * We are exiting and our parent doesn't care.  POSIX.1
2094 		 * defines special semantics for setting SIGCHLD to SIG_IGN
2095 		 * or setting the SA_NOCLDWAIT flag: we should be reaped
2096 		 * automatically and not left for our parent's wait4 call.
2097 		 * Rather than having the parent do it as a magic kind of
2098 		 * signal handler, we just set this to tell do_exit that we
2099 		 * can be cleaned up without becoming a zombie.  Note that
2100 		 * we still call __wake_up_parent in this case, because a
2101 		 * blocked sys_wait4 might now return -ECHILD.
2102 		 *
2103 		 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
2104 		 * is implementation-defined: we do (if you don't want
2105 		 * it, just use SIG_IGN instead).
2106 		 */
2107 		autoreap = true;
2108 		if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
2109 			sig = 0;
2110 	}
2111 	/*
2112 	 * Send with __send_signal as si_pid and si_uid are in the
2113 	 * parent's namespaces.
2114 	 */
2115 	if (valid_signal(sig) && sig)
2116 		__send_signal(sig, &info, tsk->parent, PIDTYPE_TGID, false);
2117 	__wake_up_parent(tsk, tsk->parent);
2118 	spin_unlock_irqrestore(&psig->siglock, flags);
2119 
2120 	return autoreap;
2121 }
2122 
2123 /**
2124  * do_notify_parent_cldstop - notify parent of stopped/continued state change
2125  * @tsk: task reporting the state change
2126  * @for_ptracer: the notification is for ptracer
2127  * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report
2128  *
2129  * Notify @tsk's parent that the stopped/continued state has changed.  If
2130  * @for_ptracer is %false, @tsk's group leader notifies to its real parent.
2131  * If %true, @tsk reports to @tsk->parent which should be the ptracer.
2132  *
2133  * CONTEXT:
2134  * Must be called with tasklist_lock at least read locked.
2135  */
do_notify_parent_cldstop(struct task_struct * tsk,bool for_ptracer,int why)2136 static void do_notify_parent_cldstop(struct task_struct *tsk,
2137 				     bool for_ptracer, int why)
2138 {
2139 	struct kernel_siginfo info;
2140 	unsigned long flags;
2141 	struct task_struct *parent;
2142 	struct sighand_struct *sighand;
2143 	u64 utime, stime;
2144 
2145 	if (for_ptracer) {
2146 		parent = tsk->parent;
2147 	} else {
2148 		tsk = tsk->group_leader;
2149 		parent = tsk->real_parent;
2150 	}
2151 
2152 	clear_siginfo(&info);
2153 	info.si_signo = SIGCHLD;
2154 	info.si_errno = 0;
2155 	/*
2156 	 * see comment in do_notify_parent() about the following 4 lines
2157 	 */
2158 	rcu_read_lock();
2159 	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent));
2160 	info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk));
2161 	rcu_read_unlock();
2162 
2163 	task_cputime(tsk, &utime, &stime);
2164 	info.si_utime = nsec_to_clock_t(utime);
2165 	info.si_stime = nsec_to_clock_t(stime);
2166 
2167  	info.si_code = why;
2168  	switch (why) {
2169  	case CLD_CONTINUED:
2170  		info.si_status = SIGCONT;
2171  		break;
2172  	case CLD_STOPPED:
2173  		info.si_status = tsk->signal->group_exit_code & 0x7f;
2174  		break;
2175  	case CLD_TRAPPED:
2176  		info.si_status = tsk->exit_code & 0x7f;
2177  		break;
2178  	default:
2179  		BUG();
2180  	}
2181 
2182 	sighand = parent->sighand;
2183 	spin_lock_irqsave(&sighand->siglock, flags);
2184 	if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
2185 	    !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
2186 		__group_send_sig_info(SIGCHLD, &info, parent);
2187 	/*
2188 	 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
2189 	 */
2190 	__wake_up_parent(tsk, parent);
2191 	spin_unlock_irqrestore(&sighand->siglock, flags);
2192 }
2193 
may_ptrace_stop(void)2194 static inline bool may_ptrace_stop(void)
2195 {
2196 	if (!likely(current->ptrace))
2197 		return false;
2198 	/*
2199 	 * Are we in the middle of do_coredump?
2200 	 * If so and our tracer is also part of the coredump stopping
2201 	 * is a deadlock situation, and pointless because our tracer
2202 	 * is dead so don't allow us to stop.
2203 	 * If SIGKILL was already sent before the caller unlocked
2204 	 * ->siglock we must see ->core_state != NULL. Otherwise it
2205 	 * is safe to enter schedule().
2206 	 *
2207 	 * This is almost outdated, a task with the pending SIGKILL can't
2208 	 * block in TASK_TRACED. But PTRACE_EVENT_EXIT can be reported
2209 	 * after SIGKILL was already dequeued.
2210 	 */
2211 	if (unlikely(current->mm->core_state) &&
2212 	    unlikely(current->mm == current->parent->mm))
2213 		return false;
2214 
2215 	return true;
2216 }
2217 
2218 
2219 /*
2220  * This must be called with current->sighand->siglock held.
2221  *
2222  * This should be the path for all ptrace stops.
2223  * We always set current->last_siginfo while stopped here.
2224  * That makes it a way to test a stopped process for
2225  * being ptrace-stopped vs being job-control-stopped.
2226  *
2227  * If we actually decide not to stop at all because the tracer
2228  * is gone, we keep current->exit_code unless clear_code.
2229  */
ptrace_stop(int exit_code,int why,int clear_code,kernel_siginfo_t * info)2230 static void ptrace_stop(int exit_code, int why, int clear_code, kernel_siginfo_t *info)
2231 	__releases(&current->sighand->siglock)
2232 	__acquires(&current->sighand->siglock)
2233 {
2234 	bool gstop_done = false;
2235 
2236 	if (arch_ptrace_stop_needed(exit_code, info)) {
2237 		/*
2238 		 * The arch code has something special to do before a
2239 		 * ptrace stop.  This is allowed to block, e.g. for faults
2240 		 * on user stack pages.  We can't keep the siglock while
2241 		 * calling arch_ptrace_stop, so we must release it now.
2242 		 * To preserve proper semantics, we must do this before
2243 		 * any signal bookkeeping like checking group_stop_count.
2244 		 */
2245 		spin_unlock_irq(&current->sighand->siglock);
2246 		arch_ptrace_stop(exit_code, info);
2247 		spin_lock_irq(&current->sighand->siglock);
2248 	}
2249 
2250 	/*
2251 	 * schedule() will not sleep if there is a pending signal that
2252 	 * can awaken the task.
2253 	 */
2254 	set_special_state(TASK_TRACED);
2255 
2256 	/*
2257 	 * We're committing to trapping.  TRACED should be visible before
2258 	 * TRAPPING is cleared; otherwise, the tracer might fail do_wait().
2259 	 * Also, transition to TRACED and updates to ->jobctl should be
2260 	 * atomic with respect to siglock and should be done after the arch
2261 	 * hook as siglock is released and regrabbed across it.
2262 	 *
2263 	 *     TRACER				    TRACEE
2264 	 *
2265 	 *     ptrace_attach()
2266 	 * [L]   wait_on_bit(JOBCTL_TRAPPING)	[S] set_special_state(TRACED)
2267 	 *     do_wait()
2268 	 *       set_current_state()                smp_wmb();
2269 	 *       ptrace_do_wait()
2270 	 *         wait_task_stopped()
2271 	 *           task_stopped_code()
2272 	 * [L]         task_is_traced()		[S] task_clear_jobctl_trapping();
2273 	 */
2274 	smp_wmb();
2275 
2276 	current->last_siginfo = info;
2277 	current->exit_code = exit_code;
2278 
2279 	/*
2280 	 * If @why is CLD_STOPPED, we're trapping to participate in a group
2281 	 * stop.  Do the bookkeeping.  Note that if SIGCONT was delievered
2282 	 * across siglock relocks since INTERRUPT was scheduled, PENDING
2283 	 * could be clear now.  We act as if SIGCONT is received after
2284 	 * TASK_TRACED is entered - ignore it.
2285 	 */
2286 	if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING))
2287 		gstop_done = task_participate_group_stop(current);
2288 
2289 	/* any trap clears pending STOP trap, STOP trap clears NOTIFY */
2290 	task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP);
2291 	if (info && info->si_code >> 8 == PTRACE_EVENT_STOP)
2292 		task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY);
2293 
2294 	/* entering a trap, clear TRAPPING */
2295 	task_clear_jobctl_trapping(current);
2296 
2297 	spin_unlock_irq(&current->sighand->siglock);
2298 	read_lock(&tasklist_lock);
2299 	if (may_ptrace_stop()) {
2300 		/*
2301 		 * Notify parents of the stop.
2302 		 *
2303 		 * While ptraced, there are two parents - the ptracer and
2304 		 * the real_parent of the group_leader.  The ptracer should
2305 		 * know about every stop while the real parent is only
2306 		 * interested in the completion of group stop.  The states
2307 		 * for the two don't interact with each other.  Notify
2308 		 * separately unless they're gonna be duplicates.
2309 		 */
2310 		do_notify_parent_cldstop(current, true, why);
2311 		if (gstop_done && ptrace_reparented(current))
2312 			do_notify_parent_cldstop(current, false, why);
2313 
2314 		/*
2315 		 * Don't want to allow preemption here, because
2316 		 * sys_ptrace() needs this task to be inactive.
2317 		 *
2318 		 * XXX: implement read_unlock_no_resched().
2319 		 */
2320 		preempt_disable();
2321 		read_unlock(&tasklist_lock);
2322 		cgroup_enter_frozen();
2323 		preempt_enable_no_resched();
2324 		freezable_schedule();
2325 		cgroup_leave_frozen(true);
2326 	} else {
2327 		/*
2328 		 * By the time we got the lock, our tracer went away.
2329 		 * Don't drop the lock yet, another tracer may come.
2330 		 *
2331 		 * If @gstop_done, the ptracer went away between group stop
2332 		 * completion and here.  During detach, it would have set
2333 		 * JOBCTL_STOP_PENDING on us and we'll re-enter
2334 		 * TASK_STOPPED in do_signal_stop() on return, so notifying
2335 		 * the real parent of the group stop completion is enough.
2336 		 */
2337 		if (gstop_done)
2338 			do_notify_parent_cldstop(current, false, why);
2339 
2340 		/* tasklist protects us from ptrace_freeze_traced() */
2341 		__set_current_state(TASK_RUNNING);
2342 		if (clear_code)
2343 			current->exit_code = 0;
2344 		read_unlock(&tasklist_lock);
2345 	}
2346 
2347 	/*
2348 	 * We are back.  Now reacquire the siglock before touching
2349 	 * last_siginfo, so that we are sure to have synchronized with
2350 	 * any signal-sending on another CPU that wants to examine it.
2351 	 */
2352 	spin_lock_irq(&current->sighand->siglock);
2353 	current->last_siginfo = NULL;
2354 
2355 	/* LISTENING can be set only during STOP traps, clear it */
2356 	current->jobctl &= ~JOBCTL_LISTENING;
2357 
2358 	/*
2359 	 * Queued signals ignored us while we were stopped for tracing.
2360 	 * So check for any that we should take before resuming user mode.
2361 	 * This sets TIF_SIGPENDING, but never clears it.
2362 	 */
2363 	recalc_sigpending_tsk(current);
2364 }
2365 
ptrace_do_notify(int signr,int exit_code,int why)2366 static void ptrace_do_notify(int signr, int exit_code, int why)
2367 {
2368 	kernel_siginfo_t info;
2369 
2370 	clear_siginfo(&info);
2371 	info.si_signo = signr;
2372 	info.si_code = exit_code;
2373 	info.si_pid = task_pid_vnr(current);
2374 	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2375 
2376 	/* Let the debugger run.  */
2377 	ptrace_stop(exit_code, why, 1, &info);
2378 }
2379 
ptrace_notify(int exit_code)2380 void ptrace_notify(int exit_code)
2381 {
2382 	BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
2383 	if (unlikely(current->task_works))
2384 		task_work_run();
2385 
2386 	spin_lock_irq(&current->sighand->siglock);
2387 	ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED);
2388 	spin_unlock_irq(&current->sighand->siglock);
2389 }
2390 
2391 /**
2392  * do_signal_stop - handle group stop for SIGSTOP and other stop signals
2393  * @signr: signr causing group stop if initiating
2394  *
2395  * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr
2396  * and participate in it.  If already set, participate in the existing
2397  * group stop.  If participated in a group stop (and thus slept), %true is
2398  * returned with siglock released.
2399  *
2400  * If ptraced, this function doesn't handle stop itself.  Instead,
2401  * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock
2402  * untouched.  The caller must ensure that INTERRUPT trap handling takes
2403  * places afterwards.
2404  *
2405  * CONTEXT:
2406  * Must be called with @current->sighand->siglock held, which is released
2407  * on %true return.
2408  *
2409  * RETURNS:
2410  * %false if group stop is already cancelled or ptrace trap is scheduled.
2411  * %true if participated in group stop.
2412  */
do_signal_stop(int signr)2413 static bool do_signal_stop(int signr)
2414 	__releases(&current->sighand->siglock)
2415 {
2416 	struct signal_struct *sig = current->signal;
2417 
2418 	if (!(current->jobctl & JOBCTL_STOP_PENDING)) {
2419 		unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
2420 		struct task_struct *t;
2421 
2422 		/* signr will be recorded in task->jobctl for retries */
2423 		WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK);
2424 
2425 		if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) ||
2426 		    unlikely(signal_group_exit(sig)))
2427 			return false;
2428 		/*
2429 		 * There is no group stop already in progress.  We must
2430 		 * initiate one now.
