1 /*
2 * Copyright 2012-15 Advanced Micro Devices, Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 *
22 * Authors: AMD
23 *
24 */
25
26 #include <linux/slab.h>
27
28 #include "dm_services.h"
29
30 #include "resource.h"
31 #include "include/irq_service_interface.h"
32 #include "link_encoder.h"
33 #include "stream_encoder.h"
34 #include "opp.h"
35 #include "timing_generator.h"
36 #include "transform.h"
37 #include "dccg.h"
38 #include "dchubbub.h"
39 #include "dpp.h"
40 #include "core_types.h"
41 #include "set_mode_types.h"
42 #include "virtual/virtual_stream_encoder.h"
43 #include "dpcd_defs.h"
44
45 #if defined(CONFIG_DRM_AMD_DC_SI)
46 #include "dce60/dce60_resource.h"
47 #endif
48 #include "dce80/dce80_resource.h"
49 #include "dce100/dce100_resource.h"
50 #include "dce110/dce110_resource.h"
51 #include "dce112/dce112_resource.h"
52 #include "dce120/dce120_resource.h"
53 #if defined(CONFIG_DRM_AMD_DC_DCN)
54 #include "dcn10/dcn10_resource.h"
55 #include "dcn20/dcn20_resource.h"
56 #include "dcn21/dcn21_resource.h"
57 #include "dcn30/dcn30_resource.h"
58 #include "dcn301/dcn301_resource.h"
59 #include "dcn302/dcn302_resource.h"
60 #include "dcn303/dcn303_resource.h"
61 #include "dcn31/dcn31_resource.h"
62 #endif
63
64 #define DC_LOGGER_INIT(logger)
65
resource_parse_asic_id(struct hw_asic_id asic_id)66 enum dce_version resource_parse_asic_id(struct hw_asic_id asic_id)
67 {
68 enum dce_version dc_version = DCE_VERSION_UNKNOWN;
69 switch (asic_id.chip_family) {
70
71 #if defined(CONFIG_DRM_AMD_DC_SI)
72 case FAMILY_SI:
73 if (ASIC_REV_IS_TAHITI_P(asic_id.hw_internal_rev) ||
74 ASIC_REV_IS_PITCAIRN_PM(asic_id.hw_internal_rev) ||
75 ASIC_REV_IS_CAPEVERDE_M(asic_id.hw_internal_rev))
76 dc_version = DCE_VERSION_6_0;
77 else if (ASIC_REV_IS_OLAND_M(asic_id.hw_internal_rev))
78 dc_version = DCE_VERSION_6_4;
79 else
80 dc_version = DCE_VERSION_6_1;
81 break;
82 #endif
83 case FAMILY_CI:
84 dc_version = DCE_VERSION_8_0;
85 break;
86 case FAMILY_KV:
87 if (ASIC_REV_IS_KALINDI(asic_id.hw_internal_rev) ||
88 ASIC_REV_IS_BHAVANI(asic_id.hw_internal_rev) ||
89 ASIC_REV_IS_GODAVARI(asic_id.hw_internal_rev))
90 dc_version = DCE_VERSION_8_3;
91 else
92 dc_version = DCE_VERSION_8_1;
93 break;
94 case FAMILY_CZ:
95 dc_version = DCE_VERSION_11_0;
96 break;
97
98 case FAMILY_VI:
99 if (ASIC_REV_IS_TONGA_P(asic_id.hw_internal_rev) ||
100 ASIC_REV_IS_FIJI_P(asic_id.hw_internal_rev)) {
101 dc_version = DCE_VERSION_10_0;
102 break;
103 }
104 if (ASIC_REV_IS_POLARIS10_P(asic_id.hw_internal_rev) ||
105 ASIC_REV_IS_POLARIS11_M(asic_id.hw_internal_rev) ||
106 ASIC_REV_IS_POLARIS12_V(asic_id.hw_internal_rev)) {
107 dc_version = DCE_VERSION_11_2;
108 }
109 if (ASIC_REV_IS_VEGAM(asic_id.hw_internal_rev))
110 dc_version = DCE_VERSION_11_22;
111 break;
112 case FAMILY_AI:
113 if (ASICREV_IS_VEGA20_P(asic_id.hw_internal_rev))
114 dc_version = DCE_VERSION_12_1;
115 else
116 dc_version = DCE_VERSION_12_0;
117 break;
118 #if defined(CONFIG_DRM_AMD_DC_DCN)
119 case FAMILY_RV:
120 dc_version = DCN_VERSION_1_0;
121 if (ASICREV_IS_RAVEN2(asic_id.hw_internal_rev))
122 dc_version = DCN_VERSION_1_01;
123 if (ASICREV_IS_RENOIR(asic_id.hw_internal_rev))
124 dc_version = DCN_VERSION_2_1;
125 if (ASICREV_IS_GREEN_SARDINE(asic_id.hw_internal_rev))
126 dc_version = DCN_VERSION_2_1;
127 break;
128
129 case FAMILY_NV:
130 dc_version = DCN_VERSION_2_0;
131 if (ASICREV_IS_SIENNA_CICHLID_P(asic_id.hw_internal_rev))
132 dc_version = DCN_VERSION_3_0;
133 if (ASICREV_IS_DIMGREY_CAVEFISH_P(asic_id.hw_internal_rev))
134 dc_version = DCN_VERSION_3_02;
135 if (ASICREV_IS_BEIGE_GOBY_P(asic_id.hw_internal_rev))
136 dc_version = DCN_VERSION_3_03;
137 break;
138
139 case FAMILY_VGH:
140 dc_version = DCN_VERSION_3_01;
141 break;
142
143 case FAMILY_YELLOW_CARP:
144 if (ASICREV_IS_YELLOW_CARP(asic_id.hw_internal_rev))
145 dc_version = DCN_VERSION_3_1;
146 break;
147 #endif
148
149 default:
150 dc_version = DCE_VERSION_UNKNOWN;
151 break;
152 }
153 return dc_version;
154 }
155
dc_create_resource_pool(struct dc * dc,const struct dc_init_data * init_data,enum dce_version dc_version)156 struct resource_pool *dc_create_resource_pool(struct dc *dc,
157 const struct dc_init_data *init_data,
158 enum dce_version dc_version)
159 {
160 struct resource_pool *res_pool = NULL;
161
162 switch (dc_version) {
163 #if defined(CONFIG_DRM_AMD_DC_SI)
164 case DCE_VERSION_6_0:
165 res_pool = dce60_create_resource_pool(
166 init_data->num_virtual_links, dc);
167 break;
168 case DCE_VERSION_6_1:
169 res_pool = dce61_create_resource_pool(
170 init_data->num_virtual_links, dc);
171 break;
172 case DCE_VERSION_6_4:
173 res_pool = dce64_create_resource_pool(
174 init_data->num_virtual_links, dc);
175 break;
176 #endif
177 case DCE_VERSION_8_0:
178 res_pool = dce80_create_resource_pool(
179 init_data->num_virtual_links, dc);
180 break;
181 case DCE_VERSION_8_1:
182 res_pool = dce81_create_resource_pool(
183 init_data->num_virtual_links, dc);
184 break;
185 case DCE_VERSION_8_3:
186 res_pool = dce83_create_resource_pool(
187 init_data->num_virtual_links, dc);
188 break;
189 case DCE_VERSION_10_0:
190 res_pool = dce100_create_resource_pool(
191 init_data->num_virtual_links, dc);
192 break;
193 case DCE_VERSION_11_0:
194 res_pool = dce110_create_resource_pool(
195 init_data->num_virtual_links, dc,
196 init_data->asic_id);
197 break;
198 case DCE_VERSION_11_2:
199 case DCE_VERSION_11_22:
200 res_pool = dce112_create_resource_pool(
201 init_data->num_virtual_links, dc);
202 break;
203 case DCE_VERSION_12_0:
204 case DCE_VERSION_12_1:
205 res_pool = dce120_create_resource_pool(
206 init_data->num_virtual_links, dc);
207 break;
208
209 #if defined(CONFIG_DRM_AMD_DC_DCN)
210 case DCN_VERSION_1_0:
211 case DCN_VERSION_1_01:
212 res_pool = dcn10_create_resource_pool(init_data, dc);
213 break;
214 case DCN_VERSION_2_0:
215 res_pool = dcn20_create_resource_pool(init_data, dc);
216 break;
217 case DCN_VERSION_2_1:
218 res_pool = dcn21_create_resource_pool(init_data, dc);
219 break;
220 case DCN_VERSION_3_0:
221 res_pool = dcn30_create_resource_pool(init_data, dc);
222 break;
223 case DCN_VERSION_3_01:
224 res_pool = dcn301_create_resource_pool(init_data, dc);
225 break;
226 case DCN_VERSION_3_02:
227 res_pool = dcn302_create_resource_pool(init_data, dc);
228 break;
229 case DCN_VERSION_3_03:
230 res_pool = dcn303_create_resource_pool(init_data, dc);
231 break;
232 case DCN_VERSION_3_1:
233 res_pool = dcn31_create_resource_pool(init_data, dc);
234 break;
235 #endif
236 default:
237 break;
238 }
239
240 if (res_pool != NULL) {
241 if (dc->ctx->dc_bios->fw_info_valid) {
242 res_pool->ref_clocks.xtalin_clock_inKhz =
243 dc->ctx->dc_bios->fw_info.pll_info.crystal_frequency;
244 /* initialize with firmware data first, no all
245 * ASIC have DCCG SW component. FPGA or
246 * simulation need initialization of
247 * dccg_ref_clock_inKhz, dchub_ref_clock_inKhz
248 * with xtalin_clock_inKhz
249 */
250 res_pool->ref_clocks.dccg_ref_clock_inKhz =
251 res_pool->ref_clocks.xtalin_clock_inKhz;
252 res_pool->ref_clocks.dchub_ref_clock_inKhz =
253 res_pool->ref_clocks.xtalin_clock_inKhz;
254 } else
255 ASSERT_CRITICAL(false);
256 }
257
258 return res_pool;
259 }
260
dc_destroy_resource_pool(struct dc * dc)261 void dc_destroy_resource_pool(struct dc *dc)
262 {
263 if (dc) {
264 if (dc->res_pool)
265 dc->res_pool->funcs->destroy(&dc->res_pool);
266
267 kfree(dc->hwseq);
268 }
269 }
270
update_num_audio(const struct resource_straps * straps,unsigned int * num_audio,struct audio_support * aud_support)271 static void update_num_audio(
272 const struct resource_straps *straps,
273 unsigned int *num_audio,
274 struct audio_support *aud_support)
275 {
276 aud_support->dp_audio = true;
277 aud_support->hdmi_audio_native = false;
278 aud_support->hdmi_audio_on_dongle = false;
279
280 if (straps->hdmi_disable == 0) {
281 if (straps->dc_pinstraps_audio & 0x2) {
282 aud_support->hdmi_audio_on_dongle = true;
283 aud_support->hdmi_audio_native = true;
284 }
285 }
286
287 switch (straps->audio_stream_number) {
288 case 0: /* multi streams supported */
289 break;
290 case 1: /* multi streams not supported */
291 *num_audio = 1;
292 break;
293 default:
294 DC_ERR("DC: unexpected audio fuse!\n");
295 }
296 }
297
resource_construct(unsigned int num_virtual_links,struct dc * dc,struct resource_pool * pool,const struct resource_create_funcs * create_funcs)298 bool resource_construct(
299 unsigned int num_virtual_links,
300 struct dc *dc,
301 struct resource_pool *pool,
302 const struct resource_create_funcs *create_funcs)
303 {
304 struct dc_context *ctx = dc->ctx;
305 const struct resource_caps *caps = pool->res_cap;
306 int i;
307 unsigned int num_audio = caps->num_audio;
308 struct resource_straps straps = {0};
309
310 if (create_funcs->read_dce_straps)
311 create_funcs->read_dce_straps(dc->ctx, &straps);
312
313 pool->audio_count = 0;
314 if (create_funcs->create_audio) {
315 /* find the total number of streams available via the
316 * AZALIA_F0_CODEC_PIN_CONTROL_RESPONSE_CONFIGURATION_DEFAULT
317 * registers (one for each pin) starting from pin 1
318 * up to the max number of audio pins.
319 * We stop on the first pin where
320 * PORT_CONNECTIVITY == 1 (as instructed by HW team).
