1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (c) 2015, Sony Mobile Communications Inc.
4 * Copyright (c) 2013, The Linux Foundation. All rights reserved.
5 */
6 #include <linux/module.h>
7 #include <linux/netlink.h>
8 #include <linux/qrtr.h>
9 #include <linux/termios.h> /* For TIOCINQ/OUTQ */
10 #include <linux/spinlock.h>
11 #include <linux/wait.h>
12
13 #include <net/sock.h>
14
15 #include "qrtr.h"
16
17 #define QRTR_PROTO_VER_1 1
18 #define QRTR_PROTO_VER_2 3
19
20 /* auto-bind range */
21 #define QRTR_MIN_EPH_SOCKET 0x4000
22 #define QRTR_MAX_EPH_SOCKET 0x7fff
23 #define QRTR_EPH_PORT_RANGE \
24 XA_LIMIT(QRTR_MIN_EPH_SOCKET, QRTR_MAX_EPH_SOCKET)
25
26 /**
27 * struct qrtr_hdr_v1 - (I|R)PCrouter packet header version 1
28 * @version: protocol version
29 * @type: packet type; one of QRTR_TYPE_*
30 * @src_node_id: source node
31 * @src_port_id: source port
32 * @confirm_rx: boolean; whether a resume-tx packet should be send in reply
33 * @size: length of packet, excluding this header
34 * @dst_node_id: destination node
35 * @dst_port_id: destination port
36 */
37 struct qrtr_hdr_v1 {
38 __le32 version;
39 __le32 type;
40 __le32 src_node_id;
41 __le32 src_port_id;
42 __le32 confirm_rx;
43 __le32 size;
44 __le32 dst_node_id;
45 __le32 dst_port_id;
46 } __packed;
47
48 /**
49 * struct qrtr_hdr_v2 - (I|R)PCrouter packet header later versions
50 * @version: protocol version
51 * @type: packet type; one of QRTR_TYPE_*
52 * @flags: bitmask of QRTR_FLAGS_*
53 * @optlen: length of optional header data
54 * @size: length of packet, excluding this header and optlen
55 * @src_node_id: source node
56 * @src_port_id: source port
57 * @dst_node_id: destination node
58 * @dst_port_id: destination port
59 */
60 struct qrtr_hdr_v2 {
61 u8 version;
62 u8 type;
63 u8 flags;
64 u8 optlen;
65 __le32 size;
66 __le16 src_node_id;
67 __le16 src_port_id;
68 __le16 dst_node_id;
69 __le16 dst_port_id;
70 };
71
72 #define QRTR_FLAGS_CONFIRM_RX BIT(0)
73
74 struct qrtr_cb {
75 u32 src_node;
76 u32 src_port;
77 u32 dst_node;
78 u32 dst_port;
79
80 u8 type;
81 u8 confirm_rx;
82 };
83
84 #define QRTR_HDR_MAX_SIZE max_t(size_t, sizeof(struct qrtr_hdr_v1), \
85 sizeof(struct qrtr_hdr_v2))
86
87 struct qrtr_sock {
88 /* WARNING: sk must be the first member */
89 struct sock sk;
90 struct sockaddr_qrtr us;
91 struct sockaddr_qrtr peer;
92 };
93
qrtr_sk(struct sock * sk)94 static inline struct qrtr_sock *qrtr_sk(struct sock *sk)
95 {
96 BUILD_BUG_ON(offsetof(struct qrtr_sock, sk) != 0);
97 return container_of(sk, struct qrtr_sock, sk);
98 }
99
100 static unsigned int qrtr_local_nid = 1;
101
102 /* for node ids */
103 static RADIX_TREE(qrtr_nodes, GFP_ATOMIC);
104 static DEFINE_SPINLOCK(qrtr_nodes_lock);
105 /* broadcast list */
106 static LIST_HEAD(qrtr_all_nodes);
107 /* lock for qrtr_all_nodes and node reference */
108 static DEFINE_MUTEX(qrtr_node_lock);
109
110 /* local port allocation management */
111 static DEFINE_XARRAY_ALLOC(qrtr_ports);
112
113 /**
114 * struct qrtr_node - endpoint node
115 * @ep_lock: lock for endpoint management and callbacks
116 * @ep: endpoint
117 * @ref: reference count for node
118 * @nid: node id
119 * @qrtr_tx_flow: tree of qrtr_tx_flow, keyed by node << 32 | port
120 * @qrtr_tx_lock: lock for qrtr_tx_flow inserts
121 * @rx_queue: receive queue
122 * @item: list item for broadcast list
123 */
124 struct qrtr_node {
125 struct mutex ep_lock;
126 struct qrtr_endpoint *ep;
127 struct kref ref;
128 unsigned int nid;
129
130 struct radix_tree_root qrtr_tx_flow;
131 struct mutex qrtr_tx_lock; /* for qrtr_tx_flow */
132
133 struct sk_buff_head rx_queue;
134 struct list_head item;
135 };
136
137 /**
138 * struct qrtr_tx_flow - tx flow control
139 * @resume_tx: waiters for a resume tx from the remote
140 * @pending: number of waiting senders
141 * @tx_failed: indicates that a message with confirm_rx flag was lost
142 */
143 struct qrtr_tx_flow {
144 struct wait_queue_head resume_tx;
145 int pending;
146 int tx_failed;
147 };
148
149 #define QRTR_TX_FLOW_HIGH 10
150 #define QRTR_TX_FLOW_LOW 5
151
152 static int qrtr_local_enqueue(struct qrtr_node *node, struct sk_buff *skb,
153 int type, struct sockaddr_qrtr *from,
154 struct sockaddr_qrtr *to);
155 static int qrtr_bcast_enqueue(struct qrtr_node *node, struct sk_buff *skb,
156 int type, struct sockaddr_qrtr *from,
157 struct sockaddr_qrtr *to);
158 static struct qrtr_sock *qrtr_port_lookup(int port);
159 static void qrtr_port_put(struct qrtr_sock *ipc);
160
161 /* Release node resources and free the node.
162 *
163 * Do not call directly, use qrtr_node_release. To be used with
164 * kref_put_mutex. As such, the node mutex is expected to be locked on call.
