1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
4 *
5 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6 *
7 * Interactivity improvements by Mike Galbraith
8 * (C) 2007 Mike Galbraith <efault@gmx.de>
9 *
10 * Various enhancements by Dmitry Adamushko.
11 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
12 *
13 * Group scheduling enhancements by Srivatsa Vaddagiri
14 * Copyright IBM Corporation, 2007
15 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
16 *
17 * Scaled math optimizations by Thomas Gleixner
18 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
19 *
20 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
21 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
22 */
23 #include "sched.h"
24
25 #include <trace/hooks/sched.h>
26
27 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_stat_runtime);
28
29 /*
30 * Targeted preemption latency for CPU-bound tasks:
31 *
32 * NOTE: this latency value is not the same as the concept of
33 * 'timeslice length' - timeslices in CFS are of variable length
34 * and have no persistent notion like in traditional, time-slice
35 * based scheduling concepts.
36 *
37 * (to see the precise effective timeslice length of your workload,
38 * run vmstat and monitor the context-switches (cs) field)
39 *
40 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
41 */
42 unsigned int sysctl_sched_latency = 6000000ULL;
43 EXPORT_SYMBOL_GPL(sysctl_sched_latency);
44 static unsigned int normalized_sysctl_sched_latency = 6000000ULL;
45
46 /*
47 * The initial- and re-scaling of tunables is configurable
48 *
49 * Options are:
50 *
51 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
52 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
53 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
54 *
55 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
56 */
57 unsigned int sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG;
58
59 /*
60 * Minimal preemption granularity for CPU-bound tasks:
61 *
62 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
63 */
64 unsigned int sysctl_sched_min_granularity = 750000ULL;
65 EXPORT_SYMBOL_GPL(sysctl_sched_min_granularity);
66 static unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
67
68 /*
69 * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity
70 */
71 static unsigned int sched_nr_latency = 8;
72
73 /*
74 * After fork, child runs first. If set to 0 (default) then
75 * parent will (try to) run first.
76 */
77 unsigned int sysctl_sched_child_runs_first __read_mostly;
78
79 /*
80 * SCHED_OTHER wake-up granularity.
81 *
82 * This option delays the preemption effects of decoupled workloads
83 * and reduces their over-scheduling. Synchronous workloads will still
84 * have immediate wakeup/sleep latencies.
85 *
86 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
87 */
88 unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
89 static unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
90
91 const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
92
93 int sched_thermal_decay_shift;
setup_sched_thermal_decay_shift(char * str)94 static int __init setup_sched_thermal_decay_shift(char *str)
95 {
96 int _shift = 0;
97
98 if (kstrtoint(str, 0, &_shift))
99 pr_warn("Unable to set scheduler thermal pressure decay shift parameter\n");
100
101 sched_thermal_decay_shift = clamp(_shift, 0, 10);
102 return 1;
103 }
104 __setup("sched_thermal_decay_shift=", setup_sched_thermal_decay_shift);
105
106 #ifdef CONFIG_SMP
107 /*
108 * For asym packing, by default the lower numbered CPU has higher priority.
109 */
arch_asym_cpu_priority(int cpu)110 int __weak arch_asym_cpu_priority(int cpu)
111 {
112 return -cpu;
113 }
114
115 /*
116 * The margin used when comparing utilization with CPU capacity.
117 *
118 * (default: ~20%)
119 */
120 #define fits_capacity(cap, max) ((cap) * 1280 < (max) * 1024)
121
122 /*
123 * The margin used when comparing CPU capacities.
124 * is 'cap1' noticeably greater than 'cap2'
125 *
126 * (default: ~5%)
127 */
128 #define capacity_greater(cap1, cap2) ((cap1) * 1024 > (cap2) * 1078)
129 #endif
130
131 #ifdef CONFIG_CFS_BANDWIDTH
132 /*
133 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
134 * each time a cfs_rq requests quota.
135 *
136 * Note: in the case that the slice exceeds the runtime remaining (either due
137 * to consumption or the quota being specified to be smaller than the slice)
138 * we will always only issue the remaining available time.
139 *
140 * (default: 5 msec, units: microseconds)
141 */
142 unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
143 #endif
144
update_load_add(struct load_weight * lw,unsigned long inc)145 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
146 {
147 lw->weight += inc;
148 lw->inv_weight = 0;
149 }
150
update_load_sub(struct load_weight * lw,unsigned long dec)151 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
152 {
153 lw->weight -= dec;
154 lw->inv_weight = 0;
155 }
156
update_load_set(struct load_weight * lw,unsigned long w)157 static inline void update_load_set(struct load_weight *lw, unsigned long w)
158 {
159 lw->weight = w;
160 lw->inv_weight = 0;
161 }
162
163 /*
164 * Increase the granularity value when there are more CPUs,
165 * because with more CPUs the 'effective latency' as visible
166 * to users decreases. But the relationship is not linear,
167 * so pick a second-best guess by going with the log2 of the
168 * number of CPUs.
169 *
170 * This idea comes from the SD scheduler of Con Kolivas:
171 */
get_update_sysctl_factor(void)172 static unsigned int get_update_sysctl_factor(void)
173 {
174 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
175 unsigned int factor;
176
177 switch (sysctl_sched_tunable_scaling) {
178 case SCHED_TUNABLESCALING_NONE:
179 factor = 1;
180 break;
181 case SCHED_TUNABLESCALING_LINEAR:
182 factor = cpus;
183 break;
184 case SCHED_TUNABLESCALING_LOG:
185 default:
186 factor = 1 + ilog2(cpus);
187 break;
188 }
189
190 return factor;
191 }
192
update_sysctl(void)193 static void update_sysctl(void)
194 {
195 unsigned int factor = get_update_sysctl_factor();
196
197 #define SET_SYSCTL(name) \
198 (sysctl_##name = (factor) * normalized_sysctl_##name)
199 SET_SYSCTL(sched_min_granularity);
200 SET_SYSCTL(sched_latency);
201 SET_SYSCTL(sched_wakeup_granularity);
202 #undef SET_SYSCTL
203 }
204
sched_init_granularity(void)205 void __init sched_init_granularity(void)
206 {
207 update_sysctl();
208 }
209
210 #define WMULT_CONST (~0U)
211 #define WMULT_SHIFT 32
212
__update_inv_weight(struct load_weight * lw)213 static void __update_inv_weight(struct load_weight *lw)
214 {
215 unsigned long w;
216
217 if (likely(lw->inv_weight))
218 return;
219
220 w = scale_load_down(lw->weight);
221
222 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
223 lw->inv_weight = 1;
224 else if (unlikely(!w))
225 lw->inv_weight = WMULT_CONST;
226 else
227 lw->inv_weight = WMULT_CONST / w;
228 }
229
230 /*
231 * delta_exec * weight / lw.weight
232 * OR
233 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
234 *
235 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
236 * we're guaranteed shift stays positive because inv_weight is guaranteed to
237 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
238 *
239 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
240 * weight/lw.weight <= 1, and therefore our shift will also be positive.
241 */
__calc_delta(u64 delta_exec,unsigned long weight,struct load_weight * lw)242 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
243 {
244 u64 fact = scale_load_down(weight);
245 u32 fact_hi = (u32)(fact >> 32);
246 int shift = WMULT_SHIFT;
247 int fs;
248
249 __update_inv_weight(lw);
250
251 if (unlikely(fact_hi)) {
252 fs = fls(fact_hi);
253 shift -= fs;
254 fact >>= fs;
255 }
256
257 fact = mul_u32_u32(fact, lw->inv_weight);
258
259 fact_hi = (u32)(fact >> 32);
260 if (fact_hi) {
261 fs = fls(fact_hi);
262 shift -= fs;
263 fact >>= fs;
264 }
265
266 return mul_u64_u32_shr(delta_exec, fact, shift);
267 }
268
269
270 const struct sched_class fair_sched_class;
271
272 /**************************************************************
273 * CFS operations on generic schedulable entities:
274 */
275
276 #ifdef CONFIG_FAIR_GROUP_SCHED
277
278 /* Walk up scheduling entities hierarchy */
279 #define for_each_sched_entity(se) \
280 for (; se; se = se->parent)
281
cfs_rq_tg_path(struct cfs_rq * cfs_rq,char * path,int len)282 static inline void cfs_rq_tg_path(struct cfs_rq *cfs_rq, char *path, int len)
283 {
284 if (!path)
285 return;
286
287 if (cfs_rq && task_group_is_autogroup(cfs_rq->tg))
288 autogroup_path(cfs_rq->tg, path, len);
289 else if (cfs_rq && cfs_rq->tg->css.cgroup)
290 cgroup_path(cfs_rq->tg->css.cgroup, path, len);
291 else
292 strlcpy(path, "(null)", len);
293 }
294
list_add_leaf_cfs_rq(struct cfs_rq * cfs_rq)295 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
296 {
297 struct rq *rq = rq_of(cfs_rq);
298 int cpu = cpu_of(rq);
299
300 if (cfs_rq->on_list)
301 return rq->tmp_alone_branch == &rq->leaf_cfs_rq_list;
302
303 cfs_rq->on_list = 1;
304
305 /*
306 * Ensure we either appear before our parent (if already
307 * enqueued) or force our parent to appear after us when it is
308 * enqueued. The fact that we always enqueue bottom-up
309 * reduces this to two cases and a special case for the root
310 * cfs_rq. Furthermore, it also means that we will always reset
311 * tmp_alone_branch either when the branch is connected
312 * to a tree or when we reach the top of the tree
313 */
314 if (cfs_rq->tg->parent &&
315 cfs_rq->tg->parent->cfs_rq[cpu]->on_list) {
316 /*
317 * If parent is already on the list, we add the child
318 * just before. Thanks to circular linked property of
319 * the list, this means to put the child at the tail
320 * of the list that starts by parent.
321 */
322 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
323 &(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list));
324 /*
325 * The branch is now connected to its tree so we can
326 * reset tmp_alone_branch to the beginning of the
327 * list.
328 */
329 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
330 return true;
331 }
332
333 if (!cfs_rq->tg->parent) {
334 /*
335 * cfs rq without parent should be put
336 * at the tail of the list.
337 */
338 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
339 &rq->leaf_cfs_rq_list);
340 /*
341 * We have reach the top of a tree so we can reset
342 * tmp_alone_branch to the beginning of the list.
343 */
344 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
345 return true;
346 }
347
348 /*
349 * The parent has not already been added so we want to
350 * make sure that it will be put after us.
351 * tmp_alone_branch points to the begin of the branch
352 * where we will add parent.
353 */
354 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, rq->tmp_alone_branch);
355 /*
356 * update tmp_alone_branch to points to the new begin
357 * of the branch
358 */
359 rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list;
360 return false;
361 }
362
list_del_leaf_cfs_rq(struct cfs_rq * cfs_rq)363 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
364 {
365 if (cfs_rq->on_list) {
366 struct rq *rq = rq_of(cfs_rq);
367
368 /*
369 * With cfs_rq being unthrottled/throttled during an enqueue,
370 * it can happen the tmp_alone_branch points the a leaf that
371 * we finally want to del. In this case, tmp_alone_branch moves
372 * to the prev element but it will point to rq->leaf_cfs_rq_list
373 * at the end of the enqueue.
374 */
375 if (rq->tmp_alone_branch == &cfs_rq->leaf_cfs_rq_list)
376 rq->tmp_alone_branch = cfs_rq->leaf_cfs_rq_list.prev;
377
378 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
379 cfs_rq->on_list = 0;
380 }
381 }
382
assert_list_leaf_cfs_rq(struct rq * rq)383 static inline void assert_list_leaf_cfs_rq(struct rq *rq)
384 {
385 SCHED_WARN_ON(rq->tmp_alone_branch != &rq->leaf_cfs_rq_list);
386 }
387
388 /* Iterate thr' all leaf cfs_rq's on a runqueue */
389 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \
390 list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list, \
391 leaf_cfs_rq_list)
392
393 /* Do the two (enqueued) entities belong to the same group ? */
394 static inline struct cfs_rq *
is_same_group(struct sched_entity * se,struct sched_entity * pse)395 is_same_group(struct sched_entity *se, struct sched_entity *pse)
396 {
397 if (se->cfs_rq == pse->cfs_rq)
398 return se->cfs_rq;
399
400 return NULL;
401 }
402
parent_entity(struct sched_entity * se)403 static inline struct sched_entity *parent_entity(struct sched_entity *se)
404 {
405 return se->parent;
406 }
407
408 static void
find_matching_se(struct sched_entity ** se,struct sched_entity ** pse)409 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
410 {
411 int se_depth, pse_depth;
412
413 /*
414 * preemption test can be made between sibling entities who are in the
415 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
416 * both tasks until we find their ancestors who are siblings of common
417 * parent.
418 */
419
420 /* First walk up until both entities are at same depth */
421 se_depth = (*se)->depth;
422 pse_depth = (*pse)->depth;
423
424 while (se_depth > pse_depth) {
425 se_depth--;
426 *se = parent_entity(*se);
427 }
428
429 while (pse_depth > se_depth) {
430 pse_depth--;
431 *pse = parent_entity(*pse);
432 }
433
434 while (!is_same_group(*se, *pse)) {
435 *se = parent_entity(*se);
436 *pse = parent_entity(*pse);
437 }
438 }
439
tg_is_idle(struct task_group * tg)440 static int tg_is_idle(struct task_group *tg)
441 {
442 return tg->idle > 0;
443 }
444
cfs_rq_is_idle(struct cfs_rq * cfs_rq)445 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq)
446 {
447 return cfs_rq->idle > 0;
448 }
449
se_is_idle(struct sched_entity * se)450 static int se_is_idle(struct sched_entity *se)
451 {
452 if (entity_is_task(se))
453 return task_has_idle_policy(task_of(se));
454 return cfs_rq_is_idle(group_cfs_rq(se));
455 }
456
457 #else /* !CONFIG_FAIR_GROUP_SCHED */
458
459 #define for_each_sched_entity(se) \
460 for (; se; se = NULL)
461
cfs_rq_tg_path(struct cfs_rq * cfs_rq,char * path,int len)462 static inline void cfs_rq_tg_path(struct cfs_rq *cfs_rq, char *path, int len)
463 {
464 if (path)
465 strlcpy(path, "(null)", len);
466 }
467
list_add_leaf_cfs_rq(struct cfs_rq * cfs_rq)468 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
469 {
470 return true;
471 }
472
list_del_leaf_cfs_rq(struct cfs_rq * cfs_rq)473 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
474 {
475 }
476
assert_list_leaf_cfs_rq(struct rq * rq)477 static inline void assert_list_leaf_cfs_rq(struct rq *rq)
478 {
479 }
480
481 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \
482 for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos)
483
parent_entity(struct sched_entity * se)484 static inline struct sched_entity *parent_entity(struct sched_entity *se)
485 {
486 return NULL;
487 }
488
489 static inline void
find_matching_se(struct sched_entity ** se,struct sched_entity ** pse)490 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
491 {
492 }
493
tg_is_idle(struct task_group * tg)494 static inline int tg_is_idle(struct task_group *tg)
495 {
496 return 0;
497 }
498
cfs_rq_is_idle(struct cfs_rq * cfs_rq)499 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq)
500 {
501 return 0;
502 }
503
se_is_idle(struct sched_entity * se)504 static int se_is_idle(struct sched_entity *se)
505 {
506 return 0;
507 }
508
509 #endif /* CONFIG_FAIR_GROUP_SCHED */
510
511 static __always_inline
512 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
513
514 /**************************************************************
515 * Scheduling class tree data structure manipulation methods:
516 */
517
max_vruntime(u64 max_vruntime,u64 vruntime)518 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
519 {
520 s64 delta = (s64)(vruntime - max_vruntime);
521 if (delta > 0)
522 max_vruntime = vruntime;
523
524 return max_vruntime;
525 }
526
min_vruntime(u64 min_vruntime,u64 vruntime)527 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
528 {
529 s64 delta = (s64)(vruntime - min_vruntime);
530 if (delta < 0)
531 min_vruntime = vruntime;
532
533 return min_vruntime;
534 }
535
entity_before(struct sched_entity * a,struct sched_entity * b)536 static inline bool entity_before(struct sched_entity *a,
537 struct sched_entity *b)
538 {
539 return (s64)(a->vruntime - b->vruntime) < 0;
540 }
541
542 #define __node_2_se(node) \
543 rb_entry((node), struct sched_entity, run_node)
544
update_min_vruntime(struct cfs_rq * cfs_rq)545 static void update_min_vruntime(struct cfs_rq *cfs_rq)
546 {
547 struct sched_entity *curr = cfs_rq->curr;
548 struct rb_node *leftmost = rb_first_cached(&cfs_rq->tasks_timeline);
549
550 u64 vruntime = cfs_rq->min_vruntime;
551
552 if (curr) {
553 if (curr->on_rq)
554 vruntime = curr->vruntime;
555 else
556 curr = NULL;
557 }
558
559 if (leftmost) { /* non-empty tree */
560 struct sched_entity *se = __node_2_se(leftmost);
561
562 if (!curr)
563 vruntime = se->vruntime;
564 else
565 vruntime = min_vruntime(vruntime, se->vruntime);
566 }
567
568 /* ensure we never gain time by being placed backwards. */
569 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
570 #ifndef CONFIG_64BIT
571 smp_wmb();
572 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
573 #endif
574 }
575
__entity_less(struct rb_node * a,const struct rb_node * b)576 static inline bool __entity_less(struct rb_node *a, const struct rb_node *b)
577 {
578 return entity_before(__node_2_se(a), __node_2_se(b));
579 }
580
581 /*
582 * Enqueue an entity into the rb-tree:
583 */
__enqueue_entity(struct cfs_rq * cfs_rq,struct sched_entity * se)584 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
585 {
586 trace_android_rvh_enqueue_entity(cfs_rq, se);
587 rb_add_cached(&se->run_node, &cfs_rq->tasks_timeline, __entity_less);
588 }
589
__dequeue_entity(struct cfs_rq * cfs_rq,struct sched_entity * se)590 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
591 {
592 trace_android_rvh_dequeue_entity(cfs_rq, se);
593 rb_erase_cached(&se->run_node, &cfs_rq->tasks_timeline);
594 }
595
__pick_first_entity(struct cfs_rq * cfs_rq)596 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
597 {
598 struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline);
599
600 if (!left)
601 return NULL;
602
603 return __node_2_se(left);
604 }
605
__pick_next_entity(struct sched_entity * se)606 static struct sched_entity *__pick_next_entity(struct sched_entity *se)
607 {
608 struct rb_node *next = rb_next(&se->run_node);
609
610 if (!next)
611 return NULL;
612
613 return __node_2_se(next);
614 }
615
616 #ifdef CONFIG_SCHED_DEBUG
__pick_last_entity(struct cfs_rq * cfs_rq)617 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
618 {
619 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root);
620
621 if (!last)
622 return NULL;
623
624 return __node_2_se(last);
625 }
626
627 /**************************************************************
628 * Scheduling class statistics methods:
629 */
630
sched_update_scaling(void)631 int sched_update_scaling(void)
632 {
633 unsigned int factor = get_update_sysctl_factor();
634
635 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
636 sysctl_sched_min_granularity);
637
638 #define WRT_SYSCTL(name) \
639 (normalized_sysctl_##name = sysctl_##name / (factor))
640 WRT_SYSCTL(sched_min_granularity);
641 WRT_SYSCTL(sched_latency);
642 WRT_SYSCTL(sched_wakeup_granularity);
643 #undef WRT_SYSCTL
644
645 return 0;
646 }
647 #endif
648
649 /*
650 * delta /= w
651 */
calc_delta_fair(u64 delta,struct sched_entity * se)652 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
653 {
654 if (unlikely(se->load.weight != NICE_0_LOAD))
655 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
656
657 return delta;
658 }
659
660 /*
661 * The idea is to set a period in which each task runs once.
662 *
663 * When there are too many tasks (sched_nr_latency) we have to stretch
664 * this period because otherwise the slices get too small.
665 *
666 * p = (nr <= nl) ? l : l*nr/nl
667 */
__sched_period(unsigned long nr_running)668 static u64 __sched_period(unsigned long nr_running)
669 {
670 if (unlikely(nr_running > sched_nr_latency))
671 return nr_running * sysctl_sched_min_granularity;
672 else
673 return sysctl_sched_latency;
674 }
675
676 /*
677 * We calculate the wall-time slice from the period by taking a part
678 * proportional to the weight.
679 *
680 * s = p*P[w/rw]
681 */
sched_slice(struct cfs_rq * cfs_rq,struct sched_entity * se)682 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
683 {
684 unsigned int nr_running = cfs_rq->nr_running;
685 u64 slice;
686
687 if (sched_feat(ALT_PERIOD))
688 nr_running = rq_of(cfs_rq)->cfs.h_nr_running;
689
690 slice = __sched_period(nr_running + !se->on_rq);
691
692 for_each_sched_entity(se) {
693 struct load_weight *load;
694 struct load_weight lw;
695
696 cfs_rq = cfs_rq_of(se);
697 load = &cfs_rq->load;
698
699 if (unlikely(!se->on_rq)) {
700 lw = cfs_rq->load;
701
702 update_load_add(&lw, se->load.weight);
703 load = &lw;
704 }
705 slice = __calc_delta(slice, se->load.weight, load);
706 }
707
708 if (sched_feat(BASE_SLICE))
709 slice = max(slice, (u64)sysctl_sched_min_granularity);
710
711 return slice;
712 }
713
714 /*
715 * We calculate the vruntime slice of a to-be-inserted task.
716 *
717 * vs = s/w
718 */
sched_vslice(struct cfs_rq * cfs_rq,struct sched_entity * se)719 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
720 {
721 return calc_delta_fair(sched_slice(cfs_rq, se), se);
722 }
723
724 #include "pelt.h"
725 #ifdef CONFIG_SMP
726
727 static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
728 static unsigned long task_h_load(struct task_struct *p);
729 static unsigned long capacity_of(int cpu);
730
731 /* Give new sched_entity start runnable values to heavy its load in infant time */
init_entity_runnable_average(struct sched_entity * se)732 void init_entity_runnable_average(struct sched_entity *se)
733 {
734 struct sched_avg *sa = &se->avg;
735
736 memset(sa, 0, sizeof(*sa));
737
738 /*
739 * Tasks are initialized with full load to be seen as heavy tasks until
740 * they get a chance to stabilize to their real load level.
741 * Group entities are initialized with zero load to reflect the fact that
742 * nothing has been attached to the task group yet.
743 */
744 if (entity_is_task(se))
745 sa->load_avg = scale_load_down(se->load.weight);
746
747 /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
748 }
749
750 static void attach_entity_cfs_rq(struct sched_entity *se);
751
752 /*
753 * With new tasks being created, their initial util_avgs are extrapolated
754 * based on the cfs_rq's current util_avg:
755 *
756 * util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
757 *
758 * However, in many cases, the above util_avg does not give a desired
759 * value. Moreover, the sum of the util_avgs may be divergent, such
760 * as when the series is a harmonic series.
761 *
762 * To solve this problem, we also cap the util_avg of successive tasks to
763 * only 1/2 of the left utilization budget:
764 *
765 * util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n
766 *
767 * where n denotes the nth task and cpu_scale the CPU capacity.
768 *
769 * For example, for a CPU with 1024 of capacity, a simplest series from
770 * the beginning would be like:
771 *
772 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ...
773 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
774 *
775 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
776 * if util_avg > util_avg_cap.
777 */
post_init_entity_util_avg(struct task_struct * p)778 void post_init_entity_util_avg(struct task_struct *p)
779 {
780 struct sched_entity *se = &p->se;
781 struct cfs_rq *cfs_rq = cfs_rq_of(se);
782 struct sched_avg *sa = &se->avg;
783 long cpu_scale = arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq)));
784 long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2;
785
786 if (cap > 0) {
787 if (cfs_rq->avg.util_avg != 0) {
788 sa->util_avg = cfs_rq->avg.util_avg * se->load.weight;
789 sa->util_avg /= (cfs_rq->avg.load_avg + 1);
790
791 if (sa->util_avg > cap)
792 sa->util_avg = cap;
793 } else {
794 sa->util_avg = cap;
795 }
796 }
797
798 sa->runnable_avg = sa->util_avg;
799
800 if (p->sched_class != &fair_sched_class) {
801 /*
802 * For !fair tasks do:
803 *
804 update_cfs_rq_load_avg(now, cfs_rq);
805 attach_entity_load_avg(cfs_rq, se);
806 switched_from_fair(rq, p);
807 *
808 * such that the next switched_to_fair() has the
809 * expected state.
810 */
811 se->avg.last_update_time = cfs_rq_clock_pelt(cfs_rq);
812 return;
813 }
814
815 /* Hook before this se's util is attached to cfs_rq's util */
816 trace_android_rvh_post_init_entity_util_avg(se);
817 attach_entity_cfs_rq(se);
818 }
819
820 #else /* !CONFIG_SMP */
init_entity_runnable_average(struct sched_entity * se)821 void init_entity_runnable_average(struct sched_entity *se)
822 {
823 }
post_init_entity_util_avg(struct task_struct * p)824 void post_init_entity_util_avg(struct task_struct *p)
825 {
826 }
update_tg_load_avg(struct cfs_rq * cfs_rq)827 static void update_tg_load_avg(struct cfs_rq *cfs_rq)
828 {
829 }
830 #endif /* CONFIG_SMP */
831
832 /*
833 * Update the current task's runtime statistics.
834 */
update_curr(struct cfs_rq * cfs_rq)835 static void update_curr(struct cfs_rq *cfs_rq)
836 {
837 struct sched_entity *curr = cfs_rq->curr;
838 u64 now = rq_clock_task(rq_of(cfs_rq));
839 u64 delta_exec;
840
841 if (unlikely(!curr))
842 return;
843
844 delta_exec = now - curr->exec_start;
845 if (unlikely((s64)delta_exec <= 0))
846 return;
847
848 curr->exec_start = now;
849
850 if (schedstat_enabled()) {
851 struct sched_statistics *stats;
852
853 stats = __schedstats_from_se(curr);
854 __schedstat_set(stats->exec_max,
855 max(delta_exec, stats->exec_max));
856 }
857
858 curr->sum_exec_runtime += delta_exec;
859 schedstat_add(cfs_rq->exec_clock, delta_exec);
860
861 curr->vruntime += calc_delta_fair(delta_exec, curr);
862 update_min_vruntime(cfs_rq);
863
864 if (entity_is_task(curr)) {
865 struct task_struct *curtask = task_of(curr);
866
867 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
868 cgroup_account_cputime(curtask, delta_exec);
869 account_group_exec_runtime(curtask, delta_exec);
870 }
871
872 account_cfs_rq_runtime(cfs_rq, delta_exec);
873 }
874
update_curr_fair(struct rq * rq)875 static void update_curr_fair(struct rq *rq)
876 {
877 update_curr(cfs_rq_of(&rq->curr->se));
878 }
879
880 static inline void
update_stats_wait_start(struct cfs_rq * cfs_rq,struct sched_entity * se)881 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
882 {
883 u64 wait_start, prev_wait_start;
884 struct sched_statistics *stats;
885
886 if (!schedstat_enabled())
887 return;
888
889 stats = __schedstats_from_se(se);
890
891 wait_start = rq_clock(rq_of(cfs_rq));
892 prev_wait_start = schedstat_val(stats->wait_start);
893
894 if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) &&
895 likely(wait_start > prev_wait_start))
896 wait_start -= prev_wait_start;
897
898 __schedstat_set(stats->wait_start, wait_start);
899 }
900
901 static inline void
update_stats_wait_end(struct cfs_rq * cfs_rq,struct sched_entity * se)902 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
903 {
904 struct sched_statistics *stats;
905 struct task_struct *p = NULL;
906 u64 delta;
907
908 if (!schedstat_enabled())
909 return;
910
911 stats = __schedstats_from_se(se);
912
913 /*
914 * When the sched_schedstat changes from 0 to 1, some sched se
915 * maybe already in the runqueue, the se->statistics.wait_start
916 * will be 0.So it will let the delta wrong. We need to avoid this
917 * scenario.
918 */
919 if (unlikely(!schedstat_val(stats->wait_start)))
920 return;
921
922 delta = rq_clock(rq_of(cfs_rq)) - schedstat_val(stats->wait_start);
923
924 if (entity_is_task(se)) {
925 p = task_of(se);
926 if (task_on_rq_migrating(p)) {
927 /*
928 * Preserve migrating task's wait time so wait_start
929 * time stamp can be adjusted to accumulate wait time
930 * prior to migration.
931 */
932 __schedstat_set(stats->wait_start, delta);
933 return;
934 }
935 trace_sched_stat_wait(p, delta);
936 }
937
938 __schedstat_set(stats->wait_max,
939 max(schedstat_val(stats->wait_max), delta));
940 __schedstat_inc(stats->wait_count);
941 __schedstat_add(stats->wait_sum, delta);
942 __schedstat_set(stats->wait_start, 0);
943 }
944
945 static inline void
update_stats_enqueue_sleeper(struct cfs_rq * cfs_rq,struct sched_entity * se)946 update_stats_enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
947 {
948 struct sched_statistics *stats;
949 struct task_struct *tsk = NULL;
950 u64 sleep_start, block_start;
951
952 if (!schedstat_enabled())
953 return;
954
955 stats = __schedstats_from_se(se);
956
957 sleep_start = schedstat_val(stats->sleep_start);
958 block_start = schedstat_val(stats->block_start);
959
960 if (entity_is_task(se))
961 tsk = task_of(se);
962
963 if (sleep_start) {
964 u64 delta = rq_clock(rq_of(cfs_rq)) - sleep_start;
965
966 if ((s64)delta < 0)
967 delta = 0;
968
969 if (unlikely(delta > schedstat_val(stats->sleep_max)))
970 __schedstat_set(stats->sleep_max, delta);
971
972 __schedstat_set(stats->sleep_start, 0);
973 __schedstat_add(stats->sum_sleep_runtime, delta);
974
975 if (tsk) {
976 account_scheduler_latency(tsk, delta >> 10, 1);
977 trace_sched_stat_sleep(tsk, delta);
978 }
979 }
980 if (block_start) {
981 u64 delta = rq_clock(rq_of(cfs_rq)) - block_start;
982
983 if ((s64)delta < 0)
984 delta = 0;
985
986 if (unlikely(delta > schedstat_val(stats->block_max)))
987 __schedstat_set(stats->block_max, delta);
988
989 __schedstat_set(stats->block_start, 0);
990 __schedstat_add(stats->sum_sleep_runtime, delta);
991
992 if (tsk) {
993 if (tsk->in_iowait) {
994 __schedstat_add(stats->iowait_sum, delta);
995 __schedstat_inc(stats->iowait_count);
996 trace_sched_stat_iowait(tsk, delta);
997 }
998
999 trace_sched_stat_blocked(tsk, delta);
1000
1001 /*
1002 * Blocking time is in units of nanosecs, so shift by
1003 * 20 to get a milliseconds-range estimation of the
1004 * amount of time that the task spent sleeping:
1005 */
1006 if (unlikely(prof_on == SLEEP_PROFILING)) {
1007 profile_hits(SLEEP_PROFILING,
1008 (void *)get_wchan(tsk),
1009 delta >> 20);
1010 }
1011 account_scheduler_latency(tsk, delta >> 10, 0);
1012 }
1013 }
1014 }
1015
1016 /*
1017 * Task is being enqueued - update stats:
1018 */
1019 static inline void
update_stats_enqueue(struct cfs_rq * cfs_rq,struct sched_entity * se,int flags)1020 update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1021 {
1022 if (!schedstat_enabled())
1023 return;
1024
1025 /*
1026 * Are we enqueueing a waiting task? (for current tasks
1027 * a dequeue/enqueue event is a NOP)
1028 */
1029 if (se != cfs_rq->curr)
1030 update_stats_wait_start(cfs_rq, se);
1031
1032 if (flags & ENQUEUE_WAKEUP)
1033 update_stats_enqueue_sleeper(cfs_rq, se);
1034 }
1035
1036 static inline void
update_stats_dequeue(struct cfs_rq * cfs_rq,struct sched_entity * se,int flags)1037 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1038 {
1039
1040 if (!schedstat_enabled())
1041 return;
1042
1043 /*
1044 * Mark the end of the wait period if dequeueing a
1045 * waiting task:
1046 */
1047 if (se != cfs_rq->curr)
1048 update_stats_wait_end(cfs_rq, se);
1049
1050 if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
1051 struct task_struct *tsk = task_of(se);
1052 unsigned int state;
1053
1054 /* XXX racy against TTWU */
1055 state = READ_ONCE(tsk->__state);
1056 if (state & TASK_INTERRUPTIBLE)
1057 __schedstat_set(tsk->stats.sleep_start,
1058 rq_clock(rq_of(cfs_rq)));
1059 if (state & TASK_UNINTERRUPTIBLE)
1060 __schedstat_set(tsk->stats.block_start,
1061 rq_clock(rq_of(cfs_rq)));
1062 }
1063 }
1064
1065 /*
1066 * We are picking a new current task - update its stats:
1067 */
1068 static inline void
update_stats_curr_start(struct cfs_rq * cfs_rq,struct sched_entity * se)1069 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
1070 {
1071 /*
1072 * We are starting a new run period:
1073 */
1074 se->exec_start = rq_clock_task(rq_of(cfs_rq));
1075 }
1076
1077 /**************************************************
1078 * Scheduling class queueing methods:
1079 */
1080
1081 #ifdef CONFIG_NUMA_BALANCING
1082 /*
1083 * Approximate time to scan a full NUMA task in ms. The task scan period is
1084 * calculated based on the tasks virtual memory size and
1085 * numa_balancing_scan_size.
1086 */
1087 unsigned int sysctl_numa_balancing_scan_period_min = 1000;
1088 unsigned int sysctl_numa_balancing_scan_period_max = 60000;
1089
1090 /* Portion of address space to scan in MB */
1091 unsigned int sysctl_numa_balancing_scan_size = 256;
1092
1093 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
1094 unsigned int sysctl_numa_balancing_scan_delay = 1000;
1095
1096 struct numa_group {
1097 refcount_t refcount;
1098
1099 spinlock_t lock; /* nr_tasks, tasks */
1100 int nr_tasks;
1101 pid_t gid;
1102 int active_nodes;
1103
1104 struct rcu_head rcu;
1105 unsigned long total_faults;
1106 unsigned long max_faults_cpu;
1107 /*
1108 * Faults_cpu is used to decide whether memory should move
1109 * towards the CPU. As a consequence, these stats are weighted
1110 * more by CPU use than by memory faults.
1111 */
1112 unsigned long *faults_cpu;
1113 unsigned long faults[];
1114 };
1115
1116 /*
1117 * For functions that can be called in multiple contexts that permit reading
1118 * ->numa_group (see struct task_struct for locking rules).
1119 */
deref_task_numa_group(struct task_struct * p)1120 static struct numa_group *deref_task_numa_group(struct task_struct *p)
1121 {
1122 return rcu_dereference_check(p->numa_group, p == current ||
1123 (lockdep_is_held(__rq_lockp(task_rq(p))) && !READ_ONCE(p->on_cpu)));
1124 }
1125
deref_curr_numa_group(struct task_struct * p)1126 static struct numa_group *deref_curr_numa_group(struct task_struct *p)
1127 {
1128 return rcu_dereference_protected(p->numa_group, p == current);
1129 }
1130
1131 static inline unsigned long group_faults_priv(struct numa_group *ng);
1132 static inline unsigned long group_faults_shared(struct numa_group *ng);
1133
task_nr_scan_windows(struct task_struct * p)1134 static unsigned int task_nr_scan_windows(struct task_struct *p)
1135 {
1136 unsigned long rss = 0;
1137 unsigned long nr_scan_pages;
1138
1139 /*
1140 * Calculations based on RSS as non-present and empty pages are skipped
1141 * by the PTE scanner and NUMA hinting faults should be trapped based
1142 * on resident pages
1143 */
1144 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
1145 rss = get_mm_rss(p->mm);
1146 if (!rss)
1147 rss = nr_scan_pages;
1148
1149 rss = round_up(rss, nr_scan_pages);
1150 return rss / nr_scan_pages;
1151 }
1152
1153 /* For sanity's sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
1154 #define MAX_SCAN_WINDOW 2560
1155
task_scan_min(struct task_struct * p)1156 static unsigned int task_scan_min(struct task_struct *p)
1157 {
1158 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
1159 unsigned int scan, floor;
1160 unsigned int windows = 1;
1161
1162 if (scan_size < MAX_SCAN_WINDOW)
1163 windows = MAX_SCAN_WINDOW / scan_size;
1164 floor = 1000 / windows;
1165
1166 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
1167 return max_t(unsigned int, floor, scan);
1168 }
1169
task_scan_start(struct task_struct * p)1170 static unsigned int task_scan_start(struct task_struct *p)
1171 {
1172 unsigned long smin = task_scan_min(p);
1173 unsigned long period = smin;
1174 struct numa_group *ng;
1175
1176 /* Scale the maximum scan period with the amount of shared memory. */
1177 rcu_read_lock();
1178 ng = rcu_dereference(p->numa_group);
1179 if (ng) {
1180 unsigned long shared = group_faults_shared(ng);
1181 unsigned long private = group_faults_priv(ng);
1182
1183 period *= refcount_read(&ng->refcount);
1184 period *= shared + 1;
1185 period /= private + shared + 1;
1186 }
1187 rcu_read_unlock();
1188
1189 return max(smin, period);
1190 }
1191
task_scan_max(struct task_struct * p)1192 static unsigned int task_scan_max(struct task_struct *p)
1193 {
1194 unsigned long smin = task_scan_min(p);
1195 unsigned long smax;
1196 struct numa_group *ng;
1197
1198 /* Watch for min being lower than max due to floor calculations */
1199 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
1200
1201 /* Scale the maximum scan period with the amount of shared memory. */
1202 ng = deref_curr_numa_group(p);
1203 if (ng) {
1204 unsigned long shared = group_faults_shared(ng);
1205 unsigned long private = group_faults_priv(ng);
1206 unsigned long period = smax;
1207
1208 period *= refcount_read(&ng->refcount);
1209 period *= shared + 1;
1210 period /= private + shared + 1;
1211
1212 smax = max(smax, period);
1213 }
1214
1215 return max(smin, smax);
1216 }
1217
account_numa_enqueue(struct rq * rq,struct task_struct * p)1218 static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1219 {
1220 rq->nr_numa_running += (p->numa_preferred_nid != NUMA_NO_NODE);
1221 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
1222 }
1223
account_numa_dequeue(struct rq * rq,struct task_struct * p)1224 static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1225 {
1226 rq->nr_numa_running -= (p->numa_preferred_nid != NUMA_NO_NODE);
1227 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
1228 }
1229
1230 /* Shared or private faults. */
1231 #define NR_NUMA_HINT_FAULT_TYPES 2
1232
1233 /* Memory and CPU locality */
1234 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1235
1236 /* Averaged statistics, and temporary buffers. */
1237 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1238
task_numa_group_id(struct task_struct * p)1239 pid_t task_numa_group_id(struct task_struct *p)
1240 {
1241 struct numa_group *ng;
1242 pid_t gid = 0;
1243
1244 rcu_read_lock();
1245 ng = rcu_dereference(p->numa_group);
1246 if (ng)
1247 gid = ng->gid;
1248 rcu_read_unlock();
1249
1250 return gid;
1251 }
1252
1253 /*
1254 * The averaged statistics, shared & private, memory & CPU,
1255 * occupy the first half of the array. The second half of the
1256 * array is for current counters, which are averaged into the
1257 * first set by task_numa_placement.
1258 */
task_faults_idx(enum numa_faults_stats s,int nid,int priv)1259 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
1260 {
1261 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
1262 }
1263
task_faults(struct task_struct * p,int nid)1264 static inline unsigned long task_faults(struct task_struct *p, int nid)
1265 {
1266 if (!p->numa_faults)
1267 return 0;
1268
1269 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1270 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
1271 }
1272
group_faults(struct task_struct * p,int nid)1273 static inline unsigned long group_faults(struct task_struct *p, int nid)
1274 {
1275 struct numa_group *ng = deref_task_numa_group(p);
1276
1277 if (!ng)
1278 return 0;
1279
1280 return ng->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1281 ng->faults[task_faults_idx(NUMA_MEM, nid, 1)];
1282 }
1283
group_faults_cpu(struct numa_group * group,int nid)1284 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
1285 {
1286 return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
1287 group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
1288 }
1289
group_faults_priv(struct numa_group * ng)1290 static inline unsigned long group_faults_priv(struct numa_group *ng)
1291 {
1292 unsigned long faults = 0;
1293 int node;
1294
1295 for_each_online_node(node) {
1296 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
1297 }
1298
1299 return faults;
1300 }
1301
group_faults_shared(struct numa_group * ng)1302 static inline unsigned long group_faults_shared(struct numa_group *ng)
1303 {
1304 unsigned long faults = 0;
1305 int node;
1306
1307 for_each_online_node(node) {
1308 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)];
1309 }
1310
1311 return faults;
1312 }
1313
1314 /*
1315 * A node triggering more than 1/3 as many NUMA faults as the maximum is
1316 * considered part of a numa group's pseudo-interleaving set. Migrations
1317 * between these nodes are slowed down, to allow things to settle down.
1318 */
1319 #define ACTIVE_NODE_FRACTION 3
1320
numa_is_active_node(int nid,struct numa_group * ng)1321 static bool numa_is_active_node(int nid, struct numa_group *ng)
1322 {
1323 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1324 }
1325
1326 /* Handle placement on systems where not all nodes are directly connected. */
score_nearby_nodes(struct task_struct * p,int nid,int maxdist,bool task)1327 static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
1328 int maxdist, bool task)
1329 {
1330 unsigned long score = 0;
1331 int node;
1332
1333 /*
1334 * All nodes are directly connected, and the same distance
1335 * from each other. No need for fancy placement algorithms.
1336 */
1337 if (sched_numa_topology_type == NUMA_DIRECT)
1338 return 0;
1339
1340 /*
1341 * This code is called for each node, introducing N^2 complexity,
1342 * which should be ok given the number of nodes rarely exceeds 8.
1343 */
1344 for_each_online_node(node) {
1345 unsigned long faults;
1346 int dist = node_distance(nid, node);
1347
1348 /*
1349 * The furthest away nodes in the system are not interesting
1350 * for placement; nid was already counted.
1351 */
1352 if (dist == sched_max_numa_distance || node == nid)
1353 continue;
1354
1355 /*
1356 * On systems with a backplane NUMA topology, compare groups
1357 * of nodes, and move tasks towards the group with the most
1358 * memory accesses. When comparing two nodes at distance
1359 * "hoplimit", only nodes closer by than "hoplimit" are part
1360 * of each group. Skip other nodes.
1361 */
1362 if (sched_numa_topology_type == NUMA_BACKPLANE &&
1363 dist >= maxdist)
1364 continue;
1365
1366 /* Add up the faults from nearby nodes. */
1367 if (task)
1368 faults = task_faults(p, node);
1369 else
1370 faults = group_faults(p, node);
1371
1372 /*
1373 * On systems with a glueless mesh NUMA topology, there are
1374 * no fixed "groups of nodes". Instead, nodes that are not
1375 * directly connected bounce traffic through intermediate
1376 * nodes; a numa_group can occupy any set of nodes.
1377 * The further away a node is, the less the faults count.
1378 * This seems to result in good task placement.
1379 */
1380 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1381 faults *= (sched_max_numa_distance - dist);
1382 faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
1383 }
1384
1385 score += faults;
1386 }
1387
1388 return score;
1389 }
1390
1391 /*
1392 * These return the fraction of accesses done by a particular task, or
1393 * task group, on a particular numa node. The group weight is given a
1394 * larger multiplier, in order to group tasks together that are almost
1395 * evenly spread out between numa nodes.
1396 */
task_weight(struct task_struct * p,int nid,int dist)1397 static inline unsigned long task_weight(struct task_struct *p, int nid,
1398 int dist)
1399 {
1400 unsigned long faults, total_faults;
1401
1402 if (!p->numa_faults)
1403 return 0;
1404
1405 total_faults = p->total_numa_faults;
1406
1407 if (!total_faults)
1408 return 0;
1409
1410 faults = task_faults(p, nid);
1411 faults += score_nearby_nodes(p, nid, dist, true);
1412
1413 return 1000 * faults / total_faults;
1414 }
1415
group_weight(struct task_struct * p,int nid,int dist)1416 static inline unsigned long group_weight(struct task_struct *p, int nid,
1417 int dist)
1418 {
1419 struct numa_group *ng = deref_task_numa_group(p);
1420 unsigned long faults, total_faults;
1421
1422 if (!ng)
1423 return 0;
1424
1425 total_faults = ng->total_faults;
1426
1427 if (!total_faults)
1428 return 0;
1429
1430 faults = group_faults(p, nid);
1431 faults += score_nearby_nodes(p, nid, dist, false);
1432
1433 return 1000 * faults / total_faults;
1434 }
1435
should_numa_migrate_memory(struct task_struct * p,struct page * page,int src_nid,int dst_cpu)1436 bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1437 int src_nid, int dst_cpu)
1438 {
1439 struct numa_group *ng = deref_curr_numa_group(p);
1440 int dst_nid = cpu_to_node(dst_cpu);
1441 int last_cpupid, this_cpupid;
1442
1443 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1444 last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1445
1446 /*
1447 * Allow first faults or private faults to migrate immediately early in
1448 * the lifetime of a task. The magic number 4 is based on waiting for
1449 * two full passes of the "multi-stage node selection" test that is
1450 * executed below.
1451 */
1452 if ((p->numa_preferred_nid == NUMA_NO_NODE || p->numa_scan_seq <= 4) &&
1453 (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid)))
1454 return true;
1455
1456 /*
1457 * Multi-stage node selection is used in conjunction with a periodic
1458 * migration fault to build a temporal task<->page relation. By using
1459 * a two-stage filter we remove short/unlikely relations.
1460 *
1461 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1462 * a task's usage of a particular page (n_p) per total usage of this
1463 * page (n_t) (in a given time-span) to a probability.
1464 *
1465 * Our periodic faults will sample this probability and getting the
1466 * same result twice in a row, given these samples are fully
1467 * independent, is then given by P(n)^2, provided our sample period
1468 * is sufficiently short compared to the usage pattern.
1469 *
1470 * This quadric squishes small probabilities, making it less likely we
1471 * act on an unlikely task<->page relation.
1472 */
1473 if (!cpupid_pid_unset(last_cpupid) &&
1474 cpupid_to_nid(last_cpupid) != dst_nid)
1475 return false;
1476
1477 /* Always allow migrate on private faults */
1478 if (cpupid_match_pid(p, last_cpupid))
1479 return true;
1480
1481 /* A shared fault, but p->numa_group has not been set up yet. */
1482 if (!ng)
1483 return true;
1484
1485 /*
1486 * Destination node is much more heavily used than the source
1487 * node? Allow migration.
1488 */
1489 if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
1490 ACTIVE_NODE_FRACTION)
1491 return true;
1492
1493 /*
1494 * Distribute memory according to CPU & memory use on each node,
1495 * with 3/4 hysteresis to avoid unnecessary memory migrations:
1496 *
1497 * faults_cpu(dst) 3 faults_cpu(src)
1498 * --------------- * - > ---------------
1499 * faults_mem(dst) 4 faults_mem(src)
1500 */
1501 return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
1502 group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
1503 }
1504
1505 /*
1506 * 'numa_type' describes the node at the moment of load balancing.
1507 */
1508 enum numa_type {
1509 /* The node has spare capacity that can be used to run more tasks. */
1510 node_has_spare = 0,
1511 /*
1512 * The node is fully used and the tasks don't compete for more CPU
1513 * cycles. Nevertheless, some tasks might wait before running.
1514 */
1515 node_fully_busy,
1516 /*
1517 * The node is overloaded and can't provide expected CPU cycles to all
1518 * tasks.
1519 */
1520 node_overloaded
1521 };
1522
1523 /* Cached statistics for all CPUs within a node */
1524 struct numa_stats {
1525 unsigned long load;
1526 unsigned long runnable;
1527 unsigned long util;
1528 /* Total compute capacity of CPUs on a node */
1529 unsigned long compute_capacity;
1530 unsigned int nr_running;
1531 unsigned int weight;
1532 enum numa_type node_type;
1533 int idle_cpu;
1534 };
1535
is_core_idle(int cpu)1536 static inline bool is_core_idle(int cpu)
1537 {
1538 #ifdef CONFIG_SCHED_SMT
1539 int sibling;
1540
1541 for_each_cpu(sibling, cpu_smt_mask(cpu)) {
1542 if (cpu == sibling)
1543 continue;
1544
1545 if (!idle_cpu(sibling))
1546 return false;
1547 }
1548 #endif
1549
1550 return true;
1551 }
1552
1553 struct task_numa_env {
1554 struct task_struct *p;
1555
1556 int src_cpu, src_nid;
1557 int dst_cpu, dst_nid;
1558
1559 struct numa_stats src_stats, dst_stats;
1560
1561 int imbalance_pct;
1562 int dist;
1563
1564 struct task_struct *best_task;
1565 long best_imp;
1566 int best_cpu;
1567 };
1568
1569 static unsigned long cpu_load(struct rq *rq);
1570 static unsigned long cpu_runnable(struct rq *rq);
1571 static unsigned long cpu_util(int cpu);
1572 static inline long adjust_numa_imbalance(int imbalance,
1573 int dst_running, int dst_weight);
1574
1575 static inline enum
numa_classify(unsigned int imbalance_pct,struct numa_stats * ns)1576 numa_type numa_classify(unsigned int imbalance_pct,
1577 struct numa_stats *ns)
1578 {
1579 if ((ns->nr_running > ns->weight) &&
1580 (((ns->compute_capacity * 100) < (ns->util * imbalance_pct)) ||
1581 ((ns->compute_capacity * imbalance_pct) < (ns->runnable * 100))))
1582 return node_overloaded;
1583
1584 if ((ns->nr_running < ns->weight) ||
1585 (((ns->compute_capacity * 100) > (ns->util * imbalance_pct)) &&
1586 ((ns->compute_capacity * imbalance_pct) > (ns->runnable * 100))))
1587 return node_has_spare;
1588
1589 return node_fully_busy;
1590 }
1591
1592 #ifdef CONFIG_SCHED_SMT
1593 /* Forward declarations of select_idle_sibling helpers */
1594 static inline bool test_idle_cores(int cpu, bool def);
numa_idle_core(int idle_core,int cpu)1595 static inline int numa_idle_core(int idle_core, int cpu)
1596 {
1597 if (!static_branch_likely(&sched_smt_present) ||
1598 idle_core >= 0 || !test_idle_cores(cpu, false))
1599 return idle_core;
1600
1601 /*
1602 * Prefer cores instead of packing HT siblings
1603 * and triggering future load balancing.
1604 */
1605 if (is_core_idle(cpu))
1606 idle_core = cpu;
1607
1608 return idle_core;
1609 }
1610 #else
numa_idle_core(int idle_core,int cpu)1611 static inline int numa_idle_core(int idle_core, int cpu)
1612 {
1613 return idle_core;
1614 }
1615 #endif
1616
1617 /*
1618 * Gather all necessary information to make NUMA balancing placement
1619 * decisions that are compatible with standard load balancer. This
1620 * borrows code and logic from update_sg_lb_stats but sharing a
1621 * common implementation is impractical.
1622 */
update_numa_stats(struct task_numa_env * env,struct numa_stats * ns,int nid,bool find_idle)1623 static void update_numa_stats(struct task_numa_env *env,
1624 struct numa_stats *ns, int nid,
1625 bool find_idle)
1626 {
1627 int cpu, idle_core = -1;
1628
1629 memset(ns, 0, sizeof(*ns));
1630 ns->idle_cpu = -1;
1631
1632 rcu_read_lock();
1633 for_each_cpu(cpu, cpumask_of_node(nid)) {
1634 struct rq *rq = cpu_rq(cpu);
1635
1636 ns->load += cpu_load(rq);
1637 ns->runnable += cpu_runnable(rq);
1638 ns->util += cpu_util(cpu);
1639 ns->nr_running += rq->cfs.h_nr_running;
1640 ns->compute_capacity += capacity_of(cpu);
1641
1642 if (find_idle && !rq->nr_running && idle_cpu(cpu)) {
1643 if (READ_ONCE(rq->numa_migrate_on) ||
1644 !cpumask_test_cpu(cpu, env->p->cpus_ptr))
1645 continue;
1646
1647 if (ns->idle_cpu == -1)
1648 ns->idle_cpu = cpu;
1649
1650 idle_core = numa_idle_core(idle_core, cpu);
1651 }
1652 }
1653 rcu_read_unlock();
1654
1655 ns->weight = cpumask_weight(cpumask_of_node(nid));
1656
1657 ns->node_type = numa_classify(env->imbalance_pct, ns);
1658
1659 if (idle_core >= 0)
1660 ns->idle_cpu = idle_core;
1661 }
1662
task_numa_assign(struct task_numa_env * env,struct task_struct * p,long imp)1663 static void task_numa_assign(struct task_numa_env *env,
1664 struct task_struct *p, long imp)
1665 {
1666 struct rq *rq = cpu_rq(env->dst_cpu);
1667
1668 /* Check if run-queue part of active NUMA balance. */
1669 if (env->best_cpu != env->dst_cpu && xchg(&rq->numa_migrate_on, 1)) {
1670 int cpu;
1671 int start = env->dst_cpu;
1672
1673 /* Find alternative idle CPU. */
1674 for_each_cpu_wrap(cpu, cpumask_of_node(env->dst_nid), start) {
1675 if (cpu == env->best_cpu || !idle_cpu(cpu) ||
1676 !cpumask_test_cpu(cpu, env->p->cpus_ptr)) {
1677 continue;
1678 }
1679
1680 env->dst_cpu = cpu;
1681 rq = cpu_rq(env->dst_cpu);
1682 if (!xchg(&rq->numa_migrate_on, 1))
1683 goto assign;
1684 }
1685
1686 /* Failed to find an alternative idle CPU */
1687 return;
1688 }
1689
1690 assign:
1691 /*
1692 * Clear previous best_cpu/rq numa-migrate flag, since task now
1693 * found a better CPU to move/swap.
