1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Remote Processor Framework
4 *
5 * Copyright (C) 2011 Texas Instruments, Inc.
6 * Copyright (C) 2011 Google, Inc.
7 *
8 * Ohad Ben-Cohen <ohad@wizery.com>
9 * Brian Swetland <swetland@google.com>
10 * Mark Grosen <mgrosen@ti.com>
11 * Fernando Guzman Lugo <fernando.lugo@ti.com>
12 * Suman Anna <s-anna@ti.com>
13 * Robert Tivy <rtivy@ti.com>
14 * Armando Uribe De Leon <x0095078@ti.com>
15 */
16
17 #define pr_fmt(fmt) "%s: " fmt, __func__
18
19 #include <linux/delay.h>
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/device.h>
23 #include <linux/panic_notifier.h>
24 #include <linux/slab.h>
25 #include <linux/mutex.h>
26 #include <linux/dma-map-ops.h>
27 #include <linux/dma-mapping.h>
28 #include <linux/dma-direct.h> /* XXX: pokes into bus_dma_range */
29 #include <linux/firmware.h>
30 #include <linux/string.h>
31 #include <linux/debugfs.h>
32 #include <linux/rculist.h>
33 #include <linux/remoteproc.h>
34 #include <linux/iommu.h>
35 #include <linux/idr.h>
36 #include <linux/elf.h>
37 #include <linux/crc32.h>
38 #include <linux/of_reserved_mem.h>
39 #include <linux/virtio_ids.h>
40 #include <linux/virtio_ring.h>
41 #include <asm/byteorder.h>
42 #include <linux/platform_device.h>
43 #include <trace/hooks/remoteproc.h>
44
45 #include "remoteproc_internal.h"
46
47 #define HIGH_BITS_MASK 0xFFFFFFFF00000000ULL
48
49 static DEFINE_MUTEX(rproc_list_mutex);
50 static LIST_HEAD(rproc_list);
51 static struct notifier_block rproc_panic_nb;
52
53 typedef int (*rproc_handle_resource_t)(struct rproc *rproc,
54 void *, int offset, int avail);
55
56 static int rproc_alloc_carveout(struct rproc *rproc,
57 struct rproc_mem_entry *mem);
58 static int rproc_release_carveout(struct rproc *rproc,
59 struct rproc_mem_entry *mem);
60
61 /* Unique indices for remoteproc devices */
62 static DEFINE_IDA(rproc_dev_index);
63 static struct workqueue_struct *rproc_recovery_wq;
64
65 static const char * const rproc_crash_names[] = {
66 [RPROC_MMUFAULT] = "mmufault",
67 [RPROC_WATCHDOG] = "watchdog",
68 [RPROC_FATAL_ERROR] = "fatal error",
69 };
70
71 /* translate rproc_crash_type to string */
rproc_crash_to_string(enum rproc_crash_type type)72 static const char *rproc_crash_to_string(enum rproc_crash_type type)
73 {
74 if (type < ARRAY_SIZE(rproc_crash_names))
75 return rproc_crash_names[type];
76 return "unknown";
77 }
78
79 /*
80 * This is the IOMMU fault handler we register with the IOMMU API
81 * (when relevant; not all remote processors access memory through
82 * an IOMMU).
83 *
84 * IOMMU core will invoke this handler whenever the remote processor
85 * will try to access an unmapped device address.
86 */
rproc_iommu_fault(struct iommu_domain * domain,struct device * dev,unsigned long iova,int flags,void * token)87 static int rproc_iommu_fault(struct iommu_domain *domain, struct device *dev,
88 unsigned long iova, int flags, void *token)
89 {
90 struct rproc *rproc = token;
91
92 dev_err(dev, "iommu fault: da 0x%lx flags 0x%x\n", iova, flags);
93
94 rproc_report_crash(rproc, RPROC_MMUFAULT);
95
96 /*
97 * Let the iommu core know we're not really handling this fault;
98 * we just used it as a recovery trigger.
99 */
100 return -ENOSYS;
101 }
102
rproc_enable_iommu(struct rproc * rproc)103 static int rproc_enable_iommu(struct rproc *rproc)
104 {
105 struct iommu_domain *domain;
106 struct device *dev = rproc->dev.parent;
107 int ret;
108
109 if (!rproc->has_iommu) {
110 dev_dbg(dev, "iommu not present\n");
111 return 0;
112 }
113
114 domain = iommu_domain_alloc(dev->bus);
115 if (!domain) {
116 dev_err(dev, "can't alloc iommu domain\n");
117 return -ENOMEM;
118 }
119
120 iommu_set_fault_handler(domain, rproc_iommu_fault, rproc);
121
122 ret = iommu_attach_device(domain, dev);
123 if (ret) {
124 dev_err(dev, "can't attach iommu device: %d\n", ret);
125 goto free_domain;
126 }
127
128 rproc->domain = domain;
129
130 return 0;
131
132 free_domain:
133 iommu_domain_free(domain);
134 return ret;
135 }
136
rproc_disable_iommu(struct rproc * rproc)137 static void rproc_disable_iommu(struct rproc *rproc)
138 {
139 struct iommu_domain *domain = rproc->domain;
140 struct device *dev = rproc->dev.parent;
141
142 if (!domain)
143 return;
144
145 iommu_detach_device(domain, dev);
146 iommu_domain_free(domain);
147 }
148
rproc_va_to_pa(void * cpu_addr)149 phys_addr_t rproc_va_to_pa(void *cpu_addr)
150 {
151 /*
152 * Return physical address according to virtual address location
153 * - in vmalloc: if region ioremapped or defined as dma_alloc_coherent
154 * - in kernel: if region allocated in generic dma memory pool
155 */
156 if (is_vmalloc_addr(cpu_addr)) {
157 return page_to_phys(vmalloc_to_page(cpu_addr)) +
158 offset_in_page(cpu_addr);
159 }
160
161 WARN_ON(!virt_addr_valid(cpu_addr));
162 return virt_to_phys(cpu_addr);
163 }
164 EXPORT_SYMBOL(rproc_va_to_pa);
165
166 /**
167 * rproc_da_to_va() - lookup the kernel virtual address for a remoteproc address
168 * @rproc: handle of a remote processor
169 * @da: remoteproc device address to translate
170 * @len: length of the memory region @da is pointing to
171 * @is_iomem: optional pointer filled in to indicate if @da is iomapped memory
172 *
173 * Some remote processors will ask us to allocate them physically contiguous
174 * memory regions (which we call "carveouts"), and map them to specific
175 * device addresses (which are hardcoded in the firmware). They may also have
176 * dedicated memory regions internal to the processors, and use them either
177 * exclusively or alongside carveouts.
178 *
179 * They may then ask us to copy objects into specific device addresses (e.g.
180 * code/data sections) or expose us certain symbols in other device address
181 * (e.g. their trace buffer).
182 *
183 * This function is a helper function with which we can go over the allocated
184 * carveouts and translate specific device addresses to kernel virtual addresses
185 * so we can access the referenced memory. This function also allows to perform
186 * translations on the internal remoteproc memory regions through a platform
187 * implementation specific da_to_va ops, if present.
188 *
189 * Note: phys_to_virt(iommu_iova_to_phys(rproc->domain, da)) will work too,
190 * but only on kernel direct mapped RAM memory. Instead, we're just using
191 * here the output of the DMA API for the carveouts, which should be more
192 * correct.
193 *
194 * Return: a valid kernel address on success or NULL on failure
195 */
rproc_da_to_va(struct rproc * rproc,u64 da,size_t len,bool * is_iomem)196 void *rproc_da_to_va(struct rproc *rproc, u64 da, size_t len, bool *is_iomem)
197 {
198 struct rproc_mem_entry *carveout;
199 void *ptr = NULL;
200
201 if (rproc->ops->da_to_va) {
202 ptr = rproc->ops->da_to_va(rproc, da, len, is_iomem);
203 if (ptr)
204 goto out;
205 }
206
207 list_for_each_entry(carveout, &rproc->carveouts, node) {
208 int offset = da - carveout->da;
209
210 /* Verify that carveout is allocated */
211 if (!carveout->va)
212 continue;
213
214 /* try next carveout if da is too small */
215 if (offset < 0)
216 continue;
217
218 /* try next carveout if da is too large */
219 if (offset + len > carveout->len)
220 continue;
221
222 ptr = carveout->va + offset;
223
224 if (is_iomem)
225 *is_iomem = carveout->is_iomem;
226
227 break;
228 }
229
230 out:
231 return ptr;
232 }
233 EXPORT_SYMBOL(rproc_da_to_va);
234
235 /**
236 * rproc_find_carveout_by_name() - lookup the carveout region by a name
237 * @rproc: handle of a remote processor
238 * @name: carveout name to find (format string)
239 * @...: optional parameters matching @name string
240 *
241 * Platform driver has the capability to register some pre-allacoted carveout
242 * (physically contiguous memory regions) before rproc firmware loading and
243 * associated resource table analysis. These regions may be dedicated memory
244 * regions internal to the coprocessor or specified DDR region with specific
245 * attributes
246 *
247 * This function is a helper function with which we can go over the
248 * allocated carveouts and return associated region characteristics like
249 * coprocessor address, length or processor virtual address.
250 *
251 * Return: a valid pointer on carveout entry on success or NULL on failure.
252 */
253 __printf(2, 3)
254 struct rproc_mem_entry *
rproc_find_carveout_by_name(struct rproc * rproc,const char * name,...)255 rproc_find_carveout_by_name(struct rproc *rproc, const char *name, ...)
256 {
257 va_list args;
258 char _name[32];
259 struct rproc_mem_entry *carveout, *mem = NULL;
260
261 if (!name)
262 return NULL;
263
264 va_start(args, name);
265 vsnprintf(_name, sizeof(_name), name, args);
266 va_end(args);
267
268 list_for_each_entry(carveout, &rproc->carveouts, node) {
269 /* Compare carveout and requested names */
270 if (!strcmp(carveout->name, _name)) {
271 mem = carveout;
272 break;
273 }
274 }
275
276 return mem;
277 }
278
279 /**
280 * rproc_check_carveout_da() - Check specified carveout da configuration
281 * @rproc: handle of a remote processor
282 * @mem: pointer on carveout to check
283 * @da: area device address
284 * @len: associated area size
285 *
286 * This function is a helper function to verify requested device area (couple
287 * da, len) is part of specified carveout.
288 * If da is not set (defined as FW_RSC_ADDR_ANY), only requested length is
289 * checked.
290 *
291 * Return: 0 if carveout matches request else error
292 */
rproc_check_carveout_da(struct rproc * rproc,struct rproc_mem_entry * mem,u32 da,u32 len)293 static int rproc_check_carveout_da(struct rproc *rproc,
294 struct rproc_mem_entry *mem, u32 da, u32 len)
295 {
296 struct device *dev = &rproc->dev;
297 int delta;
298
299 /* Check requested resource length */
300 if (len > mem->len) {
301 dev_err(dev, "Registered carveout doesn't fit len request\n");
302 return -EINVAL;
303 }
304
305 if (da != FW_RSC_ADDR_ANY && mem->da == FW_RSC_ADDR_ANY) {
306 /* Address doesn't match registered carveout configuration */
307 return -EINVAL;
308 } else if (da != FW_RSC_ADDR_ANY && mem->da != FW_RSC_ADDR_ANY) {
309 delta = da - mem->da;
310
311 /* Check requested resource belongs to registered carveout */
312 if (delta < 0) {
313 dev_err(dev,
314 "Registered carveout doesn't fit da request\n");
315 return -EINVAL;
316 }
317
318 if (delta + len > mem->len) {
319 dev_err(dev,
320 "Registered carveout doesn't fit len request\n");
321 return -EINVAL;
322 }
323 }
324
325 return 0;
326 }
327
rproc_alloc_vring(struct rproc_vdev * rvdev,int i)328 int rproc_alloc_vring(struct rproc_vdev *rvdev, int i)
329 {
330 struct rproc *rproc = rvdev->rproc;
331 struct device *dev = &rproc->dev;
332 struct rproc_vring *rvring = &rvdev->vring[i];
333 struct fw_rsc_vdev *rsc;
334 int ret, notifyid;
335 struct rproc_mem_entry *mem;
336 size_t size;
337
338 /* actual size of vring (in bytes) */
339 size = PAGE_ALIGN(vring_size(rvring->len, rvring->align));
340
341 rsc = (void *)rproc->table_ptr + rvdev->rsc_offset;
342
343 /* Search for pre-registered carveout */
344 mem = rproc_find_carveout_by_name(rproc, "vdev%dvring%d", rvdev->index,
345 i);
346 if (mem) {
347 if (rproc_check_carveout_da(rproc, mem, rsc->vring[i].da, size))
348 return -ENOMEM;
349 } else {
350 /* Register carveout in in list */
351 mem = rproc_mem_entry_init(dev, NULL, 0,
352 size, rsc->vring[i].da,
353 rproc_alloc_carveout,
354 rproc_release_carveout,
355 "vdev%dvring%d",
356 rvdev->index, i);
357 if (!mem) {
358 dev_err(dev, "Can't allocate memory entry structure\n");
359 return -ENOMEM;
360 }
361
362 rproc_add_carveout(rproc, mem);
363 }
364
365 /*
366 * Assign an rproc-wide unique index for this vring
367 * TODO: assign a notifyid for rvdev updates as well
368 * TODO: support predefined notifyids (via resource table)
369 */
370 ret = idr_alloc(&rproc->notifyids, rvring, 0, 0, GFP_KERNEL);
371 if (ret < 0) {
372 dev_err(dev, "idr_alloc failed: %d\n", ret);
373 return ret;
374 }
375 notifyid = ret;
376
377 /* Potentially bump max_notifyid */
378 if (notifyid > rproc->max_notifyid)
379 rproc->max_notifyid = notifyid;
380
381 rvring->notifyid = notifyid;
382
383 /* Let the rproc know the notifyid of this vring.*/
384 rsc->vring[i].notifyid = notifyid;
385 return 0;
386 }
387
388 static int
rproc_parse_vring(struct rproc_vdev * rvdev,struct fw_rsc_vdev * rsc,int i)389 rproc_parse_vring(struct rproc_vdev *rvdev, struct fw_rsc_vdev *rsc, int i)
390 {
391 struct rproc *rproc = rvdev->rproc;
392 struct device *dev = &rproc->dev;
393 struct fw_rsc_vdev_vring *vring = &rsc->vring[i];
394 struct rproc_vring *rvring = &rvdev->vring[i];
395
396 dev_dbg(dev, "vdev rsc: vring%d: da 0x%x, qsz %d, align %d\n",
397 i, vring->da, vring->num, vring->align);
398
399 /* verify queue size and vring alignment are sane */
400 if (!vring->num || !vring->align) {
401 dev_err(dev, "invalid qsz (%d) or alignment (%d)\n",
402 vring->num, vring->align);
403 return -EINVAL;
404 }
405
406 rvring->len = vring->num;
407 rvring->align = vring->align;
408 rvring->rvdev = rvdev;
409
410 return 0;
411 }
412
rproc_free_vring(struct rproc_vring * rvring)413 void rproc_free_vring(struct rproc_vring *rvring)
414 {
415 struct rproc *rproc = rvring->rvdev->rproc;
416 int idx = rvring - rvring->rvdev->vring;
417 struct fw_rsc_vdev *rsc;
418
419 idr_remove(&rproc->notifyids, rvring->notifyid);
420
421 /*
422 * At this point rproc_stop() has been called and the installed resource
423 * table in the remote processor memory may no longer be accessible. As
424 * such and as per rproc_stop(), rproc->table_ptr points to the cached
425 * resource table (rproc->cached_table). The cached resource table is
426 * only available when a remote processor has been booted by the
427 * remoteproc core, otherwise it is NULL.
