• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Remote Processor Framework
4  *
5  * Copyright (C) 2011 Texas Instruments, Inc.
6  * Copyright (C) 2011 Google, Inc.
7  *
8  * Ohad Ben-Cohen <ohad@wizery.com>
9  * Brian Swetland <swetland@google.com>
10  * Mark Grosen <mgrosen@ti.com>
11  * Fernando Guzman Lugo <fernando.lugo@ti.com>
12  * Suman Anna <s-anna@ti.com>
13  * Robert Tivy <rtivy@ti.com>
14  * Armando Uribe De Leon <x0095078@ti.com>
15  */
16 
17 #define pr_fmt(fmt)    "%s: " fmt, __func__
18 
19 #include <linux/delay.h>
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/device.h>
23 #include <linux/panic_notifier.h>
24 #include <linux/slab.h>
25 #include <linux/mutex.h>
26 #include <linux/dma-map-ops.h>
27 #include <linux/dma-mapping.h>
28 #include <linux/dma-direct.h> /* XXX: pokes into bus_dma_range */
29 #include <linux/firmware.h>
30 #include <linux/string.h>
31 #include <linux/debugfs.h>
32 #include <linux/rculist.h>
33 #include <linux/remoteproc.h>
34 #include <linux/iommu.h>
35 #include <linux/idr.h>
36 #include <linux/elf.h>
37 #include <linux/crc32.h>
38 #include <linux/of_reserved_mem.h>
39 #include <linux/virtio_ids.h>
40 #include <linux/virtio_ring.h>
41 #include <asm/byteorder.h>
42 #include <linux/platform_device.h>
43 #include <trace/hooks/remoteproc.h>
44 
45 #include "remoteproc_internal.h"
46 
47 #define HIGH_BITS_MASK 0xFFFFFFFF00000000ULL
48 
49 static DEFINE_MUTEX(rproc_list_mutex);
50 static LIST_HEAD(rproc_list);
51 static struct notifier_block rproc_panic_nb;
52 
53 typedef int (*rproc_handle_resource_t)(struct rproc *rproc,
54 				 void *, int offset, int avail);
55 
56 static int rproc_alloc_carveout(struct rproc *rproc,
57 				struct rproc_mem_entry *mem);
58 static int rproc_release_carveout(struct rproc *rproc,
59 				  struct rproc_mem_entry *mem);
60 
61 /* Unique indices for remoteproc devices */
62 static DEFINE_IDA(rproc_dev_index);
63 static struct workqueue_struct *rproc_recovery_wq;
64 
65 static const char * const rproc_crash_names[] = {
66 	[RPROC_MMUFAULT]	= "mmufault",
67 	[RPROC_WATCHDOG]	= "watchdog",
68 	[RPROC_FATAL_ERROR]	= "fatal error",
69 };
70 
71 /* translate rproc_crash_type to string */
rproc_crash_to_string(enum rproc_crash_type type)72 static const char *rproc_crash_to_string(enum rproc_crash_type type)
73 {
74 	if (type < ARRAY_SIZE(rproc_crash_names))
75 		return rproc_crash_names[type];
76 	return "unknown";
77 }
78 
79 /*
80  * This is the IOMMU fault handler we register with the IOMMU API
81  * (when relevant; not all remote processors access memory through
82  * an IOMMU).
83  *
84  * IOMMU core will invoke this handler whenever the remote processor
85  * will try to access an unmapped device address.
86  */
rproc_iommu_fault(struct iommu_domain * domain,struct device * dev,unsigned long iova,int flags,void * token)87 static int rproc_iommu_fault(struct iommu_domain *domain, struct device *dev,
88 			     unsigned long iova, int flags, void *token)
89 {
90 	struct rproc *rproc = token;
91 
92 	dev_err(dev, "iommu fault: da 0x%lx flags 0x%x\n", iova, flags);
93 
94 	rproc_report_crash(rproc, RPROC_MMUFAULT);
95 
96 	/*
97 	 * Let the iommu core know we're not really handling this fault;
98 	 * we just used it as a recovery trigger.
99 	 */
100 	return -ENOSYS;
101 }
102 
rproc_enable_iommu(struct rproc * rproc)103 static int rproc_enable_iommu(struct rproc *rproc)
104 {
105 	struct iommu_domain *domain;
106 	struct device *dev = rproc->dev.parent;
107 	int ret;
108 
109 	if (!rproc->has_iommu) {
110 		dev_dbg(dev, "iommu not present\n");
111 		return 0;
112 	}
113 
114 	domain = iommu_domain_alloc(dev->bus);
115 	if (!domain) {
116 		dev_err(dev, "can't alloc iommu domain\n");
117 		return -ENOMEM;
118 	}
119 
120 	iommu_set_fault_handler(domain, rproc_iommu_fault, rproc);
121 
122 	ret = iommu_attach_device(domain, dev);
123 	if (ret) {
124 		dev_err(dev, "can't attach iommu device: %d\n", ret);
125 		goto free_domain;
126 	}
127 
128 	rproc->domain = domain;
129 
130 	return 0;
131 
132 free_domain:
133 	iommu_domain_free(domain);
134 	return ret;
135 }
136 
rproc_disable_iommu(struct rproc * rproc)137 static void rproc_disable_iommu(struct rproc *rproc)
138 {
139 	struct iommu_domain *domain = rproc->domain;
140 	struct device *dev = rproc->dev.parent;
141 
142 	if (!domain)
143 		return;
144 
145 	iommu_detach_device(domain, dev);
146 	iommu_domain_free(domain);
147 }
148 
rproc_va_to_pa(void * cpu_addr)149 phys_addr_t rproc_va_to_pa(void *cpu_addr)
150 {
151 	/*
152 	 * Return physical address according to virtual address location
153 	 * - in vmalloc: if region ioremapped or defined as dma_alloc_coherent
154 	 * - in kernel: if region allocated in generic dma memory pool
155 	 */
156 	if (is_vmalloc_addr(cpu_addr)) {
157 		return page_to_phys(vmalloc_to_page(cpu_addr)) +
158 				    offset_in_page(cpu_addr);
159 	}
160 
161 	WARN_ON(!virt_addr_valid(cpu_addr));
162 	return virt_to_phys(cpu_addr);
163 }
164 EXPORT_SYMBOL(rproc_va_to_pa);
165 
166 /**
167  * rproc_da_to_va() - lookup the kernel virtual address for a remoteproc address
168  * @rproc: handle of a remote processor
169  * @da: remoteproc device address to translate
170  * @len: length of the memory region @da is pointing to
171  * @is_iomem: optional pointer filled in to indicate if @da is iomapped memory
172  *
173  * Some remote processors will ask us to allocate them physically contiguous
174  * memory regions (which we call "carveouts"), and map them to specific
175  * device addresses (which are hardcoded in the firmware). They may also have
176  * dedicated memory regions internal to the processors, and use them either
177  * exclusively or alongside carveouts.
178  *
179  * They may then ask us to copy objects into specific device addresses (e.g.
180  * code/data sections) or expose us certain symbols in other device address
181  * (e.g. their trace buffer).
182  *
183  * This function is a helper function with which we can go over the allocated
184  * carveouts and translate specific device addresses to kernel virtual addresses
185  * so we can access the referenced memory. This function also allows to perform
186  * translations on the internal remoteproc memory regions through a platform
187  * implementation specific da_to_va ops, if present.
188  *
189  * Note: phys_to_virt(iommu_iova_to_phys(rproc->domain, da)) will work too,
190  * but only on kernel direct mapped RAM memory. Instead, we're just using
191  * here the output of the DMA API for the carveouts, which should be more
192  * correct.
