1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * main.c - Multi purpose firmware loading support
4 *
5 * Copyright (c) 2003 Manuel Estrada Sainz
6 *
7 * Please see Documentation/driver-api/firmware/ for more information.
8 *
9 */
10
11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12
13 #include <linux/capability.h>
14 #include <linux/device.h>
15 #include <linux/kernel_read_file.h>
16 #include <linux/module.h>
17 #include <linux/init.h>
18 #include <linux/initrd.h>
19 #include <linux/timer.h>
20 #include <linux/vmalloc.h>
21 #include <linux/interrupt.h>
22 #include <linux/bitops.h>
23 #include <linux/mutex.h>
24 #include <linux/workqueue.h>
25 #include <linux/highmem.h>
26 #include <linux/firmware.h>
27 #include <linux/slab.h>
28 #include <linux/sched.h>
29 #include <linux/file.h>
30 #include <linux/list.h>
31 #include <linux/fs.h>
32 #include <linux/async.h>
33 #include <linux/pm.h>
34 #include <linux/suspend.h>
35 #include <linux/syscore_ops.h>
36 #include <linux/reboot.h>
37 #include <linux/security.h>
38 #include <linux/xz.h>
39
40 #include <generated/utsrelease.h>
41
42 #include "../base.h"
43 #include "firmware.h"
44 #include "fallback.h"
45
46 MODULE_AUTHOR("Manuel Estrada Sainz");
47 MODULE_DESCRIPTION("Multi purpose firmware loading support");
48 MODULE_LICENSE("GPL");
49
50 struct firmware_cache {
51 /* firmware_buf instance will be added into the below list */
52 spinlock_t lock;
53 struct list_head head;
54 int state;
55
56 #ifdef CONFIG_FW_CACHE
57 /*
58 * Names of firmware images which have been cached successfully
59 * will be added into the below list so that device uncache
60 * helper can trace which firmware images have been cached
61 * before.
62 */
63 spinlock_t name_lock;
64 struct list_head fw_names;
65
66 struct delayed_work work;
67
68 struct notifier_block pm_notify;
69 #endif
70 };
71
72 struct fw_cache_entry {
73 struct list_head list;
74 const char *name;
75 };
76
77 struct fw_name_devm {
78 unsigned long magic;
79 const char *name;
80 };
81
to_fw_priv(struct kref * ref)82 static inline struct fw_priv *to_fw_priv(struct kref *ref)
83 {
84 return container_of(ref, struct fw_priv, ref);
85 }
86
87 #define FW_LOADER_NO_CACHE 0
88 #define FW_LOADER_START_CACHE 1
89
90 /* fw_lock could be moved to 'struct fw_sysfs' but since it is just
91 * guarding for corner cases a global lock should be OK */
92 DEFINE_MUTEX(fw_lock);
93
94 static struct firmware_cache fw_cache;
95
96 /* Builtin firmware support */
97
98 #ifdef CONFIG_FW_LOADER
99
100 extern struct builtin_fw __start_builtin_fw[];
101 extern struct builtin_fw __end_builtin_fw[];
102
fw_copy_to_prealloc_buf(struct firmware * fw,void * buf,size_t size)103 static bool fw_copy_to_prealloc_buf(struct firmware *fw,
104 void *buf, size_t size)
105 {
106 if (!buf)
107 return true;
108 if (size < fw->size)
109 return false;
110 memcpy(buf, fw->data, fw->size);
111 return true;
112 }
113
fw_get_builtin_firmware(struct firmware * fw,const char * name,void * buf,size_t size)114 static bool fw_get_builtin_firmware(struct firmware *fw, const char *name,
115 void *buf, size_t size)
116 {
117 struct builtin_fw *b_fw;
118
119 for (b_fw = __start_builtin_fw; b_fw != __end_builtin_fw; b_fw++) {
120 if (strcmp(name, b_fw->name) == 0) {
121 fw->size = b_fw->size;
122 fw->data = b_fw->data;
123 return fw_copy_to_prealloc_buf(fw, buf, size);
124 }
125 }
126
127 return false;
128 }
129
fw_is_builtin_firmware(const struct firmware * fw)130 static bool fw_is_builtin_firmware(const struct firmware *fw)
131 {
132 struct builtin_fw *b_fw;
133
134 for (b_fw = __start_builtin_fw; b_fw != __end_builtin_fw; b_fw++)
135 if (fw->data == b_fw->data)
136 return true;
137
138 return false;
139 }
140
141 #else /* Module case - no builtin firmware support */
142
fw_get_builtin_firmware(struct firmware * fw,const char * name,void * buf,size_t size)143 static inline bool fw_get_builtin_firmware(struct firmware *fw,
144 const char *name, void *buf,
145 size_t size)
146 {
147 return false;
148 }
149
fw_is_builtin_firmware(const struct firmware * fw)150 static inline bool fw_is_builtin_firmware(const struct firmware *fw)
151 {
152 return false;
153 }
154 #endif
155
fw_state_init(struct fw_priv * fw_priv)156 static void fw_state_init(struct fw_priv *fw_priv)
157 {
158 struct fw_state *fw_st = &fw_priv->fw_st;
159
160 init_completion(&fw_st->completion);
161 fw_st->status = FW_STATUS_UNKNOWN;
162 }
163
fw_state_wait(struct fw_priv * fw_priv)164 static inline int fw_state_wait(struct fw_priv *fw_priv)
165 {
166 return __fw_state_wait_common(fw_priv, MAX_SCHEDULE_TIMEOUT);
167 }
168
169 static void fw_cache_piggyback_on_request(struct fw_priv *fw_priv);
170
__allocate_fw_priv(const char * fw_name,struct firmware_cache * fwc,void * dbuf,size_t size,size_t offset,u32 opt_flags)171 static struct fw_priv *__allocate_fw_priv(const char *fw_name,
172 struct firmware_cache *fwc,
173 void *dbuf,
174 size_t size,
175 size_t offset,
176 u32 opt_flags)
177 {
178 struct fw_priv *fw_priv;
179
180 /* For a partial read, the buffer must be preallocated. */
181 if ((opt_flags & FW_OPT_PARTIAL) && !dbuf)
182 return NULL;
183
184 /* Only partial reads are allowed to use an offset. */
185 if (offset != 0 && !(opt_flags & FW_OPT_PARTIAL))
186 return NULL;
187
188 fw_priv = kzalloc(sizeof(*fw_priv), GFP_ATOMIC);
189 if (!fw_priv)
190 return NULL;
191
192 fw_priv->fw_name = kstrdup_const(fw_name, GFP_ATOMIC);
193 if (!fw_priv->fw_name) {
194 kfree(fw_priv);
195 return NULL;
196 }
197
198 kref_init(&fw_priv->ref);
199 fw_priv->fwc = fwc;
200 fw_priv->data = dbuf;
201 fw_priv->allocated_size = size;
202 fw_priv->offset = offset;
203 fw_priv->opt_flags = opt_flags;
204 fw_state_init(fw_priv);
205 #ifdef CONFIG_FW_LOADER_USER_HELPER
206 INIT_LIST_HEAD(&fw_priv->pending_list);
207 #endif
208
209 pr_debug("%s: fw-%s fw_priv=%p\n", __func__, fw_name, fw_priv);
210
211 return fw_priv;
212 }
213
__lookup_fw_priv(const char * fw_name)214 static struct fw_priv *__lookup_fw_priv(const char *fw_name)
215 {
216 struct fw_priv *tmp;
217 struct firmware_cache *fwc = &fw_cache;
218
219 list_for_each_entry(tmp, &fwc->head, list)
220 if (!strcmp(tmp->fw_name, fw_name))
221 return tmp;
222 return NULL;
223 }
224
225 /* Returns 1 for batching firmware requests with the same name */
alloc_lookup_fw_priv(const char * fw_name,struct firmware_cache * fwc,struct fw_priv ** fw_priv,void * dbuf,size_t size,size_t offset,u32 opt_flags)226 static int alloc_lookup_fw_priv(const char *fw_name,
227 struct firmware_cache *fwc,
228 struct fw_priv **fw_priv,
229 void *dbuf,
230 size_t size,
231 size_t offset,
232 u32 opt_flags)
233 {
234 struct fw_priv *tmp;
235
236 spin_lock(&fwc->lock);
237 /*
238 * Do not merge requests that are marked to be non-cached or
239 * are performing partial reads.