428 *
429 * Based on the above, reset the virtio device section in the cached
430 * resource table only if there is one to work with.
431 */
432 if (rproc->table_ptr) {
433 rsc = (void *)rproc->table_ptr + rvring->rvdev->rsc_offset;
434 rsc->vring[idx].da = 0;
435 rsc->vring[idx].notifyid = -1;
436 }
437 }
438
rproc_vdev_do_start(struct rproc_subdev * subdev)439 static int rproc_vdev_do_start(struct rproc_subdev *subdev)
440 {
441 struct rproc_vdev *rvdev = container_of(subdev, struct rproc_vdev, subdev);
442
443 return rproc_add_virtio_dev(rvdev, rvdev->id);
444 }
445
rproc_vdev_do_stop(struct rproc_subdev * subdev,bool crashed)446 static void rproc_vdev_do_stop(struct rproc_subdev *subdev, bool crashed)
447 {
448 struct rproc_vdev *rvdev = container_of(subdev, struct rproc_vdev, subdev);
449 int ret;
450
451 ret = device_for_each_child(&rvdev->dev, NULL, rproc_remove_virtio_dev);
452 if (ret)
453 dev_warn(&rvdev->dev, "can't remove vdev child device: %d\n", ret);
454 }
455
456 /**
457 * rproc_rvdev_release() - release the existence of a rvdev
458 *
459 * @dev: the subdevice's dev
460 */
rproc_rvdev_release(struct device * dev)461 static void rproc_rvdev_release(struct device *dev)
462 {
463 struct rproc_vdev *rvdev = container_of(dev, struct rproc_vdev, dev);
464
465 of_reserved_mem_device_release(dev);
466 dma_release_coherent_memory(dev);
467
468 kfree(rvdev);
469 }
470
copy_dma_range_map(struct device * to,struct device * from)471 static int copy_dma_range_map(struct device *to, struct device *from)
472 {
473 const struct bus_dma_region *map = from->dma_range_map, *new_map, *r;
474 int num_ranges = 0;
475
476 if (!map)
477 return 0;
478
479 for (r = map; r->size; r++)
480 num_ranges++;
481
482 new_map = kmemdup(map, array_size(num_ranges + 1, sizeof(*map)),
483 GFP_KERNEL);
484 if (!new_map)
485 return -ENOMEM;
486 to->dma_range_map = new_map;
487 return 0;
488 }
489
490 /**
491 * rproc_handle_vdev() - handle a vdev fw resource
492 * @rproc: the remote processor
493 * @ptr: the vring resource descriptor
494 * @offset: offset of the resource entry
495 * @avail: size of available data (for sanity checking the image)
496 *
497 * This resource entry requests the host to statically register a virtio
498 * device (vdev), and setup everything needed to support it. It contains
499 * everything needed to make it possible: the virtio device id, virtio
500 * device features, vrings information, virtio config space, etc...
501 *
502 * Before registering the vdev, the vrings are allocated from non-cacheable
503 * physically contiguous memory. Currently we only support two vrings per
504 * remote processor (temporary limitation). We might also want to consider
505 * doing the vring allocation only later when ->find_vqs() is invoked, and
506 * then release them upon ->del_vqs().
507 *
508 * Note: @da is currently not really handled correctly: we dynamically
509 * allocate it using the DMA API, ignoring requested hard coded addresses,
510 * and we don't take care of any required IOMMU programming. This is all
511 * going to be taken care of when the generic iommu-based DMA API will be
512 * merged. Meanwhile, statically-addressed iommu-based firmware images should
513 * use RSC_DEVMEM resource entries to map their required @da to the physical
514 * address of their base CMA region (ouch, hacky!).
515 *
516 * Return: 0 on success, or an appropriate error code otherwise
517 */
rproc_handle_vdev(struct rproc * rproc,void * ptr,int offset,int avail)518 static int rproc_handle_vdev(struct rproc *rproc, void *ptr,
519 int offset, int avail)
520 {
521 struct fw_rsc_vdev *rsc = ptr;
522 struct device *dev = &rproc->dev;
523 struct rproc_vdev *rvdev;
524 int i, ret;
525 char name[16];
526
527 /* make sure resource isn't truncated */
528 if (struct_size(rsc, vring, rsc->num_of_vrings) + rsc->config_len >
529 avail) {
530 dev_err(dev, "vdev rsc is truncated\n");
531 return -EINVAL;
532 }
533
534 /* make sure reserved bytes are zeroes */
535 if (rsc->reserved[0] || rsc->reserved[1]) {
536 dev_err(dev, "vdev rsc has non zero reserved bytes\n");
537 return -EINVAL;
538 }
539
540 dev_dbg(dev, "vdev rsc: id %d, dfeatures 0x%x, cfg len %d, %d vrings\n",
541 rsc->id, rsc->dfeatures, rsc->config_len, rsc->num_of_vrings);
542
543 /* we currently support only two vrings per rvdev */
544 if (rsc->num_of_vrings > ARRAY_SIZE(rvdev->vring)) {
545 dev_err(dev, "too many vrings: %d\n", rsc->num_of_vrings);
546 return -EINVAL;
547 }
548
549 rvdev = kzalloc(sizeof(*rvdev), GFP_KERNEL);
550 if (!rvdev)
551 return -ENOMEM;
552
553 kref_init(&rvdev->refcount);
554
555 rvdev->id = rsc->id;
556 rvdev->rproc = rproc;
557 rvdev->index = rproc->nb_vdev++;
558
559 /* Initialise vdev subdevice */
560 snprintf(name, sizeof(name), "vdev%dbuffer", rvdev->index);
561 rvdev->dev.parent = &rproc->dev;
562 rvdev->dev.release = rproc_rvdev_release;
563 dev_set_name(&rvdev->dev, "%s#%s", dev_name(rvdev->dev.parent), name);
564 dev_set_drvdata(&rvdev->dev, rvdev);
565
566 ret = device_register(&rvdev->dev);
567 if (ret) {
568 put_device(&rvdev->dev);
569 return ret;
570 }
571
572 ret = copy_dma_range_map(&rvdev->dev, rproc->dev.parent);
573 if (ret)
574 goto free_rvdev;
575
576 /* Make device dma capable by inheriting from parent's capabilities */
577 set_dma_ops(&rvdev->dev, get_dma_ops(rproc->dev.parent));
578
579 ret = dma_coerce_mask_and_coherent(&rvdev->dev,
580 dma_get_mask(rproc->dev.parent));
581 if (ret) {
582 dev_warn(dev,
583 "Failed to set DMA mask %llx. Trying to continue... %x\n",
584 dma_get_mask(rproc->dev.parent), ret);
585 }
586
587 /* parse the vrings */
588 for (i = 0; i < rsc->num_of_vrings; i++) {
589 ret = rproc_parse_vring(rvdev, rsc, i);
590 if (ret)
591 goto free_rvdev;
592 }
593
594 /* remember the resource offset*/
595 rvdev->rsc_offset = offset;
596
597 /* allocate the vring resources */
598 for (i = 0; i < rsc->num_of_vrings; i++) {
599 ret = rproc_alloc_vring(rvdev, i);
600 if (ret)
601 goto unwind_vring_allocations;
602 }
603
604 list_add_tail(&rvdev->node, &rproc->rvdevs);
605
606 rvdev->subdev.start = rproc_vdev_do_start;
607 rvdev->subdev.stop = rproc_vdev_do_stop;
608
609 rproc_add_subdev(rproc, &rvdev->subdev);
610
611 return 0;
612
613 unwind_vring_allocations:
614 for (i--; i >= 0; i--)
615 rproc_free_vring(&rvdev->vring[i]);
616 free_rvdev:
617 device_unregister(&rvdev->dev);
618 return ret;
619 }
620
rproc_vdev_release(struct kref * ref)621 void rproc_vdev_release(struct kref *ref)
622 {
623 struct rproc_vdev *rvdev = container_of(ref, struct rproc_vdev, refcount);
624 struct rproc_vring *rvring;
625 struct rproc *rproc = rvdev->rproc;
626 int id;
627
628 for (id = 0; id < ARRAY_SIZE(rvdev->vring); id++) {
629 rvring = &rvdev->vring[id];
630 rproc_free_vring(rvring);
631 }
632
633 rproc_remove_subdev(rproc, &rvdev->subdev);
634 list_del(&rvdev->node);
635 device_unregister(&rvdev->dev);
636 }
637
638 /**
639 * rproc_handle_trace() - handle a shared trace buffer resource
640 * @rproc: the remote processor
641 * @ptr: the trace resource descriptor
642 * @offset: offset of the resource entry
643 * @avail: size of available data (for sanity checking the image)
644 *
645 * In case the remote processor dumps trace logs into memory,
646 * export it via debugfs.
647 *
648 * Currently, the 'da' member of @rsc should contain the device address
649 * where the remote processor is dumping the traces. Later we could also
650 * support dynamically allocating this address using the generic
651 * DMA API (but currently there isn't a use case for that).
652 *
653 * Return: 0 on success, or an appropriate error code otherwise
654 */
rproc_handle_trace(struct rproc * rproc,void * ptr,int offset,int avail)655 static int rproc_handle_trace(struct rproc *rproc, void *ptr,
656 int offset, int avail)
657 {
658 struct fw_rsc_trace *rsc = ptr;
659 struct rproc_debug_trace *trace;
660 struct device *dev = &rproc->dev;
661 char name[15];
662
663 if (sizeof(*rsc) > avail) {
664 dev_err(dev, "trace rsc is truncated\n");
665 return -EINVAL;
666 }
667
668 /* make sure reserved bytes are zeroes */
669 if (rsc->reserved) {
670 dev_err(dev, "trace rsc has non zero reserved bytes\n");
671 return -EINVAL;
672 }
673
674 trace = kzalloc(sizeof(*trace), GFP_KERNEL);
675 if (!trace)
676 return -ENOMEM;
677
678 /* set the trace buffer dma properties */
679 trace->trace_mem.len = rsc->len;
680 trace->trace_mem.da = rsc->da;
681
682 /* set pointer on rproc device */
683 trace->rproc = rproc;
684
685 /* make sure snprintf always null terminates, even if truncating */
686 snprintf(name, sizeof(name), "trace%d", rproc->num_traces);
687
688 /* create the debugfs entry */
689 trace->tfile = rproc_create_trace_file(name, rproc, trace);
690 if (!trace->tfile) {
691 kfree(trace);
692 return -EINVAL;
693 }
694
695 list_add_tail(&trace->node, &rproc->traces);
696
697 rproc->num_traces++;
698
699 dev_dbg(dev, "%s added: da 0x%x, len 0x%x\n",
700 name, rsc->da, rsc->len);
701
702 return 0;
703 }
704
705 /**
706 * rproc_handle_devmem() - handle devmem resource entry
707 * @rproc: remote processor handle
708 * @ptr: the devmem resource entry
709 * @offset: offset of the resource entry
710 * @avail: size of available data (for sanity checking the image)
711 *
712 * Remote processors commonly need to access certain on-chip peripherals.
