• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 //
3 // Register map access API
4 //
5 // Copyright 2011 Wolfson Microelectronics plc
6 //
7 // Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
8 
9 #include <linux/device.h>
10 #include <linux/slab.h>
11 #include <linux/export.h>
12 #include <linux/mutex.h>
13 #include <linux/err.h>
14 #include <linux/property.h>
15 #include <linux/rbtree.h>
16 #include <linux/sched.h>
17 #include <linux/delay.h>
18 #include <linux/log2.h>
19 #include <linux/hwspinlock.h>
20 #include <asm/unaligned.h>
21 
22 #define CREATE_TRACE_POINTS
23 #include "trace.h"
24 
25 #include "internal.h"
26 
27 /*
28  * Sometimes for failures during very early init the trace
29  * infrastructure isn't available early enough to be used.  For this
30  * sort of problem defining LOG_DEVICE will add printks for basic
31  * register I/O on a specific device.
32  */
33 #undef LOG_DEVICE
34 
35 #ifdef LOG_DEVICE
regmap_should_log(struct regmap * map)36 static inline bool regmap_should_log(struct regmap *map)
37 {
38 	return (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0);
39 }
40 #else
regmap_should_log(struct regmap * map)41 static inline bool regmap_should_log(struct regmap *map) { return false; }
42 #endif
43 
44 
45 static int _regmap_update_bits(struct regmap *map, unsigned int reg,
46 			       unsigned int mask, unsigned int val,
47 			       bool *change, bool force_write);
48 
49 static int _regmap_bus_reg_read(void *context, unsigned int reg,
50 				unsigned int *val);
51 static int _regmap_bus_read(void *context, unsigned int reg,
52 			    unsigned int *val);
53 static int _regmap_bus_formatted_write(void *context, unsigned int reg,
54 				       unsigned int val);
55 static int _regmap_bus_reg_write(void *context, unsigned int reg,
56 				 unsigned int val);
57 static int _regmap_bus_raw_write(void *context, unsigned int reg,
58 				 unsigned int val);
59 
regmap_reg_in_ranges(unsigned int reg,const struct regmap_range * ranges,unsigned int nranges)60 bool regmap_reg_in_ranges(unsigned int reg,
61 			  const struct regmap_range *ranges,
62 			  unsigned int nranges)
63 {
64 	const struct regmap_range *r;
65 	int i;
66 
67 	for (i = 0, r = ranges; i < nranges; i++, r++)
68 		if (regmap_reg_in_range(reg, r))
69 			return true;
70 	return false;
71 }
72 EXPORT_SYMBOL_GPL(regmap_reg_in_ranges);
73 
regmap_check_range_table(struct regmap * map,unsigned int reg,const struct regmap_access_table * table)74 bool regmap_check_range_table(struct regmap *map, unsigned int reg,
75 			      const struct regmap_access_table *table)
76 {
77 	/* Check "no ranges" first */
78 	if (regmap_reg_in_ranges(reg, table->no_ranges, table->n_no_ranges))
79 		return false;
80 
81 	/* In case zero "yes ranges" are supplied, any reg is OK */
82 	if (!table->n_yes_ranges)
83 		return true;
84 
85 	return regmap_reg_in_ranges(reg, table->yes_ranges,
86 				    table->n_yes_ranges);
87 }
88 EXPORT_SYMBOL_GPL(regmap_check_range_table);
89 
regmap_writeable(struct regmap * map,unsigned int reg)90 bool regmap_writeable(struct regmap *map, unsigned int reg)
91 {
92 	if (map->max_register && reg > map->max_register)
93 		return false;
94 
95 	if (map->writeable_reg)
96 		return map->writeable_reg(map->dev, reg);
97 
98 	if (map->wr_table)
99 		return regmap_check_range_table(map, reg, map->wr_table);
100 
101 	return true;
102 }
103 
regmap_cached(struct regmap * map,unsigned int reg)104 bool regmap_cached(struct regmap *map, unsigned int reg)
105 {
106 	int ret;
107 	unsigned int val;
108 
109 	if (map->cache_type == REGCACHE_NONE)
110 		return false;
111 
112 	if (!map->cache_ops)
113 		return false;
114 
115 	if (map->max_register && reg > map->max_register)
116 		return false;
117 
118 	map->lock(map->lock_arg);
119 	ret = regcache_read(map, reg, &val);
120 	map->unlock(map->lock_arg);
121 	if (ret)
122 		return false;
123 
124 	return true;
125 }
126 
regmap_readable(struct regmap * map,unsigned int reg)127 bool regmap_readable(struct regmap *map, unsigned int reg)
128 {
129 	if (!map->reg_read)
130 		return false;
131 
132 	if (map->max_register && reg > map->max_register)
133 		return false;
134 
135 	if (map->format.format_write)
136 		return false;
137 
138 	if (map->readable_reg)
139 		return map->readable_reg(map->dev, reg);
140 
141 	if (map->rd_table)
142 		return regmap_check_range_table(map, reg, map->rd_table);
143 
144 	return true;
145 }
146 
regmap_volatile(struct regmap * map,unsigned int reg)147 bool regmap_volatile(struct regmap *map, unsigned int reg)
148 {
149 	if (!map->format.format_write && !regmap_readable(map, reg))
150 		return false;
151 
152 	if (map->volatile_reg)
153 		return map->volatile_reg(map->dev, reg);
154 
155 	if (map->volatile_table)
156 		return regmap_check_range_table(map, reg, map->volatile_table);
157 
158 	if (map->cache_ops)
159 		return false;
160 	else
161 		return true;
162 }
163 
regmap_precious(struct regmap * map,unsigned int reg)164 bool regmap_precious(struct regmap *map, unsigned int reg)
165 {
166 	if (!regmap_readable(map, reg))
167 		return false;
168 
169 	if (map->precious_reg)
170 		return map->precious_reg(map->dev, reg);
171 
172 	if (map->precious_table)
173 		return regmap_check_range_table(map, reg, map->precious_table);
174 
175 	return false;
176 }
177 
regmap_writeable_noinc(struct regmap * map,unsigned int reg)178 bool regmap_writeable_noinc(struct regmap *map, unsigned int reg)
179 {
180 	if (map->writeable_noinc_reg)
181 		return map->writeable_noinc_reg(map->dev, reg);
182 
183 	if (map->wr_noinc_table)
184 		return regmap_check_range_table(map, reg, map->wr_noinc_table);
185 
186 	return true;
187 }
188 
regmap_readable_noinc(struct regmap * map,unsigned int reg)189 bool regmap_readable_noinc(struct regmap *map, unsigned int reg)
190 {
191 	if (map->readable_noinc_reg)
192 		return map->readable_noinc_reg(map->dev, reg);
193 
194 	if (map->rd_noinc_table)
195 		return regmap_check_range_table(map, reg, map->rd_noinc_table);
196 
197 	return true;
198 }
199 
regmap_volatile_range(struct regmap * map,unsigned int reg,size_t num)200 static bool regmap_volatile_range(struct regmap *map, unsigned int reg,
201 	size_t num)
202 {
203 	unsigned int i;
204 
205 	for (i = 0; i < num; i++)
206 		if (!regmap_volatile(map, reg + regmap_get_offset(map, i)))
207 			return false;
208 
209 	return true;
210 }
211 
regmap_format_12_20_write(struct regmap * map,unsigned int reg,unsigned int val)212 static void regmap_format_12_20_write(struct regmap *map,
213 				     unsigned int reg, unsigned int val)
214 {
215 	u8 *out = map->work_buf;
216 
217 	out[0] = reg >> 4;
218 	out[1] = (reg << 4) | (val >> 16);
219 	out[2] = val >> 8;
220 	out[3] = val;
221 }
222 
223 
regmap_format_2_6_write(struct regmap * map,unsigned int reg,unsigned int val)224 static void regmap_format_2_6_write(struct regmap *map,
225 				     unsigned int reg, unsigned int val)
226 {
227 	u8 *out = map->work_buf;
228 
229 	*out = (reg << 6) | val;
230 }
231 
regmap_format_4_12_write(struct regmap * map,unsigned int reg,unsigned int val)232 static void regmap_format_4_12_write(struct regmap *map,
233 				     unsigned int reg, unsigned int val)
234 {
235 	__be16 *out = map->work_buf;
236 	*out = cpu_to_be16((reg << 12) | val);
237 }
238 
regmap_format_7_9_write(struct regmap * map,unsigned int reg,unsigned int val)239 static void regmap_format_7_9_write(struct regmap *map,
240 				    unsigned int reg, unsigned int val)
241 {
242 	__be16 *out = map->work_buf;
243 	*out = cpu_to_be16((reg << 9) | val);
244 }
245 
regmap_format_7_17_write(struct regmap * map,unsigned int reg,unsigned int val)246 static void regmap_format_7_17_write(struct regmap *map,
247 				    unsigned int reg, unsigned int val)
248 {
249 	u8 *out = map->work_buf;
250 
251 	out[2] = val;
252 	out[1] = val >> 8;
253 	out[0] = (val >> 16) | (reg << 1);
254 }
255 
regmap_format_10_14_write(struct regmap * map,unsigned int reg,unsigned int val)256 static void regmap_format_10_14_write(struct regmap *map,
257 				    unsigned int reg, unsigned int val)
258 {
259 	u8 *out = map->work_buf;
260 
261 	out[2] = val;
262 	out[1] = (val >> 8) | (reg << 6);
263 	out[0] = reg >> 2;
264 }
265 
regmap_format_8(void * buf,unsigned int val,unsigned int shift)266 static void regmap_format_8(void *buf, unsigned int val, unsigned int shift)
267 {
268 	u8 *b = buf;
269 
270 	b[0] = val << shift;
271 }
272 
regmap_format_16_be(void * buf,unsigned int val,unsigned int shift)273 static void regmap_format_16_be(void *buf, unsigned int val, unsigned int shift)
274 {
275 	put_unaligned_be16(val << shift, buf);
276 }
277 
regmap_format_16_le(void * buf,unsigned int val,unsigned int shift)278 static void regmap_format_16_le(void *buf, unsigned int val, unsigned int shift)
279 {
280 	put_unaligned_le16(val << shift, buf);
281 }
282 
regmap_format_16_native(void * buf,unsigned int val,unsigned int shift)283 static void regmap_format_16_native(void *buf, unsigned int val,
284 				    unsigned int shift)
285 {
286 	u16 v = val << shift;
287 
288 	memcpy(buf, &v, sizeof(v));
289 }
290 
regmap_format_24(void * buf,unsigned int val,unsigned int shift)291 static void regmap_format_24(void *buf, unsigned int val, unsigned int shift)
292 {
293 	u8 *b = buf;
294 
295 	val <<= shift;
296 
297 	b[0] = val >> 16;
298 	b[1] = val >> 8;
299 	b[2] = val;
300 }
301 
regmap_format_32_be(void * buf,unsigned int val,unsigned int shift)302 static void regmap_format_32_be(void *buf, unsigned int val, unsigned int shift)
303 {
304 	put_unaligned_be32(val << shift, buf);
305 }
306 
regmap_format_32_le(void * buf,unsigned int val,unsigned int shift)307 static void regmap_format_32_le(void *buf, unsigned int val, unsigned int shift)
308 {
309 	put_unaligned_le32(val << shift, buf);
310 }
311 
regmap_format_32_native(void * buf,unsigned int val,unsigned int shift)312 static void regmap_format_32_native(void *buf, unsigned int val,
313 				    unsigned int shift)
314 {
315 	u32 v = val << shift;
316 
317 	memcpy(buf, &v, sizeof(v));
318 }
319 
320 #ifdef CONFIG_64BIT
regmap_format_64_be(void * buf,unsigned int val,unsigned int shift)321 static void regmap_format_64_be(void *buf, unsigned int val, unsigned int shift)
322 {
323 	put_unaligned_be64((u64) val << shift, buf);
324 }
325 
regmap_format_64_le(void * buf,unsigned int val,unsigned int shift)326 static void regmap_format_64_le(void *buf, unsigned int val, unsigned int shift)
327 {
328 	put_unaligned_le64((u64) val << shift, buf);
329 }
330 
regmap_format_64_native(void * buf,unsigned int val,unsigned int shift)331 static void regmap_format_64_native(void *buf, unsigned int val,
332 				    unsigned int shift)
333 {
334 	u64 v = (u64) val << shift;
335 
336 	memcpy(buf, &v, sizeof(v));
337 }
338 #endif
339 
regmap_parse_inplace_noop(void * buf)340 static void regmap_parse_inplace_noop(void *buf)
341 {
342 }
343 
regmap_parse_8(const void * buf)344 static unsigned int regmap_parse_8(const void *buf)
345 {
346 	const u8 *b = buf;
347 
348 	return b[0];
349 }
350 
regmap_parse_16_be(const void * buf)351 static unsigned int regmap_parse_16_be(const void *buf)
352 {
353 	return get_unaligned_be16(buf);
354 }
355 
regmap_parse_16_le(const void * buf)356 static unsigned int regmap_parse_16_le(const void *buf)
357 {
358 	return get_unaligned_le16(buf);
359 }
360 
regmap_parse_16_be_inplace(void * buf)361 static void regmap_parse_16_be_inplace(void *buf)
362 {
363 	u16 v = get_unaligned_be16(buf);
364 
365 	memcpy(buf, &v, sizeof(v));
366 }
367 
regmap_parse_16_le_inplace(void * buf)368 static void regmap_parse_16_le_inplace(void *buf)
369 {
370 	u16 v = get_unaligned_le16(buf);
371 
372 	memcpy(buf, &v, sizeof(v));
373 }
374 
regmap_parse_16_native(const void * buf)375 static unsigned int regmap_parse_16_native(const void *buf)
376 {
377 	u16 v;
378 
379 	memcpy(&v, buf, sizeof(v));
380 	return v;
381 }
382 
regmap_parse_24(const void * buf)383 static unsigned int regmap_parse_24(const void *buf)
384 {
385 	const u8 *b = buf;
386 	unsigned int ret = b[2];
387 	ret |= ((unsigned int)b[1]) << 8;
388 	ret |= ((unsigned int)b[0]) << 16;
389 
390 	return ret;
391 }
392 
regmap_parse_32_be(const void * buf)393 static unsigned int regmap_parse_32_be(const void *buf)
394 {
395 	return get_unaligned_be32(buf);
396 }
397 
regmap_parse_32_le(const void * buf)398 static unsigned int regmap_parse_32_le(const void *buf)
399 {
400 	return get_unaligned_le32(buf);
401 }
402 
regmap_parse_32_be_inplace(void * buf)403 static void regmap_parse_32_be_inplace(void *buf)
404 {
405 	u32 v = get_unaligned_be32(buf);
406 
407 	memcpy(buf, &v, sizeof(v));
408 }
409 
regmap_parse_32_le_inplace(void * buf)410 static void regmap_parse_32_le_inplace(void *buf)
411 {
412 	u32 v = get_unaligned_le32(buf);
413 
414 	memcpy(buf, &v, sizeof(v));
415 }
416 
regmap_parse_32_native(const void * buf)417 static unsigned int regmap_parse_32_native(const void *buf)
418 {
419 	u32 v;
420 
421 	memcpy(&v, buf, sizeof(v));
422 	return v;
423 }
424 
425 #ifdef CONFIG_64BIT
regmap_parse_64_be(const void * buf)426 static unsigned int regmap_parse_64_be(const void *buf)
427 {
428 	return get_unaligned_be64(buf);
429 }
430 
regmap_parse_64_le(const void * buf)431 static unsigned int regmap_parse_64_le(const void *buf)
432 {
433 	return get_unaligned_le64(buf);
434 }
435 
regmap_parse_64_be_inplace(void * buf)436 static void regmap_parse_64_be_inplace(void *buf)
437 {
438 	u64 v =  get_unaligned_be64(buf);
439 
440 	memcpy(buf, &v, sizeof(v));
441 }
442 
regmap_parse_64_le_inplace(void * buf)443 static void regmap_parse_64_le_inplace(void *buf)
444 {
445 	u64 v = get_unaligned_le64(buf);
446 
447 	memcpy(buf, &v, sizeof(v));
448 }
449 
regmap_parse_64_native(const void * buf)450 static unsigned int regmap_parse_64_native(const void *buf)
451 {
452 	u64 v;
453 
454 	memcpy(&v, buf, sizeof(v));
455 	return v;
456 }
457 #endif
458 
regmap_lock_hwlock(void * __map)459 static void regmap_lock_hwlock(void *__map)
460 {
461 	struct regmap *map = __map;
462 
463 	hwspin_lock_timeout(map->hwlock, UINT_MAX);
464 }
465 
regmap_lock_hwlock_irq(void * __map)466 static void regmap_lock_hwlock_irq(void *__map)
467 {
468 	struct regmap *map = __map;
469 
470 	hwspin_lock_timeout_irq(map->hwlock, UINT_MAX);
471 }
472 
regmap_lock_hwlock_irqsave(void * __map)473 static void regmap_lock_hwlock_irqsave(void *__map)
474 {
475 	struct regmap *map = __map;
476 
477 	hwspin_lock_timeout_irqsave(map->hwlock, UINT_MAX,
478 				    &map->spinlock_flags);
479 }
480 
regmap_unlock_hwlock(void * __map)481 static void regmap_unlock_hwlock(void *__map)
482 {
483 	struct regmap *map = __map;
484 
485 	hwspin_unlock(map->hwlock);
486 }
487 
regmap_unlock_hwlock_irq(void * __map)488 static void regmap_unlock_hwlock_irq(void *__map)
489 {
490 	struct regmap *map = __map;
491 
492 	hwspin_unlock_irq(map->hwlock);
493 }
494 
regmap_unlock_hwlock_irqrestore(void * __map)495 static void regmap_unlock_hwlock_irqrestore(void *__map)
496 {
497 	struct regmap *map = __map;
498 
499 	hwspin_unlock_irqrestore(map->hwlock, &map->spinlock_flags);
500 }
501 
regmap_lock_unlock_none(void * __map)502 static void regmap_lock_unlock_none(void *__map)
503 {
504 
505 }
506 
regmap_lock_mutex(void * __map)507 static void regmap_lock_mutex(void *__map)
508 {
509 	struct regmap *map = __map;
510 	mutex_lock(&map->mutex);
511 }
512 
regmap_unlock_mutex(void * __map)513 static void regmap_unlock_mutex(void *__map)
514 {
515 	struct regmap *map = __map;
516 	mutex_unlock(&map->mutex);
517 }
518 
regmap_lock_spinlock(void * __map)519 static void regmap_lock_spinlock(void *__map)
520 __acquires(&map->spinlock)
521 {
522 	struct regmap *map = __map;
523 	unsigned long flags;
524 
525 	spin_lock_irqsave(&map->spinlock, flags);
526 	map->spinlock_flags = flags;
527 }
528 
regmap_unlock_spinlock(void * __map)529 static void regmap_unlock_spinlock(void *__map)
530 __releases(&map->spinlock)
531 {
532 	struct regmap *map = __map;
533 	spin_unlock_irqrestore(&map->spinlock, map->spinlock_flags);
534 }
535 
regmap_lock_raw_spinlock(void * __map)536 static void regmap_lock_raw_spinlock(void *__map)
537 __acquires(&map->raw_spinlock)
538 {
539 	struct regmap *map = __map;
540 	unsigned long flags;
541 
542 	raw_spin_lock_irqsave(&map->raw_spinlock, flags);
543 	map->raw_spinlock_flags = flags;
544 }
545 
regmap_unlock_raw_spinlock(void * __map)546 static void regmap_unlock_raw_spinlock(void *__map)
547 __releases(&map->raw_spinlock)
548 {
549 	struct regmap *map = __map;
550 	raw_spin_unlock_irqrestore(&map->raw_spinlock, map->raw_spinlock_flags);
551 }
552 
dev_get_regmap_release(struct device * dev,void * res)553 static void dev_get_regmap_release(struct device *dev, void *res)
554 {
555 	/*
556 	 * We don't actually have anything to do here; the goal here
557 	 * is not to manage the regmap but to provide a simple way to
558 	 * get the regmap back given a struct device.