165 */
__qrtr_node_release(struct kref * kref)166 static void __qrtr_node_release(struct kref *kref)
167 {
168 struct qrtr_node *node = container_of(kref, struct qrtr_node, ref);
169 struct radix_tree_iter iter;
170 struct qrtr_tx_flow *flow;
171 unsigned long flags;
172 void __rcu **slot;
173
174 spin_lock_irqsave(&qrtr_nodes_lock, flags);
175 /* If the node is a bridge for other nodes, there are possibly
176 * multiple entries pointing to our released node, delete them all.
177 */
178 radix_tree_for_each_slot(slot, &qrtr_nodes, &iter, 0) {
179 if (*slot == node)
180 radix_tree_iter_delete(&qrtr_nodes, &iter, slot);
181 }
182 spin_unlock_irqrestore(&qrtr_nodes_lock, flags);
183
184 list_del(&node->item);
185 mutex_unlock(&qrtr_node_lock);
186
187 skb_queue_purge(&node->rx_queue);
188
189 /* Free tx flow counters */
190 radix_tree_for_each_slot(slot, &node->qrtr_tx_flow, &iter, 0) {
191 flow = *slot;
192 radix_tree_iter_delete(&node->qrtr_tx_flow, &iter, slot);
193 kfree(flow);
194 }
195 kfree(node);
196 }
197
198 /* Increment reference to node. */
qrtr_node_acquire(struct qrtr_node * node)199 static struct qrtr_node *qrtr_node_acquire(struct qrtr_node *node)
200 {
201 if (node)
202 kref_get(&node->ref);
203 return node;
204 }
205
206 /* Decrement reference to node and release as necessary. */
qrtr_node_release(struct qrtr_node * node)207 static void qrtr_node_release(struct qrtr_node *node)
208 {
209 if (!node)
210 return;
211 kref_put_mutex(&node->ref, __qrtr_node_release, &qrtr_node_lock);
212 }
213
214 /**
215 * qrtr_tx_resume() - reset flow control counter
216 * @node: qrtr_node that the QRTR_TYPE_RESUME_TX packet arrived on
217 * @skb: resume_tx packet
218 */
qrtr_tx_resume(struct qrtr_node * node,struct sk_buff * skb)219 static void qrtr_tx_resume(struct qrtr_node *node, struct sk_buff *skb)
220 {
221 struct qrtr_ctrl_pkt *pkt = (struct qrtr_ctrl_pkt *)skb->data;
222 u64 remote_node = le32_to_cpu(pkt->client.node);
223 u32 remote_port = le32_to_cpu(pkt->client.port);
224 struct qrtr_tx_flow *flow;
225 unsigned long key;
226
227 key = remote_node << 32 | remote_port;
228
229 rcu_read_lock();
230 flow = radix_tree_lookup(&node->qrtr_tx_flow, key);
231 rcu_read_unlock();
232 if (flow) {
233 spin_lock(&flow->resume_tx.lock);
234 flow->pending = 0;
235 spin_unlock(&flow->resume_tx.lock);
236 wake_up_interruptible_all(&flow->resume_tx);
237 }
238
239 consume_skb(skb);
240 }
241
242 /**
243 * qrtr_tx_wait() - flow control for outgoing packets
244 * @node: qrtr_node that the packet is to be send to
245 * @dest_node: node id of the destination
246 * @dest_port: port number of the destination
247 * @type: type of message
248 *
249 * The flow control scheme is based around the low and high "watermarks". When
250 * the low watermark is passed the confirm_rx flag is set on the outgoing
251 * message, which will trigger the remote to send a control message of the type
252 * QRTR_TYPE_RESUME_TX to reset the counter. If the high watermark is hit
253 * further transmision should be paused.
254 *
255 * Return: 1 if confirm_rx should be set, 0 otherwise or errno failure
256 */
qrtr_tx_wait(struct qrtr_node * node,int dest_node,int dest_port,int type)257 static int qrtr_tx_wait(struct qrtr_node *node, int dest_node, int dest_port,
258 int type)
259 {
260 unsigned long key = (u64)dest_node << 32 | dest_port;
261 struct qrtr_tx_flow *flow;
262 int confirm_rx = 0;
263 int ret;
264
265 /* Never set confirm_rx on non-data packets */
266 if (type != QRTR_TYPE_DATA)
267 return 0;
268
269 mutex_lock(&node->qrtr_tx_lock);
270 flow = radix_tree_lookup(&node->qrtr_tx_flow, key);
271 if (!flow) {
272 flow = kzalloc(sizeof(*flow), GFP_KERNEL);
273 if (flow) {
274 init_waitqueue_head(&flow->resume_tx);
275 if (radix_tree_insert(&node->qrtr_tx_flow, key, flow)) {
276 kfree(flow);
277 flow = NULL;
278 }
279 }
280 }
281 mutex_unlock(&node->qrtr_tx_lock);
282
283 /* Set confirm_rx if we where unable to find and allocate a flow */
284 if (!flow)
285 return 1;
286
287 spin_lock_irq(&flow->resume_tx.lock);
288 ret = wait_event_interruptible_locked_irq(flow->resume_tx,
289 flow->pending < QRTR_TX_FLOW_HIGH ||
290 flow->tx_failed ||
291 !node->ep);
292 if (ret < 0) {
293 confirm_rx = ret;
294 } else if (!node->ep) {
295 confirm_rx = -EPIPE;
296 } else if (flow->tx_failed) {
297 flow->tx_failed = 0;
298 confirm_rx = 1;
299 } else {
300 flow->pending++;
301 confirm_rx = flow->pending == QRTR_TX_FLOW_LOW;
302 }
303 spin_unlock_irq(&flow->resume_tx.lock);
304
305 return confirm_rx;
306 }
307
308 /**
309 * qrtr_tx_flow_failed() - flag that tx of confirm_rx flagged messages failed
310 * @node: qrtr_node that the packet is to be send to
311 * @dest_node: node id of the destination
312 * @dest_port: port number of the destination
313 *
314 * Signal that the transmission of a message with confirm_rx flag failed. The
315 * flow's "pending" counter will keep incrementing towards QRTR_TX_FLOW_HIGH,
316 * at which point transmission would stall forever waiting for the resume TX
317 * message associated with the dropped confirm_rx message.
318 * Work around this by marking the flow as having a failed transmission and
319 * cause the next transmission attempt to be sent with the confirm_rx.