2431 		 *
2432 		 * While ptraced, a task may be resumed while group stop is
2433 		 * still in effect and then receive a stop signal and
2434 		 * initiate another group stop.  This deviates from the
2435 		 * usual behavior as two consecutive stop signals can't
2436 		 * cause two group stops when !ptraced.  That is why we
2437 		 * also check !task_is_stopped(t) below.
2438 		 *
2439 		 * The condition can be distinguished by testing whether
2440 		 * SIGNAL_STOP_STOPPED is already set.  Don't generate
2441 		 * group_exit_code in such case.
2442 		 *
2443 		 * This is not necessary for SIGNAL_STOP_CONTINUED because
2444 		 * an intervening stop signal is required to cause two
2445 		 * continued events regardless of ptrace.
2446 		 */
2447 		if (!(sig->flags & SIGNAL_STOP_STOPPED))
2448 			sig->group_exit_code = signr;
2449 
2450 		sig->group_stop_count = 0;
2451 
2452 		if (task_set_jobctl_pending(current, signr | gstop))
2453 			sig->group_stop_count++;
2454 
2455 		t = current;
2456 		while_each_thread(current, t) {
2457 			/*
2458 			 * Setting state to TASK_STOPPED for a group
2459 			 * stop is always done with the siglock held,
2460 			 * so this check has no races.
2461 			 */
2462 			if (!task_is_stopped(t) &&
2463 			    task_set_jobctl_pending(t, signr | gstop)) {
2464 				sig->group_stop_count++;
2465 				if (likely(!(t->ptrace & PT_SEIZED)))
2466 					signal_wake_up(t, 0);
2467 				else
2468 					ptrace_trap_notify(t);
2469 			}
2470 		}
2471 	}
2472 
2473 	if (likely(!current->ptrace)) {
2474 		int notify = 0;
2475 
2476 		/*
2477 		 * If there are no other threads in the group, or if there
2478 		 * is a group stop in progress and we are the last to stop,
2479 		 * report to the parent.
2480 		 */
2481 		if (task_participate_group_stop(current))
2482 			notify = CLD_STOPPED;
2483 
2484 		set_special_state(TASK_STOPPED);
2485 		spin_unlock_irq(&current->sighand->siglock);
2486 
2487 		/*
2488 		 * Notify the parent of the group stop completion.  Because
2489 		 * we're not holding either the siglock or tasklist_lock
2490 		 * here, ptracer may attach inbetween; however, this is for
2491 		 * group stop and should always be delivered to the real
2492 		 * parent of the group leader.  The new ptracer will get
2493 		 * its notification when this task transitions into
2494 		 * TASK_TRACED.
2495 		 */
2496 		if (notify) {
2497 			read_lock(&tasklist_lock);
2498 			do_notify_parent_cldstop(current, false, notify);
2499 			read_unlock(&tasklist_lock);
2500 		}
2501 
2502 		/* Now we don't run again until woken by SIGCONT or SIGKILL */
2503 		cgroup_enter_frozen();
2504 		freezable_schedule();
2505 		return true;
2506 	} else {
2507 		/*
2508 		 * While ptraced, group stop is handled by STOP trap.
2509 		 * Schedule it and let the caller deal with it.
2510 		 */
2511 		task_set_jobctl_pending(current, JOBCTL_TRAP_STOP);
2512 		return false;
2513 	}
2514 }
2515 
2516 /**
2517  * do_jobctl_trap - take care of ptrace jobctl traps
2518  *
2519  * When PT_SEIZED, it's used for both group stop and explicit
2520  * SEIZE/INTERRUPT traps.  Both generate PTRACE_EVENT_STOP trap with
2521  * accompanying siginfo.  If stopped, lower eight bits of exit_code contain
2522  * the stop signal; otherwise, %SIGTRAP.
2523  *
2524  * When !PT_SEIZED, it's used only for group stop trap with stop signal
2525  * number as exit_code and no siginfo.
2526  *
2527  * CONTEXT:
2528  * Must be called with @current->sighand->siglock held, which may be
2529  * released and re-acquired before returning with intervening sleep.
2530  */
do_jobctl_trap(void)2531 static void do_jobctl_trap(void)
2532 {
2533 	struct signal_struct *signal = current->signal;
2534 	int signr = current->jobctl & JOBCTL_STOP_SIGMASK;
2535 
2536 	if (current->ptrace & PT_SEIZED) {
2537 		if (!signal->group_stop_count &&
2538 		    !(signal->flags & SIGNAL_STOP_STOPPED))
2539 			signr = SIGTRAP;
2540 		WARN_ON_ONCE(!signr);
2541 		ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8),
2542 				 CLD_STOPPED);
2543 	} else {
2544 		WARN_ON_ONCE(!signr);
2545 		ptrace_stop(signr, CLD_STOPPED, 0, NULL);
2546 		current->exit_code = 0;
2547 	}
2548 }
2549 
2550 /**
2551  * do_freezer_trap - handle the freezer jobctl trap
2552  *
2553  * Puts the task into frozen state, if only the task is not about to quit.
2554  * In this case it drops JOBCTL_TRAP_FREEZE.
2555  *
2556  * CONTEXT:
2557  * Must be called with @current->sighand->siglock held,
2558  * which is always released before returning.
2559  */
do_freezer_trap(void)2560 static void do_freezer_trap(void)
2561 	__releases(&current->sighand->siglock)
2562 {
2563 	/*
2564 	 * If there are other trap bits pending except JOBCTL_TRAP_FREEZE,
2565 	 * let's make another loop to give it a chance to be handled.
2566 	 * In any case, we'll return back.
2567 	 */
2568 	if ((current->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) !=
2569 	     JOBCTL_TRAP_FREEZE) {
2570 		spin_unlock_irq(&current->sighand->siglock);
2571 		return;
2572 	}
2573 
2574 	/*
2575 	 * Now we're sure that there is no pending fatal signal and no
2576 	 * pending traps. Clear TIF_SIGPENDING to not get out of schedule()
2577 	 * immediately (if there is a non-fatal signal pending), and
2578 	 * put the task into sleep.
2579 	 */
2580 	__set_current_state(TASK_INTERRUPTIBLE);
2581 	clear_thread_flag(TIF_SIGPENDING);
2582 	spin_unlock_irq(&current->sighand->siglock);
2583 	cgroup_enter_frozen();
2584 	freezable_schedule();
2585 }
2586 
ptrace_signal(int signr,kernel_siginfo_t * info)2587 static int ptrace_signal(int signr, kernel_siginfo_t *info)
2588 {
2589 	/*
2590 	 * We do not check sig_kernel_stop(signr) but set this marker
2591 	 * unconditionally because we do not know whether debugger will
2592 	 * change signr. This flag has no meaning unless we are going
2593 	 * to stop after return from ptrace_stop(). In this case it will
2594 	 * be checked in do_signal_stop(), we should only stop if it was
2595 	 * not cleared by SIGCONT while we were sleeping. See also the
2596 	 * comment in dequeue_signal().
2597 	 */
2598 	current->jobctl |= JOBCTL_STOP_DEQUEUED;
2599 	ptrace_stop(signr, CLD_TRAPPED, 0, info);
2600 
2601 	/* We're back.  Did the debugger cancel the sig?  */
2602 	signr = current->exit_code;
2603 	if (signr == 0)
2604 		return signr;
2605 
2606 	current->exit_code = 0;
2607 
2608 	/*
2609 	 * Update the siginfo structure if the signal has
2610 	 * changed.  If the debugger wanted something
2611 	 * specific in the siginfo structure then it should
2612 	 * have updated *info via PTRACE_SETSIGINFO.
2613 	 */
2614 	if (signr != info->si_signo) {
2615 		clear_siginfo(info);
2616 		info->si_signo = signr;
2617 		info->si_errno = 0;
2618 		info->si_code = SI_USER;
2619 		rcu_read_lock();
2620 		info->si_pid = task_pid_vnr(current->parent);
2621 		info->si_uid = from_kuid_munged(current_user_ns(),
2622 						task_uid(current->parent));
2623 		rcu_read_unlock();
2624 	}
2625 
2626 	/* If the (new) signal is now blocked, requeue it.  */
2627 	if (sigismember(&current->blocked, signr)) {
2628 		send_signal(signr, info, current, PIDTYPE_PID);
2629 		signr = 0;
2630 	}
2631 
2632 	return signr;
2633 }
2634 
hide_si_addr_tag_bits(struct ksignal * ksig)2635 static void hide_si_addr_tag_bits(struct ksignal *ksig)
2636 {
2637 	switch (siginfo_layout(ksig->sig, ksig->info.si_code)) {
2638 	case SIL_FAULT:
2639 	case SIL_FAULT_TRAPNO:
2640 	case SIL_FAULT_MCEERR:
2641 	case SIL_FAULT_BNDERR:
2642 	case SIL_FAULT_PKUERR:
2643 	case SIL_FAULT_PERF_EVENT:
2644 		ksig->info.si_addr = arch_untagged_si_addr(
2645 			ksig->info.si_addr, ksig->sig, ksig->info.si_code);
2646 		break;
2647 	case SIL_KILL:
2648 	case SIL_TIMER:
2649 	case SIL_POLL:
2650 	case SIL_CHLD:
2651 	case SIL_RT:
2652 	case SIL_SYS:
2653 		break;
2654 	}
2655 }
2656 
get_signal(struct ksignal * ksig)2657 bool get_signal(struct ksignal *ksig)
2658 {
2659 	struct sighand_struct *sighand = current->sighand;
2660 	struct signal_struct *signal = current->signal;
2661 	int signr;
2662 
2663 	if (unlikely(current->task_works))
2664 		task_work_run();
2665 
2666 	/*
2667 	 * For non-generic architectures, check for TIF_NOTIFY_SIGNAL so
2668 	 * that the arch handlers don't all have to do it. If we get here
2669 	 * without TIF_SIGPENDING, just exit after running signal work.
2670 	 */
2671 	if (!IS_ENABLED(CONFIG_GENERIC_ENTRY)) {
2672 		if (test_thread_flag(TIF_NOTIFY_SIGNAL))
2673 			tracehook_notify_signal();
2674 		if (!task_sigpending(current))
2675 			return false;
2676 	}
2677 
2678 	if (unlikely(uprobe_deny_signal()))
2679 		return false;
2680 
2681 	/*
2682 	 * Do this once, we can't return to user-mode if freezing() == T.
2683 	 * do_signal_stop() and ptrace_stop() do freezable_schedule() and
2684 	 * thus do not need another check after return.
2685 	 */
2686 	try_to_freeze();
2687 
2688 relock:
2689 	spin_lock_irq(&sighand->siglock);
2690 
2691 	/*
2692 	 * Every stopped thread goes here after wakeup. Check to see if
2693 	 * we should notify the parent, prepare_signal(SIGCONT) encodes
2694 	 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
2695 	 */
2696 	if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
2697 		int why;
2698 
2699 		if (signal->flags & SIGNAL_CLD_CONTINUED)
2700 			why = CLD_CONTINUED;
2701 		else
2702 			why = CLD_STOPPED;
2703 
2704 		signal->flags &= ~SIGNAL_CLD_MASK;
2705 
2706 		spin_unlock_irq(&sighand->siglock);
2707 
2708 		/*
2709 		 * Notify the parent that we're continuing.  This event is
2710 		 * always per-process and doesn't make whole lot of sense
2711 		 * for ptracers, who shouldn't consume the state via
2712 		 * wait(2) either, but, for backward compatibility, notify
2713 		 * the ptracer of the group leader too unless it's gonna be
2714 		 * a duplicate.
2715 		 */
2716 		read_lock(&tasklist_lock);
2717 		do_notify_parent_cldstop(current, false, why);
2718 
2719 		if (ptrace_reparented(current->group_leader))
2720 			do_notify_parent_cldstop(current->group_leader,
2721 						true, why);
2722 		read_unlock(&tasklist_lock);
2723 
2724 		goto relock;
2725 	}
2726 
2727 	for (;;) {
2728 		struct k_sigaction *ka;
2729 
2730 		/* Has this task already been marked for death? */
2731 		if (signal_group_exit(signal)) {
2732 			ksig->info.si_signo = signr = SIGKILL;
2733 			sigdelset(&current->pending.signal, SIGKILL);
2734 			trace_signal_deliver(SIGKILL, SEND_SIG_NOINFO,
2735 				&sighand->action[SIGKILL - 1]);
2736 			recalc_sigpending();
2737 			goto fatal;
2738 		}
2739 
2740 		if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) &&
2741 		    do_signal_stop(0))
2742 			goto relock;
2743 
2744 		if (unlikely(current->jobctl &
2745 			     (JOBCTL_TRAP_MASK | JOBCTL_TRAP_FREEZE))) {
2746 			if (current->jobctl & JOBCTL_TRAP_MASK) {
2747 				do_jobctl_trap();
2748 				spin_unlock_irq(&sighand->siglock);
2749 			} else if (current->jobctl & JOBCTL_TRAP_FREEZE)
2750 				do_freezer_trap();
2751 
2752 			goto relock;
2753 		}
2754 
2755 		/*
2756 		 * If the task is leaving the frozen state, let's update
2757 		 * cgroup counters and reset the frozen bit.
2758 		 */
2759 		if (unlikely(cgroup_task_frozen(current))) {
2760 			spin_unlock_irq(&sighand->siglock);
2761 			cgroup_leave_frozen(false);
2762 			goto relock;
2763 		}
2764 
2765 		/*
2766 		 * Signals generated by the execution of an instruction
2767 		 * need to be delivered before any other pending signals
2768 		 * so that the instruction pointer in the signal stack
2769 		 * frame points to the faulting instruction.