193  *
194  * Return: a valid kernel address on success or NULL on failure
195  */
rproc_da_to_va(struct rproc * rproc,u64 da,size_t len,bool * is_iomem)196 void *rproc_da_to_va(struct rproc *rproc, u64 da, size_t len, bool *is_iomem)
197 {
198 	struct rproc_mem_entry *carveout;
199 	void *ptr = NULL;
200 
201 	if (rproc->ops->da_to_va) {
202 		ptr = rproc->ops->da_to_va(rproc, da, len, is_iomem);
203 		if (ptr)
204 			goto out;
205 	}
206 
207 	list_for_each_entry(carveout, &rproc->carveouts, node) {
208 		int offset = da - carveout->da;
209 
210 		/*  Verify that carveout is allocated */
211 		if (!carveout->va)
212 			continue;
213 
214 		/* try next carveout if da is too small */
215 		if (offset < 0)
216 			continue;
217 
218 		/* try next carveout if da is too large */
219 		if (offset + len > carveout->len)
220 			continue;
221 
222 		ptr = carveout->va + offset;
223 
224 		if (is_iomem)
225 			*is_iomem = carveout->is_iomem;
226 
227 		break;
228 	}
229 
230 out:
231 	return ptr;
232 }
233 EXPORT_SYMBOL(rproc_da_to_va);
234 
235 /**
236  * rproc_find_carveout_by_name() - lookup the carveout region by a name
237  * @rproc: handle of a remote processor
238  * @name: carveout name to find (format string)
239  * @...: optional parameters matching @name string
240  *
241  * Platform driver has the capability to register some pre-allacoted carveout
242  * (physically contiguous memory regions) before rproc firmware loading and
243  * associated resource table analysis. These regions may be dedicated memory
244  * regions internal to the coprocessor or specified DDR region with specific
245  * attributes
246  *
247  * This function is a helper function with which we can go over the
248  * allocated carveouts and return associated region characteristics like
249  * coprocessor address, length or processor virtual address.
250  *
251  * Return: a valid pointer on carveout entry on success or NULL on failure.
252  */
253 __printf(2, 3)
254 struct rproc_mem_entry *
rproc_find_carveout_by_name(struct rproc * rproc,const char * name,...)255 rproc_find_carveout_by_name(struct rproc *rproc, const char *name, ...)
256 {
257 	va_list args;
258 	char _name[32];
259 	struct rproc_mem_entry *carveout, *mem = NULL;
260 
261 	if (!name)
262 		return NULL;
263 
264 	va_start(args, name);
265 	vsnprintf(_name, sizeof(_name), name, args);
266 	va_end(args);
267 
268 	list_for_each_entry(carveout, &rproc->carveouts, node) {
269 		/* Compare carveout and requested names */
270 		if (!strcmp(carveout->name, _name)) {
271 			mem = carveout;
272 			break;
273 		}
274 	}
275 
276 	return mem;
277 }
278 
279 /**
280  * rproc_check_carveout_da() - Check specified carveout da configuration
281  * @rproc: handle of a remote processor
282  * @mem: pointer on carveout to check
283  * @da: area device address
284  * @len: associated area size
285  *
286  * This function is a helper function to verify requested device area (couple
287  * da, len) is part of specified carveout.
288  * If da is not set (defined as FW_RSC_ADDR_ANY), only requested length is
289  * checked.
290  *
291  * Return: 0 if carveout matches request else error
292  */
rproc_check_carveout_da(struct rproc * rproc,struct rproc_mem_entry * mem,u32 da,u32 len)293 static int rproc_check_carveout_da(struct rproc *rproc,
294 				   struct rproc_mem_entry *mem, u32 da, u32 len)
295 {
296 	struct device *dev = &rproc->dev;
297 	int delta;
298 
299 	/* Check requested resource length */
300 	if (len > mem->len) {
301 		dev_err(dev, "Registered carveout doesn't fit len request\n");
302 		return -EINVAL;
303 	}
304 
305 	if (da != FW_RSC_ADDR_ANY && mem->da == FW_RSC_ADDR_ANY) {
306 		/* Address doesn't match registered carveout configuration */
307 		return -EINVAL;
308 	} else if (da != FW_RSC_ADDR_ANY && mem->da != FW_RSC_ADDR_ANY) {
309 		delta = da - mem->da;
310 
311 		/* Check requested resource belongs to registered carveout */
312 		if (delta < 0) {
313 			dev_err(dev,
314 				"Registered carveout doesn't fit da request\n");
315 			return -EINVAL;
316 		}
317 
318 		if (delta + len > mem->len) {
319 			dev_err(dev,
320 				"Registered carveout doesn't fit len request\n");
321 			return -EINVAL;
322 		}
323 	}
324 
325 	return 0;
326 }
327 
rproc_alloc_vring(struct rproc_vdev * rvdev,int i)328 int rproc_alloc_vring(struct rproc_vdev *rvdev, int i)
329 {
330 	struct rproc *rproc = rvdev->rproc;
331 	struct device *dev = &rproc->dev;
332 	struct rproc_vring *rvring = &rvdev->vring[i];
333 	struct fw_rsc_vdev *rsc;
334 	int ret, notifyid;
335 	struct rproc_mem_entry *mem;
336 	size_t size;
337 
338 	/* actual size of vring (in bytes) */
339 	size = PAGE_ALIGN(vring_size(rvring->len, rvring->align));
340 
341 	rsc = (void *)rproc->table_ptr + rvdev->rsc_offset;
342 
343 	/* Search for pre-registered carveout */
344 	mem = rproc_find_carveout_by_name(rproc, "vdev%dvring%d", rvdev->index,
345 					  i);
346 	if (mem) {
347 		if (rproc_check_carveout_da(rproc, mem, rsc->vring[i].da, size))
348 			return -ENOMEM;
349 	} else {
350 		/* Register carveout in in list */
351 		mem = rproc_mem_entry_init(dev, NULL, 0,
352 					   size, rsc->vring[i].da,
353 					   rproc_alloc_carveout,
354 					   rproc_release_carveout,
355 					   "vdev%dvring%d",
356 					   rvdev->index, i);
357 		if (!mem) {
358 			dev_err(dev, "Can't allocate memory entry structure\n");
359 			return -ENOMEM;
360 		}
361 
362 		rproc_add_carveout(rproc, mem);
363 	}
364 
365 	/*
366 	 * Assign an rproc-wide unique index for this vring
367 	 * TODO: assign a notifyid for rvdev updates as well
368 	 * TODO: support predefined notifyids (via resource table)
369 	 */
370 	ret = idr_alloc(&rproc->notifyids, rvring, 0, 0, GFP_KERNEL);
371 	if (ret < 0) {
372 		dev_err(dev, "idr_alloc failed: %d\n", ret);
373 		return ret;
374 	}
375 	notifyid = ret;
376 
377 	/* Potentially bump max_notifyid */
378 	if (notifyid > rproc->max_notifyid)
379 		rproc->max_notifyid = notifyid;
380 
381 	rvring->notifyid = notifyid;
382 
383 	/* Let the rproc know the notifyid of this vring.*/
384 	rsc->vring[i].notifyid = notifyid;
385 	return 0;
386 }
387 
388 static int
rproc_parse_vring(struct rproc_vdev * rvdev,struct fw_rsc_vdev * rsc,int i)389 rproc_parse_vring(struct rproc_vdev *rvdev, struct fw_rsc_vdev *rsc, int i)
390 {
391 	struct rproc *rproc = rvdev->rproc;
392 	struct device *dev = &rproc->dev;
393 	struct fw_rsc_vdev_vring *vring = &rsc->vring[i];
394 	struct rproc_vring *rvring = &rvdev->vring[i];
395 
396 	dev_dbg(dev, "vdev rsc: vring%d: da 0x%x, qsz %d, align %d\n",
397 		i, vring->da, vring->num, vring->align);
398 
399 	/* verify queue size and vring alignment are sane */
400 	if (!vring->num || !vring->align) {
401 		dev_err(dev, "invalid qsz (%d) or alignment (%d)\n",
402 			vring->num, vring->align);
403 		return -EINVAL;
404 	}
405 
406 	rvring->len = vring->num;
407 	rvring->align = vring->align;
408 	rvring->rvdev = rvdev;
409 
410 	return 0;
411 }
412 
rproc_free_vring(struct rproc_vring * rvring)413 void rproc_free_vring(struct rproc_vring *rvring)
414 {
415 	struct rproc *rproc = rvring->rvdev->rproc;
416 	int idx = rvring - rvring->rvdev->vring;
417 	struct fw_rsc_vdev *rsc;
418 
419 	idr_remove(&rproc->notifyids, rvring->notifyid);
420 
421 	/*
422 	 * At this point rproc_stop() has been called and the installed resource
423 	 * table in the remote processor memory may no longer be accessible. As
424 	 * such and as per rproc_stop(), rproc->table_ptr points to the cached
425 	 * resource table (rproc->cached_table).  The cached resource table is
426 	 * only available when a remote processor has been booted by the
427 	 * remoteproc core, otherwise it is NULL.
428 	 *
429 	 * Based on the above, reset the virtio device section in the cached
430 	 * resource table only if there is one to work with.