320 */
qrtr_tx_flow_failed(struct qrtr_node * node,int dest_node,int dest_port)321 static void qrtr_tx_flow_failed(struct qrtr_node *node, int dest_node,
322 int dest_port)
323 {
324 unsigned long key = (u64)dest_node << 32 | dest_port;
325 struct qrtr_tx_flow *flow;
326
327 rcu_read_lock();
328 flow = radix_tree_lookup(&node->qrtr_tx_flow, key);
329 rcu_read_unlock();
330 if (flow) {
331 spin_lock_irq(&flow->resume_tx.lock);
332 flow->tx_failed = 1;
333 spin_unlock_irq(&flow->resume_tx.lock);
334 }
335 }
336
337 /* Pass an outgoing packet socket buffer to the endpoint driver. */
qrtr_node_enqueue(struct qrtr_node * node,struct sk_buff * skb,int type,struct sockaddr_qrtr * from,struct sockaddr_qrtr * to)338 static int qrtr_node_enqueue(struct qrtr_node *node, struct sk_buff *skb,
339 int type, struct sockaddr_qrtr *from,
340 struct sockaddr_qrtr *to)
341 {
342 struct qrtr_hdr_v1 *hdr;
343 size_t len = skb->len;
344 int rc, confirm_rx;
345
346 confirm_rx = qrtr_tx_wait(node, to->sq_node, to->sq_port, type);
347 if (confirm_rx < 0) {
348 kfree_skb(skb);
349 return confirm_rx;
350 }
351
352 hdr = skb_push(skb, sizeof(*hdr));
353 hdr->version = cpu_to_le32(QRTR_PROTO_VER_1);
354 hdr->type = cpu_to_le32(type);
355 hdr->src_node_id = cpu_to_le32(from->sq_node);
356 hdr->src_port_id = cpu_to_le32(from->sq_port);
357 if (to->sq_port == QRTR_PORT_CTRL) {
358 hdr->dst_node_id = cpu_to_le32(node->nid);
359 hdr->dst_port_id = cpu_to_le32(QRTR_PORT_CTRL);
360 } else {
361 hdr->dst_node_id = cpu_to_le32(to->sq_node);
362 hdr->dst_port_id = cpu_to_le32(to->sq_port);
363 }
364
365 hdr->size = cpu_to_le32(len);
366 hdr->confirm_rx = !!confirm_rx;
367
368 rc = skb_put_padto(skb, ALIGN(len, 4) + sizeof(*hdr));
369
370 if (!rc) {
371 mutex_lock(&node->ep_lock);
372 rc = -ENODEV;
373 if (node->ep)
374 rc = node->ep->xmit(node->ep, skb);
375 else
376 kfree_skb(skb);
377 mutex_unlock(&node->ep_lock);
378 }
379 /* Need to ensure that a subsequent message carries the otherwise lost
380 * confirm_rx flag if we dropped this one */
381 if (rc && confirm_rx)
382 qrtr_tx_flow_failed(node, to->sq_node, to->sq_port);
383
384 return rc;
385 }
386
387 /* Lookup node by id.
388 *
389 * callers must release with qrtr_node_release()
390 */
qrtr_node_lookup(unsigned int nid)391 static struct qrtr_node *qrtr_node_lookup(unsigned int nid)
392 {
393 struct qrtr_node *node;
394 unsigned long flags;
395
396 mutex_lock(&qrtr_node_lock);
397 spin_lock_irqsave(&qrtr_nodes_lock, flags);
398 node = radix_tree_lookup(&qrtr_nodes, nid);
399 node = qrtr_node_acquire(node);
400 spin_unlock_irqrestore(&qrtr_nodes_lock, flags);
401 mutex_unlock(&qrtr_node_lock);
402
403 return node;
404 }
405
406 /* Assign node id to node.
407 *
408 * This is mostly useful for automatic node id assignment, based on
409 * the source id in the incoming packet.
410 */
qrtr_node_assign(struct qrtr_node * node,unsigned int nid)411 static void qrtr_node_assign(struct qrtr_node *node, unsigned int nid)
412 {
413 unsigned long flags;
414
415 if (nid == QRTR_EP_NID_AUTO)
416 return;
417
418 spin_lock_irqsave(&qrtr_nodes_lock, flags);
419 radix_tree_insert(&qrtr_nodes, nid, node);
420 if (node->nid == QRTR_EP_NID_AUTO)
421 node->nid = nid;
422 spin_unlock_irqrestore(&qrtr_nodes_lock, flags);
423 }
424
425 /**
426 * qrtr_endpoint_post() - post incoming data
427 * @ep: endpoint handle
428 * @data: data pointer
429 * @len: size of data in bytes
430 *
431 * Return: 0 on success; negative error code on failure
432 */
qrtr_endpoint_post(struct qrtr_endpoint * ep,const void * data,size_t len)433 int qrtr_endpoint_post(struct qrtr_endpoint *ep, const void *data, size_t len)
434 {
435 struct qrtr_node *node = ep->node;
436 const struct qrtr_hdr_v1 *v1;
437 const struct qrtr_hdr_v2 *v2;
438 struct qrtr_sock *ipc;
439 struct sk_buff *skb;
440 struct qrtr_cb *cb;
441 size_t size;
442 unsigned int ver;
443 size_t hdrlen;
444
445 if (len == 0 || len & 3)
446 return -EINVAL;
447
448 skb = __netdev_alloc_skb(NULL, len, GFP_ATOMIC | __GFP_NOWARN);
449 if (!skb)
450 return -ENOMEM;
451
452 cb = (struct qrtr_cb *)skb->cb;
453
454 /* Version field in v1 is little endian, so this works for both cases */
455 ver = *(u8*)data;
456
457 switch (ver) {
458 case QRTR_PROTO_VER_1:
459 if (len < sizeof(*v1))
460 goto err;
461 v1 = data;
462 hdrlen = sizeof(*v1);
463
464 cb->type = le32_to_cpu(v1->type);
465 cb->src_node = le32_to_cpu(v1->src_node_id);
466 cb->src_port = le32_to_cpu(v1->src_port_id);
467 cb->confirm_rx = !!v1->confirm_rx;
468 cb->dst_node = le32_to_cpu(v1->dst_node_id);
469 cb->dst_port = le32_to_cpu(v1->dst_port_id);
470
471 size = le32_to_cpu(v1->size);
472 break;
473 case QRTR_PROTO_VER_2:
474 if (len < sizeof(*v2))
475 goto err;
476 v2 = data;
477 hdrlen = sizeof(*v2) + v2->optlen;
478
479 cb->type = v2->type;
480 cb->confirm_rx = !!(v2->flags & QRTR_FLAGS_CONFIRM_RX);
481 cb->src_node = le16_to_cpu(v2->src_node_id);
482 cb->src_port = le16_to_cpu(v2->src_port_id);
483 cb->dst_node = le16_to_cpu(v2->dst_node_id);