321 */
322 update_num_audio(&straps, &num_audio, &pool->audio_support);
323 for (i = 0; i < caps->num_audio; i++) {
324 struct audio *aud = create_funcs->create_audio(ctx, i);
325
326 if (aud == NULL) {
327 DC_ERR("DC: failed to create audio!\n");
328 return false;
329 }
330 if (!aud->funcs->endpoint_valid(aud)) {
331 aud->funcs->destroy(&aud);
332 break;
333 }
334 pool->audios[i] = aud;
335 pool->audio_count++;
336 }
337 }
338
339 pool->stream_enc_count = 0;
340 if (create_funcs->create_stream_encoder) {
341 for (i = 0; i < caps->num_stream_encoder; i++) {
342 pool->stream_enc[i] = create_funcs->create_stream_encoder(i, ctx);
343 if (pool->stream_enc[i] == NULL)
344 DC_ERR("DC: failed to create stream_encoder!\n");
345 pool->stream_enc_count++;
346 }
347 }
348
349 #if defined(CONFIG_DRM_AMD_DC_DCN)
350 for (i = 0; i < caps->num_mpc_3dlut; i++) {
351 pool->mpc_lut[i] = dc_create_3dlut_func();
352 if (pool->mpc_lut[i] == NULL)
353 DC_ERR("DC: failed to create MPC 3dlut!\n");
354 pool->mpc_shaper[i] = dc_create_transfer_func();
355 if (pool->mpc_shaper[i] == NULL)
356 DC_ERR("DC: failed to create MPC shaper!\n");
357 }
358 #endif
359 dc->caps.dynamic_audio = false;
360 if (pool->audio_count < pool->stream_enc_count) {
361 dc->caps.dynamic_audio = true;
362 }
363 for (i = 0; i < num_virtual_links; i++) {
364 pool->stream_enc[pool->stream_enc_count] =
365 virtual_stream_encoder_create(
366 ctx, ctx->dc_bios);
367 if (pool->stream_enc[pool->stream_enc_count] == NULL) {
368 DC_ERR("DC: failed to create stream_encoder!\n");
369 return false;
370 }
371 pool->stream_enc_count++;
372 }
373
374 dc->hwseq = create_funcs->create_hwseq(ctx);
375
376 return true;
377 }
find_matching_clock_source(const struct resource_pool * pool,struct clock_source * clock_source)378 static int find_matching_clock_source(
379 const struct resource_pool *pool,
380 struct clock_source *clock_source)
381 {
382
383 int i;
384
385 for (i = 0; i < pool->clk_src_count; i++) {
386 if (pool->clock_sources[i] == clock_source)
387 return i;
388 }
389 return -1;
390 }
391
resource_unreference_clock_source(struct resource_context * res_ctx,const struct resource_pool * pool,struct clock_source * clock_source)392 void resource_unreference_clock_source(
393 struct resource_context *res_ctx,
394 const struct resource_pool *pool,
395 struct clock_source *clock_source)
396 {
397 int i = find_matching_clock_source(pool, clock_source);
398
399 if (i > -1)
400 res_ctx->clock_source_ref_count[i]--;
401
402 if (pool->dp_clock_source == clock_source)
403 res_ctx->dp_clock_source_ref_count--;
404 }
405
resource_reference_clock_source(struct resource_context * res_ctx,const struct resource_pool * pool,struct clock_source * clock_source)406 void resource_reference_clock_source(
407 struct resource_context *res_ctx,
408 const struct resource_pool *pool,
409 struct clock_source *clock_source)
410 {
411 int i = find_matching_clock_source(pool, clock_source);
412
413 if (i > -1)
414 res_ctx->clock_source_ref_count[i]++;
415
416 if (pool->dp_clock_source == clock_source)
417 res_ctx->dp_clock_source_ref_count++;
418 }
419
resource_get_clock_source_reference(struct resource_context * res_ctx,const struct resource_pool * pool,struct clock_source * clock_source)420 int resource_get_clock_source_reference(
421 struct resource_context *res_ctx,
422 const struct resource_pool *pool,
423 struct clock_source *clock_source)
424 {
425 int i = find_matching_clock_source(pool, clock_source);
426
427 if (i > -1)
428 return res_ctx->clock_source_ref_count[i];
429
430 if (pool->dp_clock_source == clock_source)
431 return res_ctx->dp_clock_source_ref_count;
432
433 return -1;
434 }
435
resource_are_vblanks_synchronizable(struct dc_stream_state * stream1,struct dc_stream_state * stream2)436 bool resource_are_vblanks_synchronizable(
437 struct dc_stream_state *stream1,
438 struct dc_stream_state *stream2)
439 {
440 uint32_t base60_refresh_rates[] = {10, 20, 5};
441 uint8_t i;
442 uint8_t rr_count = ARRAY_SIZE(base60_refresh_rates);
443 uint64_t frame_time_diff;
444
445 if (stream1->ctx->dc->config.vblank_alignment_dto_params &&
446 stream1->ctx->dc->config.vblank_alignment_max_frame_time_diff > 0 &&
447 dc_is_dp_signal(stream1->signal) &&
448 dc_is_dp_signal(stream2->signal) &&
449 false == stream1->has_non_synchronizable_pclk &&
450 false == stream2->has_non_synchronizable_pclk &&
451 stream1->timing.flags.VBLANK_SYNCHRONIZABLE &&
452 stream2->timing.flags.VBLANK_SYNCHRONIZABLE) {
453 /* disable refresh rates higher than 60Hz for now */
454 if (stream1->timing.pix_clk_100hz*100/stream1->timing.h_total/
455 stream1->timing.v_total > 60)
456 return false;
457 if (stream2->timing.pix_clk_100hz*100/stream2->timing.h_total/
458 stream2->timing.v_total > 60)
459 return false;
460 frame_time_diff = (uint64_t)10000 *
461 stream1->timing.h_total *
462 stream1->timing.v_total *
463 stream2->timing.pix_clk_100hz;
464 frame_time_diff = div_u64(frame_time_diff, stream1->timing.pix_clk_100hz);
465 frame_time_diff = div_u64(frame_time_diff, stream2->timing.h_total);
466 frame_time_diff = div_u64(frame_time_diff, stream2->timing.v_total);
467 for (i = 0; i < rr_count; i++) {
468 int64_t diff = (int64_t)div_u64(frame_time_diff * base60_refresh_rates[i], 10) - 10000;
469
470 if (diff < 0)
471 diff = -diff;
472 if (diff < stream1->ctx->dc->config.vblank_alignment_max_frame_time_diff)
473 return true;
474 }
475 }
476 return false;
477 }
478
resource_are_streams_timing_synchronizable(struct dc_stream_state * stream1,struct dc_stream_state * stream2)479 bool resource_are_streams_timing_synchronizable(
480 struct dc_stream_state *stream1,
481 struct dc_stream_state *stream2)
482 {
483 if (stream1->timing.h_total != stream2->timing.h_total)
484 return false;
485
486 if (stream1->timing.v_total != stream2->timing.v_total)
487 return false;
488
489 if (stream1->timing.h_addressable
490 != stream2->timing.h_addressable)
491 return false;
492
493 if (stream1->timing.v_addressable
494 != stream2->timing.v_addressable)
495 return false;
496
497 if (stream1->timing.v_front_porch
498 != stream2->timing.v_front_porch)
499 return false;
500
501 if (stream1->timing.pix_clk_100hz
502 != stream2->timing.pix_clk_100hz)
503 return false;
504
505 if (stream1->clamping.c_depth != stream2->clamping.c_depth)
506 return false;
507
508 if (stream1->phy_pix_clk != stream2->phy_pix_clk
509 && (!dc_is_dp_signal(stream1->signal)
510 || !dc_is_dp_signal(stream2->signal)))
511 return false;
512
513 if (stream1->view_format != stream2->view_format)
514 return false;
515
516 if (stream1->ignore_msa_timing_param || stream2->ignore_msa_timing_param)
517 return false;
518
519 return true;
520 }
is_dp_and_hdmi_sharable(struct dc_stream_state * stream1,struct dc_stream_state * stream2)521 static bool is_dp_and_hdmi_sharable(
522 struct dc_stream_state *stream1,
523 struct dc_stream_state *stream2)
524 {
525 if (stream1->ctx->dc->caps.disable_dp_clk_share)
526 return false;
527
528 if (stream1->clamping.c_depth != COLOR_DEPTH_888 ||
529 stream2->clamping.c_depth != COLOR_DEPTH_888)
530 return false;
531
532 return true;
533
534 }
535
is_sharable_clk_src(const struct pipe_ctx * pipe_with_clk_src,const struct pipe_ctx * pipe)536 static bool is_sharable_clk_src(
537 const struct pipe_ctx *pipe_with_clk_src,
538 const struct pipe_ctx *pipe)
539 {
540 if (pipe_with_clk_src->clock_source == NULL)
541 return false;
542
543 if (pipe_with_clk_src->stream->signal == SIGNAL_TYPE_VIRTUAL)
544 return false;
545
546 if (dc_is_dp_signal(pipe_with_clk_src->stream->signal) ||
547 (dc_is_dp_signal(pipe->stream->signal) &&
548 !is_dp_and_hdmi_sharable(pipe_with_clk_src->stream,
549 pipe->stream)))
550 return false;
551
552 if (dc_is_hdmi_signal(pipe_with_clk_src->stream->signal)
553 && dc_is_dual_link_signal(pipe->stream->signal))
554 return false;
555
556 if (dc_is_hdmi_signal(pipe->stream->signal)
557 && dc_is_dual_link_signal(pipe_with_clk_src->stream->signal))
558 return false;
559
560 if (!resource_are_streams_timing_synchronizable(
561 pipe_with_clk_src->stream, pipe->stream))
562 return false;
563
564 return true;
565 }
566
resource_find_used_clk_src_for_sharing(struct resource_context * res_ctx,struct pipe_ctx * pipe_ctx)567 struct clock_source *resource_find_used_clk_src_for_sharing(
568 struct resource_context *res_ctx,
569 struct pipe_ctx *pipe_ctx)
570 {
571 int i;
572
573 for (i = 0; i < MAX_PIPES; i++) {
574 if (is_sharable_clk_src(&res_ctx->pipe_ctx[i], pipe_ctx))
575 return res_ctx->pipe_ctx[i].clock_source;
576 }
577
578 return NULL;
579 }
580
convert_pixel_format_to_dalsurface(enum surface_pixel_format surface_pixel_format)581 static enum pixel_format convert_pixel_format_to_dalsurface(
582 enum surface_pixel_format surface_pixel_format)
583 {
584 enum pixel_format dal_pixel_format = PIXEL_FORMAT_UNKNOWN;
585
586 switch (surface_pixel_format) {
587 case SURFACE_PIXEL_FORMAT_GRPH_PALETA_256_COLORS:
588 dal_pixel_format = PIXEL_FORMAT_INDEX8;
589 break;
590 case SURFACE_PIXEL_FORMAT_GRPH_ARGB1555:
591 dal_pixel_format = PIXEL_FORMAT_RGB565;
592 break;
593 case SURFACE_PIXEL_FORMAT_GRPH_RGB565:
594 dal_pixel_format = PIXEL_FORMAT_RGB565;
595 break;
596 case SURFACE_PIXEL_FORMAT_GRPH_ARGB8888:
597 dal_pixel_format = PIXEL_FORMAT_ARGB8888;
598 break;
599 case SURFACE_PIXEL_FORMAT_GRPH_ABGR8888:
600 dal_pixel_format = PIXEL_FORMAT_ARGB8888;
601 break;
602 case SURFACE_PIXEL_FORMAT_GRPH_ARGB2101010:
603 dal_pixel_format = PIXEL_FORMAT_ARGB2101010;
604 break;
605 case SURFACE_PIXEL_FORMAT_GRPH_ABGR2101010:
606 dal_pixel_format = PIXEL_FORMAT_ARGB2101010;
607 break;
608 case SURFACE_PIXEL_FORMAT_GRPH_ABGR2101010_XR_BIAS:
609 dal_pixel_format = PIXEL_FORMAT_ARGB2101010_XRBIAS;
610 break;
611 case SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616F:
612 case SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616F:
613 dal_pixel_format = PIXEL_FORMAT_FP16;
614 break;
615 case SURFACE_PIXEL_FORMAT_VIDEO_420_YCbCr:
616 case SURFACE_PIXEL_FORMAT_VIDEO_420_YCrCb:
617 dal_pixel_format = PIXEL_FORMAT_420BPP8;
618 break;
619 case SURFACE_PIXEL_FORMAT_VIDEO_420_10bpc_YCbCr:
620 case SURFACE_PIXEL_FORMAT_VIDEO_420_10bpc_YCrCb:
621 dal_pixel_format = PIXEL_FORMAT_420BPP10;
622 break;
623 case SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616:
624 case SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616:
625 default:
626 dal_pixel_format = PIXEL_FORMAT_UNKNOWN;
627 break;
628 }
629 return dal_pixel_format;
630 }
631
get_vp_scan_direction(enum dc_rotation_angle rotation,bool horizontal_mirror,bool * orthogonal_rotation,bool * flip_vert_scan_dir,bool * flip_horz_scan_dir)632 static inline void get_vp_scan_direction(
633 enum dc_rotation_angle rotation,
634 bool horizontal_mirror,
635 bool *orthogonal_rotation,
636 bool *flip_vert_scan_dir,
637 bool *flip_horz_scan_dir)
638 {
639 *orthogonal_rotation = false;
640 *flip_vert_scan_dir = false;
641 *flip_horz_scan_dir = false;
642 if (rotation == ROTATION_ANGLE_180) {
643 *flip_vert_scan_dir = true;
644 *flip_horz_scan_dir = true;
645 } else if (rotation == ROTATION_ANGLE_90) {
646 *orthogonal_rotation = true;
647 *flip_horz_scan_dir = true;
648 } else if (rotation == ROTATION_ANGLE_270) {
649 *orthogonal_rotation = true;
650 *flip_vert_scan_dir = true;
651 }
652
653 if (horizontal_mirror)
654 *flip_horz_scan_dir = !*flip_horz_scan_dir;
655 }
656
get_num_mpc_splits(struct pipe_ctx * pipe)657 int get_num_mpc_splits(struct pipe_ctx *pipe)
658 {
659 int mpc_split_count = 0;
660 struct pipe_ctx *other_pipe = pipe->bottom_pipe;
661
662 while (other_pipe && other_pipe->plane_state == pipe->plane_state) {
663 mpc_split_count++;
664 other_pipe = other_pipe->bottom_pipe;
665 }
666 other_pipe = pipe->top_pipe;
667 while (other_pipe && other_pipe->plane_state == pipe->plane_state) {
668 mpc_split_count++;
669 other_pipe = other_pipe->top_pipe;
670 }
671
672 return mpc_split_count;
673 }
674
get_num_odm_splits(struct pipe_ctx * pipe)675 int get_num_odm_splits(struct pipe_ctx *pipe)
676 {
677 int odm_split_count = 0;
678 struct pipe_ctx *next_pipe = pipe->next_odm_pipe;
679 while (next_pipe) {
680 odm_split_count++;
681 next_pipe = next_pipe->next_odm_pipe;
682 }
683 pipe = pipe->prev_odm_pipe;
684 while (pipe) {
685 odm_split_count++;
686 pipe = pipe->prev_odm_pipe;
687 }
688 return odm_split_count;
689 }
690
calculate_split_count_and_index(struct pipe_ctx * pipe_ctx,int * split_count,int * split_idx)691 static void calculate_split_count_and_index(struct pipe_ctx *pipe_ctx, int *split_count, int *split_idx)
692 {
693 *split_count = get_num_odm_splits(pipe_ctx);
694 *split_idx = 0;
695 if (*split_count == 0) {
696 /*Check for mpc split*/
697 struct pipe_ctx *split_pipe = pipe_ctx->top_pipe;
698
699 *split_count = get_num_mpc_splits(pipe_ctx);
700 while (split_pipe && split_pipe->plane_state == pipe_ctx->plane_state) {
701 (*split_idx)++;
702 split_pipe = split_pipe->top_pipe;
703 }
704 } else {
705 /*Get odm split index*/
706 struct pipe_ctx *split_pipe = pipe_ctx->prev_odm_pipe;
707
708 while (split_pipe) {
709 (*split_idx)++;
710 split_pipe = split_pipe->prev_odm_pipe;
711 }
712 }
713 }
714
715 /*
716 * This is a preliminary vp size calculation to allow us to check taps support.
717 * The result is completely overridden afterwards.
718 */
calculate_viewport_size(struct pipe_ctx * pipe_ctx)719 static void calculate_viewport_size(struct pipe_ctx *pipe_ctx)
720 {
721 struct scaler_data *data = &pipe_ctx->plane_res.scl_data;
722
723 data->viewport.width = dc_fixpt_ceil(dc_fixpt_mul_int(data->ratios.horz, data->recout.width));
724 data->viewport.height = dc_fixpt_ceil(dc_fixpt_mul_int(data->ratios.vert, data->recout.height));
725 data->viewport_c.width = dc_fixpt_ceil(dc_fixpt_mul_int(data->ratios.horz_c, data->recout.width));
726 data->viewport_c.height = dc_fixpt_ceil(dc_fixpt_mul_int(data->ratios.vert_c, data->recout.height));
727 if (pipe_ctx->plane_state->rotation == ROTATION_ANGLE_90 ||
728 pipe_ctx->plane_state->rotation == ROTATION_ANGLE_270) {
729 swap(data->viewport.width, data->viewport.height);
730 swap(data->viewport_c.width, data->viewport_c.height);
731 }
732 }
733
calculate_recout(struct pipe_ctx * pipe_ctx)734 static void calculate_recout(struct pipe_ctx *pipe_ctx)
735 {
736 const struct dc_plane_state *plane_state = pipe_ctx->plane_state;
737 const struct dc_stream_state *stream = pipe_ctx->stream;
738 struct scaler_data *data = &pipe_ctx->plane_res.scl_data;
739 struct rect surf_clip = plane_state->clip_rect;
740 bool split_tb = stream->view_format == VIEW_3D_FORMAT_TOP_AND_BOTTOM;
741 int split_count, split_idx;
742
743 calculate_split_count_and_index(pipe_ctx, &split_count, &split_idx);
744 if (stream->view_format == VIEW_3D_FORMAT_SIDE_BY_SIDE)
745 split_idx = 0;
746
747 /*
748 * Only the leftmost ODM pipe should be offset by a nonzero distance
749 */
750 if (!pipe_ctx->prev_odm_pipe || split_idx == split_count) {
751 data->recout.x = stream->dst.x;
752 if (stream->src.x < surf_clip.x)
753 data->recout.x += (surf_clip.x - stream->src.x) * stream->dst.width
754 / stream->src.width;
755 } else
756 data->recout.x = 0;
757
758 if (stream->src.x > surf_clip.x)
759 surf_clip.width -= stream->src.x - surf_clip.x;
760 data->recout.width = surf_clip.width * stream->dst.width / stream->src.width;
761 if (data->recout.width + data->recout.x > stream->dst.x + stream->dst.width)
762 data->recout.width = stream->dst.x + stream->dst.width - data->recout.x;
763
764 data->recout.y = stream->dst.y;
765 if (stream->src.y < surf_clip.y)
766 data->recout.y += (surf_clip.y - stream->src.y) * stream->dst.height
767 / stream->src.height;
768 else if (stream->src.y > surf_clip.y)
769 surf_clip.height -= stream->src.y - surf_clip.y;
770
771 data->recout.height = surf_clip.height * stream->dst.height / stream->src.height;
772 if (data->recout.height + data->recout.y > stream->dst.y + stream->dst.height)
773 data->recout.height = stream->dst.y + stream->dst.height - data->recout.y;
774
775 /* Handle h & v split */
776 if (split_tb) {
777 ASSERT(data->recout.height % 2 == 0);
778 data->recout.height /= 2;
779 } else if (split_count) {
780 if (!pipe_ctx->next_odm_pipe && !pipe_ctx->prev_odm_pipe) {
781 /* extra pixels in the division remainder need to go to pipes after
782 * the extra pixel index minus one(epimo) defined here as:
783 */
784 int epimo = split_count - data->recout.width % (split_count + 1);
785
786 data->recout.x += (data->recout.width / (split_count + 1)) * split_idx;
787 if (split_idx > epimo)
788 data->recout.x += split_idx - epimo - 1;
789 ASSERT(stream->view_format != VIEW_3D_FORMAT_SIDE_BY_SIDE || data->recout.width % 2 == 0);
790 data->recout.width = data->recout.width / (split_count + 1) + (split_idx > epimo ? 1 : 0);
791 } else {
792 /* odm */
793 if (split_idx == split_count) {
794 /* rightmost pipe is the remainder recout */
795 data->recout.width -= data->h_active * split_count - data->recout.x;
796
797 /* ODM combine cases with MPO we can get negative widths */
798 if (data->recout.width < 0)
799 data->recout.width = 0;
800
801 data->recout.x = 0;
802 } else
803 data->recout.width = data->h_active - data->recout.x;
804 }
805 }
806 }
807
calculate_scaling_ratios(struct pipe_ctx * pipe_ctx)808 static void calculate_scaling_ratios(struct pipe_ctx *pipe_ctx)
809 {
810 const struct dc_plane_state *plane_state = pipe_ctx->plane_state;
811 const struct dc_stream_state *stream = pipe_ctx->stream;
812 struct rect surf_src = plane_state->src_rect;
813 const int in_w = stream->src.width;
814 const int in_h = stream->src.height;
815 const int out_w = stream->dst.width;
816 const int out_h = stream->dst.height;
817
818 /*Swap surf_src height and width since scaling ratios are in recout rotation*/
819 if (pipe_ctx->plane_state->rotation == ROTATION_ANGLE_90 ||
820 pipe_ctx->plane_state->rotation == ROTATION_ANGLE_270)
821 swap(surf_src.height, surf_src.width);
822
823 pipe_ctx->plane_res.scl_data.ratios.horz = dc_fixpt_from_fraction(
824 surf_src.width,
825 plane_state->dst_rect.width);
826 pipe_ctx->plane_res.scl_data.ratios.vert = dc_fixpt_from_fraction(
827 surf_src.height,
828 plane_state->dst_rect.height);
829
830 if (stream->view_format == VIEW_3D_FORMAT_SIDE_BY_SIDE)
831 pipe_ctx->plane_res.scl_data.ratios.horz.value *= 2;
832 else if (stream->view_format == VIEW_3D_FORMAT_TOP_AND_BOTTOM)
833 pipe_ctx->plane_res.scl_data.ratios.vert.value *= 2;
834
835 pipe_ctx->plane_res.scl_data.ratios.vert.value = div64_s64(
836 pipe_ctx->plane_res.scl_data.ratios.vert.value * in_h, out_h);
837 pipe_ctx->plane_res.scl_data.ratios.horz.value = div64_s64(
838 pipe_ctx->plane_res.scl_data.ratios.horz.value * in_w, out_w);
839
840 pipe_ctx->plane_res.scl_data.ratios.horz_c = pipe_ctx->plane_res.scl_data.ratios.horz;
841 pipe_ctx->plane_res.scl_data.ratios.vert_c = pipe_ctx->plane_res.scl_data.ratios.vert;
842
843 if (pipe_ctx->plane_res.scl_data.format == PIXEL_FORMAT_420BPP8
844 || pipe_ctx->plane_res.scl_data.format == PIXEL_FORMAT_420BPP10) {
845 pipe_ctx->plane_res.scl_data.ratios.horz_c.value /= 2;
846 pipe_ctx->plane_res.scl_data.ratios.vert_c.value /= 2;
847 }
848 pipe_ctx->plane_res.scl_data.ratios.horz = dc_fixpt_truncate(
849 pipe_ctx->plane_res.scl_data.ratios.horz, 19);
850 pipe_ctx->plane_res.scl_data.ratios.vert = dc_fixpt_truncate(
851 pipe_ctx->plane_res.scl_data.ratios.vert, 19);
852 pipe_ctx->plane_res.scl_data.ratios.horz_c = dc_fixpt_truncate(
853 pipe_ctx->plane_res.scl_data.ratios.horz_c, 19);
854 pipe_ctx->plane_res.scl_data.ratios.vert_c = dc_fixpt_truncate(
855 pipe_ctx->plane_res.scl_data.ratios.vert_c, 19);
856 }
857
858
859 /*
860 * We completely calculate vp offset, size and inits here based entirely on scaling
861 * ratios and recout for pixel perfect pipe combine.