2770 		 */
2771 		signr = dequeue_synchronous_signal(&ksig->info);
2772 		if (!signr)
2773 			signr = dequeue_signal(current, &current->blocked, &ksig->info);
2774 
2775 		if (!signr)
2776 			break; /* will return 0 */
2777 
2778 		if (unlikely(current->ptrace) && (signr != SIGKILL) &&
2779 		    !(sighand->action[signr -1].sa.sa_flags & SA_IMMUTABLE)) {
2780 			signr = ptrace_signal(signr, &ksig->info);
2781 			if (!signr)
2782 				continue;
2783 		}
2784 
2785 		ka = &sighand->action[signr-1];
2786 
2787 		/* Trace actually delivered signals. */
2788 		trace_signal_deliver(signr, &ksig->info, ka);
2789 
2790 		if (ka->sa.sa_handler == SIG_IGN) /* Do nothing.  */
2791 			continue;
2792 		if (ka->sa.sa_handler != SIG_DFL) {
2793 			/* Run the handler.  */
2794 			ksig->ka = *ka;
2795 
2796 			if (ka->sa.sa_flags & SA_ONESHOT)
2797 				ka->sa.sa_handler = SIG_DFL;
2798 
2799 			break; /* will return non-zero "signr" value */
2800 		}
2801 
2802 		/*
2803 		 * Now we are doing the default action for this signal.
2804 		 */
2805 		if (sig_kernel_ignore(signr)) /* Default is nothing. */
2806 			continue;
2807 
2808 		/*
2809 		 * Global init gets no signals it doesn't want.
2810 		 * Container-init gets no signals it doesn't want from same
2811 		 * container.
2812 		 *
2813 		 * Note that if global/container-init sees a sig_kernel_only()
2814 		 * signal here, the signal must have been generated internally
2815 		 * or must have come from an ancestor namespace. In either
2816 		 * case, the signal cannot be dropped.
2817 		 */
2818 		if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
2819 				!sig_kernel_only(signr))
2820 			continue;
2821 
2822 		if (sig_kernel_stop(signr)) {
2823 			/*
2824 			 * The default action is to stop all threads in
2825 			 * the thread group.  The job control signals
2826 			 * do nothing in an orphaned pgrp, but SIGSTOP
2827 			 * always works.  Note that siglock needs to be
2828 			 * dropped during the call to is_orphaned_pgrp()
2829 			 * because of lock ordering with tasklist_lock.
2830 			 * This allows an intervening SIGCONT to be posted.
2831 			 * We need to check for that and bail out if necessary.
2832 			 */
2833 			if (signr != SIGSTOP) {
2834 				spin_unlock_irq(&sighand->siglock);
2835 
2836 				/* signals can be posted during this window */
2837 
2838 				if (is_current_pgrp_orphaned())
2839 					goto relock;
2840 
2841 				spin_lock_irq(&sighand->siglock);
2842 			}
2843 
2844 			if (likely(do_signal_stop(ksig->info.si_signo))) {
2845 				/* It released the siglock.  */
2846 				goto relock;
2847 			}
2848 
2849 			/*
2850 			 * We didn't actually stop, due to a race
2851 			 * with SIGCONT or something like that.
2852 			 */
2853 			continue;
2854 		}
2855 
2856 	fatal:
2857 		spin_unlock_irq(&sighand->siglock);
2858 		if (unlikely(cgroup_task_frozen(current)))
2859 			cgroup_leave_frozen(true);
2860 
2861 		/*
2862 		 * Anything else is fatal, maybe with a core dump.
2863 		 */
2864 		current->flags |= PF_SIGNALED;
2865 
2866 		if (sig_kernel_coredump(signr)) {
2867 			if (print_fatal_signals)
2868 				print_fatal_signal(ksig->info.si_signo);
2869 			proc_coredump_connector(current);
2870 			/*
2871 			 * If it was able to dump core, this kills all
2872 			 * other threads in the group and synchronizes with
2873 			 * their demise.  If we lost the race with another
2874 			 * thread getting here, it set group_exit_code
2875 			 * first and our do_group_exit call below will use
2876 			 * that value and ignore the one we pass it.
2877 			 */
2878 			do_coredump(&ksig->info);
2879 		}
2880 
2881 		/*
2882 		 * PF_IO_WORKER threads will catch and exit on fatal signals
2883 		 * themselves. They have cleanup that must be performed, so
2884 		 * we cannot call do_exit() on their behalf.
2885 		 */
2886 		if (current->flags & PF_IO_WORKER)
2887 			goto out;
2888 
2889 		/*
2890 		 * Death signals, no core dump.
2891 		 */
2892 		do_group_exit(ksig->info.si_signo);
2893 		/* NOTREACHED */
2894 	}
2895 	spin_unlock_irq(&sighand->siglock);
2896 out:
2897 	ksig->sig = signr;
2898 
2899 	if (!(ksig->ka.sa.sa_flags & SA_EXPOSE_TAGBITS))
2900 		hide_si_addr_tag_bits(ksig);
2901 
2902 	return ksig->sig > 0;
2903 }
2904 
2905 /**
2906  * signal_delivered -
2907  * @ksig:		kernel signal struct
2908  * @stepping:		nonzero if debugger single-step or block-step in use
2909  *
2910  * This function should be called when a signal has successfully been
2911  * delivered. It updates the blocked signals accordingly (@ksig->ka.sa.sa_mask
2912  * is always blocked, and the signal itself is blocked unless %SA_NODEFER
2913  * is set in @ksig->ka.sa.sa_flags.  Tracing is notified.
2914  */
signal_delivered(struct ksignal * ksig,int stepping)2915 static void signal_delivered(struct ksignal *ksig, int stepping)
2916 {
2917 	sigset_t blocked;
2918 
2919 	/* A signal was successfully delivered, and the
2920 	   saved sigmask was stored on the signal frame,
2921 	   and will be restored by sigreturn.  So we can
2922 	   simply clear the restore sigmask flag.  */
2923 	clear_restore_sigmask();
2924 
2925 	sigorsets(&blocked, &current->blocked, &ksig->ka.sa.sa_mask);
2926 	if (!(ksig->ka.sa.sa_flags & SA_NODEFER))
2927 		sigaddset(&blocked, ksig->sig);
2928 	set_current_blocked(&blocked);
2929 	if (current->sas_ss_flags & SS_AUTODISARM)
2930 		sas_ss_reset(current);
2931 	tracehook_signal_handler(stepping);
2932 }
2933 
signal_setup_done(int failed,struct ksignal * ksig,int stepping)2934 void signal_setup_done(int failed, struct ksignal *ksig, int stepping)
2935 {
2936 	if (failed)
2937 		force_sigsegv(ksig->sig);
2938 	else
2939 		signal_delivered(ksig, stepping);
2940 }
2941 
2942 /*
2943  * It could be that complete_signal() picked us to notify about the
2944  * group-wide signal. Other threads should be notified now to take
2945  * the shared signals in @which since we will not.
2946  */
retarget_shared_pending(struct task_struct * tsk,sigset_t * which)2947 static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which)
2948 {
2949 	sigset_t retarget;
2950 	struct task_struct *t;
2951 
2952 	sigandsets(&retarget, &tsk->signal->shared_pending.signal, which);
2953 	if (sigisemptyset(&retarget))
2954 		return;
2955 
2956 	t = tsk;
2957 	while_each_thread(tsk, t) {
2958 		if (t->flags & PF_EXITING)
2959 			continue;
2960 
2961 		if (!has_pending_signals(&retarget, &t->blocked))
2962 			continue;
2963 		/* Remove the signals this thread can handle. */
2964 		sigandsets(&retarget, &retarget, &t->blocked);
2965 
2966 		if (!task_sigpending(t))
2967 			signal_wake_up(t, 0);
2968 
2969 		if (sigisemptyset(&retarget))
2970 			break;
2971 	}
2972 }
2973 
exit_signals(struct task_struct * tsk)2974 void exit_signals(struct task_struct *tsk)
2975 {
2976 	int group_stop = 0;
2977 	sigset_t unblocked;
2978 
2979 	/*
2980 	 * @tsk is about to have PF_EXITING set - lock out users which
2981 	 * expect stable threadgroup.
2982 	 */
2983 	cgroup_threadgroup_change_begin(tsk);
2984 
2985 	if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) {
2986 		tsk->flags |= PF_EXITING;
2987 		cgroup_threadgroup_change_end(tsk);
2988 		return;
2989 	}
2990 
2991 	spin_lock_irq(&tsk->sighand->siglock);
2992 	/*
2993 	 * From now this task is not visible for group-wide signals,
2994 	 * see wants_signal(), do_signal_stop().
2995 	 */
2996 	tsk->flags |= PF_EXITING;
2997 
2998 	cgroup_threadgroup_change_end(tsk);
2999 
3000 	if (!task_sigpending(tsk))
3001 		goto out;
3002 
3003 	unblocked = tsk->blocked;
3004 	signotset(&unblocked);
3005 	retarget_shared_pending(tsk, &unblocked);
3006 
3007 	if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) &&
3008 	    task_participate_group_stop(tsk))
3009 		group_stop = CLD_STOPPED;
3010 out:
3011 	spin_unlock_irq(&tsk->sighand->siglock);
3012 
3013 	/*
3014 	 * If group stop has completed, deliver the notification.  This
3015 	 * should always go to the real parent of the group leader.
3016 	 */
3017 	if (unlikely(group_stop)) {
3018 		read_lock(&tasklist_lock);
3019 		do_notify_parent_cldstop(tsk, false, group_stop);
3020 		read_unlock(&tasklist_lock);
3021 	}
3022 }
3023 
3024 /*
3025  * System call entry points.
3026  */
3027 
3028 /**
3029  *  sys_restart_syscall - restart a system call
3030  */
SYSCALL_DEFINE0(restart_syscall)3031 SYSCALL_DEFINE0(restart_syscall)
3032 {
3033 	struct restart_block *restart = &current->restart_block;
3034 	return restart->fn(restart);
3035 }
3036 
do_no_restart_syscall(struct restart_block * param)3037 long do_no_restart_syscall(struct restart_block *param)
3038 {
3039 	return -EINTR;
3040 }
3041 
__set_task_blocked(struct task_struct * tsk,const sigset_t * newset)3042 static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset)
3043 {
3044 	if (task_sigpending(tsk) && !thread_group_empty(tsk)) {
3045 		sigset_t newblocked;
3046 		/* A set of now blocked but previously unblocked signals. */
3047 		sigandnsets(&newblocked, newset, &current->blocked);
3048 		retarget_shared_pending(tsk, &newblocked);
3049 	}
3050 	tsk->blocked = *newset;
3051 	recalc_sigpending();
3052 }
3053 
3054 /**
3055  * set_current_blocked - change current->blocked mask
3056  * @newset: new mask
3057  *
3058  * It is wrong to change ->blocked directly, this helper should be used
3059  * to ensure the process can't miss a shared signal we are going to block.
3060  */
set_current_blocked(sigset_t * newset)3061 void set_current_blocked(sigset_t *newset)
3062 {
3063 	sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP));
3064 	__set_current_blocked(newset);
3065 }
3066 
__set_current_blocked(const sigset_t * newset)3067 void __set_current_blocked(const sigset_t *newset)
3068 {
3069 	struct task_struct *tsk = current;
3070 
3071 	/*
3072 	 * In case the signal mask hasn't changed, there is nothing we need
3073 	 * to do. The current->blocked shouldn't be modified by other task.
3074 	 */
3075 	if (sigequalsets(&tsk->blocked, newset))
3076 		return;
3077 
3078 	spin_lock_irq(&tsk->sighand->siglock);
3079 	__set_task_blocked(tsk, newset);
3080 	spin_unlock_irq(&tsk->sighand->siglock);
3081 }
3082 
3083 /*
3084  * This is also useful for kernel threads that want to temporarily
3085  * (or permanently) block certain signals.
3086  *
3087  * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
3088  * interface happily blocks "unblockable" signals like SIGKILL
3089  * and friends.
3090  */
sigprocmask(int how,sigset_t * set,sigset_t * oldset)3091 int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
3092 {
3093 	struct task_struct *tsk = current;
3094 	sigset_t newset;
3095 
3096 	/* Lockless, only current can change ->blocked, never from irq */
3097 	if (oldset)
3098 		*oldset = tsk->blocked;
3099 
3100 	switch (how) {
3101 	case SIG_BLOCK:
3102 		sigorsets(&newset, &tsk->blocked, set);
3103 		break;
3104 	case SIG_UNBLOCK:
3105 		sigandnsets(&newset, &tsk->blocked, set);
3106 		break;
3107 	case SIG_SETMASK:
3108 		newset = *set;
3109 		break;
3110 	default:
3111 		return -EINVAL;
3112 	}
3113 
3114 	__set_current_blocked(&newset);
3115 	return 0;
3116 }
3117 EXPORT_SYMBOL(sigprocmask);
3118 
3119 /*
3120  * The api helps set app-provided sigmasks.
3121  *
3122  * This is useful for syscalls such as ppoll, pselect, io_pgetevents and
3123  * epoll_pwait where a new sigmask is passed from userland for the syscalls.
3124  *
3125  * Note that it does set_restore_sigmask() in advance, so it must be always
3126  * paired with restore_saved_sigmask_unless() before return from syscall.