713 *
714 * Some of these remote processors access memory via an iommu device,
715 * and might require us to configure their iommu before they can access
716 * the on-chip peripherals they need.
717 *
718 * This resource entry is a request to map such a peripheral device.
719 *
720 * These devmem entries will contain the physical address of the device in
721 * the 'pa' member. If a specific device address is expected, then 'da' will
722 * contain it (currently this is the only use case supported). 'len' will
723 * contain the size of the physical region we need to map.
724 *
725 * Currently we just "trust" those devmem entries to contain valid physical
726 * addresses, but this is going to change: we want the implementations to
727 * tell us ranges of physical addresses the firmware is allowed to request,
728 * and not allow firmwares to request access to physical addresses that
729 * are outside those ranges.
730 *
731 * Return: 0 on success, or an appropriate error code otherwise
732 */
rproc_handle_devmem(struct rproc * rproc,void * ptr,int offset,int avail)733 static int rproc_handle_devmem(struct rproc *rproc, void *ptr,
734 int offset, int avail)
735 {
736 struct fw_rsc_devmem *rsc = ptr;
737 struct rproc_mem_entry *mapping;
738 struct device *dev = &rproc->dev;
739 int ret;
740
741 /* no point in handling this resource without a valid iommu domain */
742 if (!rproc->domain)
743 return -EINVAL;
744
745 if (sizeof(*rsc) > avail) {
746 dev_err(dev, "devmem rsc is truncated\n");
747 return -EINVAL;
748 }
749
750 /* make sure reserved bytes are zeroes */
751 if (rsc->reserved) {
752 dev_err(dev, "devmem rsc has non zero reserved bytes\n");
753 return -EINVAL;
754 }
755
756 mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
757 if (!mapping)
758 return -ENOMEM;
759
760 ret = iommu_map(rproc->domain, rsc->da, rsc->pa, rsc->len, rsc->flags);
761 if (ret) {
762 dev_err(dev, "failed to map devmem: %d\n", ret);
763 goto out;
764 }
765
766 /*
767 * We'll need this info later when we'll want to unmap everything
768 * (e.g. on shutdown).
769 *
770 * We can't trust the remote processor not to change the resource
771 * table, so we must maintain this info independently.
772 */
773 mapping->da = rsc->da;
774 mapping->len = rsc->len;
775 list_add_tail(&mapping->node, &rproc->mappings);
776
777 dev_dbg(dev, "mapped devmem pa 0x%x, da 0x%x, len 0x%x\n",
778 rsc->pa, rsc->da, rsc->len);
779
780 return 0;
781
782 out:
783 kfree(mapping);
784 return ret;
785 }
786
787 /**
788 * rproc_alloc_carveout() - allocated specified carveout
789 * @rproc: rproc handle
790 * @mem: the memory entry to allocate
791 *
792 * This function allocate specified memory entry @mem using
793 * dma_alloc_coherent() as default allocator
794 *
795 * Return: 0 on success, or an appropriate error code otherwise
796 */
rproc_alloc_carveout(struct rproc * rproc,struct rproc_mem_entry * mem)797 static int rproc_alloc_carveout(struct rproc *rproc,
798 struct rproc_mem_entry *mem)
799 {
800 struct rproc_mem_entry *mapping = NULL;
801 struct device *dev = &rproc->dev;
802 dma_addr_t dma;
803 void *va;
804 int ret;
805
806 va = dma_alloc_coherent(dev->parent, mem->len, &dma, GFP_KERNEL);
807 if (!va) {
808 dev_err(dev->parent,
809 "failed to allocate dma memory: len 0x%zx\n",
810 mem->len);
811 return -ENOMEM;
812 }
813
814 dev_dbg(dev, "carveout va %pK, dma %pad, len 0x%zx\n",
815 va, &dma, mem->len);
816
817 if (mem->da != FW_RSC_ADDR_ANY && !rproc->domain) {
818 /*
819 * Check requested da is equal to dma address
820 * and print a warn message in case of missalignment.
821 * Don't stop rproc_start sequence as coprocessor may
822 * build pa to da translation on its side.
823 */
824 if (mem->da != (u32)dma)
825 dev_warn(dev->parent,
826 "Allocated carveout doesn't fit device address request\n");
827 }
828
829 /*
830 * Ok, this is non-standard.
831 *
832 * Sometimes we can't rely on the generic iommu-based DMA API
833 * to dynamically allocate the device address and then set the IOMMU
834 * tables accordingly, because some remote processors might
835 * _require_ us to use hard coded device addresses that their
836 * firmware was compiled with.
837 *
838 * In this case, we must use the IOMMU API directly and map
839 * the memory to the device address as expected by the remote
840 * processor.
841 *
842 * Obviously such remote processor devices should not be configured
843 * to use the iommu-based DMA API: we expect 'dma' to contain the
844 * physical address in this case.
845 */
846 if (mem->da != FW_RSC_ADDR_ANY && rproc->domain) {
847 mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
848 if (!mapping) {
849 ret = -ENOMEM;
850 goto dma_free;
851 }
852
853 ret = iommu_map(rproc->domain, mem->da, dma, mem->len,
854 mem->flags);
855 if (ret) {
856 dev_err(dev, "iommu_map failed: %d\n", ret);
857 goto free_mapping;
858 }
859
860 /*
861 * We'll need this info later when we'll want to unmap
862 * everything (e.g. on shutdown).
863 *
864 * We can't trust the remote processor not to change the
865 * resource table, so we must maintain this info independently.
866 */
867 mapping->da = mem->da;
868 mapping->len = mem->len;
869 list_add_tail(&mapping->node, &rproc->mappings);
870
871 dev_dbg(dev, "carveout mapped 0x%x to %pad\n",
872 mem->da, &dma);
873 }
874
875 if (mem->da == FW_RSC_ADDR_ANY) {
876 /* Update device address as undefined by requester */
877 if ((u64)dma & HIGH_BITS_MASK)
878 dev_warn(dev, "DMA address cast in 32bit to fit resource table format\n");
879
880 mem->da = (u32)dma;
881 }
882
883 mem->dma = dma;
884 mem->va = va;
885
886 return 0;
887
888 free_mapping:
889 kfree(mapping);
890 dma_free:
891 dma_free_coherent(dev->parent, mem->len, va, dma);
892 return ret;
893 }
894
895 /**
896 * rproc_release_carveout() - release acquired carveout
897 * @rproc: rproc handle
898 * @mem: the memory entry to release
899 *
900 * This function releases specified memory entry @mem allocated via
901 * rproc_alloc_carveout() function by @rproc.
902 *
903 * Return: 0 on success, or an appropriate error code otherwise
904 */
rproc_release_carveout(struct rproc * rproc,struct rproc_mem_entry * mem)905 static int rproc_release_carveout(struct rproc *rproc,
906 struct rproc_mem_entry *mem)
907 {
908 struct device *dev = &rproc->dev;
909
910 /* clean up carveout allocations */
911 dma_free_coherent(dev->parent, mem->len, mem->va, mem->dma);
912 return 0;
913 }
914
915 /**
916 * rproc_handle_carveout() - handle phys contig memory allocation requests
917 * @rproc: rproc handle
918 * @ptr: the resource entry
919 * @offset: offset of the resource entry
920 * @avail: size of available data (for image validation)
921 *
922 * This function will handle firmware requests for allocation of physically
923 * contiguous memory regions.
924 *
925 * These request entries should come first in the firmware's resource table,
926 * as other firmware entries might request placing other data objects inside
927 * these memory regions (e.g. data/code segments, trace resource entries, ...).
928 *
929 * Allocating memory this way helps utilizing the reserved physical memory
930 * (e.g. CMA) more efficiently, and also minimizes the number of TLB entries
931 * needed to map it (in case @rproc is using an IOMMU). Reducing the TLB
932 * pressure is important; it may have a substantial impact on performance.
933 *
934 * Return: 0 on success, or an appropriate error code otherwise
935 */
rproc_handle_carveout(struct rproc * rproc,void * ptr,int offset,int avail)936 static int rproc_handle_carveout(struct rproc *rproc,
937 void *ptr, int offset, int avail)
938 {
939 struct fw_rsc_carveout *rsc = ptr;
940 struct rproc_mem_entry *carveout;
941 struct device *dev = &rproc->dev;
942
943 if (sizeof(*rsc) > avail) {
944 dev_err(dev, "carveout rsc is truncated\n");
945 return -EINVAL;
946 }
947
948 /* make sure reserved bytes are zeroes */
949 if (rsc->reserved) {
950 dev_err(dev, "carveout rsc has non zero reserved bytes\n");
951 return -EINVAL;
952 }
953
954 dev_dbg(dev, "carveout rsc: name: %s, da 0x%x, pa 0x%x, len 0x%x, flags 0x%x\n",
955 rsc->name, rsc->da, rsc->pa, rsc->len, rsc->flags);
956
957 /*
958 * Check carveout rsc already part of a registered carveout,
959 * Search by name, then check the da and length
960 */
961 carveout = rproc_find_carveout_by_name(rproc, rsc->name);
962
963 if (carveout) {
964 if (carveout->rsc_offset != FW_RSC_ADDR_ANY) {
965 dev_err(dev,
966 "Carveout already associated to resource table\n");
967 return -ENOMEM;
968 }
969
970 if (rproc_check_carveout_da(rproc, carveout, rsc->da, rsc->len))
971 return -ENOMEM;
972
973 /* Update memory carveout with resource table info */
974 carveout->rsc_offset = offset;
975 carveout->flags = rsc->flags;
976
977 return 0;
978 }
979
980 /* Register carveout in in list */
981 carveout = rproc_mem_entry_init(dev, NULL, 0, rsc->len, rsc->da,
982 rproc_alloc_carveout,
983 rproc_release_carveout, rsc->name);
984 if (!carveout) {
985 dev_err(dev, "Can't allocate memory entry structure\n");
986 return -ENOMEM;
987 }
988
989 carveout->flags = rsc->flags;
990 carveout->rsc_offset = offset;
991 rproc_add_carveout(rproc, carveout);
992
993 return 0;
994 }
995
996 /**
997 * rproc_add_carveout() - register an allocated carveout region
998 * @rproc: rproc handle
999 * @mem: memory entry to register
1000 *
1001 * This function registers specified memory entry in @rproc carveouts list.
1002 * Specified carveout should have been allocated before registering.
1003 */
rproc_add_carveout(struct rproc * rproc,struct rproc_mem_entry * mem)1004 void rproc_add_carveout(struct rproc *rproc, struct rproc_mem_entry *mem)
1005 {
1006 list_add_tail(&mem->node, &rproc->carveouts);
1007 }
1008 EXPORT_SYMBOL(rproc_add_carveout);
1009
1010 /**
1011 * rproc_del_carveout() - remove an allocated carveout region
1012 * @rproc: rproc handle
1013 * @mem: memory entry to register
1014 *
1015 * This function removes specified memory entry in @rproc carveouts list.
1016 */
rproc_del_carveout(struct rproc * rproc,struct rproc_mem_entry * mem)1017 void rproc_del_carveout(struct rproc *rproc, struct rproc_mem_entry *mem)
1018 {
1019 struct rproc_mem_entry *entry, *tmp;
1020
1021 list_for_each_entry_safe(entry, tmp, &rproc->carveouts, node) {
1022 if (entry == mem) {
1023 list_del(&mem->node);
1024 return;
1025 }
1026 }
1027 }
1028 EXPORT_SYMBOL(rproc_del_carveout);
1029
1030 /**
1031 * rproc_mem_entry_init() - allocate and initialize rproc_mem_entry struct
1032 * @dev: pointer on device struct
1033 * @va: virtual address
1034 * @dma: dma address
1035 * @len: memory carveout length
1036 * @da: device address
1037 * @alloc: memory carveout allocation function
1038 * @release: memory carveout release function
1039 * @name: carveout name
1040 *
1041 * This function allocates a rproc_mem_entry struct and fill it with parameters
1042 * provided by client.
1043 *
1044 * Return: a valid pointer on success, or NULL on failure
1045 */
1046 __printf(8, 9)
1047 struct rproc_mem_entry *
rproc_mem_entry_init(struct device * dev,void * va,dma_addr_t dma,size_t len,u32 da,int (* alloc)(struct rproc *,struct rproc_mem_entry *),int (* release)(struct rproc *,struct rproc_mem_entry *),const char * name,...)1048 rproc_mem_entry_init(struct device *dev,
1049 void *va, dma_addr_t dma, size_t len, u32 da,
1050 int (*alloc)(struct rproc *, struct rproc_mem_entry *),
1051 int (*release)(struct rproc *, struct rproc_mem_entry *),
1052 const char *name, ...)