559 	 */
560 }
561 
_regmap_range_add(struct regmap * map,struct regmap_range_node * data)562 static bool _regmap_range_add(struct regmap *map,
563 			      struct regmap_range_node *data)
564 {
565 	struct rb_root *root = &map->range_tree;
566 	struct rb_node **new = &(root->rb_node), *parent = NULL;
567 
568 	while (*new) {
569 		struct regmap_range_node *this =
570 			rb_entry(*new, struct regmap_range_node, node);
571 
572 		parent = *new;
573 		if (data->range_max < this->range_min)
574 			new = &((*new)->rb_left);
575 		else if (data->range_min > this->range_max)
576 			new = &((*new)->rb_right);
577 		else
578 			return false;
579 	}
580 
581 	rb_link_node(&data->node, parent, new);
582 	rb_insert_color(&data->node, root);
583 
584 	return true;
585 }
586 
_regmap_range_lookup(struct regmap * map,unsigned int reg)587 static struct regmap_range_node *_regmap_range_lookup(struct regmap *map,
588 						      unsigned int reg)
589 {
590 	struct rb_node *node = map->range_tree.rb_node;
591 
592 	while (node) {
593 		struct regmap_range_node *this =
594 			rb_entry(node, struct regmap_range_node, node);
595 
596 		if (reg < this->range_min)
597 			node = node->rb_left;
598 		else if (reg > this->range_max)
599 			node = node->rb_right;
600 		else
601 			return this;
602 	}
603 
604 	return NULL;
605 }
606 
regmap_range_exit(struct regmap * map)607 static void regmap_range_exit(struct regmap *map)
608 {
609 	struct rb_node *next;
610 	struct regmap_range_node *range_node;
611 
612 	next = rb_first(&map->range_tree);
613 	while (next) {
614 		range_node = rb_entry(next, struct regmap_range_node, node);
615 		next = rb_next(&range_node->node);
616 		rb_erase(&range_node->node, &map->range_tree);
617 		kfree(range_node);
618 	}
619 
620 	kfree(map->selector_work_buf);
621 }
622 
regmap_set_name(struct regmap * map,const struct regmap_config * config)623 static int regmap_set_name(struct regmap *map, const struct regmap_config *config)
624 {
625 	if (config->name) {
626 		const char *name = kstrdup_const(config->name, GFP_KERNEL);
627 
628 		if (!name)
629 			return -ENOMEM;
630 
631 		kfree_const(map->name);
632 		map->name = name;
633 	}
634 
635 	return 0;
636 }
637 
regmap_attach_dev(struct device * dev,struct regmap * map,const struct regmap_config * config)638 int regmap_attach_dev(struct device *dev, struct regmap *map,
639 		      const struct regmap_config *config)
640 {
641 	struct regmap **m;
642 	int ret;
643 
644 	map->dev = dev;
645 
646 	ret = regmap_set_name(map, config);
647 	if (ret)
648 		return ret;
649 
650 	regmap_debugfs_exit(map);
651 	regmap_debugfs_init(map);
652 
653 	/* Add a devres resource for dev_get_regmap() */
654 	m = devres_alloc(dev_get_regmap_release, sizeof(*m), GFP_KERNEL);
655 	if (!m) {
656 		regmap_debugfs_exit(map);
657 		return -ENOMEM;
658 	}
659 	*m = map;
660 	devres_add(dev, m);
661 
662 	return 0;
663 }
664 EXPORT_SYMBOL_GPL(regmap_attach_dev);
665 
regmap_get_reg_endian(const struct regmap_bus * bus,const struct regmap_config * config)666 static enum regmap_endian regmap_get_reg_endian(const struct regmap_bus *bus,
667 					const struct regmap_config *config)
668 {
669 	enum regmap_endian endian;
670 
671 	/* Retrieve the endianness specification from the regmap config */
672 	endian = config->reg_format_endian;
673 
674 	/* If the regmap config specified a non-default value, use that */
675 	if (endian != REGMAP_ENDIAN_DEFAULT)
676 		return endian;
677 
678 	/* Retrieve the endianness specification from the bus config */
679 	if (bus && bus->reg_format_endian_default)
680 		endian = bus->reg_format_endian_default;
681 
682 	/* If the bus specified a non-default value, use that */
683 	if (endian != REGMAP_ENDIAN_DEFAULT)
684 		return endian;
685 
686 	/* Use this if no other value was found */
687 	return REGMAP_ENDIAN_BIG;
688 }
689 
regmap_get_val_endian(struct device * dev,const struct regmap_bus * bus,const struct regmap_config * config)690 enum regmap_endian regmap_get_val_endian(struct device *dev,
691 					 const struct regmap_bus *bus,
692 					 const struct regmap_config *config)
693 {
694 	struct fwnode_handle *fwnode = dev ? dev_fwnode(dev) : NULL;
695 	enum regmap_endian endian;
696 
697 	/* Retrieve the endianness specification from the regmap config */
698 	endian = config->val_format_endian;
699 
700 	/* If the regmap config specified a non-default value, use that */
701 	if (endian != REGMAP_ENDIAN_DEFAULT)
702 		return endian;
703 
704 	/* If the firmware node exist try to get endianness from it */
705 	if (fwnode_property_read_bool(fwnode, "big-endian"))
706 		endian = REGMAP_ENDIAN_BIG;
707 	else if (fwnode_property_read_bool(fwnode, "little-endian"))
708 		endian = REGMAP_ENDIAN_LITTLE;
709 	else if (fwnode_property_read_bool(fwnode, "native-endian"))
710 		endian = REGMAP_ENDIAN_NATIVE;
711 
712 	/* If the endianness was specified in fwnode, use that */
713 	if (endian != REGMAP_ENDIAN_DEFAULT)
714 		return endian;
715 
716 	/* Retrieve the endianness specification from the bus config */
717 	if (bus && bus->val_format_endian_default)
718 		endian = bus->val_format_endian_default;
719 
720 	/* If the bus specified a non-default value, use that */
721 	if (endian != REGMAP_ENDIAN_DEFAULT)
722 		return endian;
723 
724 	/* Use this if no other value was found */
725 	return REGMAP_ENDIAN_BIG;
726 }
727 EXPORT_SYMBOL_GPL(regmap_get_val_endian);
728 
__regmap_init(struct device * dev,const struct regmap_bus * bus,void * bus_context,const struct regmap_config * config,struct lock_class_key * lock_key,const char * lock_name)729 struct regmap *__regmap_init(struct device *dev,
730 			     const struct regmap_bus *bus,
731 			     void *bus_context,
732 			     const struct regmap_config *config,
733 			     struct lock_class_key *lock_key,
734 			     const char *lock_name)
735 {
736 	struct regmap *map;
737 	int ret = -EINVAL;
738 	enum regmap_endian reg_endian, val_endian;
739 	int i, j;
740 
741 	if (!config)
742 		goto err;
743 
744 	map = kzalloc(sizeof(*map), GFP_KERNEL);
745 	if (map == NULL) {
746 		ret = -ENOMEM;
747 		goto err;
748 	}
749 
750 	ret = regmap_set_name(map, config);
751 	if (ret)
752 		goto err_map;
753 
754 	ret = -EINVAL; /* Later error paths rely on this */
755 
756 	if (config->disable_locking) {
757 		map->lock = map->unlock = regmap_lock_unlock_none;
758 		map->can_sleep = config->can_sleep;
759 		regmap_debugfs_disable(map);
760 	} else if (config->lock && config->unlock) {
761 		map->lock = config->lock;
762 		map->unlock = config->unlock;
763 		map->lock_arg = config->lock_arg;
764 		map->can_sleep = config->can_sleep;
765 	} else if (config->use_hwlock) {
766 		map->hwlock = hwspin_lock_request_specific(config->hwlock_id);
767 		if (!map->hwlock) {
768 			ret = -ENXIO;
769 			goto err_name;
770 		}
771 
772 		switch (config->hwlock_mode) {
773 		case HWLOCK_IRQSTATE:
774 			map->lock = regmap_lock_hwlock_irqsave;
775 			map->unlock = regmap_unlock_hwlock_irqrestore;
776 			break;
777 		case HWLOCK_IRQ:
778 			map->lock = regmap_lock_hwlock_irq;
779 			map->unlock = regmap_unlock_hwlock_irq;
780 			break;
781 		default:
782 			map->lock = regmap_lock_hwlock;
783 			map->unlock = regmap_unlock_hwlock;
784 			break;
785 		}
786 
787 		map->lock_arg = map;
788 	} else {
789 		if ((bus && bus->fast_io) ||
790 		    config->fast_io) {
791 			if (config->use_raw_spinlock) {
792 				raw_spin_lock_init(&map->raw_spinlock);
793 				map->lock = regmap_lock_raw_spinlock;
794 				map->unlock = regmap_unlock_raw_spinlock;
795 				lockdep_set_class_and_name(&map->raw_spinlock,
796 							   lock_key, lock_name);
797 			} else {
798 				spin_lock_init(&map->spinlock);
799 				map->lock = regmap_lock_spinlock;
800 				map->unlock = regmap_unlock_spinlock;
801 				lockdep_set_class_and_name(&map->spinlock,
802 							   lock_key, lock_name);
803 			}
804 		} else {
805 			mutex_init(&map->mutex);
806 			map->lock = regmap_lock_mutex;
807 			map->unlock = regmap_unlock_mutex;
808 			map->can_sleep = true;
809 			lockdep_set_class_and_name(&map->mutex,
810 						   lock_key, lock_name);
811 		}
812 		map->lock_arg = map;
813 	}
814 
815 	/*
816 	 * When we write in fast-paths with regmap_bulk_write() don't allocate
817 	 * scratch buffers with sleeping allocations.