484 cb->dst_port = le16_to_cpu(v2->dst_port_id);
485
486 if (cb->src_port == (u16)QRTR_PORT_CTRL)
487 cb->src_port = QRTR_PORT_CTRL;
488 if (cb->dst_port == (u16)QRTR_PORT_CTRL)
489 cb->dst_port = QRTR_PORT_CTRL;
490
491 size = le32_to_cpu(v2->size);
492 break;
493 default:
494 pr_err("qrtr: Invalid version %d\n", ver);
495 goto err;
496 }
497
498 if (!size || len != ALIGN(size, 4) + hdrlen)
499 goto err;
500
501 if ((cb->type == QRTR_TYPE_NEW_SERVER ||
502 cb->type == QRTR_TYPE_RESUME_TX) &&
503 size < sizeof(struct qrtr_ctrl_pkt))
504 goto err;
505
506 if (cb->dst_port != QRTR_PORT_CTRL && cb->type != QRTR_TYPE_DATA &&
507 cb->type != QRTR_TYPE_RESUME_TX)
508 goto err;
509
510 skb_put_data(skb, data + hdrlen, size);
511
512 qrtr_node_assign(node, cb->src_node);
513
514 if (cb->type == QRTR_TYPE_NEW_SERVER) {
515 /* Remote node endpoint can bridge other distant nodes */
516 const struct qrtr_ctrl_pkt *pkt;
517
518 pkt = data + hdrlen;
519 qrtr_node_assign(node, le32_to_cpu(pkt->server.node));
520 }
521
522 if (cb->type == QRTR_TYPE_RESUME_TX) {
523 qrtr_tx_resume(node, skb);
524 } else {
525 ipc = qrtr_port_lookup(cb->dst_port);
526 if (!ipc)
527 goto err;
528
529 if (sock_queue_rcv_skb(&ipc->sk, skb)) {
530 qrtr_port_put(ipc);
531 goto err;
532 }
533
534 qrtr_port_put(ipc);
535 }
536
537 return 0;
538
539 err:
540 kfree_skb(skb);
541 return -EINVAL;
542
543 }
544 EXPORT_SYMBOL_GPL(qrtr_endpoint_post);
545
546 /**
547 * qrtr_alloc_ctrl_packet() - allocate control packet skb
548 * @pkt: reference to qrtr_ctrl_pkt pointer
549 * @flags: the type of memory to allocate
550 *
551 * Returns newly allocated sk_buff, or NULL on failure
552 *
553 * This function allocates a sk_buff large enough to carry a qrtr_ctrl_pkt and
554 * on success returns a reference to the control packet in @pkt.
555 */
qrtr_alloc_ctrl_packet(struct qrtr_ctrl_pkt ** pkt,gfp_t flags)556 static struct sk_buff *qrtr_alloc_ctrl_packet(struct qrtr_ctrl_pkt **pkt,
557 gfp_t flags)
558 {
559 const int pkt_len = sizeof(struct qrtr_ctrl_pkt);
560 struct sk_buff *skb;
561
562 skb = alloc_skb(QRTR_HDR_MAX_SIZE + pkt_len, flags);
563 if (!skb)
564 return NULL;
565
566 skb_reserve(skb, QRTR_HDR_MAX_SIZE);
567 *pkt = skb_put_zero(skb, pkt_len);
568
569 return skb;
570 }
571
572 /**
573 * qrtr_endpoint_register() - register a new endpoint
574 * @ep: endpoint to register
575 * @nid: desired node id; may be QRTR_EP_NID_AUTO for auto-assignment
576 * Return: 0 on success; negative error code on failure
577 *
578 * The specified endpoint must have the xmit function pointer set on call.
579 */
qrtr_endpoint_register(struct qrtr_endpoint * ep,unsigned int nid)580 int qrtr_endpoint_register(struct qrtr_endpoint *ep, unsigned int nid)
581 {
582 struct qrtr_node *node;
583
584 if (!ep || !ep->xmit)
585 return -EINVAL;
586
587 node = kzalloc(sizeof(*node), GFP_KERNEL);
588 if (!node)
589 return -ENOMEM;
590
591 kref_init(&node->ref);
592 mutex_init(&node->ep_lock);
593 skb_queue_head_init(&node->rx_queue);
594 node->nid = QRTR_EP_NID_AUTO;
595 node->ep = ep;
596
597 INIT_RADIX_TREE(&node->qrtr_tx_flow, GFP_KERNEL);
598 mutex_init(&node->qrtr_tx_lock);
599
600 qrtr_node_assign(node, nid);
601
602 mutex_lock(&qrtr_node_lock);
603 list_add(&node->item, &qrtr_all_nodes);
604 mutex_unlock(&qrtr_node_lock);
605 ep->node = node;
606
607 return 0;
608 }
609 EXPORT_SYMBOL_GPL(qrtr_endpoint_register);
610
611 /**
612 * qrtr_endpoint_unregister - unregister endpoint
613 * @ep: endpoint to unregister
614 */
qrtr_endpoint_unregister(struct qrtr_endpoint * ep)615 void qrtr_endpoint_unregister(struct qrtr_endpoint *ep)
616 {
617 struct qrtr_node *node = ep->node;
618 struct sockaddr_qrtr src = {AF_QIPCRTR, node->nid, QRTR_PORT_CTRL};
619 struct sockaddr_qrtr dst = {AF_QIPCRTR, qrtr_local_nid, QRTR_PORT_CTRL};
620 struct radix_tree_iter iter;
621 struct qrtr_ctrl_pkt *pkt;
622 struct qrtr_tx_flow *flow;
623 struct sk_buff *skb;
624 unsigned long flags;
625 void __rcu **slot;
626
627 mutex_lock(&node->ep_lock);
628 node->ep = NULL;
629 mutex_unlock(&node->ep_lock);
630
631 /* Notify the local controller about the event */
632 spin_lock_irqsave(&qrtr_nodes_lock, flags);
633 radix_tree_for_each_slot(slot, &qrtr_nodes, &iter, 0) {
634 if (*slot != node)
635 continue;
636 src.sq_node = iter.index;
637 skb = qrtr_alloc_ctrl_packet(&pkt, GFP_ATOMIC);
638 if (skb) {
639 pkt->cmd = cpu_to_le32(QRTR_TYPE_BYE);
640 qrtr_local_enqueue(NULL, skb, QRTR_TYPE_BYE, &src, &dst);
641 }
642 }
643 spin_unlock_irqrestore(&qrtr_nodes_lock, flags);
644
645 /* Wake up any transmitters waiting for resume-tx from the node */
646 mutex_lock(&node->qrtr_tx_lock);
647 radix_tree_for_each_slot(slot, &node->qrtr_tx_flow, &iter, 0) {
648 flow = *slot;
649 wake_up_interruptible_all(&flow->resume_tx);
650 }
651 mutex_unlock(&node->qrtr_tx_lock);
652
653 qrtr_node_release(node);
654 ep->node = NULL;
655 }
656 EXPORT_SYMBOL_GPL(qrtr_endpoint_unregister);
657
658 /* Lookup socket by port.
