1 // SPDX-License-Identifier: GPL-2.0
2 //
3 // Register map access API
4 //
5 // Copyright 2011 Wolfson Microelectronics plc
6 //
7 // Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
8
9 #include <linux/device.h>
10 #include <linux/slab.h>
11 #include <linux/export.h>
12 #include <linux/mutex.h>
13 #include <linux/err.h>
14 #include <linux/property.h>
15 #include <linux/rbtree.h>
16 #include <linux/sched.h>
17 #include <linux/delay.h>
18 #include <linux/log2.h>
19 #include <linux/hwspinlock.h>
20 #include <asm/unaligned.h>
21
22 #define CREATE_TRACE_POINTS
23 #include "trace.h"
24
25 #include "internal.h"
26
27 /*
28 * Sometimes for failures during very early init the trace
29 * infrastructure isn't available early enough to be used. For this
30 * sort of problem defining LOG_DEVICE will add printks for basic
31 * register I/O on a specific device.
32 */
33 #undef LOG_DEVICE
34
35 #ifdef LOG_DEVICE
regmap_should_log(struct regmap * map)36 static inline bool regmap_should_log(struct regmap *map)
37 {
38 return (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0);
39 }
40 #else
regmap_should_log(struct regmap * map)41 static inline bool regmap_should_log(struct regmap *map) { return false; }
42 #endif
43
44
45 static int _regmap_update_bits(struct regmap *map, unsigned int reg,
46 unsigned int mask, unsigned int val,
47 bool *change, bool force_write);
48
49 static int _regmap_bus_reg_read(void *context, unsigned int reg,
50 unsigned int *val);
51 static int _regmap_bus_read(void *context, unsigned int reg,
52 unsigned int *val);
53 static int _regmap_bus_formatted_write(void *context, unsigned int reg,
54 unsigned int val);
55 static int _regmap_bus_reg_write(void *context, unsigned int reg,
56 unsigned int val);
57 static int _regmap_bus_raw_write(void *context, unsigned int reg,
58 unsigned int val);
59
regmap_reg_in_ranges(unsigned int reg,const struct regmap_range * ranges,unsigned int nranges)60 bool regmap_reg_in_ranges(unsigned int reg,
61 const struct regmap_range *ranges,
62 unsigned int nranges)
63 {
64 const struct regmap_range *r;
65 int i;
66
67 for (i = 0, r = ranges; i < nranges; i++, r++)
68 if (regmap_reg_in_range(reg, r))
69 return true;
70 return false;
71 }
72 EXPORT_SYMBOL_GPL(regmap_reg_in_ranges);
73
regmap_check_range_table(struct regmap * map,unsigned int reg,const struct regmap_access_table * table)74 bool regmap_check_range_table(struct regmap *map, unsigned int reg,
75 const struct regmap_access_table *table)
76 {
77 /* Check "no ranges" first */
78 if (regmap_reg_in_ranges(reg, table->no_ranges, table->n_no_ranges))
79 return false;
80
81 /* In case zero "yes ranges" are supplied, any reg is OK */
82 if (!table->n_yes_ranges)
83 return true;
84
85 return regmap_reg_in_ranges(reg, table->yes_ranges,
86 table->n_yes_ranges);
87 }
88 EXPORT_SYMBOL_GPL(regmap_check_range_table);
89
regmap_writeable(struct regmap * map,unsigned int reg)90 bool regmap_writeable(struct regmap *map, unsigned int reg)
91 {
92 if (map->max_register && reg > map->max_register)
93 return false;
94
95 if (map->writeable_reg)
96 return map->writeable_reg(map->dev, reg);
97
98 if (map->wr_table)
99 return regmap_check_range_table(map, reg, map->wr_table);
100
101 return true;
102 }
103
regmap_cached(struct regmap * map,unsigned int reg)104 bool regmap_cached(struct regmap *map, unsigned int reg)
105 {
106 int ret;
107 unsigned int val;
108
109 if (map->cache_type == REGCACHE_NONE)
110 return false;
111
112 if (!map->cache_ops)
113 return false;
114
115 if (map->max_register && reg > map->max_register)
116 return false;
117
118 map->lock(map->lock_arg);
119 ret = regcache_read(map, reg, &val);
120 map->unlock(map->lock_arg);
121 if (ret)
122 return false;
123
124 return true;
125 }
126
regmap_readable(struct regmap * map,unsigned int reg)127 bool regmap_readable(struct regmap *map, unsigned int reg)
128 {
129 if (!map->reg_read)
130 return false;
131
132 if (map->max_register && reg > map->max_register)
133 return false;
134
135 if (map->format.format_write)
136 return false;
137
138 if (map->readable_reg)
139 return map->readable_reg(map->dev, reg);
140
141 if (map->rd_table)
142 return regmap_check_range_table(map, reg, map->rd_table);
143
144 return true;
145 }
146
regmap_volatile(struct regmap * map,unsigned int reg)147 bool regmap_volatile(struct regmap *map, unsigned int reg)
148 {
149 if (!map->format.format_write && !regmap_readable(map, reg))
150 return false;
151
152 if (map->volatile_reg)
153 return map->volatile_reg(map->dev, reg);
154
155 if (map->volatile_table)
156 return regmap_check_range_table(map, reg, map->volatile_table);
157
158 if (map->cache_ops)
159 return false;
160 else
161 return true;
162 }
163
regmap_precious(struct regmap * map,unsigned int reg)164 bool regmap_precious(struct regmap *map, unsigned int reg)
165 {
166 if (!regmap_readable(map, reg))
167 return false;
168
169 if (map->precious_reg)
170 return map->precious_reg(map->dev, reg);
171
172 if (map->precious_table)
173 return regmap_check_range_table(map, reg, map->precious_table);
174
175 return false;
176 }
177
regmap_writeable_noinc(struct regmap * map,unsigned int reg)178 bool regmap_writeable_noinc(struct regmap *map, unsigned int reg)
179 {
180 if (map->writeable_noinc_reg)
181 return map->writeable_noinc_reg(map->dev, reg);
182
183 if (map->wr_noinc_table)
184 return regmap_check_range_table(map, reg, map->wr_noinc_table);
185
186 return true;
187 }
188
regmap_readable_noinc(struct regmap * map,unsigned int reg)189 bool regmap_readable_noinc(struct regmap *map, unsigned int reg)
190 {
191 if (map->readable_noinc_reg)
192 return map->readable_noinc_reg(map->dev, reg);
193
194 if (map->rd_noinc_table)
195 return regmap_check_range_table(map, reg, map->rd_noinc_table);
196
197 return true;
198 }
199
regmap_volatile_range(struct regmap * map,unsigned int reg,size_t num)200 static bool regmap_volatile_range(struct regmap *map, unsigned int reg,
201 size_t num)
202 {
203 unsigned int i;
204
205 for (i = 0; i < num; i++)
206 if (!regmap_volatile(map, reg + regmap_get_offset(map, i)))
207 return false;
208
209 return true;
210 }
211
regmap_format_12_20_write(struct regmap * map,unsigned int reg,unsigned int val)212 static void regmap_format_12_20_write(struct regmap *map,
213 unsigned int reg, unsigned int val)
214 {
215 u8 *out = map->work_buf;
216
217 out[0] = reg >> 4;
218 out[1] = (reg << 4) | (val >> 16);
219 out[2] = val >> 8;
220 out[3] = val;
221 }
222
223
regmap_format_2_6_write(struct regmap * map,unsigned int reg,unsigned int val)224 static void regmap_format_2_6_write(struct regmap *map,
225 unsigned int reg, unsigned int val)
226 {
227 u8 *out = map->work_buf;
228
229 *out = (reg << 6) | val;
230 }
231
regmap_format_4_12_write(struct regmap * map,unsigned int reg,unsigned int val)232 static void regmap_format_4_12_write(struct regmap *map,
233 unsigned int reg, unsigned int val)
234 {
235 __be16 *out = map->work_buf;
236 *out = cpu_to_be16((reg << 12) | val);
237 }
238
regmap_format_7_9_write(struct regmap * map,unsigned int reg,unsigned int val)239 static void regmap_format_7_9_write(struct regmap *map,
240 unsigned int reg, unsigned int val)
241 {
242 __be16 *out = map->work_buf;
243 *out = cpu_to_be16((reg << 9) | val);
244 }
245
regmap_format_7_17_write(struct regmap * map,unsigned int reg,unsigned int val)246 static void regmap_format_7_17_write(struct regmap *map,
247 unsigned int reg, unsigned int val)
248 {
249 u8 *out = map->work_buf;
250
251 out[2] = val;
252 out[1] = val >> 8;
253 out[0] = (val >> 16) | (reg << 1);
254 }
255
regmap_format_10_14_write(struct regmap * map,unsigned int reg,unsigned int val)256 static void regmap_format_10_14_write(struct regmap *map,
257 unsigned int reg, unsigned int val)
258 {
259 u8 *out = map->work_buf;
260
261 out[2] = val;
262 out[1] = (val >> 8) | (reg << 6);
263 out[0] = reg >> 2;
264 }
265
regmap_format_8(void * buf,unsigned int val,unsigned int shift)266 static void regmap_format_8(void *buf, unsigned int val, unsigned int shift)
267 {
268 u8 *b = buf;
269
270 b[0] = val << shift;
271 }
272
regmap_format_16_be(void * buf,unsigned int val,unsigned int shift)273 static void regmap_format_16_be(void *buf, unsigned int val, unsigned int shift)
274 {
275 put_unaligned_be16(val << shift, buf);
276 }
277
regmap_format_16_le(void * buf,unsigned int val,unsigned int shift)278 static void regmap_format_16_le(void *buf, unsigned int val, unsigned int shift)
279 {
280 put_unaligned_le16(val << shift, buf);
281 }
282
regmap_format_16_native(void * buf,unsigned int val,unsigned int shift)283 static void regmap_format_16_native(void *buf, unsigned int val,
284 unsigned int shift)
285 {
286 u16 v = val << shift;
287
288 memcpy(buf, &v, sizeof(v));
289 }
290
regmap_format_24(void * buf,unsigned int val,unsigned int shift)291 static void regmap_format_24(void *buf, unsigned int val, unsigned int shift)
292 {
293 u8 *b = buf;
294
295 val <<= shift;
296
297 b[0] = val >> 16;
298 b[1] = val >> 8;
299 b[2] = val;
300 }
301
regmap_format_32_be(void * buf,unsigned int val,unsigned int shift)302 static void regmap_format_32_be(void *buf, unsigned int val, unsigned int shift)
303 {
304 put_unaligned_be32(val << shift, buf);
305 }
306
regmap_format_32_le(void * buf,unsigned int val,unsigned int shift)307 static void regmap_format_32_le(void *buf, unsigned int val, unsigned int shift)
308 {
309 put_unaligned_le32(val << shift, buf);
310 }
311
regmap_format_32_native(void * buf,unsigned int val,unsigned int shift)312 static void regmap_format_32_native(void *buf, unsigned int val,
313 unsigned int shift)
314 {
315 u32 v = val << shift;
316
317 memcpy(buf, &v, sizeof(v));
318 }
319
320 #ifdef CONFIG_64BIT
regmap_format_64_be(void * buf,unsigned int val,unsigned int shift)321 static void regmap_format_64_be(void *buf, unsigned int val, unsigned int shift)
322 {
323 put_unaligned_be64((u64) val << shift, buf);
324 }
325
regmap_format_64_le(void * buf,unsigned int val,unsigned int shift)326 static void regmap_format_64_le(void *buf, unsigned int val, unsigned int shift)
327 {
328 put_unaligned_le64((u64) val << shift, buf);
329 }
330
regmap_format_64_native(void * buf,unsigned int val,unsigned int shift)331 static void regmap_format_64_native(void *buf, unsigned int val,
332 unsigned int shift)
333 {
334 u64 v = (u64) val << shift;
335
336 memcpy(buf, &v, sizeof(v));
337 }
338 #endif
339
regmap_parse_inplace_noop(void * buf)340 static void regmap_parse_inplace_noop(void *buf)
341 {
342 }
343
regmap_parse_8(const void * buf)344 static unsigned int regmap_parse_8(const void *buf)
345 {
346 const u8 *b = buf;
347
348 return b[0];
349 }
350
regmap_parse_16_be(const void * buf)351 static unsigned int regmap_parse_16_be(const void *buf)
352 {
353 return get_unaligned_be16(buf);
354 }
355
regmap_parse_16_le(const void * buf)356 static unsigned int regmap_parse_16_le(const void *buf)
357 {
358 return get_unaligned_le16(buf);
359 }
360
regmap_parse_16_be_inplace(void * buf)361 static void regmap_parse_16_be_inplace(void *buf)
362 {
363 u16 v = get_unaligned_be16(buf);
364
365 memcpy(buf, &v, sizeof(v));
366 }
367
regmap_parse_16_le_inplace(void * buf)368 static void regmap_parse_16_le_inplace(void *buf)
369 {
370 u16 v = get_unaligned_le16(buf);
371
372 memcpy(buf, &v, sizeof(v));
373 }
374
regmap_parse_16_native(const void * buf)375 static unsigned int regmap_parse_16_native(const void *buf)
376 {
377 u16 v;
378
379 memcpy(&v, buf, sizeof(v));
380 return v;
381 }
382
regmap_parse_24(const void * buf)383 static unsigned int regmap_parse_24(const void *buf)
384 {
385 const u8 *b = buf;
386 unsigned int ret = b[2];
387 ret |= ((unsigned int)b[1]) << 8;
388 ret |= ((unsigned int)b[0]) << 16;
389
390 return ret;
391 }
392
regmap_parse_32_be(const void * buf)393 static unsigned int regmap_parse_32_be(const void *buf)
394 {
395 return get_unaligned_be32(buf);
396 }
397
regmap_parse_32_le(const void * buf)398 static unsigned int regmap_parse_32_le(const void *buf)
399 {
400 return get_unaligned_le32(buf);
401 }
402
regmap_parse_32_be_inplace(void * buf)403 static void regmap_parse_32_be_inplace(void *buf)