818 	 */
819 	if ((bus && bus->fast_io) || config->fast_io)
820 		map->alloc_flags = GFP_ATOMIC;
821 	else
822 		map->alloc_flags = GFP_KERNEL;
823 
824 	map->format.reg_bytes = DIV_ROUND_UP(config->reg_bits, 8);
825 	map->format.pad_bytes = config->pad_bits / 8;
826 	map->format.val_bytes = DIV_ROUND_UP(config->val_bits, 8);
827 	map->format.buf_size = DIV_ROUND_UP(config->reg_bits +
828 			config->val_bits + config->pad_bits, 8);
829 	map->reg_shift = config->pad_bits % 8;
830 	if (config->reg_stride)
831 		map->reg_stride = config->reg_stride;
832 	else
833 		map->reg_stride = 1;
834 	if (is_power_of_2(map->reg_stride))
835 		map->reg_stride_order = ilog2(map->reg_stride);
836 	else
837 		map->reg_stride_order = -1;
838 	map->use_single_read = config->use_single_read || !bus || !bus->read;
839 	map->use_single_write = config->use_single_write || !bus || !bus->write;
840 	map->can_multi_write = config->can_multi_write && bus && bus->write;
841 	if (bus) {
842 		map->max_raw_read = bus->max_raw_read;
843 		map->max_raw_write = bus->max_raw_write;
844 	}
845 	map->dev = dev;
846 	map->bus = bus;
847 	map->bus_context = bus_context;
848 	map->max_register = config->max_register;
849 	map->wr_table = config->wr_table;
850 	map->rd_table = config->rd_table;
851 	map->volatile_table = config->volatile_table;
852 	map->precious_table = config->precious_table;
853 	map->wr_noinc_table = config->wr_noinc_table;
854 	map->rd_noinc_table = config->rd_noinc_table;
855 	map->writeable_reg = config->writeable_reg;
856 	map->readable_reg = config->readable_reg;
857 	map->volatile_reg = config->volatile_reg;
858 	map->precious_reg = config->precious_reg;
859 	map->writeable_noinc_reg = config->writeable_noinc_reg;
860 	map->readable_noinc_reg = config->readable_noinc_reg;
861 	map->cache_type = config->cache_type;
862 
863 	spin_lock_init(&map->async_lock);
864 	INIT_LIST_HEAD(&map->async_list);
865 	INIT_LIST_HEAD(&map->async_free);
866 	init_waitqueue_head(&map->async_waitq);
867 
868 	if (config->read_flag_mask ||
869 	    config->write_flag_mask ||
870 	    config->zero_flag_mask) {
871 		map->read_flag_mask = config->read_flag_mask;
872 		map->write_flag_mask = config->write_flag_mask;
873 	} else if (bus) {
874 		map->read_flag_mask = bus->read_flag_mask;
875 	}
876 
877 	if (!bus) {
878 		map->reg_read  = config->reg_read;
879 		map->reg_write = config->reg_write;
880 
881 		map->defer_caching = false;
882 		goto skip_format_initialization;
883 	} else if (!bus->read || !bus->write) {
884 		map->reg_read = _regmap_bus_reg_read;
885 		map->reg_write = _regmap_bus_reg_write;
886 		map->reg_update_bits = bus->reg_update_bits;
887 
888 		map->defer_caching = false;
889 		goto skip_format_initialization;
890 	} else {
891 		map->reg_read  = _regmap_bus_read;
892 		map->reg_update_bits = bus->reg_update_bits;
893 	}
894 
895 	reg_endian = regmap_get_reg_endian(bus, config);
896 	val_endian = regmap_get_val_endian(dev, bus, config);
897 
898 	switch (config->reg_bits + map->reg_shift) {
899 	case 2:
900 		switch (config->val_bits) {
901 		case 6:
902 			map->format.format_write = regmap_format_2_6_write;
903 			break;
904 		default:
905 			goto err_hwlock;
906 		}
907 		break;
908 
909 	case 4:
910 		switch (config->val_bits) {
911 		case 12:
912 			map->format.format_write = regmap_format_4_12_write;
913 			break;
914 		default:
915 			goto err_hwlock;
916 		}
917 		break;
918 
919 	case 7:
920 		switch (config->val_bits) {
921 		case 9:
922 			map->format.format_write = regmap_format_7_9_write;
923 			break;
924 		case 17:
925 			map->format.format_write = regmap_format_7_17_write;
926 			break;
927 		default:
928 			goto err_hwlock;
929 		}
930 		break;
931 
932 	case 10:
933 		switch (config->val_bits) {
934 		case 14:
935 			map->format.format_write = regmap_format_10_14_write;
936 			break;
937 		default:
938 			goto err_hwlock;
939 		}
940 		break;
941 
942 	case 12:
943 		switch (config->val_bits) {
944 		case 20:
945 			map->format.format_write = regmap_format_12_20_write;
946 			break;
947 		default:
948 			goto err_hwlock;
949 		}
950 		break;
951 
952 	case 8:
953 		map->format.format_reg = regmap_format_8;
954 		break;
955 
956 	case 16:
957 		switch (reg_endian) {
958 		case REGMAP_ENDIAN_BIG:
959 			map->format.format_reg = regmap_format_16_be;
960 			break;
961 		case REGMAP_ENDIAN_LITTLE:
962 			map->format.format_reg = regmap_format_16_le;
963 			break;
964 		case REGMAP_ENDIAN_NATIVE:
965 			map->format.format_reg = regmap_format_16_native;
966 			break;
967 		default:
968 			goto err_hwlock;
969 		}
970 		break;
971 
972 	case 24:
973 		if (reg_endian != REGMAP_ENDIAN_BIG)
974 			goto err_hwlock;
975 		map->format.format_reg = regmap_format_24;
976 		break;
977 
978 	case 32:
979 		switch (reg_endian) {
980 		case REGMAP_ENDIAN_BIG:
981 			map->format.format_reg = regmap_format_32_be;
982 			break;
983 		case REGMAP_ENDIAN_LITTLE:
984 			map->format.format_reg = regmap_format_32_le;
985 			break;
986 		case REGMAP_ENDIAN_NATIVE:
987 			map->format.format_reg = regmap_format_32_native;
988 			break;
989 		default:
990 			goto err_hwlock;
991 		}
992 		break;
993 
994 #ifdef CONFIG_64BIT
995 	case 64:
996 		switch (reg_endian) {
997 		case REGMAP_ENDIAN_BIG:
998 			map->format.format_reg = regmap_format_64_be;
999 			break;
1000 		case REGMAP_ENDIAN_LITTLE:
1001 			map->format.format_reg = regmap_format_64_le;
1002 			break;
1003 		case REGMAP_ENDIAN_NATIVE:
1004 			map->format.format_reg = regmap_format_64_native;
1005 			break;
1006 		default:
1007 			goto err_hwlock;
1008 		}
1009 		break;
1010 #endif
1011 
1012 	default:
1013 		goto err_hwlock;
1014 	}
1015 
1016 	if (val_endian == REGMAP_ENDIAN_NATIVE)
1017 		map->format.parse_inplace = regmap_parse_inplace_noop;
1018 
1019 	switch (config->val_bits) {
1020 	case 8:
1021 		map->format.format_val = regmap_format_8;
1022 		map->format.parse_val = regmap_parse_8;
1023 		map->format.parse_inplace = regmap_parse_inplace_noop;
1024 		break;
1025 	case 16:
1026 		switch (val_endian) {
1027 		case REGMAP_ENDIAN_BIG:
1028 			map->format.format_val = regmap_format_16_be;
1029 			map->format.parse_val = regmap_parse_16_be;
1030 			map->format.parse_inplace = regmap_parse_16_be_inplace;
1031 			break;
1032 		case REGMAP_ENDIAN_LITTLE:
1033 			map->format.format_val = regmap_format_16_le;
1034 			map->format.parse_val = regmap_parse_16_le;
1035 			map->format.parse_inplace = regmap_parse_16_le_inplace;
1036 			break;
1037 		case REGMAP_ENDIAN_NATIVE:
1038 			map->format.format_val = regmap_format_16_native;
1039 			map->format.parse_val = regmap_parse_16_native;
1040 			break;
1041 		default:
1042 			goto err_hwlock;
1043 		}
1044 		break;
1045 	case 24:
1046 		if (val_endian != REGMAP_ENDIAN_BIG)
1047 			goto err_hwlock;
1048 		map->format.format_val = regmap_format_24;
1049 		map->format.parse_val = regmap_parse_24;
1050 		break;
1051 	case 32:
1052 		switch (val_endian) {
1053 		case REGMAP_ENDIAN_BIG:
1054 			map->format.format_val = regmap_format_32_be;
1055 			map->format.parse_val = regmap_parse_32_be;
1056 			map->format.parse_inplace = regmap_parse_32_be_inplace;
1057 			break;
1058 		case REGMAP_ENDIAN_LITTLE:
1059 			map->format.format_val = regmap_format_32_le;
1060 			map->format.parse_val = regmap_parse_32_le;
1061 			map->format.parse_inplace = regmap_parse_32_le_inplace;
1062 			break;
1063 		case REGMAP_ENDIAN_NATIVE:
1064 			map->format.format_val = regmap_format_32_native;
1065 			map->format.parse_val = regmap_parse_32_native;
1066 			break;
1067 		default:
1068 			goto err_hwlock;
1069 		}
1070 		break;
1071 #ifdef CONFIG_64BIT
1072 	case 64:
1073 		switch (val_endian) {
1074 		case REGMAP_ENDIAN_BIG:
1075 			map->format.format_val = regmap_format_64_be;
1076 			map->format.parse_val = regmap_parse_64_be;
1077 			map->format.parse_inplace = regmap_parse_64_be_inplace;
1078 			break;
1079 		case REGMAP_ENDIAN_LITTLE:
1080 			map->format.format_val = regmap_format_64_le;
1081 			map->format.parse_val = regmap_parse_64_le;
1082 			map->format.parse_inplace = regmap_parse_64_le_inplace;
1083 			break;
1084 		case REGMAP_ENDIAN_NATIVE:
1085 			map->format.format_val = regmap_format_64_native;
1086 			map->format.parse_val = regmap_parse_64_native;
1087 			break;
1088 		default:
1089 			goto err_hwlock;
1090 		}
1091 		break;
1092 #endif
1093 	}
1094 
1095 	if (map->format.format_write) {
1096 		if ((reg_endian != REGMAP_ENDIAN_BIG) ||
1097 		    (val_endian != REGMAP_ENDIAN_BIG))
1098 			goto err_hwlock;
1099 		map->use_single_write = true;
1100 	}
1101 
1102 	if (!map->format.format_write &&
1103 	    !(map->format.format_reg && map->format.format_val))
1104 		goto err_hwlock;
1105 
1106 	map->work_buf = kzalloc(map->format.buf_size, GFP_KERNEL);
1107 	if (map->work_buf == NULL) {
1108 		ret = -ENOMEM;
1109 		goto err_hwlock;
1110 	}
1111 
1112 	if (map->format.format_write) {
1113 		map->defer_caching = false;
1114 		map->reg_write = _regmap_bus_formatted_write;
1115 	} else if (map->format.format_val) {
1116 		map->defer_caching = true;
1117 		map->reg_write = _regmap_bus_raw_write;
1118 	}
1119 
1120 skip_format_initialization:
1121 
1122 	map->range_tree = RB_ROOT;
1123 	for (i = 0; i < config->num_ranges; i++) {
1124 		const struct regmap_range_cfg *range_cfg = &config->ranges[i];
1125 		struct regmap_range_node *new;
1126 
1127 		/* Sanity check */
1128 		if (range_cfg->range_max < range_cfg->range_min) {
1129 			dev_err(map->dev, "Invalid range %d: %d < %d\n", i,
1130 				range_cfg->range_max, range_cfg->range_min);
1131 			goto err_range;
1132 		}
1133 
1134 		if (range_cfg->range_max > map->max_register) {
1135 			dev_err(map->dev, "Invalid range %d: %d > %d\n", i,
1136 				range_cfg->range_max, map->max_register);
1137 			goto err_range;
1138 		}
1139 
1140 		if (range_cfg->selector_reg > map->max_register) {
1141 			dev_err(map->dev,
1142 				"Invalid range %d: selector out of map\n", i);
1143 			goto err_range;
1144 		}
1145 
1146 		if (range_cfg->window_len == 0) {
1147 			dev_err(map->dev, "Invalid range %d: window_len 0\n",
1148 				i);
1149 			goto err_range;
1150 		}
1151 
1152 		/* Make sure, that this register range has no selector
1153 		   or data window within its boundary */
1154 		for (j = 0; j < config->num_ranges; j++) {
1155 			unsigned int sel_reg = config->ranges[j].selector_reg;
1156 			unsigned int win_min = config->ranges[j].window_start;
1157 			unsigned int win_max = win_min +
1158 					       config->ranges[j].window_len - 1;
1159 
1160 			/* Allow data window inside its own virtual range */
1161 			if (j == i)
1162 				continue;
1163 
1164 			if (range_cfg->range_min <= sel_reg &&
1165 			    sel_reg <= range_cfg->range_max) {
1166 				dev_err(map->dev,
1167 					"Range %d: selector for %d in window\n",
1168 					i, j);
1169 				goto err_range;
1170 			}
1171 
1172 			if (!(win_max < range_cfg->range_min ||
1173 			      win_min > range_cfg->range_max)) {
1174 				dev_err(map->dev,
1175 					"Range %d: window for %d in window\n",
1176 					i, j);
1177 				goto err_range;
1178 			}
1179 		}
1180 
1181 		new = kzalloc(sizeof(*new), GFP_KERNEL);
1182 		if (new == NULL) {
1183 			ret = -ENOMEM;
1184 			goto err_range;
1185 		}
1186 
1187 		new->map = map;
1188 		new->name = range_cfg->name;
1189 		new->range_min = range_cfg->range_min;
1190 		new->range_max = range_cfg->range_max;
1191 		new->selector_reg = range_cfg->selector_reg;
1192 		new->selector_mask = range_cfg->selector_mask;
1193 		new->selector_shift = range_cfg->selector_shift;
1194 		new->window_start = range_cfg->window_start;
1195 		new->window_len = range_cfg->window_len;
1196 
1197 		if (!_regmap_range_add(map, new)) {
1198 			dev_err(map->dev, "Failed to add range %d\n", i);
1199 			kfree(new);
1200 			goto err_range;
1201 		}
1202 
1203 		if (map->selector_work_buf == NULL) {
1204 			map->selector_work_buf =
1205 				kzalloc(map->format.buf_size, GFP_KERNEL);
1206 			if (map->selector_work_buf == NULL) {
1207 				ret = -ENOMEM;
1208 				goto err_range;
1209 			}
1210 		}
1211 	}
1212 
1213 	ret = regcache_init(map, config);
1214 	if (ret != 0)
1215 		goto err_range;
1216 
1217 	if (dev) {
1218 		ret = regmap_attach_dev(dev, map, config);
1219 		if (ret != 0)
1220 			goto err_regcache;
1221 	} else {
1222 		regmap_debugfs_init(map);
1223 	}
1224 
1225 	return map;
1226 
1227 err_regcache:
1228 	regcache_exit(map);
1229 err_range:
1230 	regmap_range_exit(map);
1231 	kfree(map->work_buf);
1232 err_hwlock:
1233 	if (map->hwlock)
1234 		hwspin_lock_free(map->hwlock);
1235 err_name:
1236 	kfree_const(map->name);
1237 err_map:
1238 	kfree(map);
1239 err:
1240 	return ERR_PTR(ret);
1241 }
1242 EXPORT_SYMBOL_GPL(__regmap_init);
1243 
devm_regmap_release(struct device * dev,void * res)1244 static void devm_regmap_release(struct device *dev, void *res)
1245 {
1246 	regmap_exit(*(struct regmap **)res);
1247 }
1248 
__devm_regmap_init(struct device * dev,const struct regmap_bus * bus,void * bus_context,const struct regmap_config * config,struct lock_class_key * lock_key,const char * lock_name)1249 struct regmap *__devm_regmap_init(struct device *dev,
1250 				  const struct regmap_bus *bus,
1251 				  void *bus_context,
1252 				  const struct regmap_config *config,
1253 				  struct lock_class_key *lock_key,
1254 				  const char *lock_name)
1255 {
1256 	struct regmap **ptr, *regmap;
1257 
1258 	ptr = devres_alloc(devm_regmap_release, sizeof(*ptr), GFP_KERNEL);
1259 	if (!ptr)
1260 		return ERR_PTR(-ENOMEM);
1261 
1262 	regmap = __regmap_init(dev, bus, bus_context, config,
1263 			       lock_key, lock_name);
1264 	if (!IS_ERR(regmap)) {
1265 		*ptr = regmap;
1266 		devres_add(dev, ptr);
1267 	} else {
1268 		devres_free(ptr);
1269 	}
1270 
1271 	return regmap;
1272 }
1273 EXPORT_SYMBOL_GPL(__devm_regmap_init);
1274 
regmap_field_init(struct regmap_field * rm_field,struct regmap * regmap,struct reg_field reg_field)1275 static void regmap_field_init(struct regmap_field *rm_field,
1276 	struct regmap *regmap, struct reg_field reg_field)
1277 {
1278 	rm_field->regmap = regmap;
1279 	rm_field->reg = reg_field.reg;
1280 	rm_field->shift = reg_field.lsb;
1281 	rm_field->mask = GENMASK(reg_field.msb, reg_field.lsb);
1282 	rm_field->id_size = reg_field.id_size;
1283 	rm_field->id_offset = reg_field.id_offset;
1284 }
1285 
1286 /**
1287  * devm_regmap_field_alloc() - Allocate and initialise a register field.