240 */
241 if (!(opt_flags & (FW_OPT_NOCACHE | FW_OPT_PARTIAL))) {
242 tmp = __lookup_fw_priv(fw_name);
243 if (tmp) {
244 kref_get(&tmp->ref);
245 spin_unlock(&fwc->lock);
246 *fw_priv = tmp;
247 pr_debug("batched request - sharing the same struct fw_priv and lookup for multiple requests\n");
248 return 1;
249 }
250 }
251
252 tmp = __allocate_fw_priv(fw_name, fwc, dbuf, size, offset, opt_flags);
253 if (tmp) {
254 INIT_LIST_HEAD(&tmp->list);
255 if (!(opt_flags & FW_OPT_NOCACHE))
256 list_add(&tmp->list, &fwc->head);
257 }
258 spin_unlock(&fwc->lock);
259
260 *fw_priv = tmp;
261
262 return tmp ? 0 : -ENOMEM;
263 }
264
__free_fw_priv(struct kref * ref)265 static void __free_fw_priv(struct kref *ref)
266 __releases(&fwc->lock)
267 {
268 struct fw_priv *fw_priv = to_fw_priv(ref);
269 struct firmware_cache *fwc = fw_priv->fwc;
270
271 pr_debug("%s: fw-%s fw_priv=%p data=%p size=%u\n",
272 __func__, fw_priv->fw_name, fw_priv, fw_priv->data,
273 (unsigned int)fw_priv->size);
274
275 list_del(&fw_priv->list);
276 spin_unlock(&fwc->lock);
277
278 if (fw_is_paged_buf(fw_priv))
279 fw_free_paged_buf(fw_priv);
280 else if (!fw_priv->allocated_size)
281 vfree(fw_priv->data);
282
283 kfree_const(fw_priv->fw_name);
284 kfree(fw_priv);
285 }
286
free_fw_priv(struct fw_priv * fw_priv)287 static void free_fw_priv(struct fw_priv *fw_priv)
288 {
289 struct firmware_cache *fwc = fw_priv->fwc;
290 spin_lock(&fwc->lock);
291 if (!kref_put(&fw_priv->ref, __free_fw_priv))
292 spin_unlock(&fwc->lock);
293 }
294
295 #ifdef CONFIG_FW_LOADER_PAGED_BUF
fw_is_paged_buf(struct fw_priv * fw_priv)296 bool fw_is_paged_buf(struct fw_priv *fw_priv)
297 {
298 return fw_priv->is_paged_buf;
299 }
300
fw_free_paged_buf(struct fw_priv * fw_priv)301 void fw_free_paged_buf(struct fw_priv *fw_priv)
302 {
303 int i;
304
305 if (!fw_priv->pages)
306 return;
307
308 vunmap(fw_priv->data);
309
310 for (i = 0; i < fw_priv->nr_pages; i++)
311 __free_page(fw_priv->pages[i]);
312 kvfree(fw_priv->pages);
313 fw_priv->pages = NULL;
314 fw_priv->page_array_size = 0;
315 fw_priv->nr_pages = 0;
316 }
317
fw_grow_paged_buf(struct fw_priv * fw_priv,int pages_needed)318 int fw_grow_paged_buf(struct fw_priv *fw_priv, int pages_needed)
319 {
320 /* If the array of pages is too small, grow it */
321 if (fw_priv->page_array_size < pages_needed) {
322 int new_array_size = max(pages_needed,
323 fw_priv->page_array_size * 2);
324 struct page **new_pages;
325
326 new_pages = kvmalloc_array(new_array_size, sizeof(void *),
327 GFP_KERNEL);
328 if (!new_pages)
329 return -ENOMEM;
330 memcpy(new_pages, fw_priv->pages,
331 fw_priv->page_array_size * sizeof(void *));
332 memset(&new_pages[fw_priv->page_array_size], 0, sizeof(void *) *
333 (new_array_size - fw_priv->page_array_size));
334 kvfree(fw_priv->pages);
335 fw_priv->pages = new_pages;
336 fw_priv->page_array_size = new_array_size;
337 }
338
339 while (fw_priv->nr_pages < pages_needed) {
340 fw_priv->pages[fw_priv->nr_pages] =
341 alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
342
343 if (!fw_priv->pages[fw_priv->nr_pages])
344 return -ENOMEM;
345 fw_priv->nr_pages++;
346 }
347
348 return 0;
349 }
350
fw_map_paged_buf(struct fw_priv * fw_priv)351 int fw_map_paged_buf(struct fw_priv *fw_priv)
352 {
353 /* one pages buffer should be mapped/unmapped only once */
354 if (!fw_priv->pages)
355 return 0;
356
357 vunmap(fw_priv->data);
358 fw_priv->data = vmap(fw_priv->pages, fw_priv->nr_pages, 0,
359 PAGE_KERNEL_RO);
360 if (!fw_priv->data)
361 return -ENOMEM;
362
363 return 0;
364 }
365 #endif
366
367 /*
368 * XZ-compressed firmware support
369 */
370 #ifdef CONFIG_FW_LOADER_COMPRESS
371 /* show an error and return the standard error code */
fw_decompress_xz_error(struct device * dev,enum xz_ret xz_ret)372 static int fw_decompress_xz_error(struct device *dev, enum xz_ret xz_ret)
373 {
374 if (xz_ret != XZ_STREAM_END) {
375 dev_warn(dev, "xz decompression failed (xz_ret=%d)\n", xz_ret);
376 return xz_ret == XZ_MEM_ERROR ? -ENOMEM : -EINVAL;
377 }
378 return 0;
379 }
380
381 /* single-shot decompression onto the pre-allocated buffer */
fw_decompress_xz_single(struct device * dev,struct fw_priv * fw_priv,size_t in_size,const void * in_buffer)382 static int fw_decompress_xz_single(struct device *dev, struct fw_priv *fw_priv,
383 size_t in_size, const void *in_buffer)
384 {
385 struct xz_dec *xz_dec;
386 struct xz_buf xz_buf;
387 enum xz_ret xz_ret;
388
389 xz_dec = xz_dec_init(XZ_SINGLE, (u32)-1);
390 if (!xz_dec)
391 return -ENOMEM;
392
393 xz_buf.in_size = in_size;
394 xz_buf.in = in_buffer;
395 xz_buf.in_pos = 0;
396 xz_buf.out_size = fw_priv->allocated_size;
397 xz_buf.out = fw_priv->data;
398 xz_buf.out_pos = 0;
399
400 xz_ret = xz_dec_run(xz_dec, &xz_buf);
401 xz_dec_end(xz_dec);
402
403 fw_priv->size = xz_buf.out_pos;
404 return fw_decompress_xz_error(dev, xz_ret);
405 }
406
407 /* decompression on paged buffer and map it */
fw_decompress_xz_pages(struct device * dev,struct fw_priv * fw_priv,size_t in_size,const void * in_buffer)408 static int fw_decompress_xz_pages(struct device *dev, struct fw_priv *fw_priv,