3127  */
set_user_sigmask(const sigset_t __user * umask,size_t sigsetsize)3128 int set_user_sigmask(const sigset_t __user *umask, size_t sigsetsize)
3129 {
3130 	sigset_t kmask;
3131 
3132 	if (!umask)
3133 		return 0;
3134 	if (sigsetsize != sizeof(sigset_t))
3135 		return -EINVAL;
3136 	if (copy_from_user(&kmask, umask, sizeof(sigset_t)))
3137 		return -EFAULT;
3138 
3139 	set_restore_sigmask();
3140 	current->saved_sigmask = current->blocked;
3141 	set_current_blocked(&kmask);
3142 
3143 	return 0;
3144 }
3145 
3146 #ifdef CONFIG_COMPAT
set_compat_user_sigmask(const compat_sigset_t __user * umask,size_t sigsetsize)3147 int set_compat_user_sigmask(const compat_sigset_t __user *umask,
3148 			    size_t sigsetsize)
3149 {
3150 	sigset_t kmask;
3151 
3152 	if (!umask)
3153 		return 0;
3154 	if (sigsetsize != sizeof(compat_sigset_t))
3155 		return -EINVAL;
3156 	if (get_compat_sigset(&kmask, umask))
3157 		return -EFAULT;
3158 
3159 	set_restore_sigmask();
3160 	current->saved_sigmask = current->blocked;
3161 	set_current_blocked(&kmask);
3162 
3163 	return 0;
3164 }
3165 #endif
3166 
3167 /**
3168  *  sys_rt_sigprocmask - change the list of currently blocked signals
3169  *  @how: whether to add, remove, or set signals
3170  *  @nset: stores pending signals
3171  *  @oset: previous value of signal mask if non-null
3172  *  @sigsetsize: size of sigset_t type
3173  */
SYSCALL_DEFINE4(rt_sigprocmask,int,how,sigset_t __user *,nset,sigset_t __user *,oset,size_t,sigsetsize)3174 SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset,
3175 		sigset_t __user *, oset, size_t, sigsetsize)
3176 {
3177 	sigset_t old_set, new_set;
3178 	int error;
3179 
3180 	/* XXX: Don't preclude handling different sized sigset_t's.  */
3181 	if (sigsetsize != sizeof(sigset_t))
3182 		return -EINVAL;
3183 
3184 	old_set = current->blocked;
3185 
3186 	if (nset) {
3187 		if (copy_from_user(&new_set, nset, sizeof(sigset_t)))
3188 			return -EFAULT;
3189 		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
3190 
3191 		error = sigprocmask(how, &new_set, NULL);
3192 		if (error)
3193 			return error;
3194 	}
3195 
3196 	if (oset) {
3197 		if (copy_to_user(oset, &old_set, sizeof(sigset_t)))
3198 			return -EFAULT;
3199 	}
3200 
3201 	return 0;
3202 }
3203 
3204 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE4(rt_sigprocmask,int,how,compat_sigset_t __user *,nset,compat_sigset_t __user *,oset,compat_size_t,sigsetsize)3205 COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset,
3206 		compat_sigset_t __user *, oset, compat_size_t, sigsetsize)
3207 {
3208 	sigset_t old_set = current->blocked;
3209 
3210 	/* XXX: Don't preclude handling different sized sigset_t's.  */
3211 	if (sigsetsize != sizeof(sigset_t))
3212 		return -EINVAL;
3213 
3214 	if (nset) {
3215 		sigset_t new_set;
3216 		int error;
3217 		if (get_compat_sigset(&new_set, nset))
3218 			return -EFAULT;
3219 		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
3220 
3221 		error = sigprocmask(how, &new_set, NULL);
3222 		if (error)
3223 			return error;
3224 	}
3225 	return oset ? put_compat_sigset(oset, &old_set, sizeof(*oset)) : 0;
3226 }
3227 #endif
3228 
do_sigpending(sigset_t * set)3229 static void do_sigpending(sigset_t *set)
3230 {
3231 	spin_lock_irq(&current->sighand->siglock);
3232 	sigorsets(set, &current->pending.signal,
3233 		  &current->signal->shared_pending.signal);
3234 	spin_unlock_irq(&current->sighand->siglock);
3235 
3236 	/* Outside the lock because only this thread touches it.  */
3237 	sigandsets(set, &current->blocked, set);
3238 }
3239 
3240 /**
3241  *  sys_rt_sigpending - examine a pending signal that has been raised
3242  *			while blocked
3243  *  @uset: stores pending signals
3244  *  @sigsetsize: size of sigset_t type or larger
3245  */
SYSCALL_DEFINE2(rt_sigpending,sigset_t __user *,uset,size_t,sigsetsize)3246 SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize)
3247 {
3248 	sigset_t set;
3249 
3250 	if (sigsetsize > sizeof(*uset))
3251 		return -EINVAL;
3252 
3253 	do_sigpending(&set);
3254 
3255 	if (copy_to_user(uset, &set, sigsetsize))
3256 		return -EFAULT;
3257 
3258 	return 0;
3259 }
3260 
3261 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE2(rt_sigpending,compat_sigset_t __user *,uset,compat_size_t,sigsetsize)3262 COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset,
3263 		compat_size_t, sigsetsize)
3264 {
3265 	sigset_t set;
3266 
3267 	if (sigsetsize > sizeof(*uset))
3268 		return -EINVAL;
3269 
3270 	do_sigpending(&set);
3271 
3272 	return put_compat_sigset(uset, &set, sigsetsize);
3273 }
3274 #endif
3275 
3276 static const struct {
3277 	unsigned char limit, layout;
3278 } sig_sicodes[] = {
3279 	[SIGILL]  = { NSIGILL,  SIL_FAULT },
3280 	[SIGFPE]  = { NSIGFPE,  SIL_FAULT },
3281 	[SIGSEGV] = { NSIGSEGV, SIL_FAULT },
3282 	[SIGBUS]  = { NSIGBUS,  SIL_FAULT },
3283 	[SIGTRAP] = { NSIGTRAP, SIL_FAULT },
3284 #if defined(SIGEMT)
3285 	[SIGEMT]  = { NSIGEMT,  SIL_FAULT },
3286 #endif
3287 	[SIGCHLD] = { NSIGCHLD, SIL_CHLD },
3288 	[SIGPOLL] = { NSIGPOLL, SIL_POLL },
3289 	[SIGSYS]  = { NSIGSYS,  SIL_SYS },
3290 };
3291 
known_siginfo_layout(unsigned sig,int si_code)3292 static bool known_siginfo_layout(unsigned sig, int si_code)
3293 {
3294 	if (si_code == SI_KERNEL)
3295 		return true;
3296 	else if ((si_code > SI_USER)) {
3297 		if (sig_specific_sicodes(sig)) {
3298 			if (si_code <= sig_sicodes[sig].limit)
3299 				return true;
3300 		}
3301 		else if (si_code <= NSIGPOLL)
3302 			return true;
3303 	}
3304 	else if (si_code >= SI_DETHREAD)
3305 		return true;
3306 	else if (si_code == SI_ASYNCNL)
3307 		return true;
3308 	return false;
3309 }
3310 
siginfo_layout(unsigned sig,int si_code)3311 enum siginfo_layout siginfo_layout(unsigned sig, int si_code)
3312 {
3313 	enum siginfo_layout layout = SIL_KILL;
3314 	if ((si_code > SI_USER) && (si_code < SI_KERNEL)) {
3315 		if ((sig < ARRAY_SIZE(sig_sicodes)) &&
3316 		    (si_code <= sig_sicodes[sig].limit)) {
3317 			layout = sig_sicodes[sig].layout;
3318 			/* Handle the exceptions */
3319 			if ((sig == SIGBUS) &&
3320 			    (si_code >= BUS_MCEERR_AR) && (si_code <= BUS_MCEERR_AO))
3321 				layout = SIL_FAULT_MCEERR;
3322 			else if ((sig == SIGSEGV) && (si_code == SEGV_BNDERR))
3323 				layout = SIL_FAULT_BNDERR;
3324 #ifdef SEGV_PKUERR
3325 			else if ((sig == SIGSEGV) && (si_code == SEGV_PKUERR))
3326 				layout = SIL_FAULT_PKUERR;
3327 #endif
3328 			else if ((sig == SIGTRAP) && (si_code == TRAP_PERF))
3329 				layout = SIL_FAULT_PERF_EVENT;
3330 			else if (IS_ENABLED(CONFIG_SPARC) &&
3331 				 (sig == SIGILL) && (si_code == ILL_ILLTRP))
3332 				layout = SIL_FAULT_TRAPNO;
3333 			else if (IS_ENABLED(CONFIG_ALPHA) &&
3334 				 ((sig == SIGFPE) ||
3335 				  ((sig == SIGTRAP) && (si_code == TRAP_UNK))))
3336 				layout = SIL_FAULT_TRAPNO;
3337 		}
3338 		else if (si_code <= NSIGPOLL)
3339 			layout = SIL_POLL;
3340 	} else {
3341 		if (si_code == SI_TIMER)
3342 			layout = SIL_TIMER;
3343 		else if (si_code == SI_SIGIO)
3344 			layout = SIL_POLL;
3345 		else if (si_code < 0)
3346 			layout = SIL_RT;
3347 	}
3348 	return layout;
3349 }
3350 
si_expansion(const siginfo_t __user * info)3351 static inline char __user *si_expansion(const siginfo_t __user *info)
3352 {
3353 	return ((char __user *)info) + sizeof(struct kernel_siginfo);
3354 }
3355 
copy_siginfo_to_user(siginfo_t __user * to,const kernel_siginfo_t * from)3356 int copy_siginfo_to_user(siginfo_t __user *to, const kernel_siginfo_t *from)
3357 {
3358 	char __user *expansion = si_expansion(to);
3359 	if (copy_to_user(to, from , sizeof(struct kernel_siginfo)))
3360 		return -EFAULT;
3361 	if (clear_user(expansion, SI_EXPANSION_SIZE))
3362 		return -EFAULT;
3363 	return 0;
3364 }
3365 
post_copy_siginfo_from_user(kernel_siginfo_t * info,const siginfo_t __user * from)3366 static int post_copy_siginfo_from_user(kernel_siginfo_t *info,
3367 				       const siginfo_t __user *from)
3368 {
3369 	if (unlikely(!known_siginfo_layout(info->si_signo, info->si_code))) {
3370 		char __user *expansion = si_expansion(from);
3371 		char buf[SI_EXPANSION_SIZE];
3372 		int i;
3373 		/*
3374 		 * An unknown si_code might need more than
3375 		 * sizeof(struct kernel_siginfo) bytes.  Verify all of the
3376 		 * extra bytes are 0.  This guarantees copy_siginfo_to_user
3377 		 * will return this data to userspace exactly.
3378 		 */
3379 		if (copy_from_user(&buf, expansion, SI_EXPANSION_SIZE))
3380 			return -EFAULT;
3381 		for (i = 0; i < SI_EXPANSION_SIZE; i++) {
3382 			if (buf[i] != 0)
3383 				return -E2BIG;
3384 		}
3385 	}
3386 	return 0;
3387 }
3388 
__copy_siginfo_from_user(int signo,kernel_siginfo_t * to,const siginfo_t __user * from)3389 static int __copy_siginfo_from_user(int signo, kernel_siginfo_t *to,
3390 				    const siginfo_t __user *from)
3391 {
3392 	if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
3393 		return -EFAULT;
3394 	to->si_signo = signo;
3395 	return post_copy_siginfo_from_user(to, from);
3396 }
3397 
copy_siginfo_from_user(kernel_siginfo_t * to,const siginfo_t __user * from)3398 int copy_siginfo_from_user(kernel_siginfo_t *to, const siginfo_t __user *from)
3399 {
3400 	if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
3401 		return -EFAULT;
3402 	return post_copy_siginfo_from_user(to, from);
3403 }
3404 
3405 #ifdef CONFIG_COMPAT
3406 /**
3407  * copy_siginfo_to_external32 - copy a kernel siginfo into a compat user siginfo
3408  * @to: compat siginfo destination
3409  * @from: kernel siginfo source
3410  *
3411  * Note: This function does not work properly for the SIGCHLD on x32, but
3412  * fortunately it doesn't have to.  The only valid callers for this function are
3413  * copy_siginfo_to_user32, which is overriden for x32 and the coredump code.
3414  * The latter does not care because SIGCHLD will never cause a coredump.