1288  *
1289  * @dev: Device that will be interacted with
1290  * @regmap: regmap bank in which this register field is located.
1291  * @reg_field: Register field with in the bank.
1292  *
1293  * The return value will be an ERR_PTR() on error or a valid pointer
1294  * to a struct regmap_field. The regmap_field will be automatically freed
1295  * by the device management code.
1296  */
devm_regmap_field_alloc(struct device * dev,struct regmap * regmap,struct reg_field reg_field)1297 struct regmap_field *devm_regmap_field_alloc(struct device *dev,
1298 		struct regmap *regmap, struct reg_field reg_field)
1299 {
1300 	struct regmap_field *rm_field = devm_kzalloc(dev,
1301 					sizeof(*rm_field), GFP_KERNEL);
1302 	if (!rm_field)
1303 		return ERR_PTR(-ENOMEM);
1304 
1305 	regmap_field_init(rm_field, regmap, reg_field);
1306 
1307 	return rm_field;
1308 
1309 }
1310 EXPORT_SYMBOL_GPL(devm_regmap_field_alloc);
1311 
1312 
1313 /**
1314  * regmap_field_bulk_alloc() - Allocate and initialise a bulk register field.
1315  *
1316  * @regmap: regmap bank in which this register field is located.
1317  * @rm_field: regmap register fields within the bank.
1318  * @reg_field: Register fields within the bank.
1319  * @num_fields: Number of register fields.
1320  *
1321  * The return value will be an -ENOMEM on error or zero for success.
1322  * Newly allocated regmap_fields should be freed by calling
1323  * regmap_field_bulk_free()
1324  */
regmap_field_bulk_alloc(struct regmap * regmap,struct regmap_field ** rm_field,const struct reg_field * reg_field,int num_fields)1325 int regmap_field_bulk_alloc(struct regmap *regmap,
1326 			    struct regmap_field **rm_field,
1327 			    const struct reg_field *reg_field,
1328 			    int num_fields)
1329 {
1330 	struct regmap_field *rf;
1331 	int i;
1332 
1333 	rf = kcalloc(num_fields, sizeof(*rf), GFP_KERNEL);
1334 	if (!rf)
1335 		return -ENOMEM;
1336 
1337 	for (i = 0; i < num_fields; i++) {
1338 		regmap_field_init(&rf[i], regmap, reg_field[i]);
1339 		rm_field[i] = &rf[i];
1340 	}
1341 
1342 	return 0;
1343 }
1344 EXPORT_SYMBOL_GPL(regmap_field_bulk_alloc);
1345 
1346 /**
1347  * devm_regmap_field_bulk_alloc() - Allocate and initialise a bulk register
1348  * fields.
1349  *
1350  * @dev: Device that will be interacted with
1351  * @regmap: regmap bank in which this register field is located.
1352  * @rm_field: regmap register fields within the bank.
1353  * @reg_field: Register fields within the bank.
1354  * @num_fields: Number of register fields.
1355  *
1356  * The return value will be an -ENOMEM on error or zero for success.
1357  * Newly allocated regmap_fields will be automatically freed by the
1358  * device management code.
1359  */
devm_regmap_field_bulk_alloc(struct device * dev,struct regmap * regmap,struct regmap_field ** rm_field,const struct reg_field * reg_field,int num_fields)1360 int devm_regmap_field_bulk_alloc(struct device *dev,
1361 				 struct regmap *regmap,
1362 				 struct regmap_field **rm_field,
1363 				 const struct reg_field *reg_field,
1364 				 int num_fields)
1365 {
1366 	struct regmap_field *rf;
1367 	int i;
1368 
1369 	rf = devm_kcalloc(dev, num_fields, sizeof(*rf), GFP_KERNEL);
1370 	if (!rf)
1371 		return -ENOMEM;
1372 
1373 	for (i = 0; i < num_fields; i++) {
1374 		regmap_field_init(&rf[i], regmap, reg_field[i]);
1375 		rm_field[i] = &rf[i];
1376 	}
1377 
1378 	return 0;
1379 }
1380 EXPORT_SYMBOL_GPL(devm_regmap_field_bulk_alloc);
1381 
1382 /**
1383  * regmap_field_bulk_free() - Free register field allocated using
1384  *                       regmap_field_bulk_alloc.
1385  *
1386  * @field: regmap fields which should be freed.
1387  */
regmap_field_bulk_free(struct regmap_field * field)1388 void regmap_field_bulk_free(struct regmap_field *field)
1389 {
1390 	kfree(field);
1391 }
1392 EXPORT_SYMBOL_GPL(regmap_field_bulk_free);
1393 
1394 /**
1395  * devm_regmap_field_bulk_free() - Free a bulk register field allocated using
1396  *                            devm_regmap_field_bulk_alloc.
1397  *
1398  * @dev: Device that will be interacted with
1399  * @field: regmap field which should be freed.
1400  *
1401  * Free register field allocated using devm_regmap_field_bulk_alloc(). Usually
1402  * drivers need not call this function, as the memory allocated via devm
1403  * will be freed as per device-driver life-cycle.
1404  */
devm_regmap_field_bulk_free(struct device * dev,struct regmap_field * field)1405 void devm_regmap_field_bulk_free(struct device *dev,
1406 				 struct regmap_field *field)
1407 {
1408 	devm_kfree(dev, field);
1409 }
1410 EXPORT_SYMBOL_GPL(devm_regmap_field_bulk_free);
1411 
1412 /**
1413  * devm_regmap_field_free() - Free a register field allocated using
1414  *                            devm_regmap_field_alloc.
1415  *
1416  * @dev: Device that will be interacted with
1417  * @field: regmap field which should be freed.
1418  *
1419  * Free register field allocated using devm_regmap_field_alloc(). Usually
1420  * drivers need not call this function, as the memory allocated via devm
1421  * will be freed as per device-driver life-cyle.
1422  */
devm_regmap_field_free(struct device * dev,struct regmap_field * field)1423 void devm_regmap_field_free(struct device *dev,
1424 	struct regmap_field *field)
1425 {
1426 	devm_kfree(dev, field);
1427 }
1428 EXPORT_SYMBOL_GPL(devm_regmap_field_free);
1429 
1430 /**
1431  * regmap_field_alloc() - Allocate and initialise a register field.
1432  *
1433  * @regmap: regmap bank in which this register field is located.
1434  * @reg_field: Register field with in the bank.
1435  *
1436  * The return value will be an ERR_PTR() on error or a valid pointer
1437  * to a struct regmap_field. The regmap_field should be freed by the
1438  * user once its finished working with it using regmap_field_free().
1439  */
regmap_field_alloc(struct regmap * regmap,struct reg_field reg_field)1440 struct regmap_field *regmap_field_alloc(struct regmap *regmap,
1441 		struct reg_field reg_field)
1442 {
1443 	struct regmap_field *rm_field = kzalloc(sizeof(*rm_field), GFP_KERNEL);
1444 
1445 	if (!rm_field)
1446 		return ERR_PTR(-ENOMEM);
1447 
1448 	regmap_field_init(rm_field, regmap, reg_field);
1449 
1450 	return rm_field;
1451 }
1452 EXPORT_SYMBOL_GPL(regmap_field_alloc);
1453 
1454 /**
1455  * regmap_field_free() - Free register field allocated using
1456  *                       regmap_field_alloc.
1457  *
1458  * @field: regmap field which should be freed.
1459  */
regmap_field_free(struct regmap_field * field)1460 void regmap_field_free(struct regmap_field *field)
1461 {
1462 	kfree(field);
1463 }
1464 EXPORT_SYMBOL_GPL(regmap_field_free);
1465 
1466 /**
1467  * regmap_reinit_cache() - Reinitialise the current register cache
1468  *
1469  * @map: Register map to operate on.
1470  * @config: New configuration.  Only the cache data will be used.
1471  *
1472  * Discard any existing register cache for the map and initialize a
1473  * new cache.  This can be used to restore the cache to defaults or to
1474  * update the cache configuration to reflect runtime discovery of the
1475  * hardware.
1476  *
1477  * No explicit locking is done here, the user needs to ensure that
1478  * this function will not race with other calls to regmap.
1479  */
regmap_reinit_cache(struct regmap * map,const struct regmap_config * config)1480 int regmap_reinit_cache(struct regmap *map, const struct regmap_config *config)
1481 {
1482 	int ret;
1483 
1484 	regcache_exit(map);
1485 	regmap_debugfs_exit(map);
1486 
1487 	map->max_register = config->max_register;
1488 	map->writeable_reg = config->writeable_reg;
1489 	map->readable_reg = config->readable_reg;
1490 	map->volatile_reg = config->volatile_reg;
1491 	map->precious_reg = config->precious_reg;
1492 	map->writeable_noinc_reg = config->writeable_noinc_reg;
1493 	map->readable_noinc_reg = config->readable_noinc_reg;
1494 	map->cache_type = config->cache_type;
1495 
1496 	ret = regmap_set_name(map, config);
1497 	if (ret)
1498 		return ret;
1499 
1500 	regmap_debugfs_init(map);
1501 
1502 	map->cache_bypass = false;
1503 	map->cache_only = false;
1504 
1505 	return regcache_init(map, config);
1506 }
1507 EXPORT_SYMBOL_GPL(regmap_reinit_cache);
1508 
1509 /**
1510  * regmap_exit() - Free a previously allocated register map
1511  *
1512  * @map: Register map to operate on.
1513  */
regmap_exit(struct regmap * map)1514 void regmap_exit(struct regmap *map)
1515 {
1516 	struct regmap_async *async;
1517 
1518 	regcache_exit(map);
1519 	regmap_debugfs_exit(map);
1520 	regmap_range_exit(map);
1521 	if (map->bus && map->bus->free_context)
1522 		map->bus->free_context(map->bus_context);
1523 	kfree(map->work_buf);
1524 	while (!list_empty(&map->async_free)) {
1525 		async = list_first_entry_or_null(&map->async_free,
1526 						 struct regmap_async,
1527 						 list);
1528 		list_del(&async->list);
1529 		kfree(async->work_buf);
1530 		kfree(async);
1531 	}
1532 	if (map->hwlock)
1533 		hwspin_lock_free(map->hwlock);
1534 	if (map->lock == regmap_lock_mutex)
1535 		mutex_destroy(&map->mutex);
1536 	kfree_const(map->name);
1537 	kfree(map->patch);
1538 	if (map->bus && map->bus->free_on_exit)
1539 		kfree(map->bus);
1540 	kfree(map);
1541 }
1542 EXPORT_SYMBOL_GPL(regmap_exit);
1543 
dev_get_regmap_match(struct device * dev,void * res,void * data)1544 static int dev_get_regmap_match(struct device *dev, void *res, void *data)
1545 {
1546 	struct regmap **r = res;
1547 	if (!r || !*r) {
1548 		WARN_ON(!r || !*r);
1549 		return 0;
1550 	}
1551 
1552 	/* If the user didn't specify a name match any */
1553 	if (data)
1554 		return (*r)->name && !strcmp((*r)->name, data);
1555 	else
1556 		return 1;
1557 }
1558 
1559 /**
1560  * dev_get_regmap() - Obtain the regmap (if any) for a device
1561  *
1562  * @dev: Device to retrieve the map for
1563  * @name: Optional name for the register map, usually NULL.
1564  *
1565  * Returns the regmap for the device if one is present, or NULL.  If
1566  * name is specified then it must match the name specified when
1567  * registering the device, if it is NULL then the first regmap found
1568  * will be used.  Devices with multiple register maps are very rare,
1569  * generic code should normally not need to specify a name.
1570  */
dev_get_regmap(struct device * dev,const char * name)1571 struct regmap *dev_get_regmap(struct device *dev, const char *name)
1572 {
1573 	struct regmap **r = devres_find(dev, dev_get_regmap_release,
1574 					dev_get_regmap_match, (void *)name);
1575 
1576 	if (!r)
1577 		return NULL;
1578 	return *r;
1579 }
1580 EXPORT_SYMBOL_GPL(dev_get_regmap);
1581 
1582 /**
1583  * regmap_get_device() - Obtain the device from a regmap
1584  *
1585  * @map: Register map to operate on.
1586  *
1587  * Returns the underlying device that the regmap has been created for.
1588  */
regmap_get_device(struct regmap * map)1589 struct device *regmap_get_device(struct regmap *map)
1590 {
1591 	return map->dev;
1592 }
1593 EXPORT_SYMBOL_GPL(regmap_get_device);
1594 
_regmap_select_page(struct regmap * map,unsigned int * reg,struct regmap_range_node * range,unsigned int val_num)1595 static int _regmap_select_page(struct regmap *map, unsigned int *reg,
1596 			       struct regmap_range_node *range,
1597 			       unsigned int val_num)
1598 {
1599 	void *orig_work_buf;
1600 	unsigned int win_offset;
1601 	unsigned int win_page;
1602 	bool page_chg;
1603 	int ret;
1604 
1605 	win_offset = (*reg - range->range_min) % range->window_len;
1606 	win_page = (*reg - range->range_min) / range->window_len;
1607 
1608 	if (val_num > 1) {
1609 		/* Bulk write shouldn't cross range boundary */
1610 		if (*reg + val_num - 1 > range->range_max)
1611 			return -EINVAL;
1612 
1613 		/* ... or single page boundary */
1614 		if (val_num > range->window_len - win_offset)
1615 			return -EINVAL;
1616 	}
1617 
1618 	/* It is possible to have selector register inside data window.