1694 */
1695 if (env->best_cpu != -1 && env->best_cpu != env->dst_cpu) {
1696 rq = cpu_rq(env->best_cpu);
1697 WRITE_ONCE(rq->numa_migrate_on, 0);
1698 }
1699
1700 if (env->best_task)
1701 put_task_struct(env->best_task);
1702 if (p)
1703 get_task_struct(p);
1704
1705 env->best_task = p;
1706 env->best_imp = imp;
1707 env->best_cpu = env->dst_cpu;
1708 }
1709
load_too_imbalanced(long src_load,long dst_load,struct task_numa_env * env)1710 static bool load_too_imbalanced(long src_load, long dst_load,
1711 struct task_numa_env *env)
1712 {
1713 long imb, old_imb;
1714 long orig_src_load, orig_dst_load;
1715 long src_capacity, dst_capacity;
1716
1717 /*
1718 * The load is corrected for the CPU capacity available on each node.
1719 *
1720 * src_load dst_load
1721 * ------------ vs ---------
1722 * src_capacity dst_capacity
1723 */
1724 src_capacity = env->src_stats.compute_capacity;
1725 dst_capacity = env->dst_stats.compute_capacity;
1726
1727 imb = abs(dst_load * src_capacity - src_load * dst_capacity);
1728
1729 orig_src_load = env->src_stats.load;
1730 orig_dst_load = env->dst_stats.load;
1731
1732 old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity);
1733
1734 /* Would this change make things worse? */
1735 return (imb > old_imb);
1736 }
1737
1738 /*
1739 * Maximum NUMA importance can be 1998 (2*999);
1740 * SMALLIMP @ 30 would be close to 1998/64.
1741 * Used to deter task migration.
1742 */
1743 #define SMALLIMP 30
1744
1745 /*
1746 * This checks if the overall compute and NUMA accesses of the system would
1747 * be improved if the source tasks was migrated to the target dst_cpu taking
1748 * into account that it might be best if task running on the dst_cpu should
1749 * be exchanged with the source task
1750 */
task_numa_compare(struct task_numa_env * env,long taskimp,long groupimp,bool maymove)1751 static bool task_numa_compare(struct task_numa_env *env,
1752 long taskimp, long groupimp, bool maymove)
1753 {
1754 struct numa_group *cur_ng, *p_ng = deref_curr_numa_group(env->p);
1755 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1756 long imp = p_ng ? groupimp : taskimp;
1757 struct task_struct *cur;
1758 long src_load, dst_load;
1759 int dist = env->dist;
1760 long moveimp = imp;
1761 long load;
1762 bool stopsearch = false;
1763
1764 if (READ_ONCE(dst_rq->numa_migrate_on))
1765 return false;
1766
1767 rcu_read_lock();
1768 cur = rcu_dereference(dst_rq->curr);
1769 if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
1770 cur = NULL;
1771
1772 /*
1773 * Because we have preemption enabled we can get migrated around and
1774 * end try selecting ourselves (current == env->p) as a swap candidate.
1775 */
1776 if (cur == env->p) {
1777 stopsearch = true;
1778 goto unlock;
1779 }
1780
1781 if (!cur) {
1782 if (maymove && moveimp >= env->best_imp)
1783 goto assign;
1784 else
1785 goto unlock;
1786 }
1787
1788 /* Skip this swap candidate if cannot move to the source cpu. */
1789 if (!cpumask_test_cpu(env->src_cpu, cur->cpus_ptr))
1790 goto unlock;
1791
1792 /*
1793 * Skip this swap candidate if it is not moving to its preferred
1794 * node and the best task is.
1795 */
1796 if (env->best_task &&
1797 env->best_task->numa_preferred_nid == env->src_nid &&
1798 cur->numa_preferred_nid != env->src_nid) {
1799 goto unlock;
1800 }
1801
1802 /*
1803 * "imp" is the fault differential for the source task between the
1804 * source and destination node. Calculate the total differential for
1805 * the source task and potential destination task. The more negative
1806 * the value is, the more remote accesses that would be expected to
1807 * be incurred if the tasks were swapped.
1808 *
1809 * If dst and source tasks are in the same NUMA group, or not
1810 * in any group then look only at task weights.
1811 */
1812 cur_ng = rcu_dereference(cur->numa_group);
1813 if (cur_ng == p_ng) {
1814 imp = taskimp + task_weight(cur, env->src_nid, dist) -
1815 task_weight(cur, env->dst_nid, dist);
1816 /*
1817 * Add some hysteresis to prevent swapping the
1818 * tasks within a group over tiny differences.
1819 */
1820 if (cur_ng)
1821 imp -= imp / 16;
1822 } else {
1823 /*
1824 * Compare the group weights. If a task is all by itself
1825 * (not part of a group), use the task weight instead.
1826 */
1827 if (cur_ng && p_ng)
1828 imp += group_weight(cur, env->src_nid, dist) -
1829 group_weight(cur, env->dst_nid, dist);
1830 else
1831 imp += task_weight(cur, env->src_nid, dist) -
1832 task_weight(cur, env->dst_nid, dist);
1833 }
1834
1835 /* Discourage picking a task already on its preferred node */
1836 if (cur->numa_preferred_nid == env->dst_nid)
1837 imp -= imp / 16;
1838
1839 /*
1840 * Encourage picking a task that moves to its preferred node.
1841 * This potentially makes imp larger than it's maximum of
1842 * 1998 (see SMALLIMP and task_weight for why) but in this
1843 * case, it does not matter.
1844 */
1845 if (cur->numa_preferred_nid == env->src_nid)
1846 imp += imp / 8;
1847
1848 if (maymove && moveimp > imp && moveimp > env->best_imp) {
1849 imp = moveimp;
1850 cur = NULL;
1851 goto assign;
1852 }
1853
1854 /*
1855 * Prefer swapping with a task moving to its preferred node over a
1856 * task that is not.
1857 */
1858 if (env->best_task && cur->numa_preferred_nid == env->src_nid &&
1859 env->best_task->numa_preferred_nid != env->src_nid) {
1860 goto assign;
1861 }
1862
1863 /*
1864 * If the NUMA importance is less than SMALLIMP,
1865 * task migration might only result in ping pong
1866 * of tasks and also hurt performance due to cache
1867 * misses.
1868 */
1869 if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2)
1870 goto unlock;
1871
1872 /*
1873 * In the overloaded case, try and keep the load balanced.
1874 */
1875 load = task_h_load(env->p) - task_h_load(cur);
1876 if (!load)
1877 goto assign;
1878
1879 dst_load = env->dst_stats.load + load;
1880 src_load = env->src_stats.load - load;
1881
1882 if (load_too_imbalanced(src_load, dst_load, env))
1883 goto unlock;
1884
1885 assign:
1886 /* Evaluate an idle CPU for a task numa move. */
1887 if (!cur) {
1888 int cpu = env->dst_stats.idle_cpu;
1889
1890 /* Nothing cached so current CPU went idle since the search. */
1891 if (cpu < 0)
1892 cpu = env->dst_cpu;
1893
1894 /*
1895 * If the CPU is no longer truly idle and the previous best CPU
1896 * is, keep using it.
1897 */
1898 if (!idle_cpu(cpu) && env->best_cpu >= 0 &&
1899 idle_cpu(env->best_cpu)) {
1900 cpu = env->best_cpu;
1901 }
1902
1903 env->dst_cpu = cpu;
1904 }
1905
1906 task_numa_assign(env, cur, imp);
1907
1908 /*
1909 * If a move to idle is allowed because there is capacity or load
1910 * balance improves then stop the search. While a better swap
1911 * candidate may exist, a search is not free.
1912 */
1913 if (maymove && !cur && env->best_cpu >= 0 && idle_cpu(env->best_cpu))
1914 stopsearch = true;
1915
1916 /*
1917 * If a swap candidate must be identified and the current best task
1918 * moves its preferred node then stop the search.
1919 */
1920 if (!maymove && env->best_task &&
1921 env->best_task->numa_preferred_nid == env->src_nid) {
1922 stopsearch = true;
1923 }
1924 unlock:
1925 rcu_read_unlock();
1926
1927 return stopsearch;
1928 }
1929
task_numa_find_cpu(struct task_numa_env * env,long taskimp,long groupimp)1930 static void task_numa_find_cpu(struct task_numa_env *env,
1931 long taskimp, long groupimp)
1932 {
1933 bool maymove = false;
1934 int cpu;
1935
1936 /*
1937 * If dst node has spare capacity, then check if there is an
1938 * imbalance that would be overruled by the load balancer.
1939 */
1940 if (env->dst_stats.node_type == node_has_spare) {
1941 unsigned int imbalance;
1942 int src_running, dst_running;
1943
1944 /*
1945 * Would movement cause an imbalance? Note that if src has
1946 * more running tasks that the imbalance is ignored as the
1947 * move improves the imbalance from the perspective of the
1948 * CPU load balancer.
1949 * */
1950 src_running = env->src_stats.nr_running - 1;
1951 dst_running = env->dst_stats.nr_running + 1;
1952 imbalance = max(0, dst_running - src_running);
1953 imbalance = adjust_numa_imbalance(imbalance, dst_running,
1954 env->dst_stats.weight);
1955
1956 /* Use idle CPU if there is no imbalance */
1957 if (!imbalance) {
1958 maymove = true;
1959 if (env->dst_stats.idle_cpu >= 0) {
1960 env->dst_cpu = env->dst_stats.idle_cpu;
1961 task_numa_assign(env, NULL, 0);
1962 return;
1963 }
1964 }
1965 } else {
1966 long src_load, dst_load, load;
1967 /*
1968 * If the improvement from just moving env->p direction is better
1969 * than swapping tasks around, check if a move is possible.
1970 */
1971 load = task_h_load(env->p);
1972 dst_load = env->dst_stats.load + load;
1973 src_load = env->src_stats.load - load;
1974 maymove = !load_too_imbalanced(src_load, dst_load, env);
1975 }
1976
1977 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1978 /* Skip this CPU if the source task cannot migrate */
1979 if (!cpumask_test_cpu(cpu, env->p->cpus_ptr))
1980 continue;
1981
1982 env->dst_cpu = cpu;
1983 if (task_numa_compare(env, taskimp, groupimp, maymove))
1984 break;
1985 }
1986 }
1987
task_numa_migrate(struct task_struct * p)1988 static int task_numa_migrate(struct task_struct *p)
1989 {
1990 struct task_numa_env env = {
1991 .p = p,
1992
1993 .src_cpu = task_cpu(p),
1994 .src_nid = task_node(p),
1995
1996 .imbalance_pct = 112,
1997
1998 .best_task = NULL,
1999 .best_imp = 0,
2000 .best_cpu = -1,
2001 };
2002 unsigned long taskweight, groupweight;
2003 struct sched_domain *sd;
2004 long taskimp, groupimp;
2005 struct numa_group *ng;
2006 struct rq *best_rq;
2007 int nid, ret, dist;
2008
2009 /*
2010 * Pick the lowest SD_NUMA domain, as that would have the smallest
2011 * imbalance and would be the first to start moving tasks about.
2012 *
2013 * And we want to avoid any moving of tasks about, as that would create
2014 * random movement of tasks -- counter the numa conditions we're trying
2015 * to satisfy here.
2016 */
2017 rcu_read_lock();
2018 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
2019 if (sd)
2020 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
2021 rcu_read_unlock();
2022
2023 /*
2024 * Cpusets can break the scheduler domain tree into smaller
2025 * balance domains, some of which do not cross NUMA boundaries.
2026 * Tasks that are "trapped" in such domains cannot be migrated
2027 * elsewhere, so there is no point in (re)trying.
2028 */
2029 if (unlikely(!sd)) {
2030 sched_setnuma(p, task_node(p));
2031 return -EINVAL;
2032 }
2033
2034 env.dst_nid = p->numa_preferred_nid;
2035 dist = env.dist = node_distance(env.src_nid, env.dst_nid);
2036 taskweight = task_weight(p, env.src_nid, dist);
2037 groupweight = group_weight(p, env.src_nid, dist);
2038 update_numa_stats(&env, &env.src_stats, env.src_nid, false);
2039 taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
2040 groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
2041 update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
2042
2043 /* Try to find a spot on the preferred nid. */
2044 task_numa_find_cpu(&env, taskimp, groupimp);
2045
2046 /*
2047 * Look at other nodes in these cases:
2048 * - there is no space available on the preferred_nid
2049 * - the task is part of a numa_group that is interleaved across
2050 * multiple NUMA nodes; in order to better consolidate the group,
2051 * we need to check other locations.
2052 */
2053 ng = deref_curr_numa_group(p);
2054 if (env.best_cpu == -1 || (ng && ng->active_nodes > 1)) {
2055 for_each_online_node(nid) {
2056 if (nid == env.src_nid || nid == p->numa_preferred_nid)
2057 continue;
2058
2059 dist = node_distance(env.src_nid, env.dst_nid);
2060 if (sched_numa_topology_type == NUMA_BACKPLANE &&
2061 dist != env.dist) {
2062 taskweight = task_weight(p, env.src_nid, dist);
2063 groupweight = group_weight(p, env.src_nid, dist);
2064 }
2065
2066 /* Only consider nodes where both task and groups benefit */
2067 taskimp = task_weight(p, nid, dist) - taskweight;
2068 groupimp = group_weight(p, nid, dist) - groupweight;
2069 if (taskimp < 0 && groupimp < 0)
2070 continue;
2071
2072 env.dist = dist;
2073 env.dst_nid = nid;
2074 update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
2075 task_numa_find_cpu(&env, taskimp, groupimp);
2076 }
2077 }
2078
2079 /*
2080 * If the task is part of a workload that spans multiple NUMA nodes,
2081 * and is migrating into one of the workload's active nodes, remember
2082 * this node as the task's preferred numa node, so the workload can
2083 * settle down.
2084 * A task that migrated to a second choice node will be better off
2085 * trying for a better one later. Do not set the preferred node here.
2086 */
2087 if (ng) {
2088 if (env.best_cpu == -1)
2089 nid = env.src_nid;
2090 else
2091 nid = cpu_to_node(env.best_cpu);
2092
2093 if (nid != p->numa_preferred_nid)
2094 sched_setnuma(p, nid);
2095 }
2096
2097 /* No better CPU than the current one was found. */
2098 if (env.best_cpu == -1) {
2099 trace_sched_stick_numa(p, env.src_cpu, NULL, -1);
2100 return -EAGAIN;
2101 }
2102
2103 best_rq = cpu_rq(env.best_cpu);
2104 if (env.best_task == NULL) {
2105 ret = migrate_task_to(p, env.best_cpu);
2106 WRITE_ONCE(best_rq->numa_migrate_on, 0);
2107 if (ret != 0)
2108 trace_sched_stick_numa(p, env.src_cpu, NULL, env.best_cpu);
2109 return ret;
2110 }
2111
2112 ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu);
2113 WRITE_ONCE(best_rq->numa_migrate_on, 0);
2114
2115 if (ret != 0)
2116 trace_sched_stick_numa(p, env.src_cpu, env.best_task, env.best_cpu);
2117 put_task_struct(env.best_task);
2118 return ret;
2119 }
2120
2121 /* Attempt to migrate a task to a CPU on the preferred node. */
numa_migrate_preferred(struct task_struct * p)2122 static void numa_migrate_preferred(struct task_struct *p)
2123 {
2124 unsigned long interval = HZ;
2125
2126 /* This task has no NUMA fault statistics yet */
2127 if (unlikely(p->numa_preferred_nid == NUMA_NO_NODE || !p->numa_faults))
2128 return;
2129
2130 /* Periodically retry migrating the task to the preferred node */
2131 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
2132 p->numa_migrate_retry = jiffies + interval;
2133
2134 /* Success if task is already running on preferred CPU */
2135 if (task_node(p) == p->numa_preferred_nid)
2136 return;
2137
2138 /* Otherwise, try migrate to a CPU on the preferred node */
2139 task_numa_migrate(p);
2140 }
2141
2142 /*
2143 * Find out how many nodes on the workload is actively running on. Do this by
2144 * tracking the nodes from which NUMA hinting faults are triggered. This can
2145 * be different from the set of nodes where the workload's memory is currently
2146 * located.
2147 */
numa_group_count_active_nodes(struct numa_group * numa_group)2148 static void numa_group_count_active_nodes(struct numa_group *numa_group)
2149 {
2150 unsigned long faults, max_faults = 0;
2151 int nid, active_nodes = 0;
2152
2153 for_each_online_node(nid) {
2154 faults = group_faults_cpu(numa_group, nid);
2155 if (faults > max_faults)
2156 max_faults = faults;
2157 }
2158
2159 for_each_online_node(nid) {
2160 faults = group_faults_cpu(numa_group, nid);
2161 if (faults * ACTIVE_NODE_FRACTION > max_faults)
2162 active_nodes++;
2163 }
2164
2165 numa_group->max_faults_cpu = max_faults;
2166 numa_group->active_nodes = active_nodes;
2167 }
2168
2169 /*
2170 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
2171 * increments. The more local the fault statistics are, the higher the scan
2172 * period will be for the next scan window. If local/(local+remote) ratio is
2173 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
2174 * the scan period will decrease. Aim for 70% local accesses.
2175 */
2176 #define NUMA_PERIOD_SLOTS 10
2177 #define NUMA_PERIOD_THRESHOLD 7
2178
2179 /*
2180 * Increase the scan period (slow down scanning) if the majority of
2181 * our memory is already on our local node, or if the majority of
2182 * the page accesses are shared with other processes.
2183 * Otherwise, decrease the scan period.
2184 */
update_task_scan_period(struct task_struct * p,unsigned long shared,unsigned long private)2185 static void update_task_scan_period(struct task_struct *p,
2186 unsigned long shared, unsigned long private)
2187 {
2188 unsigned int period_slot;
2189 int lr_ratio, ps_ratio;
2190 int diff;
2191
2192 unsigned long remote = p->numa_faults_locality[0];
2193 unsigned long local = p->numa_faults_locality[1];
2194
2195 /*
2196 * If there were no record hinting faults then either the task is
2197 * completely idle or all activity is areas that are not of interest
2198 * to automatic numa balancing. Related to that, if there were failed
2199 * migration then it implies we are migrating too quickly or the local
2200 * node is overloaded. In either case, scan slower
2201 */
2202 if (local + shared == 0 || p->numa_faults_locality[2]) {
2203 p->numa_scan_period = min(p->numa_scan_period_max,
2204 p->numa_scan_period << 1);
2205
2206 p->mm->numa_next_scan = jiffies +
2207 msecs_to_jiffies(p->numa_scan_period);
2208
2209 return;
2210 }
2211
2212 /*
2213 * Prepare to scale scan period relative to the current period.
2214 * == NUMA_PERIOD_THRESHOLD scan period stays the same
2215 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
2216 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
2217 */
2218 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
2219 lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
2220 ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared);
2221
2222 if (ps_ratio >= NUMA_PERIOD_THRESHOLD) {
2223 /*
2224 * Most memory accesses are local. There is no need to
2225 * do fast NUMA scanning, since memory is already local.
2226 */
2227 int slot = ps_ratio - NUMA_PERIOD_THRESHOLD;
2228 if (!slot)
2229 slot = 1;
2230 diff = slot * period_slot;
2231 } else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) {
2232 /*
2233 * Most memory accesses are shared with other tasks.
2234 * There is no point in continuing fast NUMA scanning,
2235 * since other tasks may just move the memory elsewhere.
2236 */
2237 int slot = lr_ratio - NUMA_PERIOD_THRESHOLD;
2238 if (!slot)
2239 slot = 1;
2240 diff = slot * period_slot;
2241 } else {
2242 /*
2243 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS,
2244 * yet they are not on the local NUMA node. Speed up
2245 * NUMA scanning to get the memory moved over.
2246 */
2247 int ratio = max(lr_ratio, ps_ratio);
2248 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
2249 }
2250
2251 p->numa_scan_period = clamp(p->numa_scan_period + diff,
2252 task_scan_min(p), task_scan_max(p));
2253 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2254 }
2255
2256 /*
2257 * Get the fraction of time the task has been running since the last
2258 * NUMA placement cycle. The scheduler keeps similar statistics, but
2259 * decays those on a 32ms period, which is orders of magnitude off
2260 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
2261 * stats only if the task is so new there are no NUMA statistics yet.
2262 */
numa_get_avg_runtime(struct task_struct * p,u64 * period)2263 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
2264 {
2265 u64 runtime, delta, now;
2266 /* Use the start of this time slice to avoid calculations. */
2267 now = p->se.exec_start;
2268 runtime = p->se.sum_exec_runtime;
2269
2270 if (p->last_task_numa_placement) {
2271 delta = runtime - p->last_sum_exec_runtime;
2272 *period = now - p->last_task_numa_placement;
2273
2274 /* Avoid time going backwards, prevent potential divide error: */
2275 if (unlikely((s64)*period < 0))
2276 *period = 0;
2277 } else {
2278 delta = p->se.avg.load_sum;
2279 *period = LOAD_AVG_MAX;
2280 }
2281
2282 p->last_sum_exec_runtime = runtime;
2283 p->last_task_numa_placement = now;
2284
2285 return delta;
2286 }
2287
2288 /*
2289 * Determine the preferred nid for a task in a numa_group. This needs to
2290 * be done in a way that produces consistent results with group_weight,
2291 * otherwise workloads might not converge.
2292 */
preferred_group_nid(struct task_struct * p,int nid)2293 static int preferred_group_nid(struct task_struct *p, int nid)
2294 {
2295 nodemask_t nodes;
2296 int dist;
2297
2298 /* Direct connections between all NUMA nodes. */
2299 if (sched_numa_topology_type == NUMA_DIRECT)
2300 return nid;
2301
2302 /*
2303 * On a system with glueless mesh NUMA topology, group_weight
2304 * scores nodes according to the number of NUMA hinting faults on
2305 * both the node itself, and on nearby nodes.
2306 */
2307 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
2308 unsigned long score, max_score = 0;
2309 int node, max_node = nid;
2310
2311 dist = sched_max_numa_distance;
2312
2313 for_each_online_node(node) {
2314 score = group_weight(p, node, dist);
2315 if (score > max_score) {
2316 max_score = score;
2317 max_node = node;
2318 }
2319 }
2320 return max_node;
2321 }
2322
2323 /*
2324 * Finding the preferred nid in a system with NUMA backplane
2325 * interconnect topology is more involved. The goal is to locate
2326 * tasks from numa_groups near each other in the system, and
2327 * untangle workloads from different sides of the system. This requires
2328 * searching down the hierarchy of node groups, recursively searching
2329 * inside the highest scoring group of nodes. The nodemask tricks
2330 * keep the complexity of the search down.
2331 */
2332 nodes = node_online_map;
2333 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
2334 unsigned long max_faults = 0;
2335 nodemask_t max_group = NODE_MASK_NONE;
2336 int a, b;
2337
2338 /* Are there nodes at this distance from each other? */
2339 if (!find_numa_distance(dist))
2340 continue;
2341
2342 for_each_node_mask(a, nodes) {
2343 unsigned long faults = 0;
2344 nodemask_t this_group;
2345 nodes_clear(this_group);
2346
2347 /* Sum group's NUMA faults; includes a==b case. */
2348 for_each_node_mask(b, nodes) {
2349 if (node_distance(a, b) < dist) {
2350 faults += group_faults(p, b);
2351 node_set(b, this_group);
2352 node_clear(b, nodes);
2353 }
2354 }
2355
2356 /* Remember the top group. */
2357 if (faults > max_faults) {
2358 max_faults = faults;
2359 max_group = this_group;
2360 /*
2361 * subtle: at the smallest distance there is
2362 * just one node left in each "group", the
2363 * winner is the preferred nid.
2364 */
2365 nid = a;
2366 }
2367 }
2368 /* Next round, evaluate the nodes within max_group. */
2369 if (!max_faults)
2370 break;
2371 nodes = max_group;
2372 }
2373 return nid;
2374 }
2375
task_numa_placement(struct task_struct * p)2376 static void task_numa_placement(struct task_struct *p)
2377 {
2378 int seq, nid, max_nid = NUMA_NO_NODE;
2379 unsigned long max_faults = 0;
2380 unsigned long fault_types[2] = { 0, 0 };
2381 unsigned long total_faults;
2382 u64 runtime, period;
2383 spinlock_t *group_lock = NULL;
2384 struct numa_group *ng;
2385
2386 /*
2387 * The p->mm->numa_scan_seq field gets updated without
2388 * exclusive access. Use READ_ONCE() here to ensure
2389 * that the field is read in a single access:
2390 */
2391 seq = READ_ONCE(p->mm->numa_scan_seq);
2392 if (p->numa_scan_seq == seq)
2393 return;
2394 p->numa_scan_seq = seq;
2395 p->numa_scan_period_max = task_scan_max(p);
2396
2397 total_faults = p->numa_faults_locality[0] +
2398 p->numa_faults_locality[1];
2399 runtime = numa_get_avg_runtime(p, &period);
2400
2401 /* If the task is part of a group prevent parallel updates to group stats */
2402 ng = deref_curr_numa_group(p);
2403 if (ng) {
2404 group_lock = &ng->lock;
2405 spin_lock_irq(group_lock);
2406 }
2407
2408 /* Find the node with the highest number of faults */
2409 for_each_online_node(nid) {
2410 /* Keep track of the offsets in numa_faults array */
2411 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
2412 unsigned long faults = 0, group_faults = 0;
2413 int priv;
2414
2415 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
2416 long diff, f_diff, f_weight;
2417
2418 mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
2419 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
2420 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
2421 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
2422
2423 /* Decay existing window, copy faults since last scan */
2424 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
2425 fault_types[priv] += p->numa_faults[membuf_idx];
2426 p->numa_faults[membuf_idx] = 0;
2427
2428 /*
2429 * Normalize the faults_from, so all tasks in a group
2430 * count according to CPU use, instead of by the raw
2431 * number of faults. Tasks with little runtime have
2432 * little over-all impact on throughput, and thus their
2433 * faults are less important.
2434 */
2435 f_weight = div64_u64(runtime << 16, period + 1);
2436 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
2437 (total_faults + 1);
2438 f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
2439 p->numa_faults[cpubuf_idx] = 0;
2440
2441 p->numa_faults[mem_idx] += diff;
2442 p->numa_faults[cpu_idx] += f_diff;
2443 faults += p->numa_faults[mem_idx];
2444 p->total_numa_faults += diff;
2445 if (ng) {
2446 /*
2447 * safe because we can only change our own group
2448 *
2449 * mem_idx represents the offset for a given
2450 * nid and priv in a specific region because it
2451 * is at the beginning of the numa_faults array.
2452 */
2453 ng->faults[mem_idx] += diff;
2454 ng->faults_cpu[mem_idx] += f_diff;
2455 ng->total_faults += diff;
2456 group_faults += ng->faults[mem_idx];
2457 }
2458 }
2459
2460 if (!ng) {
2461 if (faults > max_faults) {
2462 max_faults = faults;
2463 max_nid = nid;
2464 }
2465 } else if (group_faults > max_faults) {
2466 max_faults = group_faults;
2467 max_nid = nid;
2468 }
2469 }
2470
2471 if (ng) {
2472 numa_group_count_active_nodes(ng);
2473 spin_unlock_irq(group_lock);
2474 max_nid = preferred_group_nid(p, max_nid);
2475 }
2476
2477 if (max_faults) {
2478 /* Set the new preferred node */
2479 if (max_nid != p->numa_preferred_nid)
2480 sched_setnuma(p, max_nid);
2481 }
2482
2483 update_task_scan_period(p, fault_types[0], fault_types[1]);
2484 }
2485
get_numa_group(struct numa_group * grp)2486 static inline int get_numa_group(struct numa_group *grp)
2487 {
2488 return refcount_inc_not_zero(&grp->refcount);
2489 }
2490
put_numa_group(struct numa_group * grp)2491 static inline void put_numa_group(struct numa_group *grp)
2492 {
2493 if (refcount_dec_and_test(&grp->refcount))
2494 kfree_rcu(grp, rcu);
2495 }
2496
task_numa_group(struct task_struct * p,int cpupid,int flags,int * priv)2497 static void task_numa_group(struct task_struct *p, int cpupid, int flags,
2498 int *priv)
2499 {
2500 struct numa_group *grp, *my_grp;
2501 struct task_struct *tsk;
2502 bool join = false;
2503 int cpu = cpupid_to_cpu(cpupid);
2504 int i;
2505
2506 if (unlikely(!deref_curr_numa_group(p))) {
2507 unsigned int size = sizeof(struct numa_group) +
2508 4*nr_node_ids*sizeof(unsigned long);
2509
2510 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
2511 if (!grp)
2512 return;
2513
2514 refcount_set(&grp->refcount, 1);
2515 grp->active_nodes = 1;
2516 grp->max_faults_cpu = 0;
2517 spin_lock_init(&grp->lock);
2518 grp->gid = p->pid;
2519 /* Second half of the array tracks nids where faults happen */
2520 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
2521 nr_node_ids;
2522
2523 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2524 grp->faults[i] = p->numa_faults[i];
2525
2526 grp->total_faults = p->total_numa_faults;
2527
2528 grp->nr_tasks++;
2529 rcu_assign_pointer(p->numa_group, grp);
2530 }
2531
2532 rcu_read_lock();
2533 tsk = READ_ONCE(cpu_rq(cpu)->curr);
2534
2535 if (!cpupid_match_pid(tsk, cpupid))
2536 goto no_join;
2537
2538 grp = rcu_dereference(tsk->numa_group);
2539 if (!grp)
2540 goto no_join;
2541
2542 my_grp = deref_curr_numa_group(p);
2543 if (grp == my_grp)
2544 goto no_join;
2545
2546 /*
2547 * Only join the other group if its bigger; if we're the bigger group,
2548 * the other task will join us.
2549 */
2550 if (my_grp->nr_tasks > grp->nr_tasks)
2551 goto no_join;
2552
2553 /*
2554 * Tie-break on the grp address.
2555 */
2556 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
2557 goto no_join;
2558
2559 /* Always join threads in the same process. */
2560 if (tsk->mm == current->mm)
2561 join = true;
2562
2563 /* Simple filter to avoid false positives due to PID collisions */
2564 if (flags & TNF_SHARED)
2565 join = true;
2566
2567 /* Update priv based on whether false sharing was detected */
2568 *priv = !join;
2569
2570 if (join && !get_numa_group(grp))
2571 goto no_join;
2572
2573 rcu_read_unlock();
2574
2575 if (!join)
2576 return;
2577
2578 BUG_ON(irqs_disabled());
2579 double_lock_irq(&my_grp->lock, &grp->lock);
2580
2581 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
2582 my_grp->faults[i] -= p->numa_faults[i];
2583 grp->faults[i] += p->numa_faults[i];
2584 }
2585 my_grp->total_faults -= p->total_numa_faults;
2586 grp->total_faults += p->total_numa_faults;
2587
2588 my_grp->nr_tasks--;
2589 grp->nr_tasks++;
2590
2591 spin_unlock(&my_grp->lock);
2592 spin_unlock_irq(&grp->lock);
2593
2594 rcu_assign_pointer(p->numa_group, grp);
2595
2596 put_numa_group(my_grp);
2597 return;
2598
2599 no_join:
2600 rcu_read_unlock();
2601 return;
2602 }
2603
2604 /*
2605 * Get rid of NUMA statistics associated with a task (either current or dead).
2606 * If @final is set, the task is dead and has reached refcount zero, so we can
2607 * safely free all relevant data structures. Otherwise, there might be
2608 * concurrent reads from places like load balancing and procfs, and we should
2609 * reset the data back to default state without freeing ->numa_faults.
2610 */
task_numa_free(struct task_struct * p,bool final)2611 void task_numa_free(struct task_struct *p, bool final)
2612 {
2613 /* safe: p either is current or is being freed by current */
2614 struct numa_group *grp = rcu_dereference_raw(p->numa_group);
2615 unsigned long *numa_faults = p->numa_faults;
2616 unsigned long flags;
2617 int i;
2618
2619 if (!numa_faults)
2620 return;
2621
2622 if (grp) {
2623 spin_lock_irqsave(&grp->lock, flags);
2624 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2625 grp->faults[i] -= p->numa_faults[i];
2626 grp->total_faults -= p->total_numa_faults;
2627
2628 grp->nr_tasks--;
2629 spin_unlock_irqrestore(&grp->lock, flags);
2630 RCU_INIT_POINTER(p->numa_group, NULL);
2631 put_numa_group(grp);
2632 }
2633
2634 if (final) {
2635 p->numa_faults = NULL;
2636 kfree(numa_faults);
2637 } else {
2638 p->total_numa_faults = 0;
2639 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2640 numa_faults[i] = 0;
2641 }
2642 }
2643
2644 /*
2645 * Got a PROT_NONE fault for a page on @node.
2646 */
task_numa_fault(int last_cpupid,int mem_node,int pages,int flags)2647 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
2648 {
2649 struct task_struct *p = current;
2650 bool migrated = flags & TNF_MIGRATED;
2651 int cpu_node = task_node(current);
2652 int local = !!(flags & TNF_FAULT_LOCAL);
2653 struct numa_group *ng;
2654 int priv;
2655
2656 if (!static_branch_likely(&sched_numa_balancing))
2657 return;
2658
2659 /* for example, ksmd faulting in a user's mm */
2660 if (!p->mm)
2661 return;
2662
2663 /* Allocate buffer to track faults on a per-node basis */
2664 if (unlikely(!p->numa_faults)) {
2665 int size = sizeof(*p->numa_faults) *
2666 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
2667
2668 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2669 if (!p->numa_faults)
2670 return;
2671
2672 p->total_numa_faults = 0;
2673 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2674 }
2675
2676 /*
2677 * First accesses are treated as private, otherwise consider accesses
2678 * to be private if the accessing pid has not changed
2679 */
2680 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2681 priv = 1;
2682 } else {
2683 priv = cpupid_match_pid(p, last_cpupid);
2684 if (!priv && !(flags & TNF_NO_GROUP))
2685 task_numa_group(p, last_cpupid, flags, &priv);
2686 }
2687
2688 /*
2689 * If a workload spans multiple NUMA nodes, a shared fault that
2690 * occurs wholly within the set of nodes that the workload is
2691 * actively using should be counted as local. This allows the
2692 * scan rate to slow down when a workload has settled down.
2693 */
2694 ng = deref_curr_numa_group(p);
2695 if (!priv && !local && ng && ng->active_nodes > 1 &&
2696 numa_is_active_node(cpu_node, ng) &&
2697 numa_is_active_node(mem_node, ng))
2698 local = 1;
2699
2700 /*
2701 * Retry to migrate task to preferred node periodically, in case it
2702 * previously failed, or the scheduler moved us.
2703 */
2704 if (time_after(jiffies, p->numa_migrate_retry)) {
2705 task_numa_placement(p);
2706 numa_migrate_preferred(p);
2707 }
2708
2709 if (migrated)
2710 p->numa_pages_migrated += pages;
2711 if (flags & TNF_MIGRATE_FAIL)
2712 p->numa_faults_locality[2] += pages;
2713
2714 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2715 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
2716 p->numa_faults_locality[local] += pages;
2717 }
2718
reset_ptenuma_scan(struct task_struct * p)2719 static void reset_ptenuma_scan(struct task_struct *p)
2720 {
2721 /*
2722 * We only did a read acquisition of the mmap sem, so
2723 * p->mm->numa_scan_seq is written to without exclusive access
2724 * and the update is not guaranteed to be atomic. That's not
2725 * much of an issue though, since this is just used for
2726 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
2727 * expensive, to avoid any form of compiler optimizations:
2728 */
2729 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
2730 p->mm->numa_scan_offset = 0;
2731 }
2732
2733 /*
2734 * The expensive part of numa migration is done from task_work context.
2735 * Triggered from task_tick_numa().
2736 */
task_numa_work(struct callback_head * work)2737 static void task_numa_work(struct callback_head *work)
2738 {
2739 unsigned long migrate, next_scan, now = jiffies;
2740 struct task_struct *p = current;
2741 struct mm_struct *mm = p->mm;
2742 u64 runtime = p->se.sum_exec_runtime;
2743 struct vm_area_struct *vma;
2744 unsigned long start, end;
2745 unsigned long nr_pte_updates = 0;
2746 long pages, virtpages;
2747
2748 SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work));
2749
2750 work->next = work;
2751 /*
2752 * Who cares about NUMA placement when they're dying.
2753 *
2754 * NOTE: make sure not to dereference p->mm before this check,
2755 * exit_task_work() happens _after_ exit_mm() so we could be called
2756 * without p->mm even though we still had it when we enqueued this
2757 * work.
2758 */
2759 if (p->flags & PF_EXITING)
2760 return;
2761
2762 if (!mm->numa_next_scan) {
2763 mm->numa_next_scan = now +
2764 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2765 }
2766
2767 /*
2768 * Enforce maximal scan/migration frequency..
2769 */
2770 migrate = mm->numa_next_scan;
2771 if (time_before(now, migrate))
2772 return;
2773
2774 if (p->numa_scan_period == 0) {
2775 p->numa_scan_period_max = task_scan_max(p);
2776 p->numa_scan_period = task_scan_start(p);
2777 }
2778
2779 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
2780 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2781 return;
2782
2783 /*
2784 * Delay this task enough that another task of this mm will likely win
2785 * the next time around.
2786 */
2787 p->node_stamp += 2 * TICK_NSEC;
2788
2789 start = mm->numa_scan_offset;
2790 pages = sysctl_numa_balancing_scan_size;
2791 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
2792 virtpages = pages * 8; /* Scan up to this much virtual space */
2793 if (!pages)
2794 return;
2795
2796
2797 if (!mmap_read_trylock(mm))
2798 return;
2799 vma = find_vma(mm, start);
2800 if (!vma) {
2801 reset_ptenuma_scan(p);
2802 start = 0;
2803 vma = mm->mmap;
2804 }
2805 for (; vma; vma = vma->vm_next) {
2806 if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
2807 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
2808 continue;
2809 }
2810
2811 /*
2812 * Shared library pages mapped by multiple processes are not
2813 * migrated as it is expected they are cache replicated. Avoid
2814 * hinting faults in read-only file-backed mappings or the vdso
2815 * as migrating the pages will be of marginal benefit.
2816 */
2817 if (!vma->vm_mm ||
2818 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
2819 continue;
2820
2821 /*
2822 * Skip inaccessible VMAs to avoid any confusion between
2823 * PROT_NONE and NUMA hinting ptes
2824 */
2825 if (!vma_is_accessible(vma))
2826 continue;
2827
2828 do {
2829 start = max(start, vma->vm_start);
2830 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2831 end = min(end, vma->vm_end);
2832 nr_pte_updates = change_prot_numa(vma, start, end);
2833
2834 /*
2835 * Try to scan sysctl_numa_balancing_size worth of
2836 * hpages that have at least one present PTE that
2837 * is not already pte-numa. If the VMA contains
2838 * areas that are unused or already full of prot_numa
2839 * PTEs, scan up to virtpages, to skip through those
2840 * areas faster.
2841 */
2842 if (nr_pte_updates)
2843 pages -= (end - start) >> PAGE_SHIFT;
2844 virtpages -= (end - start) >> PAGE_SHIFT;
2845
2846 start = end;
2847 if (pages <= 0 || virtpages <= 0)
2848 goto out;
2849
2850 cond_resched();
2851 } while (end != vma->vm_end);
2852 }
2853
2854 out:
2855 /*
2856 * It is possible to reach the end of the VMA list but the last few
2857 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2858 * would find the !migratable VMA on the next scan but not reset the
2859 * scanner to the start so check it now.
2860 */
2861 if (vma)
2862 mm->numa_scan_offset = start;
2863 else
2864 reset_ptenuma_scan(p);
2865 mmap_read_unlock(mm);
2866
2867 /*
2868 * Make sure tasks use at least 32x as much time to run other code
2869 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
2870 * Usually update_task_scan_period slows down scanning enough; on an
2871 * overloaded system we need to limit overhead on a per task basis.
2872 */
2873 if (unlikely(p->se.sum_exec_runtime != runtime)) {
2874 u64 diff = p->se.sum_exec_runtime - runtime;
2875 p->node_stamp += 32 * diff;
2876 }
2877 }
2878
init_numa_balancing(unsigned long clone_flags,struct task_struct * p)2879 void init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
2880 {
2881 int mm_users = 0;
2882 struct mm_struct *mm = p->mm;
2883
2884 if (mm) {
2885 mm_users = atomic_read(&mm->mm_users);
2886 if (mm_users == 1) {
2887 mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2888 mm->numa_scan_seq = 0;
2889 }
2890 }
2891 p->node_stamp = 0;
2892 p->numa_scan_seq = mm ? mm->numa_scan_seq : 0;
2893 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
2894 /* Protect against double add, see task_tick_numa and task_numa_work */
2895 p->numa_work.next = &p->numa_work;
2896 p->numa_faults = NULL;
2897 RCU_INIT_POINTER(p->numa_group, NULL);
2898 p->last_task_numa_placement = 0;
2899 p->last_sum_exec_runtime = 0;
2900
2901 init_task_work(&p->numa_work, task_numa_work);
2902
2903 /* New address space, reset the preferred nid */
2904 if (!(clone_flags & CLONE_VM)) {
2905 p->numa_preferred_nid = NUMA_NO_NODE;
2906 return;
2907 }
2908
2909 /*
2910 * New thread, keep existing numa_preferred_nid which should be copied
2911 * already by arch_dup_task_struct but stagger when scans start.
2912 */
2913 if (mm) {
2914 unsigned int delay;
2915
2916 delay = min_t(unsigned int, task_scan_max(current),
2917 current->numa_scan_period * mm_users * NSEC_PER_MSEC);
2918 delay += 2 * TICK_NSEC;
2919 p->node_stamp = delay;
2920 }
2921 }
2922
2923 /*
2924 * Drive the periodic memory faults..
2925 */
task_tick_numa(struct rq * rq,struct task_struct * curr)2926 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2927 {
2928 struct callback_head *work = &curr->numa_work;
2929 u64 period, now;
2930
2931 /*
2932 * We don't care about NUMA placement if we don't have memory.
2933 */
2934 if ((curr->flags & (PF_EXITING | PF_KTHREAD)) || work->next != work)
2935 return;
2936
2937 /*
2938 * Using runtime rather than walltime has the dual advantage that
2939 * we (mostly) drive the selection from busy threads and that the
2940 * task needs to have done some actual work before we bother with
2941 * NUMA placement.
2942 */
2943 now = curr->se.sum_exec_runtime;
2944 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2945
2946 if (now > curr->node_stamp + period) {
2947 if (!curr->node_stamp)
2948 curr->numa_scan_period = task_scan_start(curr);
2949 curr->node_stamp += period;
2950
2951 if (!time_before(jiffies, curr->mm->numa_next_scan))
2952 task_work_add(curr, work, TWA_RESUME);
2953 }
2954 }
2955
update_scan_period(struct task_struct * p,int new_cpu)2956 static void update_scan_period(struct task_struct *p, int new_cpu)
2957 {
2958 int src_nid = cpu_to_node(task_cpu(p));
2959 int dst_nid = cpu_to_node(new_cpu);
2960
2961 if (!static_branch_likely(&sched_numa_balancing))
2962 return;
2963
2964 if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING))
2965 return;
2966
2967 if (src_nid == dst_nid)
2968 return;
2969
2970 /*
2971 * Allow resets if faults have been trapped before one scan
2972 * has completed. This is most likely due to a new task that
2973 * is pulled cross-node due to wakeups or load balancing.
2974 */
2975 if (p->numa_scan_seq) {
2976 /*
2977 * Avoid scan adjustments if moving to the preferred
2978 * node or if the task was not previously running on
2979 * the preferred node.
2980 */
2981 if (dst_nid == p->numa_preferred_nid ||
2982 (p->numa_preferred_nid != NUMA_NO_NODE &&
2983 src_nid != p->numa_preferred_nid))
2984 return;
2985 }
2986
2987 p->numa_scan_period = task_scan_start(p);
2988 }
2989
2990 #else
task_tick_numa(struct rq * rq,struct task_struct * curr)2991 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2992 {
2993 }
2994
account_numa_enqueue(struct rq * rq,struct task_struct * p)2995 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2996 {
2997 }
2998
account_numa_dequeue(struct rq * rq,struct task_struct * p)2999 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
3000 {
3001 }
3002
update_scan_period(struct task_struct * p,int new_cpu)3003 static inline void update_scan_period(struct task_struct *p, int new_cpu)
3004 {
3005 }
3006
3007 #endif /* CONFIG_NUMA_BALANCING */
3008
3009 static void
account_entity_enqueue(struct cfs_rq * cfs_rq,struct sched_entity * se)3010 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
3011 {
3012 update_load_add(&cfs_rq->load, se->load.weight);
3013 #ifdef CONFIG_SMP
3014 if (entity_is_task(se)) {
3015 struct rq *rq = rq_of(cfs_rq);
3016
3017 account_numa_enqueue(rq, task_of(se));
3018 list_add(&se->group_node, &rq->cfs_tasks);
3019 }
3020 #endif
3021 cfs_rq->nr_running++;
3022 }
3023
3024 static void
account_entity_dequeue(struct cfs_rq * cfs_rq,struct sched_entity * se)3025 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
3026 {
3027 update_load_sub(&cfs_rq->load, se->load.weight);
3028 #ifdef CONFIG_SMP
3029 if (entity_is_task(se)) {
3030 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
3031 list_del_init(&se->group_node);
3032 }
3033 #endif
3034 cfs_rq->nr_running--;
3035 }
3036
3037 /*
3038 * Signed add and clamp on underflow.
3039 *
3040 * Explicitly do a load-store to ensure the intermediate value never hits
3041 * memory. This allows lockless observations without ever seeing the negative
3042 * values.
3043 */
3044 #define add_positive(_ptr, _val) do { \
3045 typeof(_ptr) ptr = (_ptr); \
3046 typeof(_val) val = (_val); \
3047 typeof(*ptr) res, var = READ_ONCE(*ptr); \
3048 \
3049 res = var + val; \
3050 \
3051 if (val < 0 && res > var) \
3052 res = 0; \
3053 \
3054 WRITE_ONCE(*ptr, res); \
3055 } while (0)
3056
3057 /*
3058 * Unsigned subtract and clamp on underflow.
3059 *
3060 * Explicitly do a load-store to ensure the intermediate value never hits
3061 * memory. This allows lockless observations without ever seeing the negative
3062 * values.
3063 */
3064 #define sub_positive(_ptr, _val) do { \
3065 typeof(_ptr) ptr = (_ptr); \
3066 typeof(*ptr) val = (_val); \
3067 typeof(*ptr) res, var = READ_ONCE(*ptr); \
3068 res = var - val; \
3069 if (res > var) \
3070 res = 0; \
3071 WRITE_ONCE(*ptr, res); \
3072 } while (0)
3073
3074 /*
3075 * Remove and clamp on negative, from a local variable.
3076 *
3077 * A variant of sub_positive(), which does not use explicit load-store
3078 * and is thus optimized for local variable updates.
3079 */
3080 #define lsub_positive(_ptr, _val) do { \
3081 typeof(_ptr) ptr = (_ptr); \
3082 *ptr -= min_t(typeof(*ptr), *ptr, _val); \
3083 } while (0)
3084
3085 #ifdef CONFIG_SMP
3086 static inline void
enqueue_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)3087 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3088 {
3089 cfs_rq->avg.load_avg += se->avg.load_avg;
3090 cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum;
3091 }
3092
3093 static inline void
dequeue_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)3094 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3095 {
3096 u32 divider = get_pelt_divider(&se->avg);
3097 sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
3098 cfs_rq->avg.load_sum = cfs_rq->avg.load_avg * divider;
3099 }
3100 #else
3101 static inline void
enqueue_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)3102 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
3103 static inline void
dequeue_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)3104 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
3105 #endif
3106
reweight_entity(struct cfs_rq * cfs_rq,struct sched_entity * se,unsigned long weight)3107 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
3108 unsigned long weight)
3109 {
3110 if (se->on_rq) {
3111 /* commit outstanding execution time */
3112 if (cfs_rq->curr == se)
3113 update_curr(cfs_rq);
3114 update_load_sub(&cfs_rq->load, se->load.weight);
3115 }
3116 dequeue_load_avg(cfs_rq, se);
3117
3118 update_load_set(&se->load, weight);
3119
3120 #ifdef CONFIG_SMP
3121 do {
3122 u32 divider = get_pelt_divider(&se->avg);
3123
3124 se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider);
3125 } while (0);
3126 #endif
3127
3128 enqueue_load_avg(cfs_rq, se);
3129 if (se->on_rq)
3130 update_load_add(&cfs_rq->load, se->load.weight);
3131
3132 }
3133
reweight_task(struct task_struct * p,int prio)3134 void reweight_task(struct task_struct *p, int prio)
3135 {
3136 struct sched_entity *se = &p->se;
3137 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3138 struct load_weight *load = &se->load;
3139 unsigned long weight = scale_load(sched_prio_to_weight[prio]);
3140
3141 reweight_entity(cfs_rq, se, weight);
3142 load->inv_weight = sched_prio_to_wmult[prio];
3143 }
3144 EXPORT_SYMBOL_GPL(reweight_task);
3145
3146 #ifdef CONFIG_FAIR_GROUP_SCHED
3147 #ifdef CONFIG_SMP
3148 /*
3149 * All this does is approximate the hierarchical proportion which includes that
3150 * global sum we all love to hate.
3151 *
3152 * That is, the weight of a group entity, is the proportional share of the
3153 * group weight based on the group runqueue weights. That is:
3154 *
3155 * tg->weight * grq->load.weight
3156 * ge->load.weight = ----------------------------- (1)
3157 * \Sum grq->load.weight
3158 *
3159 * Now, because computing that sum is prohibitively expensive to compute (been
3160 * there, done that) we approximate it with this average stuff. The average
3161 * moves slower and therefore the approximation is cheaper and more stable.
3162 *
3163 * So instead of the above, we substitute:
3164 *
3165 * grq->load.weight -> grq->avg.load_avg (2)
3166 *
3167 * which yields the following:
3168 *
3169 * tg->weight * grq->avg.load_avg
3170 * ge->load.weight = ------------------------------ (3)
3171 * tg->load_avg
3172 *
3173 * Where: tg->load_avg ~= \Sum grq->avg.load_avg
3174 *
3175 * That is shares_avg, and it is right (given the approximation (2)).
3176 *
3177 * The problem with it is that because the average is slow -- it was designed
3178 * to be exactly that of course -- this leads to transients in boundary
3179 * conditions. In specific, the case where the group was idle and we start the
3180 * one task. It takes time for our CPU's grq->avg.load_avg to build up,
3181 * yielding bad latency etc..
3182 *
3183 * Now, in that special case (1) reduces to:
3184 *
3185 * tg->weight * grq->load.weight
3186 * ge->load.weight = ----------------------------- = tg->weight (4)
3187 * grp->load.weight
3188 *
3189 * That is, the sum collapses because all other CPUs are idle; the UP scenario.
3190 *
3191 * So what we do is modify our approximation (3) to approach (4) in the (near)
3192 * UP case, like:
3193 *
3194 * ge->load.weight =
3195 *
3196 * tg->weight * grq->load.weight
3197 * --------------------------------------------------- (5)
3198 * tg->load_avg - grq->avg.load_avg + grq->load.weight
3199 *
3200 * But because grq->load.weight can drop to 0, resulting in a divide by zero,
3201 * we need to use grq->avg.load_avg as its lower bound, which then gives:
3202 *
3203 *
3204 * tg->weight * grq->load.weight
3205 * ge->load.weight = ----------------------------- (6)
3206 * tg_load_avg'
3207 *
3208 * Where:
3209 *
3210 * tg_load_avg' = tg->load_avg - grq->avg.load_avg +
3211 * max(grq->load.weight, grq->avg.load_avg)
3212 *
3213 * And that is shares_weight and is icky. In the (near) UP case it approaches
3214 * (4) while in the normal case it approaches (3). It consistently
3215 * overestimates the ge->load.weight and therefore:
3216 *
3217 * \Sum ge->load.weight >= tg->weight
3218 *
3219 * hence icky!
3220 */
calc_group_shares(struct cfs_rq * cfs_rq)3221 static long calc_group_shares(struct cfs_rq *cfs_rq)
3222 {
3223 long tg_weight, tg_shares, load, shares;
3224 struct task_group *tg = cfs_rq->tg;
3225
3226 tg_shares = READ_ONCE(tg->shares);
3227
3228 load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg);
3229
3230 tg_weight = atomic_long_read(&tg->load_avg);
3231
3232 /* Ensure tg_weight >= load */
3233 tg_weight -= cfs_rq->tg_load_avg_contrib;
3234 tg_weight += load;
3235
3236 shares = (tg_shares * load);
3237 if (tg_weight)
3238 shares /= tg_weight;
3239
3240 /*
3241 * MIN_SHARES has to be unscaled here to support per-CPU partitioning
3242 * of a group with small tg->shares value. It is a floor value which is
3243 * assigned as a minimum load.weight to the sched_entity representing
3244 * the group on a CPU.
3245 *
3246 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024
3247 * on an 8-core system with 8 tasks each runnable on one CPU shares has
3248 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In
3249 * case no task is runnable on a CPU MIN_SHARES=2 should be returned
3250 * instead of 0.
3251 */
3252 return clamp_t(long, shares, MIN_SHARES, tg_shares);
3253 }
3254 #endif /* CONFIG_SMP */
3255
3256 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
3257
3258 /*
3259 * Recomputes the group entity based on the current state of its group
3260 * runqueue.
3261 */
update_cfs_group(struct sched_entity * se)3262 static void update_cfs_group(struct sched_entity *se)
3263 {
3264 struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3265 long shares;
3266
3267 if (!gcfs_rq)
3268 return;
3269
3270 if (throttled_hierarchy(gcfs_rq))
3271 return;
3272
3273 #ifndef CONFIG_SMP
3274 shares = READ_ONCE(gcfs_rq->tg->shares);
3275
3276 if (likely(se->load.weight == shares))
3277 return;
3278 #else
3279 shares = calc_group_shares(gcfs_rq);
3280 #endif
3281
3282 reweight_entity(cfs_rq_of(se), se, shares);
3283 }
3284
3285 #else /* CONFIG_FAIR_GROUP_SCHED */
update_cfs_group(struct sched_entity * se)3286 static inline void update_cfs_group(struct sched_entity *se)
3287 {
3288 }
3289 #endif /* CONFIG_FAIR_GROUP_SCHED */
3290
cfs_rq_util_change(struct cfs_rq * cfs_rq,int flags)3291 static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags)
3292 {
3293 struct rq *rq = rq_of(cfs_rq);
3294
3295 if (&rq->cfs == cfs_rq) {
3296 /*
3297 * There are a few boundary cases this might miss but it should
3298 * get called often enough that that should (hopefully) not be
3299 * a real problem.