3415  */
copy_siginfo_to_external32(struct compat_siginfo * to,const struct kernel_siginfo * from)3416 void copy_siginfo_to_external32(struct compat_siginfo *to,
3417 		const struct kernel_siginfo *from)
3418 {
3419 	memset(to, 0, sizeof(*to));
3420 
3421 	to->si_signo = from->si_signo;
3422 	to->si_errno = from->si_errno;
3423 	to->si_code  = from->si_code;
3424 	switch(siginfo_layout(from->si_signo, from->si_code)) {
3425 	case SIL_KILL:
3426 		to->si_pid = from->si_pid;
3427 		to->si_uid = from->si_uid;
3428 		break;
3429 	case SIL_TIMER:
3430 		to->si_tid     = from->si_tid;
3431 		to->si_overrun = from->si_overrun;
3432 		to->si_int     = from->si_int;
3433 		break;
3434 	case SIL_POLL:
3435 		to->si_band = from->si_band;
3436 		to->si_fd   = from->si_fd;
3437 		break;
3438 	case SIL_FAULT:
3439 		to->si_addr = ptr_to_compat(from->si_addr);
3440 		break;
3441 	case SIL_FAULT_TRAPNO:
3442 		to->si_addr = ptr_to_compat(from->si_addr);
3443 		to->si_trapno = from->si_trapno;
3444 		break;
3445 	case SIL_FAULT_MCEERR:
3446 		to->si_addr = ptr_to_compat(from->si_addr);
3447 		to->si_addr_lsb = from->si_addr_lsb;
3448 		break;
3449 	case SIL_FAULT_BNDERR:
3450 		to->si_addr = ptr_to_compat(from->si_addr);
3451 		to->si_lower = ptr_to_compat(from->si_lower);
3452 		to->si_upper = ptr_to_compat(from->si_upper);
3453 		break;
3454 	case SIL_FAULT_PKUERR:
3455 		to->si_addr = ptr_to_compat(from->si_addr);
3456 		to->si_pkey = from->si_pkey;
3457 		break;
3458 	case SIL_FAULT_PERF_EVENT:
3459 		to->si_addr = ptr_to_compat(from->si_addr);
3460 		to->si_perf_data = from->si_perf_data;
3461 		to->si_perf_type = from->si_perf_type;
3462 		to->si_perf_flags = from->si_perf_flags;
3463 		break;
3464 	case SIL_CHLD:
3465 		to->si_pid = from->si_pid;
3466 		to->si_uid = from->si_uid;
3467 		to->si_status = from->si_status;
3468 		to->si_utime = from->si_utime;
3469 		to->si_stime = from->si_stime;
3470 		break;
3471 	case SIL_RT:
3472 		to->si_pid = from->si_pid;
3473 		to->si_uid = from->si_uid;
3474 		to->si_int = from->si_int;
3475 		break;
3476 	case SIL_SYS:
3477 		to->si_call_addr = ptr_to_compat(from->si_call_addr);
3478 		to->si_syscall   = from->si_syscall;
3479 		to->si_arch      = from->si_arch;
3480 		break;
3481 	}
3482 }
3483 
__copy_siginfo_to_user32(struct compat_siginfo __user * to,const struct kernel_siginfo * from)3484 int __copy_siginfo_to_user32(struct compat_siginfo __user *to,
3485 			   const struct kernel_siginfo *from)
3486 {
3487 	struct compat_siginfo new;
3488 
3489 	copy_siginfo_to_external32(&new, from);
3490 	if (copy_to_user(to, &new, sizeof(struct compat_siginfo)))
3491 		return -EFAULT;
3492 	return 0;
3493 }
3494 
post_copy_siginfo_from_user32(kernel_siginfo_t * to,const struct compat_siginfo * from)3495 static int post_copy_siginfo_from_user32(kernel_siginfo_t *to,
3496 					 const struct compat_siginfo *from)
3497 {
3498 	clear_siginfo(to);
3499 	to->si_signo = from->si_signo;
3500 	to->si_errno = from->si_errno;
3501 	to->si_code  = from->si_code;
3502 	switch(siginfo_layout(from->si_signo, from->si_code)) {
3503 	case SIL_KILL:
3504 		to->si_pid = from->si_pid;
3505 		to->si_uid = from->si_uid;
3506 		break;
3507 	case SIL_TIMER:
3508 		to->si_tid     = from->si_tid;
3509 		to->si_overrun = from->si_overrun;
3510 		to->si_int     = from->si_int;
3511 		break;
3512 	case SIL_POLL:
3513 		to->si_band = from->si_band;
3514 		to->si_fd   = from->si_fd;
3515 		break;
3516 	case SIL_FAULT:
3517 		to->si_addr = compat_ptr(from->si_addr);
3518 		break;
3519 	case SIL_FAULT_TRAPNO:
3520 		to->si_addr = compat_ptr(from->si_addr);
3521 		to->si_trapno = from->si_trapno;
3522 		break;
3523 	case SIL_FAULT_MCEERR:
3524 		to->si_addr = compat_ptr(from->si_addr);
3525 		to->si_addr_lsb = from->si_addr_lsb;
3526 		break;
3527 	case SIL_FAULT_BNDERR:
3528 		to->si_addr = compat_ptr(from->si_addr);
3529 		to->si_lower = compat_ptr(from->si_lower);
3530 		to->si_upper = compat_ptr(from->si_upper);
3531 		break;
3532 	case SIL_FAULT_PKUERR:
3533 		to->si_addr = compat_ptr(from->si_addr);
3534 		to->si_pkey = from->si_pkey;
3535 		break;
3536 	case SIL_FAULT_PERF_EVENT:
3537 		to->si_addr = compat_ptr(from->si_addr);
3538 		to->si_perf_data = from->si_perf_data;
3539 		to->si_perf_type = from->si_perf_type;
3540 		to->si_perf_flags = from->si_perf_flags;
3541 		break;
3542 	case SIL_CHLD:
3543 		to->si_pid    = from->si_pid;
3544 		to->si_uid    = from->si_uid;
3545 		to->si_status = from->si_status;
3546 #ifdef CONFIG_X86_X32_ABI
3547 		if (in_x32_syscall()) {
3548 			to->si_utime = from->_sifields._sigchld_x32._utime;
3549 			to->si_stime = from->_sifields._sigchld_x32._stime;
3550 		} else
3551 #endif
3552 		{
3553 			to->si_utime = from->si_utime;
3554 			to->si_stime = from->si_stime;
3555 		}
3556 		break;
3557 	case SIL_RT:
3558 		to->si_pid = from->si_pid;
3559 		to->si_uid = from->si_uid;
3560 		to->si_int = from->si_int;
3561 		break;
3562 	case SIL_SYS:
3563 		to->si_call_addr = compat_ptr(from->si_call_addr);
3564 		to->si_syscall   = from->si_syscall;
3565 		to->si_arch      = from->si_arch;
3566 		break;
3567 	}
3568 	return 0;
3569 }
3570 
__copy_siginfo_from_user32(int signo,struct kernel_siginfo * to,const struct compat_siginfo __user * ufrom)3571 static int __copy_siginfo_from_user32(int signo, struct kernel_siginfo *to,
3572 				      const struct compat_siginfo __user *ufrom)
3573 {
3574 	struct compat_siginfo from;
3575 
3576 	if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3577 		return -EFAULT;
3578 
3579 	from.si_signo = signo;
3580 	return post_copy_siginfo_from_user32(to, &from);
3581 }
3582 
copy_siginfo_from_user32(struct kernel_siginfo * to,const struct compat_siginfo __user * ufrom)3583 int copy_siginfo_from_user32(struct kernel_siginfo *to,
3584 			     const struct compat_siginfo __user *ufrom)
3585 {
3586 	struct compat_siginfo from;
3587 
3588 	if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3589 		return -EFAULT;
3590 
3591 	return post_copy_siginfo_from_user32(to, &from);
3592 }
3593 #endif /* CONFIG_COMPAT */
3594 
3595 /**
3596  *  do_sigtimedwait - wait for queued signals specified in @which
3597  *  @which: queued signals to wait for
3598  *  @info: if non-null, the signal's siginfo is returned here
3599  *  @ts: upper bound on process time suspension
3600  */
do_sigtimedwait(const sigset_t * which,kernel_siginfo_t * info,const struct timespec64 * ts)3601 static int do_sigtimedwait(const sigset_t *which, kernel_siginfo_t *info,
3602 		    const struct timespec64 *ts)
3603 {
3604 	ktime_t *to = NULL, timeout = KTIME_MAX;
3605 	struct task_struct *tsk = current;
3606 	sigset_t mask = *which;
3607 	int sig, ret = 0;
3608 
3609 	if (ts) {
3610 		if (!timespec64_valid(ts))
3611 			return -EINVAL;
3612 		timeout = timespec64_to_ktime(*ts);
3613 		to = &timeout;
3614 	}
3615 
3616 	/*
3617 	 * Invert the set of allowed signals to get those we want to block.
3618 	 */
3619 	sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP));
3620 	signotset(&mask);
3621 
3622 	spin_lock_irq(&tsk->sighand->siglock);
3623 	sig = dequeue_signal(tsk, &mask, info);
3624 	if (!sig && timeout) {
3625 		/*
3626 		 * None ready, temporarily unblock those we're interested
3627 		 * while we are sleeping in so that we'll be awakened when
3628 		 * they arrive. Unblocking is always fine, we can avoid
3629 		 * set_current_blocked().
3630 		 */
3631 		tsk->real_blocked = tsk->blocked;
3632 		sigandsets(&tsk->blocked, &tsk->blocked, &mask);
3633 		recalc_sigpending();
3634 		spin_unlock_irq(&tsk->sighand->siglock);
3635 
3636 		__set_current_state(TASK_INTERRUPTIBLE);
3637 		ret = freezable_schedule_hrtimeout_range(to, tsk->timer_slack_ns,
3638 							 HRTIMER_MODE_REL);
3639 		spin_lock_irq(&tsk->sighand->siglock);
3640 		__set_task_blocked(tsk, &tsk->real_blocked);
3641 		sigemptyset(&tsk->real_blocked);
3642 		sig = dequeue_signal(tsk, &mask, info);
3643 	}
3644 	spin_unlock_irq(&tsk->sighand->siglock);
3645 
3646 	if (sig)
3647 		return sig;
3648 	return ret ? -EINTR : -EAGAIN;
3649 }
3650 
3651 /**
3652  *  sys_rt_sigtimedwait - synchronously wait for queued signals specified
3653  *			in @uthese
3654  *  @uthese: queued signals to wait for
3655  *  @uinfo: if non-null, the signal's siginfo is returned here
3656  *  @uts: upper bound on process time suspension
3657  *  @sigsetsize: size of sigset_t type
3658  */
SYSCALL_DEFINE4(rt_sigtimedwait,const sigset_t __user *,uthese,siginfo_t __user *,uinfo,const struct __kernel_timespec __user *,uts,size_t,sigsetsize)3659 SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
3660 		siginfo_t __user *, uinfo,
3661 		const struct __kernel_timespec __user *, uts,
3662 		size_t, sigsetsize)
3663 {
3664 	sigset_t these;
3665 	struct timespec64 ts;
3666 	kernel_siginfo_t info;
3667 	int ret;
3668 
3669 	/* XXX: Don't preclude handling different sized sigset_t's.  */
3670 	if (sigsetsize != sizeof(sigset_t))
3671 		return -EINVAL;
3672 
3673 	if (copy_from_user(&these, uthese, sizeof(these)))
3674 		return -EFAULT;
3675 
3676 	if (uts) {
3677 		if (get_timespec64(&ts, uts))
3678 			return -EFAULT;
3679 	}
3680 
3681 	ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3682 
3683 	if (ret > 0 && uinfo) {
3684 		if (copy_siginfo_to_user(uinfo, &info))
3685 			ret = -EFAULT;
3686 	}
3687 
3688 	return ret;
3689 }
3690 
3691 #ifdef CONFIG_COMPAT_32BIT_TIME
SYSCALL_DEFINE4(rt_sigtimedwait_time32,const sigset_t __user *,uthese,siginfo_t __user *,uinfo,const struct old_timespec32 __user *,uts,size_t,sigsetsize)3692 SYSCALL_DEFINE4(rt_sigtimedwait_time32, const sigset_t __user *, uthese,
3693 		siginfo_t __user *, uinfo,
3694 		const struct old_timespec32 __user *, uts,
3695 		size_t, sigsetsize)
3696 {
3697 	sigset_t these;
3698 	struct timespec64 ts;
3699 	kernel_siginfo_t info;
3700 	int ret;
3701 
3702 	if (sigsetsize != sizeof(sigset_t))
3703 		return -EINVAL;
3704 
3705 	if (copy_from_user(&these, uthese, sizeof(these)))
3706 		return -EFAULT;
3707 
3708 	if (uts) {
3709 		if (get_old_timespec32(&ts, uts))
3710 			return -EFAULT;
3711 	}
3712 
3713 	ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3714 
3715 	if (ret > 0 && uinfo) {
3716 		if (copy_siginfo_to_user(uinfo, &info))
3717 			ret = -EFAULT;
3718 	}
3719 
3720 	return ret;
3721 }
3722 #endif
3723 
3724 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time64,compat_sigset_t __user *,uthese,struct compat_siginfo __user *,uinfo,struct __kernel_timespec __user *,uts,compat_size_t,sigsetsize)3725 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time64, compat_sigset_t __user *, uthese,
3726 		struct compat_siginfo __user *, uinfo,
3727 		struct __kernel_timespec __user *, uts, compat_size_t, sigsetsize)
3728 {
3729 	sigset_t s;
3730 	struct timespec64 t;
3731 	kernel_siginfo_t info;
3732 	long ret;
3733 
3734 	if (sigsetsize != sizeof(sigset_t))
3735 		return -EINVAL;
3736 
3737 	if (get_compat_sigset(&s, uthese))
3738 		return -EFAULT;
3739 
3740 	if (uts) {
3741 		if (get_timespec64(&t, uts))
3742 			return -EFAULT;
3743 	}
3744 
3745 	ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3746 
3747 	if (ret > 0 && uinfo) {
3748 		if (copy_siginfo_to_user32(uinfo, &info))
3749 			ret = -EFAULT;
3750 	}
3751 
3752 	return ret;
3753 }
3754 
3755 #ifdef CONFIG_COMPAT_32BIT_TIME
COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time32,compat_sigset_t __user *,uthese,struct compat_siginfo __user *,uinfo,struct old_timespec32 __user *,uts,compat_size_t,sigsetsize)3756 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time32, compat_sigset_t __user *, uthese,
3757 		struct compat_siginfo __user *, uinfo,
3758 		struct old_timespec32 __user *, uts, compat_size_t, sigsetsize)
3759 {
3760 	sigset_t s;
3761 	struct timespec64 t;
3762 	kernel_siginfo_t info;
3763 	long ret;
3764 
3765 	if (sigsetsize != sizeof(sigset_t))
3766 		return -EINVAL;
3767 
3768 	if (get_compat_sigset(&s, uthese))
3769 		return -EFAULT;
3770 
3771 	if (uts) {
3772 		if (get_old_timespec32(&t, uts))
3773 			return -EFAULT;
3774 	}
3775 
3776 	ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3777 
3778 	if (ret > 0 && uinfo) {
3779 		if (copy_siginfo_to_user32(uinfo, &info))
3780 			ret = -EFAULT;
3781 	}
3782 
3783 	return ret;
3784 }
3785 #endif
3786 #endif
3787 
prepare_kill_siginfo(int sig,struct kernel_siginfo * info)3788 static inline void prepare_kill_siginfo(int sig, struct kernel_siginfo *info)
3789 {
3790 	clear_siginfo(info);
3791 	info->si_signo = sig;
3792 	info->si_errno = 0;
3793 	info->si_code = SI_USER;
3794 	info->si_pid = task_tgid_vnr(current);
3795 	info->si_uid = from_kuid_munged(current_user_ns(), current_uid());
3796 }
3797 
3798 /**
3799  *  sys_kill - send a signal to a process
3800  *  @pid: the PID of the process
3801  *  @sig: signal to be sent
3802  */
SYSCALL_DEFINE2(kill,pid_t,pid,int,sig)3803 SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
3804 {
3805 	struct kernel_siginfo info;
3806 
3807 	prepare_kill_siginfo(sig, &info);
3808 
3809 	return kill_something_info(sig, &info, pid);
3810 }
3811 
3812 /*
3813  * Verify that the signaler and signalee either are in the same pid namespace
3814  * or that the signaler's pid namespace is an ancestor of the signalee's pid
3815  * namespace.