862 */
calculate_init_and_vp(bool flip_scan_dir,int recout_offset_within_recout_full,int recout_size,int src_size,int taps,struct fixed31_32 ratio,struct fixed31_32 * init,int * vp_offset,int * vp_size)863 static void calculate_init_and_vp(
864 bool flip_scan_dir,
865 int recout_offset_within_recout_full,
866 int recout_size,
867 int src_size,
868 int taps,
869 struct fixed31_32 ratio,
870 struct fixed31_32 *init,
871 int *vp_offset,
872 int *vp_size)
873 {
874 struct fixed31_32 temp;
875 int int_part;
876
877 /*
878 * First of the taps starts sampling pixel number <init_int_part> corresponding to recout
879 * pixel 1. Next recout pixel samples int part of <init + scaling ratio> and so on.
880 * All following calculations are based on this logic.
881 *
882 * Init calculated according to formula:
883 * init = (scaling_ratio + number_of_taps + 1) / 2
884 * init_bot = init + scaling_ratio
885 * to get pixel perfect combine add the fraction from calculating vp offset
886 */
887 temp = dc_fixpt_mul_int(ratio, recout_offset_within_recout_full);
888 *vp_offset = dc_fixpt_floor(temp);
889 temp.value &= 0xffffffff;
890 *init = dc_fixpt_truncate(dc_fixpt_add(dc_fixpt_div_int(
891 dc_fixpt_add_int(ratio, taps + 1), 2), temp), 19);
892 /*
893 * If viewport has non 0 offset and there are more taps than covered by init then
894 * we should decrease the offset and increase init so we are never sampling
895 * outside of viewport.
896 */
897 int_part = dc_fixpt_floor(*init);
898 if (int_part < taps) {
899 int_part = taps - int_part;
900 if (int_part > *vp_offset)
901 int_part = *vp_offset;
902 *vp_offset -= int_part;
903 *init = dc_fixpt_add_int(*init, int_part);
904 }
905 /*
906 * If taps are sampling outside of viewport at end of recout and there are more pixels
907 * available in the surface we should increase the viewport size, regardless set vp to
908 * only what is used.
909 */
910 temp = dc_fixpt_add(*init, dc_fixpt_mul_int(ratio, recout_size - 1));
911 *vp_size = dc_fixpt_floor(temp);
912 if (*vp_size + *vp_offset > src_size)
913 *vp_size = src_size - *vp_offset;
914
915 /* We did all the math assuming we are scanning same direction as display does,
916 * however mirror/rotation changes how vp scans vs how it is offset. If scan direction
917 * is flipped we simply need to calculate offset from the other side of plane.
918 * Note that outside of viewport all scaling hardware works in recout space.
919 */
920 if (flip_scan_dir)
921 *vp_offset = src_size - *vp_offset - *vp_size;
922 }
923
calculate_inits_and_viewports(struct pipe_ctx * pipe_ctx)924 static void calculate_inits_and_viewports(struct pipe_ctx *pipe_ctx)
925 {
926 const struct dc_plane_state *plane_state = pipe_ctx->plane_state;
927 const struct dc_stream_state *stream = pipe_ctx->stream;
928 struct scaler_data *data = &pipe_ctx->plane_res.scl_data;
929 struct rect src = plane_state->src_rect;
930 int vpc_div = (data->format == PIXEL_FORMAT_420BPP8
931 || data->format == PIXEL_FORMAT_420BPP10) ? 2 : 1;
932 int split_count, split_idx, ro_lb, ro_tb, recout_full_x, recout_full_y;
933 bool orthogonal_rotation, flip_vert_scan_dir, flip_horz_scan_dir;
934
935 calculate_split_count_and_index(pipe_ctx, &split_count, &split_idx);
936 /*
937 * recout full is what the recout would have been if we didnt clip
938 * the source plane at all. We only care about left(ro_lb) and top(ro_tb)
939 * offsets of recout within recout full because those are the directions
940 * we scan from and therefore the only ones that affect inits.
941 */
942 recout_full_x = stream->dst.x + (plane_state->dst_rect.x - stream->src.x)
943 * stream->dst.width / stream->src.width;
944 recout_full_y = stream->dst.y + (plane_state->dst_rect.y - stream->src.y)
945 * stream->dst.height / stream->src.height;
946 if (pipe_ctx->prev_odm_pipe && split_idx)
947 ro_lb = data->h_active * split_idx - recout_full_x;
948 else
949 ro_lb = data->recout.x - recout_full_x;
950 ro_tb = data->recout.y - recout_full_y;
951 ASSERT(ro_lb >= 0 && ro_tb >= 0);
952
953 /*
954 * Work in recout rotation since that requires less transformations
955 */
956 get_vp_scan_direction(
957 plane_state->rotation,
958 plane_state->horizontal_mirror,
959 &orthogonal_rotation,
960 &flip_vert_scan_dir,
961 &flip_horz_scan_dir);
962
963 if (orthogonal_rotation) {
964 swap(src.width, src.height);
965 swap(flip_vert_scan_dir, flip_horz_scan_dir);
966 }
967
968 calculate_init_and_vp(
969 flip_horz_scan_dir,
970 ro_lb,
971 data->recout.width,
972 src.width,
973 data->taps.h_taps,
974 data->ratios.horz,
975 &data->inits.h,
976 &data->viewport.x,
977 &data->viewport.width);
978 calculate_init_and_vp(
979 flip_horz_scan_dir,
980 ro_lb,
981 data->recout.width,
982 src.width / vpc_div,
983 data->taps.h_taps_c,
984 data->ratios.horz_c,
985 &data->inits.h_c,
986 &data->viewport_c.x,
987 &data->viewport_c.width);
988 calculate_init_and_vp(
989 flip_vert_scan_dir,
990 ro_tb,
991 data->recout.height,
992 src.height,
993 data->taps.v_taps,
994 data->ratios.vert,
995 &data->inits.v,
996 &data->viewport.y,
997 &data->viewport.height);
998 calculate_init_and_vp(
999 flip_vert_scan_dir,
1000 ro_tb,
1001 data->recout.height,
1002 src.height / vpc_div,
1003 data->taps.v_taps_c,
1004 data->ratios.vert_c,
1005 &data->inits.v_c,
1006 &data->viewport_c.y,
1007 &data->viewport_c.height);
1008 if (orthogonal_rotation) {
1009 swap(data->viewport.x, data->viewport.y);
1010 swap(data->viewport.width, data->viewport.height);
1011 swap(data->viewport_c.x, data->viewport_c.y);
1012 swap(data->viewport_c.width, data->viewport_c.height);
1013 }
1014 data->viewport.x += src.x;
1015 data->viewport.y += src.y;
1016 ASSERT(src.x % vpc_div == 0 && src.y % vpc_div == 0);
1017 data->viewport_c.x += src.x / vpc_div;
1018 data->viewport_c.y += src.y / vpc_div;
1019 }
1020
resource_build_scaling_params(struct pipe_ctx * pipe_ctx)1021 bool resource_build_scaling_params(struct pipe_ctx *pipe_ctx)
1022 {
1023 const struct dc_plane_state *plane_state = pipe_ctx->plane_state;
1024 struct dc_crtc_timing *timing = &pipe_ctx->stream->timing;
1025 bool res = false;
1026 DC_LOGGER_INIT(pipe_ctx->stream->ctx->logger);
1027
1028 pipe_ctx->plane_res.scl_data.format = convert_pixel_format_to_dalsurface(
1029 pipe_ctx->plane_state->format);
1030
1031 /* Timing borders are part of vactive that we are also supposed to skip in addition
1032 * to any stream dst offset. Since dm logic assumes dst is in addressable
1033 * space we need to add the left and top borders to dst offsets temporarily.
1034 * TODO: fix in DM, stream dst is supposed to be in vactive
1035 */
1036 pipe_ctx->stream->dst.x += timing->h_border_left;
1037 pipe_ctx->stream->dst.y += timing->v_border_top;
1038
1039 /* Calculate H and V active size */
1040 pipe_ctx->plane_res.scl_data.h_active = timing->h_addressable +
1041 timing->h_border_left + timing->h_border_right;
1042 pipe_ctx->plane_res.scl_data.v_active = timing->v_addressable +
1043 timing->v_border_top + timing->v_border_bottom;
1044 if (pipe_ctx->next_odm_pipe || pipe_ctx->prev_odm_pipe)
1045 pipe_ctx->plane_res.scl_data.h_active /= get_num_odm_splits(pipe_ctx) + 1;
1046
1047 /* depends on h_active */
1048 calculate_recout(pipe_ctx);
1049 /* depends on pixel format */
1050 calculate_scaling_ratios(pipe_ctx);
1051 /* depends on scaling ratios and recout, does not calculate offset yet */
1052 calculate_viewport_size(pipe_ctx);
1053
1054 /* Stopgap for validation of ODM + MPO on one side of screen case */
1055 if (pipe_ctx->plane_res.scl_data.viewport.height < 1 ||
1056 pipe_ctx->plane_res.scl_data.viewport.width < 1)
1057 return false;
1058
1059 /*
1060 * LB calculations depend on vp size, h/v_active and scaling ratios
1061 * Setting line buffer pixel depth to 24bpp yields banding
1062 * on certain displays, such as the Sharp 4k. 36bpp is needed
1063 * to support SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616 and
1064 * SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616 with actual > 10 bpc
1065 * precision on DCN display engines, but apparently not for DCE, as
1066 * far as testing on DCE-11.2 and DCE-8 showed. Various DCE parts have
1067 * problems: Carrizo with DCE_VERSION_11_0 does not like 36 bpp lb depth,
1068 * neither do DCE-8 at 4k resolution, or DCE-11.2 (broken identify pixel
1069 * passthrough). Therefore only use 36 bpp on DCN where it is actually needed.