404 {
405 u32 v = get_unaligned_be32(buf);
406
407 memcpy(buf, &v, sizeof(v));
408 }
409
regmap_parse_32_le_inplace(void * buf)410 static void regmap_parse_32_le_inplace(void *buf)
411 {
412 u32 v = get_unaligned_le32(buf);
413
414 memcpy(buf, &v, sizeof(v));
415 }
416
regmap_parse_32_native(const void * buf)417 static unsigned int regmap_parse_32_native(const void *buf)
418 {
419 u32 v;
420
421 memcpy(&v, buf, sizeof(v));
422 return v;
423 }
424
425 #ifdef CONFIG_64BIT
regmap_parse_64_be(const void * buf)426 static unsigned int regmap_parse_64_be(const void *buf)
427 {
428 return get_unaligned_be64(buf);
429 }
430
regmap_parse_64_le(const void * buf)431 static unsigned int regmap_parse_64_le(const void *buf)
432 {
433 return get_unaligned_le64(buf);
434 }
435
regmap_parse_64_be_inplace(void * buf)436 static void regmap_parse_64_be_inplace(void *buf)
437 {
438 u64 v = get_unaligned_be64(buf);
439
440 memcpy(buf, &v, sizeof(v));
441 }
442
regmap_parse_64_le_inplace(void * buf)443 static void regmap_parse_64_le_inplace(void *buf)
444 {
445 u64 v = get_unaligned_le64(buf);
446
447 memcpy(buf, &v, sizeof(v));
448 }
449
regmap_parse_64_native(const void * buf)450 static unsigned int regmap_parse_64_native(const void *buf)
451 {
452 u64 v;
453
454 memcpy(&v, buf, sizeof(v));
455 return v;
456 }
457 #endif
458
regmap_lock_hwlock(void * __map)459 static void regmap_lock_hwlock(void *__map)
460 {
461 struct regmap *map = __map;
462
463 hwspin_lock_timeout(map->hwlock, UINT_MAX);
464 }
465
regmap_lock_hwlock_irq(void * __map)466 static void regmap_lock_hwlock_irq(void *__map)
467 {
468 struct regmap *map = __map;
469
470 hwspin_lock_timeout_irq(map->hwlock, UINT_MAX);
471 }
472
regmap_lock_hwlock_irqsave(void * __map)473 static void regmap_lock_hwlock_irqsave(void *__map)
474 {
475 struct regmap *map = __map;
476
477 hwspin_lock_timeout_irqsave(map->hwlock, UINT_MAX,
478 &map->spinlock_flags);
479 }
480
regmap_unlock_hwlock(void * __map)481 static void regmap_unlock_hwlock(void *__map)
482 {
483 struct regmap *map = __map;
484
485 hwspin_unlock(map->hwlock);
486 }
487
regmap_unlock_hwlock_irq(void * __map)488 static void regmap_unlock_hwlock_irq(void *__map)
489 {
490 struct regmap *map = __map;
491
492 hwspin_unlock_irq(map->hwlock);
493 }
494
regmap_unlock_hwlock_irqrestore(void * __map)495 static void regmap_unlock_hwlock_irqrestore(void *__map)
496 {
497 struct regmap *map = __map;
498
499 hwspin_unlock_irqrestore(map->hwlock, &map->spinlock_flags);
500 }
501
regmap_lock_unlock_none(void * __map)502 static void regmap_lock_unlock_none(void *__map)
503 {
504
505 }
506
regmap_lock_mutex(void * __map)507 static void regmap_lock_mutex(void *__map)
508 {
509 struct regmap *map = __map;
510 mutex_lock(&map->mutex);
511 }
512
regmap_unlock_mutex(void * __map)513 static void regmap_unlock_mutex(void *__map)
514 {
515 struct regmap *map = __map;
516 mutex_unlock(&map->mutex);
517 }
518
regmap_lock_spinlock(void * __map)519 static void regmap_lock_spinlock(void *__map)
520 __acquires(&map->spinlock)
521 {
522 struct regmap *map = __map;
523 unsigned long flags;
524
525 spin_lock_irqsave(&map->spinlock, flags);
526 map->spinlock_flags = flags;
527 }
528
regmap_unlock_spinlock(void * __map)529 static void regmap_unlock_spinlock(void *__map)
530 __releases(&map->spinlock)
531 {
532 struct regmap *map = __map;
533 spin_unlock_irqrestore(&map->spinlock, map->spinlock_flags);
534 }
535
regmap_lock_raw_spinlock(void * __map)536 static void regmap_lock_raw_spinlock(void *__map)
537 __acquires(&map->raw_spinlock)
538 {
539 struct regmap *map = __map;
540 unsigned long flags;
541
542 raw_spin_lock_irqsave(&map->raw_spinlock, flags);
543 map->raw_spinlock_flags = flags;
544 }
545
regmap_unlock_raw_spinlock(void * __map)546 static void regmap_unlock_raw_spinlock(void *__map)
547 __releases(&map->raw_spinlock)
548 {
549 struct regmap *map = __map;
550 raw_spin_unlock_irqrestore(&map->raw_spinlock, map->raw_spinlock_flags);
551 }
552
dev_get_regmap_release(struct device * dev,void * res)553 static void dev_get_regmap_release(struct device *dev, void *res)
554 {
555 /*
556 * We don't actually have anything to do here; the goal here
557 * is not to manage the regmap but to provide a simple way to
558 * get the regmap back given a struct device.
559 */
560 }
561
_regmap_range_add(struct regmap * map,struct regmap_range_node * data)562 static bool _regmap_range_add(struct regmap *map,
563 struct regmap_range_node *data)
564 {
565 struct rb_root *root = &map->range_tree;
566 struct rb_node **new = &(root->rb_node), *parent = NULL;
567
568 while (*new) {
569 struct regmap_range_node *this =
570 rb_entry(*new, struct regmap_range_node, node);
571
572 parent = *new;
573 if (data->range_max < this->range_min)
574 new = &((*new)->rb_left);
575 else if (data->range_min > this->range_max)
576 new = &((*new)->rb_right);
577 else
578 return false;
579 }
580
581 rb_link_node(&data->node, parent, new);
582 rb_insert_color(&data->node, root);
583
584 return true;
585 }
586
_regmap_range_lookup(struct regmap * map,unsigned int reg)587 static struct regmap_range_node *_regmap_range_lookup(struct regmap *map,
588 unsigned int reg)
589 {
590 struct rb_node *node = map->range_tree.rb_node;
591
592 while (node) {
593 struct regmap_range_node *this =
594 rb_entry(node, struct regmap_range_node, node);
595
596 if (reg < this->range_min)
597 node = node->rb_left;
598 else if (reg > this->range_max)
599 node = node->rb_right;
600 else
601 return this;
602 }
603
604 return NULL;
605 }
606
regmap_range_exit(struct regmap * map)607 static void regmap_range_exit(struct regmap *map)
608 {
609 struct rb_node *next;
610 struct regmap_range_node *range_node;
611
612 next = rb_first(&map->range_tree);
613 while (next) {
614 range_node = rb_entry(next, struct regmap_range_node, node);
615 next = rb_next(&range_node->node);
616 rb_erase(&range_node->node, &map->range_tree);
617 kfree(range_node);
618 }
619
620 kfree(map->selector_work_buf);
621 }
622
regmap_set_name(struct regmap * map,const struct regmap_config * config)623 static int regmap_set_name(struct regmap *map, const struct regmap_config *config)
624 {
625 if (config->name) {
626 const char *name = kstrdup_const(config->name, GFP_KERNEL);
627
628 if (!name)
629 return -ENOMEM;
630
631 kfree_const(map->name);
632 map->name = name;
633 }
634
635 return 0;
636 }
637
regmap_attach_dev(struct device * dev,struct regmap * map,const struct regmap_config * config)638 int regmap_attach_dev(struct device *dev, struct regmap *map,
639 const struct regmap_config *config)
640 {
641 struct regmap **m;
642 int ret;
643
644 map->dev = dev;
645
646 ret = regmap_set_name(map, config);
647 if (ret)
648 return ret;
649
650 regmap_debugfs_exit(map);
651 regmap_debugfs_init(map);
652
653 /* Add a devres resource for dev_get_regmap() */
654 m = devres_alloc(dev_get_regmap_release, sizeof(*m), GFP_KERNEL);
655 if (!m) {
656 regmap_debugfs_exit(map);
657 return -ENOMEM;
658 }
659 *m = map;
660 devres_add(dev, m);
661
662 return 0;
663 }
664 EXPORT_SYMBOL_GPL(regmap_attach_dev);
665
regmap_get_reg_endian(const struct regmap_bus * bus,const struct regmap_config * config)666 static enum regmap_endian regmap_get_reg_endian(const struct regmap_bus *bus,
667 const struct regmap_config *config)
668 {
669 enum regmap_endian endian;
670
671 /* Retrieve the endianness specification from the regmap config */
672 endian = config->reg_format_endian;
673
674 /* If the regmap config specified a non-default value, use that */
675 if (endian != REGMAP_ENDIAN_DEFAULT)
676 return endian;
677
678 /* Retrieve the endianness specification from the bus config */
679 if (bus && bus->reg_format_endian_default)
680 endian = bus->reg_format_endian_default;
681
682 /* If the bus specified a non-default value, use that */
683 if (endian != REGMAP_ENDIAN_DEFAULT)
684 return endian;
685
686 /* Use this if no other value was found */
687 return REGMAP_ENDIAN_BIG;
688 }
689
regmap_get_val_endian(struct device * dev,const struct regmap_bus * bus,const struct regmap_config * config)690 enum regmap_endian regmap_get_val_endian(struct device *dev,
691 const struct regmap_bus *bus,
692 const struct regmap_config *config)
693 {
694 struct fwnode_handle *fwnode = dev ? dev_fwnode(dev) : NULL;
695 enum regmap_endian endian;
696
697 /* Retrieve the endianness specification from the regmap config */
698 endian = config->val_format_endian;
699
700 /* If the regmap config specified a non-default value, use that */
701 if (endian != REGMAP_ENDIAN_DEFAULT)
702 return endian;
703
704 /* If the firmware node exist try to get endianness from it */
705 if (fwnode_property_read_bool(fwnode, "big-endian"))
706 endian = REGMAP_ENDIAN_BIG;
707 else if (fwnode_property_read_bool(fwnode, "little-endian"))
708 endian = REGMAP_ENDIAN_LITTLE;
709 else if (fwnode_property_read_bool(fwnode, "native-endian"))
710 endian = REGMAP_ENDIAN_NATIVE;
711
712 /* If the endianness was specified in fwnode, use that */
713 if (endian != REGMAP_ENDIAN_DEFAULT)
714 return endian;
715
716 /* Retrieve the endianness specification from the bus config */
717 if (bus && bus->val_format_endian_default)
718 endian = bus->val_format_endian_default;
719
720 /* If the bus specified a non-default value, use that */
721 if (endian != REGMAP_ENDIAN_DEFAULT)
722 return endian;
723
724 /* Use this if no other value was found */
725 return REGMAP_ENDIAN_BIG;
726 }
727 EXPORT_SYMBOL_GPL(regmap_get_val_endian);
728
__regmap_init(struct device * dev,const struct regmap_bus * bus,void * bus_context,const struct regmap_config * config,struct lock_class_key * lock_key,const char * lock_name)729 struct regmap *__regmap_init(struct device *dev,
730 const struct regmap_bus *bus,
731 void *bus_context,
732 const struct regmap_config *config,
733 struct lock_class_key *lock_key,
734 const char *lock_name)
735 {
736 struct regmap *map;
737 int ret = -EINVAL;
738 enum regmap_endian reg_endian, val_endian;
739 int i, j;
740
741 if (!config)
742 goto err;
743
744 map = kzalloc(sizeof(*map), GFP_KERNEL);
745 if (map == NULL) {
746 ret = -ENOMEM;
747 goto err;
748 }
749
750 ret = regmap_set_name(map, config);
751 if (ret)
752 goto err_map;
753
754 ret = -EINVAL; /* Later error paths rely on this */
755
756 if (config->disable_locking) {
757 map->lock = map->unlock = regmap_lock_unlock_none;
758 map->can_sleep = config->can_sleep;
759 regmap_debugfs_disable(map);
760 } else if (config->lock && config->unlock) {
761 map->lock = config->lock;
762 map->unlock = config->unlock;
763 map->lock_arg = config->lock_arg;
764 map->can_sleep = config->can_sleep;
765 } else if (config->use_hwlock) {
766 map->hwlock = hwspin_lock_request_specific(config->hwlock_id);
767 if (!map->hwlock) {
768 ret = -ENXIO;
769 goto err_name;
770 }
771
772 switch (config->hwlock_mode) {
773 case HWLOCK_IRQSTATE:
774 map->lock = regmap_lock_hwlock_irqsave;
775 map->unlock = regmap_unlock_hwlock_irqrestore;
776 break;
777 case HWLOCK_IRQ:
778 map->lock = regmap_lock_hwlock_irq;
779 map->unlock = regmap_unlock_hwlock_irq;
780 break;
781 default:
782 map->lock = regmap_lock_hwlock;
783 map->unlock = regmap_unlock_hwlock;
784 break;
785 }
786
787 map->lock_arg = map;
788 } else {
789 if ((bus && bus->fast_io) ||
790 config->fast_io) {
791 if (config->use_raw_spinlock) {
792 raw_spin_lock_init(&map->raw_spinlock);
793 map->lock = regmap_lock_raw_spinlock;
794 map->unlock = regmap_unlock_raw_spinlock;
795 lockdep_set_class_and_name(&map->raw_spinlock,
796 lock_key, lock_name);
797 } else {
798 spin_lock_init(&map->spinlock);
799 map->lock = regmap_lock_spinlock;
800 map->unlock = regmap_unlock_spinlock;
801 lockdep_set_class_and_name(&map->spinlock,
802 lock_key, lock_name);
803 }
804 } else {
805 mutex_init(&map->mutex);
806 map->lock = regmap_lock_mutex;
807 map->unlock = regmap_unlock_mutex;
808 map->can_sleep = true;
809 lockdep_set_class_and_name(&map->mutex,
810 lock_key, lock_name);
811 }
812 map->lock_arg = map;
813 }
814
815 /*
816 * When we write in fast-paths with regmap_bulk_write() don't allocate
817 * scratch buffers with sleeping allocations.