409 size_t in_size, const void *in_buffer)
410 {
411 struct xz_dec *xz_dec;
412 struct xz_buf xz_buf;
413 enum xz_ret xz_ret;
414 struct page *page;
415 int err = 0;
416
417 xz_dec = xz_dec_init(XZ_DYNALLOC, (u32)-1);
418 if (!xz_dec)
419 return -ENOMEM;
420
421 xz_buf.in_size = in_size;
422 xz_buf.in = in_buffer;
423 xz_buf.in_pos = 0;
424
425 fw_priv->is_paged_buf = true;
426 fw_priv->size = 0;
427 do {
428 if (fw_grow_paged_buf(fw_priv, fw_priv->nr_pages + 1)) {
429 err = -ENOMEM;
430 goto out;
431 }
432
433 /* decompress onto the new allocated page */
434 page = fw_priv->pages[fw_priv->nr_pages - 1];
435 xz_buf.out = kmap(page);
436 xz_buf.out_pos = 0;
437 xz_buf.out_size = PAGE_SIZE;
438 xz_ret = xz_dec_run(xz_dec, &xz_buf);
439 kunmap(page);
440 fw_priv->size += xz_buf.out_pos;
441 /* partial decompression means either end or error */
442 if (xz_buf.out_pos != PAGE_SIZE)
443 break;
444 } while (xz_ret == XZ_OK);
445
446 err = fw_decompress_xz_error(dev, xz_ret);
447 if (!err)
448 err = fw_map_paged_buf(fw_priv);
449
450 out:
451 xz_dec_end(xz_dec);
452 return err;
453 }
454
fw_decompress_xz(struct device * dev,struct fw_priv * fw_priv,size_t in_size,const void * in_buffer)455 static int fw_decompress_xz(struct device *dev, struct fw_priv *fw_priv,
456 size_t in_size, const void *in_buffer)
457 {
458 /* if the buffer is pre-allocated, we can perform in single-shot mode */
459 if (fw_priv->data)
460 return fw_decompress_xz_single(dev, fw_priv, in_size, in_buffer);
461 else
462 return fw_decompress_xz_pages(dev, fw_priv, in_size, in_buffer);
463 }
464 #endif /* CONFIG_FW_LOADER_COMPRESS */
465
466 /* direct firmware loading support */
467 #define CUSTOM_FW_PATH_COUNT 10
468 #define PATH_SIZE 255
469 static char fw_path_para[CUSTOM_FW_PATH_COUNT][PATH_SIZE];
470 static const char * const fw_path[] = {
471 fw_path_para[0],
472 fw_path_para[1],
473 fw_path_para[2],
474 fw_path_para[3],
475 fw_path_para[4],
476 fw_path_para[5],
477 fw_path_para[6],
478 fw_path_para[7],
479 fw_path_para[8],
480 fw_path_para[9],
481 "/lib/firmware/updates/" UTS_RELEASE,
482 "/lib/firmware/updates",
483 "/lib/firmware/" UTS_RELEASE,
484 "/lib/firmware"
485 };
486
487 static char strpath[PATH_SIZE * CUSTOM_FW_PATH_COUNT];
firmware_param_path_set(const char * val,const struct kernel_param * kp)488 static int firmware_param_path_set(const char *val, const struct kernel_param *kp)
489 {
490 int i;
491 char *path, *end;
492
493 strcpy(strpath, val);
494 /* Remove leading and trailing spaces from path */
495 path = strim(strpath);
496 for (i = 0; path && i < CUSTOM_FW_PATH_COUNT; i++) {
497 end = strchr(path, ',');
498
499 /* Skip continuous token case, for example ',,,' */
500 if (end == path) {
501 i--;
502 path = ++end;
503 continue;
504 }
505
506 if (end != NULL)
507 *end = '\0';
508 else {
509 /* end of the string reached and no other tockens ',' */
510 strncpy(fw_path_para[i], path, PATH_SIZE);
511 break;
512 }
513
514 strncpy(fw_path_para[i], path, PATH_SIZE);
515 path = ++end;
516 }
517
518 return 0;
519 }
520
521 /*
522 * Typical usage is that passing 'firmware_class.path=/vendor,/firwmare_mnt'
523 * from kernel command line because firmware_class is generally built in
524 * kernel instead of module. ',' is used as delimiter for setting 10
525 * custom paths for firmware loader.
526 */
527
528 static const struct kernel_param_ops firmware_param_ops = {
529 .set = firmware_param_path_set,
530 };
531 module_param_cb(path, &firmware_param_ops, NULL, 0200);
532 MODULE_PARM_DESC(path, "customized firmware image search path with a higher priority than default path");
533
534 static int
fw_get_filesystem_firmware(struct device * device,struct fw_priv * fw_priv,const char * suffix,int (* decompress)(struct device * dev,struct fw_priv * fw_priv,size_t in_size,const void * in_buffer))535 fw_get_filesystem_firmware(struct device *device, struct fw_priv *fw_priv,
536 const char *suffix,
537 int (*decompress)(struct device *dev,
538 struct fw_priv *fw_priv,
539 size_t in_size,
540 const void *in_buffer))
541 {
542 size_t size;
543 int i, len;
544 int rc = -ENOENT;
545 char *path;
546 size_t msize = INT_MAX;
547 void *buffer = NULL;
548
549 /* Already populated data member means we're loading into a buffer */
550 if (!decompress && fw_priv->data) {
551 buffer = fw_priv->data;
552 msize = fw_priv->allocated_size;
553 }
554
555 path = __getname();
556 if (!path)
557 return -ENOMEM;
558
559 wait_for_initramfs();
560 for (i = 0; i < ARRAY_SIZE(fw_path); i++) {
561 size_t file_size = 0;
562 size_t *file_size_ptr = NULL;
563
564 /* skip the unset customized path */
565 if (!fw_path[i][0])
566 continue;
567
568 len = snprintf(path, PATH_MAX, "%s/%s%s",
569 fw_path[i], fw_priv->fw_name, suffix);
570 if (len >= PATH_MAX) {
571 rc = -ENAMETOOLONG;
572 break;
573 }
574
575 fw_priv->size = 0;
576
577 /*
578 * The total file size is only examined when doing a partial
579 * read; the "full read" case needs to fail if the whole
580 * firmware was not completely loaded.