431 	 */
432 	if (rproc->table_ptr) {
433 		rsc = (void *)rproc->table_ptr + rvring->rvdev->rsc_offset;
434 		rsc->vring[idx].da = 0;
435 		rsc->vring[idx].notifyid = -1;
436 	}
437 }
438 
rproc_vdev_do_start(struct rproc_subdev * subdev)439 static int rproc_vdev_do_start(struct rproc_subdev *subdev)
440 {
441 	struct rproc_vdev *rvdev = container_of(subdev, struct rproc_vdev, subdev);
442 
443 	return rproc_add_virtio_dev(rvdev, rvdev->id);
444 }
445 
rproc_vdev_do_stop(struct rproc_subdev * subdev,bool crashed)446 static void rproc_vdev_do_stop(struct rproc_subdev *subdev, bool crashed)
447 {
448 	struct rproc_vdev *rvdev = container_of(subdev, struct rproc_vdev, subdev);
449 	int ret;
450 
451 	ret = device_for_each_child(&rvdev->dev, NULL, rproc_remove_virtio_dev);
452 	if (ret)
453 		dev_warn(&rvdev->dev, "can't remove vdev child device: %d\n", ret);
454 }
455 
456 /**
457  * rproc_rvdev_release() - release the existence of a rvdev
458  *
459  * @dev: the subdevice's dev
460  */
rproc_rvdev_release(struct device * dev)461 static void rproc_rvdev_release(struct device *dev)
462 {
463 	struct rproc_vdev *rvdev = container_of(dev, struct rproc_vdev, dev);
464 
465 	of_reserved_mem_device_release(dev);
466 	dma_release_coherent_memory(dev);
467 
468 	kfree(rvdev);
469 }
470 
copy_dma_range_map(struct device * to,struct device * from)471 static int copy_dma_range_map(struct device *to, struct device *from)
472 {
473 	const struct bus_dma_region *map = from->dma_range_map, *new_map, *r;
474 	int num_ranges = 0;
475 
476 	if (!map)
477 		return 0;
478 
479 	for (r = map; r->size; r++)
480 		num_ranges++;
481 
482 	new_map = kmemdup(map, array_size(num_ranges + 1, sizeof(*map)),
483 			  GFP_KERNEL);
484 	if (!new_map)
485 		return -ENOMEM;
486 	to->dma_range_map = new_map;
487 	return 0;
488 }
489 
490 /**
491  * rproc_handle_vdev() - handle a vdev fw resource
492  * @rproc: the remote processor
493  * @ptr: the vring resource descriptor
494  * @offset: offset of the resource entry
495  * @avail: size of available data (for sanity checking the image)
496  *
497  * This resource entry requests the host to statically register a virtio
498  * device (vdev), and setup everything needed to support it. It contains
499  * everything needed to make it possible: the virtio device id, virtio
500  * device features, vrings information, virtio config space, etc...
501  *
502  * Before registering the vdev, the vrings are allocated from non-cacheable
503  * physically contiguous memory. Currently we only support two vrings per
504  * remote processor (temporary limitation). We might also want to consider
505  * doing the vring allocation only later when ->find_vqs() is invoked, and
506  * then release them upon ->del_vqs().
507  *
508  * Note: @da is currently not really handled correctly: we dynamically
509  * allocate it using the DMA API, ignoring requested hard coded addresses,
510  * and we don't take care of any required IOMMU programming. This is all
511  * going to be taken care of when the generic iommu-based DMA API will be
512  * merged. Meanwhile, statically-addressed iommu-based firmware images should
513  * use RSC_DEVMEM resource entries to map their required @da to the physical
514  * address of their base CMA region (ouch, hacky!).
515  *
516  * Return: 0 on success, or an appropriate error code otherwise
517  */
rproc_handle_vdev(struct rproc * rproc,void * ptr,int offset,int avail)518 static int rproc_handle_vdev(struct rproc *rproc, void *ptr,
519 			     int offset, int avail)
520 {
521 	struct fw_rsc_vdev *rsc = ptr;
522 	struct device *dev = &rproc->dev;
523 	struct rproc_vdev *rvdev;
524 	int i, ret;
525 	char name[16];
526 
527 	/* make sure resource isn't truncated */
528 	if (struct_size(rsc, vring, rsc->num_of_vrings) + rsc->config_len >
529 			avail) {
530 		dev_err(dev, "vdev rsc is truncated\n");
531 		return -EINVAL;
532 	}
533 
534 	/* make sure reserved bytes are zeroes */
535 	if (rsc->reserved[0] || rsc->reserved[1]) {
536 		dev_err(dev, "vdev rsc has non zero reserved bytes\n");
537 		return -EINVAL;
538 	}
539 
540 	dev_dbg(dev, "vdev rsc: id %d, dfeatures 0x%x, cfg len %d, %d vrings\n",
541 		rsc->id, rsc->dfeatures, rsc->config_len, rsc->num_of_vrings);
542 
543 	/* we currently support only two vrings per rvdev */
544 	if (rsc->num_of_vrings > ARRAY_SIZE(rvdev->vring)) {
545 		dev_err(dev, "too many vrings: %d\n", rsc->num_of_vrings);
546 		return -EINVAL;
547 	}
548 
549 	rvdev = kzalloc(sizeof(*rvdev), GFP_KERNEL);
550 	if (!rvdev)
551 		return -ENOMEM;
552 
553 	kref_init(&rvdev->refcount);
554 
555 	rvdev->id = rsc->id;
556 	rvdev->rproc = rproc;
557 	rvdev->index = rproc->nb_vdev++;
558 
559 	/* Initialise vdev subdevice */
560 	snprintf(name, sizeof(name), "vdev%dbuffer", rvdev->index);
561 	rvdev->dev.parent = &rproc->dev;
562 	rvdev->dev.release = rproc_rvdev_release;
563 	dev_set_name(&rvdev->dev, "%s#%s", dev_name(rvdev->dev.parent), name);
564 	dev_set_drvdata(&rvdev->dev, rvdev);
565 
566 	ret = device_register(&rvdev->dev);
567 	if (ret) {
568 		put_device(&rvdev->dev);
569 		return ret;
570 	}
571 
572 	ret = copy_dma_range_map(&rvdev->dev, rproc->dev.parent);
573 	if (ret)
574 		goto free_rvdev;
575 
576 	/* Make device dma capable by inheriting from parent's capabilities */
577 	set_dma_ops(&rvdev->dev, get_dma_ops(rproc->dev.parent));
578 
579 	ret = dma_coerce_mask_and_coherent(&rvdev->dev,
580 					   dma_get_mask(rproc->dev.parent));
581 	if (ret) {
582 		dev_warn(dev,
583 			 "Failed to set DMA mask %llx. Trying to continue... %x\n",
584 			 dma_get_mask(rproc->dev.parent), ret);
585 	}
586 
587 	/* parse the vrings */
588 	for (i = 0; i < rsc->num_of_vrings; i++) {
589 		ret = rproc_parse_vring(rvdev, rsc, i);
590 		if (ret)
591 			goto free_rvdev;
592 	}
593 
594 	/* remember the resource offset*/
595 	rvdev->rsc_offset = offset;
596 
597 	/* allocate the vring resources */
598 	for (i = 0; i < rsc->num_of_vrings; i++) {
599 		ret = rproc_alloc_vring(rvdev, i);
600 		if (ret)
601 			goto unwind_vring_allocations;
602 	}
603 
604 	list_add_tail(&rvdev->node, &rproc->rvdevs);
605 
606 	rvdev->subdev.start = rproc_vdev_do_start;
607 	rvdev->subdev.stop = rproc_vdev_do_stop;
608 
609 	rproc_add_subdev(rproc, &rvdev->subdev);
610 
611 	return 0;
612 
613 unwind_vring_allocations:
614 	for (i--; i >= 0; i--)
615 		rproc_free_vring(&rvdev->vring[i]);
616 free_rvdev:
617 	device_unregister(&rvdev->dev);
618 	return ret;
619 }
620 
rproc_vdev_release(struct kref * ref)621 void rproc_vdev_release(struct kref *ref)
622 {
623 	struct rproc_vdev *rvdev = container_of(ref, struct rproc_vdev, refcount);
624 	struct rproc_vring *rvring;
625 	struct rproc *rproc = rvdev->rproc;
626 	int id;
627 
628 	for (id = 0; id < ARRAY_SIZE(rvdev->vring); id++) {
629 		rvring = &rvdev->vring[id];
630 		rproc_free_vring(rvring);
631 	}
632 
633 	rproc_remove_subdev(rproc, &rvdev->subdev);
634 	list_del(&rvdev->node);
635 	device_unregister(&rvdev->dev);
636 }
637 
638 /**
639  * rproc_handle_trace() - handle a shared trace buffer resource
640  * @rproc: the remote processor
641  * @ptr: the trace resource descriptor
642  * @offset: offset of the resource entry
643  * @avail: size of available data (for sanity checking the image)
644  *
645  * In case the remote processor dumps trace logs into memory,
646  * export it via debugfs.