3300 *
3301 * It will not get called when we go idle, because the idle
3302 * thread is a different class (!fair), nor will the utilization
3303 * number include things like RT tasks.
3304 *
3305 * As is, the util number is not freq-invariant (we'd have to
3306 * implement arch_scale_freq_capacity() for that).
3307 *
3308 * See cpu_util().
3309 */
3310 cpufreq_update_util(rq, flags);
3311 }
3312 }
3313
3314 #ifdef CONFIG_SMP
3315 #ifdef CONFIG_FAIR_GROUP_SCHED
3316 /*
3317 * Because list_add_leaf_cfs_rq always places a child cfs_rq on the list
3318 * immediately before a parent cfs_rq, and cfs_rqs are removed from the list
3319 * bottom-up, we only have to test whether the cfs_rq before us on the list
3320 * is our child.
3321 * If cfs_rq is not on the list, test whether a child needs its to be added to
3322 * connect a branch to the tree * (see list_add_leaf_cfs_rq() for details).
3323 */
child_cfs_rq_on_list(struct cfs_rq * cfs_rq)3324 static inline bool child_cfs_rq_on_list(struct cfs_rq *cfs_rq)
3325 {
3326 struct cfs_rq *prev_cfs_rq;
3327 struct list_head *prev;
3328
3329 if (cfs_rq->on_list) {
3330 prev = cfs_rq->leaf_cfs_rq_list.prev;
3331 } else {
3332 struct rq *rq = rq_of(cfs_rq);
3333
3334 prev = rq->tmp_alone_branch;
3335 }
3336
3337 prev_cfs_rq = container_of(prev, struct cfs_rq, leaf_cfs_rq_list);
3338
3339 return (prev_cfs_rq->tg->parent == cfs_rq->tg);
3340 }
3341
cfs_rq_is_decayed(struct cfs_rq * cfs_rq)3342 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
3343 {
3344 if (cfs_rq->load.weight)
3345 return false;
3346
3347 if (cfs_rq->avg.load_sum)
3348 return false;
3349
3350 if (cfs_rq->avg.util_sum)
3351 return false;
3352
3353 if (cfs_rq->avg.runnable_sum)
3354 return false;
3355
3356 if (child_cfs_rq_on_list(cfs_rq))
3357 return false;
3358
3359 /*
3360 * _avg must be null when _sum are null because _avg = _sum / divider
3361 * Make sure that rounding and/or propagation of PELT values never
3362 * break this.
3363 */
3364 SCHED_WARN_ON(cfs_rq->avg.load_avg ||
3365 cfs_rq->avg.util_avg ||
3366 cfs_rq->avg.runnable_avg);
3367
3368 return true;
3369 }
3370
3371 /**
3372 * update_tg_load_avg - update the tg's load avg
3373 * @cfs_rq: the cfs_rq whose avg changed
3374 *
3375 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
3376 * However, because tg->load_avg is a global value there are performance
3377 * considerations.
3378 *
3379 * In order to avoid having to look at the other cfs_rq's, we use a
3380 * differential update where we store the last value we propagated. This in
3381 * turn allows skipping updates if the differential is 'small'.
3382 *
3383 * Updating tg's load_avg is necessary before update_cfs_share().
3384 */
update_tg_load_avg(struct cfs_rq * cfs_rq)3385 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq)
3386 {
3387 long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
3388
3389 /*
3390 * No need to update load_avg for root_task_group as it is not used.
3391 */
3392 if (cfs_rq->tg == &root_task_group)
3393 return;
3394
3395 if (abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
3396 atomic_long_add(delta, &cfs_rq->tg->load_avg);
3397 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
3398 }
3399 }
3400
3401 /*
3402 * Called within set_task_rq() right before setting a task's CPU. The
3403 * caller only guarantees p->pi_lock is held; no other assumptions,
3404 * including the state of rq->lock, should be made.
3405 */
set_task_rq_fair(struct sched_entity * se,struct cfs_rq * prev,struct cfs_rq * next)3406 void set_task_rq_fair(struct sched_entity *se,
3407 struct cfs_rq *prev, struct cfs_rq *next)
3408 {
3409 u64 p_last_update_time;
3410 u64 n_last_update_time;
3411
3412 if (!sched_feat(ATTACH_AGE_LOAD))
3413 return;
3414
3415 /*
3416 * We are supposed to update the task to "current" time, then its up to
3417 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
3418 * getting what current time is, so simply throw away the out-of-date
3419 * time. This will result in the wakee task is less decayed, but giving
3420 * the wakee more load sounds not bad.
3421 */
3422 if (!(se->avg.last_update_time && prev))
3423 return;
3424
3425 #ifndef CONFIG_64BIT
3426 {
3427 u64 p_last_update_time_copy;
3428 u64 n_last_update_time_copy;
3429
3430 do {
3431 p_last_update_time_copy = prev->load_last_update_time_copy;
3432 n_last_update_time_copy = next->load_last_update_time_copy;
3433
3434 smp_rmb();
3435
3436 p_last_update_time = prev->avg.last_update_time;
3437 n_last_update_time = next->avg.last_update_time;
3438
3439 } while (p_last_update_time != p_last_update_time_copy ||
3440 n_last_update_time != n_last_update_time_copy);
3441 }
3442 #else
3443 p_last_update_time = prev->avg.last_update_time;
3444 n_last_update_time = next->avg.last_update_time;
3445 #endif
3446 __update_load_avg_blocked_se(p_last_update_time, se);
3447 se->avg.last_update_time = n_last_update_time;
3448 }
3449
3450 /*
3451 * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to
3452 * propagate its contribution. The key to this propagation is the invariant
3453 * that for each group:
3454 *
3455 * ge->avg == grq->avg (1)
3456 *
3457 * _IFF_ we look at the pure running and runnable sums. Because they
3458 * represent the very same entity, just at different points in the hierarchy.
3459 *
3460 * Per the above update_tg_cfs_util() and update_tg_cfs_runnable() are trivial
3461 * and simply copies the running/runnable sum over (but still wrong, because
3462 * the group entity and group rq do not have their PELT windows aligned).
3463 *
3464 * However, update_tg_cfs_load() is more complex. So we have:
3465 *
3466 * ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg (2)
3467 *
3468 * And since, like util, the runnable part should be directly transferable,
3469 * the following would _appear_ to be the straight forward approach:
3470 *
3471 * grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg (3)
3472 *
3473 * And per (1) we have:
3474 *
3475 * ge->avg.runnable_avg == grq->avg.runnable_avg
3476 *
3477 * Which gives:
3478 *
3479 * ge->load.weight * grq->avg.load_avg
3480 * ge->avg.load_avg = ----------------------------------- (4)
3481 * grq->load.weight
3482 *
3483 * Except that is wrong!
3484 *
3485 * Because while for entities historical weight is not important and we
3486 * really only care about our future and therefore can consider a pure
3487 * runnable sum, runqueues can NOT do this.
3488 *
3489 * We specifically want runqueues to have a load_avg that includes
3490 * historical weights. Those represent the blocked load, the load we expect
3491 * to (shortly) return to us. This only works by keeping the weights as
3492 * integral part of the sum. We therefore cannot decompose as per (3).
3493 *
3494 * Another reason this doesn't work is that runnable isn't a 0-sum entity.
3495 * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the
3496 * rq itself is runnable anywhere between 2/3 and 1 depending on how the
3497 * runnable section of these tasks overlap (or not). If they were to perfectly
3498 * align the rq as a whole would be runnable 2/3 of the time. If however we
3499 * always have at least 1 runnable task, the rq as a whole is always runnable.
3500 *
3501 * So we'll have to approximate.. :/
3502 *
3503 * Given the constraint:
3504 *
3505 * ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX
3506 *
3507 * We can construct a rule that adds runnable to a rq by assuming minimal
3508 * overlap.
3509 *
3510 * On removal, we'll assume each task is equally runnable; which yields:
3511 *
3512 * grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight
3513 *
3514 * XXX: only do this for the part of runnable > running ?
3515 *
3516 */
3517 static inline void
update_tg_cfs_util(struct cfs_rq * cfs_rq,struct sched_entity * se,struct cfs_rq * gcfs_rq)3518 update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3519 {
3520 long delta = gcfs_rq->avg.util_avg - se->avg.util_avg;
3521 u32 divider;
3522
3523 /* Nothing to update */
3524 if (!delta)
3525 return;
3526
3527 /*
3528 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3529 * See ___update_load_avg() for details.
3530 */
3531 divider = get_pelt_divider(&cfs_rq->avg);
3532
3533 /* Set new sched_entity's utilization */
3534 se->avg.util_avg = gcfs_rq->avg.util_avg;
3535 se->avg.util_sum = se->avg.util_avg * divider;
3536
3537 /* Update parent cfs_rq utilization */
3538 add_positive(&cfs_rq->avg.util_avg, delta);
3539 cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * divider;
3540 }
3541
3542 static inline void
update_tg_cfs_runnable(struct cfs_rq * cfs_rq,struct sched_entity * se,struct cfs_rq * gcfs_rq)3543 update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3544 {
3545 long delta = gcfs_rq->avg.runnable_avg - se->avg.runnable_avg;
3546 u32 divider;
3547
3548 /* Nothing to update */
3549 if (!delta)
3550 return;
3551
3552 /*
3553 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3554 * See ___update_load_avg() for details.
3555 */
3556 divider = get_pelt_divider(&cfs_rq->avg);
3557
3558 /* Set new sched_entity's runnable */
3559 se->avg.runnable_avg = gcfs_rq->avg.runnable_avg;
3560 se->avg.runnable_sum = se->avg.runnable_avg * divider;
3561
3562 /* Update parent cfs_rq runnable */
3563 add_positive(&cfs_rq->avg.runnable_avg, delta);
3564 cfs_rq->avg.runnable_sum = cfs_rq->avg.runnable_avg * divider;
3565 }
3566
3567 static inline void
update_tg_cfs_load(struct cfs_rq * cfs_rq,struct sched_entity * se,struct cfs_rq * gcfs_rq)3568 update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3569 {
3570 long delta, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum;
3571 unsigned long load_avg;
3572 u64 load_sum = 0;
3573 u32 divider;
3574
3575 if (!runnable_sum)
3576 return;
3577
3578 gcfs_rq->prop_runnable_sum = 0;
3579
3580 /*
3581 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3582 * See ___update_load_avg() for details.
3583 */
3584 divider = get_pelt_divider(&cfs_rq->avg);
3585
3586 if (runnable_sum >= 0) {
3587 /*
3588 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until
3589 * the CPU is saturated running == runnable.
3590 */
3591 runnable_sum += se->avg.load_sum;
3592 runnable_sum = min_t(long, runnable_sum, divider);
3593 } else {
3594 /*
3595 * Estimate the new unweighted runnable_sum of the gcfs_rq by
3596 * assuming all tasks are equally runnable.
3597 */
3598 if (scale_load_down(gcfs_rq->load.weight)) {
3599 load_sum = div_s64(gcfs_rq->avg.load_sum,
3600 scale_load_down(gcfs_rq->load.weight));
3601 }
3602
3603 /* But make sure to not inflate se's runnable */
3604 runnable_sum = min(se->avg.load_sum, load_sum);
3605 }
3606
3607 /*
3608 * runnable_sum can't be lower than running_sum
3609 * Rescale running sum to be in the same range as runnable sum
3610 * running_sum is in [0 : LOAD_AVG_MAX << SCHED_CAPACITY_SHIFT]
3611 * runnable_sum is in [0 : LOAD_AVG_MAX]
3612 */
3613 running_sum = se->avg.util_sum >> SCHED_CAPACITY_SHIFT;
3614 runnable_sum = max(runnable_sum, running_sum);
3615
3616 load_sum = (s64)se_weight(se) * runnable_sum;
3617 load_avg = div_s64(load_sum, divider);
3618
3619 se->avg.load_sum = runnable_sum;
3620
3621 delta = load_avg - se->avg.load_avg;
3622 if (!delta)
3623 return;
3624
3625 se->avg.load_avg = load_avg;
3626
3627 add_positive(&cfs_rq->avg.load_avg, delta);
3628 cfs_rq->avg.load_sum = cfs_rq->avg.load_avg * divider;
3629 }
3630
add_tg_cfs_propagate(struct cfs_rq * cfs_rq,long runnable_sum)3631 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum)
3632 {
3633 cfs_rq->propagate = 1;
3634 cfs_rq->prop_runnable_sum += runnable_sum;
3635 }
3636
3637 /* Update task and its cfs_rq load average */
propagate_entity_load_avg(struct sched_entity * se)3638 static inline int propagate_entity_load_avg(struct sched_entity *se)
3639 {
3640 struct cfs_rq *cfs_rq, *gcfs_rq;
3641
3642 if (entity_is_task(se))
3643 return 0;
3644
3645 gcfs_rq = group_cfs_rq(se);
3646 if (!gcfs_rq->propagate)
3647 return 0;
3648
3649 gcfs_rq->propagate = 0;
3650
3651 cfs_rq = cfs_rq_of(se);
3652
3653 add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum);
3654
3655 update_tg_cfs_util(cfs_rq, se, gcfs_rq);
3656 update_tg_cfs_runnable(cfs_rq, se, gcfs_rq);
3657 update_tg_cfs_load(cfs_rq, se, gcfs_rq);
3658
3659 trace_pelt_cfs_tp(cfs_rq);
3660 trace_pelt_se_tp(se);
3661
3662 return 1;
3663 }
3664
3665 /*
3666 * Check if we need to update the load and the utilization of a blocked
3667 * group_entity:
3668 */
skip_blocked_update(struct sched_entity * se)3669 static inline bool skip_blocked_update(struct sched_entity *se)
3670 {
3671 struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3672
3673 /*
3674 * If sched_entity still have not zero load or utilization, we have to
3675 * decay it:
3676 */
3677 if (se->avg.load_avg || se->avg.util_avg)
3678 return false;
3679
3680 /*
3681 * If there is a pending propagation, we have to update the load and
3682 * the utilization of the sched_entity:
3683 */
3684 if (gcfs_rq->propagate)
3685 return false;
3686
3687 /*
3688 * Otherwise, the load and the utilization of the sched_entity is
3689 * already zero and there is no pending propagation, so it will be a
3690 * waste of time to try to decay it:
3691 */
3692 return true;
3693 }
3694
3695 #else /* CONFIG_FAIR_GROUP_SCHED */
3696
update_tg_load_avg(struct cfs_rq * cfs_rq)3697 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) {}
3698
propagate_entity_load_avg(struct sched_entity * se)3699 static inline int propagate_entity_load_avg(struct sched_entity *se)
3700 {
3701 return 0;
3702 }
3703
add_tg_cfs_propagate(struct cfs_rq * cfs_rq,long runnable_sum)3704 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {}
3705
3706 #endif /* CONFIG_FAIR_GROUP_SCHED */
3707
3708 /**
3709 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
3710 * @now: current time, as per cfs_rq_clock_pelt()
3711 * @cfs_rq: cfs_rq to update
3712 *
3713 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
3714 * avg. The immediate corollary is that all (fair) tasks must be attached, see
3715 * post_init_entity_util_avg().
3716 *
3717 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
3718 *
3719 * Returns true if the load decayed or we removed load.
3720 *
3721 * Since both these conditions indicate a changed cfs_rq->avg.load we should
3722 * call update_tg_load_avg() when this function returns true.
3723 */
3724 static inline int
update_cfs_rq_load_avg(u64 now,struct cfs_rq * cfs_rq)3725 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
3726 {
3727 unsigned long removed_load = 0, removed_util = 0, removed_runnable = 0;
3728 struct sched_avg *sa = &cfs_rq->avg;
3729 int decayed = 0;
3730
3731 if (cfs_rq->removed.nr) {
3732 unsigned long r;
3733 u32 divider = get_pelt_divider(&cfs_rq->avg);
3734
3735 raw_spin_lock(&cfs_rq->removed.lock);
3736 swap(cfs_rq->removed.util_avg, removed_util);
3737 swap(cfs_rq->removed.load_avg, removed_load);
3738 swap(cfs_rq->removed.runnable_avg, removed_runnable);
3739 cfs_rq->removed.nr = 0;
3740 raw_spin_unlock(&cfs_rq->removed.lock);
3741
3742 r = removed_load;
3743 sub_positive(&sa->load_avg, r);
3744 sa->load_sum = sa->load_avg * divider;
3745
3746 r = removed_util;
3747 sub_positive(&sa->util_avg, r);
3748 sub_positive(&sa->util_sum, r * divider);
3749 /*
3750 * Because of rounding, se->util_sum might ends up being +1 more than
3751 * cfs->util_sum. Although this is not a problem by itself, detaching
3752 * a lot of tasks with the rounding problem between 2 updates of
3753 * util_avg (~1ms) can make cfs->util_sum becoming null whereas
3754 * cfs_util_avg is not.
3755 * Check that util_sum is still above its lower bound for the new
3756 * util_avg. Given that period_contrib might have moved since the last
3757 * sync, we are only sure that util_sum must be above or equal to
3758 * util_avg * minimum possible divider
3759 */
3760 sa->util_sum = max_t(u32, sa->util_sum, sa->util_avg * PELT_MIN_DIVIDER);
3761
3762 r = removed_runnable;
3763 sub_positive(&sa->runnable_avg, r);
3764 sa->runnable_sum = sa->runnable_avg * divider;
3765
3766 /*
3767 * removed_runnable is the unweighted version of removed_load so we
3768 * can use it to estimate removed_load_sum.
3769 */
3770 add_tg_cfs_propagate(cfs_rq,
3771 -(long)(removed_runnable * divider) >> SCHED_CAPACITY_SHIFT);
3772
3773 decayed = 1;
3774 }
3775
3776 decayed |= __update_load_avg_cfs_rq(now, cfs_rq);
3777
3778 #ifndef CONFIG_64BIT
3779 smp_wmb();
3780 cfs_rq->load_last_update_time_copy = sa->last_update_time;
3781 #endif
3782
3783 return decayed;
3784 }
3785
3786 /**
3787 * attach_entity_load_avg - attach this entity to its cfs_rq load avg
3788 * @cfs_rq: cfs_rq to attach to
3789 * @se: sched_entity to attach
3790 *
3791 * Must call update_cfs_rq_load_avg() before this, since we rely on
3792 * cfs_rq->avg.last_update_time being current.
3793 */
attach_entity_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)3794 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3795 {
3796 /*
3797 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3798 * See ___update_load_avg() for details.
3799 */
3800 u32 divider = get_pelt_divider(&cfs_rq->avg);
3801
3802 /*
3803 * When we attach the @se to the @cfs_rq, we must align the decay
3804 * window because without that, really weird and wonderful things can
3805 * happen.
3806 *
3807 * XXX illustrate
3808 */
3809 se->avg.last_update_time = cfs_rq->avg.last_update_time;
3810 se->avg.period_contrib = cfs_rq->avg.period_contrib;
3811
3812 /*
3813 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new
3814 * period_contrib. This isn't strictly correct, but since we're
3815 * entirely outside of the PELT hierarchy, nobody cares if we truncate
3816 * _sum a little.
3817 */
3818 se->avg.util_sum = se->avg.util_avg * divider;
3819
3820 se->avg.runnable_sum = se->avg.runnable_avg * divider;
3821
3822 se->avg.load_sum = se->avg.load_avg * divider;
3823 if (se_weight(se) < se->avg.load_sum)
3824 se->avg.load_sum = div_u64(se->avg.load_sum, se_weight(se));
3825 else
3826 se->avg.load_sum = 1;
3827
3828 trace_android_rvh_attach_entity_load_avg(cfs_rq, se);
3829
3830 enqueue_load_avg(cfs_rq, se);
3831 cfs_rq->avg.util_avg += se->avg.util_avg;
3832 cfs_rq->avg.util_sum += se->avg.util_sum;
3833 cfs_rq->avg.runnable_avg += se->avg.runnable_avg;
3834 cfs_rq->avg.runnable_sum += se->avg.runnable_sum;
3835
3836 add_tg_cfs_propagate(cfs_rq, se->avg.load_sum);
3837
3838 cfs_rq_util_change(cfs_rq, 0);
3839
3840 trace_pelt_cfs_tp(cfs_rq);
3841 }
3842
3843 /**
3844 * detach_entity_load_avg - detach this entity from its cfs_rq load avg
3845 * @cfs_rq: cfs_rq to detach from
3846 * @se: sched_entity to detach
3847 *
3848 * Must call update_cfs_rq_load_avg() before this, since we rely on
3849 * cfs_rq->avg.last_update_time being current.
3850 */
detach_entity_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)3851 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3852 {
3853 /*
3854 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3855 * See ___update_load_avg() for details.
3856 */
3857 u32 divider = get_pelt_divider(&cfs_rq->avg);
3858
3859 trace_android_rvh_detach_entity_load_avg(cfs_rq, se);
3860
3861 dequeue_load_avg(cfs_rq, se);
3862 sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
3863 cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * divider;
3864 sub_positive(&cfs_rq->avg.runnable_avg, se->avg.runnable_avg);
3865 cfs_rq->avg.runnable_sum = cfs_rq->avg.runnable_avg * divider;
3866
3867 add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum);
3868
3869 cfs_rq_util_change(cfs_rq, 0);
3870
3871 trace_pelt_cfs_tp(cfs_rq);
3872 }
3873
3874 /*
3875 * Optional action to be done while updating the load average
3876 */
3877 #define UPDATE_TG 0x1
3878 #define SKIP_AGE_LOAD 0x2
3879 #define DO_ATTACH 0x4
3880
3881 /* Update task and its cfs_rq load average */
update_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se,int flags)3882 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3883 {
3884 u64 now = cfs_rq_clock_pelt(cfs_rq);
3885 int decayed;
3886
3887 /*
3888 * Track task load average for carrying it to new CPU after migrated, and
3889 * track group sched_entity load average for task_h_load calc in migration
3890 */
3891 if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD))
3892 __update_load_avg_se(now, cfs_rq, se);
3893
3894 decayed = update_cfs_rq_load_avg(now, cfs_rq);
3895 decayed |= propagate_entity_load_avg(se);
3896
3897 trace_android_rvh_update_load_avg(now, cfs_rq, se);
3898
3899 if (!se->avg.last_update_time && (flags & DO_ATTACH)) {
3900
3901 /*
3902 * DO_ATTACH means we're here from enqueue_entity().
3903 * !last_update_time means we've passed through
3904 * migrate_task_rq_fair() indicating we migrated.
3905 *
3906 * IOW we're enqueueing a task on a new CPU.
3907 */
3908 attach_entity_load_avg(cfs_rq, se);
3909 update_tg_load_avg(cfs_rq);
3910
3911 } else if (decayed) {
3912 cfs_rq_util_change(cfs_rq, 0);
3913
3914 if (flags & UPDATE_TG)
3915 update_tg_load_avg(cfs_rq);
3916 }
3917 }
3918
3919 #ifndef CONFIG_64BIT
cfs_rq_last_update_time(struct cfs_rq * cfs_rq)3920 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3921 {
3922 u64 last_update_time_copy;
3923 u64 last_update_time;
3924
3925 do {
3926 last_update_time_copy = cfs_rq->load_last_update_time_copy;
3927 smp_rmb();
3928 last_update_time = cfs_rq->avg.last_update_time;
3929 } while (last_update_time != last_update_time_copy);
3930
3931 return last_update_time;
3932 }
3933 #else
cfs_rq_last_update_time(struct cfs_rq * cfs_rq)3934 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3935 {
3936 return cfs_rq->avg.last_update_time;
3937 }
3938 #endif
3939
3940 /*
3941 * Synchronize entity load avg of dequeued entity without locking
3942 * the previous rq.
3943 */
sync_entity_load_avg(struct sched_entity * se)3944 static void sync_entity_load_avg(struct sched_entity *se)
3945 {
3946 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3947 u64 last_update_time;
3948
3949 last_update_time = cfs_rq_last_update_time(cfs_rq);
3950 __update_load_avg_blocked_se(last_update_time, se);
3951 }
3952
3953 /*
3954 * Task first catches up with cfs_rq, and then subtract
3955 * itself from the cfs_rq (task must be off the queue now).
3956 */
remove_entity_load_avg(struct sched_entity * se)3957 static void remove_entity_load_avg(struct sched_entity *se)
3958 {
3959 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3960 unsigned long flags;
3961
3962 /*
3963 * tasks cannot exit without having gone through wake_up_new_task() ->
3964 * post_init_entity_util_avg() which will have added things to the
3965 * cfs_rq, so we can remove unconditionally.
3966 */
3967
3968 sync_entity_load_avg(se);
3969
3970 trace_android_rvh_remove_entity_load_avg(cfs_rq, se);
3971
3972 raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags);
3973 ++cfs_rq->removed.nr;
3974 cfs_rq->removed.util_avg += se->avg.util_avg;
3975 cfs_rq->removed.load_avg += se->avg.load_avg;
3976 cfs_rq->removed.runnable_avg += se->avg.runnable_avg;
3977 raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags);
3978 }
3979
cfs_rq_runnable_avg(struct cfs_rq * cfs_rq)3980 static inline unsigned long cfs_rq_runnable_avg(struct cfs_rq *cfs_rq)
3981 {
3982 return cfs_rq->avg.runnable_avg;
3983 }
3984
cfs_rq_load_avg(struct cfs_rq * cfs_rq)3985 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
3986 {
3987 return cfs_rq->avg.load_avg;
3988 }
3989
3990 static int newidle_balance(struct rq *this_rq, struct rq_flags *rf);
3991
task_util(struct task_struct * p)3992 static inline unsigned long task_util(struct task_struct *p)
3993 {
3994 return READ_ONCE(p->se.avg.util_avg);
3995 }
3996
_task_util_est(struct task_struct * p)3997 static inline unsigned long _task_util_est(struct task_struct *p)
3998 {
3999 struct util_est ue = READ_ONCE(p->se.avg.util_est);
4000
4001 return max(ue.ewma, (ue.enqueued & ~UTIL_AVG_UNCHANGED));
4002 }
4003
task_util_est(struct task_struct * p)4004 static inline unsigned long task_util_est(struct task_struct *p)
4005 {
4006 return max(task_util(p), _task_util_est(p));
4007 }
4008
util_est_enqueue(struct cfs_rq * cfs_rq,struct task_struct * p)4009 static inline void util_est_enqueue(struct cfs_rq *cfs_rq,
4010 struct task_struct *p)
4011 {
4012 unsigned int enqueued;
4013
4014 if (!sched_feat(UTIL_EST))
4015 return;
4016
4017 /* Update root cfs_rq's estimated utilization */
4018 enqueued = cfs_rq->avg.util_est.enqueued;
4019 enqueued += _task_util_est(p);
4020 WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued);
4021
4022 trace_sched_util_est_cfs_tp(cfs_rq);
4023 }
4024
util_est_dequeue(struct cfs_rq * cfs_rq,struct task_struct * p)4025 static inline void util_est_dequeue(struct cfs_rq *cfs_rq,
4026 struct task_struct *p)
4027 {
4028 unsigned int enqueued;
4029
4030 if (!sched_feat(UTIL_EST))
4031 return;
4032
4033 /* Update root cfs_rq's estimated utilization */
4034 enqueued = cfs_rq->avg.util_est.enqueued;
4035 enqueued -= min_t(unsigned int, enqueued, _task_util_est(p));
4036 WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued);
4037
4038 trace_sched_util_est_cfs_tp(cfs_rq);
4039 }
4040
4041 #define UTIL_EST_MARGIN (SCHED_CAPACITY_SCALE / 100)
4042
4043 /*
4044 * Check if a (signed) value is within a specified (unsigned) margin,
4045 * based on the observation that:
4046 *
4047 * abs(x) < y := (unsigned)(x + y - 1) < (2 * y - 1)
4048 *
4049 * NOTE: this only works when value + margin < INT_MAX.
4050 */
within_margin(int value,int margin)4051 static inline bool within_margin(int value, int margin)
4052 {
4053 return ((unsigned int)(value + margin - 1) < (2 * margin - 1));
4054 }
4055
util_est_update(struct cfs_rq * cfs_rq,struct task_struct * p,bool task_sleep)4056 static inline void util_est_update(struct cfs_rq *cfs_rq,
4057 struct task_struct *p,
4058 bool task_sleep)
4059 {
4060 long last_ewma_diff, last_enqueued_diff;
4061 struct util_est ue;
4062 int ret = 0;
4063
4064 trace_android_rvh_util_est_update(cfs_rq, p, task_sleep, &ret);
4065 if (ret)
4066 return;
4067
4068 if (!sched_feat(UTIL_EST))
4069 return;
4070
4071 /*
4072 * Skip update of task's estimated utilization when the task has not
4073 * yet completed an activation, e.g. being migrated.
4074 */
4075 if (!task_sleep)
4076 return;
4077
4078 /*
4079 * If the PELT values haven't changed since enqueue time,
4080 * skip the util_est update.
4081 */
4082 ue = p->se.avg.util_est;
4083 if (ue.enqueued & UTIL_AVG_UNCHANGED)
4084 return;
4085
4086 last_enqueued_diff = ue.enqueued;
4087
4088 /*
4089 * Reset EWMA on utilization increases, the moving average is used only
4090 * to smooth utilization decreases.
4091 */
4092 ue.enqueued = task_util(p);
4093 if (sched_feat(UTIL_EST_FASTUP)) {
4094 if (ue.ewma < ue.enqueued) {
4095 ue.ewma = ue.enqueued;
4096 goto done;
4097 }
4098 }
4099
4100 /*
4101 * Skip update of task's estimated utilization when its members are
4102 * already ~1% close to its last activation value.
4103 */
4104 last_ewma_diff = ue.enqueued - ue.ewma;
4105 last_enqueued_diff -= ue.enqueued;
4106 if (within_margin(last_ewma_diff, UTIL_EST_MARGIN)) {
4107 if (!within_margin(last_enqueued_diff, UTIL_EST_MARGIN))
4108 goto done;
4109
4110 return;
4111 }
4112
4113 /*
4114 * To avoid overestimation of actual task utilization, skip updates if
4115 * we cannot grant there is idle time in this CPU.
4116 */
4117 if (task_util(p) > capacity_orig_of(cpu_of(rq_of(cfs_rq))))
4118 return;
4119
4120 /*
4121 * Update Task's estimated utilization
4122 *
4123 * When *p completes an activation we can consolidate another sample
4124 * of the task size. This is done by storing the current PELT value
4125 * as ue.enqueued and by using this value to update the Exponential
4126 * Weighted Moving Average (EWMA):
4127 *
4128 * ewma(t) = w * task_util(p) + (1-w) * ewma(t-1)
4129 * = w * task_util(p) + ewma(t-1) - w * ewma(t-1)
4130 * = w * (task_util(p) - ewma(t-1)) + ewma(t-1)
4131 * = w * ( last_ewma_diff ) + ewma(t-1)
4132 * = w * (last_ewma_diff + ewma(t-1) / w)
4133 *
4134 * Where 'w' is the weight of new samples, which is configured to be
4135 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT)
4136 */
4137 ue.ewma <<= UTIL_EST_WEIGHT_SHIFT;
4138 ue.ewma += last_ewma_diff;
4139 ue.ewma >>= UTIL_EST_WEIGHT_SHIFT;
4140 done:
4141 ue.enqueued |= UTIL_AVG_UNCHANGED;
4142 WRITE_ONCE(p->se.avg.util_est, ue);
4143
4144 trace_sched_util_est_se_tp(&p->se);
4145 }
4146
util_fits_cpu(unsigned long util,unsigned long uclamp_min,unsigned long uclamp_max,int cpu)4147 static inline int util_fits_cpu(unsigned long util,
4148 unsigned long uclamp_min,
4149 unsigned long uclamp_max,
4150 int cpu)
4151 {
4152 unsigned long capacity_orig, capacity_orig_thermal;
4153 unsigned long capacity = capacity_of(cpu);
4154 bool fits, uclamp_max_fits, done = false;
4155
4156 trace_android_rvh_util_fits_cpu(util, uclamp_min, uclamp_max, cpu, &fits, &done);
4157
4158 if (done)
4159 return fits;
4160
4161 /*
4162 * Check if the real util fits without any uclamp boost/cap applied.
4163 */
4164 fits = fits_capacity(util, capacity);
4165
4166 if (!uclamp_is_used())
4167 return fits;
4168
4169 /*
4170 * We must use capacity_orig_of() for comparing against uclamp_min and
4171 * uclamp_max. We only care about capacity pressure (by using
4172 * capacity_of()) for comparing against the real util.
4173 *
4174 * If a task is boosted to 1024 for example, we don't want a tiny
4175 * pressure to skew the check whether it fits a CPU or not.
4176 *
4177 * Similarly if a task is capped to capacity_orig_of(little_cpu), it
4178 * should fit a little cpu even if there's some pressure.
4179 *
4180 * Only exception is for thermal pressure since it has a direct impact
4181 * on available OPP of the system.
4182 *
4183 * We honour it for uclamp_min only as a drop in performance level
4184 * could result in not getting the requested minimum performance level.
4185 *
4186 * For uclamp_max, we can tolerate a drop in performance level as the
4187 * goal is to cap the task. So it's okay if it's getting less.
4188 *
4189 * In case of capacity inversion we should honour the inverted capacity
4190 * for both uclamp_min and uclamp_max all the time.
4191 */
4192 capacity_orig = cpu_in_capacity_inversion(cpu);
4193 if (capacity_orig) {
4194 capacity_orig_thermal = capacity_orig;
4195 } else {
4196 capacity_orig = capacity_orig_of(cpu);
4197 capacity_orig_thermal = capacity_orig - arch_scale_thermal_pressure(cpu);
4198 }
4199
4200 /*
4201 * We want to force a task to fit a cpu as implied by uclamp_max.
4202 * But we do have some corner cases to cater for..
4203 *
4204 *
4205 * C=z
4206 * | ___
4207 * | C=y | |
4208 * |_ _ _ _ _ _ _ _ _ ___ _ _ _ | _ | _ _ _ _ _ uclamp_max
4209 * | C=x | | | |
4210 * | ___ | | | |
4211 * | | | | | | | (util somewhere in this region)
4212 * | | | | | | |
4213 * | | | | | | |
4214 * +----------------------------------------
4215 * cpu0 cpu1 cpu2
4216 *
4217 * In the above example if a task is capped to a specific performance
4218 * point, y, then when:
4219 *
4220 * * util = 80% of x then it does not fit on cpu0 and should migrate
4221 * to cpu1
4222 * * util = 80% of y then it is forced to fit on cpu1 to honour
4223 * uclamp_max request.
4224 *
4225 * which is what we're enforcing here. A task always fits if
4226 * uclamp_max <= capacity_orig. But when uclamp_max > capacity_orig,
4227 * the normal upmigration rules should withhold still.
4228 *
4229 * Only exception is when we are on max capacity, then we need to be
4230 * careful not to block overutilized state. This is so because:
4231 *
4232 * 1. There's no concept of capping at max_capacity! We can't go
4233 * beyond this performance level anyway.
4234 * 2. The system is being saturated when we're operating near
4235 * max capacity, it doesn't make sense to block overutilized.
4236 */
4237 uclamp_max_fits = (capacity_orig == SCHED_CAPACITY_SCALE) && (uclamp_max == SCHED_CAPACITY_SCALE);
4238 uclamp_max_fits = !uclamp_max_fits && (uclamp_max <= capacity_orig);
4239 fits = fits || uclamp_max_fits;
4240
4241 /*
4242 *
4243 * C=z
4244 * | ___ (region a, capped, util >= uclamp_max)
4245 * | C=y | |
4246 * |_ _ _ _ _ _ _ _ _ ___ _ _ _ | _ | _ _ _ _ _ uclamp_max
4247 * | C=x | | | |
4248 * | ___ | | | | (region b, uclamp_min <= util <= uclamp_max)
4249 * |_ _ _|_ _|_ _ _ _| _ | _ _ _| _ | _ _ _ _ _ uclamp_min
4250 * | | | | | | |
4251 * | | | | | | | (region c, boosted, util < uclamp_min)
4252 * +----------------------------------------
4253 * cpu0 cpu1 cpu2
4254 *
4255 * a) If util > uclamp_max, then we're capped, we don't care about
4256 * actual fitness value here. We only care if uclamp_max fits
4257 * capacity without taking margin/pressure into account.
4258 * See comment above.
4259 *
4260 * b) If uclamp_min <= util <= uclamp_max, then the normal
4261 * fits_capacity() rules apply. Except we need to ensure that we
4262 * enforce we remain within uclamp_max, see comment above.
4263 *
4264 * c) If util < uclamp_min, then we are boosted. Same as (b) but we
4265 * need to take into account the boosted value fits the CPU without
4266 * taking margin/pressure into account.
4267 *
4268 * Cases (a) and (b) are handled in the 'fits' variable already. We
4269 * just need to consider an extra check for case (c) after ensuring we
4270 * handle the case uclamp_min > uclamp_max.
4271 */
4272 uclamp_min = min(uclamp_min, uclamp_max);
4273 if (util < uclamp_min && capacity_orig != SCHED_CAPACITY_SCALE)
4274 fits = fits && (uclamp_min <= capacity_orig_thermal);
4275
4276 return fits;
4277 }
4278
task_fits_cpu(struct task_struct * p,int cpu)4279 static inline int task_fits_cpu(struct task_struct *p, int cpu)
4280 {
4281 unsigned long uclamp_min = uclamp_eff_value(p, UCLAMP_MIN);
4282 unsigned long uclamp_max = uclamp_eff_value(p, UCLAMP_MAX);
4283 unsigned long util = task_util_est(p);
4284 return util_fits_cpu(util, uclamp_min, uclamp_max, cpu);
4285 }
4286
update_misfit_status(struct task_struct * p,struct rq * rq)4287 static inline void update_misfit_status(struct task_struct *p, struct rq *rq)
4288 {
4289 bool need_update = true;
4290
4291 trace_android_rvh_update_misfit_status(p, rq, &need_update);
4292 if (!sched_asym_cpucap_active() || !need_update)
4293 return;
4294
4295 if (!p || p->nr_cpus_allowed == 1) {
4296 rq->misfit_task_load = 0;
4297 return;
4298 }
4299
4300 if (task_fits_cpu(p, cpu_of(rq))) {
4301 rq->misfit_task_load = 0;
4302 return;
4303 }
4304
4305 /*
4306 * Make sure that misfit_task_load will not be null even if
4307 * task_h_load() returns 0.
4308 */
4309 rq->misfit_task_load = max_t(unsigned long, task_h_load(p), 1);
4310 }
4311
4312 #else /* CONFIG_SMP */
4313
cfs_rq_is_decayed(struct cfs_rq * cfs_rq)4314 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
4315 {
4316 return true;
4317 }
4318
4319 #define UPDATE_TG 0x0
4320 #define SKIP_AGE_LOAD 0x0
4321 #define DO_ATTACH 0x0
4322
update_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se,int not_used1)4323 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1)
4324 {
4325 cfs_rq_util_change(cfs_rq, 0);
4326 }
4327
remove_entity_load_avg(struct sched_entity * se)4328 static inline void remove_entity_load_avg(struct sched_entity *se) {}
4329
4330 static inline void
attach_entity_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)4331 attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
4332 static inline void
detach_entity_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)4333 detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
4334
newidle_balance(struct rq * rq,struct rq_flags * rf)4335 static inline int newidle_balance(struct rq *rq, struct rq_flags *rf)
4336 {
4337 return 0;
4338 }
4339
4340 static inline void
util_est_enqueue(struct cfs_rq * cfs_rq,struct task_struct * p)4341 util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
4342
4343 static inline void
util_est_dequeue(struct cfs_rq * cfs_rq,struct task_struct * p)4344 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
4345
4346 static inline void
util_est_update(struct cfs_rq * cfs_rq,struct task_struct * p,bool task_sleep)4347 util_est_update(struct cfs_rq *cfs_rq, struct task_struct *p,
4348 bool task_sleep) {}
update_misfit_status(struct task_struct * p,struct rq * rq)4349 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) {}
4350
4351 #endif /* CONFIG_SMP */
4352
check_spread(struct cfs_rq * cfs_rq,struct sched_entity * se)4353 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
4354 {
4355 #ifdef CONFIG_SCHED_DEBUG
4356 s64 d = se->vruntime - cfs_rq->min_vruntime;
4357
4358 if (d < 0)
4359 d = -d;
4360
4361 if (d > 3*sysctl_sched_latency)
4362 schedstat_inc(cfs_rq->nr_spread_over);
4363 #endif
4364 }
4365
entity_is_long_sleeper(struct sched_entity * se)4366 static inline bool entity_is_long_sleeper(struct sched_entity *se)
4367 {
4368 struct cfs_rq *cfs_rq;
4369 u64 sleep_time;
4370
4371 if (se->exec_start == 0)
4372 return false;
4373
4374 cfs_rq = cfs_rq_of(se);
4375
4376 sleep_time = rq_clock_task(rq_of(cfs_rq));
4377
4378 /* Happen while migrating because of clock task divergence */
4379 if (sleep_time <= se->exec_start)
4380 return false;
4381
4382 sleep_time -= se->exec_start;
4383 if (sleep_time > ((1ULL << 63) / scale_load_down(NICE_0_LOAD)))
4384 return true;
4385
4386 return false;
4387 }
4388
4389 static void
place_entity(struct cfs_rq * cfs_rq,struct sched_entity * se,int initial)4390 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
4391 {
4392 u64 vruntime = cfs_rq->min_vruntime;
4393
4394 /*
4395 * The 'current' period is already promised to the current tasks,
4396 * however the extra weight of the new task will slow them down a
4397 * little, place the new task so that it fits in the slot that
4398 * stays open at the end.
4399 */
4400 if (initial && sched_feat(START_DEBIT))
4401 vruntime += sched_vslice(cfs_rq, se);
4402
4403 /* sleeps up to a single latency don't count. */
4404 if (!initial) {
4405 unsigned long thresh = sysctl_sched_latency;
4406
4407 /*
4408 * Halve their sleep time's effect, to allow
4409 * for a gentler effect of sleepers:
4410 */
4411 if (sched_feat(GENTLE_FAIR_SLEEPERS))
4412 thresh >>= 1;
4413
4414 vruntime -= thresh;
4415 }
4416
4417 /*
4418 * Pull vruntime of the entity being placed to the base level of
4419 * cfs_rq, to prevent boosting it if placed backwards.
4420 * However, min_vruntime can advance much faster than real time, with
4421 * the extreme being when an entity with the minimal weight always runs
4422 * on the cfs_rq. If the waking entity slept for a long time, its
4423 * vruntime difference from min_vruntime may overflow s64 and their
4424 * comparison may get inversed, so ignore the entity's original
4425 * vruntime in that case.
4426 * The maximal vruntime speedup is given by the ratio of normal to
4427 * minimal weight: scale_load_down(NICE_0_LOAD) / MIN_SHARES.
4428 * When placing a migrated waking entity, its exec_start has been set
4429 * from a different rq. In order to take into account a possible
4430 * divergence between new and prev rq's clocks task because of irq and
4431 * stolen time, we take an additional margin.
4432 * So, cutting off on the sleep time of
4433 * 2^63 / scale_load_down(NICE_0_LOAD) ~ 104 days
4434 * should be safe.
4435 */
4436 if (entity_is_long_sleeper(se))
4437 se->vruntime = vruntime;
4438 else
4439 se->vruntime = max_vruntime(se->vruntime, vruntime);
4440 trace_android_rvh_place_entity(cfs_rq, se, initial, &vruntime);
4441 }
4442
4443 static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
4444
check_schedstat_required(void)4445 static inline void check_schedstat_required(void)
4446 {
4447 #ifdef CONFIG_SCHEDSTATS
4448 if (schedstat_enabled())
4449 return;
4450
4451 /* Force schedstat enabled if a dependent tracepoint is active */
4452 if (trace_sched_stat_wait_enabled() ||
4453 trace_sched_stat_sleep_enabled() ||
4454 trace_sched_stat_iowait_enabled() ||
4455 trace_sched_stat_blocked_enabled() ||
4456 trace_sched_stat_runtime_enabled()) {
4457 printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, "
4458 "stat_blocked and stat_runtime require the "
4459 "kernel parameter schedstats=enable or "
4460 "kernel.sched_schedstats=1\n");
4461 }
4462 #endif
4463 }
4464
4465 static inline bool cfs_bandwidth_used(void);
4466
4467 /*
4468 * MIGRATION
4469 *
4470 * dequeue
4471 * update_curr()
4472 * update_min_vruntime()
4473 * vruntime -= min_vruntime
4474 *
4475 * enqueue
4476 * update_curr()
4477 * update_min_vruntime()
4478 * vruntime += min_vruntime
4479 *
4480 * this way the vruntime transition between RQs is done when both
4481 * min_vruntime are up-to-date.
4482 *
4483 * WAKEUP (remote)
4484 *
4485 * ->migrate_task_rq_fair() (p->state == TASK_WAKING)
4486 * vruntime -= min_vruntime
4487 *
4488 * enqueue
4489 * update_curr()
4490 * update_min_vruntime()
4491 * vruntime += min_vruntime
4492 *
4493 * this way we don't have the most up-to-date min_vruntime on the originating
4494 * CPU and an up-to-date min_vruntime on the destination CPU.
4495 */
4496
4497 static void
enqueue_entity(struct cfs_rq * cfs_rq,struct sched_entity * se,int flags)4498 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
4499 {
4500 bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED);
4501 bool curr = cfs_rq->curr == se;
4502
4503 /*
4504 * If we're the current task, we must renormalise before calling
4505 * update_curr().
4506 */
4507 if (renorm && curr)
4508 se->vruntime += cfs_rq->min_vruntime;
4509
4510 update_curr(cfs_rq);
4511
4512 /*
4513 * Otherwise, renormalise after, such that we're placed at the current
4514 * moment in time, instead of some random moment in the past. Being
4515 * placed in the past could significantly boost this task to the
4516 * fairness detriment of existing tasks.
4517 */
4518 if (renorm && !curr)
4519 se->vruntime += cfs_rq->min_vruntime;
4520
4521 /*
4522 * When enqueuing a sched_entity, we must:
4523 * - Update loads to have both entity and cfs_rq synced with now.
4524 * - Add its load to cfs_rq->runnable_avg
4525 * - For group_entity, update its weight to reflect the new share of
4526 * its group cfs_rq
4527 * - Add its new weight to cfs_rq->load.weight
4528 */
4529 update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH);
4530 se_update_runnable(se);
4531 update_cfs_group(se);
4532 account_entity_enqueue(cfs_rq, se);
4533
4534 if (flags & ENQUEUE_WAKEUP)
4535 place_entity(cfs_rq, se, 0);
4536 /* Entity has migrated, no longer consider this task hot */
4537 if (flags & ENQUEUE_MIGRATED)
4538 se->exec_start = 0;
4539
4540 check_schedstat_required();
4541 update_stats_enqueue(cfs_rq, se, flags);
4542 check_spread(cfs_rq, se);
4543 if (!curr)
4544 __enqueue_entity(cfs_rq, se);
4545 se->on_rq = 1;
4546
4547 /*
4548 * When bandwidth control is enabled, cfs might have been removed
4549 * because of a parent been throttled but cfs->nr_running > 1. Try to
4550 * add it unconditionally.
4551 */
4552 if (cfs_rq->nr_running == 1 || cfs_bandwidth_used())
4553 list_add_leaf_cfs_rq(cfs_rq);
4554
4555 if (cfs_rq->nr_running == 1)
4556 check_enqueue_throttle(cfs_rq);
4557 }
4558
__clear_buddies_last(struct sched_entity * se)4559 static void __clear_buddies_last(struct sched_entity *se)
4560 {
4561 for_each_sched_entity(se) {
4562 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4563 if (cfs_rq->last != se)
4564 break;
4565
4566 cfs_rq->last = NULL;
4567 }
4568 }
4569
__clear_buddies_next(struct sched_entity * se)4570 static void __clear_buddies_next(struct sched_entity *se)
4571 {
4572 for_each_sched_entity(se) {
4573 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4574 if (cfs_rq->next != se)
4575 break;
4576
4577 cfs_rq->next = NULL;
4578 }
4579 }
4580
__clear_buddies_skip(struct sched_entity * se)4581 static void __clear_buddies_skip(struct sched_entity *se)
4582 {
4583 for_each_sched_entity(se) {
4584 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4585 if (cfs_rq->skip != se)
4586 break;
4587
4588 cfs_rq->skip = NULL;
4589 }
4590 }
4591
clear_buddies(struct cfs_rq * cfs_rq,struct sched_entity * se)4592 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
4593 {
4594 if (cfs_rq->last == se)
4595 __clear_buddies_last(se);
4596
4597 if (cfs_rq->next == se)
4598 __clear_buddies_next(se);
4599
4600 if (cfs_rq->skip == se)
4601 __clear_buddies_skip(se);
4602 }
4603
4604 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
4605
4606 static void
dequeue_entity(struct cfs_rq * cfs_rq,struct sched_entity * se,int flags)4607 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
4608 {
4609 /*
4610 * Update run-time statistics of the 'current'.
4611 */
4612 update_curr(cfs_rq);
4613
4614 /*
4615 * When dequeuing a sched_entity, we must:
4616 * - Update loads to have both entity and cfs_rq synced with now.
4617 * - Subtract its load from the cfs_rq->runnable_avg.
4618 * - Subtract its previous weight from cfs_rq->load.weight.
4619 * - For group entity, update its weight to reflect the new share
4620 * of its group cfs_rq.
4621 */
4622 update_load_avg(cfs_rq, se, UPDATE_TG);
4623 se_update_runnable(se);
4624
4625 update_stats_dequeue(cfs_rq, se, flags);
4626
4627 clear_buddies(cfs_rq, se);
4628
4629 if (se != cfs_rq->curr)
4630 __dequeue_entity(cfs_rq, se);
4631 se->on_rq = 0;
4632 account_entity_dequeue(cfs_rq, se);
4633
4634 /*
4635 * Normalize after update_curr(); which will also have moved
4636 * min_vruntime if @se is the one holding it back. But before doing
4637 * update_min_vruntime() again, which will discount @se's position and
4638 * can move min_vruntime forward still more.
4639 */
4640 if (!(flags & DEQUEUE_SLEEP))
4641 se->vruntime -= cfs_rq->min_vruntime;
4642
4643 /* return excess runtime on last dequeue */
4644 return_cfs_rq_runtime(cfs_rq);
4645
4646 update_cfs_group(se);
4647
4648 /*
4649 * Now advance min_vruntime if @se was the entity holding it back,
4650 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
4651 * put back on, and if we advance min_vruntime, we'll be placed back
4652 * further than we started -- ie. we'll be penalized.
4653 */
4654 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE)
4655 update_min_vruntime(cfs_rq);
4656 }
4657
4658 /*
4659 * Preempt the current task with a newly woken task if needed:
4660 */
4661 static void
check_preempt_tick(struct cfs_rq * cfs_rq,struct sched_entity * curr)4662 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
4663 {
4664 unsigned long ideal_runtime, delta_exec;
4665 struct sched_entity *se;
4666 s64 delta;
4667 bool skip_preempt = false;
4668
4669 /*
4670 * When many tasks blow up the sched_period; it is possible that
4671 * sched_slice() reports unusually large results (when many tasks are
4672 * very light for example). Therefore impose a maximum.
4673 */
4674 ideal_runtime = min_t(u64, sched_slice(cfs_rq, curr), sysctl_sched_latency);
4675
4676 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
4677 trace_android_rvh_check_preempt_tick(current, &ideal_runtime, &skip_preempt,
4678 delta_exec, cfs_rq, curr, sysctl_sched_min_granularity);
4679 if (skip_preempt)
4680 return;
4681 if (delta_exec > ideal_runtime) {
4682 resched_curr(rq_of(cfs_rq));
4683 /*
4684 * The current task ran long enough, ensure it doesn't get
4685 * re-elected due to buddy favours.
4686 */
4687 clear_buddies(cfs_rq, curr);
4688 return;
4689 }
4690
4691 /*
4692 * Ensure that a task that missed wakeup preemption by a
4693 * narrow margin doesn't have to wait for a full slice.
4694 * This also mitigates buddy induced latencies under load.
4695 */
4696 if (delta_exec < sysctl_sched_min_granularity)
4697 return;
4698
4699 se = __pick_first_entity(cfs_rq);
4700 delta = curr->vruntime - se->vruntime;
4701
4702 if (delta < 0)
4703 return;
4704
4705 if (delta > ideal_runtime)
4706 resched_curr(rq_of(cfs_rq));
4707 }
4708
set_next_entity(struct cfs_rq * cfs_rq,struct sched_entity * se)4709 void set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
4710 {
4711 clear_buddies(cfs_rq, se);
4712
4713 /* 'current' is not kept within the tree. */
4714 if (se->on_rq) {
4715 /*
4716 * Any task has to be enqueued before it get to execute on
4717 * a CPU. So account for the time it spent waiting on the
4718 * runqueue.