1053 {
1054 struct rproc_mem_entry *mem;
1055 va_list args;
1056
1057 mem = kzalloc(sizeof(*mem), GFP_KERNEL);
1058 if (!mem)
1059 return mem;
1060
1061 mem->va = va;
1062 mem->dma = dma;
1063 mem->da = da;
1064 mem->len = len;
1065 mem->alloc = alloc;
1066 mem->release = release;
1067 mem->rsc_offset = FW_RSC_ADDR_ANY;
1068 mem->of_resm_idx = -1;
1069
1070 va_start(args, name);
1071 vsnprintf(mem->name, sizeof(mem->name), name, args);
1072 va_end(args);
1073
1074 return mem;
1075 }
1076 EXPORT_SYMBOL(rproc_mem_entry_init);
1077
1078 /**
1079 * rproc_mem_entry_free() - free a rproc_mem_entry struct
1080 * @mem: rproc_mem_entry allocated by rproc_mem_entry_init()
1081 *
1082 * This function frees a rproc_mem_entry_struct that was allocated by
1083 * rproc_mem_entry_init().
1084 */
rproc_mem_entry_free(struct rproc_mem_entry * mem)1085 void rproc_mem_entry_free(struct rproc_mem_entry *mem)
1086 {
1087 kfree(mem);
1088 }
1089 EXPORT_SYMBOL(rproc_mem_entry_free);
1090
1091 /**
1092 * rproc_of_resm_mem_entry_init() - allocate and initialize rproc_mem_entry struct
1093 * from a reserved memory phandle
1094 * @dev: pointer on device struct
1095 * @of_resm_idx: reserved memory phandle index in "memory-region"
1096 * @len: memory carveout length
1097 * @da: device address
1098 * @name: carveout name
1099 *
1100 * This function allocates a rproc_mem_entry struct and fill it with parameters
1101 * provided by client.
1102 *
1103 * Return: a valid pointer on success, or NULL on failure
1104 */
1105 __printf(5, 6)
1106 struct rproc_mem_entry *
rproc_of_resm_mem_entry_init(struct device * dev,u32 of_resm_idx,size_t len,u32 da,const char * name,...)1107 rproc_of_resm_mem_entry_init(struct device *dev, u32 of_resm_idx, size_t len,
1108 u32 da, const char *name, ...)
1109 {
1110 struct rproc_mem_entry *mem;
1111 va_list args;
1112
1113 mem = kzalloc(sizeof(*mem), GFP_KERNEL);
1114 if (!mem)
1115 return mem;
1116
1117 mem->da = da;
1118 mem->len = len;
1119 mem->rsc_offset = FW_RSC_ADDR_ANY;
1120 mem->of_resm_idx = of_resm_idx;
1121
1122 va_start(args, name);
1123 vsnprintf(mem->name, sizeof(mem->name), name, args);
1124 va_end(args);
1125
1126 return mem;
1127 }
1128 EXPORT_SYMBOL(rproc_of_resm_mem_entry_init);
1129
1130 /**
1131 * rproc_of_parse_firmware() - parse and return the firmware-name
1132 * @dev: pointer on device struct representing a rproc
1133 * @index: index to use for the firmware-name retrieval
1134 * @fw_name: pointer to a character string, in which the firmware
1135 * name is returned on success and unmodified otherwise.
1136 *
1137 * This is an OF helper function that parses a device's DT node for
1138 * the "firmware-name" property and returns the firmware name pointer
1139 * in @fw_name on success.
1140 *
1141 * Return: 0 on success, or an appropriate failure.
1142 */
rproc_of_parse_firmware(struct device * dev,int index,const char ** fw_name)1143 int rproc_of_parse_firmware(struct device *dev, int index, const char **fw_name)
1144 {
1145 int ret;
1146
1147 ret = of_property_read_string_index(dev->of_node, "firmware-name",
1148 index, fw_name);
1149 return ret ? ret : 0;
1150 }
1151 EXPORT_SYMBOL(rproc_of_parse_firmware);
1152
1153 /*
1154 * A lookup table for resource handlers. The indices are defined in
1155 * enum fw_resource_type.
1156 */
1157 static rproc_handle_resource_t rproc_loading_handlers[RSC_LAST] = {
1158 [RSC_CARVEOUT] = rproc_handle_carveout,
1159 [RSC_DEVMEM] = rproc_handle_devmem,
1160 [RSC_TRACE] = rproc_handle_trace,
1161 [RSC_VDEV] = rproc_handle_vdev,
1162 };
1163
1164 /* handle firmware resource entries before booting the remote processor */
rproc_handle_resources(struct rproc * rproc,rproc_handle_resource_t handlers[RSC_LAST])1165 static int rproc_handle_resources(struct rproc *rproc,
1166 rproc_handle_resource_t handlers[RSC_LAST])
1167 {
1168 struct device *dev = &rproc->dev;
1169 rproc_handle_resource_t handler;
1170 int ret = 0, i;
1171
1172 if (!rproc->table_ptr)
1173 return 0;
1174
1175 for (i = 0; i < rproc->table_ptr->num; i++) {
1176 int offset = rproc->table_ptr->offset[i];
1177 struct fw_rsc_hdr *hdr = (void *)rproc->table_ptr + offset;
1178 int avail = rproc->table_sz - offset - sizeof(*hdr);
1179 void *rsc = (void *)hdr + sizeof(*hdr);
1180
1181 /* make sure table isn't truncated */
1182 if (avail < 0) {
1183 dev_err(dev, "rsc table is truncated\n");
1184 return -EINVAL;
1185 }
1186
1187 dev_dbg(dev, "rsc: type %d\n", hdr->type);
1188
1189 if (hdr->type >= RSC_VENDOR_START &&
1190 hdr->type <= RSC_VENDOR_END) {
1191 ret = rproc_handle_rsc(rproc, hdr->type, rsc,
1192 offset + sizeof(*hdr), avail);
1193 if (ret == RSC_HANDLED)
1194 continue;
1195 else if (ret < 0)
1196 break;
1197
1198 dev_warn(dev, "unsupported vendor resource %d\n",
1199 hdr->type);
1200 continue;
1201 }
1202
1203 if (hdr->type >= RSC_LAST) {
1204 dev_warn(dev, "unsupported resource %d\n", hdr->type);
1205 continue;
1206 }
1207
1208 handler = handlers[hdr->type];
1209 if (!handler)
1210 continue;
1211
1212 ret = handler(rproc, rsc, offset + sizeof(*hdr), avail);
1213 if (ret)
1214 break;
1215 }
1216
1217 return ret;
1218 }
1219
rproc_prepare_subdevices(struct rproc * rproc)1220 static int rproc_prepare_subdevices(struct rproc *rproc)
1221 {
1222 struct rproc_subdev *subdev;
1223 int ret;
1224
1225 list_for_each_entry(subdev, &rproc->subdevs, node) {
1226 if (subdev->prepare) {
1227 ret = subdev->prepare(subdev);
1228 if (ret)
1229 goto unroll_preparation;
1230 }
1231 }
1232
1233 return 0;
1234
1235 unroll_preparation:
1236 list_for_each_entry_continue_reverse(subdev, &rproc->subdevs, node) {
1237 if (subdev->unprepare)
1238 subdev->unprepare(subdev);
1239 }
1240
1241 return ret;
1242 }
1243
rproc_start_subdevices(struct rproc * rproc)1244 static int rproc_start_subdevices(struct rproc *rproc)
1245 {
1246 struct rproc_subdev *subdev;
1247 int ret;
1248
1249 list_for_each_entry(subdev, &rproc->subdevs, node) {
1250 if (subdev->start) {
1251 ret = subdev->start(subdev);
1252 if (ret)
1253 goto unroll_registration;
1254 }
1255 }
1256
1257 return 0;
1258
1259 unroll_registration:
1260 list_for_each_entry_continue_reverse(subdev, &rproc->subdevs, node) {
1261 if (subdev->stop)
1262 subdev->stop(subdev, true);
1263 }
1264
1265 return ret;
1266 }
1267
rproc_stop_subdevices(struct rproc * rproc,bool crashed)1268 static void rproc_stop_subdevices(struct rproc *rproc, bool crashed)
1269 {
1270 struct rproc_subdev *subdev;
1271
1272 list_for_each_entry_reverse(subdev, &rproc->subdevs, node) {
1273 if (subdev->stop)
1274 subdev->stop(subdev, crashed);
1275 }
1276 }
1277
rproc_unprepare_subdevices(struct rproc * rproc)1278 static void rproc_unprepare_subdevices(struct rproc *rproc)
1279 {
1280 struct rproc_subdev *subdev;
1281
1282 list_for_each_entry_reverse(subdev, &rproc->subdevs, node) {
1283 if (subdev->unprepare)
1284 subdev->unprepare(subdev);
1285 }
1286 }
1287
1288 /**
1289 * rproc_alloc_registered_carveouts() - allocate all carveouts registered
1290 * in the list
1291 * @rproc: the remote processor handle
1292 *
1293 * This function parses registered carveout list, performs allocation
1294 * if alloc() ops registered and updates resource table information
1295 * if rsc_offset set.
1296 *
1297 * Return: 0 on success
1298 */
rproc_alloc_registered_carveouts(struct rproc * rproc)1299 static int rproc_alloc_registered_carveouts(struct rproc *rproc)
1300 {
1301 struct rproc_mem_entry *entry, *tmp;
1302 struct fw_rsc_carveout *rsc;
1303 struct device *dev = &rproc->dev;
1304 u64 pa;
1305 int ret;
1306
1307 list_for_each_entry_safe(entry, tmp, &rproc->carveouts, node) {
1308 if (entry->alloc) {
1309 ret = entry->alloc(rproc, entry);
1310 if (ret) {
1311 dev_err(dev, "Unable to allocate carveout %s: %d\n",
1312 entry->name, ret);
1313 return -ENOMEM;
1314 }
1315 }
1316
1317 if (entry->rsc_offset != FW_RSC_ADDR_ANY) {
1318 /* update resource table */
1319 rsc = (void *)rproc->table_ptr + entry->rsc_offset;
1320
1321 /*
1322 * Some remote processors might need to know the pa
1323 * even though they are behind an IOMMU. E.g., OMAP4's
1324 * remote M3 processor needs this so it can control
1325 * on-chip hardware accelerators that are not behind
1326 * the IOMMU, and therefor must know the pa.
1327 *
1328 * Generally we don't want to expose physical addresses
1329 * if we don't have to (remote processors are generally
1330 * _not_ trusted), so we might want to do this only for
1331 * remote processor that _must_ have this (e.g. OMAP4's
1332 * dual M3 subsystem).
1333 *
1334 * Non-IOMMU processors might also want to have this info.
1335 * In this case, the device address and the physical address
1336 * are the same.
1337 */
1338
1339 /* Use va if defined else dma to generate pa */
1340 if (entry->va)
1341 pa = (u64)rproc_va_to_pa(entry->va);
1342 else
1343 pa = (u64)entry->dma;
1344
1345 if (((u64)pa) & HIGH_BITS_MASK)
1346 dev_warn(dev,
1347 "Physical address cast in 32bit to fit resource table format\n");
1348
1349 rsc->pa = (u32)pa;
1350 rsc->da = entry->da;
1351 rsc->len = entry->len;
1352 }
1353 }
1354
1355 return 0;
1356 }
1357
1358
1359 /**
1360 * rproc_resource_cleanup() - clean up and free all acquired resources
1361 * @rproc: rproc handle
1362 *
1363 * This function will free all resources acquired for @rproc, and it
1364 * is called whenever @rproc either shuts down or fails to boot.
1365 */
rproc_resource_cleanup(struct rproc * rproc)1366 void rproc_resource_cleanup(struct rproc *rproc)
1367 {
1368 struct rproc_mem_entry *entry, *tmp;
1369 struct rproc_debug_trace *trace, *ttmp;
1370 struct rproc_vdev *rvdev, *rvtmp;
1371 struct device *dev = &rproc->dev;
1372
1373 /* clean up debugfs trace entries */
1374 list_for_each_entry_safe(trace, ttmp, &rproc->traces, node) {
1375 rproc_remove_trace_file(trace->tfile);
1376 rproc->num_traces--;
1377 list_del(&trace->node);
1378 kfree(trace);
1379 }
1380
1381 /* clean up iommu mapping entries */
1382 list_for_each_entry_safe(entry, tmp, &rproc->mappings, node) {
1383 size_t unmapped;
1384
1385 unmapped = iommu_unmap(rproc->domain, entry->da, entry->len);
1386 if (unmapped != entry->len) {
1387 /* nothing much to do besides complaining */
1388 dev_err(dev, "failed to unmap %zx/%zu\n", entry->len,
1389 unmapped);
1390 }
1391
1392 list_del(&entry->node);
1393 kfree(entry);
1394 }
1395
1396 /* clean up carveout allocations */
1397 list_for_each_entry_safe(entry, tmp, &rproc->carveouts, node) {
1398 if (entry->release)
1399 entry->release(rproc, entry);
1400 list_del(&entry->node);
1401 kfree(entry);
1402 }
1403
1404 /* clean up remote vdev entries */
1405 list_for_each_entry_safe(rvdev, rvtmp, &rproc->rvdevs, node)
1406 kref_put(&rvdev->refcount, rproc_vdev_release);
1407
1408 rproc_coredump_cleanup(rproc);
1409 }
1410 EXPORT_SYMBOL(rproc_resource_cleanup);
1411
rproc_start(struct rproc * rproc,const struct firmware * fw)1412 static int rproc_start(struct rproc *rproc, const struct firmware *fw)
1413 {
1414 struct resource_table *loaded_table;
1415 struct device *dev = &rproc->dev;
1416 int ret;
1417
1418 /* load the ELF segments to memory */
1419 ret = rproc_load_segments(rproc, fw);
1420 if (ret) {
1421 dev_err(dev, "Failed to load program segments: %d\n", ret);
1422 return ret;
1423 }
1424
1425 /*
1426 * The starting device has been given the rproc->cached_table as the
1427 * resource table. The address of the vring along with the other
1428 * allocated resources (carveouts etc) is stored in cached_table.