647  *
648  * Currently, the 'da' member of @rsc should contain the device address
649  * where the remote processor is dumping the traces. Later we could also
650  * support dynamically allocating this address using the generic
651  * DMA API (but currently there isn't a use case for that).
652  *
653  * Return: 0 on success, or an appropriate error code otherwise
654  */
rproc_handle_trace(struct rproc * rproc,void * ptr,int offset,int avail)655 static int rproc_handle_trace(struct rproc *rproc, void *ptr,
656 			      int offset, int avail)
657 {
658 	struct fw_rsc_trace *rsc = ptr;
659 	struct rproc_debug_trace *trace;
660 	struct device *dev = &rproc->dev;
661 	char name[15];
662 
663 	if (sizeof(*rsc) > avail) {
664 		dev_err(dev, "trace rsc is truncated\n");
665 		return -EINVAL;
666 	}
667 
668 	/* make sure reserved bytes are zeroes */
669 	if (rsc->reserved) {
670 		dev_err(dev, "trace rsc has non zero reserved bytes\n");
671 		return -EINVAL;
672 	}
673 
674 	trace = kzalloc(sizeof(*trace), GFP_KERNEL);
675 	if (!trace)
676 		return -ENOMEM;
677 
678 	/* set the trace buffer dma properties */
679 	trace->trace_mem.len = rsc->len;
680 	trace->trace_mem.da = rsc->da;
681 
682 	/* set pointer on rproc device */
683 	trace->rproc = rproc;
684 
685 	/* make sure snprintf always null terminates, even if truncating */
686 	snprintf(name, sizeof(name), "trace%d", rproc->num_traces);
687 
688 	/* create the debugfs entry */
689 	trace->tfile = rproc_create_trace_file(name, rproc, trace);
690 	if (!trace->tfile) {
691 		kfree(trace);
692 		return -EINVAL;
693 	}
694 
695 	list_add_tail(&trace->node, &rproc->traces);
696 
697 	rproc->num_traces++;
698 
699 	dev_dbg(dev, "%s added: da 0x%x, len 0x%x\n",
700 		name, rsc->da, rsc->len);
701 
702 	return 0;
703 }
704 
705 /**
706  * rproc_handle_devmem() - handle devmem resource entry
707  * @rproc: remote processor handle
708  * @ptr: the devmem resource entry
709  * @offset: offset of the resource entry
710  * @avail: size of available data (for sanity checking the image)
711  *
712  * Remote processors commonly need to access certain on-chip peripherals.
713  *
714  * Some of these remote processors access memory via an iommu device,
715  * and might require us to configure their iommu before they can access
716  * the on-chip peripherals they need.
717  *
718  * This resource entry is a request to map such a peripheral device.
719  *
720  * These devmem entries will contain the physical address of the device in
721  * the 'pa' member. If a specific device address is expected, then 'da' will
722  * contain it (currently this is the only use case supported). 'len' will
723  * contain the size of the physical region we need to map.
724  *
725  * Currently we just "trust" those devmem entries to contain valid physical
726  * addresses, but this is going to change: we want the implementations to
727  * tell us ranges of physical addresses the firmware is allowed to request,
728  * and not allow firmwares to request access to physical addresses that
729  * are outside those ranges.
730  *
731  * Return: 0 on success, or an appropriate error code otherwise
732  */
rproc_handle_devmem(struct rproc * rproc,void * ptr,int offset,int avail)733 static int rproc_handle_devmem(struct rproc *rproc, void *ptr,
734 			       int offset, int avail)
735 {
736 	struct fw_rsc_devmem *rsc = ptr;
737 	struct rproc_mem_entry *mapping;
738 	struct device *dev = &rproc->dev;
739 	int ret;
740 
741 	/* no point in handling this resource without a valid iommu domain */
742 	if (!rproc->domain)
743 		return -EINVAL;
744 
745 	if (sizeof(*rsc) > avail) {
746 		dev_err(dev, "devmem rsc is truncated\n");
747 		return -EINVAL;
748 	}
749 
750 	/* make sure reserved bytes are zeroes */
751 	if (rsc->reserved) {
752 		dev_err(dev, "devmem rsc has non zero reserved bytes\n");
753 		return -EINVAL;
754 	}
755 
756 	mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
757 	if (!mapping)
758 		return -ENOMEM;
759 
760 	ret = iommu_map(rproc->domain, rsc->da, rsc->pa, rsc->len, rsc->flags);
761 	if (ret) {
762 		dev_err(dev, "failed to map devmem: %d\n", ret);
763 		goto out;
764 	}
765 
766 	/*
767 	 * We'll need this info later when we'll want to unmap everything
768 	 * (e.g. on shutdown).
769 	 *
770 	 * We can't trust the remote processor not to change the resource
771 	 * table, so we must maintain this info independently.
772 	 */
773 	mapping->da = rsc->da;
774 	mapping->len = rsc->len;
775 	list_add_tail(&mapping->node, &rproc->mappings);
776 
777 	dev_dbg(dev, "mapped devmem pa 0x%x, da 0x%x, len 0x%x\n",
778 		rsc->pa, rsc->da, rsc->len);
779 
780 	return 0;
781 
782 out:
783 	kfree(mapping);
784 	return ret;
785 }
786 
787 /**
788  * rproc_alloc_carveout() - allocated specified carveout
789  * @rproc: rproc handle
790  * @mem: the memory entry to allocate
791  *
792  * This function allocate specified memory entry @mem using
793  * dma_alloc_coherent() as default allocator
794  *
795  * Return: 0 on success, or an appropriate error code otherwise
796  */
rproc_alloc_carveout(struct rproc * rproc,struct rproc_mem_entry * mem)797 static int rproc_alloc_carveout(struct rproc *rproc,
798 				struct rproc_mem_entry *mem)
799 {
800 	struct rproc_mem_entry *mapping = NULL;
801 	struct device *dev = &rproc->dev;
802 	dma_addr_t dma;
803 	void *va;
804 	int ret;
805 
806 	va = dma_alloc_coherent(dev->parent, mem->len, &dma, GFP_KERNEL);
807 	if (!va) {
808 		dev_err(dev->parent,
809 			"failed to allocate dma memory: len 0x%zx\n",
810 			mem->len);
811 		return -ENOMEM;
812 	}
813 
814 	dev_dbg(dev, "carveout va %pK, dma %pad, len 0x%zx\n",
815 		va, &dma, mem->len);
816 
817 	if (mem->da != FW_RSC_ADDR_ANY && !rproc->domain) {
818 		/*
819 		 * Check requested da is equal to dma address
820 		 * and print a warn message in case of missalignment.
821 		 * Don't stop rproc_start sequence as coprocessor may
822 		 * build pa to da translation on its side.
823 		 */
824 		if (mem->da != (u32)dma)
825 			dev_warn(dev->parent,
826 				 "Allocated carveout doesn't fit device address request\n");
827 	}
828 
829 	/*
830 	 * Ok, this is non-standard.
831 	 *
832 	 * Sometimes we can't rely on the generic iommu-based DMA API
833 	 * to dynamically allocate the device address and then set the IOMMU
834 	 * tables accordingly, because some remote processors might
835 	 * _require_ us to use hard coded device addresses that their
836 	 * firmware was compiled with.
837 	 *
838 	 * In this case, we must use the IOMMU API directly and map
839 	 * the memory to the device address as expected by the remote
840 	 * processor.
841 	 *
842 	 * Obviously such remote processor devices should not be configured
843 	 * to use the iommu-based DMA API: we expect 'dma' to contain the
844 	 * physical address in this case.
845 	 */
846 	if (mem->da != FW_RSC_ADDR_ANY && rproc->domain) {
847 		mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
848 		if (!mapping) {
849 			ret = -ENOMEM;
850 			goto dma_free;
851 		}
852 
853 		ret = iommu_map(rproc->domain, mem->da, dma, mem->len,
854 				mem->flags);
855 		if (ret) {
856 			dev_err(dev, "iommu_map failed: %d\n", ret);
857 			goto free_mapping;
858 		}
859 
860 		/*
861 		 * We'll need this info later when we'll want to unmap
862 		 * everything (e.g. on shutdown).
863 		 *
864 		 * We can't trust the remote processor not to change the
865 		 * resource table, so we must maintain this info independently.