1619 	   In that case, selector register is located on every page and
1620 	   it needs no page switching, when accessed alone. */
1621 	if (val_num > 1 ||
1622 	    range->window_start + win_offset != range->selector_reg) {
1623 		/* Use separate work_buf during page switching */
1624 		orig_work_buf = map->work_buf;
1625 		map->work_buf = map->selector_work_buf;
1626 
1627 		ret = _regmap_update_bits(map, range->selector_reg,
1628 					  range->selector_mask,
1629 					  win_page << range->selector_shift,
1630 					  &page_chg, false);
1631 
1632 		map->work_buf = orig_work_buf;
1633 
1634 		if (ret != 0)
1635 			return ret;
1636 	}
1637 
1638 	*reg = range->window_start + win_offset;
1639 
1640 	return 0;
1641 }
1642 
regmap_set_work_buf_flag_mask(struct regmap * map,int max_bytes,unsigned long mask)1643 static void regmap_set_work_buf_flag_mask(struct regmap *map, int max_bytes,
1644 					  unsigned long mask)
1645 {
1646 	u8 *buf;
1647 	int i;
1648 
1649 	if (!mask || !map->work_buf)
1650 		return;
1651 
1652 	buf = map->work_buf;
1653 
1654 	for (i = 0; i < max_bytes; i++)
1655 		buf[i] |= (mask >> (8 * i)) & 0xff;
1656 }
1657 
_regmap_raw_write_impl(struct regmap * map,unsigned int reg,const void * val,size_t val_len,bool noinc)1658 static int _regmap_raw_write_impl(struct regmap *map, unsigned int reg,
1659 				  const void *val, size_t val_len, bool noinc)
1660 {
1661 	struct regmap_range_node *range;
1662 	unsigned long flags;
1663 	void *work_val = map->work_buf + map->format.reg_bytes +
1664 		map->format.pad_bytes;
1665 	void *buf;
1666 	int ret = -ENOTSUPP;
1667 	size_t len;
1668 	int i;
1669 
1670 	WARN_ON(!map->bus);
1671 
1672 	/* Check for unwritable or noinc registers in range
1673 	 * before we start
1674 	 */
1675 	if (!regmap_writeable_noinc(map, reg)) {
1676 		for (i = 0; i < val_len / map->format.val_bytes; i++) {
1677 			unsigned int element =
1678 				reg + regmap_get_offset(map, i);
1679 			if (!regmap_writeable(map, element) ||
1680 				regmap_writeable_noinc(map, element))
1681 				return -EINVAL;
1682 		}
1683 	}
1684 
1685 	if (!map->cache_bypass && map->format.parse_val) {
1686 		unsigned int ival, offset;
1687 		int val_bytes = map->format.val_bytes;
1688 
1689 		/* Cache the last written value for noinc writes */
1690 		i = noinc ? val_len - val_bytes : 0;
1691 		for (; i < val_len; i += val_bytes) {
1692 			ival = map->format.parse_val(val + i);
1693 			offset = noinc ? 0 : regmap_get_offset(map, i / val_bytes);
1694 			ret = regcache_write(map, reg + offset, ival);
1695 			if (ret) {
1696 				dev_err(map->dev,
1697 					"Error in caching of register: %x ret: %d\n",
1698 					reg + offset, ret);
1699 				return ret;
1700 			}
1701 		}
1702 		if (map->cache_only) {
1703 			map->cache_dirty = true;
1704 			return 0;
1705 		}
1706 	}
1707 
1708 	range = _regmap_range_lookup(map, reg);
1709 	if (range) {
1710 		int val_num = val_len / map->format.val_bytes;
1711 		int win_offset = (reg - range->range_min) % range->window_len;
1712 		int win_residue = range->window_len - win_offset;
1713 
1714 		/* If the write goes beyond the end of the window split it */
1715 		while (val_num > win_residue) {
1716 			dev_dbg(map->dev, "Writing window %d/%zu\n",
1717 				win_residue, val_len / map->format.val_bytes);
1718 			ret = _regmap_raw_write_impl(map, reg, val,
1719 						     win_residue *
1720 						     map->format.val_bytes, noinc);
1721 			if (ret != 0)
1722 				return ret;
1723 
1724 			reg += win_residue;
1725 			val_num -= win_residue;
1726 			val += win_residue * map->format.val_bytes;
1727 			val_len -= win_residue * map->format.val_bytes;
1728 
1729 			win_offset = (reg - range->range_min) %
1730 				range->window_len;
1731 			win_residue = range->window_len - win_offset;
1732 		}
1733 
1734 		ret = _regmap_select_page(map, &reg, range, noinc ? 1 : val_num);
1735 		if (ret != 0)
1736 			return ret;
1737 	}
1738 
1739 	map->format.format_reg(map->work_buf, reg, map->reg_shift);
1740 	regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
1741 				      map->write_flag_mask);
1742 
1743 	/*
1744 	 * Essentially all I/O mechanisms will be faster with a single
1745 	 * buffer to write.  Since register syncs often generate raw
1746 	 * writes of single registers optimise that case.
1747 	 */
1748 	if (val != work_val && val_len == map->format.val_bytes) {
1749 		memcpy(work_val, val, map->format.val_bytes);
1750 		val = work_val;
1751 	}
1752 
1753 	if (map->async && map->bus->async_write) {
1754 		struct regmap_async *async;
1755 
1756 		trace_regmap_async_write_start(map, reg, val_len);
1757 
1758 		spin_lock_irqsave(&map->async_lock, flags);
1759 		async = list_first_entry_or_null(&map->async_free,
1760 						 struct regmap_async,
1761 						 list);
1762 		if (async)
1763 			list_del(&async->list);
1764 		spin_unlock_irqrestore(&map->async_lock, flags);
1765 
1766 		if (!async) {
1767 			async = map->bus->async_alloc();
1768 			if (!async)
1769 				return -ENOMEM;
1770 
1771 			async->work_buf = kzalloc(map->format.buf_size,
1772 						  GFP_KERNEL | GFP_DMA);
1773 			if (!async->work_buf) {
1774 				kfree(async);
1775 				return -ENOMEM;
1776 			}
1777 		}
1778 
1779 		async->map = map;
1780 
1781 		/* If the caller supplied the value we can use it safely. */
1782 		memcpy(async->work_buf, map->work_buf, map->format.pad_bytes +
1783 		       map->format.reg_bytes + map->format.val_bytes);
1784 
1785 		spin_lock_irqsave(&map->async_lock, flags);
1786 		list_add_tail(&async->list, &map->async_list);
1787 		spin_unlock_irqrestore(&map->async_lock, flags);
1788 
1789 		if (val != work_val)
1790 			ret = map->bus->async_write(map->bus_context,
1791 						    async->work_buf,
1792 						    map->format.reg_bytes +
1793 						    map->format.pad_bytes,
1794 						    val, val_len, async);
1795 		else
1796 			ret = map->bus->async_write(map->bus_context,
1797 						    async->work_buf,
1798 						    map->format.reg_bytes +
1799 						    map->format.pad_bytes +
1800 						    val_len, NULL, 0, async);
1801 
1802 		if (ret != 0) {
1803 			dev_err(map->dev, "Failed to schedule write: %d\n",
1804 				ret);
1805 
1806 			spin_lock_irqsave(&map->async_lock, flags);
1807 			list_move(&async->list, &map->async_free);
1808 			spin_unlock_irqrestore(&map->async_lock, flags);
1809 		}
1810 
1811 		return ret;
1812 	}
1813 
1814 	trace_regmap_hw_write_start(map, reg, val_len / map->format.val_bytes);
1815 
1816 	/* If we're doing a single register write we can probably just
1817 	 * send the work_buf directly, otherwise try to do a gather
1818 	 * write.
1819 	 */
1820 	if (val == work_val)
1821 		ret = map->bus->write(map->bus_context, map->work_buf,
1822 				      map->format.reg_bytes +
1823 				      map->format.pad_bytes +
1824 				      val_len);
1825 	else if (map->bus->gather_write)
1826 		ret = map->bus->gather_write(map->bus_context, map->work_buf,
1827 					     map->format.reg_bytes +
1828 					     map->format.pad_bytes,
1829 					     val, val_len);
1830 	else
1831 		ret = -ENOTSUPP;
1832 
1833 	/* If that didn't work fall back on linearising by hand. */
1834 	if (ret == -ENOTSUPP) {
1835 		len = map->format.reg_bytes + map->format.pad_bytes + val_len;
1836 		buf = kzalloc(len, GFP_KERNEL);
1837 		if (!buf)
1838 			return -ENOMEM;
1839 
1840 		memcpy(buf, map->work_buf, map->format.reg_bytes);
1841 		memcpy(buf + map->format.reg_bytes + map->format.pad_bytes,
1842 		       val, val_len);
1843 		ret = map->bus->write(map->bus_context, buf, len);
1844 
1845 		kfree(buf);
1846 	} else if (ret != 0 && !map->cache_bypass && map->format.parse_val) {
1847 		/* regcache_drop_region() takes lock that we already have,
1848 		 * thus call map->cache_ops->drop() directly
1849 		 */
1850 		if (map->cache_ops && map->cache_ops->drop)
1851 			map->cache_ops->drop(map, reg, reg + 1);
1852 	}
1853 
1854 	trace_regmap_hw_write_done(map, reg, val_len / map->format.val_bytes);
1855 
1856 	return ret;
1857 }
1858 
1859 /**
1860  * regmap_can_raw_write - Test if regmap_raw_write() is supported
1861  *
1862  * @map: Map to check.
1863  */
regmap_can_raw_write(struct regmap * map)1864 bool regmap_can_raw_write(struct regmap *map)
1865 {
1866 	return map->bus && map->bus->write && map->format.format_val &&
1867 		map->format.format_reg;
1868 }
1869 EXPORT_SYMBOL_GPL(regmap_can_raw_write);
1870 
1871 /**
1872  * regmap_get_raw_read_max - Get the maximum size we can read
1873  *
1874  * @map: Map to check.
1875  */
regmap_get_raw_read_max(struct regmap * map)1876 size_t regmap_get_raw_read_max(struct regmap *map)
1877 {
1878 	return map->max_raw_read;
1879 }
1880 EXPORT_SYMBOL_GPL(regmap_get_raw_read_max);
1881 
1882 /**
1883  * regmap_get_raw_write_max - Get the maximum size we can read
1884  *
1885  * @map: Map to check.
1886  */
regmap_get_raw_write_max(struct regmap * map)1887 size_t regmap_get_raw_write_max(struct regmap *map)
1888 {
1889 	return map->max_raw_write;
1890 }
1891 EXPORT_SYMBOL_GPL(regmap_get_raw_write_max);
1892 
_regmap_bus_formatted_write(void * context,unsigned int reg,unsigned int val)1893 static int _regmap_bus_formatted_write(void *context, unsigned int reg,
1894 				       unsigned int val)
1895 {
1896 	int ret;
1897 	struct regmap_range_node *range;
1898 	struct regmap *map = context;
1899 
1900 	WARN_ON(!map->bus || !map->format.format_write);
1901 
1902 	range = _regmap_range_lookup(map, reg);
1903 	if (range) {
1904 		ret = _regmap_select_page(map, &reg, range, 1);
1905 		if (ret != 0)
1906 			return ret;
1907 	}
1908 
1909 	map->format.format_write(map, reg, val);
1910 
1911 	trace_regmap_hw_write_start(map, reg, 1);
1912 
1913 	ret = map->bus->write(map->bus_context, map->work_buf,
1914 			      map->format.buf_size);
1915 
1916 	trace_regmap_hw_write_done(map, reg, 1);
1917 
1918 	return ret;
1919 }
1920 
_regmap_bus_reg_write(void * context,unsigned int reg,unsigned int val)1921 static int _regmap_bus_reg_write(void *context, unsigned int reg,
1922 				 unsigned int val)
1923 {
1924 	struct regmap *map = context;
1925 
1926 	return map->bus->reg_write(map->bus_context, reg, val);
1927 }
1928 
_regmap_bus_raw_write(void * context,unsigned int reg,unsigned int val)1929 static int _regmap_bus_raw_write(void *context, unsigned int reg,
1930 				 unsigned int val)
1931 {
1932 	struct regmap *map = context;
1933 
1934 	WARN_ON(!map->bus || !map->format.format_val);
1935 
1936 	map->format.format_val(map->work_buf + map->format.reg_bytes
1937 			       + map->format.pad_bytes, val, 0);
1938 	return _regmap_raw_write_impl(map, reg,
1939 				      map->work_buf +
1940 				      map->format.reg_bytes +
1941 				      map->format.pad_bytes,
1942 				      map->format.val_bytes,
1943 				      false);
1944 }
1945 
_regmap_map_get_context(struct regmap * map)1946 static inline void *_regmap_map_get_context(struct regmap *map)
1947 {
1948 	return (map->bus) ? map : map->bus_context;
1949 }
1950 
_regmap_write(struct regmap * map,unsigned int reg,unsigned int val)1951 int _regmap_write(struct regmap *map, unsigned int reg,
1952 		  unsigned int val)
1953 {
1954 	int ret;
1955 	void *context = _regmap_map_get_context(map);
1956 
1957 	if (!regmap_writeable(map, reg))
1958 		return -EIO;
1959 
1960 	if (!map->cache_bypass && !map->defer_caching) {
1961 		ret = regcache_write(map, reg, val);
1962 		if (ret != 0)
1963 			return ret;
1964 		if (map->cache_only) {
1965 			map->cache_dirty = true;
1966 			return 0;
1967 		}
1968 	}
1969 
1970 	ret = map->reg_write(context, reg, val);
1971 	if (ret == 0) {
1972 		if (regmap_should_log(map))
1973 			dev_info(map->dev, "%x <= %x\n", reg, val);
1974 
1975 		trace_regmap_reg_write(map, reg, val);
1976 	}
1977 
1978 	return ret;
1979 }
1980 
1981 /**
1982  * regmap_write() - Write a value to a single register
1983  *
1984  * @map: Register map to write to
1985  * @reg: Register to write to
1986  * @val: Value to be written
1987  *
1988  * A value of zero will be returned on success, a negative errno will
1989  * be returned in error cases.
1990  */
regmap_write(struct regmap * map,unsigned int reg,unsigned int val)1991 int regmap_write(struct regmap *map, unsigned int reg, unsigned int val)
1992 {
1993 	int ret;
1994 
1995 	if (!IS_ALIGNED(reg, map->reg_stride))
1996 		return -EINVAL;
1997 
1998 	map->lock(map->lock_arg);
1999 
2000 	ret = _regmap_write(map, reg, val);
2001 
2002 	map->unlock(map->lock_arg);
2003 
2004 	return ret;
2005 }
2006 EXPORT_SYMBOL_GPL(regmap_write);
2007 
2008 /**
2009  * regmap_write_async() - Write a value to a single register asynchronously
2010  *
2011  * @map: Register map to write to
2012  * @reg: Register to write to
2013  * @val: Value to be written
2014  *
2015  * A value of zero will be returned on success, a negative errno will
2016  * be returned in error cases.
2017  */
regmap_write_async(struct regmap * map,unsigned int reg,unsigned int val)2018 int regmap_write_async(struct regmap *map, unsigned int reg, unsigned int val)
2019 {
2020 	int ret;
2021 
2022 	if (!IS_ALIGNED(reg, map->reg_stride))
2023 		return -EINVAL;
2024 
2025 	map->lock(map->lock_arg);
2026 
2027 	map->async = true;
2028 
2029 	ret = _regmap_write(map, reg, val);
2030 
2031 	map->async = false;
2032 
2033 	map->unlock(map->lock_arg);
2034 
2035 	return ret;
2036 }
2037 EXPORT_SYMBOL_GPL(regmap_write_async);
2038 
_regmap_raw_write(struct regmap * map,unsigned int reg,const void * val,size_t val_len,bool noinc)2039 int _regmap_raw_write(struct regmap *map, unsigned int reg,
2040 		      const void *val, size_t val_len, bool noinc)
2041 {
2042 	size_t val_bytes = map->format.val_bytes;
2043 	size_t val_count = val_len / val_bytes;
2044 	size_t chunk_count, chunk_bytes;
2045 	size_t chunk_regs = val_count;
2046 	int ret, i;
2047 
2048 	if (!val_count)
2049 		return -EINVAL;
2050 
2051 	if (map->use_single_write)
2052 		chunk_regs = 1;
2053 	else if (map->max_raw_write && val_len > map->max_raw_write)
2054 		chunk_regs = map->max_raw_write / val_bytes;
2055 
2056 	chunk_count = val_count / chunk_regs;
2057 	chunk_bytes = chunk_regs * val_bytes;
2058 
2059 	/* Write as many bytes as possible with chunk_size */
2060 	for (i = 0; i < chunk_count; i++) {
2061 		ret = _regmap_raw_write_impl(map, reg, val, chunk_bytes, noinc);
2062 		if (ret)
2063 			return ret;
2064 
2065 		reg += regmap_get_offset(map, chunk_regs);
2066 		val += chunk_bytes;
2067 		val_len -= chunk_bytes;
2068 	}
2069 
2070 	/* Write remaining bytes */
2071 	if (val_len)
2072 		ret = _regmap_raw_write_impl(map, reg, val, val_len, noinc);
2073 
2074 	return ret;
2075 }
2076 
2077 /**
2078  * regmap_raw_write() - Write raw values to one or more registers
2079  *
2080  * @map: Register map to write to
2081  * @reg: Initial register to write to
2082  * @val: Block of data to be written, laid out for direct transmission to the
2083  *       device
2084  * @val_len: Length of data pointed to by val.