818 */
819 if ((bus && bus->fast_io) || config->fast_io)
820 map->alloc_flags = GFP_ATOMIC;
821 else
822 map->alloc_flags = GFP_KERNEL;
823
824 map->format.reg_bytes = DIV_ROUND_UP(config->reg_bits, 8);
825 map->format.pad_bytes = config->pad_bits / 8;
826 map->format.val_bytes = DIV_ROUND_UP(config->val_bits, 8);
827 map->format.buf_size = DIV_ROUND_UP(config->reg_bits +
828 config->val_bits + config->pad_bits, 8);
829 map->reg_shift = config->pad_bits % 8;
830 if (config->reg_stride)
831 map->reg_stride = config->reg_stride;
832 else
833 map->reg_stride = 1;
834 if (is_power_of_2(map->reg_stride))
835 map->reg_stride_order = ilog2(map->reg_stride);
836 else
837 map->reg_stride_order = -1;
838 map->use_single_read = config->use_single_read || !bus || !bus->read;
839 map->use_single_write = config->use_single_write || !bus || !bus->write;
840 map->can_multi_write = config->can_multi_write && bus && bus->write;
841 if (bus) {
842 map->max_raw_read = bus->max_raw_read;
843 map->max_raw_write = bus->max_raw_write;
844 }
845 map->dev = dev;
846 map->bus = bus;
847 map->bus_context = bus_context;
848 map->max_register = config->max_register;
849 map->wr_table = config->wr_table;
850 map->rd_table = config->rd_table;
851 map->volatile_table = config->volatile_table;
852 map->precious_table = config->precious_table;
853 map->wr_noinc_table = config->wr_noinc_table;
854 map->rd_noinc_table = config->rd_noinc_table;
855 map->writeable_reg = config->writeable_reg;
856 map->readable_reg = config->readable_reg;
857 map->volatile_reg = config->volatile_reg;
858 map->precious_reg = config->precious_reg;
859 map->writeable_noinc_reg = config->writeable_noinc_reg;
860 map->readable_noinc_reg = config->readable_noinc_reg;
861 map->cache_type = config->cache_type;
862
863 spin_lock_init(&map->async_lock);
864 INIT_LIST_HEAD(&map->async_list);
865 INIT_LIST_HEAD(&map->async_free);
866 init_waitqueue_head(&map->async_waitq);
867
868 if (config->read_flag_mask ||
869 config->write_flag_mask ||
870 config->zero_flag_mask) {
871 map->read_flag_mask = config->read_flag_mask;
872 map->write_flag_mask = config->write_flag_mask;
873 } else if (bus) {
874 map->read_flag_mask = bus->read_flag_mask;
875 }
876
877 if (!bus) {
878 map->reg_read = config->reg_read;
879 map->reg_write = config->reg_write;
880
881 map->defer_caching = false;
882 goto skip_format_initialization;
883 } else if (!bus->read || !bus->write) {
884 map->reg_read = _regmap_bus_reg_read;
885 map->reg_write = _regmap_bus_reg_write;
886 map->reg_update_bits = bus->reg_update_bits;
887
888 map->defer_caching = false;
889 goto skip_format_initialization;
890 } else {
891 map->reg_read = _regmap_bus_read;
892 map->reg_update_bits = bus->reg_update_bits;
893 }
894
895 reg_endian = regmap_get_reg_endian(bus, config);
896 val_endian = regmap_get_val_endian(dev, bus, config);
897
898 switch (config->reg_bits + map->reg_shift) {
899 case 2:
900 switch (config->val_bits) {
901 case 6:
902 map->format.format_write = regmap_format_2_6_write;
903 break;
904 default:
905 goto err_hwlock;
906 }
907 break;
908
909 case 4:
910 switch (config->val_bits) {
911 case 12:
912 map->format.format_write = regmap_format_4_12_write;
913 break;
914 default:
915 goto err_hwlock;
916 }
917 break;
918
919 case 7:
920 switch (config->val_bits) {
921 case 9:
922 map->format.format_write = regmap_format_7_9_write;
923 break;
924 case 17:
925 map->format.format_write = regmap_format_7_17_write;
926 break;
927 default:
928 goto err_hwlock;
929 }
930 break;
931
932 case 10:
933 switch (config->val_bits) {
934 case 14:
935 map->format.format_write = regmap_format_10_14_write;
936 break;
937 default:
938 goto err_hwlock;
939 }
940 break;
941
942 case 12:
943 switch (config->val_bits) {
944 case 20:
945 map->format.format_write = regmap_format_12_20_write;
946 break;
947 default:
948 goto err_hwlock;
949 }
950 break;
951
952 case 8:
953 map->format.format_reg = regmap_format_8;
954 break;
955
956 case 16:
957 switch (reg_endian) {
958 case REGMAP_ENDIAN_BIG:
959 map->format.format_reg = regmap_format_16_be;
960 break;
961 case REGMAP_ENDIAN_LITTLE:
962 map->format.format_reg = regmap_format_16_le;
963 break;
964 case REGMAP_ENDIAN_NATIVE:
965 map->format.format_reg = regmap_format_16_native;
966 break;
967 default:
968 goto err_hwlock;
969 }
970 break;
971
972 case 24:
973 if (reg_endian != REGMAP_ENDIAN_BIG)
974 goto err_hwlock;
975 map->format.format_reg = regmap_format_24;
976 break;
977
978 case 32:
979 switch (reg_endian) {
980 case REGMAP_ENDIAN_BIG:
981 map->format.format_reg = regmap_format_32_be;
982 break;
983 case REGMAP_ENDIAN_LITTLE:
984 map->format.format_reg = regmap_format_32_le;
985 break;
986 case REGMAP_ENDIAN_NATIVE:
987 map->format.format_reg = regmap_format_32_native;
988 break;
989 default:
990 goto err_hwlock;
991 }
992 break;
993
994 #ifdef CONFIG_64BIT
995 case 64:
996 switch (reg_endian) {
997 case REGMAP_ENDIAN_BIG:
998 map->format.format_reg = regmap_format_64_be;
999 break;
1000 case REGMAP_ENDIAN_LITTLE:
1001 map->format.format_reg = regmap_format_64_le;
1002 break;
1003 case REGMAP_ENDIAN_NATIVE:
1004 map->format.format_reg = regmap_format_64_native;
1005 break;
1006 default:
1007 goto err_hwlock;
1008 }
1009 break;
1010 #endif
1011
1012 default:
1013 goto err_hwlock;
1014 }
1015
1016 if (val_endian == REGMAP_ENDIAN_NATIVE)
1017 map->format.parse_inplace = regmap_parse_inplace_noop;
1018
1019 switch (config->val_bits) {
1020 case 8:
1021 map->format.format_val = regmap_format_8;
1022 map->format.parse_val = regmap_parse_8;
1023 map->format.parse_inplace = regmap_parse_inplace_noop;
1024 break;
1025 case 16:
1026 switch (val_endian) {
1027 case REGMAP_ENDIAN_BIG:
1028 map->format.format_val = regmap_format_16_be;
1029 map->format.parse_val = regmap_parse_16_be;
1030 map->format.parse_inplace = regmap_parse_16_be_inplace;
1031 break;
1032 case REGMAP_ENDIAN_LITTLE:
1033 map->format.format_val = regmap_format_16_le;
1034 map->format.parse_val = regmap_parse_16_le;
1035 map->format.parse_inplace = regmap_parse_16_le_inplace;
1036 break;
1037 case REGMAP_ENDIAN_NATIVE:
1038 map->format.format_val = regmap_format_16_native;
1039 map->format.parse_val = regmap_parse_16_native;
1040 break;
1041 default:
1042 goto err_hwlock;
1043 }
1044 break;
1045 case 24:
1046 if (val_endian != REGMAP_ENDIAN_BIG)
1047 goto err_hwlock;
1048 map->format.format_val = regmap_format_24;
1049 map->format.parse_val = regmap_parse_24;
1050 break;
1051 case 32:
1052 switch (val_endian) {
1053 case REGMAP_ENDIAN_BIG:
1054 map->format.format_val = regmap_format_32_be;
1055 map->format.parse_val = regmap_parse_32_be;
1056 map->format.parse_inplace = regmap_parse_32_be_inplace;
1057 break;
1058 case REGMAP_ENDIAN_LITTLE:
1059 map->format.format_val = regmap_format_32_le;
1060 map->format.parse_val = regmap_parse_32_le;
1061 map->format.parse_inplace = regmap_parse_32_le_inplace;
1062 break;
1063 case REGMAP_ENDIAN_NATIVE:
1064 map->format.format_val = regmap_format_32_native;
1065 map->format.parse_val = regmap_parse_32_native;
1066 break;
1067 default:
1068 goto err_hwlock;
1069 }
1070 break;
1071 #ifdef CONFIG_64BIT
1072 case 64:
1073 switch (val_endian) {
1074 case REGMAP_ENDIAN_BIG:
1075 map->format.format_val = regmap_format_64_be;
1076 map->format.parse_val = regmap_parse_64_be;
1077 map->format.parse_inplace = regmap_parse_64_be_inplace;
1078 break;
1079 case REGMAP_ENDIAN_LITTLE:
1080 map->format.format_val = regmap_format_64_le;
1081 map->format.parse_val = regmap_parse_64_le;
1082 map->format.parse_inplace = regmap_parse_64_le_inplace;
1083 break;
1084 case REGMAP_ENDIAN_NATIVE:
1085 map->format.format_val = regmap_format_64_native;
1086 map->format.parse_val = regmap_parse_64_native;
1087 break;
1088 default:
1089 goto err_hwlock;
1090 }
1091 break;
1092 #endif
1093 }
1094
1095 if (map->format.format_write) {
1096 if ((reg_endian != REGMAP_ENDIAN_BIG) ||
1097 (val_endian != REGMAP_ENDIAN_BIG))
1098 goto err_hwlock;
1099 map->use_single_write = true;
1100 }
1101
1102 if (!map->format.format_write &&
1103 !(map->format.format_reg && map->format.format_val))
1104 goto err_hwlock;
1105
1106 map->work_buf = kzalloc(map->format.buf_size, GFP_KERNEL);
1107 if (map->work_buf == NULL) {
1108 ret = -ENOMEM;
1109 goto err_hwlock;
1110 }
1111
1112 if (map->format.format_write) {
1113 map->defer_caching = false;
1114 map->reg_write = _regmap_bus_formatted_write;
1115 } else if (map->format.format_val) {
1116 map->defer_caching = true;
1117 map->reg_write = _regmap_bus_raw_write;
1118 }
1119
1120 skip_format_initialization:
1121
1122 map->range_tree = RB_ROOT;
1123 for (i = 0; i < config->num_ranges; i++) {
1124 const struct regmap_range_cfg *range_cfg = &config->ranges[i];
1125 struct regmap_range_node *new;
1126
1127 /* Sanity check */
1128 if (range_cfg->range_max < range_cfg->range_min) {
1129 dev_err(map->dev, "Invalid range %d: %d < %d\n", i,
1130 range_cfg->range_max, range_cfg->range_min);
1131 goto err_range;
1132 }
1133
1134 if (range_cfg->range_max > map->max_register) {
1135 dev_err(map->dev, "Invalid range %d: %d > %d\n", i,
1136 range_cfg->range_max, map->max_register);
1137 goto err_range;
1138 }
1139
1140 if (range_cfg->selector_reg > map->max_register) {
1141 dev_err(map->dev,
1142 "Invalid range %d: selector out of map\n", i);
1143 goto err_range;
1144 }
1145
1146 if (range_cfg->window_len == 0) {
1147 dev_err(map->dev, "Invalid range %d: window_len 0\n",
1148 i);
1149 goto err_range;
1150 }
1151
1152 /* Make sure, that this register range has no selector
1153 or data window within its boundary */
1154 for (j = 0; j < config->num_ranges; j++) {
1155 unsigned int sel_reg = config->ranges[j].selector_reg;
1156 unsigned int win_min = config->ranges[j].window_start;
1157 unsigned int win_max = win_min +
1158 config->ranges[j].window_len - 1;
1159
1160 /* Allow data window inside its own virtual range */
1161 if (j == i)
1162 continue;
1163
1164 if (range_cfg->range_min <= sel_reg &&
1165 sel_reg <= range_cfg->range_max) {
1166 dev_err(map->dev,
1167 "Range %d: selector for %d in window\n",
1168 i, j);
1169 goto err_range;
1170 }
1171
1172 if (!(win_max < range_cfg->range_min ||
1173 win_min > range_cfg->range_max)) {
1174 dev_err(map->dev,
1175 "Range %d: window for %d in window\n",
1176 i, j);
1177 goto err_range;
1178 }
1179 }
1180
1181 new = kzalloc(sizeof(*new), GFP_KERNEL);
1182 if (new == NULL) {
1183 ret = -ENOMEM;
1184 goto err_range;
1185 }
1186
1187 new->map = map;
1188 new->name = range_cfg->name;
1189 new->range_min = range_cfg->range_min;
1190 new->range_max = range_cfg->range_max;
1191 new->selector_reg = range_cfg->selector_reg;
1192 new->selector_mask = range_cfg->selector_mask;
1193 new->selector_shift = range_cfg->selector_shift;
1194 new->window_start = range_cfg->window_start;
1195 new->window_len = range_cfg->window_len;
1196
1197 if (!_regmap_range_add(map, new)) {
1198 dev_err(map->dev, "Failed to add range %d\n", i);
1199 kfree(new);
1200 goto err_range;
1201 }
1202
1203 if (map->selector_work_buf == NULL) {
1204 map->selector_work_buf =
1205 kzalloc(map->format.buf_size, GFP_KERNEL);
1206 if (map->selector_work_buf == NULL) {
1207 ret = -ENOMEM;
1208 goto err_range;
1209 }
1210 }
1211 }
1212
1213 ret = regcache_init(map, config);
1214 if (ret != 0)
1215 goto err_range;
1216
1217 if (dev) {
1218 ret = regmap_attach_dev(dev, map, config);
1219 if (ret != 0)
1220 goto err_regcache;
1221 } else {
1222 regmap_debugfs_init(map);
1223 }
1224
1225 return map;
1226
1227 err_regcache:
1228 regcache_exit(map);
1229 err_range:
1230 regmap_range_exit(map);
1231 kfree(map->work_buf);
1232 err_hwlock:
1233 if (map->hwlock)
1234 hwspin_lock_free(map->hwlock);
1235 err_name:
1236 kfree_const(map->name);
1237 err_map:
1238 kfree(map);
1239 err:
1240 return ERR_PTR(ret);
1241 }
1242 EXPORT_SYMBOL_GPL(__regmap_init);
1243
devm_regmap_release(struct device * dev,void * res)1244 static void devm_regmap_release(struct device *dev, void *res)
1245 {
1246 regmap_exit(*(struct regmap **)res);
1247 }
1248
__devm_regmap_init(struct device * dev,const struct regmap_bus * bus,void * bus_context,const struct regmap_config * config,struct lock_class_key * lock_key,const char * lock_name)1249 struct regmap *__devm_regmap_init(struct device *dev,
1250 const struct regmap_bus *bus,
1251 void *bus_context,
1252 const struct regmap_config *config,
1253 struct lock_class_key *lock_key,
1254 const char *lock_name)
1255 {
1256 struct regmap **ptr, *regmap;
1257
1258 ptr = devres_alloc(devm_regmap_release, sizeof(*ptr), GFP_KERNEL);
1259 if (!ptr)
1260 return ERR_PTR(-ENOMEM);
1261
1262 regmap = __regmap_init(dev, bus, bus_context, config,
1263 lock_key, lock_name);
1264 if (!IS_ERR(regmap)) {
1265 *ptr = regmap;
1266 devres_add(dev, ptr);
1267 } else {
1268 devres_free(ptr);
1269 }
1270
1271 return regmap;
1272 }
1273 EXPORT_SYMBOL_GPL(__devm_regmap_init);
1274
regmap_field_init(struct regmap_field * rm_field,struct regmap * regmap,struct reg_field reg_field)1275 static void regmap_field_init(struct regmap_field *rm_field,
1276 struct regmap *regmap, struct reg_field reg_field)
1277 {
1278 rm_field->regmap = regmap;
1279 rm_field->reg = reg_field.reg;
1280 rm_field->shift = reg_field.lsb;
1281 rm_field->mask = GENMASK(reg_field.msb, reg_field.lsb);
1282 rm_field->id_size = reg_field.id_size;
1283 rm_field->id_offset = reg_field.id_offset;
1284 }
1285
1286 /**
1287 * devm_regmap_field_alloc() - Allocate and initialise a register field.