581 */
582 if ((fw_priv->opt_flags & FW_OPT_PARTIAL) && buffer)
583 file_size_ptr = &file_size;
584
585 /* load firmware files from the mount namespace of init */
586 rc = kernel_read_file_from_path_initns(path, fw_priv->offset,
587 &buffer, msize,
588 file_size_ptr,
589 READING_FIRMWARE);
590 if (rc < 0) {
591 if (rc != -ENOENT)
592 dev_warn(device, "loading %s failed with error %d\n",
593 path, rc);
594 else
595 dev_dbg(device, "loading %s failed for no such file or directory.\n",
596 path);
597 continue;
598 }
599 size = rc;
600 rc = 0;
601
602 dev_dbg(device, "Loading firmware from %s\n", path);
603 if (decompress) {
604 dev_dbg(device, "f/w decompressing %s\n",
605 fw_priv->fw_name);
606 rc = decompress(device, fw_priv, size, buffer);
607 /* discard the superfluous original content */
608 vfree(buffer);
609 buffer = NULL;
610 if (rc) {
611 fw_free_paged_buf(fw_priv);
612 continue;
613 }
614 } else {
615 dev_dbg(device, "direct-loading %s\n",
616 fw_priv->fw_name);
617 if (!fw_priv->data)
618 fw_priv->data = buffer;
619 fw_priv->size = size;
620 }
621 fw_state_done(fw_priv);
622 break;
623 }
624 __putname(path);
625
626 return rc;
627 }
628
629 /* firmware holds the ownership of pages */
firmware_free_data(const struct firmware * fw)630 static void firmware_free_data(const struct firmware *fw)
631 {
632 /* Loaded directly? */
633 if (!fw->priv) {
634 vfree(fw->data);
635 return;
636 }
637 free_fw_priv(fw->priv);
638 }
639
640 /* store the pages buffer info firmware from buf */
fw_set_page_data(struct fw_priv * fw_priv,struct firmware * fw)641 static void fw_set_page_data(struct fw_priv *fw_priv, struct firmware *fw)
642 {
643 fw->priv = fw_priv;
644 fw->size = fw_priv->size;
645 fw->data = fw_priv->data;
646
647 pr_debug("%s: fw-%s fw_priv=%p data=%p size=%u\n",
648 __func__, fw_priv->fw_name, fw_priv, fw_priv->data,
649 (unsigned int)fw_priv->size);
650 }
651
652 #ifdef CONFIG_FW_CACHE
fw_name_devm_release(struct device * dev,void * res)653 static void fw_name_devm_release(struct device *dev, void *res)
654 {
655 struct fw_name_devm *fwn = res;
656
657 if (fwn->magic == (unsigned long)&fw_cache)
658 pr_debug("%s: fw_name-%s devm-%p released\n",
659 __func__, fwn->name, res);
660 kfree_const(fwn->name);
661 }
662
fw_devm_match(struct device * dev,void * res,void * match_data)663 static int fw_devm_match(struct device *dev, void *res,
664 void *match_data)
665 {
666 struct fw_name_devm *fwn = res;
667
668 return (fwn->magic == (unsigned long)&fw_cache) &&
669 !strcmp(fwn->name, match_data);
670 }
671
fw_find_devm_name(struct device * dev,const char * name)672 static struct fw_name_devm *fw_find_devm_name(struct device *dev,
673 const char *name)
674 {
675 struct fw_name_devm *fwn;
676
677 fwn = devres_find(dev, fw_name_devm_release,
678 fw_devm_match, (void *)name);
679 return fwn;
680 }
681
fw_cache_is_setup(struct device * dev,const char * name)682 static bool fw_cache_is_setup(struct device *dev, const char *name)
683 {
684 struct fw_name_devm *fwn;
685
686 fwn = fw_find_devm_name(dev, name);
687 if (fwn)
688 return true;
689
690 return false;
691 }
692
693 /* add firmware name into devres list */
fw_add_devm_name(struct device * dev,const char * name)694 static int fw_add_devm_name(struct device *dev, const char *name)
695 {
696 struct fw_name_devm *fwn;
697
698 if (fw_cache_is_setup(dev, name))
699 return 0;
700
701 fwn = devres_alloc(fw_name_devm_release, sizeof(struct fw_name_devm),
702 GFP_KERNEL);
703 if (!fwn)
704 return -ENOMEM;
705 fwn->name = kstrdup_const(name, GFP_KERNEL);
706 if (!fwn->name) {
707 devres_free(fwn);
708 return -ENOMEM;
709 }
710
711 fwn->magic = (unsigned long)&fw_cache;
712 devres_add(dev, fwn);
713
714 return 0;
715 }
716 #else
fw_cache_is_setup(struct device * dev,const char * name)717 static bool fw_cache_is_setup(struct device *dev, const char *name)
718 {
719 return false;
720 }
721
fw_add_devm_name(struct device * dev,const char * name)722 static int fw_add_devm_name(struct device *dev, const char *name)
723 {
724 return 0;
725 }
726 #endif
727
assign_fw(struct firmware * fw,struct device * device)728 int assign_fw(struct firmware *fw, struct device *device)
729 {
730 struct fw_priv *fw_priv = fw->priv;
731 int ret;
732
733 mutex_lock(&fw_lock);
734 if (!fw_priv->size || fw_state_is_aborted(fw_priv)) {
735 mutex_unlock(&fw_lock);
736 return -ENOENT;
737 }
738
739 /*
740 * add firmware name into devres list so that we can auto cache
741 * and uncache firmware for device.
742 *
743 * device may has been deleted already, but the problem
744 * should be fixed in devres or driver core.
745 */
746 /* don't cache firmware handled without uevent */
747 if (device && (fw_priv->opt_flags & FW_OPT_UEVENT) &&
748 !(fw_priv->opt_flags & FW_OPT_NOCACHE)) {
749 ret = fw_add_devm_name(device, fw_priv->fw_name);
750 if (ret) {
751 mutex_unlock(&fw_lock);
752 return ret;
753 }
754 }
755
756 /*
757 * After caching firmware image is started, let it piggyback
758 * on request firmware.
759 */
760 if (!(fw_priv->opt_flags & FW_OPT_NOCACHE) &&
761 fw_priv->fwc->state == FW_LOADER_START_CACHE)
762 fw_cache_piggyback_on_request(fw_priv);
763
764 /* pass the pages buffer to driver at the last minute */
765 fw_set_page_data(fw_priv, fw);
766 mutex_unlock(&fw_lock);
767 return 0;
768 }
769
770 /* prepare firmware and firmware_buf structs;
771 * return 0 if a firmware is already assigned, 1 if need to load one,
772 * or a negative error code
773 */
774 static int
_request_firmware_prepare(struct firmware ** firmware_p,const char * name,struct device * device,void * dbuf,size_t size,size_t offset,u32 opt_flags)775 _request_firmware_prepare(struct firmware **firmware_p, const char *name,
776 struct device *device, void *dbuf, size_t size,
777 size_t offset, u32 opt_flags)
778 {
779 struct firmware *firmware;
780 struct fw_priv *fw_priv;
781 int ret;
782
783 *firmware_p = firmware = kzalloc(sizeof(*firmware), GFP_KERNEL);
784 if (!firmware) {
785 dev_err(device, "%s: kmalloc(struct firmware) failed\n",
786 __func__);
787 return -ENOMEM;
788 }
789
790 if (fw_get_builtin_firmware(firmware, name, dbuf, size)) {
791 dev_dbg(device, "using built-in %s\n", name);
792 return 0; /* assigned */
793 }
794
795 ret = alloc_lookup_fw_priv(name, &fw_cache, &fw_priv, dbuf, size,
796 offset, opt_flags);
797
798 /*
799 * bind with 'priv' now to avoid warning in failure path
800 * of requesting firmware.
801 */
802 firmware->priv = fw_priv;
803
804 if (ret > 0) {
805 ret = fw_state_wait(fw_priv);
806 if (!ret) {
807 fw_set_page_data(fw_priv, firmware);
808 return 0; /* assigned */
809 }
810 }
811
812 if (ret < 0)
813 return ret;
814 return 1; /* need to load */
815 }
816
817 /*
818 * Batched requests need only one wake, we need to do this step last due to the
819 * fallback mechanism. The buf is protected with kref_get(), and it won't be
820 * released until the last user calls release_firmware().
821 *
822 * Failed batched requests are possible as well, in such cases we just share
823 * the struct fw_priv and won't release it until all requests are woken
824 * and have gone through this same path.