1070 */
1071 if (plane_state->ctx->dce_version > DCE_VERSION_MAX)
1072 pipe_ctx->plane_res.scl_data.lb_params.depth = LB_PIXEL_DEPTH_36BPP;
1073 else
1074 pipe_ctx->plane_res.scl_data.lb_params.depth = LB_PIXEL_DEPTH_30BPP;
1075
1076 pipe_ctx->plane_res.scl_data.lb_params.alpha_en = plane_state->per_pixel_alpha;
1077
1078 if (pipe_ctx->plane_res.xfm != NULL)
1079 res = pipe_ctx->plane_res.xfm->funcs->transform_get_optimal_number_of_taps(
1080 pipe_ctx->plane_res.xfm, &pipe_ctx->plane_res.scl_data, &plane_state->scaling_quality);
1081
1082 if (pipe_ctx->plane_res.dpp != NULL)
1083 res = pipe_ctx->plane_res.dpp->funcs->dpp_get_optimal_number_of_taps(
1084 pipe_ctx->plane_res.dpp, &pipe_ctx->plane_res.scl_data, &plane_state->scaling_quality);
1085
1086
1087 if (!res) {
1088 /* Try 24 bpp linebuffer */
1089 pipe_ctx->plane_res.scl_data.lb_params.depth = LB_PIXEL_DEPTH_24BPP;
1090
1091 if (pipe_ctx->plane_res.xfm != NULL)
1092 res = pipe_ctx->plane_res.xfm->funcs->transform_get_optimal_number_of_taps(
1093 pipe_ctx->plane_res.xfm,
1094 &pipe_ctx->plane_res.scl_data,
1095 &plane_state->scaling_quality);
1096
1097 if (pipe_ctx->plane_res.dpp != NULL)
1098 res = pipe_ctx->plane_res.dpp->funcs->dpp_get_optimal_number_of_taps(
1099 pipe_ctx->plane_res.dpp,
1100 &pipe_ctx->plane_res.scl_data,
1101 &plane_state->scaling_quality);
1102 }
1103
1104 /*
1105 * Depends on recout, scaling ratios, h_active and taps
1106 * May need to re-check lb size after this in some obscure scenario
1107 */
1108 if (res)
1109 calculate_inits_and_viewports(pipe_ctx);
1110
1111 /*
1112 * Handle side by side and top bottom 3d recout offsets after vp calculation
1113 * since 3d is special and needs to calculate vp as if there is no recout offset
1114 * This may break with rotation, good thing we aren't mixing hw rotation and 3d
1115 */
1116 if (pipe_ctx->top_pipe && pipe_ctx->top_pipe->plane_state == plane_state) {
1117 ASSERT(plane_state->rotation == ROTATION_ANGLE_0 ||
1118 (pipe_ctx->stream->view_format != VIEW_3D_FORMAT_TOP_AND_BOTTOM &&
1119 pipe_ctx->stream->view_format != VIEW_3D_FORMAT_SIDE_BY_SIDE));
1120 if (pipe_ctx->stream->view_format == VIEW_3D_FORMAT_TOP_AND_BOTTOM)
1121 pipe_ctx->plane_res.scl_data.recout.y += pipe_ctx->plane_res.scl_data.recout.height;
1122 else if (pipe_ctx->stream->view_format == VIEW_3D_FORMAT_SIDE_BY_SIDE)
1123 pipe_ctx->plane_res.scl_data.recout.x += pipe_ctx->plane_res.scl_data.recout.width;
1124 }
1125
1126 if (pipe_ctx->plane_res.scl_data.viewport.height < MIN_VIEWPORT_SIZE ||
1127 pipe_ctx->plane_res.scl_data.viewport.width < MIN_VIEWPORT_SIZE)
1128 res = false;
1129
1130 DC_LOG_SCALER("%s pipe %d:\nViewport: height:%d width:%d x:%d y:%d Recout: height:%d width:%d x:%d y:%d HACTIVE:%d VACTIVE:%d\n"
1131 "src_rect: height:%d width:%d x:%d y:%d dst_rect: height:%d width:%d x:%d y:%d clip_rect: height:%d width:%d x:%d y:%d\n",
1132 __func__,
1133 pipe_ctx->pipe_idx,
1134 pipe_ctx->plane_res.scl_data.viewport.height,
1135 pipe_ctx->plane_res.scl_data.viewport.width,
1136 pipe_ctx->plane_res.scl_data.viewport.x,
1137 pipe_ctx->plane_res.scl_data.viewport.y,
1138 pipe_ctx->plane_res.scl_data.recout.height,
1139 pipe_ctx->plane_res.scl_data.recout.width,
1140 pipe_ctx->plane_res.scl_data.recout.x,
1141 pipe_ctx->plane_res.scl_data.recout.y,
1142 pipe_ctx->plane_res.scl_data.h_active,
1143 pipe_ctx->plane_res.scl_data.v_active,
1144 plane_state->src_rect.height,
1145 plane_state->src_rect.width,
1146 plane_state->src_rect.x,
1147 plane_state->src_rect.y,
1148 plane_state->dst_rect.height,
1149 plane_state->dst_rect.width,
1150 plane_state->dst_rect.x,
1151 plane_state->dst_rect.y,
1152 plane_state->clip_rect.height,
1153 plane_state->clip_rect.width,
1154 plane_state->clip_rect.x,
1155 plane_state->clip_rect.y);
1156
1157 pipe_ctx->stream->dst.x -= timing->h_border_left;
1158 pipe_ctx->stream->dst.y -= timing->v_border_top;
1159
1160 return res;
1161 }
1162
1163
resource_build_scaling_params_for_context(const struct dc * dc,struct dc_state * context)1164 enum dc_status resource_build_scaling_params_for_context(
1165 const struct dc *dc,
1166 struct dc_state *context)
1167 {
1168 int i;
1169
1170 for (i = 0; i < MAX_PIPES; i++) {
1171 if (context->res_ctx.pipe_ctx[i].plane_state != NULL &&
1172 context->res_ctx.pipe_ctx[i].stream != NULL)
1173 if (!resource_build_scaling_params(&context->res_ctx.pipe_ctx[i]))
1174 return DC_FAIL_SCALING;
1175 }
1176
1177 return DC_OK;
1178 }
1179
find_idle_secondary_pipe(struct resource_context * res_ctx,const struct resource_pool * pool,const struct pipe_ctx * primary_pipe)1180 struct pipe_ctx *find_idle_secondary_pipe(
1181 struct resource_context *res_ctx,
1182 const struct resource_pool *pool,
1183 const struct pipe_ctx *primary_pipe)
1184 {
1185 int i;
1186 struct pipe_ctx *secondary_pipe = NULL;
1187
1188 /*
1189 * We add a preferred pipe mapping to avoid the chance that
1190 * MPCCs already in use will need to be reassigned to other trees.
1191 * For example, if we went with the strict, assign backwards logic:
1192 *
1193 * (State 1)
1194 * Display A on, no surface, top pipe = 0
1195 * Display B on, no surface, top pipe = 1
1196 *
1197 * (State 2)
1198 * Display A on, no surface, top pipe = 0
1199 * Display B on, surface enable, top pipe = 1, bottom pipe = 5
1200 *
1201 * (State 3)
1202 * Display A on, surface enable, top pipe = 0, bottom pipe = 5
1203 * Display B on, surface enable, top pipe = 1, bottom pipe = 4
1204 *
1205 * The state 2->3 transition requires remapping MPCC 5 from display B
1206 * to display A.
1207 *
1208 * However, with the preferred pipe logic, state 2 would look like:
1209 *
1210 * (State 2)
1211 * Display A on, no surface, top pipe = 0
1212 * Display B on, surface enable, top pipe = 1, bottom pipe = 4
1213 *
1214 * This would then cause 2->3 to not require remapping any MPCCs.
1215 */
1216 if (primary_pipe) {
1217 int preferred_pipe_idx = (pool->pipe_count - 1) - primary_pipe->pipe_idx;
1218 if (res_ctx->pipe_ctx[preferred_pipe_idx].stream == NULL) {
1219 secondary_pipe = &res_ctx->pipe_ctx[preferred_pipe_idx];
1220 secondary_pipe->pipe_idx = preferred_pipe_idx;
1221 }
1222 }
1223
1224 /*
1225 * search backwards for the second pipe to keep pipe
1226 * assignment more consistent
1227 */
1228 if (!secondary_pipe)
1229 for (i = pool->pipe_count - 1; i >= 0; i--) {
1230 if (res_ctx->pipe_ctx[i].stream == NULL) {
1231 secondary_pipe = &res_ctx->pipe_ctx[i];
1232 secondary_pipe->pipe_idx = i;
1233 break;
1234 }
1235 }
1236
1237 return secondary_pipe;
1238 }
1239
resource_get_head_pipe_for_stream(struct resource_context * res_ctx,struct dc_stream_state * stream)1240 struct pipe_ctx *resource_get_head_pipe_for_stream(
1241 struct resource_context *res_ctx,
1242 struct dc_stream_state *stream)
1243 {
1244 int i;
1245
1246 for (i = 0; i < MAX_PIPES; i++) {
1247 if (res_ctx->pipe_ctx[i].stream == stream
1248 && !res_ctx->pipe_ctx[i].top_pipe
1249 && !res_ctx->pipe_ctx[i].prev_odm_pipe)
1250 return &res_ctx->pipe_ctx[i];
1251 }
1252 return NULL;
1253 }
1254
resource_get_tail_pipe(struct resource_context * res_ctx,struct pipe_ctx * head_pipe)1255 static struct pipe_ctx *resource_get_tail_pipe(
1256 struct resource_context *res_ctx,
1257 struct pipe_ctx *head_pipe)
1258 {
1259 struct pipe_ctx *tail_pipe;
1260
1261 tail_pipe = head_pipe->bottom_pipe;
1262
1263 while (tail_pipe) {
1264 head_pipe = tail_pipe;
1265 tail_pipe = tail_pipe->bottom_pipe;
1266 }
1267
1268 return head_pipe;
1269 }
1270
1271 /*
1272 * A free_pipe for a stream is defined here as a pipe
1273 * that has no surface attached yet
1274 */
acquire_free_pipe_for_head(struct dc_state * context,const struct resource_pool * pool,struct pipe_ctx * head_pipe)1275 static struct pipe_ctx *acquire_free_pipe_for_head(
1276 struct dc_state *context,
1277 const struct resource_pool *pool,
1278 struct pipe_ctx *head_pipe)
1279 {
1280 int i;
1281 struct resource_context *res_ctx = &context->res_ctx;
1282
1283 if (!head_pipe->plane_state)
1284 return head_pipe;
1285
1286 /* Re-use pipe already acquired for this stream if available*/
1287 for (i = pool->pipe_count - 1; i >= 0; i--) {
1288 if (res_ctx->pipe_ctx[i].stream == head_pipe->stream &&
1289 !res_ctx->pipe_ctx[i].plane_state) {
1290 return &res_ctx->pipe_ctx[i];
1291 }
1292 }
1293
1294 /*
1295 * At this point we have no re-useable pipe for this stream and we need
1296 * to acquire an idle one to satisfy the request
1297 */
1298
1299 if (!pool->funcs->acquire_idle_pipe_for_layer)
1300 return NULL;
1301
1302 return pool->funcs->acquire_idle_pipe_for_layer(context, pool, head_pipe->stream);
1303 }
1304
1305 #if defined(CONFIG_DRM_AMD_DC_DCN)
acquire_first_split_pipe(struct resource_context * res_ctx,const struct resource_pool * pool,struct dc_stream_state * stream)1306 static int acquire_first_split_pipe(
1307 struct resource_context *res_ctx,
1308 const struct resource_pool *pool,
1309 struct dc_stream_state *stream)
1310 {
1311 int i;
1312
1313 for (i = 0; i < pool->pipe_count; i++) {
1314 struct pipe_ctx *split_pipe = &res_ctx->pipe_ctx[i];
1315
1316 if (split_pipe->top_pipe &&
1317 split_pipe->top_pipe->plane_state == split_pipe->plane_state) {
1318 split_pipe->top_pipe->bottom_pipe = split_pipe->bottom_pipe;
1319 if (split_pipe->bottom_pipe)
1320 split_pipe->bottom_pipe->top_pipe = split_pipe->top_pipe;
1321
1322 if (split_pipe->top_pipe->plane_state)
1323 resource_build_scaling_params(split_pipe->top_pipe);
1324
1325 memset(split_pipe, 0, sizeof(*split_pipe));
1326 split_pipe->stream_res.tg = pool->timing_generators[i];
1327 split_pipe->plane_res.hubp = pool->hubps[i];
1328 split_pipe->plane_res.ipp = pool->ipps[i];
1329 split_pipe->plane_res.dpp = pool->dpps[i];
1330 split_pipe->stream_res.opp = pool->opps[i];
1331 split_pipe->plane_res.mpcc_inst = pool->dpps[i]->inst;
1332 split_pipe->pipe_idx = i;
1333
1334 split_pipe->stream = stream;
1335 return i;
1336 }
1337 }
1338 return -1;
1339 }
1340 #endif
1341
dc_add_plane_to_context(const struct dc * dc,struct dc_stream_state * stream,struct dc_plane_state * plane_state,struct dc_state * context)1342 bool dc_add_plane_to_context(
1343 const struct dc *dc,
1344 struct dc_stream_state *stream,
1345 struct dc_plane_state *plane_state,
1346 struct dc_state *context)
1347 {
1348 int i;
1349 struct resource_pool *pool = dc->res_pool;
1350 struct pipe_ctx *head_pipe, *tail_pipe, *free_pipe;
1351 struct dc_stream_status *stream_status = NULL;
1352
1353 for (i = 0; i < context->stream_count; i++)
1354 if (context->streams[i] == stream) {
1355 stream_status = &context->stream_status[i];
1356 break;
1357 }
1358 if (stream_status == NULL) {
1359 dm_error("Existing stream not found; failed to attach surface!\n");
1360 return false;
1361 }
1362
1363
1364 if (stream_status->plane_count == MAX_SURFACE_NUM) {
1365 dm_error("Surface: can not attach plane_state %p! Maximum is: %d\n",
1366 plane_state, MAX_SURFACE_NUM);
1367 return false;
1368 }
1369
1370 head_pipe = resource_get_head_pipe_for_stream(&context->res_ctx, stream);
1371
1372 if (!head_pipe) {
1373 dm_error("Head pipe not found for stream_state %p !\n", stream);
1374 return false;
1375 }
1376
1377 /* retain new surface, but only once per stream */
1378 dc_plane_state_retain(plane_state);
1379
1380 while (head_pipe) {
1381 free_pipe = acquire_free_pipe_for_head(context, pool, head_pipe);
1382
1383 #if defined(CONFIG_DRM_AMD_DC_DCN)
1384 if (!free_pipe) {
1385 int pipe_idx = acquire_first_split_pipe(&context->res_ctx, pool, stream);
1386 if (pipe_idx >= 0)
1387 free_pipe = &context->res_ctx.pipe_ctx[pipe_idx];
1388 }
1389 #endif
1390 if (!free_pipe) {
1391 dc_plane_state_release(plane_state);
1392 return false;
1393 }
1394
1395 free_pipe->plane_state = plane_state;
1396
1397 if (head_pipe != free_pipe) {
1398 tail_pipe = resource_get_tail_pipe(&context->res_ctx, head_pipe);
1399 ASSERT(tail_pipe);
1400 free_pipe->stream_res.tg = tail_pipe->stream_res.tg;
1401 free_pipe->stream_res.abm = tail_pipe->stream_res.abm;
1402 free_pipe->stream_res.opp = tail_pipe->stream_res.opp;
1403 free_pipe->stream_res.stream_enc = tail_pipe->stream_res.stream_enc;
1404 free_pipe->stream_res.audio = tail_pipe->stream_res.audio;
1405 free_pipe->clock_source = tail_pipe->clock_source;
1406 free_pipe->top_pipe = tail_pipe;
1407 tail_pipe->bottom_pipe = free_pipe;
1408 if (!free_pipe->next_odm_pipe && tail_pipe->next_odm_pipe && tail_pipe->next_odm_pipe->bottom_pipe) {
1409 free_pipe->next_odm_pipe = tail_pipe->next_odm_pipe->bottom_pipe;
1410 tail_pipe->next_odm_pipe->bottom_pipe->prev_odm_pipe = free_pipe;
1411 }
1412 if (!free_pipe->prev_odm_pipe && tail_pipe->prev_odm_pipe && tail_pipe->prev_odm_pipe->bottom_pipe) {
1413 free_pipe->prev_odm_pipe = tail_pipe->prev_odm_pipe->bottom_pipe;
1414 tail_pipe->prev_odm_pipe->bottom_pipe->next_odm_pipe = free_pipe;
1415 }
1416 }
1417 head_pipe = head_pipe->next_odm_pipe;
1418 }
1419 /* assign new surfaces*/
1420 stream_status->plane_states[stream_status->plane_count] = plane_state;
1421
1422 stream_status->plane_count++;
1423
1424 return true;
1425 }
1426
dc_remove_plane_from_context(const struct dc * dc,struct dc_stream_state * stream,struct dc_plane_state * plane_state,struct dc_state * context)1427 bool dc_remove_plane_from_context(
1428 const struct dc *dc,
1429 struct dc_stream_state *stream,
1430 struct dc_plane_state *plane_state,
1431 struct dc_state *context)
1432 {
1433 int i;
1434 struct dc_stream_status *stream_status = NULL;
1435 struct resource_pool *pool = dc->res_pool;
1436
1437 if (!plane_state)
1438 return true;
1439
1440 for (i = 0; i < context->stream_count; i++)
1441 if (context->streams[i] == stream) {
1442 stream_status = &context->stream_status[i];
1443 break;
1444 }
1445
1446 if (stream_status == NULL) {
1447 dm_error("Existing stream not found; failed to remove plane.\n");
1448 return false;
1449 }
1450
1451 /* release pipe for plane*/
1452 for (i = pool->pipe_count - 1; i >= 0; i--) {
1453 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
1454
1455 if (pipe_ctx->plane_state == plane_state) {
1456 if (pipe_ctx->top_pipe)
1457 pipe_ctx->top_pipe->bottom_pipe = pipe_ctx->bottom_pipe;
1458
1459 /* Second condition is to avoid setting NULL to top pipe
1460 * of tail pipe making it look like head pipe in subsequent
1461 * deletes
1462 */
1463 if (pipe_ctx->bottom_pipe && pipe_ctx->top_pipe)
1464 pipe_ctx->bottom_pipe->top_pipe = pipe_ctx->top_pipe;
1465
1466 /*
1467 * For head pipe detach surfaces from pipe for tail
1468 * pipe just zero it out
1469 */
1470 if (!pipe_ctx->top_pipe)
1471 pipe_ctx->plane_state = NULL;
1472 else
1473 memset(pipe_ctx, 0, sizeof(*pipe_ctx));
1474 }
1475 }
1476
1477
1478 for (i = 0; i < stream_status->plane_count; i++) {
1479 if (stream_status->plane_states[i] == plane_state) {
1480
1481 dc_plane_state_release(stream_status->plane_states[i]);
1482 break;
1483 }
1484 }
1485
1486 if (i == stream_status->plane_count) {
1487 dm_error("Existing plane_state not found; failed to detach it!\n");
1488 return false;
1489 }
1490
1491 stream_status->plane_count--;
1492
1493 /* Start at the plane we've just released, and move all the planes one index forward to "trim" the array */
1494 for (; i < stream_status->plane_count; i++)
1495 stream_status->plane_states[i] = stream_status->plane_states[i + 1];
1496
1497 stream_status->plane_states[stream_status->plane_count] = NULL;
1498
1499 return true;
1500 }
1501
dc_rem_all_planes_for_stream(const struct dc * dc,struct dc_stream_state * stream,struct dc_state * context)1502 bool dc_rem_all_planes_for_stream(
1503 const struct dc *dc,
1504 struct dc_stream_state *stream,
1505 struct dc_state *context)
1506 {
1507 int i, old_plane_count;
1508 struct dc_stream_status *stream_status = NULL;
1509 struct dc_plane_state *del_planes[MAX_SURFACE_NUM] = { 0 };
1510
1511 for (i = 0; i < context->stream_count; i++)
1512 if (context->streams[i] == stream) {
1513 stream_status = &context->stream_status[i];
1514 break;
1515 }
1516
1517 if (stream_status == NULL) {
1518 dm_error("Existing stream %p not found!\n", stream);
1519 return false;
1520 }
1521
1522 old_plane_count = stream_status->plane_count;
1523
1524 for (i = 0; i < old_plane_count; i++)
1525 del_planes[i] = stream_status->plane_states[i];
1526
1527 for (i = 0; i < old_plane_count; i++)
1528 if (!dc_remove_plane_from_context(dc, stream, del_planes[i], context))
1529 return false;
1530
1531 return true;
1532 }
1533
add_all_planes_for_stream(const struct dc * dc,struct dc_stream_state * stream,const struct dc_validation_set set[],int set_count,struct dc_state * context)1534 static bool add_all_planes_for_stream(
1535 const struct dc *dc,
1536 struct dc_stream_state *stream,
1537 const struct dc_validation_set set[],
1538 int set_count,
1539 struct dc_state *context)
1540 {
1541 int i, j;
1542
1543 for (i = 0; i < set_count; i++)
1544 if (set[i].stream == stream)
1545 break;
1546
1547 if (i == set_count) {
1548 dm_error("Stream %p not found in set!\n", stream);
1549 return false;
1550 }
1551
1552 for (j = 0; j < set[i].plane_count; j++)
1553 if (!dc_add_plane_to_context(dc, stream, set[i].plane_states[j], context))
1554 return false;
1555
1556 return true;
1557 }
1558
dc_add_all_planes_for_stream(const struct dc * dc,struct dc_stream_state * stream,struct dc_plane_state * const * plane_states,int plane_count,struct dc_state * context)1559 bool dc_add_all_planes_for_stream(
1560 const struct dc *dc,
1561 struct dc_stream_state *stream,
1562 struct dc_plane_state * const *plane_states,
1563 int plane_count,
1564 struct dc_state *context)
1565 {
1566 struct dc_validation_set set;
1567 int i;
1568
1569 set.stream = stream;
1570 set.plane_count = plane_count;
1571
1572 for (i = 0; i < plane_count; i++)
1573 set.plane_states[i] = plane_states[i];
1574
1575 return add_all_planes_for_stream(dc, stream, &set, 1, context);
1576 }
1577
is_timing_changed(struct dc_stream_state * cur_stream,struct dc_stream_state * new_stream)1578 static bool is_timing_changed(struct dc_stream_state *cur_stream,
1579 struct dc_stream_state *new_stream)
1580 {
1581 if (cur_stream == NULL)
1582 return true;
1583
1584 /* If output color space is changed, need to reprogram info frames */
1585 if (cur_stream->output_color_space != new_stream->output_color_space)
1586 return true;
1587
1588 return memcmp(
1589 &cur_stream->timing,
1590 &new_stream->timing,
1591 sizeof(struct dc_crtc_timing)) != 0;
1592 }
1593
are_stream_backends_same(struct dc_stream_state * stream_a,struct dc_stream_state * stream_b)1594 static bool are_stream_backends_same(
1595 struct dc_stream_state *stream_a, struct dc_stream_state *stream_b)
1596 {
1597 if (stream_a == stream_b)
1598 return true;
1599
1600 if (stream_a == NULL || stream_b == NULL)
1601 return false;
1602
1603 if (is_timing_changed(stream_a, stream_b))
1604 return false;
1605
1606 if (stream_a->signal != stream_b->signal)
1607 return false;
1608
1609 if (stream_a->dpms_off != stream_b->dpms_off)
1610 return false;
1611
1612 return true;
1613 }
1614
1615 /*
1616 * dc_is_stream_unchanged() - Compare two stream states for equivalence.