1288 *
1289 * @dev: Device that will be interacted with
1290 * @regmap: regmap bank in which this register field is located.
1291 * @reg_field: Register field with in the bank.
1292 *
1293 * The return value will be an ERR_PTR() on error or a valid pointer
1294 * to a struct regmap_field. The regmap_field will be automatically freed
1295 * by the device management code.
1296 */
devm_regmap_field_alloc(struct device * dev,struct regmap * regmap,struct reg_field reg_field)1297 struct regmap_field *devm_regmap_field_alloc(struct device *dev,
1298 struct regmap *regmap, struct reg_field reg_field)
1299 {
1300 struct regmap_field *rm_field = devm_kzalloc(dev,
1301 sizeof(*rm_field), GFP_KERNEL);
1302 if (!rm_field)
1303 return ERR_PTR(-ENOMEM);
1304
1305 regmap_field_init(rm_field, regmap, reg_field);
1306
1307 return rm_field;
1308
1309 }
1310 EXPORT_SYMBOL_GPL(devm_regmap_field_alloc);
1311
1312
1313 /**
1314 * regmap_field_bulk_alloc() - Allocate and initialise a bulk register field.
1315 *
1316 * @regmap: regmap bank in which this register field is located.
1317 * @rm_field: regmap register fields within the bank.
1318 * @reg_field: Register fields within the bank.
1319 * @num_fields: Number of register fields.
1320 *
1321 * The return value will be an -ENOMEM on error or zero for success.
1322 * Newly allocated regmap_fields should be freed by calling
1323 * regmap_field_bulk_free()
1324 */
regmap_field_bulk_alloc(struct regmap * regmap,struct regmap_field ** rm_field,const struct reg_field * reg_field,int num_fields)1325 int regmap_field_bulk_alloc(struct regmap *regmap,
1326 struct regmap_field **rm_field,
1327 const struct reg_field *reg_field,
1328 int num_fields)
1329 {
1330 struct regmap_field *rf;
1331 int i;
1332
1333 rf = kcalloc(num_fields, sizeof(*rf), GFP_KERNEL);
1334 if (!rf)
1335 return -ENOMEM;
1336
1337 for (i = 0; i < num_fields; i++) {
1338 regmap_field_init(&rf[i], regmap, reg_field[i]);
1339 rm_field[i] = &rf[i];
1340 }
1341
1342 return 0;
1343 }
1344 EXPORT_SYMBOL_GPL(regmap_field_bulk_alloc);
1345
1346 /**
1347 * devm_regmap_field_bulk_alloc() - Allocate and initialise a bulk register
1348 * fields.
1349 *
1350 * @dev: Device that will be interacted with
1351 * @regmap: regmap bank in which this register field is located.
1352 * @rm_field: regmap register fields within the bank.
1353 * @reg_field: Register fields within the bank.
1354 * @num_fields: Number of register fields.
1355 *
1356 * The return value will be an -ENOMEM on error or zero for success.
1357 * Newly allocated regmap_fields will be automatically freed by the
1358 * device management code.
1359 */
devm_regmap_field_bulk_alloc(struct device * dev,struct regmap * regmap,struct regmap_field ** rm_field,const struct reg_field * reg_field,int num_fields)1360 int devm_regmap_field_bulk_alloc(struct device *dev,
1361 struct regmap *regmap,
1362 struct regmap_field **rm_field,
1363 const struct reg_field *reg_field,
1364 int num_fields)
1365 {
1366 struct regmap_field *rf;
1367 int i;
1368
1369 rf = devm_kcalloc(dev, num_fields, sizeof(*rf), GFP_KERNEL);
1370 if (!rf)
1371 return -ENOMEM;
1372
1373 for (i = 0; i < num_fields; i++) {
1374 regmap_field_init(&rf[i], regmap, reg_field[i]);
1375 rm_field[i] = &rf[i];
1376 }
1377
1378 return 0;
1379 }
1380 EXPORT_SYMBOL_GPL(devm_regmap_field_bulk_alloc);
1381
1382 /**
1383 * regmap_field_bulk_free() - Free register field allocated using
1384 * regmap_field_bulk_alloc.
1385 *
1386 * @field: regmap fields which should be freed.
1387 */
regmap_field_bulk_free(struct regmap_field * field)1388 void regmap_field_bulk_free(struct regmap_field *field)
1389 {
1390 kfree(field);
1391 }
1392 EXPORT_SYMBOL_GPL(regmap_field_bulk_free);
1393
1394 /**
1395 * devm_regmap_field_bulk_free() - Free a bulk register field allocated using
1396 * devm_regmap_field_bulk_alloc.
1397 *
1398 * @dev: Device that will be interacted with
1399 * @field: regmap field which should be freed.
1400 *
1401 * Free register field allocated using devm_regmap_field_bulk_alloc(). Usually
1402 * drivers need not call this function, as the memory allocated via devm
1403 * will be freed as per device-driver life-cycle.
1404 */
devm_regmap_field_bulk_free(struct device * dev,struct regmap_field * field)1405 void devm_regmap_field_bulk_free(struct device *dev,
1406 struct regmap_field *field)
1407 {
1408 devm_kfree(dev, field);
1409 }
1410 EXPORT_SYMBOL_GPL(devm_regmap_field_bulk_free);
1411
1412 /**
1413 * devm_regmap_field_free() - Free a register field allocated using
1414 * devm_regmap_field_alloc.
1415 *
1416 * @dev: Device that will be interacted with
1417 * @field: regmap field which should be freed.
1418 *
1419 * Free register field allocated using devm_regmap_field_alloc(). Usually
1420 * drivers need not call this function, as the memory allocated via devm
1421 * will be freed as per device-driver life-cyle.
1422 */
devm_regmap_field_free(struct device * dev,struct regmap_field * field)1423 void devm_regmap_field_free(struct device *dev,
1424 struct regmap_field *field)
1425 {
1426 devm_kfree(dev, field);
1427 }
1428 EXPORT_SYMBOL_GPL(devm_regmap_field_free);
1429
1430 /**
1431 * regmap_field_alloc() - Allocate and initialise a register field.
1432 *
1433 * @regmap: regmap bank in which this register field is located.
1434 * @reg_field: Register field with in the bank.
1435 *
1436 * The return value will be an ERR_PTR() on error or a valid pointer
1437 * to a struct regmap_field. The regmap_field should be freed by the
1438 * user once its finished working with it using regmap_field_free().
1439 */
regmap_field_alloc(struct regmap * regmap,struct reg_field reg_field)1440 struct regmap_field *regmap_field_alloc(struct regmap *regmap,
1441 struct reg_field reg_field)
1442 {
1443 struct regmap_field *rm_field = kzalloc(sizeof(*rm_field), GFP_KERNEL);
1444
1445 if (!rm_field)
1446 return ERR_PTR(-ENOMEM);
1447
1448 regmap_field_init(rm_field, regmap, reg_field);
1449
1450 return rm_field;
1451 }
1452 EXPORT_SYMBOL_GPL(regmap_field_alloc);
1453
1454 /**
1455 * regmap_field_free() - Free register field allocated using
1456 * regmap_field_alloc.
1457 *
1458 * @field: regmap field which should be freed.
1459 */
regmap_field_free(struct regmap_field * field)1460 void regmap_field_free(struct regmap_field *field)
1461 {
1462 kfree(field);
1463 }
1464 EXPORT_SYMBOL_GPL(regmap_field_free);
1465
1466 /**
1467 * regmap_reinit_cache() - Reinitialise the current register cache
1468 *
1469 * @map: Register map to operate on.
1470 * @config: New configuration. Only the cache data will be used.
1471 *
1472 * Discard any existing register cache for the map and initialize a
1473 * new cache. This can be used to restore the cache to defaults or to
1474 * update the cache configuration to reflect runtime discovery of the
1475 * hardware.
1476 *
1477 * No explicit locking is done here, the user needs to ensure that
1478 * this function will not race with other calls to regmap.
1479 */
regmap_reinit_cache(struct regmap * map,const struct regmap_config * config)1480 int regmap_reinit_cache(struct regmap *map, const struct regmap_config *config)
1481 {
1482 int ret;
1483
1484 regcache_exit(map);
1485 regmap_debugfs_exit(map);
1486
1487 map->max_register = config->max_register;
1488 map->writeable_reg = config->writeable_reg;
1489 map->readable_reg = config->readable_reg;
1490 map->volatile_reg = config->volatile_reg;
1491 map->precious_reg = config->precious_reg;
1492 map->writeable_noinc_reg = config->writeable_noinc_reg;
1493 map->readable_noinc_reg = config->readable_noinc_reg;
1494 map->cache_type = config->cache_type;
1495
1496 ret = regmap_set_name(map, config);
1497 if (ret)
1498 return ret;
1499
1500 regmap_debugfs_init(map);
1501
1502 map->cache_bypass = false;
1503 map->cache_only = false;
1504
1505 return regcache_init(map, config);
1506 }
1507 EXPORT_SYMBOL_GPL(regmap_reinit_cache);
1508
1509 /**
1510 * regmap_exit() - Free a previously allocated register map
1511 *
1512 * @map: Register map to operate on.
1513 */
regmap_exit(struct regmap * map)1514 void regmap_exit(struct regmap *map)
1515 {
1516 struct regmap_async *async;
1517
1518 regcache_exit(map);
1519 regmap_debugfs_exit(map);
1520 regmap_range_exit(map);
1521 if (map->bus && map->bus->free_context)
1522 map->bus->free_context(map->bus_context);
1523 kfree(map->work_buf);
1524 while (!list_empty(&map->async_free)) {
1525 async = list_first_entry_or_null(&map->async_free,
1526 struct regmap_async,
1527 list);
1528 list_del(&async->list);
1529 kfree(async->work_buf);
1530 kfree(async);
1531 }
1532 if (map->hwlock)
1533 hwspin_lock_free(map->hwlock);
1534 if (map->lock == regmap_lock_mutex)
1535 mutex_destroy(&map->mutex);
1536 kfree_const(map->name);
1537 kfree(map->patch);
1538 if (map->bus && map->bus->free_on_exit)
1539 kfree(map->bus);
1540 kfree(map);
1541 }
1542 EXPORT_SYMBOL_GPL(regmap_exit);
1543
dev_get_regmap_match(struct device * dev,void * res,void * data)1544 static int dev_get_regmap_match(struct device *dev, void *res, void *data)
1545 {
1546 struct regmap **r = res;
1547 if (!r || !*r) {
1548 WARN_ON(!r || !*r);
1549 return 0;
1550 }
1551
1552 /* If the user didn't specify a name match any */
1553 if (data)
1554 return (*r)->name && !strcmp((*r)->name, data);
1555 else
1556 return 1;
1557 }
1558
1559 /**
1560 * dev_get_regmap() - Obtain the regmap (if any) for a device
1561 *
1562 * @dev: Device to retrieve the map for
1563 * @name: Optional name for the register map, usually NULL.
1564 *
1565 * Returns the regmap for the device if one is present, or NULL. If
1566 * name is specified then it must match the name specified when
1567 * registering the device, if it is NULL then the first regmap found
1568 * will be used. Devices with multiple register maps are very rare,
1569 * generic code should normally not need to specify a name.
1570 */
dev_get_regmap(struct device * dev,const char * name)1571 struct regmap *dev_get_regmap(struct device *dev, const char *name)
1572 {
1573 struct regmap **r = devres_find(dev, dev_get_regmap_release,
1574 dev_get_regmap_match, (void *)name);
1575
1576 if (!r)
1577 return NULL;
1578 return *r;
1579 }
1580 EXPORT_SYMBOL_GPL(dev_get_regmap);
1581
1582 /**
1583 * regmap_get_device() - Obtain the device from a regmap
1584 *
1585 * @map: Register map to operate on.
1586 *
1587 * Returns the underlying device that the regmap has been created for.
1588 */
regmap_get_device(struct regmap * map)1589 struct device *regmap_get_device(struct regmap *map)
1590 {
1591 return map->dev;
1592 }
1593 EXPORT_SYMBOL_GPL(regmap_get_device);
1594
_regmap_select_page(struct regmap * map,unsigned int * reg,struct regmap_range_node * range,unsigned int val_num)1595 static int _regmap_select_page(struct regmap *map, unsigned int *reg,
1596 struct regmap_range_node *range,
1597 unsigned int val_num)
1598 {
1599 void *orig_work_buf;
1600 unsigned int win_offset;
1601 unsigned int win_page;
1602 bool page_chg;
1603 int ret;
1604
1605 win_offset = (*reg - range->range_min) % range->window_len;
1606 win_page = (*reg - range->range_min) / range->window_len;
1607
1608 if (val_num > 1) {
1609 /* Bulk write shouldn't cross range boundary */
1610 if (*reg + val_num - 1 > range->range_max)
1611 return -EINVAL;
1612
1613 /* ... or single page boundary */
1614 if (val_num > range->window_len - win_offset)
1615 return -EINVAL;
1616 }
1617
1618 /* It is possible to have selector register inside data window.