825 */
fw_abort_batch_reqs(struct firmware * fw)826 static void fw_abort_batch_reqs(struct firmware *fw)
827 {
828 struct fw_priv *fw_priv;
829
830 /* Loaded directly? */
831 if (!fw || !fw->priv)
832 return;
833
834 fw_priv = fw->priv;
835 mutex_lock(&fw_lock);
836 if (!fw_state_is_aborted(fw_priv))
837 fw_state_aborted(fw_priv);
838 mutex_unlock(&fw_lock);
839 }
840
841 /* called from request_firmware() and request_firmware_work_func() */
842 static int
_request_firmware(const struct firmware ** firmware_p,const char * name,struct device * device,void * buf,size_t size,size_t offset,u32 opt_flags)843 _request_firmware(const struct firmware **firmware_p, const char *name,
844 struct device *device, void *buf, size_t size,
845 size_t offset, u32 opt_flags)
846 {
847 struct firmware *fw = NULL;
848 struct cred *kern_cred = NULL;
849 const struct cred *old_cred;
850 bool nondirect = false;
851 int ret;
852
853 if (!firmware_p)
854 return -EINVAL;
855
856 if (!name || name[0] == '\0') {
857 ret = -EINVAL;
858 goto out;
859 }
860
861 ret = _request_firmware_prepare(&fw, name, device, buf, size,
862 offset, opt_flags);
863 if (ret <= 0) /* error or already assigned */
864 goto out;
865
866 /*
867 * We are about to try to access the firmware file. Because we may have been
868 * called by a driver when serving an unrelated request from userland, we use
869 * the kernel credentials to read the file.
870 */
871 kern_cred = prepare_kernel_cred(NULL);
872 if (!kern_cred) {
873 ret = -ENOMEM;
874 goto out;
875 }
876 old_cred = override_creds(kern_cred);
877
878 ret = fw_get_filesystem_firmware(device, fw->priv, "", NULL);
879
880 /* Only full reads can support decompression, platform, and sysfs. */
881 if (!(opt_flags & FW_OPT_PARTIAL))
882 nondirect = true;
883
884 #ifdef CONFIG_FW_LOADER_COMPRESS
885 if (ret == -ENOENT && nondirect)
886 ret = fw_get_filesystem_firmware(device, fw->priv, ".xz",
887 fw_decompress_xz);
888 #endif
889 if (ret == -ENOENT && nondirect)
890 ret = firmware_fallback_platform(fw->priv);
891
892 if (ret) {
893 if (!(opt_flags & FW_OPT_NO_WARN))
894 dev_warn(device,
895 "Direct firmware load for %s failed with error %d\n",
896 name, ret);
897 if (nondirect)
898 ret = firmware_fallback_sysfs(fw, name, device,
899 opt_flags, ret);
900 } else
901 ret = assign_fw(fw, device);
902
903 revert_creds(old_cred);
904 put_cred(kern_cred);
905
906 out:
907 if (ret < 0) {
908 fw_abort_batch_reqs(fw);
909 release_firmware(fw);
910 fw = NULL;
911 }
912
913 *firmware_p = fw;
914 return ret;
915 }
916
917 /**
918 * request_firmware() - send firmware request and wait for it
919 * @firmware_p: pointer to firmware image
920 * @name: name of firmware file
921 * @device: device for which firmware is being loaded
922 *
923 * @firmware_p will be used to return a firmware image by the name
924 * of @name for device @device.
925 *
926 * Should be called from user context where sleeping is allowed.
927 *
928 * @name will be used as $FIRMWARE in the uevent environment and
929 * should be distinctive enough not to be confused with any other
930 * firmware image for this or any other device.
931 *
932 * Caller must hold the reference count of @device.
933 *
934 * The function can be called safely inside device's suspend and
935 * resume callback.
936 **/
937 int
request_firmware(const struct firmware ** firmware_p,const char * name,struct device * device)938 request_firmware(const struct firmware **firmware_p, const char *name,
939 struct device *device)
940 {
941 int ret;
942
943 /* Need to pin this module until return */
944 __module_get(THIS_MODULE);
945 ret = _request_firmware(firmware_p, name, device, NULL, 0, 0,
946 FW_OPT_UEVENT);
947 module_put(THIS_MODULE);
948 return ret;
949 }
950 EXPORT_SYMBOL(request_firmware);
951
952 /**
953 * firmware_request_nowarn() - request for an optional fw module
954 * @firmware: pointer to firmware image
955 * @name: name of firmware file
956 * @device: device for which firmware is being loaded
957 *
958 * This function is similar in behaviour to request_firmware(), except it
959 * doesn't produce warning messages when the file is not found. The sysfs
960 * fallback mechanism is enabled if direct filesystem lookup fails. However,
961 * failures to find the firmware file with it are still suppressed. It is
962 * therefore up to the driver to check for the return value of this call and to
963 * decide when to inform the users of errors.
964 **/
firmware_request_nowarn(const struct firmware ** firmware,const char * name,struct device * device)965 int firmware_request_nowarn(const struct firmware **firmware, const char *name,
966 struct device *device)
967 {
968 int ret;
969
970 /* Need to pin this module until return */
971 __module_get(THIS_MODULE);
972 ret = _request_firmware(firmware, name, device, NULL, 0, 0,
973 FW_OPT_UEVENT | FW_OPT_NO_WARN);
974 module_put(THIS_MODULE);
975 return ret;
976 }
977 EXPORT_SYMBOL_GPL(firmware_request_nowarn);
978
979 /**
980 * request_firmware_direct() - load firmware directly without usermode helper
981 * @firmware_p: pointer to firmware image
982 * @name: name of firmware file
983 * @device: device for which firmware is being loaded
984 *
985 * This function works pretty much like request_firmware(), but this doesn't
986 * fall back to usermode helper even if the firmware couldn't be loaded
987 * directly from fs. Hence it's useful for loading optional firmwares, which
988 * aren't always present, without extra long timeouts of udev.
989 **/
request_firmware_direct(const struct firmware ** firmware_p,const char * name,struct device * device)990 int request_firmware_direct(const struct firmware **firmware_p,
991 const char *name, struct device *device)
992 {
993 int ret;
994
995 __module_get(THIS_MODULE);
996 ret = _request_firmware(firmware_p, name, device, NULL, 0, 0,
997 FW_OPT_UEVENT | FW_OPT_NO_WARN |
998 FW_OPT_NOFALLBACK_SYSFS);
999 module_put(THIS_MODULE);
1000 return ret;
1001 }
1002 EXPORT_SYMBOL_GPL(request_firmware_direct);
1003
1004 /**
1005 * firmware_request_platform() - request firmware with platform-fw fallback
1006 * @firmware: pointer to firmware image
1007 * @name: name of firmware file
1008 * @device: device for which firmware is being loaded
1009 *
1010 * This function is similar in behaviour to request_firmware, except that if
1011 * direct filesystem lookup fails, it will fallback to looking for a copy of the
1012 * requested firmware embedded in the platform's main (e.g. UEFI) firmware.
1013 **/
firmware_request_platform(const struct firmware ** firmware,const char * name,struct device * device)1014 int firmware_request_platform(const struct firmware **firmware,
1015 const char *name, struct device *device)
1016 {
1017 int ret;
1018
1019 /* Need to pin this module until return */
1020 __module_get(THIS_MODULE);
1021 ret = _request_firmware(firmware, name, device, NULL, 0, 0,
1022 FW_OPT_UEVENT | FW_OPT_FALLBACK_PLATFORM);
1023 module_put(THIS_MODULE);
1024 return ret;
1025 }
1026 EXPORT_SYMBOL_GPL(firmware_request_platform);
1027
1028 /**
1029 * firmware_request_cache() - cache firmware for suspend so resume can use it
1030 * @name: name of firmware file
1031 * @device: device for which firmware should be cached for
1032 *
1033 * There are some devices with an optimization that enables the device to not
1034 * require loading firmware on system reboot. This optimization may still
1035 * require the firmware present on resume from suspend. This routine can be
1036 * used to ensure the firmware is present on resume from suspend in these
1037 * situations. This helper is not compatible with drivers which use
1038 * request_firmware_into_buf() or request_firmware_nowait() with no uevent set.