1429 * In order to pass this information to the remote device we must copy
1430 * this information to device memory. We also update the table_ptr so
1431 * that any subsequent changes will be applied to the loaded version.
1432 */
1433 loaded_table = rproc_find_loaded_rsc_table(rproc, fw);
1434 if (loaded_table) {
1435 memcpy(loaded_table, rproc->cached_table, rproc->table_sz);
1436 rproc->table_ptr = loaded_table;
1437 }
1438
1439 ret = rproc_prepare_subdevices(rproc);
1440 if (ret) {
1441 dev_err(dev, "failed to prepare subdevices for %s: %d\n",
1442 rproc->name, ret);
1443 goto reset_table_ptr;
1444 }
1445
1446 /* power up the remote processor */
1447 ret = rproc->ops->start(rproc);
1448 if (ret) {
1449 dev_err(dev, "can't start rproc %s: %d\n", rproc->name, ret);
1450 goto unprepare_subdevices;
1451 }
1452
1453 /* Start any subdevices for the remote processor */
1454 ret = rproc_start_subdevices(rproc);
1455 if (ret) {
1456 dev_err(dev, "failed to probe subdevices for %s: %d\n",
1457 rproc->name, ret);
1458 goto stop_rproc;
1459 }
1460
1461 rproc->state = RPROC_RUNNING;
1462
1463 dev_info(dev, "remote processor %s is now up\n", rproc->name);
1464
1465 return 0;
1466
1467 stop_rproc:
1468 rproc->ops->stop(rproc);
1469 unprepare_subdevices:
1470 rproc_unprepare_subdevices(rproc);
1471 reset_table_ptr:
1472 rproc->table_ptr = rproc->cached_table;
1473
1474 return ret;
1475 }
1476
__rproc_attach(struct rproc * rproc)1477 static int __rproc_attach(struct rproc *rproc)
1478 {
1479 struct device *dev = &rproc->dev;
1480 int ret;
1481
1482 ret = rproc_prepare_subdevices(rproc);
1483 if (ret) {
1484 dev_err(dev, "failed to prepare subdevices for %s: %d\n",
1485 rproc->name, ret);
1486 goto out;
1487 }
1488
1489 /* Attach to the remote processor */
1490 ret = rproc_attach_device(rproc);
1491 if (ret) {
1492 dev_err(dev, "can't attach to rproc %s: %d\n",
1493 rproc->name, ret);
1494 goto unprepare_subdevices;
1495 }
1496
1497 /* Start any subdevices for the remote processor */
1498 ret = rproc_start_subdevices(rproc);
1499 if (ret) {
1500 dev_err(dev, "failed to probe subdevices for %s: %d\n",
1501 rproc->name, ret);
1502 goto stop_rproc;
1503 }
1504
1505 rproc->state = RPROC_ATTACHED;
1506
1507 dev_info(dev, "remote processor %s is now attached\n", rproc->name);
1508
1509 return 0;
1510
1511 stop_rproc:
1512 rproc->ops->stop(rproc);
1513 unprepare_subdevices:
1514 rproc_unprepare_subdevices(rproc);
1515 out:
1516 return ret;
1517 }
1518
1519 /*
1520 * take a firmware and boot a remote processor with it.
1521 */
rproc_fw_boot(struct rproc * rproc,const struct firmware * fw)1522 static int rproc_fw_boot(struct rproc *rproc, const struct firmware *fw)
1523 {
1524 struct device *dev = &rproc->dev;
1525 const char *name = rproc->firmware;
1526 int ret;
1527
1528 ret = rproc_fw_sanity_check(rproc, fw);
1529 if (ret)
1530 return ret;
1531
1532 dev_info(dev, "Booting fw image %s, size %zd\n", name, fw->size);
1533
1534 /*
1535 * if enabling an IOMMU isn't relevant for this rproc, this is
1536 * just a nop
1537 */
1538 ret = rproc_enable_iommu(rproc);
1539 if (ret) {
1540 dev_err(dev, "can't enable iommu: %d\n", ret);
1541 return ret;
1542 }
1543
1544 /* Prepare rproc for firmware loading if needed */
1545 ret = rproc_prepare_device(rproc);
1546 if (ret) {
1547 dev_err(dev, "can't prepare rproc %s: %d\n", rproc->name, ret);
1548 goto disable_iommu;
1549 }
1550
1551 rproc->bootaddr = rproc_get_boot_addr(rproc, fw);
1552
1553 /* Load resource table, core dump segment list etc from the firmware */
1554 ret = rproc_parse_fw(rproc, fw);
1555 if (ret)
1556 goto unprepare_rproc;
1557
1558 /* reset max_notifyid */
1559 rproc->max_notifyid = -1;
1560
1561 /* reset handled vdev */
1562 rproc->nb_vdev = 0;
1563
1564 /* handle fw resources which are required to boot rproc */
1565 ret = rproc_handle_resources(rproc, rproc_loading_handlers);
1566 if (ret) {
1567 dev_err(dev, "Failed to process resources: %d\n", ret);
1568 goto clean_up_resources;
1569 }
1570
1571 /* Allocate carveout resources associated to rproc */
1572 ret = rproc_alloc_registered_carveouts(rproc);
1573 if (ret) {
1574 dev_err(dev, "Failed to allocate associated carveouts: %d\n",
1575 ret);
1576 goto clean_up_resources;
1577 }
1578
1579 ret = rproc_start(rproc, fw);
1580 if (ret)
1581 goto clean_up_resources;
1582
1583 return 0;
1584
1585 clean_up_resources:
1586 rproc_resource_cleanup(rproc);
1587 kfree(rproc->cached_table);
1588 rproc->cached_table = NULL;
1589 rproc->table_ptr = NULL;
1590 unprepare_rproc:
1591 /* release HW resources if needed */
1592 rproc_unprepare_device(rproc);
1593 disable_iommu:
1594 rproc_disable_iommu(rproc);
1595 return ret;
1596 }
1597
rproc_set_rsc_table(struct rproc * rproc)1598 static int rproc_set_rsc_table(struct rproc *rproc)
1599 {
1600 struct resource_table *table_ptr;
1601 struct device *dev = &rproc->dev;
1602 size_t table_sz;
1603 int ret;
1604
1605 table_ptr = rproc_get_loaded_rsc_table(rproc, &table_sz);
1606 if (!table_ptr) {
1607 /* Not having a resource table is acceptable */
1608 return 0;
1609 }
1610
1611 if (IS_ERR(table_ptr)) {
1612 ret = PTR_ERR(table_ptr);
1613 dev_err(dev, "can't load resource table: %d\n", ret);
1614 return ret;
1615 }
1616
1617 /*
1618 * If it is possible to detach the remote processor, keep an untouched
1619 * copy of the resource table. That way we can start fresh again when
1620 * the remote processor is re-attached, that is:
1621 *
1622 * DETACHED -> ATTACHED -> DETACHED -> ATTACHED
1623 *
1624 * Free'd in rproc_reset_rsc_table_on_detach() and
1625 * rproc_reset_rsc_table_on_stop().
1626 */
1627 if (rproc->ops->detach) {
1628 rproc->clean_table = kmemdup(table_ptr, table_sz, GFP_KERNEL);
1629 if (!rproc->clean_table)
1630 return -ENOMEM;
1631 } else {
1632 rproc->clean_table = NULL;
1633 }
1634
1635 rproc->cached_table = NULL;
1636 rproc->table_ptr = table_ptr;
1637 rproc->table_sz = table_sz;
1638
1639 return 0;
1640 }
1641
rproc_reset_rsc_table_on_detach(struct rproc * rproc)1642 static int rproc_reset_rsc_table_on_detach(struct rproc *rproc)
1643 {
1644 struct resource_table *table_ptr;
1645
1646 /* A resource table was never retrieved, nothing to do here */
1647 if (!rproc->table_ptr)
1648 return 0;
1649
1650 /*
1651 * If we made it to this point a clean_table _must_ have been
1652 * allocated in rproc_set_rsc_table(). If one isn't present
1653 * something went really wrong and we must complain.
1654 */
1655 if (WARN_ON(!rproc->clean_table))
1656 return -EINVAL;
1657
1658 /* Remember where the external entity installed the resource table */
1659 table_ptr = rproc->table_ptr;
1660
1661 /*
1662 * If we made it here the remote processor was started by another
1663 * entity and a cache table doesn't exist. As such make a copy of
1664 * the resource table currently used by the remote processor and
1665 * use that for the rest of the shutdown process. The memory
1666 * allocated here is free'd in rproc_detach().
1667 */
1668 rproc->cached_table = kmemdup(rproc->table_ptr,
1669 rproc->table_sz, GFP_KERNEL);
1670 if (!rproc->cached_table)
1671 return -ENOMEM;
1672
1673 /*
1674 * Use a copy of the resource table for the remainder of the
1675 * shutdown process.
1676 */
1677 rproc->table_ptr = rproc->cached_table;
1678
1679 /*
1680 * Reset the memory area where the firmware loaded the resource table
1681 * to its original value. That way when we re-attach the remote
1682 * processor the resource table is clean and ready to be used again.
1683 */
1684 memcpy(table_ptr, rproc->clean_table, rproc->table_sz);
1685
1686 /*
1687 * The clean resource table is no longer needed. Allocated in
1688 * rproc_set_rsc_table().
1689 */
1690 kfree(rproc->clean_table);
1691
1692 return 0;
1693 }
1694
rproc_reset_rsc_table_on_stop(struct rproc * rproc)1695 static int rproc_reset_rsc_table_on_stop(struct rproc *rproc)
1696 {
1697 /* A resource table was never retrieved, nothing to do here */
1698 if (!rproc->table_ptr)
1699 return 0;
1700
1701 /*
1702 * If a cache table exists the remote processor was started by
1703 * the remoteproc core. That cache table should be used for
1704 * the rest of the shutdown process.
1705 */
1706 if (rproc->cached_table)
1707 goto out;
1708
1709 /*
1710 * If we made it here the remote processor was started by another
1711 * entity and a cache table doesn't exist. As such make a copy of
1712 * the resource table currently used by the remote processor and
1713 * use that for the rest of the shutdown process. The memory
1714 * allocated here is free'd in rproc_shutdown().
1715 */
1716 rproc->cached_table = kmemdup(rproc->table_ptr,
1717 rproc->table_sz, GFP_KERNEL);
1718 if (!rproc->cached_table)
1719 return -ENOMEM;
1720
1721 /*
1722 * Since the remote processor is being switched off the clean table
1723 * won't be needed. Allocated in rproc_set_rsc_table().
1724 */
1725 kfree(rproc->clean_table);
1726
1727 out:
1728 /*
1729 * Use a copy of the resource table for the remainder of the
1730 * shutdown process.
1731 */
1732 rproc->table_ptr = rproc->cached_table;
1733 return 0;
1734 }
1735
1736 /*
1737 * Attach to remote processor - similar to rproc_fw_boot() but without
1738 * the steps that deal with the firmware image.
1739 */
rproc_attach(struct rproc * rproc)1740 static int rproc_attach(struct rproc *rproc)
1741 {
1742 struct device *dev = &rproc->dev;
1743 int ret;
1744
1745 /*
1746 * if enabling an IOMMU isn't relevant for this rproc, this is
1747 * just a nop
1748 */
1749 ret = rproc_enable_iommu(rproc);
1750 if (ret) {
1751 dev_err(dev, "can't enable iommu: %d\n", ret);
1752 return ret;
1753 }
1754
1755 /* Do anything that is needed to boot the remote processor */
1756 ret = rproc_prepare_device(rproc);
1757 if (ret) {
1758 dev_err(dev, "can't prepare rproc %s: %d\n", rproc->name, ret);
1759 goto disable_iommu;
1760 }
1761
1762 ret = rproc_set_rsc_table(rproc);
1763 if (ret) {
1764 dev_err(dev, "can't load resource table: %d\n", ret);
1765 goto unprepare_device;
1766 }
1767
1768 /* reset max_notifyid */
1769 rproc->max_notifyid = -1;
1770
1771 /* reset handled vdev */
1772 rproc->nb_vdev = 0;
1773
1774 /*
1775 * Handle firmware resources required to attach to a remote processor.