2085  *
2086  * This function is intended to be used for things like firmware
2087  * download where a large block of data needs to be transferred to the
2088  * device.  No formatting will be done on the data provided.
2089  *
2090  * A value of zero will be returned on success, a negative errno will
2091  * be returned in error cases.
2092  */
regmap_raw_write(struct regmap * map,unsigned int reg,const void * val,size_t val_len)2093 int regmap_raw_write(struct regmap *map, unsigned int reg,
2094 		     const void *val, size_t val_len)
2095 {
2096 	int ret;
2097 
2098 	if (!regmap_can_raw_write(map))
2099 		return -EINVAL;
2100 	if (val_len % map->format.val_bytes)
2101 		return -EINVAL;
2102 
2103 	map->lock(map->lock_arg);
2104 
2105 	ret = _regmap_raw_write(map, reg, val, val_len, false);
2106 
2107 	map->unlock(map->lock_arg);
2108 
2109 	return ret;
2110 }
2111 EXPORT_SYMBOL_GPL(regmap_raw_write);
2112 
2113 /**
2114  * regmap_noinc_write(): Write data from a register without incrementing the
2115  *			register number
2116  *
2117  * @map: Register map to write to
2118  * @reg: Register to write to
2119  * @val: Pointer to data buffer
2120  * @val_len: Length of output buffer in bytes.
2121  *
2122  * The regmap API usually assumes that bulk bus write operations will write a
2123  * range of registers. Some devices have certain registers for which a write
2124  * operation can write to an internal FIFO.
2125  *
2126  * The target register must be volatile but registers after it can be
2127  * completely unrelated cacheable registers.
2128  *
2129  * This will attempt multiple writes as required to write val_len bytes.
2130  *
2131  * A value of zero will be returned on success, a negative errno will be
2132  * returned in error cases.
2133  */
regmap_noinc_write(struct regmap * map,unsigned int reg,const void * val,size_t val_len)2134 int regmap_noinc_write(struct regmap *map, unsigned int reg,
2135 		      const void *val, size_t val_len)
2136 {
2137 	size_t write_len;
2138 	int ret;
2139 
2140 	if (!map->bus)
2141 		return -EINVAL;
2142 	if (!map->bus->write)
2143 		return -ENOTSUPP;
2144 	if (val_len % map->format.val_bytes)
2145 		return -EINVAL;
2146 	if (!IS_ALIGNED(reg, map->reg_stride))
2147 		return -EINVAL;
2148 	if (val_len == 0)
2149 		return -EINVAL;
2150 
2151 	map->lock(map->lock_arg);
2152 
2153 	if (!regmap_volatile(map, reg) || !regmap_writeable_noinc(map, reg)) {
2154 		ret = -EINVAL;
2155 		goto out_unlock;
2156 	}
2157 
2158 	while (val_len) {
2159 		if (map->max_raw_write && map->max_raw_write < val_len)
2160 			write_len = map->max_raw_write;
2161 		else
2162 			write_len = val_len;
2163 		ret = _regmap_raw_write(map, reg, val, write_len, true);
2164 		if (ret)
2165 			goto out_unlock;
2166 		val = ((u8 *)val) + write_len;
2167 		val_len -= write_len;
2168 	}
2169 
2170 out_unlock:
2171 	map->unlock(map->lock_arg);
2172 	return ret;
2173 }
2174 EXPORT_SYMBOL_GPL(regmap_noinc_write);
2175 
2176 /**
2177  * regmap_field_update_bits_base() - Perform a read/modify/write cycle a
2178  *                                   register field.
2179  *
2180  * @field: Register field to write to
2181  * @mask: Bitmask to change
2182  * @val: Value to be written
2183  * @change: Boolean indicating if a write was done
2184  * @async: Boolean indicating asynchronously
2185  * @force: Boolean indicating use force update
2186  *
2187  * Perform a read/modify/write cycle on the register field with change,
2188  * async, force option.
2189  *
2190  * A value of zero will be returned on success, a negative errno will
2191  * be returned in error cases.
2192  */
regmap_field_update_bits_base(struct regmap_field * field,unsigned int mask,unsigned int val,bool * change,bool async,bool force)2193 int regmap_field_update_bits_base(struct regmap_field *field,
2194 				  unsigned int mask, unsigned int val,
2195 				  bool *change, bool async, bool force)
2196 {
2197 	mask = (mask << field->shift) & field->mask;
2198 
2199 	return regmap_update_bits_base(field->regmap, field->reg,
2200 				       mask, val << field->shift,
2201 				       change, async, force);
2202 }
2203 EXPORT_SYMBOL_GPL(regmap_field_update_bits_base);
2204 
2205 /**
2206  * regmap_fields_update_bits_base() - Perform a read/modify/write cycle a
2207  *                                    register field with port ID
2208  *
2209  * @field: Register field to write to
2210  * @id: port ID
2211  * @mask: Bitmask to change
2212  * @val: Value to be written
2213  * @change: Boolean indicating if a write was done
2214  * @async: Boolean indicating asynchronously
2215  * @force: Boolean indicating use force update
2216  *
2217  * A value of zero will be returned on success, a negative errno will
2218  * be returned in error cases.
2219  */
regmap_fields_update_bits_base(struct regmap_field * field,unsigned int id,unsigned int mask,unsigned int val,bool * change,bool async,bool force)2220 int regmap_fields_update_bits_base(struct regmap_field *field, unsigned int id,
2221 				   unsigned int mask, unsigned int val,
2222 				   bool *change, bool async, bool force)
2223 {
2224 	if (id >= field->id_size)
2225 		return -EINVAL;
2226 
2227 	mask = (mask << field->shift) & field->mask;
2228 
2229 	return regmap_update_bits_base(field->regmap,
2230 				       field->reg + (field->id_offset * id),
2231 				       mask, val << field->shift,
2232 				       change, async, force);
2233 }
2234 EXPORT_SYMBOL_GPL(regmap_fields_update_bits_base);
2235 
2236 /**
2237  * regmap_bulk_write() - Write multiple registers to the device
2238  *
2239  * @map: Register map to write to
2240  * @reg: First register to be write from
2241  * @val: Block of data to be written, in native register size for device
2242  * @val_count: Number of registers to write
2243  *
2244  * This function is intended to be used for writing a large block of
2245  * data to the device either in single transfer or multiple transfer.
2246  *
2247  * A value of zero will be returned on success, a negative errno will
2248  * be returned in error cases.
2249  */
regmap_bulk_write(struct regmap * map,unsigned int reg,const void * val,size_t val_count)2250 int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val,
2251 		     size_t val_count)
2252 {
2253 	int ret = 0, i;
2254 	size_t val_bytes = map->format.val_bytes;
2255 
2256 	if (!IS_ALIGNED(reg, map->reg_stride))
2257 		return -EINVAL;
2258 
2259 	/*
2260 	 * Some devices don't support bulk write, for them we have a series of
2261 	 * single write operations.
2262 	 */
2263 	if (!map->bus || !map->format.parse_inplace) {
2264 		map->lock(map->lock_arg);
2265 		for (i = 0; i < val_count; i++) {
2266 			unsigned int ival;
2267 
2268 			switch (val_bytes) {
2269 			case 1:
2270 				ival = *(u8 *)(val + (i * val_bytes));
2271 				break;
2272 			case 2:
2273 				ival = *(u16 *)(val + (i * val_bytes));
2274 				break;
2275 			case 4:
2276 				ival = *(u32 *)(val + (i * val_bytes));
2277 				break;
2278 #ifdef CONFIG_64BIT
2279 			case 8:
2280 				ival = *(u64 *)(val + (i * val_bytes));
2281 				break;
2282 #endif
2283 			default:
2284 				ret = -EINVAL;
2285 				goto out;
2286 			}
2287 
2288 			ret = _regmap_write(map,
2289 					    reg + regmap_get_offset(map, i),
2290 					    ival);
2291 			if (ret != 0)
2292 				goto out;
2293 		}
2294 out:
2295 		map->unlock(map->lock_arg);
2296 	} else {
2297 		void *wval;
2298 
2299 		wval = kmemdup(val, val_count * val_bytes, map->alloc_flags);
2300 		if (!wval)
2301 			return -ENOMEM;
2302 
2303 		for (i = 0; i < val_count * val_bytes; i += val_bytes)
2304 			map->format.parse_inplace(wval + i);
2305 
2306 		ret = regmap_raw_write(map, reg, wval, val_bytes * val_count);
2307 
2308 		kfree(wval);
2309 	}
2310 	return ret;
2311 }
2312 EXPORT_SYMBOL_GPL(regmap_bulk_write);
2313 
2314 /*
2315  * _regmap_raw_multi_reg_write()
2316  *
2317  * the (register,newvalue) pairs in regs have not been formatted, but
2318  * they are all in the same page and have been changed to being page
2319  * relative. The page register has been written if that was necessary.
2320  */
_regmap_raw_multi_reg_write(struct regmap * map,const struct reg_sequence * regs,size_t num_regs)2321 static int _regmap_raw_multi_reg_write(struct regmap *map,
2322 				       const struct reg_sequence *regs,
2323 				       size_t num_regs)
2324 {
2325 	int ret;
2326 	void *buf;
2327 	int i;
2328 	u8 *u8;
2329 	size_t val_bytes = map->format.val_bytes;
2330 	size_t reg_bytes = map->format.reg_bytes;
2331 	size_t pad_bytes = map->format.pad_bytes;
2332 	size_t pair_size = reg_bytes + pad_bytes + val_bytes;
2333 	size_t len = pair_size * num_regs;
2334 
2335 	if (!len)
2336 		return -EINVAL;
2337 
2338 	buf = kzalloc(len, GFP_KERNEL);
2339 	if (!buf)
2340 		return -ENOMEM;
2341 
2342 	/* We have to linearise by hand. */
2343 
2344 	u8 = buf;
2345 
2346 	for (i = 0; i < num_regs; i++) {
2347 		unsigned int reg = regs[i].reg;
2348 		unsigned int val = regs[i].def;
2349 		trace_regmap_hw_write_start(map, reg, 1);
2350 		map->format.format_reg(u8, reg, map->reg_shift);
2351 		u8 += reg_bytes + pad_bytes;
2352 		map->format.format_val(u8, val, 0);
2353 		u8 += val_bytes;
2354 	}
2355 	u8 = buf;
2356 	*u8 |= map->write_flag_mask;
2357 
2358 	ret = map->bus->write(map->bus_context, buf, len);
2359 
2360 	kfree(buf);
2361 
2362 	for (i = 0; i < num_regs; i++) {
2363 		int reg = regs[i].reg;
2364 		trace_regmap_hw_write_done(map, reg, 1);
2365 	}
2366 	return ret;
2367 }
2368 
_regmap_register_page(struct regmap * map,unsigned int reg,struct regmap_range_node * range)2369 static unsigned int _regmap_register_page(struct regmap *map,
2370 					  unsigned int reg,
2371 					  struct regmap_range_node *range)
2372 {
2373 	unsigned int win_page = (reg - range->range_min) / range->window_len;
2374 
2375 	return win_page;
2376 }
2377 
_regmap_range_multi_paged_reg_write(struct regmap * map,struct reg_sequence * regs,size_t num_regs)2378 static int _regmap_range_multi_paged_reg_write(struct regmap *map,
2379 					       struct reg_sequence *regs,
2380 					       size_t num_regs)
2381 {
2382 	int ret;
2383 	int i, n;
2384 	struct reg_sequence *base;
2385 	unsigned int this_page = 0;
2386 	unsigned int page_change = 0;
2387 	/*
2388 	 * the set of registers are not neccessarily in order, but
2389 	 * since the order of write must be preserved this algorithm
2390 	 * chops the set each time the page changes. This also applies
2391 	 * if there is a delay required at any point in the sequence.
2392 	 */
2393 	base = regs;
2394 	for (i = 0, n = 0; i < num_regs; i++, n++) {
2395 		unsigned int reg = regs[i].reg;
2396 		struct regmap_range_node *range;
2397 
2398 		range = _regmap_range_lookup(map, reg);
2399 		if (range) {
2400 			unsigned int win_page = _regmap_register_page(map, reg,
2401 								      range);
2402 
2403 			if (i == 0)
2404 				this_page = win_page;
2405 			if (win_page != this_page) {
2406 				this_page = win_page;
2407 				page_change = 1;
2408 			}
2409 		}
2410 
2411 		/* If we have both a page change and a delay make sure to
2412 		 * write the regs and apply the delay before we change the
2413 		 * page.