659 *
660 * Callers must release with qrtr_port_put()
661 */
qrtr_port_lookup(int port)662 static struct qrtr_sock *qrtr_port_lookup(int port)
663 {
664 struct qrtr_sock *ipc;
665
666 if (port == QRTR_PORT_CTRL)
667 port = 0;
668
669 rcu_read_lock();
670 ipc = xa_load(&qrtr_ports, port);
671 if (ipc)
672 sock_hold(&ipc->sk);
673 rcu_read_unlock();
674
675 return ipc;
676 }
677
678 /* Release acquired socket. */
qrtr_port_put(struct qrtr_sock * ipc)679 static void qrtr_port_put(struct qrtr_sock *ipc)
680 {
681 sock_put(&ipc->sk);
682 }
683
684 /* Remove port assignment. */
qrtr_port_remove(struct qrtr_sock * ipc)685 static void qrtr_port_remove(struct qrtr_sock *ipc)
686 {
687 struct qrtr_ctrl_pkt *pkt;
688 struct sk_buff *skb;
689 int port = ipc->us.sq_port;
690 struct sockaddr_qrtr to;
691
692 to.sq_family = AF_QIPCRTR;
693 to.sq_node = QRTR_NODE_BCAST;
694 to.sq_port = QRTR_PORT_CTRL;
695
696 skb = qrtr_alloc_ctrl_packet(&pkt, GFP_KERNEL);
697 if (skb) {
698 pkt->cmd = cpu_to_le32(QRTR_TYPE_DEL_CLIENT);
699 pkt->client.node = cpu_to_le32(ipc->us.sq_node);
700 pkt->client.port = cpu_to_le32(ipc->us.sq_port);
701
702 skb_set_owner_w(skb, &ipc->sk);
703 qrtr_bcast_enqueue(NULL, skb, QRTR_TYPE_DEL_CLIENT, &ipc->us,
704 &to);
705 }
706
707 if (port == QRTR_PORT_CTRL)
708 port = 0;
709
710 __sock_put(&ipc->sk);
711
712 xa_erase(&qrtr_ports, port);
713
714 /* Ensure that if qrtr_port_lookup() did enter the RCU read section we
715 * wait for it to up increment the refcount */
716 synchronize_rcu();
717 }
718
719 /* Assign port number to socket.
720 *
721 * Specify port in the integer pointed to by port, and it will be adjusted
722 * on return as necesssary.
723 *
724 * Port may be:
725 * 0: Assign ephemeral port in [QRTR_MIN_EPH_SOCKET, QRTR_MAX_EPH_SOCKET]
726 * <QRTR_MIN_EPH_SOCKET: Specified; requires CAP_NET_ADMIN
727 * >QRTR_MIN_EPH_SOCKET: Specified; available to all
728 */
qrtr_port_assign(struct qrtr_sock * ipc,int * port)729 static int qrtr_port_assign(struct qrtr_sock *ipc, int *port)
730 {
731 int rc;
732
733 if (!*port) {
734 rc = xa_alloc(&qrtr_ports, port, ipc, QRTR_EPH_PORT_RANGE,
735 GFP_KERNEL);
736 } else if (*port < QRTR_MIN_EPH_SOCKET && !capable(CAP_NET_ADMIN)) {
737 rc = -EACCES;
738 } else if (*port == QRTR_PORT_CTRL) {
739 rc = xa_insert(&qrtr_ports, 0, ipc, GFP_KERNEL);
740 } else {
741 rc = xa_insert(&qrtr_ports, *port, ipc, GFP_KERNEL);
742 }
743
744 if (rc == -EBUSY)
745 return -EADDRINUSE;
746 else if (rc < 0)
747 return rc;
748
749 sock_hold(&ipc->sk);
750
751 return 0;
752 }
753
754 /* Reset all non-control ports */
qrtr_reset_ports(void)755 static void qrtr_reset_ports(void)
756 {
757 struct qrtr_sock *ipc;
758 unsigned long index;
759
760 rcu_read_lock();
761 xa_for_each_start(&qrtr_ports, index, ipc, 1) {
762 sock_hold(&ipc->sk);
763 ipc->sk.sk_err = ENETRESET;
764 sk_error_report(&ipc->sk);
765 sock_put(&ipc->sk);
766 }
767 rcu_read_unlock();
768 }
769
770 /* Bind socket to address.
771 *
772 * Socket should be locked upon call.