4719 */
4720 update_stats_wait_end(cfs_rq, se);
4721 __dequeue_entity(cfs_rq, se);
4722 update_load_avg(cfs_rq, se, UPDATE_TG);
4723 }
4724
4725 update_stats_curr_start(cfs_rq, se);
4726 cfs_rq->curr = se;
4727
4728 /*
4729 * Track our maximum slice length, if the CPU's load is at
4730 * least twice that of our own weight (i.e. dont track it
4731 * when there are only lesser-weight tasks around):
4732 */
4733 if (schedstat_enabled() &&
4734 rq_of(cfs_rq)->cfs.load.weight >= 2*se->load.weight) {
4735 struct sched_statistics *stats;
4736
4737 stats = __schedstats_from_se(se);
4738 __schedstat_set(stats->slice_max,
4739 max((u64)stats->slice_max,
4740 se->sum_exec_runtime - se->prev_sum_exec_runtime));
4741 }
4742
4743 se->prev_sum_exec_runtime = se->sum_exec_runtime;
4744 }
4745 EXPORT_SYMBOL_GPL(set_next_entity);
4746
4747 static int
4748 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
4749
4750 /*
4751 * Pick the next process, keeping these things in mind, in this order:
4752 * 1) keep things fair between processes/task groups
4753 * 2) pick the "next" process, since someone really wants that to run
4754 * 3) pick the "last" process, for cache locality
4755 * 4) do not run the "skip" process, if something else is available
4756 */
4757 static struct sched_entity *
pick_next_entity(struct cfs_rq * cfs_rq,struct sched_entity * curr)4758 pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
4759 {
4760 struct sched_entity *left = __pick_first_entity(cfs_rq);
4761 struct sched_entity *se = NULL;
4762
4763 trace_android_rvh_pick_next_entity(cfs_rq, curr, &se);
4764 if (se)
4765 goto done;
4766
4767 /*
4768 * If curr is set we have to see if its left of the leftmost entity
4769 * still in the tree, provided there was anything in the tree at all.
4770 */
4771 if (!left || (curr && entity_before(curr, left)))
4772 left = curr;
4773
4774 se = left; /* ideally we run the leftmost entity */
4775
4776 /*
4777 * Avoid running the skip buddy, if running something else can
4778 * be done without getting too unfair.
4779 */
4780 if (cfs_rq->skip && cfs_rq->skip == se) {
4781 struct sched_entity *second;
4782
4783 if (se == curr) {
4784 second = __pick_first_entity(cfs_rq);
4785 } else {
4786 second = __pick_next_entity(se);
4787 if (!second || (curr && entity_before(curr, second)))
4788 second = curr;
4789 }
4790
4791 if (second && wakeup_preempt_entity(second, left) < 1)
4792 se = second;
4793 }
4794
4795 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1) {
4796 /*
4797 * Someone really wants this to run. If it's not unfair, run it.
4798 */
4799 se = cfs_rq->next;
4800 } else if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1) {
4801 /*
4802 * Prefer last buddy, try to return the CPU to a preempted task.
4803 */
4804 se = cfs_rq->last;
4805 }
4806
4807 done:
4808 return se;
4809 }
4810
4811 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
4812
put_prev_entity(struct cfs_rq * cfs_rq,struct sched_entity * prev)4813 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
4814 {
4815 /*
4816 * If still on the runqueue then deactivate_task()
4817 * was not called and update_curr() has to be done:
4818 */
4819 if (prev->on_rq)
4820 update_curr(cfs_rq);
4821
4822 /* throttle cfs_rqs exceeding runtime */
4823 check_cfs_rq_runtime(cfs_rq);
4824
4825 check_spread(cfs_rq, prev);
4826
4827 if (prev->on_rq) {
4828 update_stats_wait_start(cfs_rq, prev);
4829 /* Put 'current' back into the tree. */
4830 __enqueue_entity(cfs_rq, prev);
4831 /* in !on_rq case, update occurred at dequeue */
4832 update_load_avg(cfs_rq, prev, 0);
4833 }
4834 cfs_rq->curr = NULL;
4835 }
4836
4837 static void
entity_tick(struct cfs_rq * cfs_rq,struct sched_entity * curr,int queued)4838 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
4839 {
4840 /*
4841 * Update run-time statistics of the 'current'.
4842 */
4843 update_curr(cfs_rq);
4844
4845 /*
4846 * Ensure that runnable average is periodically updated.
4847 */
4848 update_load_avg(cfs_rq, curr, UPDATE_TG);
4849 update_cfs_group(curr);
4850
4851 #ifdef CONFIG_SCHED_HRTICK
4852 /*
4853 * queued ticks are scheduled to match the slice, so don't bother
4854 * validating it and just reschedule.
4855 */
4856 if (queued) {
4857 resched_curr(rq_of(cfs_rq));
4858 return;
4859 }
4860 /*
4861 * don't let the period tick interfere with the hrtick preemption
4862 */
4863 if (!sched_feat(DOUBLE_TICK) &&
4864 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
4865 return;
4866 #endif
4867
4868 if (cfs_rq->nr_running > 1)
4869 check_preempt_tick(cfs_rq, curr);
4870 trace_android_rvh_entity_tick(cfs_rq, curr);
4871 }
4872
4873
4874 /**************************************************
4875 * CFS bandwidth control machinery
4876 */
4877
4878 #ifdef CONFIG_CFS_BANDWIDTH
4879
4880 #ifdef CONFIG_JUMP_LABEL
4881 static struct static_key __cfs_bandwidth_used;
4882
cfs_bandwidth_used(void)4883 static inline bool cfs_bandwidth_used(void)
4884 {
4885 return static_key_false(&__cfs_bandwidth_used);
4886 }
4887
cfs_bandwidth_usage_inc(void)4888 void cfs_bandwidth_usage_inc(void)
4889 {
4890 static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used);
4891 }
4892
cfs_bandwidth_usage_dec(void)4893 void cfs_bandwidth_usage_dec(void)
4894 {
4895 static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used);
4896 }
4897 #else /* CONFIG_JUMP_LABEL */
cfs_bandwidth_used(void)4898 static bool cfs_bandwidth_used(void)
4899 {
4900 return true;
4901 }
4902
cfs_bandwidth_usage_inc(void)4903 void cfs_bandwidth_usage_inc(void) {}
cfs_bandwidth_usage_dec(void)4904 void cfs_bandwidth_usage_dec(void) {}
4905 #endif /* CONFIG_JUMP_LABEL */
4906
4907 /*
4908 * default period for cfs group bandwidth.
4909 * default: 0.1s, units: nanoseconds
4910 */
default_cfs_period(void)4911 static inline u64 default_cfs_period(void)
4912 {
4913 return 100000000ULL;
4914 }
4915
sched_cfs_bandwidth_slice(void)4916 static inline u64 sched_cfs_bandwidth_slice(void)
4917 {
4918 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
4919 }
4920
4921 /*
4922 * Replenish runtime according to assigned quota. We use sched_clock_cpu
4923 * directly instead of rq->clock to avoid adding additional synchronization
4924 * around rq->lock.
4925 *
4926 * requires cfs_b->lock
4927 */
__refill_cfs_bandwidth_runtime(struct cfs_bandwidth * cfs_b)4928 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
4929 {
4930 if (unlikely(cfs_b->quota == RUNTIME_INF))
4931 return;
4932
4933 cfs_b->runtime += cfs_b->quota;
4934 cfs_b->runtime = min(cfs_b->runtime, cfs_b->quota + cfs_b->burst);
4935 }
4936
tg_cfs_bandwidth(struct task_group * tg)4937 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4938 {
4939 return &tg->cfs_bandwidth;
4940 }
4941
4942 /* returns 0 on failure to allocate runtime */
__assign_cfs_rq_runtime(struct cfs_bandwidth * cfs_b,struct cfs_rq * cfs_rq,u64 target_runtime)4943 static int __assign_cfs_rq_runtime(struct cfs_bandwidth *cfs_b,
4944 struct cfs_rq *cfs_rq, u64 target_runtime)
4945 {
4946 u64 min_amount, amount = 0;
4947
4948 lockdep_assert_held(&cfs_b->lock);
4949
4950 /* note: this is a positive sum as runtime_remaining <= 0 */
4951 min_amount = target_runtime - cfs_rq->runtime_remaining;
4952
4953 if (cfs_b->quota == RUNTIME_INF)
4954 amount = min_amount;
4955 else {
4956 start_cfs_bandwidth(cfs_b);
4957
4958 if (cfs_b->runtime > 0) {
4959 amount = min(cfs_b->runtime, min_amount);
4960 cfs_b->runtime -= amount;
4961 cfs_b->idle = 0;
4962 }
4963 }
4964
4965 cfs_rq->runtime_remaining += amount;
4966
4967 return cfs_rq->runtime_remaining > 0;
4968 }
4969
4970 /* returns 0 on failure to allocate runtime */
assign_cfs_rq_runtime(struct cfs_rq * cfs_rq)4971 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4972 {
4973 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4974 int ret;
4975
4976 raw_spin_lock(&cfs_b->lock);
4977 ret = __assign_cfs_rq_runtime(cfs_b, cfs_rq, sched_cfs_bandwidth_slice());
4978 raw_spin_unlock(&cfs_b->lock);
4979
4980 return ret;
4981 }
4982
__account_cfs_rq_runtime(struct cfs_rq * cfs_rq,u64 delta_exec)4983 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
4984 {
4985 /* dock delta_exec before expiring quota (as it could span periods) */
4986 cfs_rq->runtime_remaining -= delta_exec;
4987
4988 if (likely(cfs_rq->runtime_remaining > 0))
4989 return;
4990
4991 if (cfs_rq->throttled)
4992 return;
4993 /*
4994 * if we're unable to extend our runtime we resched so that the active
4995 * hierarchy can be throttled
4996 */
4997 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
4998 resched_curr(rq_of(cfs_rq));
4999 }
5000
5001 static __always_inline
account_cfs_rq_runtime(struct cfs_rq * cfs_rq,u64 delta_exec)5002 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
5003 {
5004 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
5005 return;
5006
5007 __account_cfs_rq_runtime(cfs_rq, delta_exec);
5008 }
5009
cfs_rq_throttled(struct cfs_rq * cfs_rq)5010 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
5011 {
5012 return cfs_bandwidth_used() && cfs_rq->throttled;
5013 }
5014
5015 /* check whether cfs_rq, or any parent, is throttled */
throttled_hierarchy(struct cfs_rq * cfs_rq)5016 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
5017 {
5018 return cfs_bandwidth_used() && cfs_rq->throttle_count;
5019 }
5020
5021 /*
5022 * Ensure that neither of the group entities corresponding to src_cpu or
5023 * dest_cpu are members of a throttled hierarchy when performing group
5024 * load-balance operations.
5025 */
throttled_lb_pair(struct task_group * tg,int src_cpu,int dest_cpu)5026 static inline int throttled_lb_pair(struct task_group *tg,
5027 int src_cpu, int dest_cpu)
5028 {
5029 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
5030
5031 src_cfs_rq = tg->cfs_rq[src_cpu];
5032 dest_cfs_rq = tg->cfs_rq[dest_cpu];
5033
5034 return throttled_hierarchy(src_cfs_rq) ||
5035 throttled_hierarchy(dest_cfs_rq);
5036 }
5037
tg_unthrottle_up(struct task_group * tg,void * data)5038 static int tg_unthrottle_up(struct task_group *tg, void *data)
5039 {
5040 struct rq *rq = data;
5041 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5042
5043 cfs_rq->throttle_count--;
5044 if (!cfs_rq->throttle_count) {
5045 cfs_rq->throttled_clock_pelt_time += rq_clock_pelt(rq) -
5046 cfs_rq->throttled_clock_pelt;
5047
5048 /* Add cfs_rq with load or one or more already running entities to the list */
5049 if (!cfs_rq_is_decayed(cfs_rq) || cfs_rq->nr_running)
5050 list_add_leaf_cfs_rq(cfs_rq);
5051 }
5052
5053 return 0;
5054 }
5055
tg_throttle_down(struct task_group * tg,void * data)5056 static int tg_throttle_down(struct task_group *tg, void *data)
5057 {
5058 struct rq *rq = data;
5059 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5060
5061 /* group is entering throttled state, stop time */
5062 if (!cfs_rq->throttle_count) {
5063 cfs_rq->throttled_clock_pelt = rq_clock_pelt(rq);
5064 list_del_leaf_cfs_rq(cfs_rq);
5065 }
5066 cfs_rq->throttle_count++;
5067
5068 return 0;
5069 }
5070
throttle_cfs_rq(struct cfs_rq * cfs_rq)5071 static bool throttle_cfs_rq(struct cfs_rq *cfs_rq)
5072 {
5073 struct rq *rq = rq_of(cfs_rq);
5074 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
5075 struct sched_entity *se;
5076 long task_delta, idle_task_delta, dequeue = 1;
5077
5078 raw_spin_lock(&cfs_b->lock);
5079 /* This will start the period timer if necessary */
5080 if (__assign_cfs_rq_runtime(cfs_b, cfs_rq, 1)) {
5081 /*
5082 * We have raced with bandwidth becoming available, and if we
5083 * actually throttled the timer might not unthrottle us for an
5084 * entire period. We additionally needed to make sure that any
5085 * subsequent check_cfs_rq_runtime calls agree not to throttle
5086 * us, as we may commit to do cfs put_prev+pick_next, so we ask
5087 * for 1ns of runtime rather than just check cfs_b.
5088 */
5089 dequeue = 0;
5090 } else {
5091 list_add_tail_rcu(&cfs_rq->throttled_list,
5092 &cfs_b->throttled_cfs_rq);
5093 }
5094 raw_spin_unlock(&cfs_b->lock);
5095
5096 if (!dequeue)
5097 return false; /* Throttle no longer required. */
5098
5099 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
5100
5101 /* freeze hierarchy runnable averages while throttled */
5102 rcu_read_lock();
5103 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
5104 rcu_read_unlock();
5105
5106 task_delta = cfs_rq->h_nr_running;
5107 idle_task_delta = cfs_rq->idle_h_nr_running;
5108 for_each_sched_entity(se) {
5109 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
5110 /* throttled entity or throttle-on-deactivate */
5111 if (!se->on_rq)
5112 goto done;
5113
5114 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
5115
5116 if (cfs_rq_is_idle(group_cfs_rq(se)))
5117 idle_task_delta = cfs_rq->h_nr_running;
5118
5119 qcfs_rq->h_nr_running -= task_delta;
5120 qcfs_rq->idle_h_nr_running -= idle_task_delta;
5121
5122 if (qcfs_rq->load.weight) {
5123 /* Avoid re-evaluating load for this entity: */
5124 se = parent_entity(se);
5125 break;
5126 }
5127 }
5128
5129 for_each_sched_entity(se) {
5130 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
5131 /* throttled entity or throttle-on-deactivate */
5132 if (!se->on_rq)
5133 goto done;
5134
5135 update_load_avg(qcfs_rq, se, 0);
5136 se_update_runnable(se);
5137
5138 if (cfs_rq_is_idle(group_cfs_rq(se)))
5139 idle_task_delta = cfs_rq->h_nr_running;
5140
5141 qcfs_rq->h_nr_running -= task_delta;
5142 qcfs_rq->idle_h_nr_running -= idle_task_delta;
5143 }
5144
5145 /* At this point se is NULL and we are at root level*/
5146 sub_nr_running(rq, task_delta);
5147
5148 done:
5149 /*
5150 * Note: distribution will already see us throttled via the
5151 * throttled-list. rq->lock protects completion.
5152 */
5153 cfs_rq->throttled = 1;
5154 cfs_rq->throttled_clock = rq_clock(rq);
5155 return true;
5156 }
5157
unthrottle_cfs_rq(struct cfs_rq * cfs_rq)5158 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
5159 {
5160 struct rq *rq = rq_of(cfs_rq);
5161 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
5162 struct sched_entity *se;
5163 long task_delta, idle_task_delta;
5164
5165 se = cfs_rq->tg->se[cpu_of(rq)];
5166
5167 cfs_rq->throttled = 0;
5168
5169 update_rq_clock(rq);
5170
5171 raw_spin_lock(&cfs_b->lock);
5172 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
5173 list_del_rcu(&cfs_rq->throttled_list);
5174 raw_spin_unlock(&cfs_b->lock);
5175
5176 /* update hierarchical throttle state */
5177 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
5178
5179 /* Nothing to run but something to decay (on_list)? Complete the branch */
5180 if (!cfs_rq->load.weight) {
5181 if (cfs_rq->on_list)
5182 goto unthrottle_throttle;
5183 return;
5184 }
5185
5186 task_delta = cfs_rq->h_nr_running;
5187 idle_task_delta = cfs_rq->idle_h_nr_running;
5188 for_each_sched_entity(se) {
5189 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
5190
5191 if (se->on_rq)
5192 break;
5193 enqueue_entity(qcfs_rq, se, ENQUEUE_WAKEUP);
5194
5195 if (cfs_rq_is_idle(group_cfs_rq(se)))
5196 idle_task_delta = cfs_rq->h_nr_running;
5197
5198 qcfs_rq->h_nr_running += task_delta;
5199 qcfs_rq->idle_h_nr_running += idle_task_delta;
5200
5201 /* end evaluation on encountering a throttled cfs_rq */
5202 if (cfs_rq_throttled(qcfs_rq))
5203 goto unthrottle_throttle;
5204 }
5205
5206 for_each_sched_entity(se) {
5207 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
5208
5209 update_load_avg(qcfs_rq, se, UPDATE_TG);
5210 se_update_runnable(se);
5211
5212 if (cfs_rq_is_idle(group_cfs_rq(se)))
5213 idle_task_delta = cfs_rq->h_nr_running;
5214
5215 qcfs_rq->h_nr_running += task_delta;
5216 qcfs_rq->idle_h_nr_running += idle_task_delta;
5217
5218 /* end evaluation on encountering a throttled cfs_rq */
5219 if (cfs_rq_throttled(qcfs_rq))
5220 goto unthrottle_throttle;
5221
5222 /*
5223 * One parent has been throttled and cfs_rq removed from the
5224 * list. Add it back to not break the leaf list.
5225 */
5226 if (throttled_hierarchy(qcfs_rq))
5227 list_add_leaf_cfs_rq(qcfs_rq);
5228 }
5229
5230 /* At this point se is NULL and we are at root level*/
5231 add_nr_running(rq, task_delta);
5232
5233 unthrottle_throttle:
5234 /*
5235 * The cfs_rq_throttled() breaks in the above iteration can result in
5236 * incomplete leaf list maintenance, resulting in triggering the
5237 * assertion below.
5238 */
5239 for_each_sched_entity(se) {
5240 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
5241
5242 if (list_add_leaf_cfs_rq(qcfs_rq))
5243 break;
5244 }
5245
5246 assert_list_leaf_cfs_rq(rq);
5247
5248 /* Determine whether we need to wake up potentially idle CPU: */
5249 if (rq->curr == rq->idle && rq->cfs.nr_running)
5250 resched_curr(rq);
5251 }
5252
distribute_cfs_runtime(struct cfs_bandwidth * cfs_b)5253 static void distribute_cfs_runtime(struct cfs_bandwidth *cfs_b)
5254 {
5255 struct cfs_rq *cfs_rq;
5256 u64 runtime, remaining = 1;
5257
5258 rcu_read_lock();
5259 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
5260 throttled_list) {
5261 struct rq *rq = rq_of(cfs_rq);
5262 struct rq_flags rf;
5263
5264 rq_lock_irqsave(rq, &rf);
5265 if (!cfs_rq_throttled(cfs_rq))
5266 goto next;
5267
5268 /* By the above check, this should never be true */
5269 SCHED_WARN_ON(cfs_rq->runtime_remaining > 0);
5270
5271 raw_spin_lock(&cfs_b->lock);
5272 runtime = -cfs_rq->runtime_remaining + 1;
5273 if (runtime > cfs_b->runtime)
5274 runtime = cfs_b->runtime;
5275 cfs_b->runtime -= runtime;
5276 remaining = cfs_b->runtime;
5277 raw_spin_unlock(&cfs_b->lock);
5278
5279 cfs_rq->runtime_remaining += runtime;
5280
5281 /* we check whether we're throttled above */
5282 if (cfs_rq->runtime_remaining > 0)
5283 unthrottle_cfs_rq(cfs_rq);
5284
5285 next:
5286 rq_unlock_irqrestore(rq, &rf);
5287
5288 if (!remaining)
5289 break;
5290 }
5291 rcu_read_unlock();
5292 }
5293
5294 /*
5295 * Responsible for refilling a task_group's bandwidth and unthrottling its
5296 * cfs_rqs as appropriate. If there has been no activity within the last
5297 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
5298 * used to track this state.
5299 */
do_sched_cfs_period_timer(struct cfs_bandwidth * cfs_b,int overrun,unsigned long flags)5300 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun, unsigned long flags)
5301 {
5302 int throttled;
5303
5304 /* no need to continue the timer with no bandwidth constraint */
5305 if (cfs_b->quota == RUNTIME_INF)
5306 goto out_deactivate;
5307
5308 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
5309 cfs_b->nr_periods += overrun;
5310
5311 /* Refill extra burst quota even if cfs_b->idle */
5312 __refill_cfs_bandwidth_runtime(cfs_b);
5313
5314 /*
5315 * idle depends on !throttled (for the case of a large deficit), and if
5316 * we're going inactive then everything else can be deferred
5317 */
5318 if (cfs_b->idle && !throttled)
5319 goto out_deactivate;
5320
5321 if (!throttled) {
5322 /* mark as potentially idle for the upcoming period */
5323 cfs_b->idle = 1;
5324 return 0;
5325 }
5326
5327 /* account preceding periods in which throttling occurred */
5328 cfs_b->nr_throttled += overrun;
5329
5330 /*
5331 * This check is repeated as we release cfs_b->lock while we unthrottle.
5332 */
5333 while (throttled && cfs_b->runtime > 0) {
5334 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
5335 /* we can't nest cfs_b->lock while distributing bandwidth */
5336 distribute_cfs_runtime(cfs_b);
5337 raw_spin_lock_irqsave(&cfs_b->lock, flags);
5338
5339 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
5340 }
5341
5342 /*
5343 * While we are ensured activity in the period following an
5344 * unthrottle, this also covers the case in which the new bandwidth is
5345 * insufficient to cover the existing bandwidth deficit. (Forcing the
5346 * timer to remain active while there are any throttled entities.)
5347 */
5348 cfs_b->idle = 0;
5349
5350 return 0;
5351
5352 out_deactivate:
5353 return 1;
5354 }
5355
5356 /* a cfs_rq won't donate quota below this amount */
5357 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
5358 /* minimum remaining period time to redistribute slack quota */
5359 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
5360 /* how long we wait to gather additional slack before distributing */
5361 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
5362
5363 /*
5364 * Are we near the end of the current quota period?
5365 *
5366 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
5367 * hrtimer base being cleared by hrtimer_start. In the case of
5368 * migrate_hrtimers, base is never cleared, so we are fine.
5369 */
runtime_refresh_within(struct cfs_bandwidth * cfs_b,u64 min_expire)5370 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
5371 {
5372 struct hrtimer *refresh_timer = &cfs_b->period_timer;
5373 s64 remaining;
5374
5375 /* if the call-back is running a quota refresh is already occurring */
5376 if (hrtimer_callback_running(refresh_timer))
5377 return 1;
5378
5379 /* is a quota refresh about to occur? */
5380 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
5381 if (remaining < (s64)min_expire)
5382 return 1;
5383
5384 return 0;
5385 }
5386
start_cfs_slack_bandwidth(struct cfs_bandwidth * cfs_b)5387 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
5388 {
5389 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
5390
5391 /* if there's a quota refresh soon don't bother with slack */
5392 if (runtime_refresh_within(cfs_b, min_left))
5393 return;
5394
5395 /* don't push forwards an existing deferred unthrottle */
5396 if (cfs_b->slack_started)
5397 return;
5398 cfs_b->slack_started = true;
5399
5400 hrtimer_start(&cfs_b->slack_timer,
5401 ns_to_ktime(cfs_bandwidth_slack_period),
5402 HRTIMER_MODE_REL);
5403 }
5404
5405 /* we know any runtime found here is valid as update_curr() precedes return */
__return_cfs_rq_runtime(struct cfs_rq * cfs_rq)5406 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5407 {
5408 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
5409 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
5410
5411 if (slack_runtime <= 0)
5412 return;
5413
5414 raw_spin_lock(&cfs_b->lock);
5415 if (cfs_b->quota != RUNTIME_INF) {
5416 cfs_b->runtime += slack_runtime;
5417
5418 /* we are under rq->lock, defer unthrottling using a timer */
5419 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
5420 !list_empty(&cfs_b->throttled_cfs_rq))
5421 start_cfs_slack_bandwidth(cfs_b);
5422 }
5423 raw_spin_unlock(&cfs_b->lock);
5424
5425 /* even if it's not valid for return we don't want to try again */
5426 cfs_rq->runtime_remaining -= slack_runtime;
5427 }
5428
return_cfs_rq_runtime(struct cfs_rq * cfs_rq)5429 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5430 {
5431 if (!cfs_bandwidth_used())
5432 return;
5433
5434 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
5435 return;
5436
5437 __return_cfs_rq_runtime(cfs_rq);
5438 }
5439
5440 /*
5441 * This is done with a timer (instead of inline with bandwidth return) since
5442 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
5443 */
do_sched_cfs_slack_timer(struct cfs_bandwidth * cfs_b)5444 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
5445 {
5446 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
5447 unsigned long flags;
5448
5449 /* confirm we're still not at a refresh boundary */
5450 raw_spin_lock_irqsave(&cfs_b->lock, flags);
5451 cfs_b->slack_started = false;
5452
5453 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
5454 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
5455 return;
5456 }
5457
5458 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
5459 runtime = cfs_b->runtime;
5460
5461 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
5462
5463 if (!runtime)
5464 return;
5465
5466 distribute_cfs_runtime(cfs_b);
5467 }
5468
5469 /*
5470 * When a group wakes up we want to make sure that its quota is not already
5471 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
5472 * runtime as update_curr() throttling can not trigger until it's on-rq.
5473 */
check_enqueue_throttle(struct cfs_rq * cfs_rq)5474 static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
5475 {
5476 if (!cfs_bandwidth_used())
5477 return;
5478
5479 /* an active group must be handled by the update_curr()->put() path */
5480 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
5481 return;
5482
5483 /* ensure the group is not already throttled */
5484 if (cfs_rq_throttled(cfs_rq))
5485 return;
5486
5487 /* update runtime allocation */
5488 account_cfs_rq_runtime(cfs_rq, 0);
5489 if (cfs_rq->runtime_remaining <= 0)
5490 throttle_cfs_rq(cfs_rq);
5491 }
5492
sync_throttle(struct task_group * tg,int cpu)5493 static void sync_throttle(struct task_group *tg, int cpu)
5494 {
5495 struct cfs_rq *pcfs_rq, *cfs_rq;
5496
5497 if (!cfs_bandwidth_used())
5498 return;
5499
5500 if (!tg->parent)
5501 return;
5502
5503 cfs_rq = tg->cfs_rq[cpu];
5504 pcfs_rq = tg->parent->cfs_rq[cpu];
5505
5506 cfs_rq->throttle_count = pcfs_rq->throttle_count;
5507 cfs_rq->throttled_clock_pelt = rq_clock_pelt(cpu_rq(cpu));
5508 }
5509
5510 /* conditionally throttle active cfs_rq's from put_prev_entity() */
check_cfs_rq_runtime(struct cfs_rq * cfs_rq)5511 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5512 {
5513 if (!cfs_bandwidth_used())
5514 return false;
5515
5516 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
5517 return false;
5518
5519 /*
5520 * it's possible for a throttled entity to be forced into a running
5521 * state (e.g. set_curr_task), in this case we're finished.
5522 */
5523 if (cfs_rq_throttled(cfs_rq))
5524 return true;
5525
5526 return throttle_cfs_rq(cfs_rq);
5527 }
5528
sched_cfs_slack_timer(struct hrtimer * timer)5529 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
5530 {
5531 struct cfs_bandwidth *cfs_b =
5532 container_of(timer, struct cfs_bandwidth, slack_timer);
5533
5534 do_sched_cfs_slack_timer(cfs_b);
5535
5536 return HRTIMER_NORESTART;
5537 }
5538
5539 extern const u64 max_cfs_quota_period;
5540
sched_cfs_period_timer(struct hrtimer * timer)5541 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
5542 {
5543 struct cfs_bandwidth *cfs_b =
5544 container_of(timer, struct cfs_bandwidth, period_timer);
5545 unsigned long flags;
5546 int overrun;
5547 int idle = 0;
5548 int count = 0;
5549
5550 raw_spin_lock_irqsave(&cfs_b->lock, flags);
5551 for (;;) {
5552 overrun = hrtimer_forward_now(timer, cfs_b->period);
5553 if (!overrun)
5554 break;
5555
5556 idle = do_sched_cfs_period_timer(cfs_b, overrun, flags);
5557
5558 if (++count > 3) {
5559 u64 new, old = ktime_to_ns(cfs_b->period);
5560
5561 /*
5562 * Grow period by a factor of 2 to avoid losing precision.
5563 * Precision loss in the quota/period ratio can cause __cfs_schedulable
5564 * to fail.
5565 */
5566 new = old * 2;
5567 if (new < max_cfs_quota_period) {
5568 cfs_b->period = ns_to_ktime(new);
5569 cfs_b->quota *= 2;
5570 cfs_b->burst *= 2;
5571
5572 pr_warn_ratelimited(
5573 "cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us = %lld, cfs_quota_us = %lld)\n",
5574 smp_processor_id(),
5575 div_u64(new, NSEC_PER_USEC),
5576 div_u64(cfs_b->quota, NSEC_PER_USEC));
5577 } else {
5578 pr_warn_ratelimited(
5579 "cfs_period_timer[cpu%d]: period too short, but cannot scale up without losing precision (cfs_period_us = %lld, cfs_quota_us = %lld)\n",
5580 smp_processor_id(),
5581 div_u64(old, NSEC_PER_USEC),
5582 div_u64(cfs_b->quota, NSEC_PER_USEC));
5583 }
5584
5585 /* reset count so we don't come right back in here */
5586 count = 0;
5587 }
5588 }
5589 if (idle)
5590 cfs_b->period_active = 0;
5591 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
5592
5593 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
5594 }
5595
init_cfs_bandwidth(struct cfs_bandwidth * cfs_b)5596 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
5597 {
5598 raw_spin_lock_init(&cfs_b->lock);
5599 cfs_b->runtime = 0;
5600 cfs_b->quota = RUNTIME_INF;
5601 cfs_b->period = ns_to_ktime(default_cfs_period());
5602 cfs_b->burst = 0;
5603
5604 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
5605 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
5606 cfs_b->period_timer.function = sched_cfs_period_timer;
5607 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
5608 cfs_b->slack_timer.function = sched_cfs_slack_timer;
5609 cfs_b->slack_started = false;
5610 }
5611
init_cfs_rq_runtime(struct cfs_rq * cfs_rq)5612 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5613 {
5614 cfs_rq->runtime_enabled = 0;
5615 INIT_LIST_HEAD(&cfs_rq->throttled_list);
5616 }
5617
start_cfs_bandwidth(struct cfs_bandwidth * cfs_b)5618 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
5619 {
5620 lockdep_assert_held(&cfs_b->lock);
5621
5622 if (cfs_b->period_active)
5623 return;
5624
5625 cfs_b->period_active = 1;
5626 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
5627 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
5628 }
5629
destroy_cfs_bandwidth(struct cfs_bandwidth * cfs_b)5630 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
5631 {
5632 /* init_cfs_bandwidth() was not called */
5633 if (!cfs_b->throttled_cfs_rq.next)
5634 return;
5635
5636 hrtimer_cancel(&cfs_b->period_timer);
5637 hrtimer_cancel(&cfs_b->slack_timer);
5638 }
5639
5640 /*
5641 * Both these CPU hotplug callbacks race against unregister_fair_sched_group()
5642 *
5643 * The race is harmless, since modifying bandwidth settings of unhooked group
5644 * bits doesn't do much.
5645 */
5646
5647 /* cpu online callback */
update_runtime_enabled(struct rq * rq)5648 static void __maybe_unused update_runtime_enabled(struct rq *rq)
5649 {
5650 struct task_group *tg;
5651
5652 lockdep_assert_rq_held(rq);
5653
5654 rcu_read_lock();
5655 list_for_each_entry_rcu(tg, &task_groups, list) {
5656 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
5657 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5658
5659 raw_spin_lock(&cfs_b->lock);
5660 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
5661 raw_spin_unlock(&cfs_b->lock);
5662 }
5663 rcu_read_unlock();
5664 }
5665
5666 /* cpu offline callback */
unthrottle_offline_cfs_rqs(struct rq * rq)5667 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
5668 {
5669 struct task_group *tg;
5670
5671 lockdep_assert_rq_held(rq);
5672
5673 rcu_read_lock();
5674 list_for_each_entry_rcu(tg, &task_groups, list) {
5675 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5676
5677 if (!cfs_rq->runtime_enabled)
5678 continue;
5679
5680 /*
5681 * clock_task is not advancing so we just need to make sure
5682 * there's some valid quota amount
5683 */
5684 cfs_rq->runtime_remaining = 1;
5685 /*
5686 * Offline rq is schedulable till CPU is completely disabled
5687 * in take_cpu_down(), so we prevent new cfs throttling here.
5688 */
5689 cfs_rq->runtime_enabled = 0;
5690
5691 if (cfs_rq_throttled(cfs_rq))
5692 unthrottle_cfs_rq(cfs_rq);
5693 }
5694 rcu_read_unlock();
5695 }
5696
5697 #else /* CONFIG_CFS_BANDWIDTH */
5698
cfs_bandwidth_used(void)5699 static inline bool cfs_bandwidth_used(void)
5700 {
5701 return false;
5702 }
5703
account_cfs_rq_runtime(struct cfs_rq * cfs_rq,u64 delta_exec)5704 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
check_cfs_rq_runtime(struct cfs_rq * cfs_rq)5705 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
check_enqueue_throttle(struct cfs_rq * cfs_rq)5706 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
sync_throttle(struct task_group * tg,int cpu)5707 static inline void sync_throttle(struct task_group *tg, int cpu) {}
return_cfs_rq_runtime(struct cfs_rq * cfs_rq)5708 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
5709
cfs_rq_throttled(struct cfs_rq * cfs_rq)5710 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
5711 {
5712 return 0;
5713 }
5714
throttled_hierarchy(struct cfs_rq * cfs_rq)5715 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
5716 {
5717 return 0;
5718 }
5719
throttled_lb_pair(struct task_group * tg,int src_cpu,int dest_cpu)5720 static inline int throttled_lb_pair(struct task_group *tg,
5721 int src_cpu, int dest_cpu)
5722 {
5723 return 0;
5724 }
5725
init_cfs_bandwidth(struct cfs_bandwidth * cfs_b)5726 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
5727
5728 #ifdef CONFIG_FAIR_GROUP_SCHED
init_cfs_rq_runtime(struct cfs_rq * cfs_rq)5729 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
5730 #endif
5731
tg_cfs_bandwidth(struct task_group * tg)5732 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
5733 {
5734 return NULL;
5735 }
destroy_cfs_bandwidth(struct cfs_bandwidth * cfs_b)5736 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
update_runtime_enabled(struct rq * rq)5737 static inline void update_runtime_enabled(struct rq *rq) {}
unthrottle_offline_cfs_rqs(struct rq * rq)5738 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
5739
5740 #endif /* CONFIG_CFS_BANDWIDTH */
5741
5742 /**************************************************
5743 * CFS operations on tasks:
5744 */
5745
5746 #ifdef CONFIG_SCHED_HRTICK
hrtick_start_fair(struct rq * rq,struct task_struct * p)5747 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
5748 {
5749 struct sched_entity *se = &p->se;
5750 struct cfs_rq *cfs_rq = cfs_rq_of(se);
5751
5752 SCHED_WARN_ON(task_rq(p) != rq);
5753
5754 if (rq->cfs.h_nr_running > 1) {
5755 u64 slice = sched_slice(cfs_rq, se);
5756 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
5757 s64 delta = slice - ran;
5758
5759 if (delta < 0) {
5760 if (task_current(rq, p))
5761 resched_curr(rq);
5762 return;
5763 }
5764 hrtick_start(rq, delta);
5765 }
5766 }
5767
5768 /*
5769 * called from enqueue/dequeue and updates the hrtick when the
5770 * current task is from our class and nr_running is low enough
5771 * to matter.
5772 */
hrtick_update(struct rq * rq)5773 static void hrtick_update(struct rq *rq)
5774 {
5775 struct task_struct *curr = rq->curr;
5776
5777 if (!hrtick_enabled_fair(rq) || curr->sched_class != &fair_sched_class)
5778 return;
5779
5780 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
5781 hrtick_start_fair(rq, curr);
5782 }
5783 #else /* !CONFIG_SCHED_HRTICK */
5784 static inline void
hrtick_start_fair(struct rq * rq,struct task_struct * p)5785 hrtick_start_fair(struct rq *rq, struct task_struct *p)
5786 {
5787 }
5788
hrtick_update(struct rq * rq)5789 static inline void hrtick_update(struct rq *rq)
5790 {
5791 }
5792 #endif
5793
5794 #ifdef CONFIG_SMP
5795 static inline unsigned long cpu_util(int cpu);
5796
cpu_overutilized(int cpu)5797 static inline bool cpu_overutilized(int cpu)
5798 {
5799 unsigned long rq_util_min = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MIN);
5800 unsigned long rq_util_max = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MAX);
5801 int overutilized = -1;
5802
5803 trace_android_rvh_cpu_overutilized(cpu, &overutilized);
5804 if (overutilized != -1)
5805 return overutilized;
5806
5807 return !util_fits_cpu(cpu_util(cpu), rq_util_min, rq_util_max, cpu);
5808 }
5809
update_overutilized_status(struct rq * rq)5810 static inline void update_overutilized_status(struct rq *rq)
5811 {
5812 if (!READ_ONCE(rq->rd->overutilized) && cpu_overutilized(rq->cpu)) {
5813 WRITE_ONCE(rq->rd->overutilized, SG_OVERUTILIZED);
5814 trace_sched_overutilized_tp(rq->rd, SG_OVERUTILIZED);
5815 }
5816 }
5817 #else
update_overutilized_status(struct rq * rq)5818 static inline void update_overutilized_status(struct rq *rq) { }
5819 #endif
5820
5821 /* Runqueue only has SCHED_IDLE tasks enqueued */
sched_idle_rq(struct rq * rq)5822 static int sched_idle_rq(struct rq *rq)
5823 {
5824 return unlikely(rq->nr_running == rq->cfs.idle_h_nr_running &&
5825 rq->nr_running);
5826 }
5827
5828 #ifdef CONFIG_SMP
sched_idle_cpu(int cpu)5829 static int sched_idle_cpu(int cpu)
5830 {
5831 return sched_idle_rq(cpu_rq(cpu));
5832 }
5833 #endif
5834
5835 /*
5836 * The enqueue_task method is called before nr_running is
5837 * increased. Here we update the fair scheduling stats and
5838 * then put the task into the rbtree:
5839 */
5840 static void
enqueue_task_fair(struct rq * rq,struct task_struct * p,int flags)5841 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
5842 {
5843 struct cfs_rq *cfs_rq;
5844 struct sched_entity *se = &p->se;
5845 int idle_h_nr_running = task_has_idle_policy(p);
5846 int task_new = !(flags & ENQUEUE_WAKEUP);
5847 int should_iowait_boost;
5848
5849 /*
5850 * The code below (indirectly) updates schedutil which looks at
5851 * the cfs_rq utilization to select a frequency.
5852 * Let's add the task's estimated utilization to the cfs_rq's
5853 * estimated utilization, before we update schedutil.
5854 */
5855 util_est_enqueue(&rq->cfs, p);
5856
5857 /*
5858 * If in_iowait is set, the code below may not trigger any cpufreq
5859 * utilization updates, so do it here explicitly with the IOWAIT flag
5860 * passed.
5861 */
5862 should_iowait_boost = p->in_iowait;
5863 trace_android_rvh_set_iowait(p, rq, &should_iowait_boost);
5864 if (should_iowait_boost)
5865 cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT);
5866
5867 for_each_sched_entity(se) {
5868 if (se->on_rq)
5869 break;
5870 cfs_rq = cfs_rq_of(se);
5871 enqueue_entity(cfs_rq, se, flags);
5872
5873 cfs_rq->h_nr_running++;
5874 cfs_rq->idle_h_nr_running += idle_h_nr_running;
5875
5876 if (cfs_rq_is_idle(cfs_rq))
5877 idle_h_nr_running = 1;
5878
5879 /* end evaluation on encountering a throttled cfs_rq */
5880 if (cfs_rq_throttled(cfs_rq))
5881 goto enqueue_throttle;
5882
5883 flags = ENQUEUE_WAKEUP;
5884 }
5885
5886 trace_android_rvh_enqueue_task_fair(rq, p, flags);
5887 for_each_sched_entity(se) {
5888 cfs_rq = cfs_rq_of(se);
5889
5890 update_load_avg(cfs_rq, se, UPDATE_TG);
5891 se_update_runnable(se);
5892 update_cfs_group(se);
5893
5894 cfs_rq->h_nr_running++;
5895 cfs_rq->idle_h_nr_running += idle_h_nr_running;
5896
5897 if (cfs_rq_is_idle(cfs_rq))
5898 idle_h_nr_running = 1;
5899
5900 /* end evaluation on encountering a throttled cfs_rq */
5901 if (cfs_rq_throttled(cfs_rq))
5902 goto enqueue_throttle;
5903
5904 /*
5905 * One parent has been throttled and cfs_rq removed from the
5906 * list. Add it back to not break the leaf list.
5907 */
5908 if (throttled_hierarchy(cfs_rq))
5909 list_add_leaf_cfs_rq(cfs_rq);
5910 }
5911
5912 /* At this point se is NULL and we are at root level*/
5913 add_nr_running(rq, 1);
5914
5915 /*
5916 * Since new tasks are assigned an initial util_avg equal to
5917 * half of the spare capacity of their CPU, tiny tasks have the
5918 * ability to cross the overutilized threshold, which will
5919 * result in the load balancer ruining all the task placement
5920 * done by EAS. As a way to mitigate that effect, do not account
5921 * for the first enqueue operation of new tasks during the
5922 * overutilized flag detection.
5923 *
5924 * A better way of solving this problem would be to wait for
5925 * the PELT signals of tasks to converge before taking them
5926 * into account, but that is not straightforward to implement,
5927 * and the following generally works well enough in practice.
5928 */
5929 if (!task_new)
5930 update_overutilized_status(rq);
5931
5932 enqueue_throttle:
5933 if (cfs_bandwidth_used()) {
5934 /*
5935 * When bandwidth control is enabled; the cfs_rq_throttled()
5936 * breaks in the above iteration can result in incomplete
5937 * leaf list maintenance, resulting in triggering the assertion
5938 * below.
5939 */
5940 for_each_sched_entity(se) {
5941 cfs_rq = cfs_rq_of(se);
5942
5943 if (list_add_leaf_cfs_rq(cfs_rq))
5944 break;
5945 }
5946 }
5947
5948 assert_list_leaf_cfs_rq(rq);
5949
5950 hrtick_update(rq);
5951 }
5952
5953 static void set_next_buddy(struct sched_entity *se);
5954
5955 /*
5956 * The dequeue_task method is called before nr_running is
5957 * decreased. We remove the task from the rbtree and
5958 * update the fair scheduling stats:
5959 */
dequeue_task_fair(struct rq * rq,struct task_struct * p,int flags)5960 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
5961 {
5962 struct cfs_rq *cfs_rq;
5963 struct sched_entity *se = &p->se;
5964 int task_sleep = flags & DEQUEUE_SLEEP;
5965 int idle_h_nr_running = task_has_idle_policy(p);
5966 bool was_sched_idle = sched_idle_rq(rq);
5967
5968 util_est_dequeue(&rq->cfs, p);
5969
5970 for_each_sched_entity(se) {
5971 cfs_rq = cfs_rq_of(se);
5972 dequeue_entity(cfs_rq, se, flags);
5973
5974 cfs_rq->h_nr_running--;
5975 cfs_rq->idle_h_nr_running -= idle_h_nr_running;
5976
5977 if (cfs_rq_is_idle(cfs_rq))
5978 idle_h_nr_running = 1;
5979
5980 /* end evaluation on encountering a throttled cfs_rq */
5981 if (cfs_rq_throttled(cfs_rq))
5982 goto dequeue_throttle;
5983
5984 /* Don't dequeue parent if it has other entities besides us */
5985 if (cfs_rq->load.weight) {
5986 /* Avoid re-evaluating load for this entity: */
5987 se = parent_entity(se);
5988 /*
5989 * Bias pick_next to pick a task from this cfs_rq, as
5990 * p is sleeping when it is within its sched_slice.
5991 */
5992 if (task_sleep && se && !throttled_hierarchy(cfs_rq))
5993 set_next_buddy(se);
5994 break;
5995 }
5996 flags |= DEQUEUE_SLEEP;
5997 }
5998
5999 trace_android_rvh_dequeue_task_fair(rq, p, flags);
6000 for_each_sched_entity(se) {
6001 cfs_rq = cfs_rq_of(se);
6002
6003 update_load_avg(cfs_rq, se, UPDATE_TG);
6004 se_update_runnable(se);
6005 update_cfs_group(se);
6006
6007 cfs_rq->h_nr_running--;
6008 cfs_rq->idle_h_nr_running -= idle_h_nr_running;
6009
6010 if (cfs_rq_is_idle(cfs_rq))
6011 idle_h_nr_running = 1;
6012
6013 /* end evaluation on encountering a throttled cfs_rq */
6014 if (cfs_rq_throttled(cfs_rq))
6015 goto dequeue_throttle;
6016
6017 }
6018
6019 /* At this point se is NULL and we are at root level*/
6020 sub_nr_running(rq, 1);
6021
6022 /* balance early to pull high priority tasks */
6023 if (unlikely(!was_sched_idle && sched_idle_rq(rq)))
6024 rq->next_balance = jiffies;
6025
6026 dequeue_throttle:
6027 util_est_update(&rq->cfs, p, task_sleep);
6028 hrtick_update(rq);
6029 }
6030
6031 #ifdef CONFIG_SMP
6032
6033 /* Working cpumask for: load_balance, load_balance_newidle. */
6034 DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
6035 DEFINE_PER_CPU(cpumask_var_t, select_idle_mask);
6036
6037 #ifdef CONFIG_NO_HZ_COMMON
6038
6039 static struct {
6040 cpumask_var_t idle_cpus_mask;
6041 atomic_t nr_cpus;
6042 int has_blocked; /* Idle CPUS has blocked load */
6043 unsigned long next_balance; /* in jiffy units */
6044 unsigned long next_blocked; /* Next update of blocked load in jiffies */
6045 } nohz ____cacheline_aligned;
6046
6047 #endif /* CONFIG_NO_HZ_COMMON */
6048
cpu_load(struct rq * rq)6049 static unsigned long cpu_load(struct rq *rq)
6050 {
6051 return cfs_rq_load_avg(&rq->cfs);
6052 }
6053
6054 /*
6055 * cpu_load_without - compute CPU load without any contributions from *p
6056 * @cpu: the CPU which load is requested
6057 * @p: the task which load should be discounted
6058 *
6059 * The load of a CPU is defined by the load of tasks currently enqueued on that
6060 * CPU as well as tasks which are currently sleeping after an execution on that
6061 * CPU.
6062 *
6063 * This method returns the load of the specified CPU by discounting the load of
6064 * the specified task, whenever the task is currently contributing to the CPU
6065 * load.
6066 */
cpu_load_without(struct rq * rq,struct task_struct * p)6067 static unsigned long cpu_load_without(struct rq *rq, struct task_struct *p)
6068 {
6069 struct cfs_rq *cfs_rq;
6070 unsigned int load;
6071
6072 /* Task has no contribution or is new */
6073 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
6074 return cpu_load(rq);
6075
6076 cfs_rq = &rq->cfs;
6077 load = READ_ONCE(cfs_rq->avg.load_avg);
6078
6079 /* Discount task's util from CPU's util */
6080 lsub_positive(&load, task_h_load(p));
6081
6082 return load;
6083 }
6084
cpu_runnable(struct rq * rq)6085 static unsigned long cpu_runnable(struct rq *rq)
6086 {
6087 return cfs_rq_runnable_avg(&rq->cfs);
6088 }
6089
cpu_runnable_without(struct rq * rq,struct task_struct * p)6090 static unsigned long cpu_runnable_without(struct rq *rq, struct task_struct *p)
6091 {
6092 struct cfs_rq *cfs_rq;
6093 unsigned int runnable;
6094
6095 /* Task has no contribution or is new */
6096 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
6097 return cpu_runnable(rq);
6098
6099 cfs_rq = &rq->cfs;
6100 runnable = READ_ONCE(cfs_rq->avg.runnable_avg);
6101
6102 /* Discount task's runnable from CPU's runnable */
6103 lsub_positive(&runnable, p->se.avg.runnable_avg);
6104
6105 return runnable;
6106 }
6107
capacity_of(int cpu)6108 static unsigned long capacity_of(int cpu)
6109 {
6110 return cpu_rq(cpu)->cpu_capacity;
6111 }
6112
record_wakee(struct task_struct * p)6113 static void record_wakee(struct task_struct *p)
6114 {
6115 /*
6116 * Only decay a single time; tasks that have less then 1 wakeup per
6117 * jiffy will not have built up many flips.
6118 */
6119 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
6120 current->wakee_flips >>= 1;
6121 current->wakee_flip_decay_ts = jiffies;
6122 }
6123
6124 if (current->last_wakee != p) {
6125 current->last_wakee = p;
6126 current->wakee_flips++;
6127 }
6128 }
6129
6130 /*
6131 * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
6132 *
6133 * A waker of many should wake a different task than the one last awakened
6134 * at a frequency roughly N times higher than one of its wakees.
6135 *
6136 * In order to determine whether we should let the load spread vs consolidating
6137 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
6138 * partner, and a factor of lls_size higher frequency in the other.
6139 *
6140 * With both conditions met, we can be relatively sure that the relationship is
6141 * non-monogamous, with partner count exceeding socket size.
6142 *
6143 * Waker/wakee being client/server, worker/dispatcher, interrupt source or
6144 * whatever is irrelevant, spread criteria is apparent partner count exceeds
6145 * socket size.
6146 */
wake_wide(struct task_struct * p)6147 static int wake_wide(struct task_struct *p)
6148 {
6149 unsigned int master = current->wakee_flips;
6150 unsigned int slave = p->wakee_flips;
6151 int factor = __this_cpu_read(sd_llc_size);
6152
6153 if (master < slave)
6154 swap(master, slave);
6155 if (slave < factor || master < slave * factor)
6156 return 0;
6157 return 1;
6158 }
6159
6160 /*
6161 * The purpose of wake_affine() is to quickly determine on which CPU we can run
6162 * soonest. For the purpose of speed we only consider the waking and previous
6163 * CPU.
6164 *
6165 * wake_affine_idle() - only considers 'now', it check if the waking CPU is
6166 * cache-affine and is (or will be) idle.
6167 *
6168 * wake_affine_weight() - considers the weight to reflect the average
6169 * scheduling latency of the CPUs. This seems to work
6170 * for the overloaded case.
6171 */
6172 static int
wake_affine_idle(int this_cpu,int prev_cpu,int sync)6173 wake_affine_idle(int this_cpu, int prev_cpu, int sync)
6174 {
6175 /*
6176 * If this_cpu is idle, it implies the wakeup is from interrupt
6177 * context. Only allow the move if cache is shared. Otherwise an
6178 * interrupt intensive workload could force all tasks onto one
6179 * node depending on the IO topology or IRQ affinity settings.
6180 *
6181 * If the prev_cpu is idle and cache affine then avoid a migration.
6182 * There is no guarantee that the cache hot data from an interrupt
6183 * is more important than cache hot data on the prev_cpu and from
6184 * a cpufreq perspective, it's better to have higher utilisation
6185 * on one CPU.
6186 */
6187 if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu))
6188 return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu;
6189
6190 if (sync && cpu_rq(this_cpu)->nr_running == 1)
6191 return this_cpu;
6192
6193 if (available_idle_cpu(prev_cpu))
6194 return prev_cpu;
6195
6196 return nr_cpumask_bits;
6197 }
6198
6199 static int
wake_affine_weight(struct sched_domain * sd,struct task_struct * p,int this_cpu,int prev_cpu,int sync)6200 wake_affine_weight(struct sched_domain *sd, struct task_struct *p,
6201 int this_cpu, int prev_cpu, int sync)
6202 {
6203 s64 this_eff_load, prev_eff_load;
6204 unsigned long task_load;
6205
6206 this_eff_load = cpu_load(cpu_rq(this_cpu));
6207
6208 if (sync) {
6209 unsigned long current_load = task_h_load(current);
6210
6211 if (current_load > this_eff_load)
6212 return this_cpu;
6213
6214 this_eff_load -= current_load;
6215 }
6216
6217 task_load = task_h_load(p);
6218
6219 this_eff_load += task_load;
6220 if (sched_feat(WA_BIAS))
6221 this_eff_load *= 100;
6222 this_eff_load *= capacity_of(prev_cpu);
6223
6224 prev_eff_load = cpu_load(cpu_rq(prev_cpu));
6225 prev_eff_load -= task_load;
6226 if (sched_feat(WA_BIAS))
6227 prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2;
6228 prev_eff_load *= capacity_of(this_cpu);
6229
6230 /*
6231 * If sync, adjust the weight of prev_eff_load such that if
6232 * prev_eff == this_eff that select_idle_sibling() will consider
6233 * stacking the wakee on top of the waker if no other CPU is
6234 * idle.
6235 */
6236 if (sync)
6237 prev_eff_load += 1;
6238
6239 return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits;
6240 }
6241
wake_affine(struct sched_domain * sd,struct task_struct * p,int this_cpu,int prev_cpu,int sync)6242 static int wake_affine(struct sched_domain *sd, struct task_struct *p,
6243 int this_cpu, int prev_cpu, int sync)
6244 {
6245 int target = nr_cpumask_bits;
6246
6247 if (sched_feat(WA_IDLE))
6248 target = wake_affine_idle(this_cpu, prev_cpu, sync);
6249
6250 if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits)
6251 target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync);
6252
6253 schedstat_inc(p->stats.nr_wakeups_affine_attempts);
6254 if (target != this_cpu)
6255 return prev_cpu;
6256
6257 schedstat_inc(sd->ttwu_move_affine);
6258 schedstat_inc(p->stats.nr_wakeups_affine);
6259 return target;
6260 }
6261
6262 static struct sched_group *
6263 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu);
6264
6265 /*
6266 * find_idlest_group_cpu - find the idlest CPU among the CPUs in the group.