1617 *
1618 * Checks if there a difference between the two states
1619 * that would require a mode change.
1620 *
1621 * Does not compare cursor position or attributes.
1622 */
dc_is_stream_unchanged(struct dc_stream_state * old_stream,struct dc_stream_state * stream)1623 bool dc_is_stream_unchanged(
1624 struct dc_stream_state *old_stream, struct dc_stream_state *stream)
1625 {
1626
1627 if (!are_stream_backends_same(old_stream, stream))
1628 return false;
1629
1630 if (old_stream->ignore_msa_timing_param != stream->ignore_msa_timing_param)
1631 return false;
1632
1633 /*compare audio info*/
1634 if (memcmp(&old_stream->audio_info, &stream->audio_info, sizeof(stream->audio_info)) != 0)
1635 return false;
1636
1637 return true;
1638 }
1639
1640 /*
1641 * dc_is_stream_scaling_unchanged() - Compare scaling rectangles of two streams.
1642 */
dc_is_stream_scaling_unchanged(struct dc_stream_state * old_stream,struct dc_stream_state * stream)1643 bool dc_is_stream_scaling_unchanged(
1644 struct dc_stream_state *old_stream, struct dc_stream_state *stream)
1645 {
1646 if (old_stream == stream)
1647 return true;
1648
1649 if (old_stream == NULL || stream == NULL)
1650 return false;
1651
1652 if (memcmp(&old_stream->src,
1653 &stream->src,
1654 sizeof(struct rect)) != 0)
1655 return false;
1656
1657 if (memcmp(&old_stream->dst,
1658 &stream->dst,
1659 sizeof(struct rect)) != 0)
1660 return false;
1661
1662 return true;
1663 }
1664
update_stream_engine_usage(struct resource_context * res_ctx,const struct resource_pool * pool,struct stream_encoder * stream_enc,bool acquired)1665 static void update_stream_engine_usage(
1666 struct resource_context *res_ctx,
1667 const struct resource_pool *pool,
1668 struct stream_encoder *stream_enc,
1669 bool acquired)
1670 {
1671 int i;
1672
1673 for (i = 0; i < pool->stream_enc_count; i++) {
1674 if (pool->stream_enc[i] == stream_enc)
1675 res_ctx->is_stream_enc_acquired[i] = acquired;
1676 }
1677 }
1678
1679 /* TODO: release audio object */
update_audio_usage(struct resource_context * res_ctx,const struct resource_pool * pool,struct audio * audio,bool acquired)1680 void update_audio_usage(
1681 struct resource_context *res_ctx,
1682 const struct resource_pool *pool,
1683 struct audio *audio,
1684 bool acquired)
1685 {
1686 int i;
1687 for (i = 0; i < pool->audio_count; i++) {
1688 if (pool->audios[i] == audio)
1689 res_ctx->is_audio_acquired[i] = acquired;
1690 }
1691 }
1692
acquire_first_free_pipe(struct resource_context * res_ctx,const struct resource_pool * pool,struct dc_stream_state * stream)1693 static int acquire_first_free_pipe(
1694 struct resource_context *res_ctx,
1695 const struct resource_pool *pool,
1696 struct dc_stream_state *stream)
1697 {
1698 int i;
1699
1700 for (i = 0; i < pool->pipe_count; i++) {
1701 if (!res_ctx->pipe_ctx[i].stream) {
1702 struct pipe_ctx *pipe_ctx = &res_ctx->pipe_ctx[i];
1703
1704 pipe_ctx->stream_res.tg = pool->timing_generators[i];
1705 pipe_ctx->plane_res.mi = pool->mis[i];
1706 pipe_ctx->plane_res.hubp = pool->hubps[i];
1707 pipe_ctx->plane_res.ipp = pool->ipps[i];
1708 pipe_ctx->plane_res.xfm = pool->transforms[i];
1709 pipe_ctx->plane_res.dpp = pool->dpps[i];
1710 pipe_ctx->stream_res.opp = pool->opps[i];
1711 if (pool->dpps[i])
1712 pipe_ctx->plane_res.mpcc_inst = pool->dpps[i]->inst;
1713 pipe_ctx->pipe_idx = i;
1714
1715
1716 pipe_ctx->stream = stream;
1717 return i;
1718 }
1719 }
1720 return -1;
1721 }
1722
find_first_free_audio(struct resource_context * res_ctx,const struct resource_pool * pool,enum engine_id id,enum dce_version dc_version)1723 static struct audio *find_first_free_audio(
1724 struct resource_context *res_ctx,
1725 const struct resource_pool *pool,
1726 enum engine_id id,
1727 enum dce_version dc_version)
1728 {
1729 int i, available_audio_count;
1730
1731 available_audio_count = pool->audio_count;
1732
1733 for (i = 0; i < available_audio_count; i++) {
1734 if ((res_ctx->is_audio_acquired[i] == false) && (res_ctx->is_stream_enc_acquired[i] == true)) {
1735 /*we have enough audio endpoint, find the matching inst*/
1736 if (id != i)
1737 continue;
1738 return pool->audios[i];
1739 }
1740 }
1741
1742 /* use engine id to find free audio */
1743 if ((id < available_audio_count) && (res_ctx->is_audio_acquired[id] == false)) {
1744 return pool->audios[id];
1745 }
1746 /*not found the matching one, first come first serve*/
1747 for (i = 0; i < available_audio_count; i++) {
1748 if (res_ctx->is_audio_acquired[i] == false) {
1749 return pool->audios[i];
1750 }
1751 }
1752 return 0;
1753 }
1754
1755 /*
1756 * dc_add_stream_to_ctx() - Add a new dc_stream_state to a dc_state.
1757 */
dc_add_stream_to_ctx(struct dc * dc,struct dc_state * new_ctx,struct dc_stream_state * stream)1758 enum dc_status dc_add_stream_to_ctx(
1759 struct dc *dc,
1760 struct dc_state *new_ctx,
1761 struct dc_stream_state *stream)
1762 {
1763 enum dc_status res;
1764 DC_LOGGER_INIT(dc->ctx->logger);
1765
1766 if (new_ctx->stream_count >= dc->res_pool->timing_generator_count) {
1767 DC_LOG_WARNING("Max streams reached, can't add stream %p !\n", stream);
1768 return DC_ERROR_UNEXPECTED;
1769 }
1770
1771 new_ctx->streams[new_ctx->stream_count] = stream;
1772 dc_stream_retain(stream);
1773 new_ctx->stream_count++;
1774
1775 res = dc->res_pool->funcs->add_stream_to_ctx(dc, new_ctx, stream);
1776 if (res != DC_OK)
1777 DC_LOG_WARNING("Adding stream %p to context failed with err %d!\n", stream, res);
1778
1779 return res;
1780 }
1781
1782 /*
1783 * dc_remove_stream_from_ctx() - Remove a stream from a dc_state.
1784 */
dc_remove_stream_from_ctx(struct dc * dc,struct dc_state * new_ctx,struct dc_stream_state * stream)1785 enum dc_status dc_remove_stream_from_ctx(
1786 struct dc *dc,
1787 struct dc_state *new_ctx,
1788 struct dc_stream_state *stream)
1789 {
1790 int i;
1791 struct dc_context *dc_ctx = dc->ctx;
1792 struct pipe_ctx *del_pipe = resource_get_head_pipe_for_stream(&new_ctx->res_ctx, stream);
1793 struct pipe_ctx *odm_pipe;
1794
1795 if (!del_pipe) {
1796 DC_ERROR("Pipe not found for stream %p !\n", stream);
1797 return DC_ERROR_UNEXPECTED;
1798 }
1799
1800 odm_pipe = del_pipe->next_odm_pipe;
1801
1802 /* Release primary pipe */
1803 ASSERT(del_pipe->stream_res.stream_enc);
1804 update_stream_engine_usage(
1805 &new_ctx->res_ctx,
1806 dc->res_pool,
1807 del_pipe->stream_res.stream_enc,
1808 false);
1809
1810 if (del_pipe->stream_res.audio)
1811 update_audio_usage(
1812 &new_ctx->res_ctx,
1813 dc->res_pool,
1814 del_pipe->stream_res.audio,
1815 false);
1816
1817 resource_unreference_clock_source(&new_ctx->res_ctx,
1818 dc->res_pool,
1819 del_pipe->clock_source);
1820
1821 if (dc->res_pool->funcs->remove_stream_from_ctx)
1822 dc->res_pool->funcs->remove_stream_from_ctx(dc, new_ctx, stream);
1823
1824 while (odm_pipe) {
1825 struct pipe_ctx *next_odm_pipe = odm_pipe->next_odm_pipe;
1826
1827 memset(odm_pipe, 0, sizeof(*odm_pipe));
1828 odm_pipe = next_odm_pipe;
1829 }
1830 memset(del_pipe, 0, sizeof(*del_pipe));
1831
1832 for (i = 0; i < new_ctx->stream_count; i++)
1833 if (new_ctx->streams[i] == stream)
1834 break;
1835
1836 if (new_ctx->streams[i] != stream) {
1837 DC_ERROR("Context doesn't have stream %p !\n", stream);
1838 return DC_ERROR_UNEXPECTED;
1839 }
1840
1841 dc_stream_release(new_ctx->streams[i]);
1842 new_ctx->stream_count--;
1843
1844 /* Trim back arrays */
1845 for (; i < new_ctx->stream_count; i++) {
1846 new_ctx->streams[i] = new_ctx->streams[i + 1];
1847 new_ctx->stream_status[i] = new_ctx->stream_status[i + 1];
1848 }
1849
1850 new_ctx->streams[new_ctx->stream_count] = NULL;
1851 memset(
1852 &new_ctx->stream_status[new_ctx->stream_count],
1853 0,
1854 sizeof(new_ctx->stream_status[0]));
1855
1856 return DC_OK;
1857 }
1858
find_pll_sharable_stream(struct dc_stream_state * stream_needs_pll,struct dc_state * context)1859 static struct dc_stream_state *find_pll_sharable_stream(
1860 struct dc_stream_state *stream_needs_pll,
1861 struct dc_state *context)
1862 {
1863 int i;
1864
1865 for (i = 0; i < context->stream_count; i++) {
1866 struct dc_stream_state *stream_has_pll = context->streams[i];
1867
1868 /* We are looking for non dp, non virtual stream */
1869 if (resource_are_streams_timing_synchronizable(
1870 stream_needs_pll, stream_has_pll)
1871 && !dc_is_dp_signal(stream_has_pll->signal)
1872 && stream_has_pll->link->connector_signal
1873 != SIGNAL_TYPE_VIRTUAL)
1874 return stream_has_pll;
1875
1876 }
1877
1878 return NULL;
1879 }
1880
get_norm_pix_clk(const struct dc_crtc_timing * timing)1881 static int get_norm_pix_clk(const struct dc_crtc_timing *timing)
1882 {
1883 uint32_t pix_clk = timing->pix_clk_100hz;
1884 uint32_t normalized_pix_clk = pix_clk;
1885
1886 if (timing->pixel_encoding == PIXEL_ENCODING_YCBCR420)
1887 pix_clk /= 2;
1888 if (timing->pixel_encoding != PIXEL_ENCODING_YCBCR422) {
1889 switch (timing->display_color_depth) {
1890 case COLOR_DEPTH_666:
1891 case COLOR_DEPTH_888:
1892 normalized_pix_clk = pix_clk;
1893 break;
1894 case COLOR_DEPTH_101010:
1895 normalized_pix_clk = (pix_clk * 30) / 24;
1896 break;
1897 case COLOR_DEPTH_121212:
1898 normalized_pix_clk = (pix_clk * 36) / 24;
1899 break;
1900 case COLOR_DEPTH_161616:
1901 normalized_pix_clk = (pix_clk * 48) / 24;
1902 break;
1903 default:
1904 ASSERT(0);
1905 break;
1906 }
1907 }
1908 return normalized_pix_clk;
1909 }
1910
calculate_phy_pix_clks(struct dc_stream_state * stream)1911 static void calculate_phy_pix_clks(struct dc_stream_state *stream)
1912 {
1913 /* update actual pixel clock on all streams */
1914 if (dc_is_hdmi_signal(stream->signal))
1915 stream->phy_pix_clk = get_norm_pix_clk(
1916 &stream->timing) / 10;
1917 else
1918 stream->phy_pix_clk =
1919 stream->timing.pix_clk_100hz / 10;
1920
1921 if (stream->timing.timing_3d_format == TIMING_3D_FORMAT_HW_FRAME_PACKING)
1922 stream->phy_pix_clk *= 2;
1923 }
1924
acquire_resource_from_hw_enabled_state(struct resource_context * res_ctx,const struct resource_pool * pool,struct dc_stream_state * stream)1925 static int acquire_resource_from_hw_enabled_state(
1926 struct resource_context *res_ctx,
1927 const struct resource_pool *pool,
1928 struct dc_stream_state *stream)
1929 {
1930 struct dc_link *link = stream->link;
1931 unsigned int i, inst, tg_inst = 0;
1932
1933 /* Check for enabled DIG to identify enabled display */
1934 if (!link->link_enc->funcs->is_dig_enabled(link->link_enc))
1935 return -1;
1936
1937 inst = link->link_enc->funcs->get_dig_frontend(link->link_enc);
1938
1939 if (inst == ENGINE_ID_UNKNOWN)
1940 return -1;
1941
1942 for (i = 0; i < pool->stream_enc_count; i++) {
1943 if (pool->stream_enc[i]->id == inst) {