1619 In that case, selector register is located on every page and
1620 it needs no page switching, when accessed alone. */
1621 if (val_num > 1 ||
1622 range->window_start + win_offset != range->selector_reg) {
1623 /* Use separate work_buf during page switching */
1624 orig_work_buf = map->work_buf;
1625 map->work_buf = map->selector_work_buf;
1626
1627 ret = _regmap_update_bits(map, range->selector_reg,
1628 range->selector_mask,
1629 win_page << range->selector_shift,
1630 &page_chg, false);
1631
1632 map->work_buf = orig_work_buf;
1633
1634 if (ret != 0)
1635 return ret;
1636 }
1637
1638 *reg = range->window_start + win_offset;
1639
1640 return 0;
1641 }
1642
regmap_set_work_buf_flag_mask(struct regmap * map,int max_bytes,unsigned long mask)1643 static void regmap_set_work_buf_flag_mask(struct regmap *map, int max_bytes,
1644 unsigned long mask)
1645 {
1646 u8 *buf;
1647 int i;
1648
1649 if (!mask || !map->work_buf)
1650 return;
1651
1652 buf = map->work_buf;
1653
1654 for (i = 0; i < max_bytes; i++)
1655 buf[i] |= (mask >> (8 * i)) & 0xff;
1656 }
1657
_regmap_raw_write_impl(struct regmap * map,unsigned int reg,const void * val,size_t val_len,bool noinc)1658 static int _regmap_raw_write_impl(struct regmap *map, unsigned int reg,
1659 const void *val, size_t val_len, bool noinc)
1660 {
1661 struct regmap_range_node *range;
1662 unsigned long flags;
1663 void *work_val = map->work_buf + map->format.reg_bytes +
1664 map->format.pad_bytes;
1665 void *buf;
1666 int ret = -ENOTSUPP;
1667 size_t len;
1668 int i;
1669
1670 WARN_ON(!map->bus);
1671
1672 /* Check for unwritable or noinc registers in range
1673 * before we start
1674 */
1675 if (!regmap_writeable_noinc(map, reg)) {
1676 for (i = 0; i < val_len / map->format.val_bytes; i++) {
1677 unsigned int element =
1678 reg + regmap_get_offset(map, i);
1679 if (!regmap_writeable(map, element) ||
1680 regmap_writeable_noinc(map, element))
1681 return -EINVAL;
1682 }
1683 }
1684
1685 if (!map->cache_bypass && map->format.parse_val) {
1686 unsigned int ival, offset;
1687 int val_bytes = map->format.val_bytes;
1688
1689 /* Cache the last written value for noinc writes */
1690 i = noinc ? val_len - val_bytes : 0;
1691 for (; i < val_len; i += val_bytes) {
1692 ival = map->format.parse_val(val + i);
1693 offset = noinc ? 0 : regmap_get_offset(map, i / val_bytes);
1694 ret = regcache_write(map, reg + offset, ival);
1695 if (ret) {
1696 dev_err(map->dev,
1697 "Error in caching of register: %x ret: %d\n",
1698 reg + offset, ret);
1699 return ret;
1700 }
1701 }
1702 if (map->cache_only) {
1703 map->cache_dirty = true;
1704 return 0;
1705 }
1706 }
1707
1708 range = _regmap_range_lookup(map, reg);
1709 if (range) {
1710 int val_num = val_len / map->format.val_bytes;
1711 int win_offset = (reg - range->range_min) % range->window_len;
1712 int win_residue = range->window_len - win_offset;
1713
1714 /* If the write goes beyond the end of the window split it */
1715 while (val_num > win_residue) {
1716 dev_dbg(map->dev, "Writing window %d/%zu\n",
1717 win_residue, val_len / map->format.val_bytes);
1718 ret = _regmap_raw_write_impl(map, reg, val,
1719 win_residue *
1720 map->format.val_bytes, noinc);
1721 if (ret != 0)
1722 return ret;
1723
1724 reg += win_residue;
1725 val_num -= win_residue;
1726 val += win_residue * map->format.val_bytes;
1727 val_len -= win_residue * map->format.val_bytes;
1728
1729 win_offset = (reg - range->range_min) %
1730 range->window_len;
1731 win_residue = range->window_len - win_offset;
1732 }
1733
1734 ret = _regmap_select_page(map, ®, range, noinc ? 1 : val_num);
1735 if (ret != 0)
1736 return ret;
1737 }
1738
1739 map->format.format_reg(map->work_buf, reg, map->reg_shift);
1740 regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
1741 map->write_flag_mask);
1742
1743 /*
1744 * Essentially all I/O mechanisms will be faster with a single
1745 * buffer to write. Since register syncs often generate raw
1746 * writes of single registers optimise that case.
1747 */
1748 if (val != work_val && val_len == map->format.val_bytes) {
1749 memcpy(work_val, val, map->format.val_bytes);
1750 val = work_val;
1751 }
1752
1753 if (map->async && map->bus->async_write) {
1754 struct regmap_async *async;
1755
1756 trace_regmap_async_write_start(map, reg, val_len);
1757
1758 spin_lock_irqsave(&map->async_lock, flags);
1759 async = list_first_entry_or_null(&map->async_free,
1760 struct regmap_async,
1761 list);
1762 if (async)
1763 list_del(&async->list);
1764 spin_unlock_irqrestore(&map->async_lock, flags);
1765
1766 if (!async) {
1767 async = map->bus->async_alloc();
1768 if (!async)
1769 return -ENOMEM;
1770
1771 async->work_buf = kzalloc(map->format.buf_size,
1772 GFP_KERNEL | GFP_DMA);
1773 if (!async->work_buf) {
1774 kfree(async);
1775 return -ENOMEM;
1776 }
1777 }
1778
1779 async->map = map;
1780
1781 /* If the caller supplied the value we can use it safely. */
1782 memcpy(async->work_buf, map->work_buf, map->format.pad_bytes +
1783 map->format.reg_bytes + map->format.val_bytes);
1784
1785 spin_lock_irqsave(&map->async_lock, flags);
1786 list_add_tail(&async->list, &map->async_list);
1787 spin_unlock_irqrestore(&map->async_lock, flags);
1788
1789 if (val != work_val)
1790 ret = map->bus->async_write(map->bus_context,
1791 async->work_buf,
1792 map->format.reg_bytes +
1793 map->format.pad_bytes,
1794 val, val_len, async);
1795 else
1796 ret = map->bus->async_write(map->bus_context,
1797 async->work_buf,
1798 map->format.reg_bytes +
1799 map->format.pad_bytes +
1800 val_len, NULL, 0, async);
1801
1802 if (ret != 0) {
1803 dev_err(map->dev, "Failed to schedule write: %d\n",
1804 ret);
1805
1806 spin_lock_irqsave(&map->async_lock, flags);
1807 list_move(&async->list, &map->async_free);
1808 spin_unlock_irqrestore(&map->async_lock, flags);
1809 }
1810
1811 return ret;
1812 }
1813
1814 trace_regmap_hw_write_start(map, reg, val_len / map->format.val_bytes);
1815
1816 /* If we're doing a single register write we can probably just
1817 * send the work_buf directly, otherwise try to do a gather
1818 * write.
1819 */
1820 if (val == work_val)
1821 ret = map->bus->write(map->bus_context, map->work_buf,
1822 map->format.reg_bytes +
1823 map->format.pad_bytes +
1824 val_len);
1825 else if (map->bus->gather_write)
1826 ret = map->bus->gather_write(map->bus_context, map->work_buf,
1827 map->format.reg_bytes +
1828 map->format.pad_bytes,
1829 val, val_len);
1830 else
1831 ret = -ENOTSUPP;
1832
1833 /* If that didn't work fall back on linearising by hand. */
1834 if (ret == -ENOTSUPP) {
1835 len = map->format.reg_bytes + map->format.pad_bytes + val_len;
1836 buf = kzalloc(len, GFP_KERNEL);
1837 if (!buf)
1838 return -ENOMEM;
1839
1840 memcpy(buf, map->work_buf, map->format.reg_bytes);
1841 memcpy(buf + map->format.reg_bytes + map->format.pad_bytes,
1842 val, val_len);
1843 ret = map->bus->write(map->bus_context, buf, len);
1844
1845 kfree(buf);
1846 } else if (ret != 0 && !map->cache_bypass && map->format.parse_val) {
1847 /* regcache_drop_region() takes lock that we already have,
1848 * thus call map->cache_ops->drop() directly
1849 */
1850 if (map->cache_ops && map->cache_ops->drop)
1851 map->cache_ops->drop(map, reg, reg + 1);
1852 }
1853
1854 trace_regmap_hw_write_done(map, reg, val_len / map->format.val_bytes);
1855
1856 return ret;
1857 }
1858
1859 /**
1860 * regmap_can_raw_write - Test if regmap_raw_write() is supported
1861 *
1862 * @map: Map to check.
1863 */
regmap_can_raw_write(struct regmap * map)1864 bool regmap_can_raw_write(struct regmap *map)
1865 {
1866 return map->bus && map->bus->write && map->format.format_val &&
1867 map->format.format_reg;
1868 }
1869 EXPORT_SYMBOL_GPL(regmap_can_raw_write);
1870
1871 /**
1872 * regmap_get_raw_read_max - Get the maximum size we can read
1873 *
1874 * @map: Map to check.
1875 */
regmap_get_raw_read_max(struct regmap * map)1876 size_t regmap_get_raw_read_max(struct regmap *map)
1877 {
1878 return map->max_raw_read;
1879 }
1880 EXPORT_SYMBOL_GPL(regmap_get_raw_read_max);
1881
1882 /**
1883 * regmap_get_raw_write_max - Get the maximum size we can read
1884 *
1885 * @map: Map to check.
1886 */
regmap_get_raw_write_max(struct regmap * map)1887 size_t regmap_get_raw_write_max(struct regmap *map)
1888 {
1889 return map->max_raw_write;
1890 }
1891 EXPORT_SYMBOL_GPL(regmap_get_raw_write_max);
1892
_regmap_bus_formatted_write(void * context,unsigned int reg,unsigned int val)1893 static int _regmap_bus_formatted_write(void *context, unsigned int reg,
1894 unsigned int val)
1895 {
1896 int ret;
1897 struct regmap_range_node *range;
1898 struct regmap *map = context;
1899
1900 WARN_ON(!map->bus || !map->format.format_write);
1901
1902 range = _regmap_range_lookup(map, reg);
1903 if (range) {
1904 ret = _regmap_select_page(map, ®, range, 1);
1905 if (ret != 0)
1906 return ret;
1907 }
1908
1909 map->format.format_write(map, reg, val);
1910
1911 trace_regmap_hw_write_start(map, reg, 1);
1912
1913 ret = map->bus->write(map->bus_context, map->work_buf,
1914 map->format.buf_size);
1915
1916 trace_regmap_hw_write_done(map, reg, 1);
1917
1918 return ret;
1919 }
1920
_regmap_bus_reg_write(void * context,unsigned int reg,unsigned int val)1921 static int _regmap_bus_reg_write(void *context, unsigned int reg,
1922 unsigned int val)
1923 {
1924 struct regmap *map = context;
1925
1926 return map->bus->reg_write(map->bus_context, reg, val);
1927 }
1928
_regmap_bus_raw_write(void * context,unsigned int reg,unsigned int val)1929 static int _regmap_bus_raw_write(void *context, unsigned int reg,
1930 unsigned int val)
1931 {
1932 struct regmap *map = context;
1933
1934 WARN_ON(!map->bus || !map->format.format_val);
1935
1936 map->format.format_val(map->work_buf + map->format.reg_bytes
1937 + map->format.pad_bytes, val, 0);
1938 return _regmap_raw_write_impl(map, reg,
1939 map->work_buf +
1940 map->format.reg_bytes +
1941 map->format.pad_bytes,
1942 map->format.val_bytes,
1943 false);
1944 }
1945
_regmap_map_get_context(struct regmap * map)1946 static inline void *_regmap_map_get_context(struct regmap *map)
1947 {
1948 return (map->bus) ? map : map->bus_context;
1949 }
1950
_regmap_write(struct regmap * map,unsigned int reg,unsigned int val)1951 int _regmap_write(struct regmap *map, unsigned int reg,
1952 unsigned int val)
1953 {
1954 int ret;
1955 void *context = _regmap_map_get_context(map);
1956
1957 if (!regmap_writeable(map, reg))
1958 return -EIO;
1959
1960 if (!map->cache_bypass && !map->defer_caching) {
1961 ret = regcache_write(map, reg, val);
1962 if (ret != 0)
1963 return ret;
1964 if (map->cache_only) {
1965 map->cache_dirty = true;
1966 return 0;
1967 }
1968 }
1969
1970 ret = map->reg_write(context, reg, val);
1971 if (ret == 0) {
1972 if (regmap_should_log(map))
1973 dev_info(map->dev, "%x <= %x\n", reg, val);
1974
1975 trace_regmap_reg_write(map, reg, val);
1976 }
1977
1978 return ret;
1979 }
1980
1981 /**
1982 * regmap_write() - Write a value to a single register
1983 *
1984 * @map: Register map to write to
1985 * @reg: Register to write to
1986 * @val: Value to be written
1987 *
1988 * A value of zero will be returned on success, a negative errno will
1989 * be returned in error cases.
1990 */
regmap_write(struct regmap * map,unsigned int reg,unsigned int val)1991 int regmap_write(struct regmap *map, unsigned int reg, unsigned int val)
1992 {
1993 int ret;
1994
1995 if (!IS_ALIGNED(reg, map->reg_stride))
1996 return -EINVAL;
1997
1998 map->lock(map->lock_arg);
1999
2000 ret = _regmap_write(map, reg, val);
2001
2002 map->unlock(map->lock_arg);
2003
2004 return ret;
2005 }
2006 EXPORT_SYMBOL_GPL(regmap_write);
2007
2008 /**
2009 * regmap_write_async() - Write a value to a single register asynchronously
2010 *
2011 * @map: Register map to write to
2012 * @reg: Register to write to
2013 * @val: Value to be written
2014 *
2015 * A value of zero will be returned on success, a negative errno will
2016 * be returned in error cases.
2017 */
regmap_write_async(struct regmap * map,unsigned int reg,unsigned int val)2018 int regmap_write_async(struct regmap *map, unsigned int reg, unsigned int val)
2019 {
2020 int ret;
2021
2022 if (!IS_ALIGNED(reg, map->reg_stride))
2023 return -EINVAL;
2024
2025 map->lock(map->lock_arg);
2026
2027 map->async = true;
2028
2029 ret = _regmap_write(map, reg, val);
2030
2031 map->async = false;
2032
2033 map->unlock(map->lock_arg);
2034
2035 return ret;
2036 }
2037 EXPORT_SYMBOL_GPL(regmap_write_async);
2038
_regmap_raw_write(struct regmap * map,unsigned int reg,const void * val,size_t val_len,bool noinc)2039 int _regmap_raw_write(struct regmap *map, unsigned int reg,
2040 const void *val, size_t val_len, bool noinc)
2041 {
2042 size_t val_bytes = map->format.val_bytes;
2043 size_t val_count = val_len / val_bytes;
2044 size_t chunk_count, chunk_bytes;
2045 size_t chunk_regs = val_count;
2046 int ret, i;
2047
2048 if (!val_count)
2049 return -EINVAL;
2050
2051 if (map->use_single_write)
2052 chunk_regs = 1;
2053 else if (map->max_raw_write && val_len > map->max_raw_write)
2054 chunk_regs = map->max_raw_write / val_bytes;
2055
2056 chunk_count = val_count / chunk_regs;
2057 chunk_bytes = chunk_regs * val_bytes;
2058
2059 /* Write as many bytes as possible with chunk_size */
2060 for (i = 0; i < chunk_count; i++) {
2061 ret = _regmap_raw_write_impl(map, reg, val, chunk_bytes, noinc);
2062 if (ret)
2063 return ret;
2064
2065 reg += regmap_get_offset(map, chunk_regs);
2066 val += chunk_bytes;
2067 val_len -= chunk_bytes;
2068 }
2069
2070 /* Write remaining bytes */
2071 if (val_len)
2072 ret = _regmap_raw_write_impl(map, reg, val, val_len, noinc);
2073
2074 return ret;
2075 }
2076
2077 /**
2078 * regmap_raw_write() - Write raw values to one or more registers
2079 *
2080 * @map: Register map to write to
2081 * @reg: Initial register to write to
2082 * @val: Block of data to be written, laid out for direct transmission to the
2083 * device
2084 * @val_len: Length of data pointed to by val.