3816  */
access_pidfd_pidns(struct pid * pid)3817 static bool access_pidfd_pidns(struct pid *pid)
3818 {
3819 	struct pid_namespace *active = task_active_pid_ns(current);
3820 	struct pid_namespace *p = ns_of_pid(pid);
3821 
3822 	for (;;) {
3823 		if (!p)
3824 			return false;
3825 		if (p == active)
3826 			break;
3827 		p = p->parent;
3828 	}
3829 
3830 	return true;
3831 }
3832 
copy_siginfo_from_user_any(kernel_siginfo_t * kinfo,siginfo_t __user * info)3833 static int copy_siginfo_from_user_any(kernel_siginfo_t *kinfo,
3834 		siginfo_t __user *info)
3835 {
3836 #ifdef CONFIG_COMPAT
3837 	/*
3838 	 * Avoid hooking up compat syscalls and instead handle necessary
3839 	 * conversions here. Note, this is a stop-gap measure and should not be
3840 	 * considered a generic solution.
3841 	 */
3842 	if (in_compat_syscall())
3843 		return copy_siginfo_from_user32(
3844 			kinfo, (struct compat_siginfo __user *)info);
3845 #endif
3846 	return copy_siginfo_from_user(kinfo, info);
3847 }
3848 
pidfd_to_pid(const struct file * file)3849 static struct pid *pidfd_to_pid(const struct file *file)
3850 {
3851 	struct pid *pid;
3852 
3853 	pid = pidfd_pid(file);
3854 	if (!IS_ERR(pid))
3855 		return pid;
3856 
3857 	return tgid_pidfd_to_pid(file);
3858 }
3859 
3860 /**
3861  * sys_pidfd_send_signal - Signal a process through a pidfd
3862  * @pidfd:  file descriptor of the process
3863  * @sig:    signal to send
3864  * @info:   signal info
3865  * @flags:  future flags
3866  *
3867  * The syscall currently only signals via PIDTYPE_PID which covers
3868  * kill(<positive-pid>, <signal>. It does not signal threads or process
3869  * groups.
3870  * In order to extend the syscall to threads and process groups the @flags
3871  * argument should be used. In essence, the @flags argument will determine
3872  * what is signaled and not the file descriptor itself. Put in other words,
3873  * grouping is a property of the flags argument not a property of the file
3874  * descriptor.
3875  *
3876  * Return: 0 on success, negative errno on failure
3877  */
SYSCALL_DEFINE4(pidfd_send_signal,int,pidfd,int,sig,siginfo_t __user *,info,unsigned int,flags)3878 SYSCALL_DEFINE4(pidfd_send_signal, int, pidfd, int, sig,
3879 		siginfo_t __user *, info, unsigned int, flags)
3880 {
3881 	int ret;
3882 	struct fd f;
3883 	struct pid *pid;
3884 	kernel_siginfo_t kinfo;
3885 
3886 	/* Enforce flags be set to 0 until we add an extension. */
3887 	if (flags)
3888 		return -EINVAL;
3889 
3890 	f = fdget(pidfd);
3891 	if (!f.file)
3892 		return -EBADF;
3893 
3894 	/* Is this a pidfd? */
3895 	pid = pidfd_to_pid(f.file);
3896 	if (IS_ERR(pid)) {
3897 		ret = PTR_ERR(pid);
3898 		goto err;
3899 	}
3900 
3901 	ret = -EINVAL;
3902 	if (!access_pidfd_pidns(pid))
3903 		goto err;
3904 
3905 	if (info) {
3906 		ret = copy_siginfo_from_user_any(&kinfo, info);
3907 		if (unlikely(ret))
3908 			goto err;
3909 
3910 		ret = -EINVAL;
3911 		if (unlikely(sig != kinfo.si_signo))
3912 			goto err;
3913 
3914 		/* Only allow sending arbitrary signals to yourself. */
3915 		ret = -EPERM;
3916 		if ((task_pid(current) != pid) &&
3917 		    (kinfo.si_code >= 0 || kinfo.si_code == SI_TKILL))
3918 			goto err;
3919 	} else {
3920 		prepare_kill_siginfo(sig, &kinfo);
3921 	}
3922 
3923 	ret = kill_pid_info(sig, &kinfo, pid);
3924 
3925 err:
3926 	fdput(f);
3927 	return ret;
3928 }
3929 
3930 static int
do_send_specific(pid_t tgid,pid_t pid,int sig,struct kernel_siginfo * info)3931 do_send_specific(pid_t tgid, pid_t pid, int sig, struct kernel_siginfo *info)
3932 {
3933 	struct task_struct *p;
3934 	int error = -ESRCH;
3935 
3936 	rcu_read_lock();
3937 	p = find_task_by_vpid(pid);
3938 	if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
3939 		error = check_kill_permission(sig, info, p);
3940 		/*
3941 		 * The null signal is a permissions and process existence
3942 		 * probe.  No signal is actually delivered.
3943 		 */
3944 		if (!error && sig) {
3945 			error = do_send_sig_info(sig, info, p, PIDTYPE_PID);
3946 			/*
3947 			 * If lock_task_sighand() failed we pretend the task
3948 			 * dies after receiving the signal. The window is tiny,
3949 			 * and the signal is private anyway.
3950 			 */
3951 			if (unlikely(error == -ESRCH))
3952 				error = 0;
3953 		}
3954 	}
3955 	rcu_read_unlock();
3956 
3957 	return error;
3958 }
3959 
do_tkill(pid_t tgid,pid_t pid,int sig)3960 static int do_tkill(pid_t tgid, pid_t pid, int sig)
3961 {
3962 	struct kernel_siginfo info;
3963 
3964 	clear_siginfo(&info);
3965 	info.si_signo = sig;
3966 	info.si_errno = 0;
3967 	info.si_code = SI_TKILL;
3968 	info.si_pid = task_tgid_vnr(current);
3969 	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
3970 
3971 	return do_send_specific(tgid, pid, sig, &info);
3972 }
3973 
3974 /**
3975  *  sys_tgkill - send signal to one specific thread
3976  *  @tgid: the thread group ID of the thread
3977  *  @pid: the PID of the thread
3978  *  @sig: signal to be sent
3979  *
3980  *  This syscall also checks the @tgid and returns -ESRCH even if the PID
3981  *  exists but it's not belonging to the target process anymore. This
3982  *  method solves the problem of threads exiting and PIDs getting reused.
3983  */
SYSCALL_DEFINE3(tgkill,pid_t,tgid,pid_t,pid,int,sig)3984 SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
3985 {
3986 	/* This is only valid for single tasks */
3987 	if (pid <= 0 || tgid <= 0)
3988 		return -EINVAL;
3989 
3990 	return do_tkill(tgid, pid, sig);
3991 }
3992 
3993 /**
3994  *  sys_tkill - send signal to one specific task
3995  *  @pid: the PID of the task
3996  *  @sig: signal to be sent
3997  *
3998  *  Send a signal to only one task, even if it's a CLONE_THREAD task.
3999  */
SYSCALL_DEFINE2(tkill,pid_t,pid,int,sig)4000 SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
4001 {
4002 	/* This is only valid for single tasks */
4003 	if (pid <= 0)
4004 		return -EINVAL;
4005 
4006 	return do_tkill(0, pid, sig);
4007 }
4008 
do_rt_sigqueueinfo(pid_t pid,int sig,kernel_siginfo_t * info)4009 static int do_rt_sigqueueinfo(pid_t pid, int sig, kernel_siginfo_t *info)
4010 {
4011 	/* Not even root can pretend to send signals from the kernel.
4012 	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
4013 	 */
4014 	if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
4015 	    (task_pid_vnr(current) != pid))
4016 		return -EPERM;
4017 
4018 	/* POSIX.1b doesn't mention process groups.  */
4019 	return kill_proc_info(sig, info, pid);
4020 }
4021 
4022 /**
4023  *  sys_rt_sigqueueinfo - send signal information to a signal
4024  *  @pid: the PID of the thread
4025  *  @sig: signal to be sent
4026  *  @uinfo: signal info to be sent
4027  */
SYSCALL_DEFINE3(rt_sigqueueinfo,pid_t,pid,int,sig,siginfo_t __user *,uinfo)4028 SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
4029 		siginfo_t __user *, uinfo)
4030 {
4031 	kernel_siginfo_t info;
4032 	int ret = __copy_siginfo_from_user(sig, &info, uinfo);
4033 	if (unlikely(ret))
4034 		return ret;
4035 	return do_rt_sigqueueinfo(pid, sig, &info);
4036 }
4037 
4038 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo,compat_pid_t,pid,int,sig,struct compat_siginfo __user *,uinfo)4039 COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo,
4040 			compat_pid_t, pid,
4041 			int, sig,
4042 			struct compat_siginfo __user *, uinfo)
4043 {
4044 	kernel_siginfo_t info;
4045 	int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
4046 	if (unlikely(ret))
4047 		return ret;
4048 	return do_rt_sigqueueinfo(pid, sig, &info);
4049 }
4050 #endif
4051 
do_rt_tgsigqueueinfo(pid_t tgid,pid_t pid,int sig,kernel_siginfo_t * info)4052 static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, kernel_siginfo_t *info)
4053 {
4054 	/* This is only valid for single tasks */
4055 	if (pid <= 0 || tgid <= 0)
4056 		return -EINVAL;
4057 
4058 	/* Not even root can pretend to send signals from the kernel.
4059 	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
4060 	 */
4061 	if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
4062 	    (task_pid_vnr(current) != pid))
4063 		return -EPERM;
4064 
4065 	return do_send_specific(tgid, pid, sig, info);
4066 }
4067 
SYSCALL_DEFINE4(rt_tgsigqueueinfo,pid_t,tgid,pid_t,pid,int,sig,siginfo_t __user *,uinfo)4068 SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
4069 		siginfo_t __user *, uinfo)
4070 {
4071 	kernel_siginfo_t info;
4072 	int ret = __copy_siginfo_from_user(sig, &info, uinfo);
4073 	if (unlikely(ret))
4074 		return ret;
4075 	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
4076 }
4077 
4078 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo,compat_pid_t,tgid,compat_pid_t,pid,int,sig,struct compat_siginfo __user *,uinfo)4079 COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo,
4080 			compat_pid_t, tgid,
4081 			compat_pid_t, pid,
4082 			int, sig,
4083 			struct compat_siginfo __user *, uinfo)
4084 {
4085 	kernel_siginfo_t info;
4086 	int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
4087 	if (unlikely(ret))
4088 		return ret;
4089 	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
4090 }
4091 #endif
4092 
4093 /*
4094  * For kthreads only, must not be used if cloned with CLONE_SIGHAND
4095  */
kernel_sigaction(int sig,__sighandler_t action)4096 void kernel_sigaction(int sig, __sighandler_t action)
4097 {
4098 	spin_lock_irq(&current->sighand->siglock);
4099 	current->sighand->action[sig - 1].sa.sa_handler = action;
4100 	if (action == SIG_IGN) {
4101 		sigset_t mask;
4102 
4103 		sigemptyset(&mask);
4104 		sigaddset(&mask, sig);
4105 
4106 		flush_sigqueue_mask(&mask, &current->signal->shared_pending);
4107 		flush_sigqueue_mask(&mask, &current->pending);
4108 		recalc_sigpending();
4109 	}
4110 	spin_unlock_irq(&current->sighand->siglock);
4111 }
4112 EXPORT_SYMBOL(kernel_sigaction);
4113 
sigaction_compat_abi(struct k_sigaction * act,struct k_sigaction * oact)4114 void __weak sigaction_compat_abi(struct k_sigaction *act,
4115 		struct k_sigaction *oact)
4116 {
4117 }
4118 
do_sigaction(int sig,struct k_sigaction * act,struct k_sigaction * oact)4119 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
4120 {
4121 	struct task_struct *p = current, *t;
4122 	struct k_sigaction *k;
4123 	sigset_t mask;
4124 
4125 	if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
4126 		return -EINVAL;
4127 
4128 	k = &p->sighand->action[sig-1];
4129 
4130 	spin_lock_irq(&p->sighand->siglock);
4131 	if (k->sa.sa_flags & SA_IMMUTABLE) {
4132 		spin_unlock_irq(&p->sighand->siglock);
4133 		return -EINVAL;
4134 	}
4135 	if (oact)
4136 		*oact = *k;
4137 
4138 	/*
4139 	 * Make sure that we never accidentally claim to support SA_UNSUPPORTED,
4140 	 * e.g. by having an architecture use the bit in their uapi.