866 		 */
867 		mapping->da = mem->da;
868 		mapping->len = mem->len;
869 		list_add_tail(&mapping->node, &rproc->mappings);
870 
871 		dev_dbg(dev, "carveout mapped 0x%x to %pad\n",
872 			mem->da, &dma);
873 	}
874 
875 	if (mem->da == FW_RSC_ADDR_ANY) {
876 		/* Update device address as undefined by requester */
877 		if ((u64)dma & HIGH_BITS_MASK)
878 			dev_warn(dev, "DMA address cast in 32bit to fit resource table format\n");
879 
880 		mem->da = (u32)dma;
881 	}
882 
883 	mem->dma = dma;
884 	mem->va = va;
885 
886 	return 0;
887 
888 free_mapping:
889 	kfree(mapping);
890 dma_free:
891 	dma_free_coherent(dev->parent, mem->len, va, dma);
892 	return ret;
893 }
894 
895 /**
896  * rproc_release_carveout() - release acquired carveout
897  * @rproc: rproc handle
898  * @mem: the memory entry to release
899  *
900  * This function releases specified memory entry @mem allocated via
901  * rproc_alloc_carveout() function by @rproc.
902  *
903  * Return: 0 on success, or an appropriate error code otherwise
904  */
rproc_release_carveout(struct rproc * rproc,struct rproc_mem_entry * mem)905 static int rproc_release_carveout(struct rproc *rproc,
906 				  struct rproc_mem_entry *mem)
907 {
908 	struct device *dev = &rproc->dev;
909 
910 	/* clean up carveout allocations */
911 	dma_free_coherent(dev->parent, mem->len, mem->va, mem->dma);
912 	return 0;
913 }
914 
915 /**
916  * rproc_handle_carveout() - handle phys contig memory allocation requests
917  * @rproc: rproc handle
918  * @ptr: the resource entry
919  * @offset: offset of the resource entry
920  * @avail: size of available data (for image validation)
921  *
922  * This function will handle firmware requests for allocation of physically
923  * contiguous memory regions.
924  *
925  * These request entries should come first in the firmware's resource table,
926  * as other firmware entries might request placing other data objects inside
927  * these memory regions (e.g. data/code segments, trace resource entries, ...).
928  *
929  * Allocating memory this way helps utilizing the reserved physical memory
930  * (e.g. CMA) more efficiently, and also minimizes the number of TLB entries
931  * needed to map it (in case @rproc is using an IOMMU). Reducing the TLB
932  * pressure is important; it may have a substantial impact on performance.
933  *
934  * Return: 0 on success, or an appropriate error code otherwise
935  */
rproc_handle_carveout(struct rproc * rproc,void * ptr,int offset,int avail)936 static int rproc_handle_carveout(struct rproc *rproc,
937 				 void *ptr, int offset, int avail)
938 {
939 	struct fw_rsc_carveout *rsc = ptr;
940 	struct rproc_mem_entry *carveout;
941 	struct device *dev = &rproc->dev;
942 
943 	if (sizeof(*rsc) > avail) {
944 		dev_err(dev, "carveout rsc is truncated\n");
945 		return -EINVAL;
946 	}
947 
948 	/* make sure reserved bytes are zeroes */
949 	if (rsc->reserved) {
950 		dev_err(dev, "carveout rsc has non zero reserved bytes\n");
951 		return -EINVAL;
952 	}
953 
954 	dev_dbg(dev, "carveout rsc: name: %s, da 0x%x, pa 0x%x, len 0x%x, flags 0x%x\n",
955 		rsc->name, rsc->da, rsc->pa, rsc->len, rsc->flags);
956 
957 	/*
958 	 * Check carveout rsc already part of a registered carveout,
959 	 * Search by name, then check the da and length
960 	 */
961 	carveout = rproc_find_carveout_by_name(rproc, rsc->name);
962 
963 	if (carveout) {
964 		if (carveout->rsc_offset != FW_RSC_ADDR_ANY) {
965 			dev_err(dev,
966 				"Carveout already associated to resource table\n");
967 			return -ENOMEM;
968 		}
969 
970 		if (rproc_check_carveout_da(rproc, carveout, rsc->da, rsc->len))
971 			return -ENOMEM;
972 
973 		/* Update memory carveout with resource table info */
974 		carveout->rsc_offset = offset;
975 		carveout->flags = rsc->flags;
976 
977 		return 0;
978 	}
979 
980 	/* Register carveout in in list */
981 	carveout = rproc_mem_entry_init(dev, NULL, 0, rsc->len, rsc->da,
982 					rproc_alloc_carveout,
983 					rproc_release_carveout, rsc->name);
984 	if (!carveout) {
985 		dev_err(dev, "Can't allocate memory entry structure\n");
986 		return -ENOMEM;
987 	}
988 
989 	carveout->flags = rsc->flags;
990 	carveout->rsc_offset = offset;
991 	rproc_add_carveout(rproc, carveout);
992 
993 	return 0;
994 }
995 
996 /**
997  * rproc_add_carveout() - register an allocated carveout region
998  * @rproc: rproc handle
999  * @mem: memory entry to register
1000  *
1001  * This function registers specified memory entry in @rproc carveouts list.
1002  * Specified carveout should have been allocated before registering.
1003  */
rproc_add_carveout(struct rproc * rproc,struct rproc_mem_entry * mem)1004 void rproc_add_carveout(struct rproc *rproc, struct rproc_mem_entry *mem)
1005 {
1006 	list_add_tail(&mem->node, &rproc->carveouts);
1007 }
1008 EXPORT_SYMBOL(rproc_add_carveout);
1009 
1010 /**
1011  * rproc_del_carveout() - remove an allocated carveout region
1012  * @rproc: rproc handle
1013  * @mem: memory entry to register
1014  *
1015  * This function removes specified memory entry in @rproc carveouts list.
1016  */
rproc_del_carveout(struct rproc * rproc,struct rproc_mem_entry * mem)1017 void rproc_del_carveout(struct rproc *rproc, struct rproc_mem_entry *mem)
1018 {
1019 	struct rproc_mem_entry *entry, *tmp;
1020 
1021 	list_for_each_entry_safe(entry, tmp, &rproc->carveouts, node) {
1022 		if (entry == mem) {
1023 			list_del(&mem->node);
1024 			return;
1025 		}
1026 	}
1027 }
1028 EXPORT_SYMBOL(rproc_del_carveout);
1029 
1030 /**
1031  * rproc_mem_entry_init() - allocate and initialize rproc_mem_entry struct
1032  * @dev: pointer on device struct
1033  * @va: virtual address
1034  * @dma: dma address
1035  * @len: memory carveout length
1036  * @da: device address
1037  * @alloc: memory carveout allocation function
1038  * @release: memory carveout release function
1039  * @name: carveout name
1040  *
1041  * This function allocates a rproc_mem_entry struct and fill it with parameters
1042  * provided by client.
1043  *
1044  * Return: a valid pointer on success, or NULL on failure
1045  */
1046 __printf(8, 9)
1047 struct rproc_mem_entry *
rproc_mem_entry_init(struct device * dev,void * va,dma_addr_t dma,size_t len,u32 da,int (* alloc)(struct rproc *,struct rproc_mem_entry *),int (* release)(struct rproc *,struct rproc_mem_entry *),const char * name,...)1048 rproc_mem_entry_init(struct device *dev,
1049 		     void *va, dma_addr_t dma, size_t len, u32 da,
1050 		     int (*alloc)(struct rproc *, struct rproc_mem_entry *),
1051 		     int (*release)(struct rproc *, struct rproc_mem_entry *),
1052 		     const char *name, ...)
1053 {
1054 	struct rproc_mem_entry *mem;
1055 	va_list args;
1056 
1057 	mem = kzalloc(sizeof(*mem), GFP_KERNEL);
1058 	if (!mem)
1059 		return mem;
1060 
1061 	mem->va = va;
1062 	mem->dma = dma;
1063 	mem->da = da;
1064 	mem->len = len;
1065 	mem->alloc = alloc;
1066 	mem->release = release;
1067 	mem->rsc_offset = FW_RSC_ADDR_ANY;
1068 	mem->of_resm_idx = -1;
1069 
1070 	va_start(args, name);
1071 	vsnprintf(mem->name, sizeof(mem->name), name, args);
1072 	va_end(args);
1073 
1074 	return mem;
1075 }
1076 EXPORT_SYMBOL(rproc_mem_entry_init);
1077 
1078 /**
1079  * rproc_mem_entry_free() - free a rproc_mem_entry struct
1080  * @mem: rproc_mem_entry allocated by rproc_mem_entry_init()
1081  *
1082  * This function frees a rproc_mem_entry_struct that was allocated by
1083  * rproc_mem_entry_init().