2085 *
2086 * This function is intended to be used for things like firmware
2087 * download where a large block of data needs to be transferred to the
2088 * device. No formatting will be done on the data provided.
2089 *
2090 * A value of zero will be returned on success, a negative errno will
2091 * be returned in error cases.
2092 */
regmap_raw_write(struct regmap * map,unsigned int reg,const void * val,size_t val_len)2093 int regmap_raw_write(struct regmap *map, unsigned int reg,
2094 const void *val, size_t val_len)
2095 {
2096 int ret;
2097
2098 if (!regmap_can_raw_write(map))
2099 return -EINVAL;
2100 if (val_len % map->format.val_bytes)
2101 return -EINVAL;
2102
2103 map->lock(map->lock_arg);
2104
2105 ret = _regmap_raw_write(map, reg, val, val_len, false);
2106
2107 map->unlock(map->lock_arg);
2108
2109 return ret;
2110 }
2111 EXPORT_SYMBOL_GPL(regmap_raw_write);
2112
2113 /**
2114 * regmap_noinc_write(): Write data from a register without incrementing the
2115 * register number
2116 *
2117 * @map: Register map to write to
2118 * @reg: Register to write to
2119 * @val: Pointer to data buffer
2120 * @val_len: Length of output buffer in bytes.
2121 *
2122 * The regmap API usually assumes that bulk bus write operations will write a
2123 * range of registers. Some devices have certain registers for which a write
2124 * operation can write to an internal FIFO.
2125 *
2126 * The target register must be volatile but registers after it can be
2127 * completely unrelated cacheable registers.
2128 *
2129 * This will attempt multiple writes as required to write val_len bytes.
2130 *
2131 * A value of zero will be returned on success, a negative errno will be
2132 * returned in error cases.
2133 */
regmap_noinc_write(struct regmap * map,unsigned int reg,const void * val,size_t val_len)2134 int regmap_noinc_write(struct regmap *map, unsigned int reg,
2135 const void *val, size_t val_len)
2136 {
2137 size_t write_len;
2138 int ret;
2139
2140 if (!map->bus)
2141 return -EINVAL;
2142 if (!map->bus->write)
2143 return -ENOTSUPP;
2144 if (val_len % map->format.val_bytes)
2145 return -EINVAL;
2146 if (!IS_ALIGNED(reg, map->reg_stride))
2147 return -EINVAL;
2148 if (val_len == 0)
2149 return -EINVAL;
2150
2151 map->lock(map->lock_arg);
2152
2153 if (!regmap_volatile(map, reg) || !regmap_writeable_noinc(map, reg)) {
2154 ret = -EINVAL;
2155 goto out_unlock;
2156 }
2157
2158 while (val_len) {
2159 if (map->max_raw_write && map->max_raw_write < val_len)
2160 write_len = map->max_raw_write;
2161 else
2162 write_len = val_len;
2163 ret = _regmap_raw_write(map, reg, val, write_len, true);
2164 if (ret)
2165 goto out_unlock;
2166 val = ((u8 *)val) + write_len;
2167 val_len -= write_len;
2168 }
2169
2170 out_unlock:
2171 map->unlock(map->lock_arg);
2172 return ret;
2173 }
2174 EXPORT_SYMBOL_GPL(regmap_noinc_write);
2175
2176 /**
2177 * regmap_field_update_bits_base() - Perform a read/modify/write cycle a
2178 * register field.
2179 *
2180 * @field: Register field to write to
2181 * @mask: Bitmask to change
2182 * @val: Value to be written
2183 * @change: Boolean indicating if a write was done
2184 * @async: Boolean indicating asynchronously
2185 * @force: Boolean indicating use force update
2186 *
2187 * Perform a read/modify/write cycle on the register field with change,
2188 * async, force option.
2189 *
2190 * A value of zero will be returned on success, a negative errno will
2191 * be returned in error cases.
2192 */
regmap_field_update_bits_base(struct regmap_field * field,unsigned int mask,unsigned int val,bool * change,bool async,bool force)2193 int regmap_field_update_bits_base(struct regmap_field *field,
2194 unsigned int mask, unsigned int val,
2195 bool *change, bool async, bool force)
2196 {
2197 mask = (mask << field->shift) & field->mask;
2198
2199 return regmap_update_bits_base(field->regmap, field->reg,
2200 mask, val << field->shift,
2201 change, async, force);
2202 }
2203 EXPORT_SYMBOL_GPL(regmap_field_update_bits_base);
2204
2205 /**
2206 * regmap_fields_update_bits_base() - Perform a read/modify/write cycle a
2207 * register field with port ID
2208 *
2209 * @field: Register field to write to
2210 * @id: port ID
2211 * @mask: Bitmask to change
2212 * @val: Value to be written
2213 * @change: Boolean indicating if a write was done
2214 * @async: Boolean indicating asynchronously
2215 * @force: Boolean indicating use force update
2216 *
2217 * A value of zero will be returned on success, a negative errno will
2218 * be returned in error cases.
2219 */
regmap_fields_update_bits_base(struct regmap_field * field,unsigned int id,unsigned int mask,unsigned int val,bool * change,bool async,bool force)2220 int regmap_fields_update_bits_base(struct regmap_field *field, unsigned int id,
2221 unsigned int mask, unsigned int val,
2222 bool *change, bool async, bool force)
2223 {
2224 if (id >= field->id_size)
2225 return -EINVAL;
2226
2227 mask = (mask << field->shift) & field->mask;
2228
2229 return regmap_update_bits_base(field->regmap,
2230 field->reg + (field->id_offset * id),
2231 mask, val << field->shift,
2232 change, async, force);
2233 }
2234 EXPORT_SYMBOL_GPL(regmap_fields_update_bits_base);
2235
2236 /**
2237 * regmap_bulk_write() - Write multiple registers to the device
2238 *
2239 * @map: Register map to write to
2240 * @reg: First register to be write from
2241 * @val: Block of data to be written, in native register size for device
2242 * @val_count: Number of registers to write
2243 *
2244 * This function is intended to be used for writing a large block of
2245 * data to the device either in single transfer or multiple transfer.
2246 *
2247 * A value of zero will be returned on success, a negative errno will
2248 * be returned in error cases.
2249 */
regmap_bulk_write(struct regmap * map,unsigned int reg,const void * val,size_t val_count)2250 int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val,
2251 size_t val_count)
2252 {
2253 int ret = 0, i;
2254 size_t val_bytes = map->format.val_bytes;
2255
2256 if (!IS_ALIGNED(reg, map->reg_stride))
2257 return -EINVAL;
2258
2259 /*
2260 * Some devices don't support bulk write, for them we have a series of
2261 * single write operations.
2262 */
2263 if (!map->bus || !map->format.parse_inplace) {
2264 map->lock(map->lock_arg);
2265 for (i = 0; i < val_count; i++) {
2266 unsigned int ival;
2267
2268 switch (val_bytes) {
2269 case 1:
2270 ival = *(u8 *)(val + (i * val_bytes));
2271 break;
2272 case 2:
2273 ival = *(u16 *)(val + (i * val_bytes));
2274 break;
2275 case 4:
2276 ival = *(u32 *)(val + (i * val_bytes));
2277 break;
2278 #ifdef CONFIG_64BIT
2279 case 8:
2280 ival = *(u64 *)(val + (i * val_bytes));
2281 break;
2282 #endif
2283 default:
2284 ret = -EINVAL;
2285 goto out;
2286 }
2287
2288 ret = _regmap_write(map,
2289 reg + regmap_get_offset(map, i),
2290 ival);
2291 if (ret != 0)
2292 goto out;
2293 }
2294 out:
2295 map->unlock(map->lock_arg);
2296 } else {
2297 void *wval;
2298
2299 wval = kmemdup(val, val_count * val_bytes, map->alloc_flags);
2300 if (!wval)
2301 return -ENOMEM;
2302
2303 for (i = 0; i < val_count * val_bytes; i += val_bytes)
2304 map->format.parse_inplace(wval + i);
2305
2306 ret = regmap_raw_write(map, reg, wval, val_bytes * val_count);
2307
2308 kfree(wval);
2309 }
2310 return ret;
2311 }
2312 EXPORT_SYMBOL_GPL(regmap_bulk_write);
2313
2314 /*
2315 * _regmap_raw_multi_reg_write()
2316 *
2317 * the (register,newvalue) pairs in regs have not been formatted, but
2318 * they are all in the same page and have been changed to being page
2319 * relative. The page register has been written if that was necessary.
2320 */
_regmap_raw_multi_reg_write(struct regmap * map,const struct reg_sequence * regs,size_t num_regs)2321 static int _regmap_raw_multi_reg_write(struct regmap *map,
2322 const struct reg_sequence *regs,
2323 size_t num_regs)
2324 {
2325 int ret;
2326 void *buf;
2327 int i;
2328 u8 *u8;
2329 size_t val_bytes = map->format.val_bytes;
2330 size_t reg_bytes = map->format.reg_bytes;
2331 size_t pad_bytes = map->format.pad_bytes;
2332 size_t pair_size = reg_bytes + pad_bytes + val_bytes;
2333 size_t len = pair_size * num_regs;
2334
2335 if (!len)
2336 return -EINVAL;
2337
2338 buf = kzalloc(len, GFP_KERNEL);
2339 if (!buf)
2340 return -ENOMEM;
2341
2342 /* We have to linearise by hand. */
2343
2344 u8 = buf;
2345
2346 for (i = 0; i < num_regs; i++) {
2347 unsigned int reg = regs[i].reg;
2348 unsigned int val = regs[i].def;
2349 trace_regmap_hw_write_start(map, reg, 1);
2350 map->format.format_reg(u8, reg, map->reg_shift);
2351 u8 += reg_bytes + pad_bytes;
2352 map->format.format_val(u8, val, 0);
2353 u8 += val_bytes;
2354 }
2355 u8 = buf;
2356 *u8 |= map->write_flag_mask;
2357
2358 ret = map->bus->write(map->bus_context, buf, len);
2359
2360 kfree(buf);
2361
2362 for (i = 0; i < num_regs; i++) {
2363 int reg = regs[i].reg;
2364 trace_regmap_hw_write_done(map, reg, 1);
2365 }
2366 return ret;
2367 }
2368
_regmap_register_page(struct regmap * map,unsigned int reg,struct regmap_range_node * range)2369 static unsigned int _regmap_register_page(struct regmap *map,
2370 unsigned int reg,
2371 struct regmap_range_node *range)
2372 {
2373 unsigned int win_page = (reg - range->range_min) / range->window_len;
2374
2375 return win_page;
2376 }
2377
_regmap_range_multi_paged_reg_write(struct regmap * map,struct reg_sequence * regs,size_t num_regs)2378 static int _regmap_range_multi_paged_reg_write(struct regmap *map,
2379 struct reg_sequence *regs,
2380 size_t num_regs)
2381 {
2382 int ret;
2383 int i, n;
2384 struct reg_sequence *base;
2385 unsigned int this_page = 0;
2386 unsigned int page_change = 0;
2387 /*
2388 * the set of registers are not neccessarily in order, but
2389 * since the order of write must be preserved this algorithm
2390 * chops the set each time the page changes. This also applies
2391 * if there is a delay required at any point in the sequence.
2392 */
2393 base = regs;
2394 for (i = 0, n = 0; i < num_regs; i++, n++) {
2395 unsigned int reg = regs[i].reg;
2396 struct regmap_range_node *range;
2397
2398 range = _regmap_range_lookup(map, reg);
2399 if (range) {
2400 unsigned int win_page = _regmap_register_page(map, reg,
2401 range);
2402
2403 if (i == 0)
2404 this_page = win_page;
2405 if (win_page != this_page) {
2406 this_page = win_page;
2407 page_change = 1;
2408 }
2409 }
2410
2411 /* If we have both a page change and a delay make sure to
2412 * write the regs and apply the delay before we change the
2413 * page.