773 */
__qrtr_bind(struct socket * sock,const struct sockaddr_qrtr * addr,int zapped)774 static int __qrtr_bind(struct socket *sock,
775 const struct sockaddr_qrtr *addr, int zapped)
776 {
777 struct qrtr_sock *ipc = qrtr_sk(sock->sk);
778 struct sock *sk = sock->sk;
779 int port;
780 int rc;
781
782 /* rebinding ok */
783 if (!zapped && addr->sq_port == ipc->us.sq_port)
784 return 0;
785
786 port = addr->sq_port;
787 rc = qrtr_port_assign(ipc, &port);
788 if (rc)
789 return rc;
790
791 /* unbind previous, if any */
792 if (!zapped)
793 qrtr_port_remove(ipc);
794 ipc->us.sq_port = port;
795
796 sock_reset_flag(sk, SOCK_ZAPPED);
797
798 /* Notify all open ports about the new controller */
799 if (port == QRTR_PORT_CTRL)
800 qrtr_reset_ports();
801
802 return 0;
803 }
804
805 /* Auto bind to an ephemeral port. */
qrtr_autobind(struct socket * sock)806 static int qrtr_autobind(struct socket *sock)
807 {
808 struct sock *sk = sock->sk;
809 struct sockaddr_qrtr addr;
810
811 if (!sock_flag(sk, SOCK_ZAPPED))
812 return 0;
813
814 addr.sq_family = AF_QIPCRTR;
815 addr.sq_node = qrtr_local_nid;
816 addr.sq_port = 0;
817
818 return __qrtr_bind(sock, &addr, 1);
819 }
820
821 /* Bind socket to specified sockaddr. */
qrtr_bind(struct socket * sock,struct sockaddr * saddr,int len)822 static int qrtr_bind(struct socket *sock, struct sockaddr *saddr, int len)
823 {
824 DECLARE_SOCKADDR(struct sockaddr_qrtr *, addr, saddr);
825 struct qrtr_sock *ipc = qrtr_sk(sock->sk);
826 struct sock *sk = sock->sk;
827 int rc;
828
829 if (len < sizeof(*addr) || addr->sq_family != AF_QIPCRTR)
830 return -EINVAL;
831
832 if (addr->sq_node != ipc->us.sq_node)
833 return -EINVAL;
834
835 lock_sock(sk);
836 rc = __qrtr_bind(sock, addr, sock_flag(sk, SOCK_ZAPPED));
837 release_sock(sk);
838
839 return rc;
840 }
841
842 /* Queue packet to local peer socket. */
qrtr_local_enqueue(struct qrtr_node * node,struct sk_buff * skb,int type,struct sockaddr_qrtr * from,struct sockaddr_qrtr * to)843 static int qrtr_local_enqueue(struct qrtr_node *node, struct sk_buff *skb,
844 int type, struct sockaddr_qrtr *from,
845 struct sockaddr_qrtr *to)
846 {
847 struct qrtr_sock *ipc;
848 struct qrtr_cb *cb;
849
850 ipc = qrtr_port_lookup(to->sq_port);
851 if (!ipc || &ipc->sk == skb->sk) { /* do not send to self */
852 if (ipc)
853 qrtr_port_put(ipc);
854 kfree_skb(skb);
855 return -ENODEV;
856 }
857
858 cb = (struct qrtr_cb *)skb->cb;
859 cb->src_node = from->sq_node;
860 cb->src_port = from->sq_port;
861
862 if (sock_queue_rcv_skb(&ipc->sk, skb)) {
863 qrtr_port_put(ipc);
864 kfree_skb(skb);
865 return -ENOSPC;
866 }
867
868 qrtr_port_put(ipc);
869
870 return 0;
871 }
872
873 /* Queue packet for broadcast. */
qrtr_bcast_enqueue(struct qrtr_node * node,struct sk_buff * skb,int type,struct sockaddr_qrtr * from,struct sockaddr_qrtr * to)874 static int qrtr_bcast_enqueue(struct qrtr_node *node, struct sk_buff *skb,
875 int type, struct sockaddr_qrtr *from,
876 struct sockaddr_qrtr *to)
877 {
878 struct sk_buff *skbn;
879
880 mutex_lock(&qrtr_node_lock);
881 list_for_each_entry(node, &qrtr_all_nodes, item) {
882 skbn = skb_clone(skb, GFP_KERNEL);
883 if (!skbn)
884 break;
885 skb_set_owner_w(skbn, skb->sk);
886 qrtr_node_enqueue(node, skbn, type, from, to);
887 }
888 mutex_unlock(&qrtr_node_lock);
889
890 qrtr_local_enqueue(NULL, skb, type, from, to);
891
892 return 0;
893 }
894
qrtr_sendmsg(struct socket * sock,struct msghdr * msg,size_t len)895 static int qrtr_sendmsg(struct socket *sock, struct msghdr *msg, size_t len)
896 {
897 DECLARE_SOCKADDR(struct sockaddr_qrtr *, addr, msg->msg_name);
898 int (*enqueue_fn)(struct qrtr_node *, struct sk_buff *, int,
899 struct sockaddr_qrtr *, struct sockaddr_qrtr *);
900 __le32 qrtr_type = cpu_to_le32(QRTR_TYPE_DATA);
901 struct qrtr_sock *ipc = qrtr_sk(sock->sk);
902 struct sock *sk = sock->sk;
903 struct qrtr_node *node;
904 struct sk_buff *skb;
905 size_t plen;
906 u32 type;
907 int rc;
908
909 if (msg->msg_flags & ~(MSG_DONTWAIT))
910 return -EINVAL;
911
912 if (len > 65535)
913 return -EMSGSIZE;
914
915 lock_sock(sk);
916
917 if (addr) {
918 if (msg->msg_namelen < sizeof(*addr)) {
919 release_sock(sk);
920 return -EINVAL;
921 }
922
923 if (addr->sq_family != AF_QIPCRTR) {
924 release_sock(sk);
925 return -EINVAL;
926 }
927
928 rc = qrtr_autobind(sock);
929 if (rc) {
930 release_sock(sk);
931 return rc;
932 }
933 } else if (sk->sk_state == TCP_ESTABLISHED) {
934 addr = &ipc->peer;
935 } else {
936 release_sock(sk);
937 return -ENOTCONN;
938 }
939
940 node = NULL;
941 if (addr->sq_node == QRTR_NODE_BCAST) {
942 if (addr->sq_port != QRTR_PORT_CTRL &&