6267 */
6268 static int
find_idlest_group_cpu(struct sched_group * group,struct task_struct * p,int this_cpu)6269 find_idlest_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
6270 {
6271 unsigned long load, min_load = ULONG_MAX;
6272 unsigned int min_exit_latency = UINT_MAX;
6273 u64 latest_idle_timestamp = 0;
6274 int least_loaded_cpu = this_cpu;
6275 int shallowest_idle_cpu = -1;
6276 int i;
6277
6278 /* Check if we have any choice: */
6279 if (group->group_weight == 1)
6280 return cpumask_first(sched_group_span(group));
6281
6282 /* Traverse only the allowed CPUs */
6283 for_each_cpu_and(i, sched_group_span(group), p->cpus_ptr) {
6284 struct rq *rq = cpu_rq(i);
6285
6286 if (!sched_core_cookie_match(rq, p))
6287 continue;
6288
6289 if (sched_idle_cpu(i))
6290 return i;
6291
6292 if (available_idle_cpu(i)) {
6293 struct cpuidle_state *idle = idle_get_state(rq);
6294 if (idle && idle->exit_latency < min_exit_latency) {
6295 /*
6296 * We give priority to a CPU whose idle state
6297 * has the smallest exit latency irrespective
6298 * of any idle timestamp.
6299 */
6300 min_exit_latency = idle->exit_latency;
6301 latest_idle_timestamp = rq->idle_stamp;
6302 shallowest_idle_cpu = i;
6303 } else if ((!idle || idle->exit_latency == min_exit_latency) &&
6304 rq->idle_stamp > latest_idle_timestamp) {
6305 /*
6306 * If equal or no active idle state, then
6307 * the most recently idled CPU might have
6308 * a warmer cache.
6309 */
6310 latest_idle_timestamp = rq->idle_stamp;
6311 shallowest_idle_cpu = i;
6312 }
6313 } else if (shallowest_idle_cpu == -1) {
6314 load = cpu_load(cpu_rq(i));
6315 if (load < min_load) {
6316 min_load = load;
6317 least_loaded_cpu = i;
6318 }
6319 }
6320 }
6321
6322 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
6323 }
6324
find_idlest_cpu(struct sched_domain * sd,struct task_struct * p,int cpu,int prev_cpu,int sd_flag)6325 static inline int find_idlest_cpu(struct sched_domain *sd, struct task_struct *p,
6326 int cpu, int prev_cpu, int sd_flag)
6327 {
6328 int new_cpu = cpu;
6329
6330 if (!cpumask_intersects(sched_domain_span(sd), p->cpus_ptr))
6331 return prev_cpu;
6332
6333 /*
6334 * We need task's util for cpu_util_without, sync it up to
6335 * prev_cpu's last_update_time.
6336 */
6337 if (!(sd_flag & SD_BALANCE_FORK))
6338 sync_entity_load_avg(&p->se);
6339
6340 while (sd) {
6341 struct sched_group *group;
6342 struct sched_domain *tmp;
6343 int weight;
6344
6345 if (!(sd->flags & sd_flag)) {
6346 sd = sd->child;
6347 continue;
6348 }
6349
6350 group = find_idlest_group(sd, p, cpu);
6351 if (!group) {
6352 sd = sd->child;
6353 continue;
6354 }
6355
6356 new_cpu = find_idlest_group_cpu(group, p, cpu);
6357 if (new_cpu == cpu) {
6358 /* Now try balancing at a lower domain level of 'cpu': */
6359 sd = sd->child;
6360 continue;
6361 }
6362
6363 /* Now try balancing at a lower domain level of 'new_cpu': */
6364 cpu = new_cpu;
6365 weight = sd->span_weight;
6366 sd = NULL;
6367 for_each_domain(cpu, tmp) {
6368 if (weight <= tmp->span_weight)
6369 break;
6370 if (tmp->flags & sd_flag)
6371 sd = tmp;
6372 }
6373 }
6374
6375 return new_cpu;
6376 }
6377
__select_idle_cpu(int cpu,struct task_struct * p)6378 static inline int __select_idle_cpu(int cpu, struct task_struct *p)
6379 {
6380 if ((available_idle_cpu(cpu) || sched_idle_cpu(cpu)) &&
6381 sched_cpu_cookie_match(cpu_rq(cpu), p))
6382 return cpu;
6383
6384 return -1;
6385 }
6386
6387 #ifdef CONFIG_SCHED_SMT
6388 DEFINE_STATIC_KEY_FALSE(sched_smt_present);
6389 EXPORT_SYMBOL_GPL(sched_smt_present);
6390
set_idle_cores(int cpu,int val)6391 static inline void set_idle_cores(int cpu, int val)
6392 {
6393 struct sched_domain_shared *sds;
6394
6395 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
6396 if (sds)
6397 WRITE_ONCE(sds->has_idle_cores, val);
6398 }
6399
test_idle_cores(int cpu,bool def)6400 static inline bool test_idle_cores(int cpu, bool def)
6401 {
6402 struct sched_domain_shared *sds;
6403
6404 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
6405 if (sds)
6406 return READ_ONCE(sds->has_idle_cores);
6407
6408 return def;
6409 }
6410
6411 /*
6412 * Scans the local SMT mask to see if the entire core is idle, and records this
6413 * information in sd_llc_shared->has_idle_cores.
6414 *
6415 * Since SMT siblings share all cache levels, inspecting this limited remote
6416 * state should be fairly cheap.
6417 */
__update_idle_core(struct rq * rq)6418 void __update_idle_core(struct rq *rq)
6419 {
6420 int core = cpu_of(rq);
6421 int cpu;
6422
6423 rcu_read_lock();
6424 if (test_idle_cores(core, true))
6425 goto unlock;
6426
6427 for_each_cpu(cpu, cpu_smt_mask(core)) {
6428 if (cpu == core)
6429 continue;
6430
6431 if (!available_idle_cpu(cpu))
6432 goto unlock;
6433 }
6434
6435 set_idle_cores(core, 1);
6436 unlock:
6437 rcu_read_unlock();
6438 }
6439
6440 /*
6441 * Scan the entire LLC domain for idle cores; this dynamically switches off if
6442 * there are no idle cores left in the system; tracked through
6443 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
6444 */
select_idle_core(struct task_struct * p,int core,struct cpumask * cpus,int * idle_cpu)6445 static int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu)
6446 {
6447 bool idle = true;
6448 int cpu;
6449
6450 if (!static_branch_likely(&sched_smt_present))
6451 return __select_idle_cpu(core, p);
6452
6453 for_each_cpu(cpu, cpu_smt_mask(core)) {
6454 if (!available_idle_cpu(cpu)) {
6455 idle = false;
6456 if (*idle_cpu == -1) {
6457 if (sched_idle_cpu(cpu) && cpumask_test_cpu(cpu, p->cpus_ptr)) {
6458 *idle_cpu = cpu;
6459 break;
6460 }
6461 continue;
6462 }
6463 break;
6464 }
6465 if (*idle_cpu == -1 && cpumask_test_cpu(cpu, p->cpus_ptr))
6466 *idle_cpu = cpu;
6467 }
6468
6469 if (idle)
6470 return core;
6471
6472 cpumask_andnot(cpus, cpus, cpu_smt_mask(core));
6473 return -1;
6474 }
6475
6476 /*
6477 * Scan the local SMT mask for idle CPUs.
6478 */
select_idle_smt(struct task_struct * p,struct sched_domain * sd,int target)6479 static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
6480 {
6481 int cpu;
6482
6483 for_each_cpu(cpu, cpu_smt_mask(target)) {
6484 if (!cpumask_test_cpu(cpu, p->cpus_ptr) ||
6485 !cpumask_test_cpu(cpu, sched_domain_span(sd)))
6486 continue;
6487 if (available_idle_cpu(cpu) || sched_idle_cpu(cpu))
6488 return cpu;
6489 }
6490
6491 return -1;
6492 }
6493
6494 #else /* CONFIG_SCHED_SMT */
6495
set_idle_cores(int cpu,int val)6496 static inline void set_idle_cores(int cpu, int val)
6497 {
6498 }
6499
test_idle_cores(int cpu,bool def)6500 static inline bool test_idle_cores(int cpu, bool def)
6501 {
6502 return def;
6503 }
6504
select_idle_core(struct task_struct * p,int core,struct cpumask * cpus,int * idle_cpu)6505 static inline int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu)
6506 {
6507 return __select_idle_cpu(core, p);
6508 }
6509
select_idle_smt(struct task_struct * p,struct sched_domain * sd,int target)6510 static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
6511 {
6512 return -1;
6513 }
6514
6515 #endif /* CONFIG_SCHED_SMT */
6516
6517 /*
6518 * Scan the LLC domain for idle CPUs; this is dynamically regulated by
6519 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
6520 * average idle time for this rq (as found in rq->avg_idle).
6521 */
select_idle_cpu(struct task_struct * p,struct sched_domain * sd,bool has_idle_core,int target)6522 static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, bool has_idle_core, int target)
6523 {
6524 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
6525 int i, cpu, idle_cpu = -1, nr = INT_MAX;
6526 struct sched_domain_shared *sd_share;
6527 struct rq *this_rq = this_rq();
6528 int this = smp_processor_id();
6529 struct sched_domain *this_sd;
6530 u64 time = 0;
6531
6532 this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc));
6533 if (!this_sd)
6534 return -1;
6535
6536 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
6537
6538 if (sched_feat(SIS_PROP) && !has_idle_core) {
6539 u64 avg_cost, avg_idle, span_avg;
6540 unsigned long now = jiffies;
6541
6542 /*
6543 * If we're busy, the assumption that the last idle period
6544 * predicts the future is flawed; age away the remaining
6545 * predicted idle time.
6546 */
6547 if (unlikely(this_rq->wake_stamp < now)) {
6548 while (this_rq->wake_stamp < now && this_rq->wake_avg_idle) {
6549 this_rq->wake_stamp++;
6550 this_rq->wake_avg_idle >>= 1;
6551 }
6552 }
6553
6554 avg_idle = this_rq->wake_avg_idle;
6555 avg_cost = this_sd->avg_scan_cost + 1;
6556
6557 span_avg = sd->span_weight * avg_idle;
6558 if (span_avg > 4*avg_cost)
6559 nr = div_u64(span_avg, avg_cost);
6560 else
6561 nr = 4;
6562
6563 time = cpu_clock(this);
6564 }
6565
6566 if (sched_feat(SIS_UTIL)) {
6567 sd_share = rcu_dereference(per_cpu(sd_llc_shared, target));
6568 if (sd_share) {
6569 /* because !--nr is the condition to stop scan */
6570 nr = READ_ONCE(sd_share->nr_idle_scan) + 1;
6571 /* overloaded LLC is unlikely to have idle cpu/core */
6572 if (nr == 1)
6573 return -1;
6574 }
6575 }
6576
6577 for_each_cpu_wrap(cpu, cpus, target + 1) {
6578 if (has_idle_core) {
6579 i = select_idle_core(p, cpu, cpus, &idle_cpu);
6580 if ((unsigned int)i < nr_cpumask_bits)
6581 return i;
6582
6583 } else {
6584 if (!--nr)
6585 return -1;
6586 idle_cpu = __select_idle_cpu(cpu, p);
6587 if ((unsigned int)idle_cpu < nr_cpumask_bits)
6588 break;
6589 }
6590 }
6591
6592 if (has_idle_core)
6593 set_idle_cores(target, false);
6594
6595 if (sched_feat(SIS_PROP) && !has_idle_core) {
6596 time = cpu_clock(this) - time;
6597
6598 /*
6599 * Account for the scan cost of wakeups against the average
6600 * idle time.
6601 */
6602 this_rq->wake_avg_idle -= min(this_rq->wake_avg_idle, time);
6603
6604 update_avg(&this_sd->avg_scan_cost, time);
6605 }
6606
6607 return idle_cpu;
6608 }
6609
6610 /*
6611 * Scan the asym_capacity domain for idle CPUs; pick the first idle one on which
6612 * the task fits. If no CPU is big enough, but there are idle ones, try to
6613 * maximize capacity.
6614 */
6615 static int
select_idle_capacity(struct task_struct * p,struct sched_domain * sd,int target)6616 select_idle_capacity(struct task_struct *p, struct sched_domain *sd, int target)
6617 {
6618 unsigned long task_util, util_min, util_max, best_cap = 0;
6619 int cpu, best_cpu = -1;
6620 struct cpumask *cpus;
6621
6622 cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
6623 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
6624
6625 task_util = task_util_est(p);
6626 util_min = uclamp_eff_value(p, UCLAMP_MIN);
6627 util_max = uclamp_eff_value(p, UCLAMP_MAX);
6628
6629 for_each_cpu_wrap(cpu, cpus, target) {
6630 unsigned long cpu_cap = capacity_of(cpu);
6631
6632 if (!available_idle_cpu(cpu) && !sched_idle_cpu(cpu))
6633 continue;
6634 if (util_fits_cpu(task_util, util_min, util_max, cpu))
6635 return cpu;
6636
6637 if (cpu_cap > best_cap) {
6638 best_cap = cpu_cap;
6639 best_cpu = cpu;
6640 }
6641 }
6642
6643 return best_cpu;
6644 }
6645
asym_fits_cpu(unsigned long util,unsigned long util_min,unsigned long util_max,int cpu)6646 static inline bool asym_fits_cpu(unsigned long util,
6647 unsigned long util_min,
6648 unsigned long util_max,
6649 int cpu)
6650 {
6651 if (sched_asym_cpucap_active())
6652 return util_fits_cpu(util, util_min, util_max, cpu);
6653
6654 return true;
6655 }
6656
6657 /*
6658 * Try and locate an idle core/thread in the LLC cache domain.
6659 */
select_idle_sibling(struct task_struct * p,int prev,int target)6660 static int select_idle_sibling(struct task_struct *p, int prev, int target)
6661 {
6662 bool has_idle_core = false;
6663 struct sched_domain *sd;
6664 unsigned long task_util, util_min, util_max;
6665 int i, recent_used_cpu;
6666
6667 /*
6668 * On asymmetric system, update task utilization because we will check
6669 * that the task fits with cpu's capacity.
6670 */
6671 if (sched_asym_cpucap_active()) {
6672 sync_entity_load_avg(&p->se);
6673 task_util = task_util_est(p);
6674 util_min = uclamp_eff_value(p, UCLAMP_MIN);
6675 util_max = uclamp_eff_value(p, UCLAMP_MAX);
6676 }
6677
6678 /*
6679 * per-cpu select_idle_mask usage
6680 */
6681 lockdep_assert_irqs_disabled();
6682
6683 if ((available_idle_cpu(target) || sched_idle_cpu(target)) &&
6684 asym_fits_cpu(task_util, util_min, util_max, target))
6685 return target;
6686
6687 /*
6688 * If the previous CPU is cache affine and idle, don't be stupid:
6689 */
6690 if (prev != target && cpus_share_cache(prev, target) &&
6691 (available_idle_cpu(prev) || sched_idle_cpu(prev)) &&
6692 asym_fits_cpu(task_util, util_min, util_max, prev))
6693 return prev;
6694
6695 /*
6696 * Allow a per-cpu kthread to stack with the wakee if the
6697 * kworker thread and the tasks previous CPUs are the same.
6698 * The assumption is that the wakee queued work for the
6699 * per-cpu kthread that is now complete and the wakeup is
6700 * essentially a sync wakeup. An obvious example of this
6701 * pattern is IO completions.
6702 */
6703 if (is_per_cpu_kthread(current) &&
6704 in_task() &&
6705 prev == smp_processor_id() &&
6706 this_rq()->nr_running <= 1 &&
6707 asym_fits_cpu(task_util, util_min, util_max, prev)) {
6708 return prev;
6709 }
6710
6711 /* Check a recently used CPU as a potential idle candidate: */
6712 recent_used_cpu = p->recent_used_cpu;
6713 p->recent_used_cpu = prev;
6714 if (recent_used_cpu != prev &&
6715 recent_used_cpu != target &&
6716 cpus_share_cache(recent_used_cpu, target) &&
6717 (available_idle_cpu(recent_used_cpu) || sched_idle_cpu(recent_used_cpu)) &&
6718 cpumask_test_cpu(p->recent_used_cpu, p->cpus_ptr) &&
6719 asym_fits_cpu(task_util, util_min, util_max, recent_used_cpu)) {
6720 return recent_used_cpu;
6721 }
6722
6723 /*
6724 * For asymmetric CPU capacity systems, our domain of interest is
6725 * sd_asym_cpucapacity rather than sd_llc.
6726 */
6727 if (sched_asym_cpucap_active()) {
6728 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, target));
6729 /*
6730 * On an asymmetric CPU capacity system where an exclusive
6731 * cpuset defines a symmetric island (i.e. one unique
6732 * capacity_orig value through the cpuset), the key will be set
6733 * but the CPUs within that cpuset will not have a domain with
6734 * SD_ASYM_CPUCAPACITY. These should follow the usual symmetric
6735 * capacity path.
6736 */
6737 if (sd) {
6738 i = select_idle_capacity(p, sd, target);
6739 return ((unsigned)i < nr_cpumask_bits) ? i : target;
6740 }
6741 }
6742
6743 sd = rcu_dereference(per_cpu(sd_llc, target));
6744 if (!sd)
6745 return target;
6746
6747 if (sched_smt_active()) {
6748 has_idle_core = test_idle_cores(target, false);
6749
6750 if (!has_idle_core && cpus_share_cache(prev, target)) {
6751 i = select_idle_smt(p, sd, prev);
6752 if ((unsigned int)i < nr_cpumask_bits)
6753 return i;
6754 }
6755 }
6756
6757 i = select_idle_cpu(p, sd, has_idle_core, target);
6758 if ((unsigned)i < nr_cpumask_bits)
6759 return i;
6760
6761 return target;
6762 }
6763
6764 /**
6765 * cpu_util - Estimates the amount of capacity of a CPU used by CFS tasks.
6766 * @cpu: the CPU to get the utilization of
6767 *
6768 * The unit of the return value must be the one of capacity so we can compare
6769 * the utilization with the capacity of the CPU that is available for CFS task
6770 * (ie cpu_capacity).
6771 *
6772 * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
6773 * recent utilization of currently non-runnable tasks on a CPU. It represents
6774 * the amount of utilization of a CPU in the range [0..capacity_orig] where
6775 * capacity_orig is the cpu_capacity available at the highest frequency
6776 * (arch_scale_freq_capacity()).
6777 * The utilization of a CPU converges towards a sum equal to or less than the
6778 * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
6779 * the running time on this CPU scaled by capacity_curr.
6780 *
6781 * The estimated utilization of a CPU is defined to be the maximum between its
6782 * cfs_rq.avg.util_avg and the sum of the estimated utilization of the tasks
6783 * currently RUNNABLE on that CPU.
6784 * This allows to properly represent the expected utilization of a CPU which
6785 * has just got a big task running since a long sleep period. At the same time
6786 * however it preserves the benefits of the "blocked utilization" in
6787 * describing the potential for other tasks waking up on the same CPU.
6788 *
6789 * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
6790 * higher than capacity_orig because of unfortunate rounding in
6791 * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
6792 * the average stabilizes with the new running time. We need to check that the
6793 * utilization stays within the range of [0..capacity_orig] and cap it if
6794 * necessary. Without utilization capping, a group could be seen as overloaded
6795 * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
6796 * available capacity. We allow utilization to overshoot capacity_curr (but not
6797 * capacity_orig) as it useful for predicting the capacity required after task
6798 * migrations (scheduler-driven DVFS).
6799 *
6800 * Return: the (estimated) utilization for the specified CPU
6801 */
cpu_util(int cpu)6802 static inline unsigned long cpu_util(int cpu)
6803 {
6804 struct cfs_rq *cfs_rq;
6805 unsigned int util;
6806
6807 cfs_rq = &cpu_rq(cpu)->cfs;
6808 util = READ_ONCE(cfs_rq->avg.util_avg);
6809
6810 if (sched_feat(UTIL_EST))
6811 util = max(util, READ_ONCE(cfs_rq->avg.util_est.enqueued));
6812
6813 return min_t(unsigned long, util, capacity_orig_of(cpu));
6814 }
6815
6816 /*
6817 * cpu_util_without: compute cpu utilization without any contributions from *p
6818 * @cpu: the CPU which utilization is requested
6819 * @p: the task which utilization should be discounted
6820 *
6821 * The utilization of a CPU is defined by the utilization of tasks currently
6822 * enqueued on that CPU as well as tasks which are currently sleeping after an
6823 * execution on that CPU.
6824 *
6825 * This method returns the utilization of the specified CPU by discounting the
6826 * utilization of the specified task, whenever the task is currently
6827 * contributing to the CPU utilization.
6828 */
cpu_util_without(int cpu,struct task_struct * p)6829 static unsigned long cpu_util_without(int cpu, struct task_struct *p)
6830 {
6831 struct cfs_rq *cfs_rq;
6832 unsigned int util;
6833
6834 /* Task has no contribution or is new */
6835 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
6836 return cpu_util(cpu);
6837
6838 cfs_rq = &cpu_rq(cpu)->cfs;
6839 util = READ_ONCE(cfs_rq->avg.util_avg);
6840
6841 /* Discount task's util from CPU's util */
6842 lsub_positive(&util, task_util(p));
6843
6844 /*
6845 * Covered cases:
6846 *
6847 * a) if *p is the only task sleeping on this CPU, then:
6848 * cpu_util (== task_util) > util_est (== 0)
6849 * and thus we return:
6850 * cpu_util_without = (cpu_util - task_util) = 0
6851 *
6852 * b) if other tasks are SLEEPING on this CPU, which is now exiting
6853 * IDLE, then:
6854 * cpu_util >= task_util
6855 * cpu_util > util_est (== 0)
6856 * and thus we discount *p's blocked utilization to return:
6857 * cpu_util_without = (cpu_util - task_util) >= 0
6858 *
6859 * c) if other tasks are RUNNABLE on that CPU and
6860 * util_est > cpu_util
6861 * then we use util_est since it returns a more restrictive
6862 * estimation of the spare capacity on that CPU, by just
6863 * considering the expected utilization of tasks already
6864 * runnable on that CPU.
6865 *
6866 * Cases a) and b) are covered by the above code, while case c) is
6867 * covered by the following code when estimated utilization is
6868 * enabled.
6869 */
6870 if (sched_feat(UTIL_EST)) {
6871 unsigned int estimated =
6872 READ_ONCE(cfs_rq->avg.util_est.enqueued);
6873
6874 /*
6875 * Despite the following checks we still have a small window
6876 * for a possible race, when an execl's select_task_rq_fair()
6877 * races with LB's detach_task():
6878 *
6879 * detach_task()
6880 * p->on_rq = TASK_ON_RQ_MIGRATING;
6881 * ---------------------------------- A
6882 * deactivate_task() \
6883 * dequeue_task() + RaceTime
6884 * util_est_dequeue() /
6885 * ---------------------------------- B
6886 *
6887 * The additional check on "current == p" it's required to
6888 * properly fix the execl regression and it helps in further
6889 * reducing the chances for the above race.
6890 */
6891 if (unlikely(task_on_rq_queued(p) || current == p))
6892 lsub_positive(&estimated, _task_util_est(p));
6893
6894 util = max(util, estimated);
6895 }
6896
6897 /*
6898 * Utilization (estimated) can exceed the CPU capacity, thus let's
6899 * clamp to the maximum CPU capacity to ensure consistency with
6900 * the cpu_util call.
6901 */
6902 return min_t(unsigned long, util, capacity_orig_of(cpu));
6903 }
6904
6905 /*
6906 * Predicts what cpu_util(@cpu) would return if @p was migrated (and enqueued)
6907 * to @dst_cpu.
6908 */
cpu_util_next(int cpu,struct task_struct * p,int dst_cpu)6909 static unsigned long cpu_util_next(int cpu, struct task_struct *p, int dst_cpu)
6910 {
6911 struct cfs_rq *cfs_rq = &cpu_rq(cpu)->cfs;
6912 unsigned long util_est, util = READ_ONCE(cfs_rq->avg.util_avg);
6913
6914 /*
6915 * If @p migrates from @cpu to another, remove its contribution. Or,
6916 * if @p migrates from another CPU to @cpu, add its contribution. In
6917 * the other cases, @cpu is not impacted by the migration, so the
6918 * util_avg should already be correct.
6919 */
6920 if (task_cpu(p) == cpu && dst_cpu != cpu)
6921 lsub_positive(&util, task_util(p));
6922 else if (task_cpu(p) != cpu && dst_cpu == cpu)
6923 util += task_util(p);
6924
6925 if (sched_feat(UTIL_EST)) {
6926 util_est = READ_ONCE(cfs_rq->avg.util_est.enqueued);
6927
6928 /*
6929 * During wake-up, the task isn't enqueued yet and doesn't
6930 * appear in the cfs_rq->avg.util_est.enqueued of any rq,
6931 * so just add it (if needed) to "simulate" what will be
6932 * cpu_util() after the task has been enqueued.
6933 */
6934 if (dst_cpu == cpu)
6935 util_est += _task_util_est(p);
6936
6937 util = max(util, util_est);
6938 }
6939
6940 return min(util, capacity_orig_of(cpu));
6941 }
6942
6943 /*
6944 * compute_energy(): Estimates the energy that @pd would consume if @p was
6945 * migrated to @dst_cpu. compute_energy() predicts what will be the utilization
6946 * landscape of @pd's CPUs after the task migration, and uses the Energy Model
6947 * to compute what would be the energy if we decided to actually migrate that
6948 * task.
6949 */
6950 static long
compute_energy(struct task_struct * p,int dst_cpu,struct perf_domain * pd)6951 compute_energy(struct task_struct *p, int dst_cpu, struct perf_domain *pd)
6952 {
6953 struct cpumask *pd_mask = perf_domain_span(pd);
6954 unsigned long cpu_cap = arch_scale_cpu_capacity(cpumask_first(pd_mask));
6955 unsigned long max_util = 0, sum_util = 0;
6956 unsigned long _cpu_cap = cpu_cap;
6957 unsigned long energy = 0;
6958 int cpu;
6959
6960 _cpu_cap -= arch_scale_thermal_pressure(cpumask_first(pd_mask));
6961
6962 /*
6963 * The capacity state of CPUs of the current rd can be driven by CPUs
6964 * of another rd if they belong to the same pd. So, account for the
6965 * utilization of these CPUs too by masking pd with cpu_online_mask
6966 * instead of the rd span.
6967 *
6968 * If an entire pd is outside of the current rd, it will not appear in
6969 * its pd list and will not be accounted by compute_energy().
6970 */
6971 for_each_cpu_and(cpu, pd_mask, cpu_online_mask) {
6972 unsigned long util_freq = cpu_util_next(cpu, p, dst_cpu);
6973 unsigned long cpu_util, util_running = util_freq;
6974 struct task_struct *tsk = NULL;
6975
6976 /*
6977 * When @p is placed on @cpu:
6978 *
6979 * util_running = max(cpu_util, cpu_util_est) +
6980 * max(task_util, _task_util_est)
6981 *
6982 * while cpu_util_next is: max(cpu_util + task_util,
6983 * cpu_util_est + _task_util_est)
6984 */
6985 if (cpu == dst_cpu) {
6986 tsk = p;
6987 util_running =
6988 cpu_util_next(cpu, p, -1) + task_util_est(p);
6989 }
6990
6991 /*
6992 * Busy time computation: utilization clamping is not
6993 * required since the ratio (sum_util / cpu_capacity)
6994 * is already enough to scale the EM reported power
6995 * consumption at the (eventually clamped) cpu_capacity.
6996 */
6997 cpu_util = effective_cpu_util(cpu, util_running, cpu_cap,
6998 ENERGY_UTIL, NULL);
6999
7000 sum_util += min(cpu_util, _cpu_cap);
7001
7002 /*
7003 * Performance domain frequency: utilization clamping
7004 * must be considered since it affects the selection
7005 * of the performance domain frequency.
7006 * NOTE: in case RT tasks are running, by default the
7007 * FREQUENCY_UTIL's utilization can be max OPP.
7008 */
7009 cpu_util = effective_cpu_util(cpu, util_freq, cpu_cap,
7010 FREQUENCY_UTIL, tsk);
7011 max_util = max(max_util, min(cpu_util, _cpu_cap));
7012 }
7013
7014 trace_android_vh_em_cpu_energy(pd->em_pd, max_util, sum_util, &energy);
7015 if (!energy)
7016 energy = em_cpu_energy(pd->em_pd, max_util, sum_util, _cpu_cap);
7017
7018 return energy;
7019 }
7020
7021 /*
7022 * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the
7023 * waking task. find_energy_efficient_cpu() looks for the CPU with maximum
7024 * spare capacity in each performance domain and uses it as a potential
7025 * candidate to execute the task. Then, it uses the Energy Model to figure
7026 * out which of the CPU candidates is the most energy-efficient.
7027 *
7028 * The rationale for this heuristic is as follows. In a performance domain,
7029 * all the most energy efficient CPU candidates (according to the Energy
7030 * Model) are those for which we'll request a low frequency. When there are
7031 * several CPUs for which the frequency request will be the same, we don't
7032 * have enough data to break the tie between them, because the Energy Model
7033 * only includes active power costs. With this model, if we assume that
7034 * frequency requests follow utilization (e.g. using schedutil), the CPU with
7035 * the maximum spare capacity in a performance domain is guaranteed to be among
7036 * the best candidates of the performance domain.
7037 *
7038 * In practice, it could be preferable from an energy standpoint to pack
7039 * small tasks on a CPU in order to let other CPUs go in deeper idle states,
7040 * but that could also hurt our chances to go cluster idle, and we have no
7041 * ways to tell with the current Energy Model if this is actually a good
7042 * idea or not. So, find_energy_efficient_cpu() basically favors
7043 * cluster-packing, and spreading inside a cluster. That should at least be
7044 * a good thing for latency, and this is consistent with the idea that most
7045 * of the energy savings of EAS come from the asymmetry of the system, and
7046 * not so much from breaking the tie between identical CPUs. That's also the
7047 * reason why EAS is enabled in the topology code only for systems where
7048 * SD_ASYM_CPUCAPACITY is set.
7049 *
7050 * NOTE: Forkees are not accepted in the energy-aware wake-up path because
7051 * they don't have any useful utilization data yet and it's not possible to
7052 * forecast their impact on energy consumption. Consequently, they will be
7053 * placed by find_idlest_cpu() on the least loaded CPU, which might turn out
7054 * to be energy-inefficient in some use-cases. The alternative would be to
7055 * bias new tasks towards specific types of CPUs first, or to try to infer
7056 * their util_avg from the parent task, but those heuristics could hurt
7057 * other use-cases too. So, until someone finds a better way to solve this,
7058 * let's keep things simple by re-using the existing slow path.
7059 */
find_energy_efficient_cpu(struct task_struct * p,int prev_cpu,int sync)7060 static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu, int sync)
7061 {
7062 unsigned long prev_delta = ULONG_MAX, best_delta = ULONG_MAX;
7063 unsigned long p_util_min = uclamp_is_used() ? uclamp_eff_value(p, UCLAMP_MIN) : 0;
7064 unsigned long p_util_max = uclamp_is_used() ? uclamp_eff_value(p, UCLAMP_MAX) : 1024;
7065 struct root_domain *rd = cpu_rq(smp_processor_id())->rd;
7066 int max_spare_cap_cpu_ls = prev_cpu, best_idle_cpu = -1;
7067 int cpu, best_energy_cpu = prev_cpu, target = -1;
7068 unsigned long max_spare_cap_ls = 0, target_cap;
7069 unsigned long cpu_cap, util, base_energy = 0;
7070 bool boosted, latency_sensitive = false;
7071 unsigned int min_exit_lat = UINT_MAX;
7072 struct cpuidle_state *idle;
7073 struct sched_domain *sd;
7074 struct perf_domain *pd;
7075 int new_cpu = INT_MAX;
7076
7077 sync_entity_load_avg(&p->se);
7078 trace_android_rvh_find_energy_efficient_cpu(p, prev_cpu, sync, &new_cpu);
7079 if (new_cpu != INT_MAX)
7080 return new_cpu;
7081
7082 rcu_read_lock();
7083 pd = rcu_dereference(rd->pd);
7084 if (!pd || READ_ONCE(rd->overutilized))
7085 goto unlock;
7086
7087 cpu = smp_processor_id();
7088 if (sync && cpu_rq(cpu)->nr_running == 1 &&
7089 cpumask_test_cpu(cpu, p->cpus_ptr) &&
7090 task_fits_cpu(p, cpu)) {
7091 rcu_read_unlock();
7092 return cpu;
7093 }
7094
7095 /*
7096 * Energy-aware wake-up happens on the lowest sched_domain starting
7097 * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu.
7098 */
7099 sd = rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity));
7100 while (sd && !cpumask_test_cpu(prev_cpu, sched_domain_span(sd)))
7101 sd = sd->parent;
7102 if (!sd)
7103 goto unlock;
7104
7105 target = prev_cpu;
7106
7107 if (!task_util_est(p) && p_util_min == 0)
7108 goto unlock;
7109
7110 latency_sensitive = uclamp_latency_sensitive(p);
7111 boosted = uclamp_boosted(p);
7112 target_cap = boosted ? 0 : ULONG_MAX;
7113
7114 for (; pd; pd = pd->next) {
7115 unsigned long util_min = p_util_min, util_max = p_util_max;
7116 unsigned long cur_delta, spare_cap, max_spare_cap = 0;
7117 unsigned long rq_util_min, rq_util_max;
7118 bool compute_prev_delta = false;
7119 unsigned long base_energy_pd;
7120 int max_spare_cap_cpu = -1;
7121
7122 for_each_cpu_and(cpu, perf_domain_span(pd), sched_domain_span(sd)) {
7123 struct rq *rq = cpu_rq(cpu);
7124
7125 if (!cpumask_test_cpu(cpu, p->cpus_ptr))
7126 continue;
7127
7128 util = cpu_util_next(cpu, p, cpu);
7129 cpu_cap = capacity_of(cpu);
7130 spare_cap = cpu_cap;
7131 lsub_positive(&spare_cap, util);
7132
7133 /*
7134 * Skip CPUs that cannot satisfy the capacity request.
7135 * IOW, placing the task there would make the CPU
7136 * overutilized. Take uclamp into account to see how
7137 * much capacity we can get out of the CPU; this is
7138 * aligned with sched_cpu_util().
7139 */
7140 if (uclamp_is_used() && !uclamp_rq_is_idle(rq)) {
7141 /*
7142 * Open code uclamp_rq_util_with() except for
7143 * the clamp() part. Ie: apply max aggregation
7144 * only. util_fits_cpu() logic requires to
7145 * operate on non clamped util but must use the
7146 * max-aggregated uclamp_{min, max}.
7147 */
7148 rq_util_min = uclamp_rq_get(rq, UCLAMP_MIN);
7149 rq_util_max = uclamp_rq_get(rq, UCLAMP_MAX);
7150
7151 util_min = max(rq_util_min, p_util_min);
7152 util_max = max(rq_util_max, p_util_max);
7153 }
7154 if (!util_fits_cpu(util, util_min, util_max, cpu))
7155 continue;
7156
7157 if (!latency_sensitive && cpu == prev_cpu) {
7158 /* Always use prev_cpu as a candidate. */
7159 compute_prev_delta = true;
7160 } else if (spare_cap > max_spare_cap) {
7161 /*
7162 * Find the CPU with the maximum spare capacity
7163 * in the performance domain.
7164 */
7165 max_spare_cap = spare_cap;
7166 max_spare_cap_cpu = cpu;
7167 }
7168
7169 if (!latency_sensitive)
7170 continue;
7171
7172 if (idle_cpu(cpu)) {
7173 cpu_cap = capacity_orig_of(cpu);
7174 if (boosted && cpu_cap < target_cap)
7175 continue;
7176 if (!boosted && cpu_cap > target_cap)
7177 continue;
7178 idle = idle_get_state(cpu_rq(cpu));
7179 if (idle && idle->exit_latency > min_exit_lat &&
7180 cpu_cap == target_cap)
7181 continue;
7182
7183 if (idle)
7184 min_exit_lat = idle->exit_latency;
7185 target_cap = cpu_cap;
7186 best_idle_cpu = cpu;
7187 } else if (spare_cap > max_spare_cap_ls) {
7188 max_spare_cap_ls = spare_cap;
7189 max_spare_cap_cpu_ls = cpu;
7190 }
7191 }
7192
7193 if (!latency_sensitive && max_spare_cap_cpu < 0 && !compute_prev_delta)
7194 continue;
7195
7196 /* Compute the 'base' energy of the pd, without @p */
7197 base_energy_pd = compute_energy(p, -1, pd);
7198 base_energy += base_energy_pd;
7199
7200 /* Evaluate the energy impact of using prev_cpu. */
7201 if (compute_prev_delta) {
7202 prev_delta = compute_energy(p, prev_cpu, pd);
7203 if (prev_delta < base_energy_pd)
7204 goto unlock;
7205 prev_delta -= base_energy_pd;
7206 best_delta = min(best_delta, prev_delta);
7207 }
7208
7209 /* Evaluate the energy impact of using max_spare_cap_cpu. */
7210 if (max_spare_cap_cpu >= 0) {
7211 cur_delta = compute_energy(p, max_spare_cap_cpu, pd);
7212 if (cur_delta < base_energy_pd)
7213 goto unlock;
7214 cur_delta -= base_energy_pd;
7215 if (cur_delta < best_delta) {
7216 best_delta = cur_delta;
7217 best_energy_cpu = max_spare_cap_cpu;
7218 }
7219 }
7220 }
7221 rcu_read_unlock();
7222
7223 if (latency_sensitive)
7224 return best_idle_cpu >= 0 ? best_idle_cpu : max_spare_cap_cpu_ls;
7225
7226 /*
7227 * Pick the best CPU if prev_cpu cannot be used, or if it saves at
7228 * least 6% of the energy used by prev_cpu.
7229 */
7230 if ((prev_delta == ULONG_MAX) ||
7231 (prev_delta - best_delta) > ((prev_delta + base_energy) >> 4))
7232 target = best_energy_cpu;
7233
7234 return target;
7235
7236 unlock:
7237 rcu_read_unlock();
7238
7239 return target;
7240 }
7241
7242 /*
7243 * select_task_rq_fair: Select target runqueue for the waking task in domains
7244 * that have the relevant SD flag set. In practice, this is SD_BALANCE_WAKE,
7245 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
7246 *
7247 * Balances load by selecting the idlest CPU in the idlest group, or under
7248 * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set.
7249 *
7250 * Returns the target CPU number.
7251 */
7252 static int
select_task_rq_fair(struct task_struct * p,int prev_cpu,int wake_flags)7253 select_task_rq_fair(struct task_struct *p, int prev_cpu, int wake_flags)
7254 {
7255 int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING);
7256 struct sched_domain *tmp, *sd = NULL;
7257 int cpu = smp_processor_id();
7258 int new_cpu = prev_cpu;
7259 int want_affine = 0;
7260 int target_cpu = -1;
7261 /* SD_flags and WF_flags share the first nibble */
7262 int sd_flag = wake_flags & 0xF;
7263
7264 if (trace_android_rvh_select_task_rq_fair_enabled() &&
7265 !(sd_flag & SD_BALANCE_FORK))
7266 sync_entity_load_avg(&p->se);
7267 trace_android_rvh_select_task_rq_fair(p, prev_cpu, sd_flag,
7268 wake_flags, &target_cpu);
7269 if (target_cpu >= 0)
7270 return target_cpu;
7271
7272 /*
7273 * required for stable ->cpus_allowed
7274 */
7275 lockdep_assert_held(&p->pi_lock);
7276 if (wake_flags & WF_TTWU) {
7277 record_wakee(p);
7278
7279 if (sched_energy_enabled()) {
7280 new_cpu = find_energy_efficient_cpu(p, prev_cpu, sync);
7281 if (new_cpu >= 0)
7282 return new_cpu;
7283 new_cpu = prev_cpu;
7284 }
7285
7286 want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, p->cpus_ptr);
7287 }
7288
7289 rcu_read_lock();
7290 for_each_domain(cpu, tmp) {
7291 /*
7292 * If both 'cpu' and 'prev_cpu' are part of this domain,
7293 * cpu is a valid SD_WAKE_AFFINE target.
7294 */
7295 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
7296 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
7297 if (cpu != prev_cpu)
7298 new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync);
7299
7300 sd = NULL; /* Prefer wake_affine over balance flags */
7301 break;
7302 }
7303
7304 if (tmp->flags & sd_flag)
7305 sd = tmp;
7306 else if (!want_affine)
7307 break;
7308 }
7309
7310 if (unlikely(sd)) {
7311 /* Slow path */
7312 new_cpu = find_idlest_cpu(sd, p, cpu, prev_cpu, sd_flag);
7313 } else if (wake_flags & WF_TTWU) { /* XXX always ? */
7314 /* Fast path */
7315 new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
7316 }
7317 rcu_read_unlock();
7318
7319 return new_cpu;
7320 }
7321
7322 static void detach_entity_cfs_rq(struct sched_entity *se);
7323
7324 /*
7325 * Called immediately before a task is migrated to a new CPU; task_cpu(p) and
7326 * cfs_rq_of(p) references at time of call are still valid and identify the
7327 * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
7328 */
migrate_task_rq_fair(struct task_struct * p,int new_cpu)7329 static void migrate_task_rq_fair(struct task_struct *p, int new_cpu)
7330 {
7331 /*
7332 * As blocked tasks retain absolute vruntime the migration needs to
7333 * deal with this by subtracting the old and adding the new
7334 * min_vruntime -- the latter is done by enqueue_entity() when placing
7335 * the task on the new runqueue.
7336 */
7337 if (READ_ONCE(p->__state) == TASK_WAKING) {
7338 struct sched_entity *se = &p->se;
7339 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7340 u64 min_vruntime;
7341
7342 #ifndef CONFIG_64BIT
7343 u64 min_vruntime_copy;
7344
7345 do {
7346 min_vruntime_copy = cfs_rq->min_vruntime_copy;
7347 smp_rmb();
7348 min_vruntime = cfs_rq->min_vruntime;
7349 } while (min_vruntime != min_vruntime_copy);
7350 #else
7351 min_vruntime = cfs_rq->min_vruntime;
7352 #endif
7353
7354 se->vruntime -= min_vruntime;
7355 }
7356
7357 if (p->on_rq == TASK_ON_RQ_MIGRATING) {
7358 /*
7359 * In case of TASK_ON_RQ_MIGRATING we in fact hold the 'old'
7360 * rq->lock and can modify state directly.
7361 */
7362 lockdep_assert_rq_held(task_rq(p));
7363 detach_entity_cfs_rq(&p->se);
7364
7365 } else {
7366 /*
7367 * We are supposed to update the task to "current" time, then
7368 * its up to date and ready to go to new CPU/cfs_rq. But we
7369 * have difficulty in getting what current time is, so simply
7370 * throw away the out-of-date time. This will result in the
7371 * wakee task is less decayed, but giving the wakee more load
7372 * sounds not bad.
7373 */
7374 remove_entity_load_avg(&p->se);
7375 }
7376
7377 /* Tell new CPU we are migrated */
7378 p->se.avg.last_update_time = 0;
7379
7380 update_scan_period(p, new_cpu);
7381 }
7382
task_dead_fair(struct task_struct * p)7383 static void task_dead_fair(struct task_struct *p)
7384 {
7385 remove_entity_load_avg(&p->se);
7386 }
7387
7388 static int
balance_fair(struct rq * rq,struct task_struct * prev,struct rq_flags * rf)7389 balance_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
7390 {
7391 if (rq->nr_running)
7392 return 1;
7393
7394 return newidle_balance(rq, rf) != 0;
7395 }
7396 #endif /* CONFIG_SMP */
7397
wakeup_gran(struct sched_entity * se)7398 static unsigned long wakeup_gran(struct sched_entity *se)
7399 {
7400 unsigned long gran = sysctl_sched_wakeup_granularity;
7401
7402 /*
7403 * Since its curr running now, convert the gran from real-time
7404 * to virtual-time in his units.
7405 *
7406 * By using 'se' instead of 'curr' we penalize light tasks, so
7407 * they get preempted easier. That is, if 'se' < 'curr' then
7408 * the resulting gran will be larger, therefore penalizing the
7409 * lighter, if otoh 'se' > 'curr' then the resulting gran will
7410 * be smaller, again penalizing the lighter task.
7411 *
7412 * This is especially important for buddies when the leftmost
7413 * task is higher priority than the buddy.
7414 */
7415 return calc_delta_fair(gran, se);
7416 }
7417
7418 /*
7419 * Should 'se' preempt 'curr'.
7420 *
7421 * |s1
7422 * |s2
7423 * |s3
7424 * g
7425 * |<--->|c
7426 *
7427 * w(c, s1) = -1
7428 * w(c, s2) = 0
7429 * w(c, s3) = 1
7430 *
7431 */
7432 static int
wakeup_preempt_entity(struct sched_entity * curr,struct sched_entity * se)7433 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
7434 {
7435 s64 gran, vdiff = curr->vruntime - se->vruntime;
7436
7437 if (vdiff <= 0)
7438 return -1;
7439
7440 gran = wakeup_gran(se);
7441 if (vdiff > gran)
7442 return 1;
7443
7444 return 0;
7445 }
7446
set_last_buddy(struct sched_entity * se)7447 static void set_last_buddy(struct sched_entity *se)
7448 {
7449 for_each_sched_entity(se) {
7450 if (SCHED_WARN_ON(!se->on_rq))
7451 return;
7452 if (se_is_idle(se))
7453 return;
7454 cfs_rq_of(se)->last = se;
7455 }
7456 }
7457
set_next_buddy(struct sched_entity * se)7458 static void set_next_buddy(struct sched_entity *se)
7459 {
7460 for_each_sched_entity(se) {
7461 if (SCHED_WARN_ON(!se->on_rq))
7462 return;
7463 if (se_is_idle(se))
7464 return;
7465 cfs_rq_of(se)->next = se;
7466 }
7467 }
7468
set_skip_buddy(struct sched_entity * se)7469 static void set_skip_buddy(struct sched_entity *se)
7470 {
7471 for_each_sched_entity(se)
7472 cfs_rq_of(se)->skip = se;
7473 }
7474
7475 /*
7476 * Preempt the current task with a newly woken task if needed:
7477 */
check_preempt_wakeup(struct rq * rq,struct task_struct * p,int wake_flags)7478 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
7479 {
7480 struct task_struct *curr = rq->curr;
7481 struct sched_entity *se = &curr->se, *pse = &p->se;
7482 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
7483 int scale = cfs_rq->nr_running >= sched_nr_latency;
7484 int next_buddy_marked = 0;
7485 int cse_is_idle, pse_is_idle;
7486 bool ignore = false;
7487 bool preempt = false;
7488
7489 if (unlikely(se == pse))
7490 return;
7491 trace_android_rvh_check_preempt_wakeup_ignore(curr, &ignore);
7492 if (ignore)
7493 return;
7494
7495 /*
7496 * This is possible from callers such as attach_tasks(), in which we
7497 * unconditionally check_preempt_curr() after an enqueue (which may have
7498 * lead to a throttle). This both saves work and prevents false
7499 * next-buddy nomination below.
7500 */
7501 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
7502 return;
7503
7504 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
7505 set_next_buddy(pse);
7506 next_buddy_marked = 1;
7507 }
7508
7509 /*
7510 * We can come here with TIF_NEED_RESCHED already set from new task
7511 * wake up path.
7512 *
7513 * Note: this also catches the edge-case of curr being in a throttled
7514 * group (e.g. via set_curr_task), since update_curr() (in the
7515 * enqueue of curr) will have resulted in resched being set. This
7516 * prevents us from potentially nominating it as a false LAST_BUDDY
7517 * below.
7518 */
7519 if (test_tsk_need_resched(curr))
7520 return;
7521
7522 /* Idle tasks are by definition preempted by non-idle tasks. */
7523 if (unlikely(task_has_idle_policy(curr)) &&
7524 likely(!task_has_idle_policy(p)))
7525 goto preempt;
7526
7527 /*
7528 * Batch and idle tasks do not preempt non-idle tasks (their preemption
7529 * is driven by the tick):
7530 */
7531 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
7532 return;
7533
7534 find_matching_se(&se, &pse);
7535 BUG_ON(!pse);
7536
7537 cse_is_idle = se_is_idle(se);
7538 pse_is_idle = se_is_idle(pse);
7539
7540 /*
7541 * Preempt an idle group in favor of a non-idle group (and don't preempt
7542 * in the inverse case).
7543 */
7544 if (cse_is_idle && !pse_is_idle)
7545 goto preempt;
7546 if (cse_is_idle != pse_is_idle)
7547 return;
7548
7549 update_curr(cfs_rq_of(se));
7550 trace_android_rvh_check_preempt_wakeup(rq, p, &preempt, &ignore,
7551 wake_flags, se, pse, next_buddy_marked, sysctl_sched_wakeup_granularity);
7552 if (preempt)
7553 goto preempt;
7554 if (ignore)
7555 return;
7556
7557 if (wakeup_preempt_entity(se, pse) == 1) {
7558 /*
7559 * Bias pick_next to pick the sched entity that is
7560 * triggering this preemption.
7561 */
7562 if (!next_buddy_marked)
7563 set_next_buddy(pse);
7564 goto preempt;
7565 }
7566
7567 return;
7568
7569 preempt:
7570 resched_curr(rq);
7571 /*
7572 * Only set the backward buddy when the current task is still
7573 * on the rq. This can happen when a wakeup gets interleaved
7574 * with schedule on the ->pre_schedule() or idle_balance()
7575 * point, either of which can * drop the rq lock.
7576 *
7577 * Also, during early boot the idle thread is in the fair class,
7578 * for obvious reasons its a bad idea to schedule back to it.
7579 */
7580 if (unlikely(!se->on_rq || curr == rq->idle))
7581 return;
7582
7583 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
7584 set_last_buddy(se);
7585 }
7586
7587 #ifdef CONFIG_SMP
pick_task_fair(struct rq * rq)7588 static struct task_struct *pick_task_fair(struct rq *rq)
7589 {
7590 struct sched_entity *se;
7591 struct cfs_rq *cfs_rq;
7592
7593 again:
7594 cfs_rq = &rq->cfs;
7595 if (!cfs_rq->nr_running)
7596 return NULL;
7597
7598 do {
7599 struct sched_entity *curr = cfs_rq->curr;
7600
7601 /* When we pick for a remote RQ, we'll not have done put_prev_entity() */
7602 if (curr) {
7603 if (curr->on_rq)
7604 update_curr(cfs_rq);
7605 else
7606 curr = NULL;
7607
7608 if (unlikely(check_cfs_rq_runtime(cfs_rq)))
7609 goto again;
7610 }
7611
7612 se = pick_next_entity(cfs_rq, curr);
7613 cfs_rq = group_cfs_rq(se);
7614 } while (cfs_rq);
7615
7616 return task_of(se);
7617 }
7618 #endif
7619
7620 struct task_struct *
pick_next_task_fair(struct rq * rq,struct task_struct * prev,struct rq_flags * rf)7621 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
7622 {
7623 struct cfs_rq *cfs_rq = &rq->cfs;
7624 struct sched_entity *se = NULL;
7625 struct task_struct *p = NULL;
7626 int new_tasks;
7627 bool repick = false;
7628
7629 again:
7630 if (!sched_fair_runnable(rq))
7631 goto idle;
7632
7633 #ifdef CONFIG_FAIR_GROUP_SCHED
7634 if (!prev || prev->sched_class != &fair_sched_class)
7635 goto simple;
7636
7637 /*
7638 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
7639 * likely that a next task is from the same cgroup as the current.
7640 *
7641 * Therefore attempt to avoid putting and setting the entire cgroup
7642 * hierarchy, only change the part that actually changes.
7643 */
7644
7645 do {
7646 struct sched_entity *curr = cfs_rq->curr;
7647
7648 /*
7649 * Since we got here without doing put_prev_entity() we also
7650 * have to consider cfs_rq->curr. If it is still a runnable
7651 * entity, update_curr() will update its vruntime, otherwise
7652 * forget we've ever seen it.
7653 */
7654 if (curr) {
7655 if (curr->on_rq)
7656 update_curr(cfs_rq);
7657 else
7658 curr = NULL;
7659
7660 /*
7661 * This call to check_cfs_rq_runtime() will do the
7662 * throttle and dequeue its entity in the parent(s).
7663 * Therefore the nr_running test will indeed
7664 * be correct.
7665 */
7666 if (unlikely(check_cfs_rq_runtime(cfs_rq))) {
7667 cfs_rq = &rq->cfs;
7668
7669 if (!cfs_rq->nr_running)
7670 goto idle;
7671
7672 goto simple;
7673 }
7674 }
7675
7676 se = pick_next_entity(cfs_rq, curr);
7677 cfs_rq = group_cfs_rq(se);
7678 } while (cfs_rq);
7679
7680 p = task_of(se);
7681 trace_android_rvh_replace_next_task_fair(rq, &p, &se, &repick, false, prev);
7682 /*
7683 * Since we haven't yet done put_prev_entity and if the selected task
7684 * is a different task than we started out with, try and touch the
7685 * least amount of cfs_rqs.
7686 */
7687 if (prev != p) {
7688 struct sched_entity *pse = &prev->se;
7689
7690 while (!(cfs_rq = is_same_group(se, pse))) {
7691 int se_depth = se->depth;
7692 int pse_depth = pse->depth;
7693
7694 if (se_depth <= pse_depth) {
7695 put_prev_entity(cfs_rq_of(pse), pse);
7696 pse = parent_entity(pse);
7697 }
7698 if (se_depth >= pse_depth) {
7699 set_next_entity(cfs_rq_of(se), se);
7700 se = parent_entity(se);
7701 }
7702 }
7703
7704 put_prev_entity(cfs_rq, pse);
7705 set_next_entity(cfs_rq, se);
7706 }
7707
7708 goto done;
7709 simple:
7710 #endif
7711 if (prev)
7712 put_prev_task(rq, prev);
7713
7714 trace_android_rvh_replace_next_task_fair(rq, &p, &se, &repick, true, prev);
7715 if (repick)
7716 goto done;
7717
7718 do {
7719 se = pick_next_entity(cfs_rq, NULL);
7720 set_next_entity(cfs_rq, se);
7721 cfs_rq = group_cfs_rq(se);
7722 } while (cfs_rq);
7723
7724 p = task_of(se);
7725
7726 done: __maybe_unused;
7727 #ifdef CONFIG_SMP
7728 /*
7729 * Move the next running task to the front of
7730 * the list, so our cfs_tasks list becomes MRU
7731 * one.