1039 **/
firmware_request_cache(struct device * device,const char * name)1040 int firmware_request_cache(struct device *device, const char *name)
1041 {
1042 int ret;
1043
1044 mutex_lock(&fw_lock);
1045 ret = fw_add_devm_name(device, name);
1046 mutex_unlock(&fw_lock);
1047
1048 return ret;
1049 }
1050 EXPORT_SYMBOL_GPL(firmware_request_cache);
1051
1052 /**
1053 * request_firmware_into_buf() - load firmware into a previously allocated buffer
1054 * @firmware_p: pointer to firmware image
1055 * @name: name of firmware file
1056 * @device: device for which firmware is being loaded and DMA region allocated
1057 * @buf: address of buffer to load firmware into
1058 * @size: size of buffer
1059 *
1060 * This function works pretty much like request_firmware(), but it doesn't
1061 * allocate a buffer to hold the firmware data. Instead, the firmware
1062 * is loaded directly into the buffer pointed to by @buf and the @firmware_p
1063 * data member is pointed at @buf.
1064 *
1065 * This function doesn't cache firmware either.
1066 */
1067 int
request_firmware_into_buf(const struct firmware ** firmware_p,const char * name,struct device * device,void * buf,size_t size)1068 request_firmware_into_buf(const struct firmware **firmware_p, const char *name,
1069 struct device *device, void *buf, size_t size)
1070 {
1071 int ret;
1072
1073 if (fw_cache_is_setup(device, name))
1074 return -EOPNOTSUPP;
1075
1076 __module_get(THIS_MODULE);
1077 ret = _request_firmware(firmware_p, name, device, buf, size, 0,
1078 FW_OPT_UEVENT | FW_OPT_NOCACHE);
1079 module_put(THIS_MODULE);
1080 return ret;
1081 }
1082 EXPORT_SYMBOL(request_firmware_into_buf);
1083
1084 /**
1085 * request_partial_firmware_into_buf() - load partial firmware into a previously allocated buffer
1086 * @firmware_p: pointer to firmware image
1087 * @name: name of firmware file
1088 * @device: device for which firmware is being loaded and DMA region allocated
1089 * @buf: address of buffer to load firmware into
1090 * @size: size of buffer
1091 * @offset: offset into file to read
1092 *
1093 * This function works pretty much like request_firmware_into_buf except
1094 * it allows a partial read of the file.
1095 */
1096 int
request_partial_firmware_into_buf(const struct firmware ** firmware_p,const char * name,struct device * device,void * buf,size_t size,size_t offset)1097 request_partial_firmware_into_buf(const struct firmware **firmware_p,
1098 const char *name, struct device *device,
1099 void *buf, size_t size, size_t offset)
1100 {
1101 int ret;
1102
1103 if (fw_cache_is_setup(device, name))
1104 return -EOPNOTSUPP;
1105
1106 __module_get(THIS_MODULE);
1107 ret = _request_firmware(firmware_p, name, device, buf, size, offset,
1108 FW_OPT_UEVENT | FW_OPT_NOCACHE |
1109 FW_OPT_PARTIAL);
1110 module_put(THIS_MODULE);
1111 return ret;
1112 }
1113 EXPORT_SYMBOL(request_partial_firmware_into_buf);
1114
1115 /**
1116 * release_firmware() - release the resource associated with a firmware image
1117 * @fw: firmware resource to release
1118 **/
release_firmware(const struct firmware * fw)1119 void release_firmware(const struct firmware *fw)
1120 {
1121 if (fw) {
1122 if (!fw_is_builtin_firmware(fw))
1123 firmware_free_data(fw);
1124 kfree(fw);
1125 }
1126 }
1127 EXPORT_SYMBOL(release_firmware);
1128
1129 /* Async support */
1130 struct firmware_work {
1131 struct work_struct work;
1132 struct module *module;
1133 const char *name;
1134 struct device *device;
1135 void *context;
1136 void (*cont)(const struct firmware *fw, void *context);
1137 u32 opt_flags;
1138 };
1139
request_firmware_work_func(struct work_struct * work)1140 static void request_firmware_work_func(struct work_struct *work)
1141 {
1142 struct firmware_work *fw_work;
1143 const struct firmware *fw;
1144
1145 fw_work = container_of(work, struct firmware_work, work);
1146
1147 _request_firmware(&fw, fw_work->name, fw_work->device, NULL, 0, 0,
1148 fw_work->opt_flags);
1149 fw_work->cont(fw, fw_work->context);
1150 put_device(fw_work->device); /* taken in request_firmware_nowait() */
1151
1152 module_put(fw_work->module);
1153 kfree_const(fw_work->name);
1154 kfree(fw_work);
1155 }
1156
1157 /**
1158 * request_firmware_nowait() - asynchronous version of request_firmware
1159 * @module: module requesting the firmware
1160 * @uevent: sends uevent to copy the firmware image if this flag
1161 * is non-zero else the firmware copy must be done manually.
1162 * @name: name of firmware file
1163 * @device: device for which firmware is being loaded
1164 * @gfp: allocation flags
1165 * @context: will be passed over to @cont, and
1166 * @fw may be %NULL if firmware request fails.
1167 * @cont: function will be called asynchronously when the firmware
1168 * request is over.
1169 *
1170 * Caller must hold the reference count of @device.
1171 *
1172 * Asynchronous variant of request_firmware() for user contexts:
1173 * - sleep for as small periods as possible since it may
1174 * increase kernel boot time of built-in device drivers
1175 * requesting firmware in their ->probe() methods, if
1176 * @gfp is GFP_KERNEL.
1177 *
1178 * - can't sleep at all if @gfp is GFP_ATOMIC.
1179 **/
1180 int
request_firmware_nowait(struct module * module,bool uevent,const char * name,struct device * device,gfp_t gfp,void * context,void (* cont)(const struct firmware * fw,void * context))1181 request_firmware_nowait(
1182 struct module *module, bool uevent,
1183 const char *name, struct device *device, gfp_t gfp, void *context,
1184 void (*cont)(const struct firmware *fw, void *context))
1185 {
1186 struct firmware_work *fw_work;
1187
1188 fw_work = kzalloc(sizeof(struct firmware_work), gfp);
1189 if (!fw_work)
1190 return -ENOMEM;
1191
1192 fw_work->module = module;
1193 fw_work->name = kstrdup_const(name, gfp);
1194 if (!fw_work->name) {
1195 kfree(fw_work);
1196 return -ENOMEM;
1197 }
1198 fw_work->device = device;
1199 fw_work->context = context;
1200 fw_work->cont = cont;
1201 fw_work->opt_flags = FW_OPT_NOWAIT |
1202 (uevent ? FW_OPT_UEVENT : FW_OPT_USERHELPER);
1203
1204 if (!uevent && fw_cache_is_setup(device, name)) {
1205 kfree_const(fw_work->name);
1206 kfree(fw_work);
1207 return -EOPNOTSUPP;
1208 }
1209
1210 if (!try_module_get(module)) {
1211 kfree_const(fw_work->name);
1212 kfree(fw_work);
1213 return -EFAULT;
1214 }
1215
1216 get_device(fw_work->device);
1217 INIT_WORK(&fw_work->work, request_firmware_work_func);
1218 schedule_work(&fw_work->work);
1219 return 0;
1220 }
1221 EXPORT_SYMBOL(request_firmware_nowait);
1222
1223 #ifdef CONFIG_FW_CACHE
1224 static ASYNC_DOMAIN_EXCLUSIVE(fw_cache_domain);
1225
1226 /**
1227 * cache_firmware() - cache one firmware image in kernel memory space
1228 * @fw_name: the firmware image name
1229 *
1230 * Cache firmware in kernel memory so that drivers can use it when
1231 * system isn't ready for them to request firmware image from userspace.