1944 tg_inst = pool->stream_enc[i]->funcs->dig_source_otg(
1945 pool->stream_enc[i]);
1946 break;
1947 }
1948 }
1949
1950 // tg_inst not found
1951 if (i == pool->stream_enc_count)
1952 return -1;
1953
1954 if (tg_inst >= pool->timing_generator_count)
1955 return -1;
1956
1957 if (!res_ctx->pipe_ctx[tg_inst].stream) {
1958 struct pipe_ctx *pipe_ctx = &res_ctx->pipe_ctx[tg_inst];
1959
1960 pipe_ctx->stream_res.tg = pool->timing_generators[tg_inst];
1961 pipe_ctx->plane_res.mi = pool->mis[tg_inst];
1962 pipe_ctx->plane_res.hubp = pool->hubps[tg_inst];
1963 pipe_ctx->plane_res.ipp = pool->ipps[tg_inst];
1964 pipe_ctx->plane_res.xfm = pool->transforms[tg_inst];
1965 pipe_ctx->plane_res.dpp = pool->dpps[tg_inst];
1966 pipe_ctx->stream_res.opp = pool->opps[tg_inst];
1967
1968 if (pool->dpps[tg_inst]) {
1969 pipe_ctx->plane_res.mpcc_inst = pool->dpps[tg_inst]->inst;
1970
1971 // Read DPP->MPCC->OPP Pipe from HW State
1972 if (pool->mpc->funcs->read_mpcc_state) {
1973 struct mpcc_state s = {0};
1974
1975 pool->mpc->funcs->read_mpcc_state(pool->mpc, pipe_ctx->plane_res.mpcc_inst, &s);
1976
1977 if (s.dpp_id < MAX_MPCC)
1978 pool->mpc->mpcc_array[pipe_ctx->plane_res.mpcc_inst].dpp_id = s.dpp_id;
1979
1980 if (s.bot_mpcc_id < MAX_MPCC)
1981 pool->mpc->mpcc_array[pipe_ctx->plane_res.mpcc_inst].mpcc_bot =
1982 &pool->mpc->mpcc_array[s.bot_mpcc_id];
1983
1984 if (s.opp_id < MAX_OPP)
1985 pipe_ctx->stream_res.opp->mpc_tree_params.opp_id = s.opp_id;
1986 }
1987 }
1988 pipe_ctx->pipe_idx = tg_inst;
1989
1990 pipe_ctx->stream = stream;
1991 return tg_inst;
1992 }
1993
1994 return -1;
1995 }
1996
mark_seamless_boot_stream(const struct dc * dc,struct dc_stream_state * stream)1997 static void mark_seamless_boot_stream(
1998 const struct dc *dc,
1999 struct dc_stream_state *stream)
2000 {
2001 struct dc_bios *dcb = dc->ctx->dc_bios;
2002
2003 /* TODO: Check Linux */
2004 if (dc->config.allow_seamless_boot_optimization &&
2005 !dcb->funcs->is_accelerated_mode(dcb)) {
2006 if (dc_validate_seamless_boot_timing(dc, stream->sink, &stream->timing))
2007 stream->apply_seamless_boot_optimization = true;
2008 }
2009 }
2010
resource_map_pool_resources(const struct dc * dc,struct dc_state * context,struct dc_stream_state * stream)2011 enum dc_status resource_map_pool_resources(
2012 const struct dc *dc,
2013 struct dc_state *context,
2014 struct dc_stream_state *stream)
2015 {
2016 const struct resource_pool *pool = dc->res_pool;
2017 int i;
2018 struct dc_context *dc_ctx = dc->ctx;
2019 struct pipe_ctx *pipe_ctx = NULL;
2020 int pipe_idx = -1;
2021
2022 calculate_phy_pix_clks(stream);
2023
2024 mark_seamless_boot_stream(dc, stream);
2025
2026 if (stream->apply_seamless_boot_optimization) {
2027 pipe_idx = acquire_resource_from_hw_enabled_state(
2028 &context->res_ctx,
2029 pool,
2030 stream);
2031 if (pipe_idx < 0)
2032 /* hw resource was assigned to other stream */
2033 stream->apply_seamless_boot_optimization = false;
2034 }
2035
2036 if (pipe_idx < 0)
2037 /* acquire new resources */
2038 pipe_idx = acquire_first_free_pipe(&context->res_ctx, pool, stream);
2039
2040 #ifdef CONFIG_DRM_AMD_DC_DCN
2041 if (pipe_idx < 0)
2042 pipe_idx = acquire_first_split_pipe(&context->res_ctx, pool, stream);
2043 #endif
2044
2045 if (pipe_idx < 0 || context->res_ctx.pipe_ctx[pipe_idx].stream_res.tg == NULL)
2046 return DC_NO_CONTROLLER_RESOURCE;
2047
2048 pipe_ctx = &context->res_ctx.pipe_ctx[pipe_idx];
2049
2050 pipe_ctx->stream_res.stream_enc =
2051 dc->res_pool->funcs->find_first_free_match_stream_enc_for_link(
2052 &context->res_ctx, pool, stream);
2053
2054 if (!pipe_ctx->stream_res.stream_enc)
2055 return DC_NO_STREAM_ENC_RESOURCE;
2056
2057 update_stream_engine_usage(
2058 &context->res_ctx, pool,
2059 pipe_ctx->stream_res.stream_enc,
2060 true);
2061
2062 /* TODO: Add check if ASIC support and EDID audio */
2063 if (!stream->converter_disable_audio &&
2064 dc_is_audio_capable_signal(pipe_ctx->stream->signal) &&
2065 stream->audio_info.mode_count && stream->audio_info.flags.all) {
2066 pipe_ctx->stream_res.audio = find_first_free_audio(
2067 &context->res_ctx, pool, pipe_ctx->stream_res.stream_enc->id, dc_ctx->dce_version);
2068
2069 /*
2070 * Audio assigned in order first come first get.
2071 * There are asics which has number of audio
2072 * resources less then number of pipes
2073 */
2074 if (pipe_ctx->stream_res.audio)
2075 update_audio_usage(&context->res_ctx, pool,
2076 pipe_ctx->stream_res.audio, true);
2077 }
2078
2079 /* Add ABM to the resource if on EDP */
2080 if (pipe_ctx->stream && dc_is_embedded_signal(pipe_ctx->stream->signal)) {
2081 #if defined(CONFIG_DRM_AMD_DC_DCN)
2082 if (pool->abm)
2083 pipe_ctx->stream_res.abm = pool->abm;
2084 else
2085 pipe_ctx->stream_res.abm = pool->multiple_abms[pipe_ctx->stream_res.tg->inst];
2086 #else
2087 pipe_ctx->stream_res.abm = pool->abm;
2088 #endif
2089 }
2090
2091 for (i = 0; i < context->stream_count; i++)
2092 if (context->streams[i] == stream) {
2093 context->stream_status[i].primary_otg_inst = pipe_ctx->stream_res.tg->inst;
2094 context->stream_status[i].stream_enc_inst = pipe_ctx->stream_res.stream_enc->stream_enc_inst;
2095 context->stream_status[i].audio_inst =
2096 pipe_ctx->stream_res.audio ? pipe_ctx->stream_res.audio->inst : -1;
2097
2098 return DC_OK;
2099 }
2100
2101 DC_ERROR("Stream %p not found in new ctx!\n", stream);
2102 return DC_ERROR_UNEXPECTED;
2103 }
2104
2105 /**
2106 * dc_resource_state_copy_construct_current() - Creates a new dc_state from existing state
2107 * Is a shallow copy. Increments refcounts on existing streams and planes.
2108 * @dc: copy out of dc->current_state
2109 * @dst_ctx: copy into this
2110 */
dc_resource_state_copy_construct_current(const struct dc * dc,struct dc_state * dst_ctx)2111 void dc_resource_state_copy_construct_current(
2112 const struct dc *dc,
2113 struct dc_state *dst_ctx)
2114 {
2115 dc_resource_state_copy_construct(dc->current_state, dst_ctx);
2116 }
2117
2118
dc_resource_state_construct(const struct dc * dc,struct dc_state * dst_ctx)2119 void dc_resource_state_construct(
2120 const struct dc *dc,
2121 struct dc_state *dst_ctx)
2122 {
2123 dst_ctx->clk_mgr = dc->clk_mgr;
2124 }
2125
2126
dc_resource_is_dsc_encoding_supported(const struct dc * dc)2127 bool dc_resource_is_dsc_encoding_supported(const struct dc *dc)
2128 {
2129 return dc->res_pool->res_cap->num_dsc > 0;
2130 }
2131
2132
2133 /**
2134 * dc_validate_global_state() - Determine if HW can support a given state
2135 * Checks HW resource availability and bandwidth requirement.
2136 * @dc: dc struct for this driver
2137 * @new_ctx: state to be validated
2138 * @fast_validate: set to true if only yes/no to support matters
2139 *
2140 * Return: DC_OK if the result can be programmed. Otherwise, an error code.
2141 */
dc_validate_global_state(struct dc * dc,struct dc_state * new_ctx,bool fast_validate)2142 enum dc_status dc_validate_global_state(
2143 struct dc *dc,
2144 struct dc_state *new_ctx,
2145 bool fast_validate)
2146 {
2147 enum dc_status result = DC_ERROR_UNEXPECTED;
2148 int i, j;
2149
2150 if (!new_ctx)
2151 return DC_ERROR_UNEXPECTED;
2152 #if defined(CONFIG_DRM_AMD_DC_DCN)
2153
2154 /*
2155 * Update link encoder to stream assignment.
2156 * TODO: Split out reason allocation from validation.
2157 */
2158 if (dc->res_pool->funcs->link_encs_assign)
2159 dc->res_pool->funcs->link_encs_assign(
2160 dc, new_ctx, new_ctx->streams, new_ctx->stream_count);
2161 #endif
2162
2163 if (dc->res_pool->funcs->validate_global) {
2164 result = dc->res_pool->funcs->validate_global(dc, new_ctx);
2165 if (result != DC_OK)
2166 return result;
2167 }
2168
2169 for (i = 0; i < new_ctx->stream_count; i++) {
2170 struct dc_stream_state *stream = new_ctx->streams[i];
2171
2172 for (j = 0; j < dc->res_pool->pipe_count; j++) {
2173 struct pipe_ctx *pipe_ctx = &new_ctx->res_ctx.pipe_ctx[j];
2174
2175 if (pipe_ctx->stream != stream)
2176 continue;
2177
2178 if (dc->res_pool->funcs->patch_unknown_plane_state &&
2179 pipe_ctx->plane_state &&
2180 pipe_ctx->plane_state->tiling_info.gfx9.swizzle == DC_SW_UNKNOWN) {
2181 result = dc->res_pool->funcs->patch_unknown_plane_state(pipe_ctx->plane_state);
2182 if (result != DC_OK)
2183 return result;
2184 }
2185
2186 /* Switch to dp clock source only if there is
2187 * no non dp stream that shares the same timing
2188 * with the dp stream.
2189 */
2190 if (dc_is_dp_signal(pipe_ctx->stream->signal) &&
2191 !find_pll_sharable_stream(stream, new_ctx)) {
2192
2193 resource_unreference_clock_source(
2194 &new_ctx->res_ctx,
2195 dc->res_pool,
2196 pipe_ctx->clock_source);
2197
2198 pipe_ctx->clock_source = dc->res_pool->dp_clock_source;
2199 resource_reference_clock_source(
2200 &new_ctx->res_ctx,
2201 dc->res_pool,
2202 pipe_ctx->clock_source);
2203 }
2204 }
2205 }
2206
2207 result = resource_build_scaling_params_for_context(dc, new_ctx);
2208
2209 if (result == DC_OK)
2210 if (!dc->res_pool->funcs->validate_bandwidth(dc, new_ctx, fast_validate))
2211 result = DC_FAIL_BANDWIDTH_VALIDATE;
2212
2213 return result;
2214 }
2215
patch_gamut_packet_checksum(struct dc_info_packet * gamut_packet)2216 static void patch_gamut_packet_checksum(
2217 struct dc_info_packet *gamut_packet)
2218 {
2219 /* For gamut we recalc checksum */
2220 if (gamut_packet->valid) {
2221 uint8_t chk_sum = 0;
2222 uint8_t *ptr;
2223 uint8_t i;
2224
2225 /*start of the Gamut data. */
2226 ptr = &gamut_packet->sb[3];
2227
2228 for (i = 0; i <= gamut_packet->sb[1]; i++)
2229 chk_sum += ptr[i];
2230
2231 gamut_packet->sb[2] = (uint8_t) (0x100 - chk_sum);
2232 }
2233 }
2234
set_avi_info_frame(struct dc_info_packet * info_packet,struct pipe_ctx * pipe_ctx)2235 static void set_avi_info_frame(
2236 struct dc_info_packet *info_packet,
2237 struct pipe_ctx *pipe_ctx)
2238 {
2239 struct dc_stream_state *stream = pipe_ctx->stream;
2240 enum dc_color_space color_space = COLOR_SPACE_UNKNOWN;
2241 uint32_t pixel_encoding = 0;
2242 enum scanning_type scan_type = SCANNING_TYPE_NODATA;
2243 enum dc_aspect_ratio aspect = ASPECT_RATIO_NO_DATA;
2244 bool itc = false;
2245 uint8_t itc_value = 0;
2246 uint8_t cn0_cn1 = 0;
2247 unsigned int cn0_cn1_value = 0;
2248 uint8_t *check_sum = NULL;
2249 uint8_t byte_index = 0;
2250 union hdmi_info_packet hdmi_info;
2251 union display_content_support support = {0};
2252 unsigned int vic = pipe_ctx->stream->timing.vic;
2253 enum dc_timing_3d_format format;
2254
2255 memset(&hdmi_info, 0, sizeof(union hdmi_info_packet));
2256
2257 color_space = pipe_ctx->stream->output_color_space;
2258 if (color_space == COLOR_SPACE_UNKNOWN)
2259 color_space = (stream->timing.pixel_encoding == PIXEL_ENCODING_RGB) ?