7732 */
7733 list_move(&p->se.group_node, &rq->cfs_tasks);
7734 #endif
7735
7736 if (hrtick_enabled_fair(rq))
7737 hrtick_start_fair(rq, p);
7738
7739 update_misfit_status(p, rq);
7740
7741 return p;
7742
7743 idle:
7744 if (!rf)
7745 return NULL;
7746
7747 new_tasks = newidle_balance(rq, rf);
7748
7749 /*
7750 * Because newidle_balance() releases (and re-acquires) rq->lock, it is
7751 * possible for any higher priority task to appear. In that case we
7752 * must re-start the pick_next_entity() loop.
7753 */
7754 if (new_tasks < 0)
7755 return RETRY_TASK;
7756
7757 if (new_tasks > 0)
7758 goto again;
7759
7760 /*
7761 * rq is about to be idle, check if we need to update the
7762 * lost_idle_time of clock_pelt
7763 */
7764 update_idle_rq_clock_pelt(rq);
7765
7766 return NULL;
7767 }
7768
__pick_next_task_fair(struct rq * rq)7769 static struct task_struct *__pick_next_task_fair(struct rq *rq)
7770 {
7771 return pick_next_task_fair(rq, NULL, NULL);
7772 }
7773
7774 /*
7775 * Account for a descheduled task:
7776 */
put_prev_task_fair(struct rq * rq,struct task_struct * prev)7777 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
7778 {
7779 struct sched_entity *se = &prev->se;
7780 struct cfs_rq *cfs_rq;
7781
7782 for_each_sched_entity(se) {
7783 cfs_rq = cfs_rq_of(se);
7784 put_prev_entity(cfs_rq, se);
7785 }
7786 }
7787
7788 /*
7789 * sched_yield() is very simple
7790 *
7791 * The magic of dealing with the ->skip buddy is in pick_next_entity.
7792 */
yield_task_fair(struct rq * rq)7793 static void yield_task_fair(struct rq *rq)
7794 {
7795 struct task_struct *curr = rq->curr;
7796 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
7797 struct sched_entity *se = &curr->se;
7798
7799 /*
7800 * Are we the only task in the tree?
7801 */
7802 if (unlikely(rq->nr_running == 1))
7803 return;
7804
7805 clear_buddies(cfs_rq, se);
7806
7807 if (curr->policy != SCHED_BATCH) {
7808 update_rq_clock(rq);
7809 /*
7810 * Update run-time statistics of the 'current'.
7811 */
7812 update_curr(cfs_rq);
7813 /*
7814 * Tell update_rq_clock() that we've just updated,
7815 * so we don't do microscopic update in schedule()
7816 * and double the fastpath cost.
7817 */
7818 rq_clock_skip_update(rq);
7819 }
7820
7821 set_skip_buddy(se);
7822 }
7823
yield_to_task_fair(struct rq * rq,struct task_struct * p)7824 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p)
7825 {
7826 struct sched_entity *se = &p->se;
7827
7828 /* throttled hierarchies are not runnable */
7829 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
7830 return false;
7831
7832 /* Tell the scheduler that we'd really like pse to run next. */
7833 set_next_buddy(se);
7834
7835 yield_task_fair(rq);
7836
7837 return true;
7838 }
7839
7840 #ifdef CONFIG_SMP
7841 /**************************************************
7842 * Fair scheduling class load-balancing methods.
7843 *
7844 * BASICS
7845 *
7846 * The purpose of load-balancing is to achieve the same basic fairness the
7847 * per-CPU scheduler provides, namely provide a proportional amount of compute
7848 * time to each task. This is expressed in the following equation:
7849 *
7850 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
7851 *
7852 * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight
7853 * W_i,0 is defined as:
7854 *
7855 * W_i,0 = \Sum_j w_i,j (2)
7856 *
7857 * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight
7858 * is derived from the nice value as per sched_prio_to_weight[].
7859 *
7860 * The weight average is an exponential decay average of the instantaneous
7861 * weight:
7862 *
7863 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
7864 *
7865 * C_i is the compute capacity of CPU i, typically it is the
7866 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
7867 * can also include other factors [XXX].
7868 *
7869 * To achieve this balance we define a measure of imbalance which follows
7870 * directly from (1):
7871 *
7872 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4)
7873 *
7874 * We them move tasks around to minimize the imbalance. In the continuous
7875 * function space it is obvious this converges, in the discrete case we get
7876 * a few fun cases generally called infeasible weight scenarios.
7877 *
7878 * [XXX expand on:
7879 * - infeasible weights;
7880 * - local vs global optima in the discrete case. ]
7881 *
7882 *
7883 * SCHED DOMAINS
7884 *
7885 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
7886 * for all i,j solution, we create a tree of CPUs that follows the hardware
7887 * topology where each level pairs two lower groups (or better). This results
7888 * in O(log n) layers. Furthermore we reduce the number of CPUs going up the
7889 * tree to only the first of the previous level and we decrease the frequency
7890 * of load-balance at each level inv. proportional to the number of CPUs in
7891 * the groups.
7892 *
7893 * This yields:
7894 *
7895 * log_2 n 1 n
7896 * \Sum { --- * --- * 2^i } = O(n) (5)
7897 * i = 0 2^i 2^i
7898 * `- size of each group
7899 * | | `- number of CPUs doing load-balance
7900 * | `- freq
7901 * `- sum over all levels
7902 *
7903 * Coupled with a limit on how many tasks we can migrate every balance pass,
7904 * this makes (5) the runtime complexity of the balancer.
7905 *
7906 * An important property here is that each CPU is still (indirectly) connected
7907 * to every other CPU in at most O(log n) steps:
7908 *
7909 * The adjacency matrix of the resulting graph is given by:
7910 *
7911 * log_2 n
7912 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
7913 * k = 0
7914 *
7915 * And you'll find that:
7916 *
7917 * A^(log_2 n)_i,j != 0 for all i,j (7)
7918 *
7919 * Showing there's indeed a path between every CPU in at most O(log n) steps.
7920 * The task movement gives a factor of O(m), giving a convergence complexity
7921 * of:
7922 *
7923 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
7924 *
7925 *
7926 * WORK CONSERVING
7927 *
7928 * In order to avoid CPUs going idle while there's still work to do, new idle
7929 * balancing is more aggressive and has the newly idle CPU iterate up the domain
7930 * tree itself instead of relying on other CPUs to bring it work.
7931 *
7932 * This adds some complexity to both (5) and (8) but it reduces the total idle
7933 * time.
7934 *
7935 * [XXX more?]
7936 *
7937 *
7938 * CGROUPS
7939 *
7940 * Cgroups make a horror show out of (2), instead of a simple sum we get:
7941 *
7942 * s_k,i
7943 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
7944 * S_k
7945 *
7946 * Where
7947 *
7948 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
7949 *
7950 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i.
7951 *
7952 * The big problem is S_k, its a global sum needed to compute a local (W_i)
7953 * property.
7954 *
7955 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
7956 * rewrite all of this once again.]
7957 */
7958
7959 unsigned long __read_mostly max_load_balance_interval = HZ/10;
7960 EXPORT_SYMBOL_GPL(max_load_balance_interval);
7961
7962 enum fbq_type { regular, remote, all };
7963
7964 /*
7965 * 'group_type' describes the group of CPUs at the moment of load balancing.
7966 *
7967 * The enum is ordered by pulling priority, with the group with lowest priority
7968 * first so the group_type can simply be compared when selecting the busiest
7969 * group. See update_sd_pick_busiest().
7970 */
7971 enum group_type {
7972 /* The group has spare capacity that can be used to run more tasks. */
7973 group_has_spare = 0,
7974 /*
7975 * The group is fully used and the tasks don't compete for more CPU
7976 * cycles. Nevertheless, some tasks might wait before running.
7977 */
7978 group_fully_busy,
7979 /*
7980 * SD_ASYM_CPUCAPACITY only: One task doesn't fit with CPU's capacity
7981 * and must be migrated to a more powerful CPU.
7982 */
7983 group_misfit_task,
7984 /*
7985 * SD_ASYM_PACKING only: One local CPU with higher capacity is available,
7986 * and the task should be migrated to it instead of running on the
7987 * current CPU.
7988 */
7989 group_asym_packing,
7990 /*
7991 * The tasks' affinity constraints previously prevented the scheduler
7992 * from balancing the load across the system.
7993 */
7994 group_imbalanced,
7995 /*
7996 * The CPU is overloaded and can't provide expected CPU cycles to all
7997 * tasks.
7998 */
7999 group_overloaded
8000 };
8001
8002 enum migration_type {
8003 migrate_load = 0,
8004 migrate_util,
8005 migrate_task,
8006 migrate_misfit
8007 };
8008
8009 #define LBF_ALL_PINNED 0x01
8010 #define LBF_NEED_BREAK 0x02
8011 #define LBF_DST_PINNED 0x04
8012 #define LBF_SOME_PINNED 0x08
8013 #define LBF_ACTIVE_LB 0x10
8014
8015 struct lb_env {
8016 struct sched_domain *sd;
8017
8018 struct rq *src_rq;
8019 int src_cpu;
8020
8021 int dst_cpu;
8022 struct rq *dst_rq;
8023
8024 struct cpumask *dst_grpmask;
8025 int new_dst_cpu;
8026 enum cpu_idle_type idle;
8027 long imbalance;
8028 /* The set of CPUs under consideration for load-balancing */
8029 struct cpumask *cpus;
8030
8031 unsigned int flags;
8032
8033 unsigned int loop;
8034 unsigned int loop_break;
8035 unsigned int loop_max;
8036
8037 enum fbq_type fbq_type;
8038 enum migration_type migration_type;
8039 struct list_head tasks;
8040 struct rq_flags *src_rq_rf;
8041 };
8042
8043 /*
8044 * Is this task likely cache-hot:
8045 */
task_hot(struct task_struct * p,struct lb_env * env)8046 static int task_hot(struct task_struct *p, struct lb_env *env)
8047 {
8048 s64 delta;
8049
8050 lockdep_assert_rq_held(env->src_rq);
8051
8052 if (p->sched_class != &fair_sched_class)
8053 return 0;
8054
8055 if (unlikely(task_has_idle_policy(p)))
8056 return 0;
8057
8058 /* SMT siblings share cache */
8059 if (env->sd->flags & SD_SHARE_CPUCAPACITY)
8060 return 0;
8061
8062 /*
8063 * Buddy candidates are cache hot:
8064 */
8065 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
8066 (&p->se == cfs_rq_of(&p->se)->next ||
8067 &p->se == cfs_rq_of(&p->se)->last))
8068 return 1;
8069
8070 if (sysctl_sched_migration_cost == -1)
8071 return 1;
8072
8073 /*
8074 * Don't migrate task if the task's cookie does not match
8075 * with the destination CPU's core cookie.
8076 */
8077 if (!sched_core_cookie_match(cpu_rq(env->dst_cpu), p))
8078 return 1;
8079
8080 if (sysctl_sched_migration_cost == 0)
8081 return 0;
8082
8083 delta = rq_clock_task(env->src_rq) - p->se.exec_start;
8084
8085 return delta < (s64)sysctl_sched_migration_cost;
8086 }
8087
8088 #ifdef CONFIG_NUMA_BALANCING
8089 /*
8090 * Returns 1, if task migration degrades locality
8091 * Returns 0, if task migration improves locality i.e migration preferred.
8092 * Returns -1, if task migration is not affected by locality.
8093 */
migrate_degrades_locality(struct task_struct * p,struct lb_env * env)8094 static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
8095 {
8096 struct numa_group *numa_group = rcu_dereference(p->numa_group);
8097 unsigned long src_weight, dst_weight;
8098 int src_nid, dst_nid, dist;
8099
8100 if (!static_branch_likely(&sched_numa_balancing))
8101 return -1;
8102
8103 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
8104 return -1;
8105
8106 src_nid = cpu_to_node(env->src_cpu);
8107 dst_nid = cpu_to_node(env->dst_cpu);
8108
8109 if (src_nid == dst_nid)
8110 return -1;
8111
8112 /* Migrating away from the preferred node is always bad. */
8113 if (src_nid == p->numa_preferred_nid) {
8114 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
8115 return 1;
8116 else
8117 return -1;
8118 }
8119
8120 /* Encourage migration to the preferred node. */
8121 if (dst_nid == p->numa_preferred_nid)
8122 return 0;
8123
8124 /* Leaving a core idle is often worse than degrading locality. */
8125 if (env->idle == CPU_IDLE)
8126 return -1;
8127
8128 dist = node_distance(src_nid, dst_nid);
8129 if (numa_group) {
8130 src_weight = group_weight(p, src_nid, dist);
8131 dst_weight = group_weight(p, dst_nid, dist);
8132 } else {
8133 src_weight = task_weight(p, src_nid, dist);
8134 dst_weight = task_weight(p, dst_nid, dist);
8135 }
8136
8137 return dst_weight < src_weight;
8138 }
8139
8140 #else
migrate_degrades_locality(struct task_struct * p,struct lb_env * env)8141 static inline int migrate_degrades_locality(struct task_struct *p,
8142 struct lb_env *env)
8143 {
8144 return -1;
8145 }
8146 #endif
8147
8148 /*
8149 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
8150 */
8151 static
can_migrate_task(struct task_struct * p,struct lb_env * env)8152 int can_migrate_task(struct task_struct *p, struct lb_env *env)
8153 {
8154 int tsk_cache_hot;
8155 int can_migrate = 1;
8156
8157 lockdep_assert_rq_held(env->src_rq);
8158
8159 trace_android_rvh_can_migrate_task(p, env->dst_cpu, &can_migrate);
8160 if (!can_migrate)
8161 return 0;
8162
8163 /*
8164 * We do not migrate tasks that are:
8165 * 1) throttled_lb_pair, or
8166 * 2) cannot be migrated to this CPU due to cpus_ptr, or
8167 * 3) running (obviously), or
8168 * 4) are cache-hot on their current CPU.
8169 */
8170 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
8171 return 0;
8172
8173 /* Disregard pcpu kthreads; they are where they need to be. */
8174 if (kthread_is_per_cpu(p))
8175 return 0;
8176
8177 if (!cpumask_test_cpu(env->dst_cpu, p->cpus_ptr)) {
8178 int cpu;
8179
8180 schedstat_inc(p->stats.nr_failed_migrations_affine);
8181
8182 env->flags |= LBF_SOME_PINNED;
8183
8184 /*
8185 * Remember if this task can be migrated to any other CPU in
8186 * our sched_group. We may want to revisit it if we couldn't
8187 * meet load balance goals by pulling other tasks on src_cpu.
8188 *
8189 * Avoid computing new_dst_cpu
8190 * - for NEWLY_IDLE
8191 * - if we have already computed one in current iteration
8192 * - if it's an active balance
8193 */
8194 if (env->idle == CPU_NEWLY_IDLE ||
8195 env->flags & (LBF_DST_PINNED | LBF_ACTIVE_LB))
8196 return 0;
8197
8198 /* Prevent to re-select dst_cpu via env's CPUs: */
8199 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
8200 if (cpumask_test_cpu(cpu, p->cpus_ptr)) {
8201 env->flags |= LBF_DST_PINNED;
8202 env->new_dst_cpu = cpu;
8203 break;
8204 }
8205 }
8206
8207 return 0;
8208 }
8209
8210 /* Record that we found at least one task that could run on dst_cpu */
8211 env->flags &= ~LBF_ALL_PINNED;
8212
8213 if (task_running(env->src_rq, p)) {
8214 schedstat_inc(p->stats.nr_failed_migrations_running);
8215 return 0;
8216 }
8217
8218 /*
8219 * Aggressive migration if:
8220 * 1) active balance
8221 * 2) destination numa is preferred
8222 * 3) task is cache cold, or
8223 * 4) too many balance attempts have failed.
8224 */
8225 if (env->flags & LBF_ACTIVE_LB)
8226 return 1;
8227
8228 tsk_cache_hot = migrate_degrades_locality(p, env);
8229 if (tsk_cache_hot == -1)
8230 tsk_cache_hot = task_hot(p, env);
8231
8232 if (tsk_cache_hot <= 0 ||
8233 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
8234 if (tsk_cache_hot == 1) {
8235 schedstat_inc(env->sd->lb_hot_gained[env->idle]);
8236 schedstat_inc(p->stats.nr_forced_migrations);
8237 }
8238 return 1;
8239 }
8240
8241 schedstat_inc(p->stats.nr_failed_migrations_hot);
8242 return 0;
8243 }
8244
8245 /*
8246 * detach_task() -- detach the task for the migration specified in env
8247 */
detach_task(struct task_struct * p,struct lb_env * env)8248 static void detach_task(struct task_struct *p, struct lb_env *env)
8249 {
8250 int detached = 0;
8251
8252 lockdep_assert_rq_held(env->src_rq);
8253
8254 /*
8255 * The vendor hook may drop the lock temporarily, so
8256 * pass the rq flags to unpin lock. We expect the
8257 * rq lock to be held after return.
8258 */
8259 trace_android_rvh_migrate_queued_task(env->src_rq, env->src_rq_rf, p,
8260 env->dst_cpu, &detached);
8261 if (detached)
8262 return;
8263
8264 deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK);
8265 set_task_cpu(p, env->dst_cpu);
8266 }
8267
8268 /*
8269 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
8270 * part of active balancing operations within "domain".
8271 *
8272 * Returns a task if successful and NULL otherwise.
8273 */
detach_one_task(struct lb_env * env)8274 static struct task_struct *detach_one_task(struct lb_env *env)
8275 {
8276 struct task_struct *p;
8277
8278 lockdep_assert_rq_held(env->src_rq);
8279
8280 list_for_each_entry_reverse(p,
8281 &env->src_rq->cfs_tasks, se.group_node) {
8282 if (!can_migrate_task(p, env))
8283 continue;
8284
8285 detach_task(p, env);
8286
8287 /*
8288 * Right now, this is only the second place where
8289 * lb_gained[env->idle] is updated (other is detach_tasks)
8290 * so we can safely collect stats here rather than
8291 * inside detach_tasks().
8292 */
8293 schedstat_inc(env->sd->lb_gained[env->idle]);
8294 return p;
8295 }
8296 return NULL;
8297 }
8298
8299 static const unsigned int sched_nr_migrate_break = 32;
8300
8301 /*
8302 * detach_tasks() -- tries to detach up to imbalance load/util/tasks from
8303 * busiest_rq, as part of a balancing operation within domain "sd".
8304 *
8305 * Returns number of detached tasks if successful and 0 otherwise.
8306 */
detach_tasks(struct lb_env * env)8307 static int detach_tasks(struct lb_env *env)
8308 {
8309 struct list_head *tasks = &env->src_rq->cfs_tasks;
8310 unsigned long util, load;
8311 struct task_struct *p;
8312 int detached = 0;
8313
8314 lockdep_assert_rq_held(env->src_rq);
8315
8316 /*
8317 * Source run queue has been emptied by another CPU, clear
8318 * LBF_ALL_PINNED flag as we will not test any task.
8319 */
8320 if (env->src_rq->nr_running <= 1) {
8321 env->flags &= ~LBF_ALL_PINNED;
8322 return 0;
8323 }
8324
8325 if (env->imbalance <= 0)
8326 return 0;
8327
8328 while (!list_empty(tasks)) {
8329 /*
8330 * We don't want to steal all, otherwise we may be treated likewise,
8331 * which could at worst lead to a livelock crash.
8332 */
8333 if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
8334 break;
8335
8336 p = list_last_entry(tasks, struct task_struct, se.group_node);
8337
8338 env->loop++;
8339 /* We've more or less seen every task there is, call it quits */
8340 if (env->loop > env->loop_max)
8341 break;
8342
8343 /* take a breather every nr_migrate tasks */
8344 if (env->loop > env->loop_break) {
8345 env->loop_break += sched_nr_migrate_break;
8346 env->flags |= LBF_NEED_BREAK;
8347 break;
8348 }
8349
8350 if (!can_migrate_task(p, env))
8351 goto next;
8352
8353 switch (env->migration_type) {
8354 case migrate_load:
8355 /*
8356 * Depending of the number of CPUs and tasks and the
8357 * cgroup hierarchy, task_h_load() can return a null
8358 * value. Make sure that env->imbalance decreases
8359 * otherwise detach_tasks() will stop only after
8360 * detaching up to loop_max tasks.
8361 */
8362 load = max_t(unsigned long, task_h_load(p), 1);
8363
8364 if (sched_feat(LB_MIN) &&
8365 load < 16 && !env->sd->nr_balance_failed)
8366 goto next;
8367
8368 /*
8369 * Make sure that we don't migrate too much load.
8370 * Nevertheless, let relax the constraint if
8371 * scheduler fails to find a good waiting task to
8372 * migrate.
8373 */
8374 if (shr_bound(load, env->sd->nr_balance_failed) > env->imbalance)
8375 goto next;
8376
8377 env->imbalance -= load;
8378 break;
8379
8380 case migrate_util:
8381 util = task_util_est(p);
8382
8383 if (util > env->imbalance)
8384 goto next;
8385
8386 env->imbalance -= util;
8387 break;
8388
8389 case migrate_task:
8390 env->imbalance--;
8391 break;
8392
8393 case migrate_misfit:
8394 /* This is not a misfit task */
8395 if (task_fits_cpu(p, env->src_cpu))
8396 goto next;
8397
8398 env->imbalance = 0;
8399 break;
8400 }
8401
8402 detach_task(p, env);
8403 list_add(&p->se.group_node, &env->tasks);
8404
8405 detached++;
8406
8407 #ifdef CONFIG_PREEMPTION
8408 /*
8409 * NEWIDLE balancing is a source of latency, so preemptible
8410 * kernels will stop after the first task is detached to minimize
8411 * the critical section.
8412 */
8413 if (env->idle == CPU_NEWLY_IDLE)
8414 break;
8415 #endif
8416
8417 /*
8418 * We only want to steal up to the prescribed amount of
8419 * load/util/tasks.
8420 */
8421 if (env->imbalance <= 0)
8422 break;
8423
8424 continue;
8425 next:
8426 list_move(&p->se.group_node, tasks);
8427 }
8428
8429 /*
8430 * Right now, this is one of only two places we collect this stat
8431 * so we can safely collect detach_one_task() stats here rather
8432 * than inside detach_one_task().
8433 */
8434 schedstat_add(env->sd->lb_gained[env->idle], detached);
8435
8436 return detached;
8437 }
8438
8439 /*
8440 * attach_task() -- attach the task detached by detach_task() to its new rq.
8441 */
attach_task(struct rq * rq,struct task_struct * p)8442 static void attach_task(struct rq *rq, struct task_struct *p)
8443 {
8444 lockdep_assert_rq_held(rq);
8445
8446 BUG_ON(task_rq(p) != rq);
8447 activate_task(rq, p, ENQUEUE_NOCLOCK);
8448 check_preempt_curr(rq, p, 0);
8449 }
8450
8451 /*
8452 * attach_one_task() -- attaches the task returned from detach_one_task() to
8453 * its new rq.
8454 */
attach_one_task(struct rq * rq,struct task_struct * p)8455 static void attach_one_task(struct rq *rq, struct task_struct *p)
8456 {
8457 struct rq_flags rf;
8458
8459 rq_lock(rq, &rf);
8460 update_rq_clock(rq);
8461 attach_task(rq, p);
8462 rq_unlock(rq, &rf);
8463 }
8464
8465 /*
8466 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
8467 * new rq.
8468 */
attach_tasks(struct lb_env * env)8469 static void attach_tasks(struct lb_env *env)
8470 {
8471 struct list_head *tasks = &env->tasks;
8472 struct task_struct *p;
8473 struct rq_flags rf;
8474
8475 rq_lock(env->dst_rq, &rf);
8476 update_rq_clock(env->dst_rq);
8477
8478 while (!list_empty(tasks)) {
8479 p = list_first_entry(tasks, struct task_struct, se.group_node);
8480 list_del_init(&p->se.group_node);
8481
8482 attach_task(env->dst_rq, p);
8483 }
8484
8485 rq_unlock(env->dst_rq, &rf);
8486 }
8487
8488 #ifdef CONFIG_NO_HZ_COMMON
cfs_rq_has_blocked(struct cfs_rq * cfs_rq)8489 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq)
8490 {
8491 if (cfs_rq->avg.load_avg)
8492 return true;
8493
8494 if (cfs_rq->avg.util_avg)
8495 return true;
8496
8497 return false;
8498 }
8499
others_have_blocked(struct rq * rq)8500 static inline bool others_have_blocked(struct rq *rq)
8501 {
8502 if (READ_ONCE(rq->avg_rt.util_avg))
8503 return true;
8504
8505 if (READ_ONCE(rq->avg_dl.util_avg))
8506 return true;
8507
8508 if (thermal_load_avg(rq))
8509 return true;
8510
8511 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
8512 if (READ_ONCE(rq->avg_irq.util_avg))
8513 return true;
8514 #endif
8515
8516 return false;
8517 }
8518
update_blocked_load_tick(struct rq * rq)8519 static inline void update_blocked_load_tick(struct rq *rq)
8520 {
8521 WRITE_ONCE(rq->last_blocked_load_update_tick, jiffies);
8522 }
8523
update_blocked_load_status(struct rq * rq,bool has_blocked)8524 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked)
8525 {
8526 if (!has_blocked)
8527 rq->has_blocked_load = 0;
8528 }
8529 #else
cfs_rq_has_blocked(struct cfs_rq * cfs_rq)8530 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) { return false; }
others_have_blocked(struct rq * rq)8531 static inline bool others_have_blocked(struct rq *rq) { return false; }
update_blocked_load_tick(struct rq * rq)8532 static inline void update_blocked_load_tick(struct rq *rq) {}
update_blocked_load_status(struct rq * rq,bool has_blocked)8533 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) {}
8534 #endif
8535
__update_blocked_others(struct rq * rq,bool * done)8536 static bool __update_blocked_others(struct rq *rq, bool *done)
8537 {
8538 const struct sched_class *curr_class;
8539 u64 now = rq_clock_pelt(rq);
8540 unsigned long thermal_pressure;
8541 bool decayed;
8542
8543 /*
8544 * update_load_avg() can call cpufreq_update_util(). Make sure that RT,
8545 * DL and IRQ signals have been updated before updating CFS.
8546 */
8547 curr_class = rq->curr->sched_class;
8548
8549 thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq));
8550
8551 decayed = update_rt_rq_load_avg(now, rq, curr_class == &rt_sched_class) |
8552 update_dl_rq_load_avg(now, rq, curr_class == &dl_sched_class) |
8553 update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure) |
8554 update_irq_load_avg(rq, 0);
8555
8556 if (others_have_blocked(rq))
8557 *done = false;
8558
8559 return decayed;
8560 }
8561
8562 #ifdef CONFIG_FAIR_GROUP_SCHED
8563
__update_blocked_fair(struct rq * rq,bool * done)8564 static bool __update_blocked_fair(struct rq *rq, bool *done)
8565 {
8566 struct cfs_rq *cfs_rq, *pos;
8567 bool decayed = false;
8568 int cpu = cpu_of(rq);
8569
8570 trace_android_rvh_update_blocked_fair(rq);
8571
8572 /*
8573 * Iterates the task_group tree in a bottom up fashion, see
8574 * list_add_leaf_cfs_rq() for details.
8575 */
8576 for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) {
8577 struct sched_entity *se;
8578
8579 if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq)) {
8580 update_tg_load_avg(cfs_rq);
8581
8582 if (cfs_rq == &rq->cfs)
8583 decayed = true;
8584 }
8585
8586 /* Propagate pending load changes to the parent, if any: */
8587 se = cfs_rq->tg->se[cpu];
8588 if (se && !skip_blocked_update(se))
8589 update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
8590
8591 /*
8592 * There can be a lot of idle CPU cgroups. Don't let fully
8593 * decayed cfs_rqs linger on the list.
8594 */
8595 if (cfs_rq_is_decayed(cfs_rq))
8596 list_del_leaf_cfs_rq(cfs_rq);
8597
8598 /* Don't need periodic decay once load/util_avg are null */
8599 if (cfs_rq_has_blocked(cfs_rq))
8600 *done = false;
8601 }
8602
8603 return decayed;
8604 }
8605
8606 /*
8607 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
8608 * This needs to be done in a top-down fashion because the load of a child
8609 * group is a fraction of its parents load.
8610 */
update_cfs_rq_h_load(struct cfs_rq * cfs_rq)8611 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
8612 {
8613 struct rq *rq = rq_of(cfs_rq);
8614 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
8615 unsigned long now = jiffies;
8616 unsigned long load;
8617
8618 if (cfs_rq->last_h_load_update == now)
8619 return;
8620
8621 WRITE_ONCE(cfs_rq->h_load_next, NULL);
8622 for_each_sched_entity(se) {
8623 cfs_rq = cfs_rq_of(se);
8624 WRITE_ONCE(cfs_rq->h_load_next, se);
8625 if (cfs_rq->last_h_load_update == now)
8626 break;
8627 }
8628
8629 if (!se) {
8630 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
8631 cfs_rq->last_h_load_update = now;
8632 }
8633
8634 while ((se = READ_ONCE(cfs_rq->h_load_next)) != NULL) {
8635 load = cfs_rq->h_load;
8636 load = div64_ul(load * se->avg.load_avg,
8637 cfs_rq_load_avg(cfs_rq) + 1);
8638 cfs_rq = group_cfs_rq(se);
8639 cfs_rq->h_load = load;
8640 cfs_rq->last_h_load_update = now;
8641 }
8642 }
8643
task_h_load(struct task_struct * p)8644 static unsigned long task_h_load(struct task_struct *p)
8645 {
8646 struct cfs_rq *cfs_rq = task_cfs_rq(p);
8647
8648 update_cfs_rq_h_load(cfs_rq);
8649 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
8650 cfs_rq_load_avg(cfs_rq) + 1);
8651 }
8652 #else
__update_blocked_fair(struct rq * rq,bool * done)8653 static bool __update_blocked_fair(struct rq *rq, bool *done)
8654 {
8655 struct cfs_rq *cfs_rq = &rq->cfs;
8656 bool decayed;
8657
8658 decayed = update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq);
8659 if (cfs_rq_has_blocked(cfs_rq))
8660 *done = false;
8661
8662 return decayed;
8663 }
8664
task_h_load(struct task_struct * p)8665 static unsigned long task_h_load(struct task_struct *p)
8666 {
8667 return p->se.avg.load_avg;
8668 }
8669 #endif
8670
update_blocked_averages(int cpu)8671 static void update_blocked_averages(int cpu)
8672 {
8673 bool decayed = false, done = true;
8674 struct rq *rq = cpu_rq(cpu);
8675 struct rq_flags rf;
8676
8677 rq_lock_irqsave(rq, &rf);
8678 update_blocked_load_tick(rq);
8679 update_rq_clock(rq);
8680
8681 decayed |= __update_blocked_others(rq, &done);
8682 decayed |= __update_blocked_fair(rq, &done);
8683
8684 update_blocked_load_status(rq, !done);
8685 if (decayed)
8686 cpufreq_update_util(rq, 0);
8687 rq_unlock_irqrestore(rq, &rf);
8688 }
8689
8690 /********** Helpers for find_busiest_group ************************/
8691
8692 /*
8693 * sg_lb_stats - stats of a sched_group required for load_balancing
8694 */
8695 struct sg_lb_stats {
8696 unsigned long avg_load; /*Avg load across the CPUs of the group */
8697 unsigned long group_load; /* Total load over the CPUs of the group */
8698 unsigned long group_capacity;
8699 unsigned long group_util; /* Total utilization over the CPUs of the group */
8700 unsigned long group_runnable; /* Total runnable time over the CPUs of the group */
8701 unsigned int sum_nr_running; /* Nr of tasks running in the group */
8702 unsigned int sum_h_nr_running; /* Nr of CFS tasks running in the group */
8703 unsigned int idle_cpus;
8704 unsigned int group_weight;
8705 enum group_type group_type;
8706 unsigned int group_asym_packing; /* Tasks should be moved to preferred CPU */
8707 unsigned long group_misfit_task_load; /* A CPU has a task too big for its capacity */
8708 #ifdef CONFIG_NUMA_BALANCING
8709 unsigned int nr_numa_running;
8710 unsigned int nr_preferred_running;
8711 #endif
8712 };
8713
8714 /*
8715 * sd_lb_stats - Structure to store the statistics of a sched_domain
8716 * during load balancing.
8717 */
8718 struct sd_lb_stats {
8719 struct sched_group *busiest; /* Busiest group in this sd */
8720 struct sched_group *local; /* Local group in this sd */
8721 unsigned long total_load; /* Total load of all groups in sd */
8722 unsigned long total_capacity; /* Total capacity of all groups in sd */
8723 unsigned long avg_load; /* Average load across all groups in sd */
8724 unsigned int prefer_sibling; /* tasks should go to sibling first */
8725
8726 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
8727 struct sg_lb_stats local_stat; /* Statistics of the local group */
8728 };
8729
init_sd_lb_stats(struct sd_lb_stats * sds)8730 static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
8731 {
8732 /*
8733 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
8734 * local_stat because update_sg_lb_stats() does a full clear/assignment.
8735 * We must however set busiest_stat::group_type and
8736 * busiest_stat::idle_cpus to the worst busiest group because
8737 * update_sd_pick_busiest() reads these before assignment.
8738 */
8739 *sds = (struct sd_lb_stats){
8740 .busiest = NULL,
8741 .local = NULL,
8742 .total_load = 0UL,
8743 .total_capacity = 0UL,
8744 .busiest_stat = {
8745 .idle_cpus = UINT_MAX,
8746 .group_type = group_has_spare,
8747 },
8748 };
8749 }
8750
scale_rt_capacity(int cpu)8751 static unsigned long scale_rt_capacity(int cpu)
8752 {
8753 struct rq *rq = cpu_rq(cpu);
8754 unsigned long max = arch_scale_cpu_capacity(cpu);
8755 unsigned long used, free;
8756 unsigned long irq;
8757
8758 irq = cpu_util_irq(rq);
8759
8760 if (unlikely(irq >= max))
8761 return 1;
8762
8763 /*
8764 * avg_rt.util_avg and avg_dl.util_avg track binary signals
8765 * (running and not running) with weights 0 and 1024 respectively.
8766 * avg_thermal.load_avg tracks thermal pressure and the weighted
8767 * average uses the actual delta max capacity(load).
8768 */
8769 used = READ_ONCE(rq->avg_rt.util_avg);
8770 used += READ_ONCE(rq->avg_dl.util_avg);
8771 used += thermal_load_avg(rq);
8772
8773 if (unlikely(used >= max))
8774 return 1;
8775
8776 free = max - used;
8777
8778 return scale_irq_capacity(free, irq, max);
8779 }
8780
update_cpu_capacity(struct sched_domain * sd,int cpu)8781 static void update_cpu_capacity(struct sched_domain *sd, int cpu)
8782 {
8783 unsigned long capacity_orig = arch_scale_cpu_capacity(cpu);
8784 unsigned long capacity = scale_rt_capacity(cpu);
8785 struct sched_group *sdg = sd->groups;
8786 struct rq *rq = cpu_rq(cpu);
8787
8788 rq->cpu_capacity_orig = capacity_orig;
8789
8790 if (!capacity)
8791 capacity = 1;
8792
8793 trace_android_rvh_update_cpu_capacity(cpu, &capacity);
8794 rq->cpu_capacity = capacity;
8795
8796 /*
8797 * Detect if the performance domain is in capacity inversion state.
8798 *
8799 * Capacity inversion happens when another perf domain with equal or
8800 * lower capacity_orig_of() ends up having higher capacity than this
8801 * domain after subtracting thermal pressure.
8802 *
8803 * We only take into account thermal pressure in this detection as it's
8804 * the only metric that actually results in *real* reduction of
8805 * capacity due to performance points (OPPs) being dropped/become
8806 * unreachable due to thermal throttling.
8807 *
8808 * We assume:
8809 * * That all cpus in a perf domain have the same capacity_orig
8810 * (same uArch).
8811 * * Thermal pressure will impact all cpus in this perf domain
8812 * equally.
8813 */
8814 if (sched_energy_enabled()) {
8815 unsigned long inv_cap = capacity_orig - thermal_load_avg(rq);
8816 struct perf_domain *pd;
8817
8818 rcu_read_lock();
8819
8820 pd = rcu_dereference(rq->rd->pd);
8821 rq->cpu_capacity_inverted = 0;
8822
8823 for (; pd; pd = pd->next) {
8824 struct cpumask *pd_span = perf_domain_span(pd);
8825 unsigned long pd_cap_orig, pd_cap;
8826
8827 /* We can't be inverted against our own pd */
8828 if (cpumask_test_cpu(cpu_of(rq), pd_span))
8829 continue;
8830
8831 cpu = cpumask_any(pd_span);
8832 pd_cap_orig = arch_scale_cpu_capacity(cpu);
8833
8834 if (capacity_orig < pd_cap_orig)
8835 continue;
8836
8837 /*
8838 * handle the case of multiple perf domains have the
8839 * same capacity_orig but one of them is under higher
8840 * thermal pressure. We record it as capacity
8841 * inversion.
8842 */
8843 if (capacity_orig == pd_cap_orig) {
8844 pd_cap = pd_cap_orig - thermal_load_avg(cpu_rq(cpu));
8845
8846 if (pd_cap > inv_cap) {
8847 rq->cpu_capacity_inverted = inv_cap;
8848 break;
8849 }
8850 } else if (pd_cap_orig > inv_cap) {
8851 rq->cpu_capacity_inverted = inv_cap;
8852 break;
8853 }
8854 }
8855
8856 rcu_read_unlock();
8857 }
8858
8859 trace_sched_cpu_capacity_tp(rq);
8860
8861 sdg->sgc->capacity = capacity;
8862 sdg->sgc->min_capacity = capacity;
8863 sdg->sgc->max_capacity = capacity;
8864 }
8865
update_group_capacity(struct sched_domain * sd,int cpu)8866 void update_group_capacity(struct sched_domain *sd, int cpu)
8867 {
8868 struct sched_domain *child = sd->child;
8869 struct sched_group *group, *sdg = sd->groups;
8870 unsigned long capacity, min_capacity, max_capacity;
8871 unsigned long interval;
8872
8873 interval = msecs_to_jiffies(sd->balance_interval);
8874 interval = clamp(interval, 1UL, max_load_balance_interval);
8875 sdg->sgc->next_update = jiffies + interval;
8876
8877 if (!child) {
8878 update_cpu_capacity(sd, cpu);
8879 return;
8880 }
8881
8882 capacity = 0;
8883 min_capacity = ULONG_MAX;
8884 max_capacity = 0;
8885
8886 if (child->flags & SD_OVERLAP) {
8887 /*
8888 * SD_OVERLAP domains cannot assume that child groups
8889 * span the current group.
8890 */
8891
8892 for_each_cpu(cpu, sched_group_span(sdg)) {
8893 unsigned long cpu_cap = capacity_of(cpu);
8894
8895 capacity += cpu_cap;
8896 min_capacity = min(cpu_cap, min_capacity);
8897 max_capacity = max(cpu_cap, max_capacity);
8898 }
8899 } else {
8900 /*
8901 * !SD_OVERLAP domains can assume that child groups
8902 * span the current group.
8903 */
8904
8905 group = child->groups;
8906 do {
8907 struct sched_group_capacity *sgc = group->sgc;
8908
8909 capacity += sgc->capacity;
8910 min_capacity = min(sgc->min_capacity, min_capacity);
8911 max_capacity = max(sgc->max_capacity, max_capacity);
8912 group = group->next;
8913 } while (group != child->groups);
8914 }
8915
8916 sdg->sgc->capacity = capacity;
8917 sdg->sgc->min_capacity = min_capacity;
8918 sdg->sgc->max_capacity = max_capacity;
8919 }
8920
8921 /*
8922 * Check whether the capacity of the rq has been noticeably reduced by side
8923 * activity. The imbalance_pct is used for the threshold.
8924 * Return true is the capacity is reduced
8925 */
8926 static inline int
check_cpu_capacity(struct rq * rq,struct sched_domain * sd)8927 check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
8928 {
8929 return ((rq->cpu_capacity * sd->imbalance_pct) <
8930 (rq->cpu_capacity_orig * 100));
8931 }
8932
8933 /*
8934 * Check whether a rq has a misfit task and if it looks like we can actually
8935 * help that task: we can migrate the task to a CPU of higher capacity, or
8936 * the task's current CPU is heavily pressured.
8937 */
check_misfit_status(struct rq * rq,struct sched_domain * sd)8938 static inline int check_misfit_status(struct rq *rq, struct sched_domain *sd)
8939 {
8940 return rq->misfit_task_load &&
8941 (rq->cpu_capacity_orig < rq->rd->max_cpu_capacity ||
8942 check_cpu_capacity(rq, sd));
8943 }
8944
8945 /*
8946 * Group imbalance indicates (and tries to solve) the problem where balancing
8947 * groups is inadequate due to ->cpus_ptr constraints.
8948 *
8949 * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a
8950 * cpumask covering 1 CPU of the first group and 3 CPUs of the second group.
8951 * Something like:
8952 *
8953 * { 0 1 2 3 } { 4 5 6 7 }
8954 * * * * *
8955 *
8956 * If we were to balance group-wise we'd place two tasks in the first group and
8957 * two tasks in the second group. Clearly this is undesired as it will overload
8958 * cpu 3 and leave one of the CPUs in the second group unused.
8959 *
8960 * The current solution to this issue is detecting the skew in the first group
8961 * by noticing the lower domain failed to reach balance and had difficulty
8962 * moving tasks due to affinity constraints.
8963 *
8964 * When this is so detected; this group becomes a candidate for busiest; see
8965 * update_sd_pick_busiest(). And calculate_imbalance() and
8966 * find_busiest_group() avoid some of the usual balance conditions to allow it
8967 * to create an effective group imbalance.
8968 *
8969 * This is a somewhat tricky proposition since the next run might not find the
8970 * group imbalance and decide the groups need to be balanced again. A most
8971 * subtle and fragile situation.
8972 */
8973
sg_imbalanced(struct sched_group * group)8974 static inline int sg_imbalanced(struct sched_group *group)
8975 {
8976 return group->sgc->imbalance;
8977 }
8978
8979 /*
8980 * group_has_capacity returns true if the group has spare capacity that could
8981 * be used by some tasks.
8982 * We consider that a group has spare capacity if the * number of task is
8983 * smaller than the number of CPUs or if the utilization is lower than the
8984 * available capacity for CFS tasks.
8985 * For the latter, we use a threshold to stabilize the state, to take into
8986 * account the variance of the tasks' load and to return true if the available
8987 * capacity in meaningful for the load balancer.
8988 * As an example, an available capacity of 1% can appear but it doesn't make
8989 * any benefit for the load balance.
8990 */
8991 static inline bool
group_has_capacity(unsigned int imbalance_pct,struct sg_lb_stats * sgs)8992 group_has_capacity(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
8993 {
8994 if (sgs->sum_nr_running < sgs->group_weight)
8995 return true;
8996
8997 if ((sgs->group_capacity * imbalance_pct) <
8998 (sgs->group_runnable * 100))
8999 return false;
9000
9001 if ((sgs->group_capacity * 100) >
9002 (sgs->group_util * imbalance_pct))
9003 return true;
9004
9005 return false;
9006 }
9007
9008 /*
9009 * group_is_overloaded returns true if the group has more tasks than it can
9010 * handle.
9011 * group_is_overloaded is not equals to !group_has_capacity because a group
9012 * with the exact right number of tasks, has no more spare capacity but is not
9013 * overloaded so both group_has_capacity and group_is_overloaded return
9014 * false.
9015 */
9016 static inline bool
group_is_overloaded(unsigned int imbalance_pct,struct sg_lb_stats * sgs)9017 group_is_overloaded(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
9018 {
9019 if (sgs->sum_nr_running <= sgs->group_weight)
9020 return false;
9021
9022 if ((sgs->group_capacity * 100) <
9023 (sgs->group_util * imbalance_pct))
9024 return true;
9025
9026 if ((sgs->group_capacity * imbalance_pct) <
9027 (sgs->group_runnable * 100))
9028 return true;
9029
9030 return false;
9031 }
9032
9033 static inline enum
group_classify(unsigned int imbalance_pct,struct sched_group * group,struct sg_lb_stats * sgs)9034 group_type group_classify(unsigned int imbalance_pct,
9035 struct sched_group *group,
9036 struct sg_lb_stats *sgs)
9037 {
9038 if (group_is_overloaded(imbalance_pct, sgs))
9039 return group_overloaded;
9040
9041 if (sg_imbalanced(group))
9042 return group_imbalanced;
9043
9044 if (sgs->group_asym_packing)
9045 return group_asym_packing;
9046
9047 if (sgs->group_misfit_task_load)
9048 return group_misfit_task;
9049
9050 if (!group_has_capacity(imbalance_pct, sgs))
9051 return group_fully_busy;
9052
9053 return group_has_spare;
9054 }
9055
9056 /**
9057 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
9058 * @env: The load balancing environment.
9059 * @group: sched_group whose statistics are to be updated.
9060 * @sgs: variable to hold the statistics for this group.
9061 * @sg_status: Holds flag indicating the status of the sched_group
9062 */
update_sg_lb_stats(struct lb_env * env,struct sched_group * group,struct sg_lb_stats * sgs,int * sg_status)9063 static inline void update_sg_lb_stats(struct lb_env *env,
9064 struct sched_group *group,
9065 struct sg_lb_stats *sgs,
9066 int *sg_status)
9067 {
9068 int i, nr_running, local_group;
9069
9070 memset(sgs, 0, sizeof(*sgs));
9071
9072 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(group));
9073
9074 for_each_cpu_and(i, sched_group_span(group), env->cpus) {
9075 struct rq *rq = cpu_rq(i);
9076
9077 sgs->group_load += cpu_load(rq);
9078 sgs->group_util += cpu_util(i);
9079 sgs->group_runnable += cpu_runnable(rq);
9080 sgs->sum_h_nr_running += rq->cfs.h_nr_running;
9081
9082 nr_running = rq->nr_running;
9083 sgs->sum_nr_running += nr_running;
9084
9085 if (nr_running > 1)
9086 *sg_status |= SG_OVERLOAD;
9087
9088 if (cpu_overutilized(i))
9089 *sg_status |= SG_OVERUTILIZED;
9090
9091 #ifdef CONFIG_NUMA_BALANCING
9092 sgs->nr_numa_running += rq->nr_numa_running;
9093 sgs->nr_preferred_running += rq->nr_preferred_running;
9094 #endif
9095 /*
9096 * No need to call idle_cpu() if nr_running is not 0
9097 */
9098 if (!nr_running && idle_cpu(i)) {
9099 sgs->idle_cpus++;
9100 /* Idle cpu can't have misfit task */
9101 continue;
9102 }
9103
9104 if (local_group)
9105 continue;
9106
9107 /* Check for a misfit task on the cpu */
9108 if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
9109 sgs->group_misfit_task_load < rq->misfit_task_load) {
9110 sgs->group_misfit_task_load = rq->misfit_task_load;
9111 *sg_status |= SG_OVERLOAD;
9112 }
9113 }
9114
9115 /* Check if dst CPU is idle and preferred to this group */
9116 if (env->sd->flags & SD_ASYM_PACKING &&
9117 env->idle != CPU_NOT_IDLE &&
9118 sgs->sum_h_nr_running &&
9119 sched_asym_prefer(env->dst_cpu, group->asym_prefer_cpu)) {
9120 sgs->group_asym_packing = 1;
9121 }
9122
9123 sgs->group_capacity = group->sgc->capacity;
9124
9125 sgs->group_weight = group->group_weight;
9126
9127 sgs->group_type = group_classify(env->sd->imbalance_pct, group, sgs);
9128
9129 /* Computing avg_load makes sense only when group is overloaded */
9130 if (sgs->group_type == group_overloaded)
9131 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
9132 sgs->group_capacity;
9133 }
9134
9135 /**
9136 * update_sd_pick_busiest - return 1 on busiest group
9137 * @env: The load balancing environment.
9138 * @sds: sched_domain statistics
9139 * @sg: sched_group candidate to be checked for being the busiest
9140 * @sgs: sched_group statistics
9141 *
9142 * Determine if @sg is a busier group than the previously selected
9143 * busiest group.
9144 *
9145 * Return: %true if @sg is a busier group than the previously selected
9146 * busiest group. %false otherwise.
9147 */
update_sd_pick_busiest(struct lb_env * env,struct sd_lb_stats * sds,struct sched_group * sg,struct sg_lb_stats * sgs)9148 static bool update_sd_pick_busiest(struct lb_env *env,
9149 struct sd_lb_stats *sds,
9150 struct sched_group *sg,
9151 struct sg_lb_stats *sgs)
9152 {
9153 struct sg_lb_stats *busiest = &sds->busiest_stat;
9154
9155 /* Make sure that there is at least one task to pull */
9156 if (!sgs->sum_h_nr_running)
9157 return false;
9158
9159 /*
9160 * Don't try to pull misfit tasks we can't help.
9161 * We can use max_capacity here as reduction in capacity on some
9162 * CPUs in the group should either be possible to resolve
9163 * internally or be covered by avg_load imbalance (eventually).
9164 */
9165 if (sgs->group_type == group_misfit_task &&
9166 (!capacity_greater(capacity_of(env->dst_cpu), sg->sgc->max_capacity) ||
9167 sds->local_stat.group_type != group_has_spare))
9168 return false;
9169
9170 if (sgs->group_type > busiest->group_type)
9171 return true;
9172
9173 if (sgs->group_type < busiest->group_type)
9174 return false;
9175
9176 /*
9177 * The candidate and the current busiest group are the same type of
9178 * group. Let check which one is the busiest according to the type.
9179 */
9180
9181 switch (sgs->group_type) {
9182 case group_overloaded:
9183 /* Select the overloaded group with highest avg_load. */
9184 if (sgs->avg_load <= busiest->avg_load)
9185 return false;
9186 break;
9187
9188 case group_imbalanced:
9189 /*
9190 * Select the 1st imbalanced group as we don't have any way to
9191 * choose one more than another.
9192 */
9193 return false;
9194
9195 case group_asym_packing:
9196 /* Prefer to move from lowest priority CPU's work */
9197 if (sched_asym_prefer(sg->asym_prefer_cpu, sds->busiest->asym_prefer_cpu))
9198 return false;
9199 break;
9200
9201 case group_misfit_task:
9202 /*
9203 * If we have more than one misfit sg go with the biggest
9204 * misfit.
9205 */
9206 if (sgs->group_misfit_task_load < busiest->group_misfit_task_load)
9207 return false;
9208 break;
9209
9210 case group_fully_busy:
9211 /*
9212 * Select the fully busy group with highest avg_load. In
9213 * theory, there is no need to pull task from such kind of
9214 * group because tasks have all compute capacity that they need
9215 * but we can still improve the overall throughput by reducing
9216 * contention when accessing shared HW resources.
9217 *
9218 * XXX for now avg_load is not computed and always 0 so we
9219 * select the 1st one.
9220 */
9221 if (sgs->avg_load <= busiest->avg_load)
9222 return false;
9223 break;
9224
9225 case group_has_spare:
9226 /*
9227 * Select not overloaded group with lowest number of idle cpus
9228 * and highest number of running tasks. We could also compare
9229 * the spare capacity which is more stable but it can end up
9230 * that the group has less spare capacity but finally more idle
9231 * CPUs which means less opportunity to pull tasks.
9232 */
9233 if (sgs->idle_cpus > busiest->idle_cpus)
9234 return false;
9235 else if ((sgs->idle_cpus == busiest->idle_cpus) &&
9236 (sgs->sum_nr_running <= busiest->sum_nr_running))
9237 return false;
9238
9239 break;
9240 }
9241
9242 /*
9243 * Candidate sg has no more than one task per CPU and has higher
9244 * per-CPU capacity. Migrating tasks to less capable CPUs may harm
9245 * throughput. Maximize throughput, power/energy consequences are not
9246 * considered.
9247 */
9248 if ((env->sd->flags & SD_ASYM_CPUCAPACITY) &&
9249 (sgs->group_type <= group_fully_busy) &&
9250 (capacity_greater(sg->sgc->min_capacity, capacity_of(env->dst_cpu))))
9251 return false;
9252
9253 return true;
9254 }
9255
9256 #ifdef CONFIG_NUMA_BALANCING
fbq_classify_group(struct sg_lb_stats * sgs)9257 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
9258 {
9259 if (sgs->sum_h_nr_running > sgs->nr_numa_running)
9260 return regular;
9261 if (sgs->sum_h_nr_running > sgs->nr_preferred_running)
9262 return remote;
9263 return all;
9264 }
9265
fbq_classify_rq(struct rq * rq)9266 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
9267 {
9268 if (rq->nr_running > rq->nr_numa_running)
9269 return regular;
9270 if (rq->nr_running > rq->nr_preferred_running)
9271 return remote;
9272 return all;
9273 }
9274 #else
fbq_classify_group(struct sg_lb_stats * sgs)9275 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
9276 {
9277 return all;
9278 }
9279
fbq_classify_rq(struct rq * rq)9280 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
9281 {
9282 return regular;
9283 }
9284 #endif /* CONFIG_NUMA_BALANCING */
9285
9286
9287 struct sg_lb_stats;
9288
9289 /*
9290 * task_running_on_cpu - return 1 if @p is running on @cpu.
9291 */
9292
task_running_on_cpu(int cpu,struct task_struct * p)9293 static unsigned int task_running_on_cpu(int cpu, struct task_struct *p)
9294 {
9295 /* Task has no contribution or is new */
9296 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
9297 return 0;
9298
9299 if (task_on_rq_queued(p))
9300 return 1;
9301
9302 return 0;
9303 }
9304
9305 /**
9306 * idle_cpu_without - would a given CPU be idle without p ?
9307 * @cpu: the processor on which idleness is tested.
9308 * @p: task which should be ignored.
9309 *
9310 * Return: 1 if the CPU would be idle. 0 otherwise.
9311 */
idle_cpu_without(int cpu,struct task_struct * p)9312 static int idle_cpu_without(int cpu, struct task_struct *p)
9313 {
9314 struct rq *rq = cpu_rq(cpu);
9315
9316 if (rq->curr != rq->idle && rq->curr != p)
9317 return 0;
9318
9319 /*
9320 * rq->nr_running can't be used but an updated version without the
9321 * impact of p on cpu must be used instead. The updated nr_running
9322 * be computed and tested before calling idle_cpu_without().