1232 * Once it returns successfully, driver can use request_firmware or its
1233 * nowait version to get the cached firmware without any interacting
1234 * with userspace
1235 *
1236 * Return 0 if the firmware image has been cached successfully
1237 * Return !0 otherwise
1238 *
1239 */
cache_firmware(const char * fw_name)1240 static int cache_firmware(const char *fw_name)
1241 {
1242 int ret;
1243 const struct firmware *fw;
1244
1245 pr_debug("%s: %s\n", __func__, fw_name);
1246
1247 ret = request_firmware(&fw, fw_name, NULL);
1248 if (!ret)
1249 kfree(fw);
1250
1251 pr_debug("%s: %s ret=%d\n", __func__, fw_name, ret);
1252
1253 return ret;
1254 }
1255
lookup_fw_priv(const char * fw_name)1256 static struct fw_priv *lookup_fw_priv(const char *fw_name)
1257 {
1258 struct fw_priv *tmp;
1259 struct firmware_cache *fwc = &fw_cache;
1260
1261 spin_lock(&fwc->lock);
1262 tmp = __lookup_fw_priv(fw_name);
1263 spin_unlock(&fwc->lock);
1264
1265 return tmp;
1266 }
1267
1268 /**
1269 * uncache_firmware() - remove one cached firmware image
1270 * @fw_name: the firmware image name
1271 *
1272 * Uncache one firmware image which has been cached successfully
1273 * before.
1274 *
1275 * Return 0 if the firmware cache has been removed successfully
1276 * Return !0 otherwise
1277 *
1278 */
uncache_firmware(const char * fw_name)1279 static int uncache_firmware(const char *fw_name)
1280 {
1281 struct fw_priv *fw_priv;
1282 struct firmware fw;
1283
1284 pr_debug("%s: %s\n", __func__, fw_name);
1285
1286 if (fw_get_builtin_firmware(&fw, fw_name, NULL, 0))
1287 return 0;
1288
1289 fw_priv = lookup_fw_priv(fw_name);
1290 if (fw_priv) {
1291 free_fw_priv(fw_priv);
1292 return 0;
1293 }
1294
1295 return -EINVAL;
1296 }
1297
alloc_fw_cache_entry(const char * name)1298 static struct fw_cache_entry *alloc_fw_cache_entry(const char *name)
1299 {
1300 struct fw_cache_entry *fce;
1301
1302 fce = kzalloc(sizeof(*fce), GFP_ATOMIC);
1303 if (!fce)
1304 goto exit;
1305
1306 fce->name = kstrdup_const(name, GFP_ATOMIC);
1307 if (!fce->name) {
1308 kfree(fce);
1309 fce = NULL;
1310 goto exit;
1311 }
1312 exit:
1313 return fce;
1314 }
1315
__fw_entry_found(const char * name)1316 static int __fw_entry_found(const char *name)
1317 {
1318 struct firmware_cache *fwc = &fw_cache;
1319 struct fw_cache_entry *fce;
1320
1321 list_for_each_entry(fce, &fwc->fw_names, list) {
1322 if (!strcmp(fce->name, name))
1323 return 1;
1324 }
1325 return 0;
1326 }
1327
fw_cache_piggyback_on_request(struct fw_priv * fw_priv)1328 static void fw_cache_piggyback_on_request(struct fw_priv *fw_priv)
1329 {
1330 const char *name = fw_priv->fw_name;
1331 struct firmware_cache *fwc = fw_priv->fwc;
1332 struct fw_cache_entry *fce;
1333
1334 spin_lock(&fwc->name_lock);
1335 if (__fw_entry_found(name))
1336 goto found;
1337
1338 fce = alloc_fw_cache_entry(name);
1339 if (fce) {
1340 list_add(&fce->list, &fwc->fw_names);
1341 kref_get(&fw_priv->ref);
1342 pr_debug("%s: fw: %s\n", __func__, name);
1343 }
1344 found:
1345 spin_unlock(&fwc->name_lock);
1346 }
1347
free_fw_cache_entry(struct fw_cache_entry * fce)1348 static void free_fw_cache_entry(struct fw_cache_entry *fce)
1349 {
1350 kfree_const(fce->name);
1351 kfree(fce);
1352 }
1353
__async_dev_cache_fw_image(void * fw_entry,async_cookie_t cookie)1354 static void __async_dev_cache_fw_image(void *fw_entry,
1355 async_cookie_t cookie)
1356 {
1357 struct fw_cache_entry *fce = fw_entry;
1358 struct firmware_cache *fwc = &fw_cache;
1359 int ret;
1360
1361 ret = cache_firmware(fce->name);
1362 if (ret) {
1363 spin_lock(&fwc->name_lock);
1364 list_del(&fce->list);
1365 spin_unlock(&fwc->name_lock);
1366
1367 free_fw_cache_entry(fce);
1368 }
1369 }
1370
1371 /* called with dev->devres_lock held */
dev_create_fw_entry(struct device * dev,void * res,void * data)1372 static void dev_create_fw_entry(struct device *dev, void *res,
1373 void *data)
1374 {
1375 struct fw_name_devm *fwn = res;
1376 const char *fw_name = fwn->name;
1377 struct list_head *head = data;
1378 struct fw_cache_entry *fce;
1379
1380 fce = alloc_fw_cache_entry(fw_name);
1381 if (fce)
1382 list_add(&fce->list, head);
1383 }
1384
devm_name_match(struct device * dev,void * res,void * match_data)1385 static int devm_name_match(struct device *dev, void *res,
1386 void *match_data)
1387 {
1388 struct fw_name_devm *fwn = res;
1389 return (fwn->magic == (unsigned long)match_data);
1390 }
1391
dev_cache_fw_image(struct device * dev,void * data)1392 static void dev_cache_fw_image(struct device *dev, void *data)
1393 {
1394 LIST_HEAD(todo);
1395 struct fw_cache_entry *fce;
1396 struct fw_cache_entry *fce_next;
1397 struct firmware_cache *fwc = &fw_cache;
1398
1399 devres_for_each_res(dev, fw_name_devm_release,
1400 devm_name_match, &fw_cache,
1401 dev_create_fw_entry, &todo);
1402
1403 list_for_each_entry_safe(fce, fce_next, &todo, list) {
1404 list_del(&fce->list);
1405
1406 spin_lock(&fwc->name_lock);
1407 /* only one cache entry for one firmware */
1408 if (!__fw_entry_found(fce->name)) {
1409 list_add(&fce->list, &fwc->fw_names);
1410 } else {
1411 free_fw_cache_entry(fce);
1412 fce = NULL;
1413 }
1414 spin_unlock(&fwc->name_lock);
1415
1416 if (fce)
1417 async_schedule_domain(__async_dev_cache_fw_image,
1418 (void *)fce,
1419 &fw_cache_domain);
1420 }
1421 }
1422
__device_uncache_fw_images(void)1423 static void __device_uncache_fw_images(void)
1424 {
1425 struct firmware_cache *fwc = &fw_cache;
1426 struct fw_cache_entry *fce;
1427
1428 spin_lock(&fwc->name_lock);
1429 while (!list_empty(&fwc->fw_names)) {
1430 fce = list_entry(fwc->fw_names.next,
1431 struct fw_cache_entry, list);
1432 list_del(&fce->list);
1433 spin_unlock(&fwc->name_lock);
1434
1435 uncache_firmware(fce->name);
1436 free_fw_cache_entry(fce);
1437
1438 spin_lock(&fwc->name_lock);
1439 }
1440 spin_unlock(&fwc->name_lock);
1441 }
1442
1443 /**
1444 * device_cache_fw_images() - cache devices' firmware
1445 *
1446 * If one device called request_firmware or its nowait version
1447 * successfully before, the firmware names are recored into the
1448 * device's devres link list, so device_cache_fw_images can call
1449 * cache_firmware() to cache these firmwares for the device,
1450 * then the device driver can load its firmwares easily at
1451 * time when system is not ready to complete loading firmware.