2414 		 */
2415 
2416 		if (page_change || regs[i].delay_us) {
2417 
2418 				/* For situations where the first write requires
2419 				 * a delay we need to make sure we don't call
2420 				 * raw_multi_reg_write with n=0
2421 				 * This can't occur with page breaks as we
2422 				 * never write on the first iteration
2423 				 */
2424 				if (regs[i].delay_us && i == 0)
2425 					n = 1;
2426 
2427 				ret = _regmap_raw_multi_reg_write(map, base, n);
2428 				if (ret != 0)
2429 					return ret;
2430 
2431 				if (regs[i].delay_us) {
2432 					if (map->can_sleep)
2433 						fsleep(regs[i].delay_us);
2434 					else
2435 						udelay(regs[i].delay_us);
2436 				}
2437 
2438 				base += n;
2439 				n = 0;
2440 
2441 				if (page_change) {
2442 					ret = _regmap_select_page(map,
2443 								  &base[n].reg,
2444 								  range, 1);
2445 					if (ret != 0)
2446 						return ret;
2447 
2448 					page_change = 0;
2449 				}
2450 
2451 		}
2452 
2453 	}
2454 	if (n > 0)
2455 		return _regmap_raw_multi_reg_write(map, base, n);
2456 	return 0;
2457 }
2458 
_regmap_multi_reg_write(struct regmap * map,const struct reg_sequence * regs,size_t num_regs)2459 static int _regmap_multi_reg_write(struct regmap *map,
2460 				   const struct reg_sequence *regs,
2461 				   size_t num_regs)
2462 {
2463 	int i;
2464 	int ret;
2465 
2466 	if (!map->can_multi_write) {
2467 		for (i = 0; i < num_regs; i++) {
2468 			ret = _regmap_write(map, regs[i].reg, regs[i].def);
2469 			if (ret != 0)
2470 				return ret;
2471 
2472 			if (regs[i].delay_us) {
2473 				if (map->can_sleep)
2474 					fsleep(regs[i].delay_us);
2475 				else
2476 					udelay(regs[i].delay_us);
2477 			}
2478 		}
2479 		return 0;
2480 	}
2481 
2482 	if (!map->format.parse_inplace)
2483 		return -EINVAL;
2484 
2485 	if (map->writeable_reg)
2486 		for (i = 0; i < num_regs; i++) {
2487 			int reg = regs[i].reg;
2488 			if (!map->writeable_reg(map->dev, reg))
2489 				return -EINVAL;
2490 			if (!IS_ALIGNED(reg, map->reg_stride))
2491 				return -EINVAL;
2492 		}
2493 
2494 	if (!map->cache_bypass) {
2495 		for (i = 0; i < num_regs; i++) {
2496 			unsigned int val = regs[i].def;
2497 			unsigned int reg = regs[i].reg;
2498 			ret = regcache_write(map, reg, val);
2499 			if (ret) {
2500 				dev_err(map->dev,
2501 				"Error in caching of register: %x ret: %d\n",
2502 								reg, ret);
2503 				return ret;
2504 			}
2505 		}
2506 		if (map->cache_only) {
2507 			map->cache_dirty = true;
2508 			return 0;
2509 		}
2510 	}
2511 
2512 	WARN_ON(!map->bus);
2513 
2514 	for (i = 0; i < num_regs; i++) {
2515 		unsigned int reg = regs[i].reg;
2516 		struct regmap_range_node *range;
2517 
2518 		/* Coalesce all the writes between a page break or a delay
2519 		 * in a sequence
2520 		 */
2521 		range = _regmap_range_lookup(map, reg);
2522 		if (range || regs[i].delay_us) {
2523 			size_t len = sizeof(struct reg_sequence)*num_regs;
2524 			struct reg_sequence *base = kmemdup(regs, len,
2525 							   GFP_KERNEL);
2526 			if (!base)
2527 				return -ENOMEM;
2528 			ret = _regmap_range_multi_paged_reg_write(map, base,
2529 								  num_regs);
2530 			kfree(base);
2531 
2532 			return ret;
2533 		}
2534 	}
2535 	return _regmap_raw_multi_reg_write(map, regs, num_regs);
2536 }
2537 
2538 /**
2539  * regmap_multi_reg_write() - Write multiple registers to the device
2540  *
2541  * @map: Register map to write to
2542  * @regs: Array of structures containing register,value to be written
2543  * @num_regs: Number of registers to write
2544  *
2545  * Write multiple registers to the device where the set of register, value
2546  * pairs are supplied in any order, possibly not all in a single range.
2547  *
2548  * The 'normal' block write mode will send ultimately send data on the
2549  * target bus as R,V1,V2,V3,..,Vn where successively higher registers are
2550  * addressed. However, this alternative block multi write mode will send
2551  * the data as R1,V1,R2,V2,..,Rn,Vn on the target bus. The target device
2552  * must of course support the mode.
2553  *
2554  * A value of zero will be returned on success, a negative errno will be
2555  * returned in error cases.
2556  */
regmap_multi_reg_write(struct regmap * map,const struct reg_sequence * regs,int num_regs)2557 int regmap_multi_reg_write(struct regmap *map, const struct reg_sequence *regs,
2558 			   int num_regs)
2559 {
2560 	int ret;
2561 
2562 	map->lock(map->lock_arg);
2563 
2564 	ret = _regmap_multi_reg_write(map, regs, num_regs);
2565 
2566 	map->unlock(map->lock_arg);
2567 
2568 	return ret;
2569 }
2570 EXPORT_SYMBOL_GPL(regmap_multi_reg_write);
2571 
2572 /**
2573  * regmap_multi_reg_write_bypassed() - Write multiple registers to the
2574  *                                     device but not the cache
2575  *
2576  * @map: Register map to write to
2577  * @regs: Array of structures containing register,value to be written
2578  * @num_regs: Number of registers to write
2579  *
2580  * Write multiple registers to the device but not the cache where the set
2581  * of register are supplied in any order.
2582  *
2583  * This function is intended to be used for writing a large block of data
2584  * atomically to the device in single transfer for those I2C client devices
2585  * that implement this alternative block write mode.
2586  *
2587  * A value of zero will be returned on success, a negative errno will
2588  * be returned in error cases.
2589  */
regmap_multi_reg_write_bypassed(struct regmap * map,const struct reg_sequence * regs,int num_regs)2590 int regmap_multi_reg_write_bypassed(struct regmap *map,
2591 				    const struct reg_sequence *regs,
2592 				    int num_regs)
2593 {
2594 	int ret;
2595 	bool bypass;
2596 
2597 	map->lock(map->lock_arg);
2598 
2599 	bypass = map->cache_bypass;
2600 	map->cache_bypass = true;
2601 
2602 	ret = _regmap_multi_reg_write(map, regs, num_regs);
2603 
2604 	map->cache_bypass = bypass;
2605 
2606 	map->unlock(map->lock_arg);
2607 
2608 	return ret;
2609 }
2610 EXPORT_SYMBOL_GPL(regmap_multi_reg_write_bypassed);
2611 
2612 /**
2613  * regmap_raw_write_async() - Write raw values to one or more registers
2614  *                            asynchronously
2615  *
2616  * @map: Register map to write to
2617  * @reg: Initial register to write to
2618  * @val: Block of data to be written, laid out for direct transmission to the
2619  *       device.  Must be valid until regmap_async_complete() is called.
2620  * @val_len: Length of data pointed to by val.
2621  *
2622  * This function is intended to be used for things like firmware
2623  * download where a large block of data needs to be transferred to the
2624  * device.  No formatting will be done on the data provided.
2625  *
2626  * If supported by the underlying bus the write will be scheduled
2627  * asynchronously, helping maximise I/O speed on higher speed buses
2628  * like SPI.  regmap_async_complete() can be called to ensure that all
2629  * asynchrnous writes have been completed.
2630  *
2631  * A value of zero will be returned on success, a negative errno will
2632  * be returned in error cases.
2633  */
regmap_raw_write_async(struct regmap * map,unsigned int reg,const void * val,size_t val_len)2634 int regmap_raw_write_async(struct regmap *map, unsigned int reg,
2635 			   const void *val, size_t val_len)
2636 {
2637 	int ret;
2638 
2639 	if (val_len % map->format.val_bytes)
2640 		return -EINVAL;
2641 	if (!IS_ALIGNED(reg, map->reg_stride))
2642 		return -EINVAL;
2643 
2644 	map->lock(map->lock_arg);
2645 
2646 	map->async = true;
2647 
2648 	ret = _regmap_raw_write(map, reg, val, val_len, false);
2649 
2650 	map->async = false;
2651 
2652 	map->unlock(map->lock_arg);
2653 
2654 	return ret;
2655 }
2656 EXPORT_SYMBOL_GPL(regmap_raw_write_async);
2657 
_regmap_raw_read(struct regmap * map,unsigned int reg,void * val,unsigned int val_len,bool noinc)2658 static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2659 			    unsigned int val_len, bool noinc)
2660 {
2661 	struct regmap_range_node *range;
2662 	int ret;
2663 
2664 	WARN_ON(!map->bus);
2665 
2666 	if (!map->bus || !map->bus->read)
2667 		return -EINVAL;
2668 
2669 	range = _regmap_range_lookup(map, reg);
2670 	if (range) {
2671 		ret = _regmap_select_page(map, &reg, range,
2672 					  noinc ? 1 : val_len / map->format.val_bytes);
2673 		if (ret != 0)
2674 			return ret;
2675 	}
2676 
2677 	map->format.format_reg(map->work_buf, reg, map->reg_shift);
2678 	regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
2679 				      map->read_flag_mask);
2680 	trace_regmap_hw_read_start(map, reg, val_len / map->format.val_bytes);
2681 
2682 	ret = map->bus->read(map->bus_context, map->work_buf,
2683 			     map->format.reg_bytes + map->format.pad_bytes,
2684 			     val, val_len);
2685 
2686 	trace_regmap_hw_read_done(map, reg, val_len / map->format.val_bytes);
2687 
2688 	return ret;
2689 }
2690 
_regmap_bus_reg_read(void * context,unsigned int reg,unsigned int * val)2691 static int _regmap_bus_reg_read(void *context, unsigned int reg,
2692 				unsigned int *val)
2693 {
2694 	struct regmap *map = context;
2695 
2696 	return map->bus->reg_read(map->bus_context, reg, val);
2697 }
2698 
_regmap_bus_read(void * context,unsigned int reg,unsigned int * val)2699 static int _regmap_bus_read(void *context, unsigned int reg,
2700 			    unsigned int *val)
2701 {
2702 	int ret;
2703 	struct regmap *map = context;
2704 	void *work_val = map->work_buf + map->format.reg_bytes +
2705 		map->format.pad_bytes;
2706 
2707 	if (!map->format.parse_val)
2708 		return -EINVAL;
2709 
2710 	ret = _regmap_raw_read(map, reg, work_val, map->format.val_bytes, false);
2711 	if (ret == 0)
2712 		*val = map->format.parse_val(work_val);
2713 
2714 	return ret;
2715 }
2716 
_regmap_read(struct regmap * map,unsigned int reg,unsigned int * val)2717 static int _regmap_read(struct regmap *map, unsigned int reg,
2718 			unsigned int *val)
2719 {
2720 	int ret;
2721 	void *context = _regmap_map_get_context(map);
2722 
2723 	if (!map->cache_bypass) {
2724 		ret = regcache_read(map, reg, val);
2725 		if (ret == 0)
2726 			return 0;
2727 	}
2728 
2729 	if (map->cache_only)
2730 		return -EBUSY;
2731 
2732 	if (!regmap_readable(map, reg))
2733 		return -EIO;
2734 
2735 	ret = map->reg_read(context, reg, val);
2736 	if (ret == 0) {
2737 		if (regmap_should_log(map))
2738 			dev_info(map->dev, "%x => %x\n", reg, *val);
2739 
2740 		trace_regmap_reg_read(map, reg, *val);
2741 
2742 		if (!map->cache_bypass)
2743 			regcache_write(map, reg, *val);
2744 	}
2745 
2746 	return ret;
2747 }
2748 
2749 /**
2750  * regmap_read() - Read a value from a single register
2751  *
2752  * @map: Register map to read from
2753  * @reg: Register to be read from
2754  * @val: Pointer to store read value
2755  *
2756  * A value of zero will be returned on success, a negative errno will
2757  * be returned in error cases.
2758  */
regmap_read(struct regmap * map,unsigned int reg,unsigned int * val)2759 int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val)
2760 {
2761 	int ret;
2762 
2763 	if (!IS_ALIGNED(reg, map->reg_stride))
2764 		return -EINVAL;
2765 
2766 	map->lock(map->lock_arg);
2767 
2768 	ret = _regmap_read(map, reg, val);
2769 
2770 	map->unlock(map->lock_arg);
2771 
2772 	return ret;
2773 }
2774 EXPORT_SYMBOL_GPL(regmap_read);
2775 
2776 /**
2777  * regmap_raw_read() - Read raw data from the device
2778  *
2779  * @map: Register map to read from
2780  * @reg: First register to be read from
2781  * @val: Pointer to store read value
2782  * @val_len: Size of data to read
2783  *
2784  * A value of zero will be returned on success, a negative errno will
2785  * be returned in error cases.
2786  */
regmap_raw_read(struct regmap * map,unsigned int reg,void * val,size_t val_len)2787 int regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2788 		    size_t val_len)
2789 {
2790 	size_t val_bytes = map->format.val_bytes;
2791 	size_t val_count = val_len / val_bytes;
2792 	unsigned int v;
2793 	int ret, i;
2794 
2795 	if (!map->bus)
2796 		return -EINVAL;
2797 	if (val_len % map->format.val_bytes)
2798 		return -EINVAL;
2799 	if (!IS_ALIGNED(reg, map->reg_stride))
2800 		return -EINVAL;
2801 	if (val_count == 0)
2802 		return -EINVAL;
2803 
2804 	map->lock(map->lock_arg);
2805 
2806 	if (regmap_volatile_range(map, reg, val_count) || map->cache_bypass ||
2807 	    map->cache_type == REGCACHE_NONE) {
2808 		size_t chunk_count, chunk_bytes;
2809 		size_t chunk_regs = val_count;
2810 
2811 		if (!map->bus->read) {
2812 			ret = -ENOTSUPP;
2813 			goto out;
2814 		}
2815 
2816 		if (map->use_single_read)
2817 			chunk_regs = 1;
2818 		else if (map->max_raw_read && val_len > map->max_raw_read)
2819 			chunk_regs = map->max_raw_read / val_bytes;
2820 
2821 		chunk_count = val_count / chunk_regs;
2822 		chunk_bytes = chunk_regs * val_bytes;
2823 
2824 		/* Read bytes that fit into whole chunks */
2825 		for (i = 0; i < chunk_count; i++) {
2826 			ret = _regmap_raw_read(map, reg, val, chunk_bytes, false);
2827 			if (ret != 0)
2828 				goto out;
2829 
2830 			reg += regmap_get_offset(map, chunk_regs);
2831 			val += chunk_bytes;
2832 			val_len -= chunk_bytes;
2833 		}
2834 
2835 		/* Read remaining bytes */
2836 		if (val_len) {
2837 			ret = _regmap_raw_read(map, reg, val, val_len, false);
2838 			if (ret != 0)
2839 				goto out;
2840 		}
2841 	} else {
2842 		/* Otherwise go word by word for the cache; should be low
2843 		 * cost as we expect to hit the cache.
2844 		 */
2845 		for (i = 0; i < val_count; i++) {
2846 			ret = _regmap_read(map, reg + regmap_get_offset(map, i),
2847 					   &v);
2848 			if (ret != 0)
2849 				goto out;
2850 
2851 			map->format.format_val(val + (i * val_bytes), v, 0);
2852 		}
2853 	}
2854 
2855  out:
2856 	map->unlock(map->lock_arg);
2857 
2858 	return ret;
2859 }
2860 EXPORT_SYMBOL_GPL(regmap_raw_read);
2861 
2862 /**
2863  * regmap_noinc_read(): Read data from a register without incrementing the
2864  *			register number
2865  *
2866  * @map: Register map to read from
2867  * @reg: Register to read from
2868  * @val: Pointer to data buffer
2869  * @val_len: Length of output buffer in bytes.
2870  *
2871  * The regmap API usually assumes that bulk bus read operations will read a
2872  * range of registers. Some devices have certain registers for which a read
2873  * operation read will read from an internal FIFO.
2874  *
2875  * The target register must be volatile but registers after it can be
2876  * completely unrelated cacheable registers.
2877  *
2878  * This will attempt multiple reads as required to read val_len bytes.
2879  *
2880  * A value of zero will be returned on success, a negative errno will be
2881  * returned in error cases.