9323 */
9324
9325 #ifdef CONFIG_SMP
9326 if (rq->ttwu_pending)
9327 return 0;
9328 #endif
9329
9330 return 1;
9331 }
9332
9333 /*
9334 * update_sg_wakeup_stats - Update sched_group's statistics for wakeup.
9335 * @sd: The sched_domain level to look for idlest group.
9336 * @group: sched_group whose statistics are to be updated.
9337 * @sgs: variable to hold the statistics for this group.
9338 * @p: The task for which we look for the idlest group/CPU.
9339 */
update_sg_wakeup_stats(struct sched_domain * sd,struct sched_group * group,struct sg_lb_stats * sgs,struct task_struct * p)9340 static inline void update_sg_wakeup_stats(struct sched_domain *sd,
9341 struct sched_group *group,
9342 struct sg_lb_stats *sgs,
9343 struct task_struct *p)
9344 {
9345 int i, nr_running;
9346
9347 memset(sgs, 0, sizeof(*sgs));
9348
9349 /* Assume that task can't fit any CPU of the group */
9350 if (sd->flags & SD_ASYM_CPUCAPACITY)
9351 sgs->group_misfit_task_load = 1;
9352
9353 for_each_cpu(i, sched_group_span(group)) {
9354 struct rq *rq = cpu_rq(i);
9355 unsigned int local;
9356
9357 sgs->group_load += cpu_load_without(rq, p);
9358 sgs->group_util += cpu_util_without(i, p);
9359 sgs->group_runnable += cpu_runnable_without(rq, p);
9360 local = task_running_on_cpu(i, p);
9361 sgs->sum_h_nr_running += rq->cfs.h_nr_running - local;
9362
9363 nr_running = rq->nr_running - local;
9364 sgs->sum_nr_running += nr_running;
9365
9366 /*
9367 * No need to call idle_cpu_without() if nr_running is not 0
9368 */
9369 if (!nr_running && idle_cpu_without(i, p))
9370 sgs->idle_cpus++;
9371
9372 /* Check if task fits in the CPU */
9373 if (sd->flags & SD_ASYM_CPUCAPACITY &&
9374 sgs->group_misfit_task_load &&
9375 task_fits_cpu(p, i))
9376 sgs->group_misfit_task_load = 0;
9377
9378 }
9379
9380 sgs->group_capacity = group->sgc->capacity;
9381
9382 sgs->group_weight = group->group_weight;
9383
9384 sgs->group_type = group_classify(sd->imbalance_pct, group, sgs);
9385
9386 /*
9387 * Computing avg_load makes sense only when group is fully busy or
9388 * overloaded
9389 */
9390 if (sgs->group_type == group_fully_busy ||
9391 sgs->group_type == group_overloaded)
9392 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
9393 sgs->group_capacity;
9394 }
9395
update_pick_idlest(struct sched_group * idlest,struct sg_lb_stats * idlest_sgs,struct sched_group * group,struct sg_lb_stats * sgs)9396 static bool update_pick_idlest(struct sched_group *idlest,
9397 struct sg_lb_stats *idlest_sgs,
9398 struct sched_group *group,
9399 struct sg_lb_stats *sgs)
9400 {
9401 if (sgs->group_type < idlest_sgs->group_type)
9402 return true;
9403
9404 if (sgs->group_type > idlest_sgs->group_type)
9405 return false;
9406
9407 /*
9408 * The candidate and the current idlest group are the same type of
9409 * group. Let check which one is the idlest according to the type.
9410 */
9411
9412 switch (sgs->group_type) {
9413 case group_overloaded:
9414 case group_fully_busy:
9415 /* Select the group with lowest avg_load. */
9416 if (idlest_sgs->avg_load <= sgs->avg_load)
9417 return false;
9418 break;
9419
9420 case group_imbalanced:
9421 case group_asym_packing:
9422 /* Those types are not used in the slow wakeup path */
9423 return false;
9424
9425 case group_misfit_task:
9426 /* Select group with the highest max capacity */
9427 if (idlest->sgc->max_capacity >= group->sgc->max_capacity)
9428 return false;
9429 break;
9430
9431 case group_has_spare:
9432 /* Select group with most idle CPUs */
9433 if (idlest_sgs->idle_cpus > sgs->idle_cpus)
9434 return false;
9435
9436 /* Select group with lowest group_util */
9437 if (idlest_sgs->idle_cpus == sgs->idle_cpus &&
9438 idlest_sgs->group_util <= sgs->group_util)
9439 return false;
9440
9441 break;
9442 }
9443
9444 return true;
9445 }
9446
9447 /*
9448 * Allow a NUMA imbalance if busy CPUs is less than 25% of the domain.
9449 * This is an approximation as the number of running tasks may not be
9450 * related to the number of busy CPUs due to sched_setaffinity.
9451 */
9452 static inline bool
allow_numa_imbalance(unsigned int running,unsigned int weight)9453 allow_numa_imbalance(unsigned int running, unsigned int weight)
9454 {
9455 return (running < (weight >> 2));
9456 }
9457
9458 /*
9459 * find_idlest_group() finds and returns the least busy CPU group within the
9460 * domain.
9461 *
9462 * Assumes p is allowed on at least one CPU in sd.
9463 */
9464 static struct sched_group *
find_idlest_group(struct sched_domain * sd,struct task_struct * p,int this_cpu)9465 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
9466 {
9467 struct sched_group *idlest = NULL, *local = NULL, *group = sd->groups;
9468 struct sg_lb_stats local_sgs, tmp_sgs;
9469 struct sg_lb_stats *sgs;
9470 unsigned long imbalance;
9471 struct sg_lb_stats idlest_sgs = {
9472 .avg_load = UINT_MAX,
9473 .group_type = group_overloaded,
9474 };
9475
9476 do {
9477 int local_group;
9478
9479 /* Skip over this group if it has no CPUs allowed */
9480 if (!cpumask_intersects(sched_group_span(group),
9481 p->cpus_ptr))
9482 continue;
9483
9484 /* Skip over this group if no cookie matched */
9485 if (!sched_group_cookie_match(cpu_rq(this_cpu), p, group))
9486 continue;
9487
9488 local_group = cpumask_test_cpu(this_cpu,
9489 sched_group_span(group));
9490
9491 if (local_group) {
9492 sgs = &local_sgs;
9493 local = group;
9494 } else {
9495 sgs = &tmp_sgs;
9496 }
9497
9498 update_sg_wakeup_stats(sd, group, sgs, p);
9499
9500 if (!local_group && update_pick_idlest(idlest, &idlest_sgs, group, sgs)) {
9501 idlest = group;
9502 idlest_sgs = *sgs;
9503 }
9504
9505 } while (group = group->next, group != sd->groups);
9506
9507
9508 /* There is no idlest group to push tasks to */
9509 if (!idlest)
9510 return NULL;
9511
9512 /* The local group has been skipped because of CPU affinity */
9513 if (!local)
9514 return idlest;
9515
9516 /*
9517 * If the local group is idler than the selected idlest group
9518 * don't try and push the task.
9519 */
9520 if (local_sgs.group_type < idlest_sgs.group_type)
9521 return NULL;
9522
9523 /*
9524 * If the local group is busier than the selected idlest group
9525 * try and push the task.
9526 */
9527 if (local_sgs.group_type > idlest_sgs.group_type)
9528 return idlest;
9529
9530 switch (local_sgs.group_type) {
9531 case group_overloaded:
9532 case group_fully_busy:
9533
9534 /* Calculate allowed imbalance based on load */
9535 imbalance = scale_load_down(NICE_0_LOAD) *
9536 (sd->imbalance_pct-100) / 100;
9537
9538 /*
9539 * When comparing groups across NUMA domains, it's possible for
9540 * the local domain to be very lightly loaded relative to the
9541 * remote domains but "imbalance" skews the comparison making
9542 * remote CPUs look much more favourable. When considering
9543 * cross-domain, add imbalance to the load on the remote node
9544 * and consider staying local.
9545 */
9546
9547 if ((sd->flags & SD_NUMA) &&
9548 ((idlest_sgs.avg_load + imbalance) >= local_sgs.avg_load))
9549 return NULL;
9550
9551 /*
9552 * If the local group is less loaded than the selected
9553 * idlest group don't try and push any tasks.
9554 */
9555 if (idlest_sgs.avg_load >= (local_sgs.avg_load + imbalance))
9556 return NULL;
9557
9558 if (100 * local_sgs.avg_load <= sd->imbalance_pct * idlest_sgs.avg_load)
9559 return NULL;
9560 break;
9561
9562 case group_imbalanced:
9563 case group_asym_packing:
9564 /* Those type are not used in the slow wakeup path */
9565 return NULL;
9566
9567 case group_misfit_task:
9568 /* Select group with the highest max capacity */
9569 if (local->sgc->max_capacity >= idlest->sgc->max_capacity)
9570 return NULL;
9571 break;
9572
9573 case group_has_spare:
9574 if (sd->flags & SD_NUMA) {
9575 #ifdef CONFIG_NUMA_BALANCING
9576 int idlest_cpu;
9577 /*
9578 * If there is spare capacity at NUMA, try to select
9579 * the preferred node
9580 */
9581 if (cpu_to_node(this_cpu) == p->numa_preferred_nid)
9582 return NULL;
9583
9584 idlest_cpu = cpumask_first(sched_group_span(idlest));
9585 if (cpu_to_node(idlest_cpu) == p->numa_preferred_nid)
9586 return idlest;
9587 #endif
9588 /*
9589 * Otherwise, keep the task close to the wakeup source
9590 * and improve locality if the number of running tasks
9591 * would remain below threshold where an imbalance is
9592 * allowed. If there is a real need of migration,
9593 * periodic load balance will take care of it.
9594 */
9595 if (allow_numa_imbalance(local_sgs.sum_nr_running + 1, local_sgs.group_weight))
9596 return NULL;
9597 }
9598
9599 /*
9600 * Select group with highest number of idle CPUs. We could also
9601 * compare the utilization which is more stable but it can end
9602 * up that the group has less spare capacity but finally more
9603 * idle CPUs which means more opportunity to run task.
9604 */
9605 if (local_sgs.idle_cpus >= idlest_sgs.idle_cpus)
9606 return NULL;
9607 break;
9608 }
9609
9610 return idlest;
9611 }
9612
update_idle_cpu_scan(struct lb_env * env,unsigned long sum_util)9613 static void update_idle_cpu_scan(struct lb_env *env,
9614 unsigned long sum_util)
9615 {
9616 struct sched_domain_shared *sd_share;
9617 int llc_weight, pct;
9618 u64 x, y, tmp;
9619 /*
9620 * Update the number of CPUs to scan in LLC domain, which could
9621 * be used as a hint in select_idle_cpu(). The update of sd_share
9622 * could be expensive because it is within a shared cache line.
9623 * So the write of this hint only occurs during periodic load
9624 * balancing, rather than CPU_NEWLY_IDLE, because the latter
9625 * can fire way more frequently than the former.
9626 */
9627 if (!sched_feat(SIS_UTIL) || env->idle == CPU_NEWLY_IDLE)
9628 return;
9629
9630 llc_weight = per_cpu(sd_llc_size, env->dst_cpu);
9631 if (env->sd->span_weight != llc_weight)
9632 return;
9633
9634 sd_share = rcu_dereference(per_cpu(sd_llc_shared, env->dst_cpu));
9635 if (!sd_share)
9636 return;
9637
9638 /*
9639 * The number of CPUs to search drops as sum_util increases, when
9640 * sum_util hits 85% or above, the scan stops.
9641 * The reason to choose 85% as the threshold is because this is the
9642 * imbalance_pct(117) when a LLC sched group is overloaded.
9643 *
9644 * let y = SCHED_CAPACITY_SCALE - p * x^2 [1]
9645 * and y'= y / SCHED_CAPACITY_SCALE
9646 *
9647 * x is the ratio of sum_util compared to the CPU capacity:
9648 * x = sum_util / (llc_weight * SCHED_CAPACITY_SCALE)
9649 * y' is the ratio of CPUs to be scanned in the LLC domain,
9650 * and the number of CPUs to scan is calculated by:
9651 *
9652 * nr_scan = llc_weight * y' [2]
9653 *
9654 * When x hits the threshold of overloaded, AKA, when
9655 * x = 100 / pct, y drops to 0. According to [1],
9656 * p should be SCHED_CAPACITY_SCALE * pct^2 / 10000
9657 *
9658 * Scale x by SCHED_CAPACITY_SCALE:
9659 * x' = sum_util / llc_weight; [3]
9660 *
9661 * and finally [1] becomes:
9662 * y = SCHED_CAPACITY_SCALE -
9663 * x'^2 * pct^2 / (10000 * SCHED_CAPACITY_SCALE) [4]
9664 *
9665 */
9666 /* equation [3] */
9667 x = sum_util;
9668 do_div(x, llc_weight);
9669
9670 /* equation [4] */
9671 pct = env->sd->imbalance_pct;
9672 tmp = x * x * pct * pct;
9673 do_div(tmp, 10000 * SCHED_CAPACITY_SCALE);
9674 tmp = min_t(long, tmp, SCHED_CAPACITY_SCALE);
9675 y = SCHED_CAPACITY_SCALE - tmp;
9676
9677 /* equation [2] */
9678 y *= llc_weight;
9679 do_div(y, SCHED_CAPACITY_SCALE);
9680 if ((int)y != sd_share->nr_idle_scan)
9681 WRITE_ONCE(sd_share->nr_idle_scan, (int)y);
9682 }
9683
9684 /**
9685 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
9686 * @env: The load balancing environment.
9687 * @sds: variable to hold the statistics for this sched_domain.
9688 */
9689
update_sd_lb_stats(struct lb_env * env,struct sd_lb_stats * sds)9690 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
9691 {
9692 struct sched_domain *child = env->sd->child;
9693 struct sched_group *sg = env->sd->groups;
9694 struct sg_lb_stats *local = &sds->local_stat;
9695 struct sg_lb_stats tmp_sgs;
9696 unsigned long sum_util = 0;
9697 int sg_status = 0;
9698
9699 do {
9700 struct sg_lb_stats *sgs = &tmp_sgs;
9701 int local_group;
9702
9703 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg));
9704 if (local_group) {
9705 sds->local = sg;
9706 sgs = local;
9707
9708 if (env->idle != CPU_NEWLY_IDLE ||
9709 time_after_eq(jiffies, sg->sgc->next_update))
9710 update_group_capacity(env->sd, env->dst_cpu);
9711 }
9712
9713 update_sg_lb_stats(env, sg, sgs, &sg_status);
9714
9715 if (local_group)
9716 goto next_group;
9717
9718
9719 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
9720 sds->busiest = sg;
9721 sds->busiest_stat = *sgs;
9722 }
9723
9724 next_group:
9725 /* Now, start updating sd_lb_stats */
9726 sds->total_load += sgs->group_load;
9727 sds->total_capacity += sgs->group_capacity;
9728
9729 sum_util += sgs->group_util;
9730 sg = sg->next;
9731 } while (sg != env->sd->groups);
9732
9733 /* Tag domain that child domain prefers tasks go to siblings first */
9734 sds->prefer_sibling = child && child->flags & SD_PREFER_SIBLING;
9735
9736
9737 if (env->sd->flags & SD_NUMA)
9738 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
9739
9740 if (!env->sd->parent) {
9741 struct root_domain *rd = env->dst_rq->rd;
9742
9743 /* update overload indicator if we are at root domain */
9744 WRITE_ONCE(rd->overload, sg_status & SG_OVERLOAD);
9745
9746 /* Update over-utilization (tipping point, U >= 0) indicator */
9747 WRITE_ONCE(rd->overutilized, sg_status & SG_OVERUTILIZED);
9748 trace_sched_overutilized_tp(rd, sg_status & SG_OVERUTILIZED);
9749 } else if (sg_status & SG_OVERUTILIZED) {
9750 struct root_domain *rd = env->dst_rq->rd;
9751
9752 WRITE_ONCE(rd->overutilized, SG_OVERUTILIZED);
9753 trace_sched_overutilized_tp(rd, SG_OVERUTILIZED);
9754 }
9755
9756 update_idle_cpu_scan(env, sum_util);
9757 }
9758
9759 #define NUMA_IMBALANCE_MIN 2
9760
adjust_numa_imbalance(int imbalance,int dst_running,int dst_weight)9761 static inline long adjust_numa_imbalance(int imbalance,
9762 int dst_running, int dst_weight)
9763 {
9764 if (!allow_numa_imbalance(dst_running, dst_weight))
9765 return imbalance;
9766
9767 /*
9768 * Allow a small imbalance based on a simple pair of communicating
9769 * tasks that remain local when the destination is lightly loaded.
9770 */
9771 if (imbalance <= NUMA_IMBALANCE_MIN)
9772 return 0;
9773
9774 return imbalance;
9775 }
9776
9777 /**
9778 * calculate_imbalance - Calculate the amount of imbalance present within the
9779 * groups of a given sched_domain during load balance.
9780 * @env: load balance environment
9781 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
9782 */
calculate_imbalance(struct lb_env * env,struct sd_lb_stats * sds)9783 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
9784 {
9785 struct sg_lb_stats *local, *busiest;
9786
9787 local = &sds->local_stat;
9788 busiest = &sds->busiest_stat;
9789
9790 if (busiest->group_type == group_misfit_task) {
9791 /* Set imbalance to allow misfit tasks to be balanced. */
9792 env->migration_type = migrate_misfit;
9793 env->imbalance = 1;
9794 return;
9795 }
9796
9797 if (busiest->group_type == group_asym_packing) {
9798 /*
9799 * In case of asym capacity, we will try to migrate all load to
9800 * the preferred CPU.
9801 */
9802 env->migration_type = migrate_task;
9803 env->imbalance = busiest->sum_h_nr_running;
9804 return;
9805 }
9806
9807 if (busiest->group_type == group_imbalanced) {
9808 /*
9809 * In the group_imb case we cannot rely on group-wide averages
9810 * to ensure CPU-load equilibrium, try to move any task to fix
9811 * the imbalance. The next load balance will take care of
9812 * balancing back the system.
9813 */
9814 env->migration_type = migrate_task;
9815 env->imbalance = 1;
9816 return;
9817 }
9818
9819 /*
9820 * Try to use spare capacity of local group without overloading it or
9821 * emptying busiest.
9822 */
9823 if (local->group_type == group_has_spare) {
9824 if ((busiest->group_type > group_fully_busy) &&
9825 !(env->sd->flags & SD_SHARE_PKG_RESOURCES)) {
9826 /*
9827 * If busiest is overloaded, try to fill spare
9828 * capacity. This might end up creating spare capacity
9829 * in busiest or busiest still being overloaded but
9830 * there is no simple way to directly compute the
9831 * amount of load to migrate in order to balance the
9832 * system.
9833 */
9834 env->migration_type = migrate_util;
9835 env->imbalance = max(local->group_capacity, local->group_util) -
9836 local->group_util;
9837
9838 /*
9839 * In some cases, the group's utilization is max or even
9840 * higher than capacity because of migrations but the
9841 * local CPU is (newly) idle. There is at least one
9842 * waiting task in this overloaded busiest group. Let's
9843 * try to pull it.
9844 */
9845 if (env->idle != CPU_NOT_IDLE && env->imbalance == 0) {
9846 env->migration_type = migrate_task;
9847 env->imbalance = 1;
9848 }
9849
9850 return;
9851 }
9852
9853 if (busiest->group_weight == 1 || sds->prefer_sibling) {
9854 unsigned int nr_diff = busiest->sum_nr_running;
9855 /*
9856 * When prefer sibling, evenly spread running tasks on
9857 * groups.
9858 */
9859 env->migration_type = migrate_task;
9860 lsub_positive(&nr_diff, local->sum_nr_running);
9861 env->imbalance = nr_diff >> 1;
9862 } else {
9863
9864 /*
9865 * If there is no overload, we just want to even the number of
9866 * idle cpus.
9867 */
9868 env->migration_type = migrate_task;
9869 env->imbalance = max_t(long, 0, (local->idle_cpus -
9870 busiest->idle_cpus) >> 1);
9871 }
9872
9873 /* Consider allowing a small imbalance between NUMA groups */
9874 if (env->sd->flags & SD_NUMA) {
9875 env->imbalance = adjust_numa_imbalance(env->imbalance,
9876 local->sum_nr_running + 1, local->group_weight);
9877 }
9878
9879 return;
9880 }
9881
9882 /*
9883 * Local is fully busy but has to take more load to relieve the
9884 * busiest group
9885 */
9886 if (local->group_type < group_overloaded) {
9887 /*
9888 * Local will become overloaded so the avg_load metrics are
9889 * finally needed.
9890 */
9891
9892 local->avg_load = (local->group_load * SCHED_CAPACITY_SCALE) /
9893 local->group_capacity;
9894
9895 /*
9896 * If the local group is more loaded than the selected
9897 * busiest group don't try to pull any tasks.
9898 */
9899 if (local->avg_load >= busiest->avg_load) {
9900 env->imbalance = 0;
9901 return;
9902 }
9903
9904 sds->avg_load = (sds->total_load * SCHED_CAPACITY_SCALE) /
9905 sds->total_capacity;
9906
9907 /*
9908 * If the local group is more loaded than the average system
9909 * load, don't try to pull any tasks.
9910 */
9911 if (local->avg_load >= sds->avg_load) {
9912 env->imbalance = 0;
9913 return;
9914 }
9915
9916 }
9917
9918 /*
9919 * Both group are or will become overloaded and we're trying to get all
9920 * the CPUs to the average_load, so we don't want to push ourselves
9921 * above the average load, nor do we wish to reduce the max loaded CPU
9922 * below the average load. At the same time, we also don't want to
9923 * reduce the group load below the group capacity. Thus we look for
9924 * the minimum possible imbalance.
9925 */
9926 env->migration_type = migrate_load;
9927 env->imbalance = min(
9928 (busiest->avg_load - sds->avg_load) * busiest->group_capacity,
9929 (sds->avg_load - local->avg_load) * local->group_capacity
9930 ) / SCHED_CAPACITY_SCALE;
9931 }
9932
9933 /******* find_busiest_group() helpers end here *********************/
9934
9935 /*
9936 * Decision matrix according to the local and busiest group type:
9937 *
9938 * busiest \ local has_spare fully_busy misfit asym imbalanced overloaded
9939 * has_spare nr_idle balanced N/A N/A balanced balanced
9940 * fully_busy nr_idle nr_idle N/A N/A balanced balanced
9941 * misfit_task force N/A N/A N/A force force
9942 * asym_packing force force N/A N/A force force
9943 * imbalanced force force N/A N/A force force
9944 * overloaded force force N/A N/A force avg_load
9945 *
9946 * N/A : Not Applicable because already filtered while updating
9947 * statistics.
9948 * balanced : The system is balanced for these 2 groups.
9949 * force : Calculate the imbalance as load migration is probably needed.
9950 * avg_load : Only if imbalance is significant enough.
9951 * nr_idle : dst_cpu is not busy and the number of idle CPUs is quite
9952 * different in groups.
9953 */
9954
9955 /**
9956 * find_busiest_group - Returns the busiest group within the sched_domain
9957 * if there is an imbalance.
9958 *
9959 * Also calculates the amount of runnable load which should be moved
9960 * to restore balance.
9961 *
9962 * @env: The load balancing environment.
9963 *
9964 * Return: - The busiest group if imbalance exists.
9965 */
find_busiest_group(struct lb_env * env)9966 static struct sched_group *find_busiest_group(struct lb_env *env)
9967 {
9968 struct sg_lb_stats *local, *busiest;
9969 struct sd_lb_stats sds;
9970
9971 init_sd_lb_stats(&sds);
9972
9973 /*
9974 * Compute the various statistics relevant for load balancing at
9975 * this level.
9976 */
9977 update_sd_lb_stats(env, &sds);
9978
9979 /* There is no busy sibling group to pull tasks from */
9980 if (!sds.busiest)
9981 goto out_balanced;
9982
9983 busiest = &sds.busiest_stat;
9984
9985 /* Misfit tasks should be dealt with regardless of the avg load */
9986 if (busiest->group_type == group_misfit_task)
9987 goto force_balance;
9988
9989 if (sched_energy_enabled()) {
9990 struct root_domain *rd = env->dst_rq->rd;
9991 int out_balance = 1;
9992
9993 trace_android_rvh_find_busiest_group(sds.busiest, env->dst_rq,
9994 &out_balance);
9995 if (rcu_dereference(rd->pd) && !READ_ONCE(rd->overutilized)
9996 && out_balance)
9997 goto out_balanced;
9998 }
9999
10000 /* ASYM feature bypasses nice load balance check */
10001 if (busiest->group_type == group_asym_packing)
10002 goto force_balance;
10003
10004 /*
10005 * If the busiest group is imbalanced the below checks don't
10006 * work because they assume all things are equal, which typically
10007 * isn't true due to cpus_ptr constraints and the like.
10008 */
10009 if (busiest->group_type == group_imbalanced)
10010 goto force_balance;
10011
10012 local = &sds.local_stat;
10013
10014 /*
10015 * If the local group is busier than the selected busiest group
10016 * don't try and pull any tasks.
10017 */
10018 if (local->group_type > busiest->group_type)
10019 goto out_balanced;
10020
10021 /*
10022 * When groups are overloaded, use the avg_load to ensure fairness
10023 * between tasks.
10024 */
10025 if (local->group_type == group_overloaded) {
10026 /*
10027 * If the local group is more loaded than the selected
10028 * busiest group don't try to pull any tasks.
10029 */
10030 if (local->avg_load >= busiest->avg_load)
10031 goto out_balanced;
10032
10033 /* XXX broken for overlapping NUMA groups */
10034 sds.avg_load = (sds.total_load * SCHED_CAPACITY_SCALE) /
10035 sds.total_capacity;
10036
10037 /*
10038 * Don't pull any tasks if this group is already above the
10039 * domain average load.
10040 */
10041 if (local->avg_load >= sds.avg_load)
10042 goto out_balanced;
10043
10044 /*
10045 * If the busiest group is more loaded, use imbalance_pct to be
10046 * conservative.
10047 */
10048 if (100 * busiest->avg_load <=
10049 env->sd->imbalance_pct * local->avg_load)
10050 goto out_balanced;
10051 }
10052
10053 /* Try to move all excess tasks to child's sibling domain */
10054 if (sds.prefer_sibling && local->group_type == group_has_spare &&
10055 busiest->sum_nr_running > local->sum_nr_running + 1)
10056 goto force_balance;
10057
10058 if (busiest->group_type != group_overloaded) {
10059 if (env->idle == CPU_NOT_IDLE)
10060 /*
10061 * If the busiest group is not overloaded (and as a
10062 * result the local one too) but this CPU is already
10063 * busy, let another idle CPU try to pull task.
10064 */
10065 goto out_balanced;
10066
10067 if (busiest->group_weight > 1 &&
10068 local->idle_cpus <= (busiest->idle_cpus + 1))
10069 /*
10070 * If the busiest group is not overloaded
10071 * and there is no imbalance between this and busiest
10072 * group wrt idle CPUs, it is balanced. The imbalance
10073 * becomes significant if the diff is greater than 1
10074 * otherwise we might end up to just move the imbalance
10075 * on another group. Of course this applies only if
10076 * there is more than 1 CPU per group.
10077 */
10078 goto out_balanced;
10079
10080 if (busiest->sum_h_nr_running == 1)
10081 /*
10082 * busiest doesn't have any tasks waiting to run
10083 */
10084 goto out_balanced;
10085 }
10086
10087 force_balance:
10088 /* Looks like there is an imbalance. Compute it */
10089 calculate_imbalance(env, &sds);
10090 return env->imbalance ? sds.busiest : NULL;
10091
10092 out_balanced:
10093 env->imbalance = 0;
10094 return NULL;
10095 }
10096
10097 /*
10098 * find_busiest_queue - find the busiest runqueue among the CPUs in the group.
10099 */
find_busiest_queue(struct lb_env * env,struct sched_group * group)10100 static struct rq *find_busiest_queue(struct lb_env *env,
10101 struct sched_group *group)
10102 {
10103 struct rq *busiest = NULL, *rq;
10104 unsigned long busiest_util = 0, busiest_load = 0, busiest_capacity = 1;
10105 unsigned int busiest_nr = 0;
10106 int i, done = 0;
10107
10108 trace_android_rvh_find_busiest_queue(env->dst_cpu, group, env->cpus,
10109 &busiest, &done);
10110 if (done)
10111 return busiest;
10112
10113 for_each_cpu_and(i, sched_group_span(group), env->cpus) {
10114 unsigned long capacity, load, util;
10115 unsigned int nr_running;
10116 enum fbq_type rt;
10117
10118 rq = cpu_rq(i);
10119 rt = fbq_classify_rq(rq);
10120
10121 /*
10122 * We classify groups/runqueues into three groups:
10123 * - regular: there are !numa tasks
10124 * - remote: there are numa tasks that run on the 'wrong' node
10125 * - all: there is no distinction
10126 *
10127 * In order to avoid migrating ideally placed numa tasks,
10128 * ignore those when there's better options.
10129 *
10130 * If we ignore the actual busiest queue to migrate another
10131 * task, the next balance pass can still reduce the busiest
10132 * queue by moving tasks around inside the node.
10133 *
10134 * If we cannot move enough load due to this classification
10135 * the next pass will adjust the group classification and
10136 * allow migration of more tasks.
10137 *
10138 * Both cases only affect the total convergence complexity.
10139 */
10140 if (rt > env->fbq_type)
10141 continue;
10142
10143 nr_running = rq->cfs.h_nr_running;
10144 if (!nr_running)
10145 continue;
10146
10147 capacity = capacity_of(i);
10148
10149 /*
10150 * For ASYM_CPUCAPACITY domains, don't pick a CPU that could
10151 * eventually lead to active_balancing high->low capacity.
10152 * Higher per-CPU capacity is considered better than balancing
10153 * average load.
10154 */
10155 if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
10156 !capacity_greater(capacity_of(env->dst_cpu), capacity) &&
10157 nr_running == 1)
10158 continue;
10159
10160 switch (env->migration_type) {
10161 case migrate_load:
10162 /*
10163 * When comparing with load imbalance, use cpu_load()
10164 * which is not scaled with the CPU capacity.
10165 */
10166 load = cpu_load(rq);
10167
10168 if (nr_running == 1 && load > env->imbalance &&
10169 !check_cpu_capacity(rq, env->sd))
10170 break;
10171
10172 /*
10173 * For the load comparisons with the other CPUs,
10174 * consider the cpu_load() scaled with the CPU
10175 * capacity, so that the load can be moved away
10176 * from the CPU that is potentially running at a
10177 * lower capacity.
10178 *
10179 * Thus we're looking for max(load_i / capacity_i),
10180 * crosswise multiplication to rid ourselves of the
10181 * division works out to:
10182 * load_i * capacity_j > load_j * capacity_i;
10183 * where j is our previous maximum.
10184 */
10185 if (load * busiest_capacity > busiest_load * capacity) {
10186 busiest_load = load;
10187 busiest_capacity = capacity;
10188 busiest = rq;
10189 }
10190 break;
10191
10192 case migrate_util:
10193 util = cpu_util(cpu_of(rq));
10194
10195 /*
10196 * Don't try to pull utilization from a CPU with one
10197 * running task. Whatever its utilization, we will fail
10198 * detach the task.
10199 */
10200 if (nr_running <= 1)
10201 continue;
10202
10203 if (busiest_util < util) {
10204 busiest_util = util;
10205 busiest = rq;
10206 }
10207 break;
10208
10209 case migrate_task:
10210 if (busiest_nr < nr_running) {
10211 busiest_nr = nr_running;
10212 busiest = rq;
10213 }
10214 break;
10215
10216 case migrate_misfit:
10217 /*
10218 * For ASYM_CPUCAPACITY domains with misfit tasks we
10219 * simply seek the "biggest" misfit task.
10220 */
10221 if (rq->misfit_task_load > busiest_load) {
10222 busiest_load = rq->misfit_task_load;
10223 busiest = rq;
10224 }
10225
10226 break;
10227
10228 }
10229 }
10230
10231 return busiest;
10232 }
10233
10234 /*
10235 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
10236 * so long as it is large enough.
10237 */
10238 #define MAX_PINNED_INTERVAL 512
10239
10240 static inline bool
asym_active_balance(struct lb_env * env)10241 asym_active_balance(struct lb_env *env)
10242 {
10243 /*
10244 * ASYM_PACKING needs to force migrate tasks from busy but
10245 * lower priority CPUs in order to pack all tasks in the
10246 * highest priority CPUs.
10247 */
10248 return env->idle != CPU_NOT_IDLE && (env->sd->flags & SD_ASYM_PACKING) &&
10249 sched_asym_prefer(env->dst_cpu, env->src_cpu);
10250 }
10251
10252 static inline bool
imbalanced_active_balance(struct lb_env * env)10253 imbalanced_active_balance(struct lb_env *env)
10254 {
10255 struct sched_domain *sd = env->sd;
10256
10257 /*
10258 * The imbalanced case includes the case of pinned tasks preventing a fair
10259 * distribution of the load on the system but also the even distribution of the
10260 * threads on a system with spare capacity
10261 */
10262 if ((env->migration_type == migrate_task) &&
10263 (sd->nr_balance_failed > sd->cache_nice_tries+2))
10264 return 1;
10265
10266 return 0;
10267 }
10268
need_active_balance(struct lb_env * env)10269 static int need_active_balance(struct lb_env *env)
10270 {
10271 struct sched_domain *sd = env->sd;
10272
10273 if (asym_active_balance(env))
10274 return 1;
10275
10276 if (imbalanced_active_balance(env))
10277 return 1;
10278
10279 /*
10280 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
10281 * It's worth migrating the task if the src_cpu's capacity is reduced
10282 * because of other sched_class or IRQs if more capacity stays
10283 * available on dst_cpu.
10284 */
10285 if ((env->idle != CPU_NOT_IDLE) &&
10286 (env->src_rq->cfs.h_nr_running == 1)) {
10287 if ((check_cpu_capacity(env->src_rq, sd)) &&
10288 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
10289 return 1;
10290 }
10291
10292 if (env->migration_type == migrate_misfit)
10293 return 1;
10294
10295 return 0;
10296 }
10297
10298 static int active_load_balance_cpu_stop(void *data);
10299
should_we_balance(struct lb_env * env)10300 static int should_we_balance(struct lb_env *env)
10301 {
10302 struct sched_group *sg = env->sd->groups;
10303 int cpu;
10304
10305 /*
10306 * Ensure the balancing environment is consistent; can happen
10307 * when the softirq triggers 'during' hotplug.
10308 */
10309 if (!cpumask_test_cpu(env->dst_cpu, env->cpus))
10310 return 0;
10311
10312 /*
10313 * In the newly idle case, we will allow all the CPUs
10314 * to do the newly idle load balance.
10315 */
10316 if (env->idle == CPU_NEWLY_IDLE)
10317 return 1;
10318
10319 /* Try to find first idle CPU */
10320 for_each_cpu_and(cpu, group_balance_mask(sg), env->cpus) {
10321 if (!idle_cpu(cpu))
10322 continue;
10323
10324 /* Are we the first idle CPU? */
10325 return cpu == env->dst_cpu;
10326 }
10327
10328 /* Are we the first CPU of this group ? */
10329 return group_balance_cpu(sg) == env->dst_cpu;
10330 }
10331
10332 /*
10333 * Check this_cpu to ensure it is balanced within domain. Attempt to move
10334 * tasks if there is an imbalance.
10335 */
load_balance(int this_cpu,struct rq * this_rq,struct sched_domain * sd,enum cpu_idle_type idle,int * continue_balancing)10336 static int load_balance(int this_cpu, struct rq *this_rq,
10337 struct sched_domain *sd, enum cpu_idle_type idle,
10338 int *continue_balancing)
10339 {
10340 int ld_moved, cur_ld_moved, active_balance = 0;
10341 struct sched_domain *sd_parent = sd->parent;
10342 struct sched_group *group;
10343 struct rq *busiest;
10344 struct rq_flags rf;
10345 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
10346
10347 struct lb_env env = {
10348 .sd = sd,
10349 .dst_cpu = this_cpu,
10350 .dst_rq = this_rq,
10351 .dst_grpmask = group_balance_mask(sd->groups),
10352 .idle = idle,
10353 .loop_break = sched_nr_migrate_break,
10354 .cpus = cpus,
10355 .fbq_type = all,
10356 .tasks = LIST_HEAD_INIT(env.tasks),
10357 };
10358
10359 cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask);
10360
10361 schedstat_inc(sd->lb_count[idle]);
10362
10363 redo:
10364 if (!should_we_balance(&env)) {
10365 *continue_balancing = 0;
10366 goto out_balanced;
10367 }
10368
10369 group = find_busiest_group(&env);
10370 if (!group) {
10371 schedstat_inc(sd->lb_nobusyg[idle]);
10372 goto out_balanced;
10373 }
10374
10375 busiest = find_busiest_queue(&env, group);
10376 if (!busiest) {
10377 schedstat_inc(sd->lb_nobusyq[idle]);
10378 goto out_balanced;
10379 }
10380
10381 BUG_ON(busiest == env.dst_rq);
10382
10383 schedstat_add(sd->lb_imbalance[idle], env.imbalance);
10384
10385 env.src_cpu = busiest->cpu;
10386 env.src_rq = busiest;
10387
10388 ld_moved = 0;
10389 /* Clear this flag as soon as we find a pullable task */
10390 env.flags |= LBF_ALL_PINNED;
10391 if (busiest->nr_running > 1) {
10392 /*
10393 * Attempt to move tasks. If find_busiest_group has found
10394 * an imbalance but busiest->nr_running <= 1, the group is
10395 * still unbalanced. ld_moved simply stays zero, so it is
10396 * correctly treated as an imbalance.
10397 */
10398 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
10399
10400 more_balance:
10401 rq_lock_irqsave(busiest, &rf);
10402 env.src_rq_rf = &rf;
10403 update_rq_clock(busiest);
10404
10405 /*
10406 * cur_ld_moved - load moved in current iteration
10407 * ld_moved - cumulative load moved across iterations
10408 */
10409 cur_ld_moved = detach_tasks(&env);
10410
10411 /*
10412 * We've detached some tasks from busiest_rq. Every
10413 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
10414 * unlock busiest->lock, and we are able to be sure
10415 * that nobody can manipulate the tasks in parallel.
10416 * See task_rq_lock() family for the details.
10417 */
10418
10419 rq_unlock(busiest, &rf);
10420
10421 if (cur_ld_moved) {
10422 attach_tasks(&env);
10423 ld_moved += cur_ld_moved;
10424 }
10425
10426 local_irq_restore(rf.flags);
10427
10428 if (env.flags & LBF_NEED_BREAK) {
10429 env.flags &= ~LBF_NEED_BREAK;
10430 goto more_balance;
10431 }
10432
10433 /*
10434 * Revisit (affine) tasks on src_cpu that couldn't be moved to
10435 * us and move them to an alternate dst_cpu in our sched_group
10436 * where they can run. The upper limit on how many times we
10437 * iterate on same src_cpu is dependent on number of CPUs in our
10438 * sched_group.
10439 *
10440 * This changes load balance semantics a bit on who can move
10441 * load to a given_cpu. In addition to the given_cpu itself
10442 * (or a ilb_cpu acting on its behalf where given_cpu is
10443 * nohz-idle), we now have balance_cpu in a position to move
10444 * load to given_cpu. In rare situations, this may cause
10445 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
10446 * _independently_ and at _same_ time to move some load to
10447 * given_cpu) causing excess load to be moved to given_cpu.
10448 * This however should not happen so much in practice and
10449 * moreover subsequent load balance cycles should correct the
10450 * excess load moved.
10451 */
10452 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
10453
10454 /* Prevent to re-select dst_cpu via env's CPUs */
10455 __cpumask_clear_cpu(env.dst_cpu, env.cpus);
10456
10457 env.dst_rq = cpu_rq(env.new_dst_cpu);
10458 env.dst_cpu = env.new_dst_cpu;
10459 env.flags &= ~LBF_DST_PINNED;
10460 env.loop = 0;
10461 env.loop_break = sched_nr_migrate_break;
10462
10463 /*
10464 * Go back to "more_balance" rather than "redo" since we
10465 * need to continue with same src_cpu.
10466 */
10467 goto more_balance;
10468 }
10469
10470 /*
10471 * We failed to reach balance because of affinity.
10472 */
10473 if (sd_parent) {
10474 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
10475
10476 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
10477 *group_imbalance = 1;
10478 }
10479
10480 /* All tasks on this runqueue were pinned by CPU affinity */
10481 if (unlikely(env.flags & LBF_ALL_PINNED)) {
10482 __cpumask_clear_cpu(cpu_of(busiest), cpus);
10483 /*
10484 * Attempting to continue load balancing at the current
10485 * sched_domain level only makes sense if there are
10486 * active CPUs remaining as possible busiest CPUs to
10487 * pull load from which are not contained within the
10488 * destination group that is receiving any migrated
10489 * load.
10490 */
10491 if (!cpumask_subset(cpus, env.dst_grpmask)) {
10492 env.loop = 0;
10493 env.loop_break = sched_nr_migrate_break;
10494 goto redo;
10495 }
10496 goto out_all_pinned;
10497 }
10498 }
10499
10500 if (!ld_moved) {
10501 schedstat_inc(sd->lb_failed[idle]);
10502 /*
10503 * Increment the failure counter only on periodic balance.
10504 * We do not want newidle balance, which can be very
10505 * frequent, pollute the failure counter causing
10506 * excessive cache_hot migrations and active balances.
10507 */
10508 if (idle != CPU_NEWLY_IDLE)
10509 sd->nr_balance_failed++;
10510
10511 if (need_active_balance(&env)) {
10512 unsigned long flags;
10513
10514 raw_spin_rq_lock_irqsave(busiest, flags);
10515
10516 /*
10517 * Don't kick the active_load_balance_cpu_stop,
10518 * if the curr task on busiest CPU can't be
10519 * moved to this_cpu:
10520 */
10521 if (!cpumask_test_cpu(this_cpu, busiest->curr->cpus_ptr)) {
10522 raw_spin_rq_unlock_irqrestore(busiest, flags);
10523 goto out_one_pinned;
10524 }
10525
10526 /* Record that we found at least one task that could run on this_cpu */
10527 env.flags &= ~LBF_ALL_PINNED;
10528
10529 /*
10530 * ->active_balance synchronizes accesses to
10531 * ->active_balance_work. Once set, it's cleared
10532 * only after active load balance is finished.
10533 */
10534 if (!busiest->active_balance) {
10535 busiest->active_balance = 1;
10536 busiest->push_cpu = this_cpu;
10537 active_balance = 1;
10538 }
10539
10540 preempt_disable();
10541 raw_spin_rq_unlock_irqrestore(busiest, flags);
10542 if (active_balance) {
10543 stop_one_cpu_nowait(cpu_of(busiest),
10544 active_load_balance_cpu_stop, busiest,
10545 &busiest->active_balance_work);
10546 }
10547 preempt_enable();
10548 }
10549 } else {
10550 sd->nr_balance_failed = 0;
10551 }
10552
10553 if (likely(!active_balance) || need_active_balance(&env)) {
10554 /* We were unbalanced, so reset the balancing interval */
10555 sd->balance_interval = sd->min_interval;
10556 }
10557
10558 goto out;
10559
10560 out_balanced:
10561 /*
10562 * We reach balance although we may have faced some affinity
10563 * constraints. Clear the imbalance flag only if other tasks got
10564 * a chance to move and fix the imbalance.
10565 */
10566 if (sd_parent && !(env.flags & LBF_ALL_PINNED)) {
10567 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
10568
10569 if (*group_imbalance)
10570 *group_imbalance = 0;
10571 }
10572
10573 out_all_pinned:
10574 /*
10575 * We reach balance because all tasks are pinned at this level so
10576 * we can't migrate them. Let the imbalance flag set so parent level
10577 * can try to migrate them.
10578 */
10579 schedstat_inc(sd->lb_balanced[idle]);
10580
10581 sd->nr_balance_failed = 0;
10582
10583 out_one_pinned:
10584 ld_moved = 0;
10585
10586 /*
10587 * newidle_balance() disregards balance intervals, so we could
10588 * repeatedly reach this code, which would lead to balance_interval
10589 * skyrocketing in a short amount of time. Skip the balance_interval
10590 * increase logic to avoid that.
10591 */
10592 if (env.idle == CPU_NEWLY_IDLE)
10593 goto out;
10594
10595 /* tune up the balancing interval */
10596 if ((env.flags & LBF_ALL_PINNED &&
10597 sd->balance_interval < MAX_PINNED_INTERVAL) ||
10598 sd->balance_interval < sd->max_interval)
10599 sd->balance_interval *= 2;
10600 out:
10601 return ld_moved;
10602 }
10603
10604 static inline unsigned long
get_sd_balance_interval(struct sched_domain * sd,int cpu_busy)10605 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
10606 {
10607 unsigned long interval = sd->balance_interval;
10608
10609 if (cpu_busy)
10610 interval *= sd->busy_factor;
10611
10612 /* scale ms to jiffies */
10613 interval = msecs_to_jiffies(interval);
10614
10615 /*
10616 * Reduce likelihood of busy balancing at higher domains racing with
10617 * balancing at lower domains by preventing their balancing periods
10618 * from being multiples of each other.
10619 */
10620 if (cpu_busy)
10621 interval -= 1;
10622
10623 interval = clamp(interval, 1UL, max_load_balance_interval);
10624
10625 return interval;
10626 }
10627
10628 static inline void
update_next_balance(struct sched_domain * sd,unsigned long * next_balance)10629 update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
10630 {
10631 unsigned long interval, next;
10632
10633 /* used by idle balance, so cpu_busy = 0 */
10634 interval = get_sd_balance_interval(sd, 0);
10635 next = sd->last_balance + interval;
10636
10637 if (time_after(*next_balance, next))
10638 *next_balance = next;
10639 }
10640
10641 /*
10642 * active_load_balance_cpu_stop is run by the CPU stopper. It pushes
10643 * running tasks off the busiest CPU onto idle CPUs. It requires at
10644 * least 1 task to be running on each physical CPU where possible, and
10645 * avoids physical / logical imbalances.
10646 */
active_load_balance_cpu_stop(void * data)10647 static int active_load_balance_cpu_stop(void *data)
10648 {
10649 struct rq *busiest_rq = data;
10650 int busiest_cpu = cpu_of(busiest_rq);
10651 int target_cpu = busiest_rq->push_cpu;
10652 struct rq *target_rq = cpu_rq(target_cpu);
10653 struct sched_domain *sd;
10654 struct task_struct *p = NULL;
10655 struct rq_flags rf;
10656
10657 rq_lock_irq(busiest_rq, &rf);
10658 /*
10659 * Between queueing the stop-work and running it is a hole in which
10660 * CPUs can become inactive. We should not move tasks from or to
10661 * inactive CPUs.
10662 */
10663 if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu))
10664 goto out_unlock;
10665
10666 /* Make sure the requested CPU hasn't gone down in the meantime: */
10667 if (unlikely(busiest_cpu != smp_processor_id() ||
10668 !busiest_rq->active_balance))
10669 goto out_unlock;
10670
10671 /* Is there any task to move? */
10672 if (busiest_rq->nr_running <= 1)
10673 goto out_unlock;
10674
10675 /*
10676 * This condition is "impossible", if it occurs
10677 * we need to fix it. Originally reported by
10678 * Bjorn Helgaas on a 128-CPU setup.
10679 */
10680 BUG_ON(busiest_rq == target_rq);
10681
10682 /* Search for an sd spanning us and the target CPU. */
10683 rcu_read_lock();
10684 for_each_domain(target_cpu, sd) {
10685 if (cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
10686 break;
10687 }
10688
10689 if (likely(sd)) {
10690 struct lb_env env = {
10691 .sd = sd,
10692 .dst_cpu = target_cpu,
10693 .dst_rq = target_rq,
10694 .src_cpu = busiest_rq->cpu,
10695 .src_rq = busiest_rq,
10696 .idle = CPU_IDLE,
10697 .flags = LBF_ACTIVE_LB,
10698 .src_rq_rf = &rf,
10699 };
10700
10701 schedstat_inc(sd->alb_count);
10702 update_rq_clock(busiest_rq);
10703
10704 p = detach_one_task(&env);
10705 if (p) {
10706 schedstat_inc(sd->alb_pushed);
10707 /* Active balancing done, reset the failure counter. */
10708 sd->nr_balance_failed = 0;
10709 } else {
10710 schedstat_inc(sd->alb_failed);
10711 }
10712 }
10713 rcu_read_unlock();
10714 out_unlock:
10715 busiest_rq->active_balance = 0;
10716 rq_unlock(busiest_rq, &rf);
10717
10718 if (p)
10719 attach_one_task(target_rq, p);
10720
10721 local_irq_enable();
10722
10723 return 0;
10724 }
10725
10726 static DEFINE_SPINLOCK(balancing);
10727
10728 /*
10729 * Scale the max load_balance interval with the number of CPUs in the system.
10730 * This trades load-balance latency on larger machines for less cross talk.
10731 */
update_max_interval(void)10732 void update_max_interval(void)
10733 {
10734 max_load_balance_interval = HZ*num_online_cpus()/10;
10735 }
10736
10737 /*
10738 * It checks each scheduling domain to see if it is due to be balanced,
10739 * and initiates a balancing operation if so.
10740 *
10741 * Balancing parameters are set up in init_sched_domains.
10742 */
rebalance_domains(struct rq * rq,enum cpu_idle_type idle)10743 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
10744 {
10745 int continue_balancing = 1;
10746 int cpu = rq->cpu;
10747 int busy = idle != CPU_IDLE && !sched_idle_cpu(cpu);
10748 unsigned long interval;
10749 struct sched_domain *sd;
10750 /* Earliest time when we have to do rebalance again */
10751 unsigned long next_balance = jiffies + 60*HZ;
10752 int update_next_balance = 0;
10753 int need_serialize, need_decay = 0;
10754 u64 max_cost = 0;
10755
10756 trace_android_rvh_sched_rebalance_domains(rq, &continue_balancing);
10757 if (!continue_balancing)
10758 return;
10759
10760 rcu_read_lock();
10761 for_each_domain(cpu, sd) {
10762 /*
10763 * Decay the newidle max times here because this is a regular
10764 * visit to all the domains. Decay ~1% per second.
10765 */
10766 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
10767 sd->max_newidle_lb_cost =
10768 (sd->max_newidle_lb_cost * 253) / 256;
10769 sd->next_decay_max_lb_cost = jiffies + HZ;
10770 need_decay = 1;
10771 }
10772 max_cost += sd->max_newidle_lb_cost;
10773
10774 /*
10775 * Stop the load balance at this level. There is another
10776 * CPU in our sched group which is doing load balancing more
10777 * actively.
10778 */
10779 if (!continue_balancing) {
10780 if (need_decay)
10781 continue;
10782 break;
10783 }
10784
10785 interval = get_sd_balance_interval(sd, busy);
10786
10787 need_serialize = sd->flags & SD_SERIALIZE;
10788 if (need_serialize) {
10789 if (!spin_trylock(&balancing))
10790 goto out;
10791 }
10792
10793 if (time_after_eq(jiffies, sd->last_balance + interval)) {
10794 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
10795 /*
10796 * The LBF_DST_PINNED logic could have changed
10797 * env->dst_cpu, so we can't know our idle
10798 * state even if we migrated tasks. Update it.
10799 */
10800 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
10801 busy = idle != CPU_IDLE && !sched_idle_cpu(cpu);
10802 }
10803 sd->last_balance = jiffies;
10804 interval = get_sd_balance_interval(sd, busy);
10805 }
10806 if (need_serialize)
10807 spin_unlock(&balancing);
10808 out:
10809 if (time_after(next_balance, sd->last_balance + interval)) {
10810 next_balance = sd->last_balance + interval;
10811 update_next_balance = 1;
10812 }
10813 }
10814 if (need_decay) {
10815 /*
10816 * Ensure the rq-wide value also decays but keep it at a
10817 * reasonable floor to avoid funnies with rq->avg_idle.
10818 */
10819 rq->max_idle_balance_cost =
10820 max((u64)sysctl_sched_migration_cost, max_cost);
10821 }
10822 rcu_read_unlock();
10823
10824 /*
10825 * next_balance will be updated only when there is a need.
10826 * When the cpu is attached to null domain for ex, it will not be
10827 * updated.
10828 */
10829 if (likely(update_next_balance))
10830 rq->next_balance = next_balance;
10831
10832 }
10833
on_null_domain(struct rq * rq)10834 static inline int on_null_domain(struct rq *rq)
10835 {
10836 return unlikely(!rcu_dereference_sched(rq->sd));
10837 }
10838
10839 #ifdef CONFIG_NO_HZ_COMMON
10840 /*
10841 * idle load balancing details
10842 * - When one of the busy CPUs notice that there may be an idle rebalancing
10843 * needed, they will kick the idle load balancer, which then does idle
10844 * load balancing for all the idle CPUs.
10845 * - HK_FLAG_MISC CPUs are used for this task, because HK_FLAG_SCHED not set
10846 * anywhere yet.
10847 */
10848
find_new_ilb(void)10849 static inline int find_new_ilb(void)
10850 {
10851 int ilb = -1;
10852 const struct cpumask *hk_mask;
10853
10854 trace_android_rvh_find_new_ilb(nohz.idle_cpus_mask, &ilb);
10855 if (ilb >= 0)
10856 return ilb;
10857
10858 hk_mask = housekeeping_cpumask(HK_FLAG_MISC);
10859
10860 for_each_cpu_and(ilb, nohz.idle_cpus_mask, hk_mask) {
10861
10862 if (ilb == smp_processor_id())
10863 continue;
10864
10865 if (idle_cpu(ilb))
10866 return ilb;
10867 }
10868
10869 return nr_cpu_ids;
10870 }
10871
10872 /*
10873 * Kick a CPU to do the nohz balancing, if it is time for it. We pick any
10874 * idle CPU in the HK_FLAG_MISC housekeeping set (if there is one).