943 qrtr_local_nid != QRTR_NODE_BCAST) {
944 release_sock(sk);
945 return -ENOTCONN;
946 }
947 enqueue_fn = qrtr_bcast_enqueue;
948 } else if (addr->sq_node == ipc->us.sq_node) {
949 enqueue_fn = qrtr_local_enqueue;
950 } else {
951 node = qrtr_node_lookup(addr->sq_node);
952 if (!node) {
953 release_sock(sk);
954 return -ECONNRESET;
955 }
956 enqueue_fn = qrtr_node_enqueue;
957 }
958
959 plen = (len + 3) & ~3;
960 skb = sock_alloc_send_skb(sk, plen + QRTR_HDR_MAX_SIZE,
961 msg->msg_flags & MSG_DONTWAIT, &rc);
962 if (!skb) {
963 rc = -ENOMEM;
964 goto out_node;
965 }
966
967 skb_reserve(skb, QRTR_HDR_MAX_SIZE);
968
969 rc = memcpy_from_msg(skb_put(skb, len), msg, len);
970 if (rc) {
971 kfree_skb(skb);
972 goto out_node;
973 }
974
975 if (ipc->us.sq_port == QRTR_PORT_CTRL) {
976 if (len < 4) {
977 rc = -EINVAL;
978 kfree_skb(skb);
979 goto out_node;
980 }
981
982 /* control messages already require the type as 'command' */
983 skb_copy_bits(skb, 0, &qrtr_type, 4);
984 }
985
986 type = le32_to_cpu(qrtr_type);
987 rc = enqueue_fn(node, skb, type, &ipc->us, addr);
988 if (rc >= 0)
989 rc = len;
990
991 out_node:
992 qrtr_node_release(node);
993 release_sock(sk);
994
995 return rc;
996 }
997
qrtr_send_resume_tx(struct qrtr_cb * cb)998 static int qrtr_send_resume_tx(struct qrtr_cb *cb)
999 {
1000 struct sockaddr_qrtr remote = { AF_QIPCRTR, cb->src_node, cb->src_port };
1001 struct sockaddr_qrtr local = { AF_QIPCRTR, cb->dst_node, cb->dst_port };
1002 struct qrtr_ctrl_pkt *pkt;
1003 struct qrtr_node *node;
1004 struct sk_buff *skb;
1005 int ret;
1006
1007 node = qrtr_node_lookup(remote.sq_node);
1008 if (!node)
1009 return -EINVAL;
1010
1011 skb = qrtr_alloc_ctrl_packet(&pkt, GFP_KERNEL);
1012 if (!skb)
1013 return -ENOMEM;
1014
1015 pkt->cmd = cpu_to_le32(QRTR_TYPE_RESUME_TX);
1016 pkt->client.node = cpu_to_le32(cb->dst_node);
1017 pkt->client.port = cpu_to_le32(cb->dst_port);
1018
1019 ret = qrtr_node_enqueue(node, skb, QRTR_TYPE_RESUME_TX, &local, &remote);
1020
1021 qrtr_node_release(node);
1022
1023 return ret;
1024 }
1025
qrtr_recvmsg(struct socket * sock,struct msghdr * msg,size_t size,int flags)1026 static int qrtr_recvmsg(struct socket *sock, struct msghdr *msg,
1027 size_t size, int flags)
1028 {
1029 DECLARE_SOCKADDR(struct sockaddr_qrtr *, addr, msg->msg_name);
1030 struct sock *sk = sock->sk;
1031 struct sk_buff *skb;
1032 struct qrtr_cb *cb;
1033 int copied, rc;
1034
1035 lock_sock(sk);
1036
1037 if (sock_flag(sk, SOCK_ZAPPED)) {
1038 release_sock(sk);
1039 return -EADDRNOTAVAIL;
1040 }
1041
1042 skb = skb_recv_datagram(sk, flags & ~MSG_DONTWAIT,
1043 flags & MSG_DONTWAIT, &rc);
1044 if (!skb) {
1045 release_sock(sk);
1046 return rc;
1047 }
1048 cb = (struct qrtr_cb *)skb->cb;
1049
1050 copied = skb->len;
1051 if (copied > size) {
1052 copied = size;
1053 msg->msg_flags |= MSG_TRUNC;
1054 }
1055
1056 rc = skb_copy_datagram_msg(skb, 0, msg, copied);
1057 if (rc < 0)
1058 goto out;
1059 rc = copied;
1060
1061 if (addr) {
1062 /* There is an anonymous 2-byte hole after sq_family,
1063 * make sure to clear it.
1064 */
1065 memset(addr, 0, sizeof(*addr));
1066
1067 addr->sq_family = AF_QIPCRTR;
1068 addr->sq_node = cb->src_node;
1069 addr->sq_port = cb->src_port;
1070 msg->msg_namelen = sizeof(*addr);
1071 }
1072
1073 out:
1074 if (cb->confirm_rx)
1075 qrtr_send_resume_tx(cb);
1076
1077 skb_free_datagram(sk, skb);
1078 release_sock(sk);
1079
1080 return rc;
1081 }
1082
qrtr_connect(struct socket * sock,struct sockaddr * saddr,int len,int flags)1083 static int qrtr_connect(struct socket *sock, struct sockaddr *saddr,
1084 int len, int flags)
1085 {
1086 DECLARE_SOCKADDR(struct sockaddr_qrtr *, addr, saddr);
1087 struct qrtr_sock *ipc = qrtr_sk(sock->sk);
1088 struct sock *sk = sock->sk;
1089 int rc;
1090
1091 if (len < sizeof(*addr) || addr->sq_family != AF_QIPCRTR)
1092 return -EINVAL;
1093
1094 lock_sock(sk);
1095
1096 sk->sk_state = TCP_CLOSE;
1097 sock->state = SS_UNCONNECTED;
1098
1099 rc = qrtr_autobind(sock);
1100 if (rc) {
1101 release_sock(sk);
1102 return rc;
1103 }
1104
1105 ipc->peer = *addr;
1106 sock->state = SS_CONNECTED;
1107 sk->sk_state = TCP_ESTABLISHED;
1108
1109 release_sock(sk);
1110
1111 return 0;
1112 }
1113
qrtr_getname(struct socket * sock,struct sockaddr * saddr,int peer)1114 static int qrtr_getname(struct socket *sock, struct sockaddr *saddr,
1115 int peer)
1116 {
1117 struct qrtr_sock *ipc = qrtr_sk(sock->sk);
1118 struct sockaddr_qrtr qaddr;
1119 struct sock *sk = sock->sk;
1120
1121 lock_sock(sk);
1122 if (peer) {
1123 if (sk->sk_state != TCP_ESTABLISHED) {
1124 release_sock(sk);
1125 return -ENOTCONN;
1126 }
1127
1128 qaddr = ipc->peer;