1776 * Because we are attaching rather than booting the remote processor,
1777 * we expect the platform driver to properly set rproc->table_ptr.
1778 */
1779 ret = rproc_handle_resources(rproc, rproc_loading_handlers);
1780 if (ret) {
1781 dev_err(dev, "Failed to process resources: %d\n", ret);
1782 goto unprepare_device;
1783 }
1784
1785 /* Allocate carveout resources associated to rproc */
1786 ret = rproc_alloc_registered_carveouts(rproc);
1787 if (ret) {
1788 dev_err(dev, "Failed to allocate associated carveouts: %d\n",
1789 ret);
1790 goto clean_up_resources;
1791 }
1792
1793 ret = __rproc_attach(rproc);
1794 if (ret)
1795 goto clean_up_resources;
1796
1797 return 0;
1798
1799 clean_up_resources:
1800 rproc_resource_cleanup(rproc);
1801 unprepare_device:
1802 /* release HW resources if needed */
1803 rproc_unprepare_device(rproc);
1804 disable_iommu:
1805 rproc_disable_iommu(rproc);
1806 return ret;
1807 }
1808
1809 /*
1810 * take a firmware and boot it up.
1811 *
1812 * Note: this function is called asynchronously upon registration of the
1813 * remote processor (so we must wait until it completes before we try
1814 * to unregister the device. one other option is just to use kref here,
1815 * that might be cleaner).
1816 */
rproc_auto_boot_callback(const struct firmware * fw,void * context)1817 static void rproc_auto_boot_callback(const struct firmware *fw, void *context)
1818 {
1819 struct rproc *rproc = context;
1820
1821 rproc_boot(rproc);
1822
1823 release_firmware(fw);
1824 }
1825
rproc_trigger_auto_boot(struct rproc * rproc)1826 static int rproc_trigger_auto_boot(struct rproc *rproc)
1827 {
1828 int ret;
1829
1830 /*
1831 * Since the remote processor is in a detached state, it has already
1832 * been booted by another entity. As such there is no point in waiting
1833 * for a firmware image to be loaded, we can simply initiate the process
1834 * of attaching to it immediately.
1835 */
1836 if (rproc->state == RPROC_DETACHED)
1837 return rproc_boot(rproc);
1838
1839 /*
1840 * We're initiating an asynchronous firmware loading, so we can
1841 * be built-in kernel code, without hanging the boot process.
1842 */
1843 ret = request_firmware_nowait(THIS_MODULE, FW_ACTION_UEVENT,
1844 rproc->firmware, &rproc->dev, GFP_KERNEL,
1845 rproc, rproc_auto_boot_callback);
1846 if (ret < 0)
1847 dev_err(&rproc->dev, "request_firmware_nowait err: %d\n", ret);
1848
1849 return ret;
1850 }
1851
rproc_stop(struct rproc * rproc,bool crashed)1852 static int rproc_stop(struct rproc *rproc, bool crashed)
1853 {
1854 struct device *dev = &rproc->dev;
1855 int ret;
1856
1857 /* No need to continue if a stop() operation has not been provided */
1858 if (!rproc->ops->stop)
1859 return -EINVAL;
1860
1861 /* Stop any subdevices for the remote processor */
1862 rproc_stop_subdevices(rproc, crashed);
1863
1864 /* the installed resource table is no longer accessible */
1865 ret = rproc_reset_rsc_table_on_stop(rproc);
1866 if (ret) {
1867 dev_err(dev, "can't reset resource table: %d\n", ret);
1868 return ret;
1869 }
1870
1871
1872 /* power off the remote processor */
1873 ret = rproc->ops->stop(rproc);
1874 if (ret) {
1875 dev_err(dev, "can't stop rproc: %d\n", ret);
1876 return ret;
1877 }
1878
1879 rproc_unprepare_subdevices(rproc);
1880
1881 rproc->state = RPROC_OFFLINE;
1882
1883 dev_info(dev, "stopped remote processor %s\n", rproc->name);
1884
1885 return 0;
1886 }
1887
1888 /*
1889 * __rproc_detach(): Does the opposite of __rproc_attach()
1890 */
__rproc_detach(struct rproc * rproc)1891 static int __rproc_detach(struct rproc *rproc)
1892 {
1893 struct device *dev = &rproc->dev;
1894 int ret;
1895
1896 /* No need to continue if a detach() operation has not been provided */
1897 if (!rproc->ops->detach)
1898 return -EINVAL;
1899
1900 /* Stop any subdevices for the remote processor */
1901 rproc_stop_subdevices(rproc, false);
1902
1903 /* the installed resource table is no longer accessible */
1904 ret = rproc_reset_rsc_table_on_detach(rproc);
1905 if (ret) {
1906 dev_err(dev, "can't reset resource table: %d\n", ret);
1907 return ret;
1908 }
1909
1910 /* Tell the remote processor the core isn't available anymore */
1911 ret = rproc->ops->detach(rproc);
1912 if (ret) {
1913 dev_err(dev, "can't detach from rproc: %d\n", ret);
1914 return ret;
1915 }
1916
1917 rproc_unprepare_subdevices(rproc);
1918
1919 rproc->state = RPROC_DETACHED;
1920
1921 dev_info(dev, "detached remote processor %s\n", rproc->name);
1922
1923 return 0;
1924 }
1925
1926 /**
1927 * rproc_trigger_recovery() - recover a remoteproc
1928 * @rproc: the remote processor
1929 *
1930 * The recovery is done by resetting all the virtio devices, that way all the
1931 * rpmsg drivers will be reseted along with the remote processor making the
1932 * remoteproc functional again.
1933 *
1934 * This function can sleep, so it cannot be called from atomic context.
1935 *
1936 * Return: 0 on success or a negative value upon failure
1937 */
rproc_trigger_recovery(struct rproc * rproc)1938 int rproc_trigger_recovery(struct rproc *rproc)
1939 {
1940 const struct firmware *firmware_p;
1941 struct device *dev = &rproc->dev;
1942 int ret;
1943
1944 ret = mutex_lock_interruptible(&rproc->lock);
1945 if (ret)
1946 return ret;
1947
1948 /* State could have changed before we got the mutex */
1949 if (rproc->state != RPROC_CRASHED)
1950 goto unlock_mutex;
1951
1952 dev_err(dev, "recovering %s\n", rproc->name);
1953
1954 ret = rproc_stop(rproc, true);
1955 if (ret)
1956 goto unlock_mutex;
1957
1958 /* generate coredump */
1959 rproc->ops->coredump(rproc);
1960
1961 /* load firmware */
1962 ret = request_firmware(&firmware_p, rproc->firmware, dev);
1963 if (ret < 0) {
1964 dev_err(dev, "request_firmware failed: %d\n", ret);
1965 goto unlock_mutex;
1966 }
1967
1968 /* boot the remote processor up again */
1969 ret = rproc_start(rproc, firmware_p);
1970
1971 release_firmware(firmware_p);
1972
1973 unlock_mutex:
1974 mutex_unlock(&rproc->lock);
1975 return ret;
1976 }
1977
1978 /**
1979 * rproc_crash_handler_work() - handle a crash
1980 * @work: work treating the crash
1981 *
1982 * This function needs to handle everything related to a crash, like cpu
1983 * registers and stack dump, information to help to debug the fatal error, etc.
1984 */
rproc_crash_handler_work(struct work_struct * work)1985 static void rproc_crash_handler_work(struct work_struct *work)
1986 {
1987 struct rproc *rproc = container_of(work, struct rproc, crash_handler);
1988 struct device *dev = &rproc->dev;
1989
1990 dev_dbg(dev, "enter %s\n", __func__);
1991
1992 mutex_lock(&rproc->lock);
1993
1994 if (rproc->state == RPROC_CRASHED) {
1995 /* handle only the first crash detected */
1996 mutex_unlock(&rproc->lock);
1997 return;
1998 }
1999
2000 if (rproc->state == RPROC_OFFLINE) {
2001 /* Don't recover if the remote processor was stopped */
2002 mutex_unlock(&rproc->lock);
2003 goto out;
2004 }
2005
2006 rproc->state = RPROC_CRASHED;
2007 dev_err(dev, "handling crash #%u in %s\n", ++rproc->crash_cnt,
2008 rproc->name);
2009
2010 mutex_unlock(&rproc->lock);
2011
2012 if (!rproc->recovery_disabled)
2013 rproc_trigger_recovery(rproc);
2014
2015 out:
2016 trace_android_vh_rproc_recovery(rproc);
2017 pm_relax(rproc->dev.parent);
2018 }
2019
2020 /**
2021 * rproc_boot() - boot a remote processor
2022 * @rproc: handle of a remote processor
2023 *
2024 * Boot a remote processor (i.e. load its firmware, power it on, ...).
2025 *
2026 * If the remote processor is already powered on, this function immediately
2027 * returns (successfully).
2028 *
2029 * Return: 0 on success, and an appropriate error value otherwise
2030 */
rproc_boot(struct rproc * rproc)2031 int rproc_boot(struct rproc *rproc)
2032 {
2033 const struct firmware *firmware_p;
2034 struct device *dev;
2035 int ret;
2036
2037 if (!rproc) {
2038 pr_err("invalid rproc handle\n");
2039 return -EINVAL;
2040 }
2041
2042 dev = &rproc->dev;
2043
2044 ret = mutex_lock_interruptible(&rproc->lock);
2045 if (ret) {
2046 dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
2047 return ret;
2048 }
2049
2050 if (rproc->state == RPROC_DELETED) {
2051 ret = -ENODEV;
2052 dev_err(dev, "can't boot deleted rproc %s\n", rproc->name);
2053 goto unlock_mutex;
2054 }
2055
2056 /* skip the boot or attach process if rproc is already powered up */
2057 if (atomic_inc_return(&rproc->power) > 1) {
2058 ret = 0;
2059 goto unlock_mutex;
2060 }
2061
2062 if (rproc->state == RPROC_DETACHED) {
2063 dev_info(dev, "attaching to %s\n", rproc->name);
2064
2065 ret = rproc_attach(rproc);
2066 } else {
2067 dev_info(dev, "powering up %s\n", rproc->name);
2068
2069 /* load firmware */
2070 ret = request_firmware(&firmware_p, rproc->firmware, dev);
2071 if (ret < 0) {
2072 dev_err(dev, "request_firmware failed: %d\n", ret);
2073 goto downref_rproc;
2074 }
2075
2076 ret = rproc_fw_boot(rproc, firmware_p);
2077
2078 release_firmware(firmware_p);
2079 }
2080
2081 downref_rproc:
2082 if (ret)
2083 atomic_dec(&rproc->power);
2084 unlock_mutex:
2085 mutex_unlock(&rproc->lock);
2086 return ret;
2087 }
2088 EXPORT_SYMBOL(rproc_boot);
2089
2090 /**
2091 * rproc_shutdown() - power off the remote processor
2092 * @rproc: the remote processor
2093 *
2094 * Power off a remote processor (previously booted with rproc_boot()).
2095 *
2096 * In case @rproc is still being used by an additional user(s), then
2097 * this function will just decrement the power refcount and exit,
2098 * without really powering off the device.
2099 *
2100 * Every call to rproc_boot() must (eventually) be accompanied by a call
2101 * to rproc_shutdown(). Calling rproc_shutdown() redundantly is a bug.
2102 *
2103 * Notes:
2104 * - we're not decrementing the rproc's refcount, only the power refcount.
2105 * which means that the @rproc handle stays valid even after rproc_shutdown()
2106 * returns, and users can still use it with a subsequent rproc_boot(), if
2107 * needed.
2108 */
rproc_shutdown(struct rproc * rproc)2109 void rproc_shutdown(struct rproc *rproc)
2110 {
2111 struct device *dev = &rproc->dev;
2112 int ret;
2113
2114 ret = mutex_lock_interruptible(&rproc->lock);
2115 if (ret) {
2116 dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
2117 return;
2118 }
2119
2120 /* if the remote proc is still needed, bail out */
2121 if (!atomic_dec_and_test(&rproc->power))
2122 goto out;
2123
2124 ret = rproc_stop(rproc, false);
2125 if (ret) {
2126 atomic_inc(&rproc->power);
2127 goto out;
2128 }
2129
2130 /* clean up all acquired resources */
2131 rproc_resource_cleanup(rproc);
2132
2133 /* release HW resources if needed */
2134 rproc_unprepare_device(rproc);
2135
2136 rproc_disable_iommu(rproc);
2137
2138 /* Free the copy of the resource table */
2139 kfree(rproc->cached_table);
2140 rproc->cached_table = NULL;
2141 rproc->table_ptr = NULL;
2142 out:
2143 mutex_unlock(&rproc->lock);
2144 }
2145 EXPORT_SYMBOL(rproc_shutdown);
2146
2147 /**
2148 * rproc_detach() - Detach the remote processor from the
2149 * remoteproc core
2150 *
2151 * @rproc: the remote processor
2152 *
2153 * Detach a remote processor (previously attached to with rproc_attach()).
2154 *
2155 * In case @rproc is still being used by an additional user(s), then
2156 * this function will just decrement the power refcount and exit,
2157 * without disconnecting the device.