10875 */
kick_ilb(unsigned int flags)10876 static void kick_ilb(unsigned int flags)
10877 {
10878 int ilb_cpu;
10879
10880 /*
10881 * Increase nohz.next_balance only when if full ilb is triggered but
10882 * not if we only update stats.
10883 */
10884 if (flags & NOHZ_BALANCE_KICK)
10885 nohz.next_balance = jiffies+1;
10886
10887 ilb_cpu = find_new_ilb();
10888
10889 if (ilb_cpu >= nr_cpu_ids)
10890 return;
10891
10892 /*
10893 * Access to rq::nohz_csd is serialized by NOHZ_KICK_MASK; he who sets
10894 * the first flag owns it; cleared by nohz_csd_func().
10895 */
10896 flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu));
10897 if (flags & NOHZ_KICK_MASK)
10898 return;
10899
10900 /*
10901 * This way we generate an IPI on the target CPU which
10902 * is idle. And the softirq performing nohz idle load balance
10903 * will be run before returning from the IPI.
10904 */
10905 smp_call_function_single_async(ilb_cpu, &cpu_rq(ilb_cpu)->nohz_csd);
10906 }
10907
10908 /*
10909 * Current decision point for kicking the idle load balancer in the presence
10910 * of idle CPUs in the system.
10911 */
nohz_balancer_kick(struct rq * rq)10912 static void nohz_balancer_kick(struct rq *rq)
10913 {
10914 unsigned long now = jiffies;
10915 struct sched_domain_shared *sds;
10916 struct sched_domain *sd;
10917 int nr_busy, i, cpu = rq->cpu;
10918 unsigned int flags = 0;
10919 int done = 0;
10920
10921 if (unlikely(rq->idle_balance))
10922 return;
10923
10924 /*
10925 * We may be recently in ticked or tickless idle mode. At the first
10926 * busy tick after returning from idle, we will update the busy stats.
10927 */
10928 nohz_balance_exit_idle(rq);
10929
10930 /*
10931 * None are in tickless mode and hence no need for NOHZ idle load
10932 * balancing.
10933 */
10934 if (likely(!atomic_read(&nohz.nr_cpus)))
10935 return;
10936
10937 if (READ_ONCE(nohz.has_blocked) &&
10938 time_after(now, READ_ONCE(nohz.next_blocked)))
10939 flags = NOHZ_STATS_KICK;
10940
10941 if (time_before(now, nohz.next_balance))
10942 goto out;
10943
10944 trace_android_rvh_sched_nohz_balancer_kick(rq, &flags, &done);
10945 if (done)
10946 goto out;
10947
10948 if (rq->nr_running >= 2) {
10949 flags = NOHZ_KICK_MASK;
10950 goto out;
10951 }
10952
10953 rcu_read_lock();
10954
10955 sd = rcu_dereference(rq->sd);
10956 if (sd) {
10957 /*
10958 * If there's a CFS task and the current CPU has reduced
10959 * capacity; kick the ILB to see if there's a better CPU to run
10960 * on.
10961 */
10962 if (rq->cfs.h_nr_running >= 1 && check_cpu_capacity(rq, sd)) {
10963 flags = NOHZ_KICK_MASK;
10964 goto unlock;
10965 }
10966 }
10967
10968 sd = rcu_dereference(per_cpu(sd_asym_packing, cpu));
10969 if (sd) {
10970 /*
10971 * When ASYM_PACKING; see if there's a more preferred CPU
10972 * currently idle; in which case, kick the ILB to move tasks
10973 * around.
10974 */
10975 for_each_cpu_and(i, sched_domain_span(sd), nohz.idle_cpus_mask) {
10976 if (sched_asym_prefer(i, cpu)) {
10977 flags = NOHZ_KICK_MASK;
10978 goto unlock;
10979 }
10980 }
10981 }
10982
10983 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, cpu));
10984 if (sd) {
10985 /*
10986 * When ASYM_CPUCAPACITY; see if there's a higher capacity CPU
10987 * to run the misfit task on.
10988 */
10989 if (check_misfit_status(rq, sd)) {
10990 flags = NOHZ_KICK_MASK;
10991 goto unlock;
10992 }
10993
10994 /*
10995 * For asymmetric systems, we do not want to nicely balance
10996 * cache use, instead we want to embrace asymmetry and only
10997 * ensure tasks have enough CPU capacity.
10998 *
10999 * Skip the LLC logic because it's not relevant in that case.
11000 */
11001 goto unlock;
11002 }
11003
11004 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
11005 if (sds) {
11006 /*
11007 * If there is an imbalance between LLC domains (IOW we could
11008 * increase the overall cache use), we need some less-loaded LLC
11009 * domain to pull some load. Likewise, we may need to spread
11010 * load within the current LLC domain (e.g. packed SMT cores but
11011 * other CPUs are idle). We can't really know from here how busy
11012 * the others are - so just get a nohz balance going if it looks
11013 * like this LLC domain has tasks we could move.
11014 */
11015 nr_busy = atomic_read(&sds->nr_busy_cpus);
11016 if (nr_busy > 1) {
11017 flags = NOHZ_KICK_MASK;
11018 goto unlock;
11019 }
11020 }
11021 unlock:
11022 rcu_read_unlock();
11023 out:
11024 if (flags)
11025 kick_ilb(flags);
11026 }
11027
set_cpu_sd_state_busy(int cpu)11028 static void set_cpu_sd_state_busy(int cpu)
11029 {
11030 struct sched_domain *sd;
11031
11032 rcu_read_lock();
11033 sd = rcu_dereference(per_cpu(sd_llc, cpu));
11034
11035 if (!sd || !sd->nohz_idle)
11036 goto unlock;
11037 sd->nohz_idle = 0;
11038
11039 atomic_inc(&sd->shared->nr_busy_cpus);
11040 unlock:
11041 rcu_read_unlock();
11042 }
11043
nohz_balance_exit_idle(struct rq * rq)11044 void nohz_balance_exit_idle(struct rq *rq)
11045 {
11046 SCHED_WARN_ON(rq != this_rq());
11047
11048 if (likely(!rq->nohz_tick_stopped))
11049 return;
11050
11051 rq->nohz_tick_stopped = 0;
11052 cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask);
11053 atomic_dec(&nohz.nr_cpus);
11054
11055 set_cpu_sd_state_busy(rq->cpu);
11056 }
11057
set_cpu_sd_state_idle(int cpu)11058 static void set_cpu_sd_state_idle(int cpu)
11059 {
11060 struct sched_domain *sd;
11061
11062 rcu_read_lock();
11063 sd = rcu_dereference(per_cpu(sd_llc, cpu));
11064
11065 if (!sd || sd->nohz_idle)
11066 goto unlock;
11067 sd->nohz_idle = 1;
11068
11069 atomic_dec(&sd->shared->nr_busy_cpus);
11070 unlock:
11071 rcu_read_unlock();
11072 }
11073
11074 /*
11075 * This routine will record that the CPU is going idle with tick stopped.
11076 * This info will be used in performing idle load balancing in the future.
11077 */
nohz_balance_enter_idle(int cpu)11078 void nohz_balance_enter_idle(int cpu)
11079 {
11080 struct rq *rq = cpu_rq(cpu);
11081
11082 SCHED_WARN_ON(cpu != smp_processor_id());
11083
11084 /* If this CPU is going down, then nothing needs to be done: */
11085 if (!cpu_active(cpu))
11086 return;
11087
11088 /* Spare idle load balancing on CPUs that don't want to be disturbed: */
11089 if (!housekeeping_cpu(cpu, HK_FLAG_SCHED))
11090 return;
11091
11092 /*
11093 * Can be set safely without rq->lock held
11094 * If a clear happens, it will have evaluated last additions because
11095 * rq->lock is held during the check and the clear
11096 */
11097 rq->has_blocked_load = 1;
11098
11099 /*
11100 * The tick is still stopped but load could have been added in the
11101 * meantime. We set the nohz.has_blocked flag to trig a check of the
11102 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear
11103 * of nohz.has_blocked can only happen after checking the new load
11104 */
11105 if (rq->nohz_tick_stopped)
11106 goto out;
11107
11108 /* If we're a completely isolated CPU, we don't play: */
11109 if (on_null_domain(rq))
11110 return;
11111
11112 rq->nohz_tick_stopped = 1;
11113
11114 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
11115 atomic_inc(&nohz.nr_cpus);
11116
11117 /*
11118 * Ensures that if nohz_idle_balance() fails to observe our
11119 * @idle_cpus_mask store, it must observe the @has_blocked
11120 * store.
11121 */
11122 smp_mb__after_atomic();
11123
11124 set_cpu_sd_state_idle(cpu);
11125
11126 out:
11127 /*
11128 * Each time a cpu enter idle, we assume that it has blocked load and
11129 * enable the periodic update of the load of idle cpus
11130 */
11131 WRITE_ONCE(nohz.has_blocked, 1);
11132 }
11133
update_nohz_stats(struct rq * rq)11134 static bool update_nohz_stats(struct rq *rq)
11135 {
11136 unsigned int cpu = rq->cpu;
11137
11138 if (!rq->has_blocked_load)
11139 return false;
11140
11141 if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
11142 return false;
11143
11144 if (!time_after(jiffies, READ_ONCE(rq->last_blocked_load_update_tick)))
11145 return true;
11146
11147 update_blocked_averages(cpu);
11148
11149 return rq->has_blocked_load;
11150 }
11151
11152 /*
11153 * Internal function that runs load balance for all idle cpus. The load balance
11154 * can be a simple update of blocked load or a complete load balance with
11155 * tasks movement depending of flags.
11156 */
_nohz_idle_balance(struct rq * this_rq,unsigned int flags,enum cpu_idle_type idle)11157 static void _nohz_idle_balance(struct rq *this_rq, unsigned int flags,
11158 enum cpu_idle_type idle)
11159 {
11160 /* Earliest time when we have to do rebalance again */
11161 unsigned long now = jiffies;
11162 unsigned long next_balance = now + 60*HZ;
11163 bool has_blocked_load = false;
11164 int update_next_balance = 0;
11165 int this_cpu = this_rq->cpu;
11166 int balance_cpu;
11167 struct rq *rq;
11168
11169 SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK);
11170
11171 /*
11172 * We assume there will be no idle load after this update and clear
11173 * the has_blocked flag. If a cpu enters idle in the mean time, it will
11174 * set the has_blocked flag and trig another update of idle load.
11175 * Because a cpu that becomes idle, is added to idle_cpus_mask before
11176 * setting the flag, we are sure to not clear the state and not
11177 * check the load of an idle cpu.
11178 */
11179 WRITE_ONCE(nohz.has_blocked, 0);
11180
11181 /*
11182 * Ensures that if we miss the CPU, we must see the has_blocked
11183 * store from nohz_balance_enter_idle().
11184 */
11185 smp_mb();
11186
11187 /*
11188 * Start with the next CPU after this_cpu so we will end with this_cpu and let a
11189 * chance for other idle cpu to pull load.
11190 */
11191 for_each_cpu_wrap(balance_cpu, nohz.idle_cpus_mask, this_cpu+1) {
11192 if (!idle_cpu(balance_cpu))
11193 continue;
11194
11195 /*
11196 * If this CPU gets work to do, stop the load balancing
11197 * work being done for other CPUs. Next load
11198 * balancing owner will pick it up.
11199 */
11200 if (need_resched()) {
11201 has_blocked_load = true;
11202 goto abort;
11203 }
11204
11205 rq = cpu_rq(balance_cpu);
11206
11207 has_blocked_load |= update_nohz_stats(rq);
11208
11209 /*
11210 * If time for next balance is due,
11211 * do the balance.
11212 */
11213 if (time_after_eq(jiffies, rq->next_balance)) {
11214 struct rq_flags rf;
11215
11216 rq_lock_irqsave(rq, &rf);
11217 update_rq_clock(rq);
11218 rq_unlock_irqrestore(rq, &rf);
11219
11220 if (flags & NOHZ_BALANCE_KICK)
11221 rebalance_domains(rq, CPU_IDLE);
11222 }
11223
11224 if (time_after(next_balance, rq->next_balance)) {
11225 next_balance = rq->next_balance;
11226 update_next_balance = 1;
11227 }
11228 }
11229
11230 /*
11231 * next_balance will be updated only when there is a need.
11232 * When the CPU is attached to null domain for ex, it will not be
11233 * updated.
11234 */
11235 if (likely(update_next_balance))
11236 nohz.next_balance = next_balance;
11237
11238 WRITE_ONCE(nohz.next_blocked,
11239 now + msecs_to_jiffies(LOAD_AVG_PERIOD));
11240
11241 abort:
11242 /* There is still blocked load, enable periodic update */
11243 if (has_blocked_load)
11244 WRITE_ONCE(nohz.has_blocked, 1);
11245 }
11246
11247 /*
11248 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
11249 * rebalancing for all the cpus for whom scheduler ticks are stopped.
11250 */
nohz_idle_balance(struct rq * this_rq,enum cpu_idle_type idle)11251 static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
11252 {
11253 unsigned int flags = this_rq->nohz_idle_balance;
11254
11255 if (!flags)
11256 return false;
11257
11258 this_rq->nohz_idle_balance = 0;
11259
11260 if (idle != CPU_IDLE)
11261 return false;
11262
11263 _nohz_idle_balance(this_rq, flags, idle);
11264
11265 return true;
11266 }
11267
11268 /*
11269 * Check if we need to run the ILB for updating blocked load before entering
11270 * idle state.
11271 */
nohz_run_idle_balance(int cpu)11272 void nohz_run_idle_balance(int cpu)
11273 {
11274 unsigned int flags;
11275
11276 flags = atomic_fetch_andnot(NOHZ_NEWILB_KICK, nohz_flags(cpu));
11277
11278 /*
11279 * Update the blocked load only if no SCHED_SOFTIRQ is about to happen
11280 * (ie NOHZ_STATS_KICK set) and will do the same.
11281 */
11282 if ((flags == NOHZ_NEWILB_KICK) && !need_resched())
11283 _nohz_idle_balance(cpu_rq(cpu), NOHZ_STATS_KICK, CPU_IDLE);
11284 }
11285
nohz_newidle_balance(struct rq * this_rq)11286 static void nohz_newidle_balance(struct rq *this_rq)
11287 {
11288 int this_cpu = this_rq->cpu;
11289
11290 /*
11291 * This CPU doesn't want to be disturbed by scheduler
11292 * housekeeping
11293 */
11294 if (!housekeeping_cpu(this_cpu, HK_FLAG_SCHED))
11295 return;
11296
11297 /* Will wake up very soon. No time for doing anything else*/
11298 if (this_rq->avg_idle < sysctl_sched_migration_cost)
11299 return;
11300
11301 /* Don't need to update blocked load of idle CPUs*/
11302 if (!READ_ONCE(nohz.has_blocked) ||
11303 time_before(jiffies, READ_ONCE(nohz.next_blocked)))
11304 return;
11305
11306 /*
11307 * Set the need to trigger ILB in order to update blocked load
11308 * before entering idle state.
11309 */
11310 atomic_or(NOHZ_NEWILB_KICK, nohz_flags(this_cpu));
11311 }
11312
11313 #else /* !CONFIG_NO_HZ_COMMON */
nohz_balancer_kick(struct rq * rq)11314 static inline void nohz_balancer_kick(struct rq *rq) { }
11315
nohz_idle_balance(struct rq * this_rq,enum cpu_idle_type idle)11316 static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
11317 {
11318 return false;
11319 }
11320
nohz_newidle_balance(struct rq * this_rq)11321 static inline void nohz_newidle_balance(struct rq *this_rq) { }
11322 #endif /* CONFIG_NO_HZ_COMMON */
11323
11324 /*
11325 * newidle_balance is called by schedule() if this_cpu is about to become
11326 * idle. Attempts to pull tasks from other CPUs.
11327 *
11328 * Returns:
11329 * < 0 - we released the lock and there are !fair tasks present
11330 * 0 - failed, no new tasks
11331 * > 0 - success, new (fair) tasks present
11332 */
newidle_balance(struct rq * this_rq,struct rq_flags * rf)11333 static int newidle_balance(struct rq *this_rq, struct rq_flags *rf)
11334 {
11335 unsigned long next_balance = jiffies + HZ;
11336 int this_cpu = this_rq->cpu;
11337 struct sched_domain *sd;
11338 int pulled_task = 0;
11339 u64 curr_cost = 0;
11340 int done = 0;
11341
11342 trace_android_rvh_sched_newidle_balance(this_rq, rf, &pulled_task, &done);
11343 if (done)
11344 return pulled_task;
11345
11346 update_misfit_status(NULL, this_rq);
11347
11348 /*
11349 * There is a task waiting to run. No need to search for one.
11350 * Return 0; the task will be enqueued when switching to idle.
11351 */
11352 if (this_rq->ttwu_pending)
11353 return 0;
11354
11355 /*
11356 * We must set idle_stamp _before_ calling idle_balance(), such that we
11357 * measure the duration of idle_balance() as idle time.
11358 */
11359 this_rq->idle_stamp = rq_clock(this_rq);
11360
11361 /*
11362 * Do not pull tasks towards !active CPUs...
11363 */
11364 if (!cpu_active(this_cpu))
11365 return 0;
11366
11367 /*
11368 * This is OK, because current is on_cpu, which avoids it being picked
11369 * for load-balance and preemption/IRQs are still disabled avoiding
11370 * further scheduler activity on it and we're being very careful to
11371 * re-start the picking loop.
11372 */
11373 rq_unpin_lock(this_rq, rf);
11374
11375 if (this_rq->avg_idle < sysctl_sched_migration_cost ||
11376 !READ_ONCE(this_rq->rd->overload)) {
11377
11378 rcu_read_lock();
11379 sd = rcu_dereference_check_sched_domain(this_rq->sd);
11380 if (sd)
11381 update_next_balance(sd, &next_balance);
11382 rcu_read_unlock();
11383
11384 goto out;
11385 }
11386
11387 raw_spin_rq_unlock(this_rq);
11388
11389 update_blocked_averages(this_cpu);
11390 rcu_read_lock();
11391 for_each_domain(this_cpu, sd) {
11392 int continue_balancing = 1;
11393 u64 t0, domain_cost;
11394
11395 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
11396 update_next_balance(sd, &next_balance);
11397 break;
11398 }
11399
11400 if (sd->flags & SD_BALANCE_NEWIDLE) {
11401 t0 = sched_clock_cpu(this_cpu);
11402
11403 pulled_task = load_balance(this_cpu, this_rq,
11404 sd, CPU_NEWLY_IDLE,
11405 &continue_balancing);
11406
11407 domain_cost = sched_clock_cpu(this_cpu) - t0;
11408 if (domain_cost > sd->max_newidle_lb_cost)
11409 sd->max_newidle_lb_cost = domain_cost;
11410
11411 curr_cost += domain_cost;
11412 }
11413
11414 update_next_balance(sd, &next_balance);
11415
11416 /*
11417 * Stop searching for tasks to pull if there are
11418 * now runnable tasks on this rq.
11419 */
11420 if (pulled_task || this_rq->nr_running > 0 ||
11421 this_rq->ttwu_pending)
11422 break;
11423 }
11424 rcu_read_unlock();
11425
11426 raw_spin_rq_lock(this_rq);
11427
11428 if (curr_cost > this_rq->max_idle_balance_cost)
11429 this_rq->max_idle_balance_cost = curr_cost;
11430
11431 /*
11432 * While browsing the domains, we released the rq lock, a task could
11433 * have been enqueued in the meantime. Since we're not going idle,
11434 * pretend we pulled a task.
11435 */
11436 if (this_rq->cfs.h_nr_running && !pulled_task)
11437 pulled_task = 1;
11438
11439 /* Is there a task of a high priority class? */
11440 if (this_rq->nr_running != this_rq->cfs.h_nr_running)
11441 pulled_task = -1;
11442
11443 out:
11444 /* Move the next balance forward */
11445 if (time_after(this_rq->next_balance, next_balance))
11446 this_rq->next_balance = next_balance;
11447
11448 if (pulled_task)
11449 this_rq->idle_stamp = 0;
11450 else
11451 nohz_newidle_balance(this_rq);
11452
11453 rq_repin_lock(this_rq, rf);
11454
11455 return pulled_task;
11456 }
11457
11458 /*
11459 * run_rebalance_domains is triggered when needed from the scheduler tick.
11460 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
11461 */
run_rebalance_domains(struct softirq_action * h)11462 static __latent_entropy void run_rebalance_domains(struct softirq_action *h)
11463 {
11464 struct rq *this_rq = this_rq();
11465 enum cpu_idle_type idle = this_rq->idle_balance ?
11466 CPU_IDLE : CPU_NOT_IDLE;
11467
11468 /*
11469 * If this CPU has a pending nohz_balance_kick, then do the
11470 * balancing on behalf of the other idle CPUs whose ticks are
11471 * stopped. Do nohz_idle_balance *before* rebalance_domains to
11472 * give the idle CPUs a chance to load balance. Else we may
11473 * load balance only within the local sched_domain hierarchy
11474 * and abort nohz_idle_balance altogether if we pull some load.
11475 */
11476 if (nohz_idle_balance(this_rq, idle))
11477 return;
11478
11479 /* normal load balance */
11480 update_blocked_averages(this_rq->cpu);
11481 rebalance_domains(this_rq, idle);
11482 }
11483
11484 /*
11485 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
11486 */
trigger_load_balance(struct rq * rq)11487 void trigger_load_balance(struct rq *rq)
11488 {
11489 /*
11490 * Don't need to rebalance while attached to NULL domain or
11491 * runqueue CPU is not active
11492 */
11493 if (unlikely(on_null_domain(rq) || !cpu_active(cpu_of(rq))))
11494 return;
11495
11496 if (time_after_eq(jiffies, rq->next_balance))
11497 raise_softirq(SCHED_SOFTIRQ);
11498
11499 nohz_balancer_kick(rq);
11500 }
11501
rq_online_fair(struct rq * rq)11502 static void rq_online_fair(struct rq *rq)
11503 {
11504 update_sysctl();
11505
11506 update_runtime_enabled(rq);
11507 }
11508
rq_offline_fair(struct rq * rq)11509 static void rq_offline_fair(struct rq *rq)
11510 {
11511 update_sysctl();
11512
11513 /* Ensure any throttled groups are reachable by pick_next_task */
11514 unthrottle_offline_cfs_rqs(rq);
11515 }
11516
11517 #endif /* CONFIG_SMP */
11518
11519 #ifdef CONFIG_SCHED_CORE
11520 static inline bool
__entity_slice_used(struct sched_entity * se,int min_nr_tasks)11521 __entity_slice_used(struct sched_entity *se, int min_nr_tasks)
11522 {
11523 u64 slice = sched_slice(cfs_rq_of(se), se);
11524 u64 rtime = se->sum_exec_runtime - se->prev_sum_exec_runtime;
11525
11526 return (rtime * min_nr_tasks > slice);
11527 }
11528
11529 #define MIN_NR_TASKS_DURING_FORCEIDLE 2
task_tick_core(struct rq * rq,struct task_struct * curr)11530 static inline void task_tick_core(struct rq *rq, struct task_struct *curr)
11531 {
11532 if (!sched_core_enabled(rq))
11533 return;
11534
11535 /*
11536 * If runqueue has only one task which used up its slice and
11537 * if the sibling is forced idle, then trigger schedule to
11538 * give forced idle task a chance.
11539 *
11540 * sched_slice() considers only this active rq and it gets the
11541 * whole slice. But during force idle, we have siblings acting
11542 * like a single runqueue and hence we need to consider runnable
11543 * tasks on this CPU and the forced idle CPU. Ideally, we should
11544 * go through the forced idle rq, but that would be a perf hit.
11545 * We can assume that the forced idle CPU has at least
11546 * MIN_NR_TASKS_DURING_FORCEIDLE - 1 tasks and use that to check
11547 * if we need to give up the CPU.
11548 */
11549 if (rq->core->core_forceidle && rq->cfs.nr_running == 1 &&
11550 __entity_slice_used(&curr->se, MIN_NR_TASKS_DURING_FORCEIDLE))
11551 resched_curr(rq);
11552 }
11553
11554 /*
11555 * se_fi_update - Update the cfs_rq->min_vruntime_fi in a CFS hierarchy if needed.
11556 */
se_fi_update(struct sched_entity * se,unsigned int fi_seq,bool forceidle)11557 static void se_fi_update(struct sched_entity *se, unsigned int fi_seq, bool forceidle)
11558 {
11559 for_each_sched_entity(se) {
11560 struct cfs_rq *cfs_rq = cfs_rq_of(se);
11561
11562 if (forceidle) {
11563 if (cfs_rq->forceidle_seq == fi_seq)
11564 break;
11565 cfs_rq->forceidle_seq = fi_seq;
11566 }
11567
11568 cfs_rq->min_vruntime_fi = cfs_rq->min_vruntime;
11569 }
11570 }
11571
task_vruntime_update(struct rq * rq,struct task_struct * p,bool in_fi)11572 void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi)
11573 {
11574 struct sched_entity *se = &p->se;
11575
11576 if (p->sched_class != &fair_sched_class)
11577 return;
11578
11579 se_fi_update(se, rq->core->core_forceidle_seq, in_fi);
11580 }
11581
cfs_prio_less(struct task_struct * a,struct task_struct * b,bool in_fi)11582 bool cfs_prio_less(struct task_struct *a, struct task_struct *b, bool in_fi)
11583 {
11584 struct rq *rq = task_rq(a);
11585 struct sched_entity *sea = &a->se;
11586 struct sched_entity *seb = &b->se;
11587 struct cfs_rq *cfs_rqa;
11588 struct cfs_rq *cfs_rqb;
11589 s64 delta;
11590
11591 SCHED_WARN_ON(task_rq(b)->core != rq->core);
11592
11593 #ifdef CONFIG_FAIR_GROUP_SCHED
11594 /*
11595 * Find an se in the hierarchy for tasks a and b, such that the se's
11596 * are immediate siblings.
11597 */
11598 while (sea->cfs_rq->tg != seb->cfs_rq->tg) {
11599 int sea_depth = sea->depth;
11600 int seb_depth = seb->depth;
11601
11602 if (sea_depth >= seb_depth)
11603 sea = parent_entity(sea);
11604 if (sea_depth <= seb_depth)
11605 seb = parent_entity(seb);
11606 }
11607
11608 se_fi_update(sea, rq->core->core_forceidle_seq, in_fi);
11609 se_fi_update(seb, rq->core->core_forceidle_seq, in_fi);
11610
11611 cfs_rqa = sea->cfs_rq;
11612 cfs_rqb = seb->cfs_rq;
11613 #else
11614 cfs_rqa = &task_rq(a)->cfs;
11615 cfs_rqb = &task_rq(b)->cfs;
11616 #endif
11617
11618 /*
11619 * Find delta after normalizing se's vruntime with its cfs_rq's
11620 * min_vruntime_fi, which would have been updated in prior calls
11621 * to se_fi_update().
11622 */
11623 delta = (s64)(sea->vruntime - seb->vruntime) +
11624 (s64)(cfs_rqb->min_vruntime_fi - cfs_rqa->min_vruntime_fi);
11625
11626 return delta > 0;
11627 }
11628 #else
task_tick_core(struct rq * rq,struct task_struct * curr)11629 static inline void task_tick_core(struct rq *rq, struct task_struct *curr) {}
11630 #endif
11631
11632 /*
11633 * scheduler tick hitting a task of our scheduling class.
11634 *
11635 * NOTE: This function can be called remotely by the tick offload that
11636 * goes along full dynticks. Therefore no local assumption can be made
11637 * and everything must be accessed through the @rq and @curr passed in
11638 * parameters.
11639 */
task_tick_fair(struct rq * rq,struct task_struct * curr,int queued)11640 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
11641 {
11642 struct cfs_rq *cfs_rq;
11643 struct sched_entity *se = &curr->se;
11644
11645 for_each_sched_entity(se) {
11646 cfs_rq = cfs_rq_of(se);
11647 entity_tick(cfs_rq, se, queued);
11648 }
11649
11650 if (static_branch_unlikely(&sched_numa_balancing))
11651 task_tick_numa(rq, curr);
11652
11653 update_misfit_status(curr, rq);
11654 update_overutilized_status(task_rq(curr));
11655
11656 task_tick_core(rq, curr);
11657 }
11658
11659 /*
11660 * called on fork with the child task as argument from the parent's context
11661 * - child not yet on the tasklist
11662 * - preemption disabled
11663 */
task_fork_fair(struct task_struct * p)11664 static void task_fork_fair(struct task_struct *p)
11665 {
11666 struct cfs_rq *cfs_rq;
11667 struct sched_entity *se = &p->se, *curr;
11668 struct rq *rq = this_rq();
11669 struct rq_flags rf;
11670
11671 rq_lock(rq, &rf);
11672 update_rq_clock(rq);
11673
11674 cfs_rq = task_cfs_rq(current);
11675 curr = cfs_rq->curr;
11676 if (curr) {
11677 update_curr(cfs_rq);
11678 se->vruntime = curr->vruntime;
11679 }
11680 place_entity(cfs_rq, se, 1);
11681
11682 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
11683 /*
11684 * Upon rescheduling, sched_class::put_prev_task() will place
11685 * 'current' within the tree based on its new key value.
11686 */
11687 swap(curr->vruntime, se->vruntime);
11688 resched_curr(rq);
11689 }
11690
11691 se->vruntime -= cfs_rq->min_vruntime;
11692 rq_unlock(rq, &rf);
11693 }
11694
11695 /*
11696 * Priority of the task has changed. Check to see if we preempt
11697 * the current task.
11698 */
11699 static void
prio_changed_fair(struct rq * rq,struct task_struct * p,int oldprio)11700 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
11701 {
11702 if (!task_on_rq_queued(p))
11703 return;
11704
11705 if (rq->cfs.nr_running == 1)
11706 return;
11707
11708 /*
11709 * Reschedule if we are currently running on this runqueue and
11710 * our priority decreased, or if we are not currently running on
11711 * this runqueue and our priority is higher than the current's
11712 */
11713 if (task_current(rq, p)) {
11714 if (p->prio > oldprio)
11715 resched_curr(rq);
11716 } else
11717 check_preempt_curr(rq, p, 0);
11718 }
11719
vruntime_normalized(struct task_struct * p)11720 static inline bool vruntime_normalized(struct task_struct *p)
11721 {
11722 struct sched_entity *se = &p->se;
11723
11724 /*
11725 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
11726 * the dequeue_entity(.flags=0) will already have normalized the
11727 * vruntime.
11728 */
11729 if (p->on_rq)
11730 return true;
11731
11732 /*
11733 * When !on_rq, vruntime of the task has usually NOT been normalized.
11734 * But there are some cases where it has already been normalized:
11735 *
11736 * - A forked child which is waiting for being woken up by
11737 * wake_up_new_task().
11738 * - A task which has been woken up by try_to_wake_up() and
11739 * waiting for actually being woken up by sched_ttwu_pending().
11740 */
11741 if (!se->sum_exec_runtime ||
11742 (READ_ONCE(p->__state) == TASK_WAKING && p->sched_remote_wakeup))
11743 return true;
11744
11745 return false;
11746 }
11747
11748 #ifdef CONFIG_FAIR_GROUP_SCHED
11749 /*
11750 * Propagate the changes of the sched_entity across the tg tree to make it
11751 * visible to the root
11752 */
propagate_entity_cfs_rq(struct sched_entity * se)11753 static void propagate_entity_cfs_rq(struct sched_entity *se)
11754 {
11755 struct cfs_rq *cfs_rq;
11756
11757 list_add_leaf_cfs_rq(cfs_rq_of(se));
11758
11759 /* Start to propagate at parent */
11760 se = se->parent;
11761
11762 for_each_sched_entity(se) {
11763 cfs_rq = cfs_rq_of(se);
11764
11765 if (!cfs_rq_throttled(cfs_rq)){
11766 update_load_avg(cfs_rq, se, UPDATE_TG);
11767 list_add_leaf_cfs_rq(cfs_rq);
11768 continue;
11769 }
11770
11771 if (list_add_leaf_cfs_rq(cfs_rq))
11772 break;
11773 }
11774 }
11775 #else
propagate_entity_cfs_rq(struct sched_entity * se)11776 static void propagate_entity_cfs_rq(struct sched_entity *se) { }
11777 #endif
11778
detach_entity_cfs_rq(struct sched_entity * se)11779 static void detach_entity_cfs_rq(struct sched_entity *se)
11780 {
11781 struct cfs_rq *cfs_rq = cfs_rq_of(se);
11782
11783 /* Catch up with the cfs_rq and remove our load when we leave */
11784 update_load_avg(cfs_rq, se, 0);
11785 detach_entity_load_avg(cfs_rq, se);
11786 update_tg_load_avg(cfs_rq);
11787 propagate_entity_cfs_rq(se);
11788 }
11789
attach_entity_cfs_rq(struct sched_entity * se)11790 static void attach_entity_cfs_rq(struct sched_entity *se)
11791 {
11792 struct cfs_rq *cfs_rq = cfs_rq_of(se);
11793
11794 #ifdef CONFIG_FAIR_GROUP_SCHED
11795 /*
11796 * Since the real-depth could have been changed (only FAIR
11797 * class maintain depth value), reset depth properly.
11798 */
11799 se->depth = se->parent ? se->parent->depth + 1 : 0;
11800 #endif
11801
11802 /* Synchronize entity with its cfs_rq */
11803 update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD);
11804 attach_entity_load_avg(cfs_rq, se);
11805 update_tg_load_avg(cfs_rq);
11806 propagate_entity_cfs_rq(se);
11807 }
11808
detach_task_cfs_rq(struct task_struct * p)11809 static void detach_task_cfs_rq(struct task_struct *p)
11810 {
11811 struct sched_entity *se = &p->se;
11812 struct cfs_rq *cfs_rq = cfs_rq_of(se);
11813
11814 if (!vruntime_normalized(p)) {
11815 /*
11816 * Fix up our vruntime so that the current sleep doesn't
11817 * cause 'unlimited' sleep bonus.
11818 */
11819 place_entity(cfs_rq, se, 0);
11820 se->vruntime -= cfs_rq->min_vruntime;
11821 }
11822
11823 detach_entity_cfs_rq(se);
11824 }
11825
attach_task_cfs_rq(struct task_struct * p)11826 static void attach_task_cfs_rq(struct task_struct *p)
11827 {
11828 struct sched_entity *se = &p->se;
11829 struct cfs_rq *cfs_rq = cfs_rq_of(se);
11830
11831 attach_entity_cfs_rq(se);
11832
11833 if (!vruntime_normalized(p))
11834 se->vruntime += cfs_rq->min_vruntime;
11835 }
11836
switched_from_fair(struct rq * rq,struct task_struct * p)11837 static void switched_from_fair(struct rq *rq, struct task_struct *p)
11838 {
11839 detach_task_cfs_rq(p);
11840 }
11841
switched_to_fair(struct rq * rq,struct task_struct * p)11842 static void switched_to_fair(struct rq *rq, struct task_struct *p)
11843 {
11844 attach_task_cfs_rq(p);
11845
11846 if (task_on_rq_queued(p)) {
11847 /*
11848 * We were most likely switched from sched_rt, so
11849 * kick off the schedule if running, otherwise just see
11850 * if we can still preempt the current task.
11851 */
11852 if (task_current(rq, p))
11853 resched_curr(rq);
11854 else
11855 check_preempt_curr(rq, p, 0);
11856 }
11857 }
11858
11859 /* Account for a task changing its policy or group.
11860 *
11861 * This routine is mostly called to set cfs_rq->curr field when a task
11862 * migrates between groups/classes.
11863 */
set_next_task_fair(struct rq * rq,struct task_struct * p,bool first)11864 static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first)
11865 {
11866 struct sched_entity *se = &p->se;
11867
11868 #ifdef CONFIG_SMP
11869 if (task_on_rq_queued(p)) {
11870 /*
11871 * Move the next running task to the front of the list, so our
11872 * cfs_tasks list becomes MRU one.
11873 */
11874 list_move(&se->group_node, &rq->cfs_tasks);
11875 }
11876 #endif
11877
11878 for_each_sched_entity(se) {
11879 struct cfs_rq *cfs_rq = cfs_rq_of(se);
11880
11881 set_next_entity(cfs_rq, se);
11882 /* ensure bandwidth has been allocated on our new cfs_rq */
11883 account_cfs_rq_runtime(cfs_rq, 0);
11884 }
11885 }
11886
init_cfs_rq(struct cfs_rq * cfs_rq)11887 void init_cfs_rq(struct cfs_rq *cfs_rq)
11888 {
11889 cfs_rq->tasks_timeline = RB_ROOT_CACHED;
11890 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
11891 #ifndef CONFIG_64BIT
11892 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
11893 #endif
11894 #ifdef CONFIG_SMP
11895 raw_spin_lock_init(&cfs_rq->removed.lock);
11896 #endif
11897 }
11898
11899 #ifdef CONFIG_FAIR_GROUP_SCHED
task_set_group_fair(struct task_struct * p)11900 static void task_set_group_fair(struct task_struct *p)
11901 {
11902 struct sched_entity *se = &p->se;
11903
11904 set_task_rq(p, task_cpu(p));
11905 se->depth = se->parent ? se->parent->depth + 1 : 0;
11906 }
11907
task_move_group_fair(struct task_struct * p)11908 static void task_move_group_fair(struct task_struct *p)
11909 {
11910 detach_task_cfs_rq(p);
11911 set_task_rq(p, task_cpu(p));
11912
11913 #ifdef CONFIG_SMP
11914 /* Tell se's cfs_rq has been changed -- migrated */
11915 p->se.avg.last_update_time = 0;
11916 #endif
11917 attach_task_cfs_rq(p);
11918 }
11919
task_change_group_fair(struct task_struct * p,int type)11920 static void task_change_group_fair(struct task_struct *p, int type)
11921 {
11922 switch (type) {
11923 case TASK_SET_GROUP:
11924 task_set_group_fair(p);
11925 break;
11926
11927 case TASK_MOVE_GROUP:
11928 task_move_group_fair(p);
11929 break;
11930 }
11931 }
11932
free_fair_sched_group(struct task_group * tg)11933 void free_fair_sched_group(struct task_group *tg)
11934 {
11935 int i;
11936
11937 for_each_possible_cpu(i) {
11938 if (tg->cfs_rq)
11939 kfree(tg->cfs_rq[i]);
11940 if (tg->se)
11941 kfree(tg->se[i]);
11942 }
11943
11944 kfree(tg->cfs_rq);
11945 kfree(tg->se);
11946 }
11947
alloc_fair_sched_group(struct task_group * tg,struct task_group * parent)11948 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
11949 {
11950 struct sched_entity *se;
11951 struct cfs_rq *cfs_rq;
11952 int i;
11953
11954 tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL);
11955 if (!tg->cfs_rq)
11956 goto err;
11957 tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL);
11958 if (!tg->se)
11959 goto err;
11960
11961 tg->shares = NICE_0_LOAD;
11962
11963 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
11964
11965 for_each_possible_cpu(i) {
11966 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
11967 GFP_KERNEL, cpu_to_node(i));
11968 if (!cfs_rq)
11969 goto err;
11970
11971 se = kzalloc_node(sizeof(struct sched_entity_stats),
11972 GFP_KERNEL, cpu_to_node(i));
11973 if (!se)
11974 goto err_free_rq;
11975
11976 init_cfs_rq(cfs_rq);
11977 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
11978 init_entity_runnable_average(se);
11979 }
11980
11981 return 1;
11982
11983 err_free_rq:
11984 kfree(cfs_rq);
11985 err:
11986 return 0;
11987 }
11988
online_fair_sched_group(struct task_group * tg)11989 void online_fair_sched_group(struct task_group *tg)
11990 {
11991 struct sched_entity *se;
11992 struct rq_flags rf;
11993 struct rq *rq;
11994 int i;
11995
11996 for_each_possible_cpu(i) {
11997 rq = cpu_rq(i);
11998 se = tg->se[i];
11999 rq_lock_irq(rq, &rf);
12000 update_rq_clock(rq);
12001 attach_entity_cfs_rq(se);
12002 sync_throttle(tg, i);
12003 rq_unlock_irq(rq, &rf);
12004 }
12005 }
12006
unregister_fair_sched_group(struct task_group * tg)12007 void unregister_fair_sched_group(struct task_group *tg)
12008 {
12009 unsigned long flags;
12010 struct rq *rq;
12011 int cpu;
12012
12013 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
12014
12015 for_each_possible_cpu(cpu) {
12016 if (tg->se[cpu])
12017 remove_entity_load_avg(tg->se[cpu]);
12018
12019 /*
12020 * Only empty task groups can be destroyed; so we can speculatively
12021 * check on_list without danger of it being re-added.
12022 */
12023 if (!tg->cfs_rq[cpu]->on_list)
12024 continue;
12025
12026 rq = cpu_rq(cpu);
12027
12028 raw_spin_rq_lock_irqsave(rq, flags);
12029 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
12030 raw_spin_rq_unlock_irqrestore(rq, flags);
12031 }
12032 }
12033
init_tg_cfs_entry(struct task_group * tg,struct cfs_rq * cfs_rq,struct sched_entity * se,int cpu,struct sched_entity * parent)12034 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
12035 struct sched_entity *se, int cpu,
12036 struct sched_entity *parent)
12037 {
12038 struct rq *rq = cpu_rq(cpu);
12039
12040 cfs_rq->tg = tg;
12041 cfs_rq->rq = rq;
12042 init_cfs_rq_runtime(cfs_rq);
12043
12044 tg->cfs_rq[cpu] = cfs_rq;
12045 tg->se[cpu] = se;
12046
12047 /* se could be NULL for root_task_group */
12048 if (!se)
12049 return;
12050
12051 if (!parent) {
12052 se->cfs_rq = &rq->cfs;
12053 se->depth = 0;
12054 } else {
12055 se->cfs_rq = parent->my_q;
12056 se->depth = parent->depth + 1;
12057 }
12058
12059 se->my_q = cfs_rq;
12060 /* guarantee group entities always have weight */
12061 update_load_set(&se->load, NICE_0_LOAD);
12062 se->parent = parent;
12063 }
12064
12065 static DEFINE_MUTEX(shares_mutex);
12066
__sched_group_set_shares(struct task_group * tg,unsigned long shares)12067 static int __sched_group_set_shares(struct task_group *tg, unsigned long shares)
12068 {
12069 int i;
12070
12071 lockdep_assert_held(&shares_mutex);
12072
12073 /*
12074 * We can't change the weight of the root cgroup.
12075 */
12076 if (!tg->se[0])
12077 return -EINVAL;
12078
12079 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
12080
12081 if (tg->shares == shares)
12082 return 0;
12083
12084 tg->shares = shares;
12085 for_each_possible_cpu(i) {
12086 struct rq *rq = cpu_rq(i);
12087 struct sched_entity *se = tg->se[i];
12088 struct rq_flags rf;
12089
12090 /* Propagate contribution to hierarchy */
12091 rq_lock_irqsave(rq, &rf);
12092 update_rq_clock(rq);
12093 for_each_sched_entity(se) {
12094 update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
12095 update_cfs_group(se);
12096 }
12097 rq_unlock_irqrestore(rq, &rf);
12098 }
12099
12100 return 0;
12101 }
12102
sched_group_set_shares(struct task_group * tg,unsigned long shares)12103 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
12104 {
12105 int ret;
12106
12107 mutex_lock(&shares_mutex);
12108 if (tg_is_idle(tg))
12109 ret = -EINVAL;
12110 else
12111 ret = __sched_group_set_shares(tg, shares);
12112 mutex_unlock(&shares_mutex);
12113
12114 return ret;
12115 }
12116
sched_group_set_idle(struct task_group * tg,long idle)12117 int sched_group_set_idle(struct task_group *tg, long idle)
12118 {
12119 int i;
12120
12121 if (tg == &root_task_group)
12122 return -EINVAL;
12123
12124 if (idle < 0 || idle > 1)
12125 return -EINVAL;
12126
12127 mutex_lock(&shares_mutex);
12128
12129 if (tg->idle == idle) {
12130 mutex_unlock(&shares_mutex);
12131 return 0;
12132 }
12133
12134 tg->idle = idle;
12135
12136 for_each_possible_cpu(i) {
12137 struct rq *rq = cpu_rq(i);
12138 struct sched_entity *se = tg->se[i];
12139 struct cfs_rq *grp_cfs_rq = tg->cfs_rq[i];
12140 bool was_idle = cfs_rq_is_idle(grp_cfs_rq);
12141 long idle_task_delta;
12142 struct rq_flags rf;
12143
12144 rq_lock_irqsave(rq, &rf);
12145
12146 grp_cfs_rq->idle = idle;
12147 if (WARN_ON_ONCE(was_idle == cfs_rq_is_idle(grp_cfs_rq)))
12148 goto next_cpu;
12149
12150 idle_task_delta = grp_cfs_rq->h_nr_running -
12151 grp_cfs_rq->idle_h_nr_running;
12152 if (!cfs_rq_is_idle(grp_cfs_rq))
12153 idle_task_delta *= -1;
12154
12155 for_each_sched_entity(se) {
12156 struct cfs_rq *cfs_rq = cfs_rq_of(se);
12157
12158 if (!se->on_rq)
12159 break;
12160
12161 cfs_rq->idle_h_nr_running += idle_task_delta;
12162
12163 /* Already accounted at parent level and above. */
12164 if (cfs_rq_is_idle(cfs_rq))
12165 break;
12166 }
12167
12168 next_cpu:
12169 rq_unlock_irqrestore(rq, &rf);
12170 }
12171
12172 /* Idle groups have minimum weight. */
12173 if (tg_is_idle(tg))
12174 __sched_group_set_shares(tg, scale_load(WEIGHT_IDLEPRIO));
12175 else
12176 __sched_group_set_shares(tg, NICE_0_LOAD);
12177
12178 mutex_unlock(&shares_mutex);
12179 return 0;
12180 }
12181
12182 #else /* CONFIG_FAIR_GROUP_SCHED */
12183
free_fair_sched_group(struct task_group * tg)12184 void free_fair_sched_group(struct task_group *tg) { }
12185
alloc_fair_sched_group(struct task_group * tg,struct task_group * parent)12186 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
12187 {
12188 return 1;
12189 }
12190
online_fair_sched_group(struct task_group * tg)12191 void online_fair_sched_group(struct task_group *tg) { }
12192
unregister_fair_sched_group(struct task_group * tg)12193 void unregister_fair_sched_group(struct task_group *tg) { }
12194
12195 #endif /* CONFIG_FAIR_GROUP_SCHED */
12196
12197
get_rr_interval_fair(struct rq * rq,struct task_struct * task)12198 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
12199 {
12200 struct sched_entity *se = &task->se;
12201 unsigned int rr_interval = 0;
12202
12203 /*
12204 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
12205 * idle runqueue:
12206 */
12207 if (rq->cfs.load.weight)
12208 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
12209
12210 return rr_interval;
12211 }
12212
12213 /*
12214 * All the scheduling class methods:
12215 */
12216 DEFINE_SCHED_CLASS(fair) = {
12217
12218 .enqueue_task = enqueue_task_fair,
12219 .dequeue_task = dequeue_task_fair,
12220 .yield_task = yield_task_fair,
12221 .yield_to_task = yield_to_task_fair,
12222
12223 .check_preempt_curr = check_preempt_wakeup,
12224
12225 .pick_next_task = __pick_next_task_fair,
12226 .put_prev_task = put_prev_task_fair,
12227 .set_next_task = set_next_task_fair,
12228
12229 #ifdef CONFIG_SMP
12230 .balance = balance_fair,
12231 .pick_task = pick_task_fair,
12232 .select_task_rq = select_task_rq_fair,
12233 .migrate_task_rq = migrate_task_rq_fair,
12234
12235 .rq_online = rq_online_fair,
12236 .rq_offline = rq_offline_fair,
12237
12238 .task_dead = task_dead_fair,
12239 .set_cpus_allowed = set_cpus_allowed_common,
12240 #endif
12241
12242 .task_tick = task_tick_fair,
12243 .task_fork = task_fork_fair,
12244
12245 .prio_changed = prio_changed_fair,
12246 .switched_from = switched_from_fair,
12247 .switched_to = switched_to_fair,
12248
12249 .get_rr_interval = get_rr_interval_fair,
12250
12251 .update_curr = update_curr_fair,
12252
12253 #ifdef CONFIG_FAIR_GROUP_SCHED
12254 .task_change_group = task_change_group_fair,
12255 #endif
12256
12257 #ifdef CONFIG_UCLAMP_TASK
12258 .uclamp_enabled = 1,
12259 #endif
12260 };
12261
12262 #ifdef CONFIG_SCHED_DEBUG
print_cfs_stats(struct seq_file * m,int cpu)12263 void print_cfs_stats(struct seq_file *m, int cpu)
12264 {
12265 struct cfs_rq *cfs_rq, *pos;
12266
12267 rcu_read_lock();
12268 for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos)
12269 print_cfs_rq(m, cpu, cfs_rq);
12270 rcu_read_unlock();
12271 }
12272
12273 #ifdef CONFIG_NUMA_BALANCING
show_numa_stats(struct task_struct * p,struct seq_file * m)12274 void show_numa_stats(struct task_struct *p, struct seq_file *m)
12275 {
12276 int node;
12277 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
12278 struct numa_group *ng;
12279
12280 rcu_read_lock();
12281 ng = rcu_dereference(p->numa_group);
12282 for_each_online_node(node) {
12283 if (p->numa_faults) {
12284 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
12285 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
12286 }
12287 if (ng) {
12288 gsf = ng->faults[task_faults_idx(NUMA_MEM, node, 0)],
12289 gpf = ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
12290 }
12291 print_numa_stats(m, node, tsf, tpf, gsf, gpf);
12292 }
12293 rcu_read_unlock();
12294 }
12295 #endif /* CONFIG_NUMA_BALANCING */
12296 #endif /* CONFIG_SCHED_DEBUG */
12297
init_sched_fair_class(void)12298 __init void init_sched_fair_class(void)
12299 {
12300 #ifdef CONFIG_SMP
12301 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
12302
12303 #ifdef CONFIG_NO_HZ_COMMON
12304 nohz.next_balance = jiffies;
12305 nohz.next_blocked = jiffies;
12306 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
12307 #endif
12308 #endif /* SMP */
12309
12310 }
12311
12312 /*
12313 * Helper functions to facilitate extracting info from tracepoints.
12314 */
12315
sched_trace_cfs_rq_avg(struct cfs_rq * cfs_rq)12316 const struct sched_avg *sched_trace_cfs_rq_avg(struct cfs_rq *cfs_rq)
12317 {
12318 #ifdef CONFIG_SMP
12319 return cfs_rq ? &cfs_rq->avg : NULL;
12320 #else
12321 return NULL;
12322 #endif
12323 }
12324 EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_avg);
12325
sched_trace_cfs_rq_path(struct cfs_rq * cfs_rq,char * str,int len)12326 char *sched_trace_cfs_rq_path(struct cfs_rq *cfs_rq, char *str, int len)
12327 {
12328 if (!cfs_rq) {
12329 if (str)
12330 strlcpy(str, "(null)", len);
12331 else
12332 return NULL;
12333 }
12334
12335 cfs_rq_tg_path(cfs_rq, str, len);
12336 return str;
12337 }
12338 EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_path);
12339
sched_trace_cfs_rq_cpu(struct cfs_rq * cfs_rq)12340 int sched_trace_cfs_rq_cpu(struct cfs_rq *cfs_rq)
12341 {
12342 return cfs_rq ? cpu_of(rq_of(cfs_rq)) : -1;
12343 }
12344 EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_cpu);
12345
sched_trace_rq_avg_rt(struct rq * rq)12346 const struct sched_avg *sched_trace_rq_avg_rt(struct rq *rq)
12347 {
12348 #ifdef CONFIG_SMP
12349 return rq ? &rq->avg_rt : NULL;
12350 #else
12351 return NULL;
12352 #endif
12353 }
12354 EXPORT_SYMBOL_GPL(sched_trace_rq_avg_rt);
12355
sched_trace_rq_avg_dl(struct rq * rq)12356 const struct sched_avg *sched_trace_rq_avg_dl(struct rq *rq)
12357 {
12358 #ifdef CONFIG_SMP
12359 return rq ? &rq->avg_dl : NULL;
12360 #else
12361 return NULL;
12362 #endif
12363 }
12364 EXPORT_SYMBOL_GPL(sched_trace_rq_avg_dl);
12365
sched_trace_rq_avg_irq(struct rq * rq)12366 const struct sched_avg *sched_trace_rq_avg_irq(struct rq *rq)
12367 {
12368 #if defined(CONFIG_SMP) && defined(CONFIG_HAVE_SCHED_AVG_IRQ)
12369 return rq ? &rq->avg_irq : NULL;
12370 #else
12371 return NULL;
12372 #endif
12373 }
12374 EXPORT_SYMBOL_GPL(sched_trace_rq_avg_irq);
12375
sched_trace_rq_cpu(struct rq * rq)12376 int sched_trace_rq_cpu(struct rq *rq)
12377 {
12378 return rq ? cpu_of(rq) : -1;
12379 }
12380 EXPORT_SYMBOL_GPL(sched_trace_rq_cpu);
12381
sched_trace_rq_cpu_capacity(struct rq * rq)12382 int sched_trace_rq_cpu_capacity(struct rq *rq)
12383 {
12384 return rq ?
12385 #ifdef CONFIG_SMP
12386 rq->cpu_capacity
12387 #else
12388 SCHED_CAPACITY_SCALE
12389 #endif
12390 : -1;
12391 }
12392 EXPORT_SYMBOL_GPL(sched_trace_rq_cpu_capacity);
12393
sched_trace_rd_span(struct root_domain * rd)12394 const struct cpumask *sched_trace_rd_span(struct root_domain *rd)
12395 {
12396 #ifdef CONFIG_SMP
12397 return rd ? rd->span : NULL;
12398 #else
12399 return NULL;
12400 #endif
12401 }
12402 EXPORT_SYMBOL_GPL(sched_trace_rd_span);
12403
sched_trace_rq_nr_running(struct rq * rq)12404 int sched_trace_rq_nr_running(struct rq *rq)
12405 {
12406 return rq ? rq->nr_running : -1;
12407 }
12408 EXPORT_SYMBOL_GPL(sched_trace_rq_nr_running);
12409