1084  */
rproc_mem_entry_free(struct rproc_mem_entry * mem)1085 void rproc_mem_entry_free(struct rproc_mem_entry *mem)
1086 {
1087 	kfree(mem);
1088 }
1089 EXPORT_SYMBOL(rproc_mem_entry_free);
1090 
1091 /**
1092  * rproc_of_resm_mem_entry_init() - allocate and initialize rproc_mem_entry struct
1093  * from a reserved memory phandle
1094  * @dev: pointer on device struct
1095  * @of_resm_idx: reserved memory phandle index in "memory-region"
1096  * @len: memory carveout length
1097  * @da: device address
1098  * @name: carveout name
1099  *
1100  * This function allocates a rproc_mem_entry struct and fill it with parameters
1101  * provided by client.
1102  *
1103  * Return: a valid pointer on success, or NULL on failure
1104  */
1105 __printf(5, 6)
1106 struct rproc_mem_entry *
rproc_of_resm_mem_entry_init(struct device * dev,u32 of_resm_idx,size_t len,u32 da,const char * name,...)1107 rproc_of_resm_mem_entry_init(struct device *dev, u32 of_resm_idx, size_t len,
1108 			     u32 da, const char *name, ...)
1109 {
1110 	struct rproc_mem_entry *mem;
1111 	va_list args;
1112 
1113 	mem = kzalloc(sizeof(*mem), GFP_KERNEL);
1114 	if (!mem)
1115 		return mem;
1116 
1117 	mem->da = da;
1118 	mem->len = len;
1119 	mem->rsc_offset = FW_RSC_ADDR_ANY;
1120 	mem->of_resm_idx = of_resm_idx;
1121 
1122 	va_start(args, name);
1123 	vsnprintf(mem->name, sizeof(mem->name), name, args);
1124 	va_end(args);
1125 
1126 	return mem;
1127 }
1128 EXPORT_SYMBOL(rproc_of_resm_mem_entry_init);
1129 
1130 /**
1131  * rproc_of_parse_firmware() - parse and return the firmware-name
1132  * @dev: pointer on device struct representing a rproc
1133  * @index: index to use for the firmware-name retrieval
1134  * @fw_name: pointer to a character string, in which the firmware
1135  *           name is returned on success and unmodified otherwise.
1136  *
1137  * This is an OF helper function that parses a device's DT node for
1138  * the "firmware-name" property and returns the firmware name pointer
1139  * in @fw_name on success.
1140  *
1141  * Return: 0 on success, or an appropriate failure.
1142  */
rproc_of_parse_firmware(struct device * dev,int index,const char ** fw_name)1143 int rproc_of_parse_firmware(struct device *dev, int index, const char **fw_name)
1144 {
1145 	int ret;
1146 
1147 	ret = of_property_read_string_index(dev->of_node, "firmware-name",
1148 					    index, fw_name);
1149 	return ret ? ret : 0;
1150 }
1151 EXPORT_SYMBOL(rproc_of_parse_firmware);
1152 
1153 /*
1154  * A lookup table for resource handlers. The indices are defined in
1155  * enum fw_resource_type.
1156  */
1157 static rproc_handle_resource_t rproc_loading_handlers[RSC_LAST] = {
1158 	[RSC_CARVEOUT] = rproc_handle_carveout,
1159 	[RSC_DEVMEM] = rproc_handle_devmem,
1160 	[RSC_TRACE] = rproc_handle_trace,
1161 	[RSC_VDEV] = rproc_handle_vdev,
1162 };
1163 
1164 /* handle firmware resource entries before booting the remote processor */
rproc_handle_resources(struct rproc * rproc,rproc_handle_resource_t handlers[RSC_LAST])1165 static int rproc_handle_resources(struct rproc *rproc,
1166 				  rproc_handle_resource_t handlers[RSC_LAST])
1167 {
1168 	struct device *dev = &rproc->dev;
1169 	rproc_handle_resource_t handler;
1170 	int ret = 0, i;
1171 
1172 	if (!rproc->table_ptr)
1173 		return 0;
1174 
1175 	for (i = 0; i < rproc->table_ptr->num; i++) {
1176 		int offset = rproc->table_ptr->offset[i];
1177 		struct fw_rsc_hdr *hdr = (void *)rproc->table_ptr + offset;
1178 		int avail = rproc->table_sz - offset - sizeof(*hdr);
1179 		void *rsc = (void *)hdr + sizeof(*hdr);
1180 
1181 		/* make sure table isn't truncated */
1182 		if (avail < 0) {
1183 			dev_err(dev, "rsc table is truncated\n");
1184 			return -EINVAL;
1185 		}
1186 
1187 		dev_dbg(dev, "rsc: type %d\n", hdr->type);
1188 
1189 		if (hdr->type >= RSC_VENDOR_START &&
1190 		    hdr->type <= RSC_VENDOR_END) {
1191 			ret = rproc_handle_rsc(rproc, hdr->type, rsc,
1192 					       offset + sizeof(*hdr), avail);
1193 			if (ret == RSC_HANDLED)
1194 				continue;
1195 			else if (ret < 0)
1196 				break;
1197 
1198 			dev_warn(dev, "unsupported vendor resource %d\n",
1199 				 hdr->type);
1200 			continue;
1201 		}
1202 
1203 		if (hdr->type >= RSC_LAST) {
1204 			dev_warn(dev, "unsupported resource %d\n", hdr->type);
1205 			continue;
1206 		}
1207 
1208 		handler = handlers[hdr->type];
1209 		if (!handler)
1210 			continue;
1211 
1212 		ret = handler(rproc, rsc, offset + sizeof(*hdr), avail);
1213 		if (ret)
1214 			break;
1215 	}
1216 
1217 	return ret;
1218 }
1219 
rproc_prepare_subdevices(struct rproc * rproc)1220 static int rproc_prepare_subdevices(struct rproc *rproc)
1221 {
1222 	struct rproc_subdev *subdev;
1223 	int ret;
1224 
1225 	list_for_each_entry(subdev, &rproc->subdevs, node) {
1226 		if (subdev->prepare) {
1227 			ret = subdev->prepare(subdev);
1228 			if (ret)
1229 				goto unroll_preparation;
1230 		}
1231 	}
1232 
1233 	return 0;
1234 
1235 unroll_preparation:
1236 	list_for_each_entry_continue_reverse(subdev, &rproc->subdevs, node) {
1237 		if (subdev->unprepare)
1238 			subdev->unprepare(subdev);
1239 	}
1240 
1241 	return ret;
1242 }
1243 
rproc_start_subdevices(struct rproc * rproc)1244 static int rproc_start_subdevices(struct rproc *rproc)
1245 {
1246 	struct rproc_subdev *subdev;
1247 	int ret;
1248 
1249 	list_for_each_entry(subdev, &rproc->subdevs, node) {
1250 		if (subdev->start) {
1251 			ret = subdev->start(subdev);
1252 			if (ret)
1253 				goto unroll_registration;
1254 		}
1255 	}
1256 
1257 	return 0;
1258 
1259 unroll_registration:
1260 	list_for_each_entry_continue_reverse(subdev, &rproc->subdevs, node) {
1261 		if (subdev->stop)
1262 			subdev->stop(subdev, true);
1263 	}
1264 
1265 	return ret;
1266 }
1267 
rproc_stop_subdevices(struct rproc * rproc,bool crashed)1268 static void rproc_stop_subdevices(struct rproc *rproc, bool crashed)
1269 {
1270 	struct rproc_subdev *subdev;
1271 
1272 	list_for_each_entry_reverse(subdev, &rproc->subdevs, node) {
1273 		if (subdev->stop)
1274 			subdev->stop(subdev, crashed);
1275 	}
1276 }
1277 
rproc_unprepare_subdevices(struct rproc * rproc)1278 static void rproc_unprepare_subdevices(struct rproc *rproc)
1279 {
1280 	struct rproc_subdev *subdev;
1281 
1282 	list_for_each_entry_reverse(subdev, &rproc->subdevs, node) {
1283 		if (subdev->unprepare)
1284 			subdev->unprepare(subdev);
1285 	}
1286 }
1287 
1288 /**
1289  * rproc_alloc_registered_carveouts() - allocate all carveouts registered
1290  * in the list
1291  * @rproc: the remote processor handle
1292  *
1293  * This function parses registered carveout list, performs allocation
1294  * if alloc() ops registered and updates resource table information
1295  * if rsc_offset set.