2414 */
2415
2416 if (page_change || regs[i].delay_us) {
2417
2418 /* For situations where the first write requires
2419 * a delay we need to make sure we don't call
2420 * raw_multi_reg_write with n=0
2421 * This can't occur with page breaks as we
2422 * never write on the first iteration
2423 */
2424 if (regs[i].delay_us && i == 0)
2425 n = 1;
2426
2427 ret = _regmap_raw_multi_reg_write(map, base, n);
2428 if (ret != 0)
2429 return ret;
2430
2431 if (regs[i].delay_us) {
2432 if (map->can_sleep)
2433 fsleep(regs[i].delay_us);
2434 else
2435 udelay(regs[i].delay_us);
2436 }
2437
2438 base += n;
2439 n = 0;
2440
2441 if (page_change) {
2442 ret = _regmap_select_page(map,
2443 &base[n].reg,
2444 range, 1);
2445 if (ret != 0)
2446 return ret;
2447
2448 page_change = 0;
2449 }
2450
2451 }
2452
2453 }
2454 if (n > 0)
2455 return _regmap_raw_multi_reg_write(map, base, n);
2456 return 0;
2457 }
2458
_regmap_multi_reg_write(struct regmap * map,const struct reg_sequence * regs,size_t num_regs)2459 static int _regmap_multi_reg_write(struct regmap *map,
2460 const struct reg_sequence *regs,
2461 size_t num_regs)
2462 {
2463 int i;
2464 int ret;
2465
2466 if (!map->can_multi_write) {
2467 for (i = 0; i < num_regs; i++) {
2468 ret = _regmap_write(map, regs[i].reg, regs[i].def);
2469 if (ret != 0)
2470 return ret;
2471
2472 if (regs[i].delay_us) {
2473 if (map->can_sleep)
2474 fsleep(regs[i].delay_us);
2475 else
2476 udelay(regs[i].delay_us);
2477 }
2478 }
2479 return 0;
2480 }
2481
2482 if (!map->format.parse_inplace)
2483 return -EINVAL;
2484
2485 if (map->writeable_reg)
2486 for (i = 0; i < num_regs; i++) {
2487 int reg = regs[i].reg;
2488 if (!map->writeable_reg(map->dev, reg))
2489 return -EINVAL;
2490 if (!IS_ALIGNED(reg, map->reg_stride))
2491 return -EINVAL;
2492 }
2493
2494 if (!map->cache_bypass) {
2495 for (i = 0; i < num_regs; i++) {
2496 unsigned int val = regs[i].def;
2497 unsigned int reg = regs[i].reg;
2498 ret = regcache_write(map, reg, val);
2499 if (ret) {
2500 dev_err(map->dev,
2501 "Error in caching of register: %x ret: %d\n",
2502 reg, ret);
2503 return ret;
2504 }
2505 }
2506 if (map->cache_only) {
2507 map->cache_dirty = true;
2508 return 0;
2509 }
2510 }
2511
2512 WARN_ON(!map->bus);
2513
2514 for (i = 0; i < num_regs; i++) {
2515 unsigned int reg = regs[i].reg;
2516 struct regmap_range_node *range;
2517
2518 /* Coalesce all the writes between a page break or a delay
2519 * in a sequence
2520 */
2521 range = _regmap_range_lookup(map, reg);
2522 if (range || regs[i].delay_us) {
2523 size_t len = sizeof(struct reg_sequence)*num_regs;
2524 struct reg_sequence *base = kmemdup(regs, len,
2525 GFP_KERNEL);
2526 if (!base)
2527 return -ENOMEM;
2528 ret = _regmap_range_multi_paged_reg_write(map, base,
2529 num_regs);
2530 kfree(base);
2531
2532 return ret;
2533 }
2534 }
2535 return _regmap_raw_multi_reg_write(map, regs, num_regs);
2536 }
2537
2538 /**
2539 * regmap_multi_reg_write() - Write multiple registers to the device
2540 *
2541 * @map: Register map to write to
2542 * @regs: Array of structures containing register,value to be written
2543 * @num_regs: Number of registers to write
2544 *
2545 * Write multiple registers to the device where the set of register, value
2546 * pairs are supplied in any order, possibly not all in a single range.
2547 *
2548 * The 'normal' block write mode will send ultimately send data on the
2549 * target bus as R,V1,V2,V3,..,Vn where successively higher registers are
2550 * addressed. However, this alternative block multi write mode will send
2551 * the data as R1,V1,R2,V2,..,Rn,Vn on the target bus. The target device
2552 * must of course support the mode.
2553 *
2554 * A value of zero will be returned on success, a negative errno will be
2555 * returned in error cases.
2556 */
regmap_multi_reg_write(struct regmap * map,const struct reg_sequence * regs,int num_regs)2557 int regmap_multi_reg_write(struct regmap *map, const struct reg_sequence *regs,
2558 int num_regs)
2559 {
2560 int ret;
2561
2562 map->lock(map->lock_arg);
2563
2564 ret = _regmap_multi_reg_write(map, regs, num_regs);
2565
2566 map->unlock(map->lock_arg);
2567
2568 return ret;
2569 }
2570 EXPORT_SYMBOL_GPL(regmap_multi_reg_write);
2571
2572 /**
2573 * regmap_multi_reg_write_bypassed() - Write multiple registers to the
2574 * device but not the cache
2575 *
2576 * @map: Register map to write to
2577 * @regs: Array of structures containing register,value to be written
2578 * @num_regs: Number of registers to write
2579 *
2580 * Write multiple registers to the device but not the cache where the set
2581 * of register are supplied in any order.
2582 *
2583 * This function is intended to be used for writing a large block of data
2584 * atomically to the device in single transfer for those I2C client devices
2585 * that implement this alternative block write mode.
2586 *
2587 * A value of zero will be returned on success, a negative errno will
2588 * be returned in error cases.
2589 */
regmap_multi_reg_write_bypassed(struct regmap * map,const struct reg_sequence * regs,int num_regs)2590 int regmap_multi_reg_write_bypassed(struct regmap *map,
2591 const struct reg_sequence *regs,
2592 int num_regs)
2593 {
2594 int ret;
2595 bool bypass;
2596
2597 map->lock(map->lock_arg);
2598
2599 bypass = map->cache_bypass;
2600 map->cache_bypass = true;
2601
2602 ret = _regmap_multi_reg_write(map, regs, num_regs);
2603
2604 map->cache_bypass = bypass;
2605
2606 map->unlock(map->lock_arg);
2607
2608 return ret;
2609 }
2610 EXPORT_SYMBOL_GPL(regmap_multi_reg_write_bypassed);
2611
2612 /**
2613 * regmap_raw_write_async() - Write raw values to one or more registers
2614 * asynchronously
2615 *
2616 * @map: Register map to write to
2617 * @reg: Initial register to write to
2618 * @val: Block of data to be written, laid out for direct transmission to the
2619 * device. Must be valid until regmap_async_complete() is called.
2620 * @val_len: Length of data pointed to by val.
2621 *
2622 * This function is intended to be used for things like firmware
2623 * download where a large block of data needs to be transferred to the
2624 * device. No formatting will be done on the data provided.
2625 *
2626 * If supported by the underlying bus the write will be scheduled
2627 * asynchronously, helping maximise I/O speed on higher speed buses
2628 * like SPI. regmap_async_complete() can be called to ensure that all
2629 * asynchrnous writes have been completed.
2630 *
2631 * A value of zero will be returned on success, a negative errno will
2632 * be returned in error cases.
2633 */
regmap_raw_write_async(struct regmap * map,unsigned int reg,const void * val,size_t val_len)2634 int regmap_raw_write_async(struct regmap *map, unsigned int reg,
2635 const void *val, size_t val_len)
2636 {
2637 int ret;
2638
2639 if (val_len % map->format.val_bytes)
2640 return -EINVAL;
2641 if (!IS_ALIGNED(reg, map->reg_stride))
2642 return -EINVAL;
2643
2644 map->lock(map->lock_arg);
2645
2646 map->async = true;
2647
2648 ret = _regmap_raw_write(map, reg, val, val_len, false);
2649
2650 map->async = false;
2651
2652 map->unlock(map->lock_arg);
2653
2654 return ret;
2655 }
2656 EXPORT_SYMBOL_GPL(regmap_raw_write_async);
2657
_regmap_raw_read(struct regmap * map,unsigned int reg,void * val,unsigned int val_len,bool noinc)2658 static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2659 unsigned int val_len, bool noinc)
2660 {
2661 struct regmap_range_node *range;
2662 int ret;
2663
2664 WARN_ON(!map->bus);
2665
2666 if (!map->bus || !map->bus->read)
2667 return -EINVAL;
2668
2669 range = _regmap_range_lookup(map, reg);
2670 if (range) {
2671 ret = _regmap_select_page(map, ®, range,
2672 noinc ? 1 : val_len / map->format.val_bytes);
2673 if (ret != 0)
2674 return ret;
2675 }
2676
2677 map->format.format_reg(map->work_buf, reg, map->reg_shift);
2678 regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
2679 map->read_flag_mask);
2680 trace_regmap_hw_read_start(map, reg, val_len / map->format.val_bytes);
2681
2682 ret = map->bus->read(map->bus_context, map->work_buf,
2683 map->format.reg_bytes + map->format.pad_bytes,
2684 val, val_len);
2685
2686 trace_regmap_hw_read_done(map, reg, val_len / map->format.val_bytes);
2687
2688 return ret;
2689 }
2690
_regmap_bus_reg_read(void * context,unsigned int reg,unsigned int * val)2691 static int _regmap_bus_reg_read(void *context, unsigned int reg,
2692 unsigned int *val)
2693 {
2694 struct regmap *map = context;
2695
2696 return map->bus->reg_read(map->bus_context, reg, val);
2697 }
2698
_regmap_bus_read(void * context,unsigned int reg,unsigned int * val)2699 static int _regmap_bus_read(void *context, unsigned int reg,
2700 unsigned int *val)
2701 {
2702 int ret;
2703 struct regmap *map = context;
2704 void *work_val = map->work_buf + map->format.reg_bytes +
2705 map->format.pad_bytes;
2706
2707 if (!map->format.parse_val)
2708 return -EINVAL;
2709
2710 ret = _regmap_raw_read(map, reg, work_val, map->format.val_bytes, false);
2711 if (ret == 0)
2712 *val = map->format.parse_val(work_val);
2713
2714 return ret;
2715 }
2716
_regmap_read(struct regmap * map,unsigned int reg,unsigned int * val)2717 static int _regmap_read(struct regmap *map, unsigned int reg,
2718 unsigned int *val)
2719 {
2720 int ret;
2721 void *context = _regmap_map_get_context(map);
2722
2723 if (!map->cache_bypass) {
2724 ret = regcache_read(map, reg, val);
2725 if (ret == 0)
2726 return 0;
2727 }
2728
2729 if (map->cache_only)
2730 return -EBUSY;
2731
2732 if (!regmap_readable(map, reg))
2733 return -EIO;
2734
2735 ret = map->reg_read(context, reg, val);
2736 if (ret == 0) {
2737 if (regmap_should_log(map))
2738 dev_info(map->dev, "%x => %x\n", reg, *val);
2739
2740 trace_regmap_reg_read(map, reg, *val);
2741
2742 if (!map->cache_bypass)
2743 regcache_write(map, reg, *val);
2744 }
2745
2746 return ret;
2747 }
2748
2749 /**
2750 * regmap_read() - Read a value from a single register
2751 *
2752 * @map: Register map to read from
2753 * @reg: Register to be read from
2754 * @val: Pointer to store read value
2755 *
2756 * A value of zero will be returned on success, a negative errno will
2757 * be returned in error cases.
2758 */
regmap_read(struct regmap * map,unsigned int reg,unsigned int * val)2759 int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val)
2760 {
2761 int ret;
2762
2763 if (!IS_ALIGNED(reg, map->reg_stride))
2764 return -EINVAL;
2765
2766 map->lock(map->lock_arg);
2767
2768 ret = _regmap_read(map, reg, val);
2769
2770 map->unlock(map->lock_arg);
2771
2772 return ret;
2773 }
2774 EXPORT_SYMBOL_GPL(regmap_read);
2775
2776 /**
2777 * regmap_raw_read() - Read raw data from the device
2778 *
2779 * @map: Register map to read from
2780 * @reg: First register to be read from
2781 * @val: Pointer to store read value
2782 * @val_len: Size of data to read
2783 *
2784 * A value of zero will be returned on success, a negative errno will
2785 * be returned in error cases.
2786 */
regmap_raw_read(struct regmap * map,unsigned int reg,void * val,size_t val_len)2787 int regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2788 size_t val_len)
2789 {
2790 size_t val_bytes = map->format.val_bytes;
2791 size_t val_count = val_len / val_bytes;
2792 unsigned int v;
2793 int ret, i;
2794
2795 if (!map->bus)
2796 return -EINVAL;
2797 if (val_len % map->format.val_bytes)
2798 return -EINVAL;
2799 if (!IS_ALIGNED(reg, map->reg_stride))
2800 return -EINVAL;
2801 if (val_count == 0)
2802 return -EINVAL;
2803
2804 map->lock(map->lock_arg);
2805
2806 if (regmap_volatile_range(map, reg, val_count) || map->cache_bypass ||
2807 map->cache_type == REGCACHE_NONE) {
2808 size_t chunk_count, chunk_bytes;
2809 size_t chunk_regs = val_count;
2810
2811 if (!map->bus->read) {
2812 ret = -ENOTSUPP;
2813 goto out;
2814 }
2815
2816 if (map->use_single_read)
2817 chunk_regs = 1;
2818 else if (map->max_raw_read && val_len > map->max_raw_read)
2819 chunk_regs = map->max_raw_read / val_bytes;
2820
2821 chunk_count = val_count / chunk_regs;
2822 chunk_bytes = chunk_regs * val_bytes;
2823
2824 /* Read bytes that fit into whole chunks */
2825 for (i = 0; i < chunk_count; i++) {
2826 ret = _regmap_raw_read(map, reg, val, chunk_bytes, false);
2827 if (ret != 0)
2828 goto out;
2829
2830 reg += regmap_get_offset(map, chunk_regs);
2831 val += chunk_bytes;
2832 val_len -= chunk_bytes;
2833 }
2834
2835 /* Read remaining bytes */
2836 if (val_len) {
2837 ret = _regmap_raw_read(map, reg, val, val_len, false);
2838 if (ret != 0)
2839 goto out;
2840 }
2841 } else {
2842 /* Otherwise go word by word for the cache; should be low
2843 * cost as we expect to hit the cache.
2844 */
2845 for (i = 0; i < val_count; i++) {
2846 ret = _regmap_read(map, reg + regmap_get_offset(map, i),
2847 &v);
2848 if (ret != 0)
2849 goto out;
2850
2851 map->format.format_val(val + (i * val_bytes), v, 0);
2852 }
2853 }
2854
2855 out:
2856 map->unlock(map->lock_arg);
2857
2858 return ret;
2859 }
2860 EXPORT_SYMBOL_GPL(regmap_raw_read);
2861
2862 /**
2863 * regmap_noinc_read(): Read data from a register without incrementing the
2864 * register number
2865 *
2866 * @map: Register map to read from
2867 * @reg: Register to read from
2868 * @val: Pointer to data buffer
2869 * @val_len: Length of output buffer in bytes.
2870 *
2871 * The regmap API usually assumes that bulk bus read operations will read a
2872 * range of registers. Some devices have certain registers for which a read
2873 * operation read will read from an internal FIFO.
2874 *
2875 * The target register must be volatile but registers after it can be
2876 * completely unrelated cacheable registers.
2877 *
2878 * This will attempt multiple reads as required to read val_len bytes.
2879 *
2880 * A value of zero will be returned on success, a negative errno will be
2881 * returned in error cases.
2882 */
regmap_noinc_read(struct regmap * map,unsigned int reg,void * val,size_t val_len)2883 int regmap_noinc_read(struct regmap *map, unsigned int reg,
2884 void *val, size_t val_len)
2885 {
2886 size_t read_len;
2887 int ret;
2888
2889 if (!map->bus)
2890 return -EINVAL;
2891 if (!map->bus->read)
2892 return -ENOTSUPP;
2893 if (val_len % map->format.val_bytes)
2894 return -EINVAL;
2895 if (!IS_ALIGNED(reg, map->reg_stride))
2896 return -EINVAL;
2897 if (val_len == 0)
2898 return -EINVAL;
2899
2900 map->lock(map->lock_arg);
2901
2902 if (!regmap_volatile(map, reg) || !regmap_readable_noinc(map, reg)) {
2903 ret = -EINVAL;
2904 goto out_unlock;
2905 }
2906
2907 while (val_len) {
2908 if (map->max_raw_read && map->max_raw_read < val_len)
2909 read_len = map->max_raw_read;
2910 else
2911 read_len = val_len;
2912 ret = _regmap_raw_read(map, reg, val, read_len, true);
2913 if (ret)
2914 goto out_unlock;
2915 val = ((u8 *)val) + read_len;
2916 val_len -= read_len;
2917 }
2918
2919 out_unlock:
2920 map->unlock(map->lock_arg);
2921 return ret;
2922 }
2923 EXPORT_SYMBOL_GPL(regmap_noinc_read);
2924
2925 /**
2926 * regmap_field_read(): Read a value to a single register field
2927 *
2928 * @field: Register field to read from
2929 * @val: Pointer to store read value
2930 *
2931 * A value of zero will be returned on success, a negative errno will
2932 * be returned in error cases.