4141 	 */
4142 	BUILD_BUG_ON(UAPI_SA_FLAGS & SA_UNSUPPORTED);
4143 
4144 	/*
4145 	 * Clear unknown flag bits in order to allow userspace to detect missing
4146 	 * support for flag bits and to allow the kernel to use non-uapi bits
4147 	 * internally.
4148 	 */
4149 	if (act)
4150 		act->sa.sa_flags &= UAPI_SA_FLAGS;
4151 	if (oact)
4152 		oact->sa.sa_flags &= UAPI_SA_FLAGS;
4153 
4154 	sigaction_compat_abi(act, oact);
4155 
4156 	if (act) {
4157 		sigdelsetmask(&act->sa.sa_mask,
4158 			      sigmask(SIGKILL) | sigmask(SIGSTOP));
4159 		*k = *act;
4160 		/*
4161 		 * POSIX 3.3.1.3:
4162 		 *  "Setting a signal action to SIG_IGN for a signal that is
4163 		 *   pending shall cause the pending signal to be discarded,
4164 		 *   whether or not it is blocked."
4165 		 *
4166 		 *  "Setting a signal action to SIG_DFL for a signal that is
4167 		 *   pending and whose default action is to ignore the signal
4168 		 *   (for example, SIGCHLD), shall cause the pending signal to
4169 		 *   be discarded, whether or not it is blocked"
4170 		 */
4171 		if (sig_handler_ignored(sig_handler(p, sig), sig)) {
4172 			sigemptyset(&mask);
4173 			sigaddset(&mask, sig);
4174 			flush_sigqueue_mask(&mask, &p->signal->shared_pending);
4175 			for_each_thread(p, t)
4176 				flush_sigqueue_mask(&mask, &t->pending);
4177 		}
4178 	}
4179 
4180 	spin_unlock_irq(&p->sighand->siglock);
4181 	return 0;
4182 }
4183 
4184 static int
do_sigaltstack(const stack_t * ss,stack_t * oss,unsigned long sp,size_t min_ss_size)4185 do_sigaltstack (const stack_t *ss, stack_t *oss, unsigned long sp,
4186 		size_t min_ss_size)
4187 {
4188 	struct task_struct *t = current;
4189 
4190 	if (oss) {
4191 		memset(oss, 0, sizeof(stack_t));
4192 		oss->ss_sp = (void __user *) t->sas_ss_sp;
4193 		oss->ss_size = t->sas_ss_size;
4194 		oss->ss_flags = sas_ss_flags(sp) |
4195 			(current->sas_ss_flags & SS_FLAG_BITS);
4196 	}
4197 
4198 	if (ss) {
4199 		void __user *ss_sp = ss->ss_sp;
4200 		size_t ss_size = ss->ss_size;
4201 		unsigned ss_flags = ss->ss_flags;
4202 		int ss_mode;
4203 
4204 		if (unlikely(on_sig_stack(sp)))
4205 			return -EPERM;
4206 
4207 		ss_mode = ss_flags & ~SS_FLAG_BITS;
4208 		if (unlikely(ss_mode != SS_DISABLE && ss_mode != SS_ONSTACK &&
4209 				ss_mode != 0))
4210 			return -EINVAL;
4211 
4212 		if (ss_mode == SS_DISABLE) {
4213 			ss_size = 0;
4214 			ss_sp = NULL;
4215 		} else {
4216 			if (unlikely(ss_size < min_ss_size))
4217 				return -ENOMEM;
4218 		}
4219 
4220 		t->sas_ss_sp = (unsigned long) ss_sp;
4221 		t->sas_ss_size = ss_size;
4222 		t->sas_ss_flags = ss_flags;
4223 	}
4224 	return 0;
4225 }
4226 
SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss,stack_t __user *,uoss)4227 SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss)
4228 {
4229 	stack_t new, old;
4230 	int err;
4231 	if (uss && copy_from_user(&new, uss, sizeof(stack_t)))
4232 		return -EFAULT;
4233 	err = do_sigaltstack(uss ? &new : NULL, uoss ? &old : NULL,
4234 			      current_user_stack_pointer(),
4235 			      MINSIGSTKSZ);
4236 	if (!err && uoss && copy_to_user(uoss, &old, sizeof(stack_t)))
4237 		err = -EFAULT;
4238 	return err;
4239 }
4240 
restore_altstack(const stack_t __user * uss)4241 int restore_altstack(const stack_t __user *uss)
4242 {
4243 	stack_t new;
4244 	if (copy_from_user(&new, uss, sizeof(stack_t)))
4245 		return -EFAULT;
4246 	(void)do_sigaltstack(&new, NULL, current_user_stack_pointer(),
4247 			     MINSIGSTKSZ);
4248 	/* squash all but EFAULT for now */
4249 	return 0;
4250 }
4251 
__save_altstack(stack_t __user * uss,unsigned long sp)4252 int __save_altstack(stack_t __user *uss, unsigned long sp)
4253 {
4254 	struct task_struct *t = current;
4255 	int err = __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) |
4256 		__put_user(t->sas_ss_flags, &uss->ss_flags) |
4257 		__put_user(t->sas_ss_size, &uss->ss_size);
4258 	return err;
4259 }
4260 
4261 #ifdef CONFIG_COMPAT
do_compat_sigaltstack(const compat_stack_t __user * uss_ptr,compat_stack_t __user * uoss_ptr)4262 static int do_compat_sigaltstack(const compat_stack_t __user *uss_ptr,
4263 				 compat_stack_t __user *uoss_ptr)
4264 {
4265 	stack_t uss, uoss;
4266 	int ret;
4267 
4268 	if (uss_ptr) {
4269 		compat_stack_t uss32;
4270 		if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t)))
4271 			return -EFAULT;
4272 		uss.ss_sp = compat_ptr(uss32.ss_sp);
4273 		uss.ss_flags = uss32.ss_flags;
4274 		uss.ss_size = uss32.ss_size;
4275 	}
4276 	ret = do_sigaltstack(uss_ptr ? &uss : NULL, &uoss,
4277 			     compat_user_stack_pointer(),
4278 			     COMPAT_MINSIGSTKSZ);
4279 	if (ret >= 0 && uoss_ptr)  {
4280 		compat_stack_t old;
4281 		memset(&old, 0, sizeof(old));
4282 		old.ss_sp = ptr_to_compat(uoss.ss_sp);
4283 		old.ss_flags = uoss.ss_flags;
4284 		old.ss_size = uoss.ss_size;
4285 		if (copy_to_user(uoss_ptr, &old, sizeof(compat_stack_t)))
4286 			ret = -EFAULT;
4287 	}
4288 	return ret;
4289 }
4290 
COMPAT_SYSCALL_DEFINE2(sigaltstack,const compat_stack_t __user *,uss_ptr,compat_stack_t __user *,uoss_ptr)4291 COMPAT_SYSCALL_DEFINE2(sigaltstack,
4292 			const compat_stack_t __user *, uss_ptr,
4293 			compat_stack_t __user *, uoss_ptr)
4294 {
4295 	return do_compat_sigaltstack(uss_ptr, uoss_ptr);
4296 }
4297 
compat_restore_altstack(const compat_stack_t __user * uss)4298 int compat_restore_altstack(const compat_stack_t __user *uss)
4299 {
4300 	int err = do_compat_sigaltstack(uss, NULL);
4301 	/* squash all but -EFAULT for now */
4302 	return err == -EFAULT ? err : 0;
4303 }
4304 
__compat_save_altstack(compat_stack_t __user * uss,unsigned long sp)4305 int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp)
4306 {
4307 	int err;
4308 	struct task_struct *t = current;
4309 	err = __put_user(ptr_to_compat((void __user *)t->sas_ss_sp),
4310 			 &uss->ss_sp) |
4311 		__put_user(t->sas_ss_flags, &uss->ss_flags) |
4312 		__put_user(t->sas_ss_size, &uss->ss_size);
4313 	return err;
4314 }
4315 #endif
4316 
4317 #ifdef __ARCH_WANT_SYS_SIGPENDING
4318 
4319 /**
4320  *  sys_sigpending - examine pending signals
4321  *  @uset: where mask of pending signal is returned
4322  */
SYSCALL_DEFINE1(sigpending,old_sigset_t __user *,uset)4323 SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, uset)
4324 {
4325 	sigset_t set;
4326 
4327 	if (sizeof(old_sigset_t) > sizeof(*uset))
4328 		return -EINVAL;
4329 
4330 	do_sigpending(&set);
4331 
4332 	if (copy_to_user(uset, &set, sizeof(old_sigset_t)))
4333 		return -EFAULT;
4334 
4335 	return 0;
4336 }
4337 
4338 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE1(sigpending,compat_old_sigset_t __user *,set32)4339 COMPAT_SYSCALL_DEFINE1(sigpending, compat_old_sigset_t __user *, set32)
4340 {
4341 	sigset_t set;
4342 
4343 	do_sigpending(&set);
4344 
4345 	return put_user(set.sig[0], set32);
4346 }
4347 #endif
4348 
4349 #endif
4350 
4351 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
4352 /**
4353  *  sys_sigprocmask - examine and change blocked signals
4354  *  @how: whether to add, remove, or set signals
4355  *  @nset: signals to add or remove (if non-null)
4356  *  @oset: previous value of signal mask if non-null
4357  *
4358  * Some platforms have their own version with special arguments;
4359  * others support only sys_rt_sigprocmask.
4360  */
4361 
SYSCALL_DEFINE3(sigprocmask,int,how,old_sigset_t __user *,nset,old_sigset_t __user *,oset)4362 SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset,
4363 		old_sigset_t __user *, oset)
4364 {
4365 	old_sigset_t old_set, new_set;
4366 	sigset_t new_blocked;
4367 
4368 	old_set = current->blocked.sig[0];
4369 
4370 	if (nset) {
4371 		if (copy_from_user(&new_set, nset, sizeof(*nset)))
4372 			return -EFAULT;
4373 
4374 		new_blocked = current->blocked;
4375 
4376 		switch (how) {
4377 		case SIG_BLOCK:
4378 			sigaddsetmask(&new_blocked, new_set);
4379 			break;
4380 		case SIG_UNBLOCK:
4381 			sigdelsetmask(&new_blocked, new_set);
4382 			break;
4383 		case SIG_SETMASK:
4384 			new_blocked.sig[0] = new_set;
4385 			break;
4386 		default:
4387 			return -EINVAL;
4388 		}
4389 
4390 		set_current_blocked(&new_blocked);
4391 	}
4392 
4393 	if (oset) {
4394 		if (copy_to_user(oset, &old_set, sizeof(*oset)))
4395 			return -EFAULT;
4396 	}
4397 
4398 	return 0;
4399 }
4400 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
4401 
4402 #ifndef CONFIG_ODD_RT_SIGACTION
4403 /**
4404  *  sys_rt_sigaction - alter an action taken by a process
4405  *  @sig: signal to be sent
4406  *  @act: new sigaction
4407  *  @oact: used to save the previous sigaction
4408  *  @sigsetsize: size of sigset_t type
4409  */
SYSCALL_DEFINE4(rt_sigaction,int,sig,const struct sigaction __user *,act,struct sigaction __user *,oact,size_t,sigsetsize)4410 SYSCALL_DEFINE4(rt_sigaction, int, sig,
4411 		const struct sigaction __user *, act,
4412 		struct sigaction __user *, oact,
4413 		size_t, sigsetsize)
4414 {
4415 	struct k_sigaction new_sa, old_sa;
4416 	int ret;
4417 
4418 	/* XXX: Don't preclude handling different sized sigset_t's.  */
4419 	if (sigsetsize != sizeof(sigset_t))
4420 		return -EINVAL;
4421 
4422 	if (act && copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
4423 		return -EFAULT;
4424 
4425 	ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
4426 	if (ret)
4427 		return ret;
4428 
4429 	if (oact && copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
4430 		return -EFAULT;
4431 
4432 	return 0;
4433 }
4434 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE4(rt_sigaction,int,sig,const struct compat_sigaction __user *,act,struct compat_sigaction __user *,oact,compat_size_t,sigsetsize)4435 COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig,
4436 		const struct compat_sigaction __user *, act,
4437 		struct compat_sigaction __user *, oact,
4438 		compat_size_t, sigsetsize)
4439 {
4440 	struct k_sigaction new_ka, old_ka;
4441 #ifdef __ARCH_HAS_SA_RESTORER
4442 	compat_uptr_t restorer;
4443 #endif
4444 	int ret;
4445 
4446 	/* XXX: Don't preclude handling different sized sigset_t's.  */
4447 	if (sigsetsize != sizeof(compat_sigset_t))
4448 		return -EINVAL;
4449 
4450 	if (act) {
4451 		compat_uptr_t handler;
4452 		ret = get_user(handler, &act->sa_handler);
4453 		new_ka.sa.sa_handler = compat_ptr(handler);
4454 #ifdef __ARCH_HAS_SA_RESTORER
4455 		ret |= get_user(restorer, &act->sa_restorer);
4456 		new_ka.sa.sa_restorer = compat_ptr(restorer);
4457 #endif
4458 		ret |= get_compat_sigset(&new_ka.sa.sa_mask, &act->sa_mask);
4459 		ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags);
4460 		if (ret)
4461 			return -EFAULT;
4462 	}
4463 
4464 	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4465 	if (!ret && oact) {
4466 		ret = put_user(ptr_to_compat(old_ka.sa.sa_handler),
4467 			       &oact->sa_handler);
4468 		ret |= put_compat_sigset(&oact->sa_mask, &old_ka.sa.sa_mask,
4469 					 sizeof(oact->sa_mask));
4470 		ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags);
4471 #ifdef __ARCH_HAS_SA_RESTORER
4472 		ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer),
4473 				&oact->sa_restorer);
4474 #endif
4475 	}
4476 	return ret;
4477 }
4478 #endif
4479 #endif /* !CONFIG_ODD_RT_SIGACTION */
4480 
4481 #ifdef CONFIG_OLD_SIGACTION
SYSCALL_DEFINE3(sigaction,int,sig,const struct old_sigaction __user *,act,struct old_sigaction __user *,oact)4482 SYSCALL_DEFINE3(sigaction, int, sig,
4483 		const struct old_sigaction __user *, act,
4484 	        struct old_sigaction __user *, oact)
4485 {
4486 	struct k_sigaction new_ka, old_ka;
4487 	int ret;
4488 
4489 	if (act) {
4490 		old_sigset_t mask;
4491 		if (!access_ok(act, sizeof(*act)) ||
4492 		    __get_user(new_ka.sa.sa_handler, &act->sa_handler) ||
4493 		    __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) ||
4494 		    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
4495 		    __get_user(mask, &act->sa_mask))
4496 			return -EFAULT;
4497 #ifdef __ARCH_HAS_KA_RESTORER
4498 		new_ka.ka_restorer = NULL;
4499 #endif
4500 		siginitset(&new_ka.sa.sa_mask, mask);
4501 	}
4502 
4503 	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4504 
4505 	if (!ret && oact) {
4506 		if (!access_ok(oact, sizeof(*oact)) ||
4507 		    __put_user(old_ka.sa.sa_handler, &oact->sa_handler) ||
4508 		    __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) ||
4509 		    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
4510 		    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
4511 			return -EFAULT;
4512 	}
4513 
4514 	return ret;
4515 }
4516 #endif
4517 #ifdef CONFIG_COMPAT_OLD_SIGACTION
COMPAT_SYSCALL_DEFINE3(sigaction,int,sig,const struct compat_old_sigaction __user *,act,struct compat_old_sigaction __user *,oact)4518 COMPAT_SYSCALL_DEFINE3(sigaction, int, sig,
4519 		const struct compat_old_sigaction __user *, act,
4520 	        struct compat_old_sigaction __user *, oact)
4521 {
4522 	struct k_sigaction new_ka, old_ka;
4523 	int ret;
4524 	compat_old_sigset_t mask;
4525 	compat_uptr_t handler, restorer;
4526 
4527 	if (act) {
4528 		if (!access_ok(act, sizeof(*act)) ||
4529 		    __get_user(handler, &act->sa_handler) ||
4530 		    __get_user(restorer, &act->sa_restorer) ||
4531 		    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
4532 		    __get_user(mask, &act->sa_mask))
4533 			return -EFAULT;
4534 
4535 #ifdef __ARCH_HAS_KA_RESTORER
4536 		new_ka.ka_restorer = NULL;
4537 #endif
4538 		new_ka.sa.sa_handler = compat_ptr(handler);
4539 		new_ka.sa.sa_restorer = compat_ptr(restorer);
4540 		siginitset(&new_ka.sa.sa_mask, mask);
4541 	}
4542 
4543 	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4544 
4545 	if (!ret && oact) {
4546 		if (!access_ok(oact, sizeof(*oact)) ||
4547 		    __put_user(ptr_to_compat(old_ka.sa.sa_handler),
4548 			       &oact->sa_handler) ||
4549 		    __put_user(ptr_to_compat(old_ka.sa.sa_restorer),
4550 			       &oact->sa_restorer) ||
4551 		    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
4552 		    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
4553 			return -EFAULT;
4554 	}
4555 	return ret;
4556 }
4557 #endif
4558 
4559 #ifdef CONFIG_SGETMASK_SYSCALL
4560 
4561 /*
4562  * For backwards compatibility.  Functionality superseded by sigprocmask.