1296  *
1297  * Return: 0 on success
1298  */
rproc_alloc_registered_carveouts(struct rproc * rproc)1299 static int rproc_alloc_registered_carveouts(struct rproc *rproc)
1300 {
1301 	struct rproc_mem_entry *entry, *tmp;
1302 	struct fw_rsc_carveout *rsc;
1303 	struct device *dev = &rproc->dev;
1304 	u64 pa;
1305 	int ret;
1306 
1307 	list_for_each_entry_safe(entry, tmp, &rproc->carveouts, node) {
1308 		if (entry->alloc) {
1309 			ret = entry->alloc(rproc, entry);
1310 			if (ret) {
1311 				dev_err(dev, "Unable to allocate carveout %s: %d\n",
1312 					entry->name, ret);
1313 				return -ENOMEM;
1314 			}
1315 		}
1316 
1317 		if (entry->rsc_offset != FW_RSC_ADDR_ANY) {
1318 			/* update resource table */
1319 			rsc = (void *)rproc->table_ptr + entry->rsc_offset;
1320 
1321 			/*
1322 			 * Some remote processors might need to know the pa
1323 			 * even though they are behind an IOMMU. E.g., OMAP4's
1324 			 * remote M3 processor needs this so it can control
1325 			 * on-chip hardware accelerators that are not behind
1326 			 * the IOMMU, and therefor must know the pa.
1327 			 *
1328 			 * Generally we don't want to expose physical addresses
1329 			 * if we don't have to (remote processors are generally
1330 			 * _not_ trusted), so we might want to do this only for
1331 			 * remote processor that _must_ have this (e.g. OMAP4's
1332 			 * dual M3 subsystem).
1333 			 *
1334 			 * Non-IOMMU processors might also want to have this info.
1335 			 * In this case, the device address and the physical address
1336 			 * are the same.
1337 			 */
1338 
1339 			/* Use va if defined else dma to generate pa */
1340 			if (entry->va)
1341 				pa = (u64)rproc_va_to_pa(entry->va);
1342 			else
1343 				pa = (u64)entry->dma;
1344 
1345 			if (((u64)pa) & HIGH_BITS_MASK)
1346 				dev_warn(dev,
1347 					 "Physical address cast in 32bit to fit resource table format\n");
1348 
1349 			rsc->pa = (u32)pa;
1350 			rsc->da = entry->da;
1351 			rsc->len = entry->len;
1352 		}
1353 	}
1354 
1355 	return 0;
1356 }
1357 
1358 
1359 /**
1360  * rproc_resource_cleanup() - clean up and free all acquired resources
1361  * @rproc: rproc handle
1362  *
1363  * This function will free all resources acquired for @rproc, and it
1364  * is called whenever @rproc either shuts down or fails to boot.
1365  */
rproc_resource_cleanup(struct rproc * rproc)1366 void rproc_resource_cleanup(struct rproc *rproc)
1367 {
1368 	struct rproc_mem_entry *entry, *tmp;
1369 	struct rproc_debug_trace *trace, *ttmp;
1370 	struct rproc_vdev *rvdev, *rvtmp;
1371 	struct device *dev = &rproc->dev;
1372 
1373 	/* clean up debugfs trace entries */
1374 	list_for_each_entry_safe(trace, ttmp, &rproc->traces, node) {
1375 		rproc_remove_trace_file(trace->tfile);
1376 		rproc->num_traces--;
1377 		list_del(&trace->node);
1378 		kfree(trace);
1379 	}
1380 
1381 	/* clean up iommu mapping entries */
1382 	list_for_each_entry_safe(entry, tmp, &rproc->mappings, node) {
1383 		size_t unmapped;
1384 
1385 		unmapped = iommu_unmap(rproc->domain, entry->da, entry->len);
1386 		if (unmapped != entry->len) {
1387 			/* nothing much to do besides complaining */
1388 			dev_err(dev, "failed to unmap %zx/%zu\n", entry->len,
1389 				unmapped);
1390 		}
1391 
1392 		list_del(&entry->node);
1393 		kfree(entry);
1394 	}
1395 
1396 	/* clean up carveout allocations */
1397 	list_for_each_entry_safe(entry, tmp, &rproc->carveouts, node) {
1398 		if (entry->release)
1399 			entry->release(rproc, entry);
1400 		list_del(&entry->node);
1401 		kfree(entry);
1402 	}
1403 
1404 	/* clean up remote vdev entries */
1405 	list_for_each_entry_safe(rvdev, rvtmp, &rproc->rvdevs, node)
1406 		kref_put(&rvdev->refcount, rproc_vdev_release);
1407 
1408 	rproc_coredump_cleanup(rproc);
1409 }
1410 EXPORT_SYMBOL(rproc_resource_cleanup);
1411 
rproc_start(struct rproc * rproc,const struct firmware * fw)1412 static int rproc_start(struct rproc *rproc, const struct firmware *fw)
1413 {
1414 	struct resource_table *loaded_table;
1415 	struct device *dev = &rproc->dev;
1416 	int ret;
1417 
1418 	/* load the ELF segments to memory */
1419 	ret = rproc_load_segments(rproc, fw);
1420 	if (ret) {
1421 		dev_err(dev, "Failed to load program segments: %d\n", ret);
1422 		return ret;
1423 	}
1424 
1425 	/*
1426 	 * The starting device has been given the rproc->cached_table as the
1427 	 * resource table. The address of the vring along with the other
1428 	 * allocated resources (carveouts etc) is stored in cached_table.
1429 	 * In order to pass this information to the remote device we must copy
1430 	 * this information to device memory. We also update the table_ptr so
1431 	 * that any subsequent changes will be applied to the loaded version.
1432 	 */
1433 	loaded_table = rproc_find_loaded_rsc_table(rproc, fw);
1434 	if (loaded_table) {
1435 		memcpy(loaded_table, rproc->cached_table, rproc->table_sz);
1436 		rproc->table_ptr = loaded_table;
1437 	}
1438 
1439 	ret = rproc_prepare_subdevices(rproc);
1440 	if (ret) {
1441 		dev_err(dev, "failed to prepare subdevices for %s: %d\n",
1442 			rproc->name, ret);
1443 		goto reset_table_ptr;
1444 	}
1445 
1446 	/* power up the remote processor */
1447 	ret = rproc->ops->start(rproc);
1448 	if (ret) {
1449 		dev_err(dev, "can't start rproc %s: %d\n", rproc->name, ret);
1450 		goto unprepare_subdevices;
1451 	}
1452 
1453 	/* Start any subdevices for the remote processor */
1454 	ret = rproc_start_subdevices(rproc);
1455 	if (ret) {
1456 		dev_err(dev, "failed to probe subdevices for %s: %d\n",
1457 			rproc->name, ret);
1458 		goto stop_rproc;
1459 	}
1460 
1461 	rproc->state = RPROC_RUNNING;
1462 
1463 	dev_info(dev, "remote processor %s is now up\n", rproc->name);
1464 
1465 	return 0;
1466 
1467 stop_rproc:
1468 	rproc->ops->stop(rproc);
1469 unprepare_subdevices:
1470 	rproc_unprepare_subdevices(rproc);
1471 reset_table_ptr:
1472 	rproc->table_ptr = rproc->cached_table;
1473 
1474 	return ret;
1475 }
1476 
__rproc_attach(struct rproc * rproc)1477 static int __rproc_attach(struct rproc *rproc)
1478 {
1479 	struct device *dev = &rproc->dev;
1480 	int ret;
1481 
1482 	ret = rproc_prepare_subdevices(rproc);
1483 	if (ret) {
1484 		dev_err(dev, "failed to prepare subdevices for %s: %d\n",
1485 			rproc->name, ret);
1486 		goto out;
1487 	}
1488 
1489 	/* Attach to the remote processor */
1490 	ret = rproc_attach_device(rproc);
1491 	if (ret) {
1492 		dev_err(dev, "can't attach to rproc %s: %d\n",
1493 			rproc->name, ret);
1494 		goto unprepare_subdevices;
1495 	}
1496 
1497 	/* Start any subdevices for the remote processor */
1498 	ret = rproc_start_subdevices(rproc);
1499 	if (ret) {
1500 		dev_err(dev, "failed to probe subdevices for %s: %d\n",
1501 			rproc->name, ret);
1502 		goto stop_rproc;
1503 	}
1504 
1505 	rproc->state = RPROC_ATTACHED;
1506 
1507 	dev_info(dev, "remote processor %s is now attached\n", rproc->name);
1508 
1509 	return 0;
1510 
1511 stop_rproc:
1512 	rproc->ops->stop(rproc);
1513 unprepare_subdevices:
1514 	rproc_unprepare_subdevices(rproc);
1515 out:
1516 	return ret;
1517 }
1518 
1519 /*
1520  * take a firmware and boot a remote processor with it.