2158 *
2159 * Function rproc_detach() calls __rproc_detach() in order to let a remote
2160 * processor know that services provided by the application processor are
2161 * no longer available. From there it should be possible to remove the
2162 * platform driver and even power cycle the application processor (if the HW
2163 * supports it) without needing to switch off the remote processor.
2164 *
2165 * Return: 0 on success, and an appropriate error value otherwise
2166 */
rproc_detach(struct rproc * rproc)2167 int rproc_detach(struct rproc *rproc)
2168 {
2169 struct device *dev = &rproc->dev;
2170 int ret;
2171
2172 ret = mutex_lock_interruptible(&rproc->lock);
2173 if (ret) {
2174 dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
2175 return ret;
2176 }
2177
2178 /* if the remote proc is still needed, bail out */
2179 if (!atomic_dec_and_test(&rproc->power)) {
2180 ret = 0;
2181 goto out;
2182 }
2183
2184 ret = __rproc_detach(rproc);
2185 if (ret) {
2186 atomic_inc(&rproc->power);
2187 goto out;
2188 }
2189
2190 /* clean up all acquired resources */
2191 rproc_resource_cleanup(rproc);
2192
2193 /* release HW resources if needed */
2194 rproc_unprepare_device(rproc);
2195
2196 rproc_disable_iommu(rproc);
2197
2198 /* Free the copy of the resource table */
2199 kfree(rproc->cached_table);
2200 rproc->cached_table = NULL;
2201 rproc->table_ptr = NULL;
2202 out:
2203 mutex_unlock(&rproc->lock);
2204 return ret;
2205 }
2206 EXPORT_SYMBOL(rproc_detach);
2207
2208 /**
2209 * rproc_get_by_phandle() - find a remote processor by phandle
2210 * @phandle: phandle to the rproc
2211 *
2212 * Finds an rproc handle using the remote processor's phandle, and then
2213 * return a handle to the rproc.
2214 *
2215 * This function increments the remote processor's refcount, so always
2216 * use rproc_put() to decrement it back once rproc isn't needed anymore.
2217 *
2218 * Return: rproc handle on success, and NULL on failure
2219 */
2220 #ifdef CONFIG_OF
rproc_get_by_phandle(phandle phandle)2221 struct rproc *rproc_get_by_phandle(phandle phandle)
2222 {
2223 struct rproc *rproc = NULL, *r;
2224 struct device_node *np;
2225
2226 np = of_find_node_by_phandle(phandle);
2227 if (!np)
2228 return NULL;
2229
2230 rcu_read_lock();
2231 list_for_each_entry_rcu(r, &rproc_list, node) {
2232 if (r->dev.parent && r->dev.parent->of_node == np) {
2233 /* prevent underlying implementation from being removed */
2234 if (!try_module_get(r->dev.parent->driver->owner)) {
2235 dev_err(&r->dev, "can't get owner\n");
2236 break;
2237 }
2238
2239 rproc = r;
2240 get_device(&rproc->dev);
2241 break;
2242 }
2243 }
2244 rcu_read_unlock();
2245
2246 of_node_put(np);
2247
2248 return rproc;
2249 }
2250 #else
rproc_get_by_phandle(phandle phandle)2251 struct rproc *rproc_get_by_phandle(phandle phandle)
2252 {
2253 return NULL;
2254 }
2255 #endif
2256 EXPORT_SYMBOL(rproc_get_by_phandle);
2257
2258 /**
2259 * rproc_set_firmware() - assign a new firmware
2260 * @rproc: rproc handle to which the new firmware is being assigned
2261 * @fw_name: new firmware name to be assigned
2262 *
2263 * This function allows remoteproc drivers or clients to configure a custom
2264 * firmware name that is different from the default name used during remoteproc
2265 * registration. The function does not trigger a remote processor boot,
2266 * only sets the firmware name used for a subsequent boot. This function
2267 * should also be called only when the remote processor is offline.
2268 *
2269 * This allows either the userspace to configure a different name through
2270 * sysfs or a kernel-level remoteproc or a remoteproc client driver to set
2271 * a specific firmware when it is controlling the boot and shutdown of the
2272 * remote processor.
2273 *
2274 * Return: 0 on success or a negative value upon failure
2275 */
rproc_set_firmware(struct rproc * rproc,const char * fw_name)2276 int rproc_set_firmware(struct rproc *rproc, const char *fw_name)
2277 {
2278 struct device *dev;
2279 int ret, len;
2280 char *p;
2281
2282 if (!rproc || !fw_name)
2283 return -EINVAL;
2284
2285 dev = rproc->dev.parent;
2286
2287 ret = mutex_lock_interruptible(&rproc->lock);
2288 if (ret) {
2289 dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
2290 return -EINVAL;
2291 }
2292
2293 if (rproc->state != RPROC_OFFLINE) {
2294 dev_err(dev, "can't change firmware while running\n");
2295 ret = -EBUSY;
2296 goto out;
2297 }
2298
2299 len = strcspn(fw_name, "\n");
2300 if (!len) {
2301 dev_err(dev, "can't provide empty string for firmware name\n");
2302 ret = -EINVAL;
2303 goto out;
2304 }
2305
2306 p = kstrndup(fw_name, len, GFP_KERNEL);
2307 if (!p) {
2308 ret = -ENOMEM;
2309 goto out;
2310 }
2311
2312 kfree_const(rproc->firmware);
2313 rproc->firmware = p;
2314
2315 out:
2316 mutex_unlock(&rproc->lock);
2317 return ret;
2318 }
2319 EXPORT_SYMBOL(rproc_set_firmware);
2320
rproc_validate(struct rproc * rproc)2321 static int rproc_validate(struct rproc *rproc)
2322 {
2323 switch (rproc->state) {
2324 case RPROC_OFFLINE:
2325 /*
2326 * An offline processor without a start()
2327 * function makes no sense.
2328 */
2329 if (!rproc->ops->start)
2330 return -EINVAL;
2331 break;
2332 case RPROC_DETACHED:
2333 /*
2334 * A remote processor in a detached state without an
2335 * attach() function makes not sense.
2336 */
2337 if (!rproc->ops->attach)
2338 return -EINVAL;
2339 /*
2340 * When attaching to a remote processor the device memory
2341 * is already available and as such there is no need to have a
2342 * cached table.
2343 */
2344 if (rproc->cached_table)
2345 return -EINVAL;
2346 break;
2347 default:
2348 /*
2349 * When adding a remote processor, the state of the device
2350 * can be offline or detached, nothing else.
2351 */
2352 return -EINVAL;
2353 }
2354
2355 return 0;
2356 }
2357
2358 /**
2359 * rproc_add() - register a remote processor
2360 * @rproc: the remote processor handle to register
2361 *
2362 * Registers @rproc with the remoteproc framework, after it has been
2363 * allocated with rproc_alloc().
2364 *
2365 * This is called by the platform-specific rproc implementation, whenever
2366 * a new remote processor device is probed.
2367 *
2368 * Note: this function initiates an asynchronous firmware loading
2369 * context, which will look for virtio devices supported by the rproc's
2370 * firmware.
2371 *
2372 * If found, those virtio devices will be created and added, so as a result
2373 * of registering this remote processor, additional virtio drivers might be
2374 * probed.
2375 *
2376 * Return: 0 on success and an appropriate error code otherwise
2377 */
rproc_add(struct rproc * rproc)2378 int rproc_add(struct rproc *rproc)
2379 {
2380 struct device *dev = &rproc->dev;
2381 int ret;
2382
2383 ret = rproc_validate(rproc);
2384 if (ret < 0)
2385 return ret;
2386
2387 /* add char device for this remoteproc */
2388 ret = rproc_char_device_add(rproc);
2389 if (ret < 0)
2390 return ret;
2391
2392 ret = device_add(dev);
2393 if (ret < 0) {
2394 put_device(dev);
2395 goto rproc_remove_cdev;
2396 }
2397
2398 dev_info(dev, "%s is available\n", rproc->name);
2399
2400 /* create debugfs entries */
2401 rproc_create_debug_dir(rproc);
2402
2403 /* if rproc is marked always-on, request it to boot */
2404 if (rproc->auto_boot) {
2405 ret = rproc_trigger_auto_boot(rproc);
2406 if (ret < 0)
2407 goto rproc_remove_dev;
2408 }
2409
2410 /* expose to rproc_get_by_phandle users */
2411 mutex_lock(&rproc_list_mutex);
2412 list_add_rcu(&rproc->node, &rproc_list);
2413 mutex_unlock(&rproc_list_mutex);
2414
2415 return 0;
2416
2417 rproc_remove_dev:
2418 rproc_delete_debug_dir(rproc);
2419 device_del(dev);
2420 rproc_remove_cdev:
2421 rproc_char_device_remove(rproc);
2422 return ret;
2423 }
2424 EXPORT_SYMBOL(rproc_add);
2425
devm_rproc_remove(void * rproc)2426 static void devm_rproc_remove(void *rproc)
2427 {
2428 rproc_del(rproc);
2429 }
2430
2431 /**
2432 * devm_rproc_add() - resource managed rproc_add()
2433 * @dev: the underlying device
2434 * @rproc: the remote processor handle to register
2435 *
2436 * This function performs like rproc_add() but the registered rproc device will
2437 * automatically be removed on driver detach.
2438 *
2439 * Return: 0 on success, negative errno on failure
2440 */
devm_rproc_add(struct device * dev,struct rproc * rproc)2441 int devm_rproc_add(struct device *dev, struct rproc *rproc)
2442 {
2443 int err;
2444
2445 err = rproc_add(rproc);
2446 if (err)
2447 return err;
2448
2449 return devm_add_action_or_reset(dev, devm_rproc_remove, rproc);
2450 }
2451 EXPORT_SYMBOL(devm_rproc_add);
2452
2453 /**
2454 * rproc_type_release() - release a remote processor instance
2455 * @dev: the rproc's device
2456 *
2457 * This function should _never_ be called directly.
2458 *
2459 * It will be called by the driver core when no one holds a valid pointer
2460 * to @dev anymore.
2461 */
rproc_type_release(struct device * dev)2462 static void rproc_type_release(struct device *dev)
2463 {
2464 struct rproc *rproc = container_of(dev, struct rproc, dev);
2465
2466 dev_info(&rproc->dev, "releasing %s\n", rproc->name);
2467
2468 idr_destroy(&rproc->notifyids);
2469
2470 if (rproc->index >= 0)
2471 ida_simple_remove(&rproc_dev_index, rproc->index);
2472
2473 kfree_const(rproc->firmware);
2474 kfree_const(rproc->name);
2475 kfree(rproc->ops);
2476 kfree(rproc);
2477 }
2478
2479 static const struct device_type rproc_type = {
2480 .name = "remoteproc",
2481 .release = rproc_type_release,
2482 };
2483
rproc_alloc_firmware(struct rproc * rproc,const char * name,const char * firmware)2484 static int rproc_alloc_firmware(struct rproc *rproc,
2485 const char *name, const char *firmware)
2486 {
2487 const char *p;
2488
2489 /*
2490 * Allocate a firmware name if the caller gave us one to work
2491 * with. Otherwise construct a new one using a default pattern.
2492 */
2493 if (firmware)
2494 p = kstrdup_const(firmware, GFP_KERNEL);
2495 else
2496 p = kasprintf(GFP_KERNEL, "rproc-%s-fw", name);
2497
2498 if (!p)
2499 return -ENOMEM;
2500
2501 rproc->firmware = p;
2502
2503 return 0;
2504 }
2505
rproc_alloc_ops(struct rproc * rproc,const struct rproc_ops * ops)2506 static int rproc_alloc_ops(struct rproc *rproc, const struct rproc_ops *ops)
2507 {
2508 rproc->ops = kmemdup(ops, sizeof(*ops), GFP_KERNEL);
2509 if (!rproc->ops)
2510 return -ENOMEM;
2511
2512 /* Default to rproc_coredump if no coredump function is specified */
2513 if (!rproc->ops->coredump)
2514 rproc->ops->coredump = rproc_coredump;
2515
2516 if (rproc->ops->load)
2517 return 0;
2518
2519 /* Default to ELF loader if no load function is specified */
2520 rproc->ops->load = rproc_elf_load_segments;
2521 rproc->ops->parse_fw = rproc_elf_load_rsc_table;
2522 rproc->ops->find_loaded_rsc_table = rproc_elf_find_loaded_rsc_table;
2523 rproc->ops->sanity_check = rproc_elf_sanity_check;
2524 rproc->ops->get_boot_addr = rproc_elf_get_boot_addr;
2525
2526 return 0;
2527 }
2528
2529 /**
2530 * rproc_alloc() - allocate a remote processor handle
2531 * @dev: the underlying device
2532 * @name: name of this remote processor
2533 * @ops: platform-specific handlers (mainly start/stop)
2534 * @firmware: name of firmware file to load, can be NULL
2535 * @len: length of private data needed by the rproc driver (in bytes)
2536 *
2537 * Allocates a new remote processor handle, but does not register
2538 * it yet. if @firmware is NULL, a default name is used.
2539 *
2540 * This function should be used by rproc implementations during initialization
2541 * of the remote processor.
2542 *
2543 * After creating an rproc handle using this function, and when ready,
2544 * implementations should then call rproc_add() to complete
2545 * the registration of the remote processor.