2260 COLOR_SPACE_SRGB:COLOR_SPACE_YCBCR709;
2261
2262 /* Initialize header */
2263 hdmi_info.bits.header.info_frame_type = HDMI_INFOFRAME_TYPE_AVI;
2264 /* InfoFrameVersion_3 is defined by CEA861F (Section 6.4), but shall
2265 * not be used in HDMI 2.0 (Section 10.1) */
2266 hdmi_info.bits.header.version = 2;
2267 hdmi_info.bits.header.length = HDMI_AVI_INFOFRAME_SIZE;
2268
2269 /*
2270 * IDO-defined (Y2,Y1,Y0 = 1,1,1) shall not be used by devices built
2271 * according to HDMI 2.0 spec (Section 10.1)
2272 */
2273
2274 switch (stream->timing.pixel_encoding) {
2275 case PIXEL_ENCODING_YCBCR422:
2276 pixel_encoding = 1;
2277 break;
2278
2279 case PIXEL_ENCODING_YCBCR444:
2280 pixel_encoding = 2;
2281 break;
2282 case PIXEL_ENCODING_YCBCR420:
2283 pixel_encoding = 3;
2284 break;
2285
2286 case PIXEL_ENCODING_RGB:
2287 default:
2288 pixel_encoding = 0;
2289 }
2290
2291 /* Y0_Y1_Y2 : The pixel encoding */
2292 /* H14b AVI InfoFrame has extension on Y-field from 2 bits to 3 bits */
2293 hdmi_info.bits.Y0_Y1_Y2 = pixel_encoding;
2294
2295 /* A0 = 1 Active Format Information valid */
2296 hdmi_info.bits.A0 = ACTIVE_FORMAT_VALID;
2297
2298 /* B0, B1 = 3; Bar info data is valid */
2299 hdmi_info.bits.B0_B1 = BAR_INFO_BOTH_VALID;
2300
2301 hdmi_info.bits.SC0_SC1 = PICTURE_SCALING_UNIFORM;
2302
2303 /* S0, S1 : Underscan / Overscan */
2304 /* TODO: un-hardcode scan type */
2305 scan_type = SCANNING_TYPE_UNDERSCAN;
2306 hdmi_info.bits.S0_S1 = scan_type;
2307
2308 /* C0, C1 : Colorimetry */
2309 if (color_space == COLOR_SPACE_YCBCR709 ||
2310 color_space == COLOR_SPACE_YCBCR709_LIMITED)
2311 hdmi_info.bits.C0_C1 = COLORIMETRY_ITU709;
2312 else if (color_space == COLOR_SPACE_YCBCR601 ||
2313 color_space == COLOR_SPACE_YCBCR601_LIMITED)
2314 hdmi_info.bits.C0_C1 = COLORIMETRY_ITU601;
2315 else {
2316 hdmi_info.bits.C0_C1 = COLORIMETRY_NO_DATA;
2317 }
2318 if (color_space == COLOR_SPACE_2020_RGB_FULLRANGE ||
2319 color_space == COLOR_SPACE_2020_RGB_LIMITEDRANGE ||
2320 color_space == COLOR_SPACE_2020_YCBCR) {
2321 hdmi_info.bits.EC0_EC2 = COLORIMETRYEX_BT2020RGBYCBCR;
2322 hdmi_info.bits.C0_C1 = COLORIMETRY_EXTENDED;
2323 } else if (color_space == COLOR_SPACE_ADOBERGB) {
2324 hdmi_info.bits.EC0_EC2 = COLORIMETRYEX_ADOBERGB;
2325 hdmi_info.bits.C0_C1 = COLORIMETRY_EXTENDED;
2326 }
2327
2328 /* TODO: un-hardcode aspect ratio */
2329 aspect = stream->timing.aspect_ratio;
2330
2331 switch (aspect) {
2332 case ASPECT_RATIO_4_3:
2333 case ASPECT_RATIO_16_9:
2334 hdmi_info.bits.M0_M1 = aspect;
2335 break;
2336
2337 case ASPECT_RATIO_NO_DATA:
2338 case ASPECT_RATIO_64_27:
2339 case ASPECT_RATIO_256_135:
2340 default:
2341 hdmi_info.bits.M0_M1 = 0;
2342 }
2343
2344 /* Active Format Aspect ratio - same as Picture Aspect Ratio. */
2345 hdmi_info.bits.R0_R3 = ACTIVE_FORMAT_ASPECT_RATIO_SAME_AS_PICTURE;
2346
2347 /* TODO: un-hardcode cn0_cn1 and itc */
2348
2349 cn0_cn1 = 0;
2350 cn0_cn1_value = 0;
2351
2352 itc = true;
2353 itc_value = 1;
2354
2355 support = stream->content_support;
2356
2357 if (itc) {
2358 if (!support.bits.valid_content_type) {
2359 cn0_cn1_value = 0;
2360 } else {
2361 if (cn0_cn1 == DISPLAY_CONTENT_TYPE_GRAPHICS) {
2362 if (support.bits.graphics_content == 1) {
2363 cn0_cn1_value = 0;
2364 }
2365 } else if (cn0_cn1 == DISPLAY_CONTENT_TYPE_PHOTO) {
2366 if (support.bits.photo_content == 1) {
2367 cn0_cn1_value = 1;
2368 } else {
2369 cn0_cn1_value = 0;
2370 itc_value = 0;
2371 }
2372 } else if (cn0_cn1 == DISPLAY_CONTENT_TYPE_CINEMA) {
2373 if (support.bits.cinema_content == 1) {
2374 cn0_cn1_value = 2;
2375 } else {
2376 cn0_cn1_value = 0;
2377 itc_value = 0;
2378 }
2379 } else if (cn0_cn1 == DISPLAY_CONTENT_TYPE_GAME) {
2380 if (support.bits.game_content == 1) {
2381 cn0_cn1_value = 3;
2382 } else {
2383 cn0_cn1_value = 0;
2384 itc_value = 0;
2385 }
2386 }
2387 }
2388 hdmi_info.bits.CN0_CN1 = cn0_cn1_value;
2389 hdmi_info.bits.ITC = itc_value;
2390 }
2391
2392 if (stream->qs_bit == 1) {
2393 if (color_space == COLOR_SPACE_SRGB ||
2394 color_space == COLOR_SPACE_2020_RGB_FULLRANGE)
2395 hdmi_info.bits.Q0_Q1 = RGB_QUANTIZATION_FULL_RANGE;
2396 else if (color_space == COLOR_SPACE_SRGB_LIMITED ||
2397 color_space == COLOR_SPACE_2020_RGB_LIMITEDRANGE)
2398 hdmi_info.bits.Q0_Q1 = RGB_QUANTIZATION_LIMITED_RANGE;
2399 else
2400 hdmi_info.bits.Q0_Q1 = RGB_QUANTIZATION_DEFAULT_RANGE;
2401 } else
2402 hdmi_info.bits.Q0_Q1 = RGB_QUANTIZATION_DEFAULT_RANGE;
2403
2404 /* TODO : We should handle YCC quantization */
2405 /* but we do not have matrix calculation */
2406 if (stream->qy_bit == 1) {
2407 if (color_space == COLOR_SPACE_SRGB ||
2408 color_space == COLOR_SPACE_2020_RGB_FULLRANGE)
2409 hdmi_info.bits.YQ0_YQ1 = YYC_QUANTIZATION_LIMITED_RANGE;
2410 else if (color_space == COLOR_SPACE_SRGB_LIMITED ||
2411 color_space == COLOR_SPACE_2020_RGB_LIMITEDRANGE)
2412 hdmi_info.bits.YQ0_YQ1 = YYC_QUANTIZATION_LIMITED_RANGE;
2413 else
2414 hdmi_info.bits.YQ0_YQ1 = YYC_QUANTIZATION_LIMITED_RANGE;
2415 } else
2416 hdmi_info.bits.YQ0_YQ1 = YYC_QUANTIZATION_LIMITED_RANGE;
2417
2418 ///VIC
2419 format = stream->timing.timing_3d_format;
2420 /*todo, add 3DStereo support*/
2421 if (format != TIMING_3D_FORMAT_NONE) {
2422 // Based on HDMI specs hdmi vic needs to be converted to cea vic when 3D is enabled
2423 switch (pipe_ctx->stream->timing.hdmi_vic) {
2424 case 1:
2425 vic = 95;
2426 break;
2427 case 2:
2428 vic = 94;
2429 break;
2430 case 3:
2431 vic = 93;
2432 break;
2433 case 4:
2434 vic = 98;
2435 break;
2436 default:
2437 break;
2438 }
2439 }
2440 /* If VIC >= 128, the Source shall use AVI InfoFrame Version 3*/
2441 hdmi_info.bits.VIC0_VIC7 = vic;
2442 if (vic >= 128)
2443 hdmi_info.bits.header.version = 3;
2444 /* If (C1, C0)=(1, 1) and (EC2, EC1, EC0)=(1, 1, 1),
2445 * the Source shall use 20 AVI InfoFrame Version 4
2446 */
2447 if (hdmi_info.bits.C0_C1 == COLORIMETRY_EXTENDED &&
2448 hdmi_info.bits.EC0_EC2 == COLORIMETRYEX_RESERVED) {
2449 hdmi_info.bits.header.version = 4;
2450 hdmi_info.bits.header.length = 14;
2451 }
2452
2453 /* pixel repetition
2454 * PR0 - PR3 start from 0 whereas pHwPathMode->mode.timing.flags.pixel
2455 * repetition start from 1 */
2456 hdmi_info.bits.PR0_PR3 = 0;
2457
2458 /* Bar Info
2459 * barTop: Line Number of End of Top Bar.
2460 * barBottom: Line Number of Start of Bottom Bar.
2461 * barLeft: Pixel Number of End of Left Bar.
2462 * barRight: Pixel Number of Start of Right Bar. */
2463 hdmi_info.bits.bar_top = stream->timing.v_border_top;
2464 hdmi_info.bits.bar_bottom = (stream->timing.v_total
2465 - stream->timing.v_border_bottom + 1);
2466 hdmi_info.bits.bar_left = stream->timing.h_border_left;
2467 hdmi_info.bits.bar_right = (stream->timing.h_total
2468 - stream->timing.h_border_right + 1);
2469
2470 /* Additional Colorimetry Extension
2471 * Used in conduction with C0-C1 and EC0-EC2
2472 * 0 = DCI-P3 RGB (D65)
2473 * 1 = DCI-P3 RGB (theater)
2474 */
2475 hdmi_info.bits.ACE0_ACE3 = 0;
2476
2477 /* check_sum - Calculate AFMT_AVI_INFO0 ~ AFMT_AVI_INFO3 */
2478 check_sum = &hdmi_info.packet_raw_data.sb[0];
2479
2480 *check_sum = HDMI_INFOFRAME_TYPE_AVI + hdmi_info.bits.header.length + hdmi_info.bits.header.version;
2481
2482 for (byte_index = 1; byte_index <= hdmi_info.bits.header.length; byte_index++)
2483 *check_sum += hdmi_info.packet_raw_data.sb[byte_index];
2484
2485 /* one byte complement */
2486 *check_sum = (uint8_t) (0x100 - *check_sum);
2487
2488 /* Store in hw_path_mode */
2489 info_packet->hb0 = hdmi_info.packet_raw_data.hb0;
2490 info_packet->hb1 = hdmi_info.packet_raw_data.hb1;
2491 info_packet->hb2 = hdmi_info.packet_raw_data.hb2;
2492
2493 for (byte_index = 0; byte_index < sizeof(hdmi_info.packet_raw_data.sb); byte_index++)
2494 info_packet->sb[byte_index] = hdmi_info.packet_raw_data.sb[byte_index];
2495
2496 info_packet->valid = true;
2497 }
2498
set_vendor_info_packet(struct dc_info_packet * info_packet,struct dc_stream_state * stream)2499 static void set_vendor_info_packet(
2500 struct dc_info_packet *info_packet,
2501 struct dc_stream_state *stream)
2502 {
2503 /* SPD info packet for FreeSync */
2504
2505 /* Check if Freesync is supported. Return if false. If true,
2506 * set the corresponding bit in the info packet
2507 */
2508 if (!stream->vsp_infopacket.valid)
2509 return;
2510
2511 *info_packet = stream->vsp_infopacket;
2512 }
2513
set_spd_info_packet(struct dc_info_packet * info_packet,struct dc_stream_state * stream)2514 static void set_spd_info_packet(
2515 struct dc_info_packet *info_packet,
2516 struct dc_stream_state *stream)
2517 {
2518 /* SPD info packet for FreeSync */
2519
2520 /* Check if Freesync is supported. Return if false. If true,
2521 * set the corresponding bit in the info packet
2522 */
2523 if (!stream->vrr_infopacket.valid)
2524 return;
2525
2526 *info_packet = stream->vrr_infopacket;
2527 }
2528
set_hdr_static_info_packet(struct dc_info_packet * info_packet,struct dc_stream_state * stream)2529 static void set_hdr_static_info_packet(
2530 struct dc_info_packet *info_packet,
2531 struct dc_stream_state *stream)
2532 {
2533 /* HDR Static Metadata info packet for HDR10 */
2534
2535 if (!stream->hdr_static_metadata.valid ||
2536 stream->use_dynamic_meta)
2537 return;
2538
2539 *info_packet = stream->hdr_static_metadata;
2540 }
2541
set_vsc_info_packet(struct dc_info_packet * info_packet,struct dc_stream_state * stream)2542 static void set_vsc_info_packet(
2543 struct dc_info_packet *info_packet,
2544 struct dc_stream_state *stream)
2545 {
2546 if (!stream->vsc_infopacket.valid)
2547 return;
2548
2549 *info_packet = stream->vsc_infopacket;
2550 }
2551
dc_resource_state_destruct(struct dc_state * context)2552 void dc_resource_state_destruct(struct dc_state *context)
2553 {
2554 int i, j;
2555
2556 for (i = 0; i < context->stream_count; i++) {
2557 for (j = 0; j < context->stream_status[i].plane_count; j++)
2558 dc_plane_state_release(
2559 context->stream_status[i].plane_states[j]);
2560
2561 context->stream_status[i].plane_count = 0;
2562 dc_stream_release(context->streams[i]);
2563 context->streams[i] = NULL;
2564 }
2565 context->stream_count = 0;
2566 }
2567
dc_resource_state_copy_construct(const struct dc_state * src_ctx,struct dc_state * dst_ctx)2568 void dc_resource_state_copy_construct(
2569 const struct dc_state *src_ctx,
2570 struct dc_state *dst_ctx)
2571 {
2572 int i, j;
2573 struct kref refcount = dst_ctx->refcount;
2574
2575 *dst_ctx = *src_ctx;
2576
2577 for (i = 0; i < MAX_PIPES; i++) {
2578 struct pipe_ctx *cur_pipe = &dst_ctx->res_ctx.pipe_ctx[i];
2579
2580 if (cur_pipe->top_pipe)
2581 cur_pipe->top_pipe = &dst_ctx->res_ctx.pipe_ctx[cur_pipe->top_pipe->pipe_idx];
2582
2583 if (cur_pipe->bottom_pipe)
2584 cur_pipe->bottom_pipe = &dst_ctx->res_ctx.pipe_ctx[cur_pipe->bottom_pipe->pipe_idx];
2585
2586 if (cur_pipe->next_odm_pipe)
2587 cur_pipe->next_odm_pipe = &dst_ctx->res_ctx.pipe_ctx[cur_pipe->next_odm_pipe->pipe_idx];
2588
2589 if (cur_pipe->prev_odm_pipe)
2590 cur_pipe->prev_odm_pipe = &dst_ctx->res_ctx.pipe_ctx[cur_pipe->prev_odm_pipe->pipe_idx];
2591 }
2592
2593 for (i = 0; i < dst_ctx->stream_count; i++) {
2594 dc_stream_retain(dst_ctx->streams[i]);
2595 for (j = 0; j < dst_ctx->stream_status[i].plane_count; j++)
2596 dc_plane_state_retain(
2597 dst_ctx->stream_status[i].plane_states[j]);
2598 }
2599
2600 /* context refcount should not be overridden */
2601 dst_ctx->refcount = refcount;
2602
2603 }
2604
dc_resource_find_first_free_pll(struct resource_context * res_ctx,const struct resource_pool * pool)2605 struct clock_source *dc_resource_find_first_free_pll(
2606 struct resource_context *res_ctx,
2607 const struct resource_pool *pool)
2608 {
2609 int i;
2610
2611 for (i = 0; i < pool->clk_src_count; ++i) {
2612 if (res_ctx->clock_source_ref_count[i] == 0)
2613 return pool->clock_sources[i];
2614 }
2615
2616 return NULL;
2617 }
2618
resource_build_info_frame(struct pipe_ctx * pipe_ctx)2619 void resource_build_info_frame(struct pipe_ctx *pipe_ctx)
2620 {
2621 enum signal_type signal = SIGNAL_TYPE_NONE;
2622 struct encoder_info_frame *info = &pipe_ctx->stream_res.encoder_info_frame;
2623
2624 /* default all packets to invalid */
2625 info->avi.valid = false;
2626 info->gamut.valid = false;
2627 info->vendor.valid = false;
2628 info->spd.valid = false;
2629 info->hdrsmd.valid = false;
2630 info->vsc.valid = false;
2631
2632 signal = pipe_ctx->stream->signal;
2633
2634 /* HDMi and DP have different info packets*/
2635 if (dc_is_hdmi_signal(signal)) {
2636 set_avi_info_frame(&info->avi, pipe_ctx);
2637
2638 set_vendor_info_packet(&info->vendor, pipe_ctx->stream);
2639
2640 set_spd_info_packet(&info->spd, pipe_ctx->stream);
2641
2642 set_hdr_static_info_packet(&info->hdrsmd, pipe_ctx->stream);
2643
2644 } else if (dc_is_dp_signal(signal)) {
2645 set_vsc_info_packet(&info->vsc, pipe_ctx->stream);
2646
2647 set_spd_info_packet(&info->spd, pipe_ctx->stream);
2648
2649 set_hdr_static_info_packet(&info->hdrsmd, pipe_ctx->stream);
2650 }
2651
2652 patch_gamut_packet_checksum(&info->gamut);
2653 }
2654
resource_map_clock_resources(const struct dc * dc,struct dc_state * context,struct dc_stream_state * stream)2655 enum dc_status resource_map_clock_resources(
2656 const struct dc *dc,
2657 struct dc_state *context,
2658 struct dc_stream_state *stream)
2659 {
2660 /* acquire new resources */
2661 const struct resource_pool *pool = dc->res_pool;
2662 struct pipe_ctx *pipe_ctx = resource_get_head_pipe_for_stream(
2663 &context->res_ctx, stream);
2664
2665 if (!pipe_ctx)
2666 return DC_ERROR_UNEXPECTED;
2667
2668 if (dc_is_dp_signal(pipe_ctx->stream->signal)
2669 || pipe_ctx->stream->signal == SIGNAL_TYPE_VIRTUAL)
2670 pipe_ctx->clock_source = pool->dp_clock_source;
2671 else {
2672 pipe_ctx->clock_source = NULL;
2673
2674 if (!dc->config.disable_disp_pll_sharing)
2675 pipe_ctx->clock_source = resource_find_used_clk_src_for_sharing(
2676 &context->res_ctx,
2677 pipe_ctx);
2678
2679 if (pipe_ctx->clock_source == NULL)
2680 pipe_ctx->clock_source =
2681 dc_resource_find_first_free_pll(
2682 &context->res_ctx,
2683 pool);
2684 }
2685
2686 if (pipe_ctx->clock_source == NULL)
2687 return DC_NO_CLOCK_SOURCE_RESOURCE;
2688
2689 resource_reference_clock_source(
2690 &context->res_ctx, pool,
2691 pipe_ctx->clock_source);
2692
2693 return DC_OK;
2694 }
2695
2696 /*
2697 * Note: We need to disable output if clock sources change,
2698 * since bios does optimization and doesn't apply if changing
2699 * PHY when not already disabled.