1452 */
device_cache_fw_images(void)1453 static void device_cache_fw_images(void)
1454 {
1455 struct firmware_cache *fwc = &fw_cache;
1456 DEFINE_WAIT(wait);
1457
1458 pr_debug("%s\n", __func__);
1459
1460 /* cancel uncache work */
1461 cancel_delayed_work_sync(&fwc->work);
1462
1463 fw_fallback_set_cache_timeout();
1464
1465 mutex_lock(&fw_lock);
1466 fwc->state = FW_LOADER_START_CACHE;
1467 dpm_for_each_dev(NULL, dev_cache_fw_image);
1468 mutex_unlock(&fw_lock);
1469
1470 /* wait for completion of caching firmware for all devices */
1471 async_synchronize_full_domain(&fw_cache_domain);
1472
1473 fw_fallback_set_default_timeout();
1474 }
1475
1476 /**
1477 * device_uncache_fw_images() - uncache devices' firmware
1478 *
1479 * uncache all firmwares which have been cached successfully
1480 * by device_uncache_fw_images earlier
1481 */
device_uncache_fw_images(void)1482 static void device_uncache_fw_images(void)
1483 {
1484 pr_debug("%s\n", __func__);
1485 __device_uncache_fw_images();
1486 }
1487
device_uncache_fw_images_work(struct work_struct * work)1488 static void device_uncache_fw_images_work(struct work_struct *work)
1489 {
1490 device_uncache_fw_images();
1491 }
1492
1493 /**
1494 * device_uncache_fw_images_delay() - uncache devices firmwares
1495 * @delay: number of milliseconds to delay uncache device firmwares
1496 *
1497 * uncache all devices's firmwares which has been cached successfully
1498 * by device_cache_fw_images after @delay milliseconds.
1499 */
device_uncache_fw_images_delay(unsigned long delay)1500 static void device_uncache_fw_images_delay(unsigned long delay)
1501 {
1502 queue_delayed_work(system_power_efficient_wq, &fw_cache.work,
1503 msecs_to_jiffies(delay));
1504 }
1505
fw_pm_notify(struct notifier_block * notify_block,unsigned long mode,void * unused)1506 static int fw_pm_notify(struct notifier_block *notify_block,
1507 unsigned long mode, void *unused)
1508 {
1509 switch (mode) {
1510 case PM_HIBERNATION_PREPARE:
1511 case PM_SUSPEND_PREPARE:
1512 case PM_RESTORE_PREPARE:
1513 /*
1514 * kill pending fallback requests with a custom fallback
1515 * to avoid stalling suspend.
1516 */
1517 kill_pending_fw_fallback_reqs(true);
1518 device_cache_fw_images();
1519 break;
1520
1521 case PM_POST_SUSPEND:
1522 case PM_POST_HIBERNATION:
1523 case PM_POST_RESTORE:
1524 /*
1525 * In case that system sleep failed and syscore_suspend is
1526 * not called.
1527 */
1528 mutex_lock(&fw_lock);
1529 fw_cache.state = FW_LOADER_NO_CACHE;
1530 mutex_unlock(&fw_lock);
1531
1532 device_uncache_fw_images_delay(10 * MSEC_PER_SEC);
1533 break;
1534 }
1535
1536 return 0;
1537 }
1538
1539 /* stop caching firmware once syscore_suspend is reached */
fw_suspend(void)1540 static int fw_suspend(void)
1541 {
1542 fw_cache.state = FW_LOADER_NO_CACHE;
1543 return 0;
1544 }
1545
1546 static struct syscore_ops fw_syscore_ops = {
1547 .suspend = fw_suspend,
1548 };
1549
register_fw_pm_ops(void)1550 static int __init register_fw_pm_ops(void)
1551 {
1552 int ret;
1553
1554 spin_lock_init(&fw_cache.name_lock);
1555 INIT_LIST_HEAD(&fw_cache.fw_names);
1556
1557 INIT_DELAYED_WORK(&fw_cache.work,
1558 device_uncache_fw_images_work);
1559
1560 fw_cache.pm_notify.notifier_call = fw_pm_notify;
1561 ret = register_pm_notifier(&fw_cache.pm_notify);
1562 if (ret)
1563 return ret;
1564
1565 register_syscore_ops(&fw_syscore_ops);
1566
1567 return ret;
1568 }
1569
unregister_fw_pm_ops(void)1570 static inline void unregister_fw_pm_ops(void)
1571 {
1572 unregister_syscore_ops(&fw_syscore_ops);
1573 unregister_pm_notifier(&fw_cache.pm_notify);
1574 }
1575 #else
fw_cache_piggyback_on_request(struct fw_priv * fw_priv)1576 static void fw_cache_piggyback_on_request(struct fw_priv *fw_priv)
1577 {
1578 }
register_fw_pm_ops(void)1579 static inline int register_fw_pm_ops(void)
1580 {
1581 return 0;
1582 }
unregister_fw_pm_ops(void)1583 static inline void unregister_fw_pm_ops(void)
1584 {
1585 }
1586 #endif
1587
fw_cache_init(void)1588 static void __init fw_cache_init(void)
1589 {
1590 spin_lock_init(&fw_cache.lock);
1591 INIT_LIST_HEAD(&fw_cache.head);
1592 fw_cache.state = FW_LOADER_NO_CACHE;
1593 }
1594
fw_shutdown_notify(struct notifier_block * unused1,unsigned long unused2,void * unused3)1595 static int fw_shutdown_notify(struct notifier_block *unused1,
1596 unsigned long unused2, void *unused3)
1597 {
1598 /*
1599 * Kill all pending fallback requests to avoid both stalling shutdown,
1600 * and avoid a deadlock with the usermode_lock.
1601 */
1602 kill_pending_fw_fallback_reqs(false);
1603
1604 return NOTIFY_DONE;
1605 }
1606
1607 static struct notifier_block fw_shutdown_nb = {
1608 .notifier_call = fw_shutdown_notify,
1609 };
1610
firmware_class_init(void)1611 static int __init firmware_class_init(void)
1612 {
1613 int ret;
1614
1615 /* No need to unfold these on exit */
1616 fw_cache_init();
1617
1618 ret = register_fw_pm_ops();
1619 if (ret)
1620 return ret;
1621
1622 ret = register_reboot_notifier(&fw_shutdown_nb);
1623 if (ret)
1624 goto out;
1625
1626 return register_sysfs_loader();
1627
1628 out:
1629 unregister_fw_pm_ops();
1630 return ret;
1631 }
1632
firmware_class_exit(void)1633 static void __exit firmware_class_exit(void)
1634 {
1635 unregister_fw_pm_ops();
1636 unregister_reboot_notifier(&fw_shutdown_nb);
1637 unregister_sysfs_loader();
1638 }
1639
1640 fs_initcall(firmware_class_init);
1641 module_exit(firmware_class_exit);
1642