4563  */
SYSCALL_DEFINE0(sgetmask)4564 SYSCALL_DEFINE0(sgetmask)
4565 {
4566 	/* SMP safe */
4567 	return current->blocked.sig[0];
4568 }
4569 
SYSCALL_DEFINE1(ssetmask,int,newmask)4570 SYSCALL_DEFINE1(ssetmask, int, newmask)
4571 {
4572 	int old = current->blocked.sig[0];
4573 	sigset_t newset;
4574 
4575 	siginitset(&newset, newmask);
4576 	set_current_blocked(&newset);
4577 
4578 	return old;
4579 }
4580 #endif /* CONFIG_SGETMASK_SYSCALL */
4581 
4582 #ifdef __ARCH_WANT_SYS_SIGNAL
4583 /*
4584  * For backwards compatibility.  Functionality superseded by sigaction.
4585  */
SYSCALL_DEFINE2(signal,int,sig,__sighandler_t,handler)4586 SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
4587 {
4588 	struct k_sigaction new_sa, old_sa;
4589 	int ret;
4590 
4591 	new_sa.sa.sa_handler = handler;
4592 	new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
4593 	sigemptyset(&new_sa.sa.sa_mask);
4594 
4595 	ret = do_sigaction(sig, &new_sa, &old_sa);
4596 
4597 	return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
4598 }
4599 #endif /* __ARCH_WANT_SYS_SIGNAL */
4600 
4601 #ifdef __ARCH_WANT_SYS_PAUSE
4602 
SYSCALL_DEFINE0(pause)4603 SYSCALL_DEFINE0(pause)
4604 {
4605 	while (!signal_pending(current)) {
4606 		__set_current_state(TASK_INTERRUPTIBLE);
4607 		schedule();
4608 	}
4609 	return -ERESTARTNOHAND;
4610 }
4611 
4612 #endif
4613 
sigsuspend(sigset_t * set)4614 static int sigsuspend(sigset_t *set)
4615 {
4616 	current->saved_sigmask = current->blocked;
4617 	set_current_blocked(set);
4618 
4619 	while (!signal_pending(current)) {
4620 		__set_current_state(TASK_INTERRUPTIBLE);
4621 		schedule();
4622 	}
4623 	set_restore_sigmask();
4624 	return -ERESTARTNOHAND;
4625 }
4626 
4627 /**
4628  *  sys_rt_sigsuspend - replace the signal mask for a value with the
4629  *	@unewset value until a signal is received
4630  *  @unewset: new signal mask value
4631  *  @sigsetsize: size of sigset_t type
4632  */
SYSCALL_DEFINE2(rt_sigsuspend,sigset_t __user *,unewset,size_t,sigsetsize)4633 SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
4634 {
4635 	sigset_t newset;
4636 
4637 	/* XXX: Don't preclude handling different sized sigset_t's.  */
4638 	if (sigsetsize != sizeof(sigset_t))
4639 		return -EINVAL;
4640 
4641 	if (copy_from_user(&newset, unewset, sizeof(newset)))
4642 		return -EFAULT;
4643 	return sigsuspend(&newset);
4644 }
4645 
4646 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE2(rt_sigsuspend,compat_sigset_t __user *,unewset,compat_size_t,sigsetsize)4647 COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize)
4648 {
4649 	sigset_t newset;
4650 
4651 	/* XXX: Don't preclude handling different sized sigset_t's.  */
4652 	if (sigsetsize != sizeof(sigset_t))
4653 		return -EINVAL;
4654 
4655 	if (get_compat_sigset(&newset, unewset))
4656 		return -EFAULT;
4657 	return sigsuspend(&newset);
4658 }
4659 #endif
4660 
4661 #ifdef CONFIG_OLD_SIGSUSPEND
SYSCALL_DEFINE1(sigsuspend,old_sigset_t,mask)4662 SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask)
4663 {
4664 	sigset_t blocked;
4665 	siginitset(&blocked, mask);
4666 	return sigsuspend(&blocked);
4667 }
4668 #endif
4669 #ifdef CONFIG_OLD_SIGSUSPEND3
SYSCALL_DEFINE3(sigsuspend,int,unused1,int,unused2,old_sigset_t,mask)4670 SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask)
4671 {
4672 	sigset_t blocked;
4673 	siginitset(&blocked, mask);
4674 	return sigsuspend(&blocked);
4675 }
4676 #endif
4677 
arch_vma_name(struct vm_area_struct * vma)4678 __weak const char *arch_vma_name(struct vm_area_struct *vma)
4679 {
4680 	return NULL;
4681 }
4682 
siginfo_buildtime_checks(void)4683 static inline void siginfo_buildtime_checks(void)
4684 {
4685 	BUILD_BUG_ON(sizeof(struct siginfo) != SI_MAX_SIZE);
4686 
4687 	/* Verify the offsets in the two siginfos match */
4688 #define CHECK_OFFSET(field) \
4689 	BUILD_BUG_ON(offsetof(siginfo_t, field) != offsetof(kernel_siginfo_t, field))
4690 
4691 	/* kill */
4692 	CHECK_OFFSET(si_pid);
4693 	CHECK_OFFSET(si_uid);
4694 
4695 	/* timer */
4696 	CHECK_OFFSET(si_tid);
4697 	CHECK_OFFSET(si_overrun);
4698 	CHECK_OFFSET(si_value);
4699 
4700 	/* rt */
4701 	CHECK_OFFSET(si_pid);
4702 	CHECK_OFFSET(si_uid);
4703 	CHECK_OFFSET(si_value);
4704 
4705 	/* sigchld */
4706 	CHECK_OFFSET(si_pid);
4707 	CHECK_OFFSET(si_uid);
4708 	CHECK_OFFSET(si_status);
4709 	CHECK_OFFSET(si_utime);
4710 	CHECK_OFFSET(si_stime);
4711 
4712 	/* sigfault */
4713 	CHECK_OFFSET(si_addr);
4714 	CHECK_OFFSET(si_trapno);
4715 	CHECK_OFFSET(si_addr_lsb);
4716 	CHECK_OFFSET(si_lower);
4717 	CHECK_OFFSET(si_upper);
4718 	CHECK_OFFSET(si_pkey);
4719 	CHECK_OFFSET(si_perf_data);
4720 	CHECK_OFFSET(si_perf_type);
4721 	CHECK_OFFSET(si_perf_flags);
4722 
4723 	/* sigpoll */
4724 	CHECK_OFFSET(si_band);
4725 	CHECK_OFFSET(si_fd);
4726 
4727 	/* sigsys */
4728 	CHECK_OFFSET(si_call_addr);
4729 	CHECK_OFFSET(si_syscall);
4730 	CHECK_OFFSET(si_arch);
4731 #undef CHECK_OFFSET
4732 
4733 	/* usb asyncio */
4734 	BUILD_BUG_ON(offsetof(struct siginfo, si_pid) !=
4735 		     offsetof(struct siginfo, si_addr));
4736 	if (sizeof(int) == sizeof(void __user *)) {
4737 		BUILD_BUG_ON(sizeof_field(struct siginfo, si_pid) !=
4738 			     sizeof(void __user *));
4739 	} else {
4740 		BUILD_BUG_ON((sizeof_field(struct siginfo, si_pid) +
4741 			      sizeof_field(struct siginfo, si_uid)) !=
4742 			     sizeof(void __user *));
4743 		BUILD_BUG_ON(offsetofend(struct siginfo, si_pid) !=
4744 			     offsetof(struct siginfo, si_uid));
4745 	}
4746 #ifdef CONFIG_COMPAT
4747 	BUILD_BUG_ON(offsetof(struct compat_siginfo, si_pid) !=
4748 		     offsetof(struct compat_siginfo, si_addr));
4749 	BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) !=
4750 		     sizeof(compat_uptr_t));
4751 	BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) !=
4752 		     sizeof_field(struct siginfo, si_pid));
4753 #endif
4754 }
4755 
signals_init(void)4756 void __init signals_init(void)
4757 {
4758 	siginfo_buildtime_checks();
4759 
4760 	sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC | SLAB_ACCOUNT);
4761 }
4762 
4763 #ifdef CONFIG_KGDB_KDB
4764 #include <linux/kdb.h>
4765 /*
4766  * kdb_send_sig - Allows kdb to send signals without exposing
4767  * signal internals.  This function checks if the required locks are
4768  * available before calling the main signal code, to avoid kdb
4769  * deadlocks.
4770  */
kdb_send_sig(struct task_struct * t,int sig)4771 void kdb_send_sig(struct task_struct *t, int sig)
4772 {
4773 	static struct task_struct *kdb_prev_t;
4774 	int new_t, ret;
4775 	if (!spin_trylock(&t->sighand->siglock)) {
4776 		kdb_printf("Can't do kill command now.\n"
4777 			   "The sigmask lock is held somewhere else in "
4778 			   "kernel, try again later\n");
4779 		return;
4780 	}
4781 	new_t = kdb_prev_t != t;
4782 	kdb_prev_t = t;
4783 	if (!task_is_running(t) && new_t) {
4784 		spin_unlock(&t->sighand->siglock);
4785 		kdb_printf("Process is not RUNNING, sending a signal from "
4786 			   "kdb risks deadlock\n"
4787 			   "on the run queue locks. "
4788 			   "The signal has _not_ been sent.\n"
4789 			   "Reissue the kill command if you want to risk "
4790 			   "the deadlock.\n");
4791 		return;
4792 	}
4793 	ret = send_signal(sig, SEND_SIG_PRIV, t, PIDTYPE_PID);
4794 	spin_unlock(&t->sighand->siglock);
4795 	if (ret)
4796 		kdb_printf("Fail to deliver Signal %d to process %d.\n",
4797 			   sig, t->pid);
4798 	else
4799 		kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
4800 }
4801 #endif	/* CONFIG_KGDB_KDB */
4802