2882  */
regmap_noinc_read(struct regmap * map,unsigned int reg,void * val,size_t val_len)2883 int regmap_noinc_read(struct regmap *map, unsigned int reg,
2884 		      void *val, size_t val_len)
2885 {
2886 	size_t read_len;
2887 	int ret;
2888 
2889 	if (!map->bus)
2890 		return -EINVAL;
2891 	if (!map->bus->read)
2892 		return -ENOTSUPP;
2893 	if (val_len % map->format.val_bytes)
2894 		return -EINVAL;
2895 	if (!IS_ALIGNED(reg, map->reg_stride))
2896 		return -EINVAL;
2897 	if (val_len == 0)
2898 		return -EINVAL;
2899 
2900 	map->lock(map->lock_arg);
2901 
2902 	if (!regmap_volatile(map, reg) || !regmap_readable_noinc(map, reg)) {
2903 		ret = -EINVAL;
2904 		goto out_unlock;
2905 	}
2906 
2907 	while (val_len) {
2908 		if (map->max_raw_read && map->max_raw_read < val_len)
2909 			read_len = map->max_raw_read;
2910 		else
2911 			read_len = val_len;
2912 		ret = _regmap_raw_read(map, reg, val, read_len, true);
2913 		if (ret)
2914 			goto out_unlock;
2915 		val = ((u8 *)val) + read_len;
2916 		val_len -= read_len;
2917 	}
2918 
2919 out_unlock:
2920 	map->unlock(map->lock_arg);
2921 	return ret;
2922 }
2923 EXPORT_SYMBOL_GPL(regmap_noinc_read);
2924 
2925 /**
2926  * regmap_field_read(): Read a value to a single register field
2927  *
2928  * @field: Register field to read from
2929  * @val: Pointer to store read value
2930  *
2931  * A value of zero will be returned on success, a negative errno will
2932  * be returned in error cases.
2933  */
regmap_field_read(struct regmap_field * field,unsigned int * val)2934 int regmap_field_read(struct regmap_field *field, unsigned int *val)
2935 {
2936 	int ret;
2937 	unsigned int reg_val;
2938 	ret = regmap_read(field->regmap, field->reg, &reg_val);
2939 	if (ret != 0)
2940 		return ret;
2941 
2942 	reg_val &= field->mask;
2943 	reg_val >>= field->shift;
2944 	*val = reg_val;
2945 
2946 	return ret;
2947 }
2948 EXPORT_SYMBOL_GPL(regmap_field_read);
2949 
2950 /**
2951  * regmap_fields_read() - Read a value to a single register field with port ID
2952  *
2953  * @field: Register field to read from
2954  * @id: port ID
2955  * @val: Pointer to store read value
2956  *
2957  * A value of zero will be returned on success, a negative errno will
2958  * be returned in error cases.
2959  */
regmap_fields_read(struct regmap_field * field,unsigned int id,unsigned int * val)2960 int regmap_fields_read(struct regmap_field *field, unsigned int id,
2961 		       unsigned int *val)
2962 {
2963 	int ret;
2964 	unsigned int reg_val;
2965 
2966 	if (id >= field->id_size)
2967 		return -EINVAL;
2968 
2969 	ret = regmap_read(field->regmap,
2970 			  field->reg + (field->id_offset * id),
2971 			  &reg_val);
2972 	if (ret != 0)
2973 		return ret;
2974 
2975 	reg_val &= field->mask;
2976 	reg_val >>= field->shift;
2977 	*val = reg_val;
2978 
2979 	return ret;
2980 }
2981 EXPORT_SYMBOL_GPL(regmap_fields_read);
2982 
2983 /**
2984  * regmap_bulk_read() - Read multiple registers from the device
2985  *
2986  * @map: Register map to read from
2987  * @reg: First register to be read from
2988  * @val: Pointer to store read value, in native register size for device
2989  * @val_count: Number of registers to read
2990  *
2991  * A value of zero will be returned on success, a negative errno will
2992  * be returned in error cases.
2993  */
regmap_bulk_read(struct regmap * map,unsigned int reg,void * val,size_t val_count)2994 int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val,
2995 		     size_t val_count)
2996 {
2997 	int ret, i;
2998 	size_t val_bytes = map->format.val_bytes;
2999 	bool vol = regmap_volatile_range(map, reg, val_count);
3000 
3001 	if (!IS_ALIGNED(reg, map->reg_stride))
3002 		return -EINVAL;
3003 	if (val_count == 0)
3004 		return -EINVAL;
3005 
3006 	if (map->bus && map->format.parse_inplace && (vol || map->cache_type == REGCACHE_NONE)) {
3007 		ret = regmap_raw_read(map, reg, val, val_bytes * val_count);
3008 		if (ret != 0)
3009 			return ret;
3010 
3011 		for (i = 0; i < val_count * val_bytes; i += val_bytes)
3012 			map->format.parse_inplace(val + i);
3013 	} else {
3014 #ifdef CONFIG_64BIT
3015 		u64 *u64 = val;
3016 #endif
3017 		u32 *u32 = val;
3018 		u16 *u16 = val;
3019 		u8 *u8 = val;
3020 
3021 		map->lock(map->lock_arg);
3022 
3023 		for (i = 0; i < val_count; i++) {
3024 			unsigned int ival;
3025 
3026 			ret = _regmap_read(map, reg + regmap_get_offset(map, i),
3027 					   &ival);
3028 			if (ret != 0)
3029 				goto out;
3030 
3031 			switch (map->format.val_bytes) {
3032 #ifdef CONFIG_64BIT
3033 			case 8:
3034 				u64[i] = ival;
3035 				break;
3036 #endif
3037 			case 4:
3038 				u32[i] = ival;
3039 				break;
3040 			case 2:
3041 				u16[i] = ival;
3042 				break;
3043 			case 1:
3044 				u8[i] = ival;
3045 				break;
3046 			default:
3047 				ret = -EINVAL;
3048 				goto out;
3049 			}
3050 		}
3051 
3052 out:
3053 		map->unlock(map->lock_arg);
3054 	}
3055 
3056 	return ret;
3057 }
3058 EXPORT_SYMBOL_GPL(regmap_bulk_read);
3059 
_regmap_update_bits(struct regmap * map,unsigned int reg,unsigned int mask,unsigned int val,bool * change,bool force_write)3060 static int _regmap_update_bits(struct regmap *map, unsigned int reg,
3061 			       unsigned int mask, unsigned int val,
3062 			       bool *change, bool force_write)
3063 {
3064 	int ret;
3065 	unsigned int tmp, orig;
3066 
3067 	if (change)
3068 		*change = false;
3069 
3070 	if (regmap_volatile(map, reg) && map->reg_update_bits) {
3071 		ret = map->reg_update_bits(map->bus_context, reg, mask, val);
3072 		if (ret == 0 && change)
3073 			*change = true;
3074 	} else {
3075 		ret = _regmap_read(map, reg, &orig);
3076 		if (ret != 0)
3077 			return ret;
3078 
3079 		tmp = orig & ~mask;
3080 		tmp |= val & mask;
3081 
3082 		if (force_write || (tmp != orig)) {
3083 			ret = _regmap_write(map, reg, tmp);
3084 			if (ret == 0 && change)
3085 				*change = true;
3086 		}
3087 	}
3088 
3089 	return ret;
3090 }
3091 
3092 /**
3093  * regmap_update_bits_base() - Perform a read/modify/write cycle on a register
3094  *
3095  * @map: Register map to update
3096  * @reg: Register to update
3097  * @mask: Bitmask to change
3098  * @val: New value for bitmask
3099  * @change: Boolean indicating if a write was done
3100  * @async: Boolean indicating asynchronously
3101  * @force: Boolean indicating use force update
3102  *
3103  * Perform a read/modify/write cycle on a register map with change, async, force
3104  * options.
3105  *
3106  * If async is true:
3107  *
3108  * With most buses the read must be done synchronously so this is most useful
3109  * for devices with a cache which do not need to interact with the hardware to
3110  * determine the current register value.
3111  *
3112  * Returns zero for success, a negative number on error.
3113  */
regmap_update_bits_base(struct regmap * map,unsigned int reg,unsigned int mask,unsigned int val,bool * change,bool async,bool force)3114 int regmap_update_bits_base(struct regmap *map, unsigned int reg,
3115 			    unsigned int mask, unsigned int val,
3116 			    bool *change, bool async, bool force)
3117 {
3118 	int ret;
3119 
3120 	map->lock(map->lock_arg);
3121 
3122 	map->async = async;
3123 
3124 	ret = _regmap_update_bits(map, reg, mask, val, change, force);
3125 
3126 	map->async = false;
3127 
3128 	map->unlock(map->lock_arg);
3129 
3130 	return ret;
3131 }
3132 EXPORT_SYMBOL_GPL(regmap_update_bits_base);
3133 
3134 /**
3135  * regmap_test_bits() - Check if all specified bits are set in a register.
3136  *
3137  * @map: Register map to operate on
3138  * @reg: Register to read from
3139  * @bits: Bits to test
3140  *
3141  * Returns 0 if at least one of the tested bits is not set, 1 if all tested
3142  * bits are set and a negative error number if the underlying regmap_read()
3143  * fails.
3144  */
regmap_test_bits(struct regmap * map,unsigned int reg,unsigned int bits)3145 int regmap_test_bits(struct regmap *map, unsigned int reg, unsigned int bits)
3146 {
3147 	unsigned int val, ret;
3148 
3149 	ret = regmap_read(map, reg, &val);
3150 	if (ret)
3151 		return ret;
3152 
3153 	return (val & bits) == bits;
3154 }
3155 EXPORT_SYMBOL_GPL(regmap_test_bits);
3156 
regmap_async_complete_cb(struct regmap_async * async,int ret)3157 void regmap_async_complete_cb(struct regmap_async *async, int ret)
3158 {
3159 	struct regmap *map = async->map;
3160 	bool wake;
3161 
3162 	trace_regmap_async_io_complete(map);
3163 
3164 	spin_lock(&map->async_lock);
3165 	list_move(&async->list, &map->async_free);
3166 	wake = list_empty(&map->async_list);
3167 
3168 	if (ret != 0)
3169 		map->async_ret = ret;
3170 
3171 	spin_unlock(&map->async_lock);
3172 
3173 	if (wake)
3174 		wake_up(&map->async_waitq);
3175 }
3176 EXPORT_SYMBOL_GPL(regmap_async_complete_cb);
3177 
regmap_async_is_done(struct regmap * map)3178 static int regmap_async_is_done(struct regmap *map)
3179 {
3180 	unsigned long flags;
3181 	int ret;
3182 
3183 	spin_lock_irqsave(&map->async_lock, flags);
3184 	ret = list_empty(&map->async_list);
3185 	spin_unlock_irqrestore(&map->async_lock, flags);
3186 
3187 	return ret;
3188 }
3189 
3190 /**
3191  * regmap_async_complete - Ensure all asynchronous I/O has completed.
3192  *
3193  * @map: Map to operate on.
3194  *
3195  * Blocks until any pending asynchronous I/O has completed.  Returns
3196  * an error code for any failed I/O operations.
3197  */
regmap_async_complete(struct regmap * map)3198 int regmap_async_complete(struct regmap *map)
3199 {
3200 	unsigned long flags;
3201 	int ret;
3202 
3203 	/* Nothing to do with no async support */
3204 	if (!map->bus || !map->bus->async_write)
3205 		return 0;
3206 
3207 	trace_regmap_async_complete_start(map);
3208 
3209 	wait_event(map->async_waitq, regmap_async_is_done(map));
3210 
3211 	spin_lock_irqsave(&map->async_lock, flags);
3212 	ret = map->async_ret;
3213 	map->async_ret = 0;
3214 	spin_unlock_irqrestore(&map->async_lock, flags);
3215 
3216 	trace_regmap_async_complete_done(map);
3217 
3218 	return ret;
3219 }
3220 EXPORT_SYMBOL_GPL(regmap_async_complete);
3221 
3222 /**
3223  * regmap_register_patch - Register and apply register updates to be applied
3224  *                         on device initialistion
3225  *
3226  * @map: Register map to apply updates to.
3227  * @regs: Values to update.
3228  * @num_regs: Number of entries in regs.
3229  *
3230  * Register a set of register updates to be applied to the device
3231  * whenever the device registers are synchronised with the cache and
3232  * apply them immediately.  Typically this is used to apply
3233  * corrections to be applied to the device defaults on startup, such
3234  * as the updates some vendors provide to undocumented registers.
3235  *
3236  * The caller must ensure that this function cannot be called
3237  * concurrently with either itself or regcache_sync().
3238  */
regmap_register_patch(struct regmap * map,const struct reg_sequence * regs,int num_regs)3239 int regmap_register_patch(struct regmap *map, const struct reg_sequence *regs,
3240 			  int num_regs)
3241 {
3242 	struct reg_sequence *p;
3243 	int ret;
3244 	bool bypass;
3245 
3246 	if (WARN_ONCE(num_regs <= 0, "invalid registers number (%d)\n",
3247 	    num_regs))
3248 		return 0;
3249 
3250 	p = krealloc(map->patch,
3251 		     sizeof(struct reg_sequence) * (map->patch_regs + num_regs),
3252 		     GFP_KERNEL);
3253 	if (p) {
3254 		memcpy(p + map->patch_regs, regs, num_regs * sizeof(*regs));
3255 		map->patch = p;
3256 		map->patch_regs += num_regs;
3257 	} else {
3258 		return -ENOMEM;
3259 	}
3260 
3261 	map->lock(map->lock_arg);
3262 
3263 	bypass = map->cache_bypass;
3264 
3265 	map->cache_bypass = true;
3266 	map->async = true;
3267 
3268 	ret = _regmap_multi_reg_write(map, regs, num_regs);
3269 
3270 	map->async = false;
3271 	map->cache_bypass = bypass;
3272 
3273 	map->unlock(map->lock_arg);
3274 
3275 	regmap_async_complete(map);
3276 
3277 	return ret;
3278 }
3279 EXPORT_SYMBOL_GPL(regmap_register_patch);
3280 
3281 /**
3282  * regmap_get_val_bytes() - Report the size of a register value
3283  *
3284  * @map: Register map to operate on.
3285  *
3286  * Report the size of a register value, mainly intended to for use by
3287  * generic infrastructure built on top of regmap.
3288  */
regmap_get_val_bytes(struct regmap * map)3289 int regmap_get_val_bytes(struct regmap *map)
3290 {
3291 	if (map->format.format_write)
3292 		return -EINVAL;
3293 
3294 	return map->format.val_bytes;
3295 }
3296 EXPORT_SYMBOL_GPL(regmap_get_val_bytes);
3297 
3298 /**
3299  * regmap_get_max_register() - Report the max register value
3300  *
3301  * @map: Register map to operate on.
3302  *
3303  * Report the max register value, mainly intended to for use by
3304  * generic infrastructure built on top of regmap.
3305  */
regmap_get_max_register(struct regmap * map)3306 int regmap_get_max_register(struct regmap *map)
3307 {
3308 	return map->max_register ? map->max_register : -EINVAL;
3309 }
3310 EXPORT_SYMBOL_GPL(regmap_get_max_register);
3311 
3312 /**
3313  * regmap_get_reg_stride() - Report the register address stride
3314  *
3315  * @map: Register map to operate on.
3316  *
3317  * Report the register address stride, mainly intended to for use by
3318  * generic infrastructure built on top of regmap.
3319  */
regmap_get_reg_stride(struct regmap * map)3320 int regmap_get_reg_stride(struct regmap *map)
3321 {
3322 	return map->reg_stride;
3323 }
3324 EXPORT_SYMBOL_GPL(regmap_get_reg_stride);
3325 
regmap_parse_val(struct regmap * map,const void * buf,unsigned int * val)3326 int regmap_parse_val(struct regmap *map, const void *buf,
3327 			unsigned int *val)
3328 {
3329 	if (!map->format.parse_val)
3330 		return -EINVAL;
3331 
3332 	*val = map->format.parse_val(buf);
3333 
3334 	return 0;
3335 }
3336 EXPORT_SYMBOL_GPL(regmap_parse_val);
3337 
regmap_initcall(void)3338 static int __init regmap_initcall(void)
3339 {
3340 	regmap_debugfs_initcall();
3341 
3342 	return 0;
3343 }
3344 postcore_initcall(regmap_initcall);
3345