1129 } else {
1130 qaddr = ipc->us;
1131 }
1132 release_sock(sk);
1133
1134 qaddr.sq_family = AF_QIPCRTR;
1135
1136 memcpy(saddr, &qaddr, sizeof(qaddr));
1137
1138 return sizeof(qaddr);
1139 }
1140
qrtr_ioctl(struct socket * sock,unsigned int cmd,unsigned long arg)1141 static int qrtr_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
1142 {
1143 void __user *argp = (void __user *)arg;
1144 struct qrtr_sock *ipc = qrtr_sk(sock->sk);
1145 struct sock *sk = sock->sk;
1146 struct sockaddr_qrtr *sq;
1147 struct sk_buff *skb;
1148 struct ifreq ifr;
1149 long len = 0;
1150 int rc = 0;
1151
1152 lock_sock(sk);
1153
1154 switch (cmd) {
1155 case TIOCOUTQ:
1156 len = sk->sk_sndbuf - sk_wmem_alloc_get(sk);
1157 if (len < 0)
1158 len = 0;
1159 rc = put_user(len, (int __user *)argp);
1160 break;
1161 case TIOCINQ:
1162 skb = skb_peek(&sk->sk_receive_queue);
1163 if (skb)
1164 len = skb->len;
1165 rc = put_user(len, (int __user *)argp);
1166 break;
1167 case SIOCGIFADDR:
1168 if (get_user_ifreq(&ifr, NULL, argp)) {
1169 rc = -EFAULT;
1170 break;
1171 }
1172
1173 sq = (struct sockaddr_qrtr *)&ifr.ifr_addr;
1174 *sq = ipc->us;
1175 if (put_user_ifreq(&ifr, argp)) {
1176 rc = -EFAULT;
1177 break;
1178 }
1179 break;
1180 case SIOCADDRT:
1181 case SIOCDELRT:
1182 case SIOCSIFADDR:
1183 case SIOCGIFDSTADDR:
1184 case SIOCSIFDSTADDR:
1185 case SIOCGIFBRDADDR:
1186 case SIOCSIFBRDADDR:
1187 case SIOCGIFNETMASK:
1188 case SIOCSIFNETMASK:
1189 rc = -EINVAL;
1190 break;
1191 default:
1192 rc = -ENOIOCTLCMD;
1193 break;
1194 }
1195
1196 release_sock(sk);
1197
1198 return rc;
1199 }
1200
qrtr_release(struct socket * sock)1201 static int qrtr_release(struct socket *sock)
1202 {
1203 struct sock *sk = sock->sk;
1204 struct qrtr_sock *ipc;
1205
1206 if (!sk)
1207 return 0;
1208
1209 lock_sock(sk);
1210
1211 ipc = qrtr_sk(sk);
1212 sk->sk_shutdown = SHUTDOWN_MASK;
1213 if (!sock_flag(sk, SOCK_DEAD))
1214 sk->sk_state_change(sk);
1215
1216 sock_set_flag(sk, SOCK_DEAD);
1217 sock_orphan(sk);
1218 sock->sk = NULL;
1219
1220 if (!sock_flag(sk, SOCK_ZAPPED))
1221 qrtr_port_remove(ipc);
1222
1223 skb_queue_purge(&sk->sk_receive_queue);
1224
1225 release_sock(sk);
1226 sock_put(sk);
1227
1228 return 0;
1229 }
1230
1231 static const struct proto_ops qrtr_proto_ops = {
1232 .owner = THIS_MODULE,
1233 .family = AF_QIPCRTR,
1234 .bind = qrtr_bind,
1235 .connect = qrtr_connect,
1236 .socketpair = sock_no_socketpair,
1237 .accept = sock_no_accept,
1238 .listen = sock_no_listen,
1239 .sendmsg = qrtr_sendmsg,
1240 .recvmsg = qrtr_recvmsg,
1241 .getname = qrtr_getname,
1242 .ioctl = qrtr_ioctl,
1243 .gettstamp = sock_gettstamp,
1244 .poll = datagram_poll,
1245 .shutdown = sock_no_shutdown,
1246 .release = qrtr_release,
1247 .mmap = sock_no_mmap,
1248 .sendpage = sock_no_sendpage,
1249 };
1250
1251 static struct proto qrtr_proto = {
1252 .name = "QIPCRTR",
1253 .owner = THIS_MODULE,
1254 .obj_size = sizeof(struct qrtr_sock),
1255 };
1256
qrtr_create(struct net * net,struct socket * sock,int protocol,int kern)1257 static int qrtr_create(struct net *net, struct socket *sock,
1258 int protocol, int kern)
1259 {
1260 struct qrtr_sock *ipc;
1261 struct sock *sk;
1262
1263 if (sock->type != SOCK_DGRAM)
1264 return -EPROTOTYPE;
1265
1266 sk = sk_alloc(net, AF_QIPCRTR, GFP_KERNEL, &qrtr_proto, kern);
1267 if (!sk)
1268 return -ENOMEM;
1269
1270 sock_set_flag(sk, SOCK_ZAPPED);
1271
1272 sock_init_data(sock, sk);
1273 sock->ops = &qrtr_proto_ops;
1274
1275 ipc = qrtr_sk(sk);
1276 ipc->us.sq_family = AF_QIPCRTR;
1277 ipc->us.sq_node = qrtr_local_nid;
1278 ipc->us.sq_port = 0;
1279
1280 return 0;
1281 }
1282
1283 static const struct net_proto_family qrtr_family = {
1284 .owner = THIS_MODULE,
1285 .family = AF_QIPCRTR,
1286 .create = qrtr_create,
1287 };
1288
qrtr_proto_init(void)1289 static int __init qrtr_proto_init(void)
1290 {
1291 int rc;
1292
1293 rc = proto_register(&qrtr_proto, 1);
1294 if (rc)
1295 return rc;
1296
1297 rc = sock_register(&qrtr_family);
1298 if (rc)
1299 goto err_proto;
1300
1301 rc = qrtr_ns_init();
1302 if (rc)
1303 goto err_sock;
1304
1305 return 0;
1306
1307 err_sock:
1308 sock_unregister(qrtr_family.family);
1309 err_proto:
1310 proto_unregister(&qrtr_proto);
1311 return rc;
1312 }
1313 postcore_initcall(qrtr_proto_init);
1314
qrtr_proto_fini(void)1315 static void __exit qrtr_proto_fini(void)
1316 {
1317 qrtr_ns_remove();
1318 sock_unregister(qrtr_family.family);
1319 proto_unregister(&qrtr_proto);
1320 }
1321 module_exit(qrtr_proto_fini);
1322
1323 MODULE_DESCRIPTION("Qualcomm IPC-router driver");
1324 MODULE_LICENSE("GPL v2");
1325 MODULE_ALIAS_NETPROTO(PF_QIPCRTR);
1326