2700 */
pipe_need_reprogram(struct pipe_ctx * pipe_ctx_old,struct pipe_ctx * pipe_ctx)2701 bool pipe_need_reprogram(
2702 struct pipe_ctx *pipe_ctx_old,
2703 struct pipe_ctx *pipe_ctx)
2704 {
2705 if (!pipe_ctx_old->stream)
2706 return false;
2707
2708 if (pipe_ctx_old->stream->sink != pipe_ctx->stream->sink)
2709 return true;
2710
2711 if (pipe_ctx_old->stream->signal != pipe_ctx->stream->signal)
2712 return true;
2713
2714 if (pipe_ctx_old->stream_res.audio != pipe_ctx->stream_res.audio)
2715 return true;
2716
2717 if (pipe_ctx_old->clock_source != pipe_ctx->clock_source
2718 && pipe_ctx_old->stream != pipe_ctx->stream)
2719 return true;
2720
2721 if (pipe_ctx_old->stream_res.stream_enc != pipe_ctx->stream_res.stream_enc)
2722 return true;
2723
2724 if (is_timing_changed(pipe_ctx_old->stream, pipe_ctx->stream))
2725 return true;
2726
2727 if (pipe_ctx_old->stream->dpms_off != pipe_ctx->stream->dpms_off)
2728 return true;
2729
2730 if (false == pipe_ctx_old->stream->link->link_state_valid &&
2731 false == pipe_ctx_old->stream->dpms_off)
2732 return true;
2733
2734 if (pipe_ctx_old->stream_res.dsc != pipe_ctx->stream_res.dsc)
2735 return true;
2736
2737 /* DIG link encoder resource assignment for stream changed. */
2738 if (pipe_ctx_old->stream->link_enc != pipe_ctx->stream->link_enc)
2739 return true;
2740
2741 return false;
2742 }
2743
resource_build_bit_depth_reduction_params(struct dc_stream_state * stream,struct bit_depth_reduction_params * fmt_bit_depth)2744 void resource_build_bit_depth_reduction_params(struct dc_stream_state *stream,
2745 struct bit_depth_reduction_params *fmt_bit_depth)
2746 {
2747 enum dc_dither_option option = stream->dither_option;
2748 enum dc_pixel_encoding pixel_encoding =
2749 stream->timing.pixel_encoding;
2750
2751 memset(fmt_bit_depth, 0, sizeof(*fmt_bit_depth));
2752
2753 if (option == DITHER_OPTION_DEFAULT) {
2754 switch (stream->timing.display_color_depth) {
2755 case COLOR_DEPTH_666:
2756 option = DITHER_OPTION_SPATIAL6;
2757 break;
2758 case COLOR_DEPTH_888:
2759 option = DITHER_OPTION_SPATIAL8;
2760 break;
2761 case COLOR_DEPTH_101010:
2762 option = DITHER_OPTION_SPATIAL10;
2763 break;
2764 default:
2765 option = DITHER_OPTION_DISABLE;
2766 }
2767 }
2768
2769 if (option == DITHER_OPTION_DISABLE)
2770 return;
2771
2772 if (option == DITHER_OPTION_TRUN6) {
2773 fmt_bit_depth->flags.TRUNCATE_ENABLED = 1;
2774 fmt_bit_depth->flags.TRUNCATE_DEPTH = 0;
2775 } else if (option == DITHER_OPTION_TRUN8 ||
2776 option == DITHER_OPTION_TRUN8_SPATIAL6 ||
2777 option == DITHER_OPTION_TRUN8_FM6) {
2778 fmt_bit_depth->flags.TRUNCATE_ENABLED = 1;
2779 fmt_bit_depth->flags.TRUNCATE_DEPTH = 1;
2780 } else if (option == DITHER_OPTION_TRUN10 ||
2781 option == DITHER_OPTION_TRUN10_SPATIAL6 ||
2782 option == DITHER_OPTION_TRUN10_SPATIAL8 ||
2783 option == DITHER_OPTION_TRUN10_FM8 ||
2784 option == DITHER_OPTION_TRUN10_FM6 ||
2785 option == DITHER_OPTION_TRUN10_SPATIAL8_FM6) {
2786 fmt_bit_depth->flags.TRUNCATE_ENABLED = 1;
2787 fmt_bit_depth->flags.TRUNCATE_DEPTH = 2;
2788 }
2789
2790 /* special case - Formatter can only reduce by 4 bits at most.
2791 * When reducing from 12 to 6 bits,
2792 * HW recommends we use trunc with round mode
2793 * (if we did nothing, trunc to 10 bits would be used)
2794 * note that any 12->10 bit reduction is ignored prior to DCE8,
2795 * as the input was 10 bits.
2796 */
2797 if (option == DITHER_OPTION_SPATIAL6_FRAME_RANDOM ||
2798 option == DITHER_OPTION_SPATIAL6 ||
2799 option == DITHER_OPTION_FM6) {
2800 fmt_bit_depth->flags.TRUNCATE_ENABLED = 1;
2801 fmt_bit_depth->flags.TRUNCATE_DEPTH = 2;
2802 fmt_bit_depth->flags.TRUNCATE_MODE = 1;
2803 }
2804
2805 /* spatial dither
2806 * note that spatial modes 1-3 are never used
2807 */
2808 if (option == DITHER_OPTION_SPATIAL6_FRAME_RANDOM ||
2809 option == DITHER_OPTION_SPATIAL6 ||
2810 option == DITHER_OPTION_TRUN10_SPATIAL6 ||
2811 option == DITHER_OPTION_TRUN8_SPATIAL6) {
2812 fmt_bit_depth->flags.SPATIAL_DITHER_ENABLED = 1;
2813 fmt_bit_depth->flags.SPATIAL_DITHER_DEPTH = 0;
2814 fmt_bit_depth->flags.HIGHPASS_RANDOM = 1;
2815 fmt_bit_depth->flags.RGB_RANDOM =
2816 (pixel_encoding == PIXEL_ENCODING_RGB) ? 1 : 0;
2817 } else if (option == DITHER_OPTION_SPATIAL8_FRAME_RANDOM ||
2818 option == DITHER_OPTION_SPATIAL8 ||
2819 option == DITHER_OPTION_SPATIAL8_FM6 ||
2820 option == DITHER_OPTION_TRUN10_SPATIAL8 ||
2821 option == DITHER_OPTION_TRUN10_SPATIAL8_FM6) {
2822 fmt_bit_depth->flags.SPATIAL_DITHER_ENABLED = 1;
2823 fmt_bit_depth->flags.SPATIAL_DITHER_DEPTH = 1;
2824 fmt_bit_depth->flags.HIGHPASS_RANDOM = 1;
2825 fmt_bit_depth->flags.RGB_RANDOM =
2826 (pixel_encoding == PIXEL_ENCODING_RGB) ? 1 : 0;
2827 } else if (option == DITHER_OPTION_SPATIAL10_FRAME_RANDOM ||
2828 option == DITHER_OPTION_SPATIAL10 ||
2829 option == DITHER_OPTION_SPATIAL10_FM8 ||
2830 option == DITHER_OPTION_SPATIAL10_FM6) {
2831 fmt_bit_depth->flags.SPATIAL_DITHER_ENABLED = 1;
2832 fmt_bit_depth->flags.SPATIAL_DITHER_DEPTH = 2;
2833 fmt_bit_depth->flags.HIGHPASS_RANDOM = 1;
2834 fmt_bit_depth->flags.RGB_RANDOM =
2835 (pixel_encoding == PIXEL_ENCODING_RGB) ? 1 : 0;
2836 }
2837
2838 if (option == DITHER_OPTION_SPATIAL6 ||
2839 option == DITHER_OPTION_SPATIAL8 ||
2840 option == DITHER_OPTION_SPATIAL10) {
2841 fmt_bit_depth->flags.FRAME_RANDOM = 0;
2842 } else {
2843 fmt_bit_depth->flags.FRAME_RANDOM = 1;
2844 }
2845
2846 //////////////////////
2847 //// temporal dither
2848 //////////////////////
2849 if (option == DITHER_OPTION_FM6 ||
2850 option == DITHER_OPTION_SPATIAL8_FM6 ||
2851 option == DITHER_OPTION_SPATIAL10_FM6 ||
2852 option == DITHER_OPTION_TRUN10_FM6 ||
2853 option == DITHER_OPTION_TRUN8_FM6 ||
2854 option == DITHER_OPTION_TRUN10_SPATIAL8_FM6) {
2855 fmt_bit_depth->flags.FRAME_MODULATION_ENABLED = 1;
2856 fmt_bit_depth->flags.FRAME_MODULATION_DEPTH = 0;
2857 } else if (option == DITHER_OPTION_FM8 ||
2858 option == DITHER_OPTION_SPATIAL10_FM8 ||
2859 option == DITHER_OPTION_TRUN10_FM8) {
2860 fmt_bit_depth->flags.FRAME_MODULATION_ENABLED = 1;
2861 fmt_bit_depth->flags.FRAME_MODULATION_DEPTH = 1;
2862 } else if (option == DITHER_OPTION_FM10) {
2863 fmt_bit_depth->flags.FRAME_MODULATION_ENABLED = 1;
2864 fmt_bit_depth->flags.FRAME_MODULATION_DEPTH = 2;
2865 }
2866
2867 fmt_bit_depth->pixel_encoding = pixel_encoding;
2868 }
2869
dc_validate_stream(struct dc * dc,struct dc_stream_state * stream)2870 enum dc_status dc_validate_stream(struct dc *dc, struct dc_stream_state *stream)
2871 {
2872 struct dc_link *link = stream->link;
2873 struct timing_generator *tg = dc->res_pool->timing_generators[0];
2874 enum dc_status res = DC_OK;
2875
2876 calculate_phy_pix_clks(stream);
2877
2878 if (!tg->funcs->validate_timing(tg, &stream->timing))
2879 res = DC_FAIL_CONTROLLER_VALIDATE;
2880
2881 if (res == DC_OK) {
2882 if (!link->link_enc->funcs->validate_output_with_stream(
2883 link->link_enc, stream))
2884 res = DC_FAIL_ENC_VALIDATE;
2885 }
2886
2887 /* TODO: validate audio ASIC caps, encoder */
2888
2889 if (res == DC_OK)
2890 res = dc_link_validate_mode_timing(stream,
2891 link,
2892 &stream->timing);
2893
2894 return res;
2895 }
2896
dc_validate_plane(struct dc * dc,const struct dc_plane_state * plane_state)2897 enum dc_status dc_validate_plane(struct dc *dc, const struct dc_plane_state *plane_state)
2898 {
2899 enum dc_status res = DC_OK;
2900
2901 /* TODO For now validates pixel format only */
2902 if (dc->res_pool->funcs->validate_plane)
2903 return dc->res_pool->funcs->validate_plane(plane_state, &dc->caps);
2904
2905 return res;
2906 }
2907
resource_pixel_format_to_bpp(enum surface_pixel_format format)2908 unsigned int resource_pixel_format_to_bpp(enum surface_pixel_format format)
2909 {
2910 switch (format) {
2911 case SURFACE_PIXEL_FORMAT_GRPH_PALETA_256_COLORS:
2912 return 8;
2913 case SURFACE_PIXEL_FORMAT_VIDEO_420_YCbCr:
2914 case SURFACE_PIXEL_FORMAT_VIDEO_420_YCrCb:
2915 return 12;
2916 case SURFACE_PIXEL_FORMAT_GRPH_ARGB1555:
2917 case SURFACE_PIXEL_FORMAT_GRPH_RGB565:
2918 case SURFACE_PIXEL_FORMAT_VIDEO_420_10bpc_YCbCr:
2919 case SURFACE_PIXEL_FORMAT_VIDEO_420_10bpc_YCrCb:
2920 return 16;
2921 case SURFACE_PIXEL_FORMAT_GRPH_ARGB8888:
2922 case SURFACE_PIXEL_FORMAT_GRPH_ABGR8888:
2923 case SURFACE_PIXEL_FORMAT_GRPH_ARGB2101010:
2924 case SURFACE_PIXEL_FORMAT_GRPH_ABGR2101010:
2925 case SURFACE_PIXEL_FORMAT_GRPH_ABGR2101010_XR_BIAS:
2926 #if defined(CONFIG_DRM_AMD_DC_DCN)
2927 case SURFACE_PIXEL_FORMAT_GRPH_RGBE:
2928 case SURFACE_PIXEL_FORMAT_GRPH_RGBE_ALPHA:
2929 #endif
2930 return 32;
2931 case SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616:
2932 case SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616:
2933 case SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616F:
2934 case SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616F:
2935 return 64;
2936 default:
2937 ASSERT_CRITICAL(false);
2938 return -1;
2939 }
2940 }
get_max_audio_sample_rate(struct audio_mode * modes)2941 static unsigned int get_max_audio_sample_rate(struct audio_mode *modes)
2942 {
2943 if (modes) {
2944 if (modes->sample_rates.rate.RATE_192)
2945 return 192000;
2946 if (modes->sample_rates.rate.RATE_176_4)
2947 return 176400;
2948 if (modes->sample_rates.rate.RATE_96)
2949 return 96000;
2950 if (modes->sample_rates.rate.RATE_88_2)
2951 return 88200;
2952 if (modes->sample_rates.rate.RATE_48)
2953 return 48000;
2954 if (modes->sample_rates.rate.RATE_44_1)
2955 return 44100;
2956 if (modes->sample_rates.rate.RATE_32)
2957 return 32000;
2958 }
2959 /*original logic when no audio info*/
2960 return 441000;
2961 }
2962
get_audio_check(struct audio_info * aud_modes,struct audio_check * audio_chk)2963 void get_audio_check(struct audio_info *aud_modes,
2964 struct audio_check *audio_chk)
2965 {
2966 unsigned int i;
2967 unsigned int max_sample_rate = 0;
2968
2969 if (aud_modes) {
2970 audio_chk->audio_packet_type = 0x2;/*audio sample packet AP = .25 for layout0, 1 for layout1*/
2971
2972 audio_chk->max_audiosample_rate = 0;
2973 for (i = 0; i < aud_modes->mode_count; i++) {
2974 max_sample_rate = get_max_audio_sample_rate(&aud_modes->modes[i]);
2975 if (audio_chk->max_audiosample_rate < max_sample_rate)
2976 audio_chk->max_audiosample_rate = max_sample_rate;
2977 /*dts takes the same as type 2: AP = 0.25*/
2978 }
2979 /*check which one take more bandwidth*/
2980 if (audio_chk->max_audiosample_rate > 192000)
2981 audio_chk->audio_packet_type = 0x9;/*AP =1*/
2982 audio_chk->acat = 0;/*not support*/
2983 }
2984 }
2985
2986