2933 */
regmap_field_read(struct regmap_field * field,unsigned int * val)2934 int regmap_field_read(struct regmap_field *field, unsigned int *val)
2935 {
2936 int ret;
2937 unsigned int reg_val;
2938 ret = regmap_read(field->regmap, field->reg, ®_val);
2939 if (ret != 0)
2940 return ret;
2941
2942 reg_val &= field->mask;
2943 reg_val >>= field->shift;
2944 *val = reg_val;
2945
2946 return ret;
2947 }
2948 EXPORT_SYMBOL_GPL(regmap_field_read);
2949
2950 /**
2951 * regmap_fields_read() - Read a value to a single register field with port ID
2952 *
2953 * @field: Register field to read from
2954 * @id: port ID
2955 * @val: Pointer to store read value
2956 *
2957 * A value of zero will be returned on success, a negative errno will
2958 * be returned in error cases.
2959 */
regmap_fields_read(struct regmap_field * field,unsigned int id,unsigned int * val)2960 int regmap_fields_read(struct regmap_field *field, unsigned int id,
2961 unsigned int *val)
2962 {
2963 int ret;
2964 unsigned int reg_val;
2965
2966 if (id >= field->id_size)
2967 return -EINVAL;
2968
2969 ret = regmap_read(field->regmap,
2970 field->reg + (field->id_offset * id),
2971 ®_val);
2972 if (ret != 0)
2973 return ret;
2974
2975 reg_val &= field->mask;
2976 reg_val >>= field->shift;
2977 *val = reg_val;
2978
2979 return ret;
2980 }
2981 EXPORT_SYMBOL_GPL(regmap_fields_read);
2982
2983 /**
2984 * regmap_bulk_read() - Read multiple registers from the device
2985 *
2986 * @map: Register map to read from
2987 * @reg: First register to be read from
2988 * @val: Pointer to store read value, in native register size for device
2989 * @val_count: Number of registers to read
2990 *
2991 * A value of zero will be returned on success, a negative errno will
2992 * be returned in error cases.
2993 */
regmap_bulk_read(struct regmap * map,unsigned int reg,void * val,size_t val_count)2994 int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val,
2995 size_t val_count)
2996 {
2997 int ret, i;
2998 size_t val_bytes = map->format.val_bytes;
2999 bool vol = regmap_volatile_range(map, reg, val_count);
3000
3001 if (!IS_ALIGNED(reg, map->reg_stride))
3002 return -EINVAL;
3003 if (val_count == 0)
3004 return -EINVAL;
3005
3006 if (map->bus && map->format.parse_inplace && (vol || map->cache_type == REGCACHE_NONE)) {
3007 ret = regmap_raw_read(map, reg, val, val_bytes * val_count);
3008 if (ret != 0)
3009 return ret;
3010
3011 for (i = 0; i < val_count * val_bytes; i += val_bytes)
3012 map->format.parse_inplace(val + i);
3013 } else {
3014 #ifdef CONFIG_64BIT
3015 u64 *u64 = val;
3016 #endif
3017 u32 *u32 = val;
3018 u16 *u16 = val;
3019 u8 *u8 = val;
3020
3021 map->lock(map->lock_arg);
3022
3023 for (i = 0; i < val_count; i++) {
3024 unsigned int ival;
3025
3026 ret = _regmap_read(map, reg + regmap_get_offset(map, i),
3027 &ival);
3028 if (ret != 0)
3029 goto out;
3030
3031 switch (map->format.val_bytes) {
3032 #ifdef CONFIG_64BIT
3033 case 8:
3034 u64[i] = ival;
3035 break;
3036 #endif
3037 case 4:
3038 u32[i] = ival;
3039 break;
3040 case 2:
3041 u16[i] = ival;
3042 break;
3043 case 1:
3044 u8[i] = ival;
3045 break;
3046 default:
3047 ret = -EINVAL;
3048 goto out;
3049 }
3050 }
3051
3052 out:
3053 map->unlock(map->lock_arg);
3054 }
3055
3056 return ret;
3057 }
3058 EXPORT_SYMBOL_GPL(regmap_bulk_read);
3059
_regmap_update_bits(struct regmap * map,unsigned int reg,unsigned int mask,unsigned int val,bool * change,bool force_write)3060 static int _regmap_update_bits(struct regmap *map, unsigned int reg,
3061 unsigned int mask, unsigned int val,
3062 bool *change, bool force_write)
3063 {
3064 int ret;
3065 unsigned int tmp, orig;
3066
3067 if (change)
3068 *change = false;
3069
3070 if (regmap_volatile(map, reg) && map->reg_update_bits) {
3071 ret = map->reg_update_bits(map->bus_context, reg, mask, val);
3072 if (ret == 0 && change)
3073 *change = true;
3074 } else {
3075 ret = _regmap_read(map, reg, &orig);
3076 if (ret != 0)
3077 return ret;
3078
3079 tmp = orig & ~mask;
3080 tmp |= val & mask;
3081
3082 if (force_write || (tmp != orig)) {
3083 ret = _regmap_write(map, reg, tmp);
3084 if (ret == 0 && change)
3085 *change = true;
3086 }
3087 }
3088
3089 return ret;
3090 }
3091
3092 /**
3093 * regmap_update_bits_base() - Perform a read/modify/write cycle on a register
3094 *
3095 * @map: Register map to update
3096 * @reg: Register to update
3097 * @mask: Bitmask to change
3098 * @val: New value for bitmask
3099 * @change: Boolean indicating if a write was done
3100 * @async: Boolean indicating asynchronously
3101 * @force: Boolean indicating use force update
3102 *
3103 * Perform a read/modify/write cycle on a register map with change, async, force
3104 * options.
3105 *
3106 * If async is true:
3107 *
3108 * With most buses the read must be done synchronously so this is most useful
3109 * for devices with a cache which do not need to interact with the hardware to
3110 * determine the current register value.
3111 *
3112 * Returns zero for success, a negative number on error.
3113 */
regmap_update_bits_base(struct regmap * map,unsigned int reg,unsigned int mask,unsigned int val,bool * change,bool async,bool force)3114 int regmap_update_bits_base(struct regmap *map, unsigned int reg,
3115 unsigned int mask, unsigned int val,
3116 bool *change, bool async, bool force)
3117 {
3118 int ret;
3119
3120 map->lock(map->lock_arg);
3121
3122 map->async = async;
3123
3124 ret = _regmap_update_bits(map, reg, mask, val, change, force);
3125
3126 map->async = false;
3127
3128 map->unlock(map->lock_arg);
3129
3130 return ret;
3131 }
3132 EXPORT_SYMBOL_GPL(regmap_update_bits_base);
3133
3134 /**
3135 * regmap_test_bits() - Check if all specified bits are set in a register.
3136 *
3137 * @map: Register map to operate on
3138 * @reg: Register to read from
3139 * @bits: Bits to test
3140 *
3141 * Returns 0 if at least one of the tested bits is not set, 1 if all tested
3142 * bits are set and a negative error number if the underlying regmap_read()
3143 * fails.
3144 */
regmap_test_bits(struct regmap * map,unsigned int reg,unsigned int bits)3145 int regmap_test_bits(struct regmap *map, unsigned int reg, unsigned int bits)
3146 {
3147 unsigned int val, ret;
3148
3149 ret = regmap_read(map, reg, &val);
3150 if (ret)
3151 return ret;
3152
3153 return (val & bits) == bits;
3154 }
3155 EXPORT_SYMBOL_GPL(regmap_test_bits);
3156
regmap_async_complete_cb(struct regmap_async * async,int ret)3157 void regmap_async_complete_cb(struct regmap_async *async, int ret)
3158 {
3159 struct regmap *map = async->map;
3160 bool wake;
3161
3162 trace_regmap_async_io_complete(map);
3163
3164 spin_lock(&map->async_lock);
3165 list_move(&async->list, &map->async_free);
3166 wake = list_empty(&map->async_list);
3167
3168 if (ret != 0)
3169 map->async_ret = ret;
3170
3171 spin_unlock(&map->async_lock);
3172
3173 if (wake)
3174 wake_up(&map->async_waitq);
3175 }
3176 EXPORT_SYMBOL_GPL(regmap_async_complete_cb);
3177
regmap_async_is_done(struct regmap * map)3178 static int regmap_async_is_done(struct regmap *map)
3179 {
3180 unsigned long flags;
3181 int ret;
3182
3183 spin_lock_irqsave(&map->async_lock, flags);
3184 ret = list_empty(&map->async_list);
3185 spin_unlock_irqrestore(&map->async_lock, flags);
3186
3187 return ret;
3188 }
3189
3190 /**
3191 * regmap_async_complete - Ensure all asynchronous I/O has completed.
3192 *
3193 * @map: Map to operate on.
3194 *
3195 * Blocks until any pending asynchronous I/O has completed. Returns
3196 * an error code for any failed I/O operations.
3197 */
regmap_async_complete(struct regmap * map)3198 int regmap_async_complete(struct regmap *map)
3199 {
3200 unsigned long flags;
3201 int ret;
3202
3203 /* Nothing to do with no async support */
3204 if (!map->bus || !map->bus->async_write)
3205 return 0;
3206
3207 trace_regmap_async_complete_start(map);
3208
3209 wait_event(map->async_waitq, regmap_async_is_done(map));
3210
3211 spin_lock_irqsave(&map->async_lock, flags);
3212 ret = map->async_ret;
3213 map->async_ret = 0;
3214 spin_unlock_irqrestore(&map->async_lock, flags);
3215
3216 trace_regmap_async_complete_done(map);
3217
3218 return ret;
3219 }
3220 EXPORT_SYMBOL_GPL(regmap_async_complete);
3221
3222 /**
3223 * regmap_register_patch - Register and apply register updates to be applied
3224 * on device initialistion
3225 *
3226 * @map: Register map to apply updates to.
3227 * @regs: Values to update.
3228 * @num_regs: Number of entries in regs.
3229 *
3230 * Register a set of register updates to be applied to the device
3231 * whenever the device registers are synchronised with the cache and
3232 * apply them immediately. Typically this is used to apply
3233 * corrections to be applied to the device defaults on startup, such
3234 * as the updates some vendors provide to undocumented registers.
3235 *
3236 * The caller must ensure that this function cannot be called
3237 * concurrently with either itself or regcache_sync().
3238 */
regmap_register_patch(struct regmap * map,const struct reg_sequence * regs,int num_regs)3239 int regmap_register_patch(struct regmap *map, const struct reg_sequence *regs,
3240 int num_regs)
3241 {
3242 struct reg_sequence *p;
3243 int ret;
3244 bool bypass;
3245
3246 if (WARN_ONCE(num_regs <= 0, "invalid registers number (%d)\n",
3247 num_regs))
3248 return 0;
3249
3250 p = krealloc(map->patch,
3251 sizeof(struct reg_sequence) * (map->patch_regs + num_regs),
3252 GFP_KERNEL);
3253 if (p) {
3254 memcpy(p + map->patch_regs, regs, num_regs * sizeof(*regs));
3255 map->patch = p;
3256 map->patch_regs += num_regs;
3257 } else {
3258 return -ENOMEM;
3259 }
3260
3261 map->lock(map->lock_arg);
3262
3263 bypass = map->cache_bypass;
3264
3265 map->cache_bypass = true;
3266 map->async = true;
3267
3268 ret = _regmap_multi_reg_write(map, regs, num_regs);
3269
3270 map->async = false;
3271 map->cache_bypass = bypass;
3272
3273 map->unlock(map->lock_arg);
3274
3275 regmap_async_complete(map);
3276
3277 return ret;
3278 }
3279 EXPORT_SYMBOL_GPL(regmap_register_patch);
3280
3281 /**
3282 * regmap_get_val_bytes() - Report the size of a register value
3283 *
3284 * @map: Register map to operate on.
3285 *
3286 * Report the size of a register value, mainly intended to for use by
3287 * generic infrastructure built on top of regmap.
3288 */
regmap_get_val_bytes(struct regmap * map)3289 int regmap_get_val_bytes(struct regmap *map)
3290 {
3291 if (map->format.format_write)
3292 return -EINVAL;
3293
3294 return map->format.val_bytes;
3295 }
3296 EXPORT_SYMBOL_GPL(regmap_get_val_bytes);
3297
3298 /**
3299 * regmap_get_max_register() - Report the max register value
3300 *
3301 * @map: Register map to operate on.
3302 *
3303 * Report the max register value, mainly intended to for use by
3304 * generic infrastructure built on top of regmap.
3305 */
regmap_get_max_register(struct regmap * map)3306 int regmap_get_max_register(struct regmap *map)
3307 {
3308 return map->max_register ? map->max_register : -EINVAL;
3309 }
3310 EXPORT_SYMBOL_GPL(regmap_get_max_register);
3311
3312 /**
3313 * regmap_get_reg_stride() - Report the register address stride
3314 *
3315 * @map: Register map to operate on.
3316 *
3317 * Report the register address stride, mainly intended to for use by
3318 * generic infrastructure built on top of regmap.
3319 */
regmap_get_reg_stride(struct regmap * map)3320 int regmap_get_reg_stride(struct regmap *map)
3321 {
3322 return map->reg_stride;
3323 }
3324 EXPORT_SYMBOL_GPL(regmap_get_reg_stride);
3325
regmap_parse_val(struct regmap * map,const void * buf,unsigned int * val)3326 int regmap_parse_val(struct regmap *map, const void *buf,
3327 unsigned int *val)
3328 {
3329 if (!map->format.parse_val)
3330 return -EINVAL;
3331
3332 *val = map->format.parse_val(buf);
3333
3334 return 0;
3335 }
3336 EXPORT_SYMBOL_GPL(regmap_parse_val);
3337
regmap_initcall(void)3338 static int __init regmap_initcall(void)
3339 {
3340 regmap_debugfs_initcall();
3341
3342 return 0;
3343 }
3344 postcore_initcall(regmap_initcall);
3345