2546 *
2547 * Note: _never_ directly deallocate @rproc, even if it was not registered
2548 * yet. Instead, when you need to unroll rproc_alloc(), use rproc_free().
2549 *
2550 * Return: new rproc pointer on success, and NULL on failure
2551 */
rproc_alloc(struct device * dev,const char * name,const struct rproc_ops * ops,const char * firmware,int len)2552 struct rproc *rproc_alloc(struct device *dev, const char *name,
2553 const struct rproc_ops *ops,
2554 const char *firmware, int len)
2555 {
2556 struct rproc *rproc;
2557
2558 if (!dev || !name || !ops)
2559 return NULL;
2560
2561 rproc = kzalloc(sizeof(struct rproc) + len, GFP_KERNEL);
2562 if (!rproc)
2563 return NULL;
2564
2565 rproc->priv = &rproc[1];
2566 rproc->auto_boot = true;
2567 rproc->elf_class = ELFCLASSNONE;
2568 rproc->elf_machine = EM_NONE;
2569
2570 device_initialize(&rproc->dev);
2571 rproc->dev.parent = dev;
2572 rproc->dev.type = &rproc_type;
2573 rproc->dev.class = &rproc_class;
2574 rproc->dev.driver_data = rproc;
2575 idr_init(&rproc->notifyids);
2576
2577 rproc->name = kstrdup_const(name, GFP_KERNEL);
2578 if (!rproc->name)
2579 goto put_device;
2580
2581 if (rproc_alloc_firmware(rproc, name, firmware))
2582 goto put_device;
2583
2584 if (rproc_alloc_ops(rproc, ops))
2585 goto put_device;
2586
2587 /* Assign a unique device index and name */
2588 rproc->index = ida_simple_get(&rproc_dev_index, 0, 0, GFP_KERNEL);
2589 if (rproc->index < 0) {
2590 dev_err(dev, "ida_simple_get failed: %d\n", rproc->index);
2591 goto put_device;
2592 }
2593
2594 dev_set_name(&rproc->dev, "remoteproc%d", rproc->index);
2595
2596 atomic_set(&rproc->power, 0);
2597
2598 mutex_init(&rproc->lock);
2599
2600 INIT_LIST_HEAD(&rproc->carveouts);
2601 INIT_LIST_HEAD(&rproc->mappings);
2602 INIT_LIST_HEAD(&rproc->traces);
2603 INIT_LIST_HEAD(&rproc->rvdevs);
2604 INIT_LIST_HEAD(&rproc->subdevs);
2605 INIT_LIST_HEAD(&rproc->dump_segments);
2606
2607 INIT_WORK(&rproc->crash_handler, rproc_crash_handler_work);
2608
2609 rproc->state = RPROC_OFFLINE;
2610
2611 return rproc;
2612
2613 put_device:
2614 put_device(&rproc->dev);
2615 return NULL;
2616 }
2617 EXPORT_SYMBOL(rproc_alloc);
2618
2619 /**
2620 * rproc_free() - unroll rproc_alloc()
2621 * @rproc: the remote processor handle
2622 *
2623 * This function decrements the rproc dev refcount.
2624 *
2625 * If no one holds any reference to rproc anymore, then its refcount would
2626 * now drop to zero, and it would be freed.
2627 */
rproc_free(struct rproc * rproc)2628 void rproc_free(struct rproc *rproc)
2629 {
2630 put_device(&rproc->dev);
2631 }
2632 EXPORT_SYMBOL(rproc_free);
2633
2634 /**
2635 * rproc_put() - release rproc reference
2636 * @rproc: the remote processor handle
2637 *
2638 * This function decrements the rproc dev refcount.
2639 *
2640 * If no one holds any reference to rproc anymore, then its refcount would
2641 * now drop to zero, and it would be freed.
2642 */
rproc_put(struct rproc * rproc)2643 void rproc_put(struct rproc *rproc)
2644 {
2645 module_put(rproc->dev.parent->driver->owner);
2646 put_device(&rproc->dev);
2647 }
2648 EXPORT_SYMBOL(rproc_put);
2649
2650 /**
2651 * rproc_del() - unregister a remote processor
2652 * @rproc: rproc handle to unregister
2653 *
2654 * This function should be called when the platform specific rproc
2655 * implementation decides to remove the rproc device. it should
2656 * _only_ be called if a previous invocation of rproc_add()
2657 * has completed successfully.
2658 *
2659 * After rproc_del() returns, @rproc isn't freed yet, because
2660 * of the outstanding reference created by rproc_alloc. To decrement that
2661 * one last refcount, one still needs to call rproc_free().
2662 *
2663 * Return: 0 on success and -EINVAL if @rproc isn't valid
2664 */
rproc_del(struct rproc * rproc)2665 int rproc_del(struct rproc *rproc)
2666 {
2667 if (!rproc)
2668 return -EINVAL;
2669
2670 /* TODO: make sure this works with rproc->power > 1 */
2671 rproc_shutdown(rproc);
2672
2673 mutex_lock(&rproc->lock);
2674 rproc->state = RPROC_DELETED;
2675 mutex_unlock(&rproc->lock);
2676
2677 rproc_delete_debug_dir(rproc);
2678
2679 /* the rproc is downref'ed as soon as it's removed from the klist */
2680 mutex_lock(&rproc_list_mutex);
2681 list_del_rcu(&rproc->node);
2682 mutex_unlock(&rproc_list_mutex);
2683
2684 /* Ensure that no readers of rproc_list are still active */
2685 synchronize_rcu();
2686
2687 device_del(&rproc->dev);
2688 rproc_char_device_remove(rproc);
2689
2690 return 0;
2691 }
2692 EXPORT_SYMBOL(rproc_del);
2693
devm_rproc_free(struct device * dev,void * res)2694 static void devm_rproc_free(struct device *dev, void *res)
2695 {
2696 rproc_free(*(struct rproc **)res);
2697 }
2698
2699 /**
2700 * devm_rproc_alloc() - resource managed rproc_alloc()
2701 * @dev: the underlying device
2702 * @name: name of this remote processor
2703 * @ops: platform-specific handlers (mainly start/stop)
2704 * @firmware: name of firmware file to load, can be NULL
2705 * @len: length of private data needed by the rproc driver (in bytes)
2706 *
2707 * This function performs like rproc_alloc() but the acquired rproc device will
2708 * automatically be released on driver detach.
2709 *
2710 * Return: new rproc instance, or NULL on failure
2711 */
devm_rproc_alloc(struct device * dev,const char * name,const struct rproc_ops * ops,const char * firmware,int len)2712 struct rproc *devm_rproc_alloc(struct device *dev, const char *name,
2713 const struct rproc_ops *ops,
2714 const char *firmware, int len)
2715 {
2716 struct rproc **ptr, *rproc;
2717
2718 ptr = devres_alloc(devm_rproc_free, sizeof(*ptr), GFP_KERNEL);
2719 if (!ptr)
2720 return NULL;
2721
2722 rproc = rproc_alloc(dev, name, ops, firmware, len);
2723 if (rproc) {
2724 *ptr = rproc;
2725 devres_add(dev, ptr);
2726 } else {
2727 devres_free(ptr);
2728 }
2729
2730 return rproc;
2731 }
2732 EXPORT_SYMBOL(devm_rproc_alloc);
2733
2734 /**
2735 * rproc_add_subdev() - add a subdevice to a remoteproc
2736 * @rproc: rproc handle to add the subdevice to
2737 * @subdev: subdev handle to register
2738 *
2739 * Caller is responsible for populating optional subdevice function pointers.
2740 */
rproc_add_subdev(struct rproc * rproc,struct rproc_subdev * subdev)2741 void rproc_add_subdev(struct rproc *rproc, struct rproc_subdev *subdev)
2742 {
2743 list_add_tail(&subdev->node, &rproc->subdevs);
2744 }
2745 EXPORT_SYMBOL(rproc_add_subdev);
2746
2747 /**
2748 * rproc_remove_subdev() - remove a subdevice from a remoteproc
2749 * @rproc: rproc handle to remove the subdevice from
2750 * @subdev: subdev handle, previously registered with rproc_add_subdev()
2751 */
rproc_remove_subdev(struct rproc * rproc,struct rproc_subdev * subdev)2752 void rproc_remove_subdev(struct rproc *rproc, struct rproc_subdev *subdev)
2753 {
2754 list_del(&subdev->node);
2755 }
2756 EXPORT_SYMBOL(rproc_remove_subdev);
2757
2758 /**
2759 * rproc_get_by_child() - acquire rproc handle of @dev's ancestor
2760 * @dev: child device to find ancestor of
2761 *
2762 * Return: the ancestor rproc instance, or NULL if not found
2763 */
rproc_get_by_child(struct device * dev)2764 struct rproc *rproc_get_by_child(struct device *dev)
2765 {
2766 for (dev = dev->parent; dev; dev = dev->parent) {
2767 if (dev->type == &rproc_type)
2768 return dev->driver_data;
2769 }
2770
2771 return NULL;
2772 }
2773 EXPORT_SYMBOL(rproc_get_by_child);
2774
2775 /**
2776 * rproc_report_crash() - rproc crash reporter function
2777 * @rproc: remote processor
2778 * @type: crash type
2779 *
2780 * This function must be called every time a crash is detected by the low-level
2781 * drivers implementing a specific remoteproc. This should not be called from a
2782 * non-remoteproc driver.
2783 *
2784 * This function can be called from atomic/interrupt context.
2785 */
rproc_report_crash(struct rproc * rproc,enum rproc_crash_type type)2786 void rproc_report_crash(struct rproc *rproc, enum rproc_crash_type type)
2787 {
2788 if (!rproc) {
2789 pr_err("NULL rproc pointer\n");
2790 return;
2791 }
2792
2793 /* Prevent suspend while the remoteproc is being recovered */
2794 pm_stay_awake(rproc->dev.parent);
2795
2796 dev_err(&rproc->dev, "crash detected in %s: type %s\n",
2797 rproc->name, rproc_crash_to_string(type));
2798
2799 if (rproc_recovery_wq)
2800 queue_work(rproc_recovery_wq, &rproc->crash_handler);
2801 else
2802 /* Have a worker handle the error; ensure system is not suspended */
2803 queue_work(system_freezable_wq, &rproc->crash_handler);
2804 }
2805 EXPORT_SYMBOL(rproc_report_crash);
2806
rproc_panic_handler(struct notifier_block * nb,unsigned long event,void * ptr)2807 static int rproc_panic_handler(struct notifier_block *nb, unsigned long event,
2808 void *ptr)
2809 {
2810 unsigned int longest = 0;
2811 struct rproc *rproc;
2812 unsigned int d;
2813
2814 rcu_read_lock();
2815 list_for_each_entry_rcu(rproc, &rproc_list, node) {
2816 if (!rproc->ops->panic)
2817 continue;
2818
2819 if (rproc->state != RPROC_RUNNING &&
2820 rproc->state != RPROC_ATTACHED)
2821 continue;
2822
2823 d = rproc->ops->panic(rproc);
2824 longest = max(longest, d);
2825 }
2826 rcu_read_unlock();
2827
2828 /*
2829 * Delay for the longest requested duration before returning. This can
2830 * be used by the remoteproc drivers to give the remote processor time
2831 * to perform any requested operations (such as flush caches), when
2832 * it's not possible to signal the Linux side due to the panic.
2833 */
2834 mdelay(longest);
2835
2836 return NOTIFY_DONE;
2837 }
2838
rproc_init_panic(void)2839 static void __init rproc_init_panic(void)
2840 {
2841 rproc_panic_nb.notifier_call = rproc_panic_handler;
2842 atomic_notifier_chain_register(&panic_notifier_list, &rproc_panic_nb);
2843 }
2844
rproc_exit_panic(void)2845 static void __exit rproc_exit_panic(void)
2846 {
2847 atomic_notifier_chain_unregister(&panic_notifier_list, &rproc_panic_nb);
2848 }
2849
remoteproc_init(void)2850 static int __init remoteproc_init(void)
2851 {
2852 rproc_recovery_wq = alloc_workqueue("rproc_recovery_wq",
2853 WQ_UNBOUND | WQ_FREEZABLE, 0);
2854 if (!rproc_recovery_wq)
2855 pr_err("remoteproc: creation of rproc_recovery_wq failed\n");
2856
2857 rproc_init_sysfs();
2858 rproc_init_debugfs();
2859 rproc_init_cdev();
2860 rproc_init_panic();
2861
2862 return 0;
2863 }
2864 subsys_initcall(remoteproc_init);
2865
remoteproc_exit(void)2866 static void __exit remoteproc_exit(void)
2867 {
2868 ida_destroy(&rproc_dev_index);
2869
2870 rproc_exit_panic();
2871 rproc_exit_debugfs();
2872 rproc_exit_sysfs();
2873 if (rproc_recovery_wq)
2874 destroy_workqueue(rproc_recovery_wq);
2875 }
2876 module_exit(remoteproc_exit);
2877
2878 MODULE_LICENSE("GPL v2");
2879 MODULE_DESCRIPTION("Generic Remote Processor Framework");
2880