1521  */
rproc_fw_boot(struct rproc * rproc,const struct firmware * fw)1522 static int rproc_fw_boot(struct rproc *rproc, const struct firmware *fw)
1523 {
1524 	struct device *dev = &rproc->dev;
1525 	const char *name = rproc->firmware;
1526 	int ret;
1527 
1528 	ret = rproc_fw_sanity_check(rproc, fw);
1529 	if (ret)
1530 		return ret;
1531 
1532 	dev_info(dev, "Booting fw image %s, size %zd\n", name, fw->size);
1533 
1534 	/*
1535 	 * if enabling an IOMMU isn't relevant for this rproc, this is
1536 	 * just a nop
1537 	 */
1538 	ret = rproc_enable_iommu(rproc);
1539 	if (ret) {
1540 		dev_err(dev, "can't enable iommu: %d\n", ret);
1541 		return ret;
1542 	}
1543 
1544 	/* Prepare rproc for firmware loading if needed */
1545 	ret = rproc_prepare_device(rproc);
1546 	if (ret) {
1547 		dev_err(dev, "can't prepare rproc %s: %d\n", rproc->name, ret);
1548 		goto disable_iommu;
1549 	}
1550 
1551 	rproc->bootaddr = rproc_get_boot_addr(rproc, fw);
1552 
1553 	/* Load resource table, core dump segment list etc from the firmware */
1554 	ret = rproc_parse_fw(rproc, fw);
1555 	if (ret)
1556 		goto unprepare_rproc;
1557 
1558 	/* reset max_notifyid */
1559 	rproc->max_notifyid = -1;
1560 
1561 	/* reset handled vdev */
1562 	rproc->nb_vdev = 0;
1563 
1564 	/* handle fw resources which are required to boot rproc */
1565 	ret = rproc_handle_resources(rproc, rproc_loading_handlers);
1566 	if (ret) {
1567 		dev_err(dev, "Failed to process resources: %d\n", ret);
1568 		goto clean_up_resources;
1569 	}
1570 
1571 	/* Allocate carveout resources associated to rproc */
1572 	ret = rproc_alloc_registered_carveouts(rproc);
1573 	if (ret) {
1574 		dev_err(dev, "Failed to allocate associated carveouts: %d\n",
1575 			ret);
1576 		goto clean_up_resources;
1577 	}
1578 
1579 	ret = rproc_start(rproc, fw);
1580 	if (ret)
1581 		goto clean_up_resources;
1582 
1583 	return 0;
1584 
1585 clean_up_resources:
1586 	rproc_resource_cleanup(rproc);
1587 	kfree(rproc->cached_table);
1588 	rproc->cached_table = NULL;
1589 	rproc->table_ptr = NULL;
1590 unprepare_rproc:
1591 	/* release HW resources if needed */
1592 	rproc_unprepare_device(rproc);
1593 disable_iommu:
1594 	rproc_disable_iommu(rproc);
1595 	return ret;
1596 }
1597 
rproc_set_rsc_table(struct rproc * rproc)1598 static int rproc_set_rsc_table(struct rproc *rproc)
1599 {
1600 	struct resource_table *table_ptr;
1601 	struct device *dev = &rproc->dev;
1602 	size_t table_sz;
1603 	int ret;
1604 
1605 	table_ptr = rproc_get_loaded_rsc_table(rproc, &table_sz);
1606 	if (!table_ptr) {
1607 		/* Not having a resource table is acceptable */
1608 		return 0;
1609 	}
1610 
1611 	if (IS_ERR(table_ptr)) {
1612 		ret = PTR_ERR(table_ptr);
1613 		dev_err(dev, "can't load resource table: %d\n", ret);
1614 		return ret;
1615 	}
1616 
1617 	/*
1618 	 * If it is possible to detach the remote processor, keep an untouched
1619 	 * copy of the resource table.  That way we can start fresh again when
1620 	 * the remote processor is re-attached, that is:
1621 	 *
1622 	 *      DETACHED -> ATTACHED -> DETACHED -> ATTACHED
1623 	 *
1624 	 * Free'd in rproc_reset_rsc_table_on_detach() and
1625 	 * rproc_reset_rsc_table_on_stop().
1626 	 */
1627 	if (rproc->ops->detach) {
1628 		rproc->clean_table = kmemdup(table_ptr, table_sz, GFP_KERNEL);
1629 		if (!rproc->clean_table)
1630 			return -ENOMEM;
1631 	} else {
1632 		rproc->clean_table = NULL;
1633 	}
1634 
1635 	rproc->cached_table = NULL;
1636 	rproc->table_ptr = table_ptr;
1637 	rproc->table_sz = table_sz;
1638 
1639 	return 0;
1640 }
1641 
rproc_reset_rsc_table_on_detach(struct rproc * rproc)1642 static int rproc_reset_rsc_table_on_detach(struct rproc *rproc)
1643 {
1644 	struct resource_table *table_ptr;
1645 
1646 	/* A resource table was never retrieved, nothing to do here */
1647 	if (!rproc->table_ptr)
1648 		return 0;
1649 
1650 	/*
1651 	 * If we made it to this point a clean_table _must_ have been
1652 	 * allocated in rproc_set_rsc_table().  If one isn't present
1653 	 * something went really wrong and we must complain.
1654 	 */
1655 	if (WARN_ON(!rproc->clean_table))
1656 		return -EINVAL;
1657 
1658 	/* Remember where the external entity installed the resource table */
1659 	table_ptr = rproc->table_ptr;
1660 
1661 	/*
1662 	 * If we made it here the remote processor was started by another
1663 	 * entity and a cache table doesn't exist.  As such make a copy of
1664 	 * the resource table currently used by the remote processor and
1665 	 * use that for the rest of the shutdown process.  The memory
1666 	 * allocated here is free'd in rproc_detach().
1667 	 */
1668 	rproc->cached_table = kmemdup(rproc->table_ptr,
1669 				      rproc->table_sz, GFP_KERNEL);
1670 	if (!rproc->cached_table)
1671 		return -ENOMEM;
1672 
1673 	/*
1674 	 * Use a copy of the resource table for the remainder of the
1675 	 * shutdown process.
1676 	 */
1677 	rproc->table_ptr = rproc->cached_table;
1678 
1679 	/*
1680 	 * Reset the memory area where the firmware loaded the resource table
1681 	 * to its original value.  That way when we re-attach the remote
1682 	 * processor the resource table is clean and ready to be used again.
1683 	 */
1684 	memcpy(table_ptr, rproc->clean_table, rproc->table_sz);
1685 
1686 	/*
1687 	 * The clean resource table is no longer needed.  Allocated in
1688 	 * rproc_set_rsc_table().
1689 	 */
1690 	kfree(rproc->clean_table);
1691 
1692 	return 0;
1693 }
1694 
rproc_reset_rsc_table_on_stop(struct rproc * rproc)1695 static int rproc_reset_rsc_table_on_stop(struct rproc *rproc)
1696 {
1697 	/* A resource table was never retrieved, nothing to do here */
1698 	if (!rproc->table_ptr)
1699 		return 0;
1700 
1701 	/*
1702 	 * If a cache table exists the remote processor was started by
1703 	 * the remoteproc core.  That cache table should be used for
1704 	 * the rest of the shutdown process.
1705 	 */
1706 	if (rproc->cached_table)
1707 		goto out;
1708 
1709 	/*
1710 	 * If we made it here the remote processor was started by another
1711 	 * entity and a cache table doesn't exist.  As such make a copy of
1712 	 * the resource table currently used by the remote processor and
1713 	 * use that for the rest of the shutdown process.  The memory
1714 	 * allocated here is free'd in rproc_shutdown().
1715 	 */
1716 	rproc->cached_table = kmemdup(rproc->table_ptr,
1717 				      rproc->table_sz, GFP_KERNEL);
1718 	if (!rproc->cached_table)
1719 		return -ENOMEM;
1720 
1721 	/*
1722 	 * Since the remote processor is being switched off the clean table
1723 	 * won't be needed.  Allocated in rproc_set_rsc_table().
1724 	 */
1725 	kfree(rproc->clean_table);
1726 
1727 out:
1728 	/*
1729 	 * Use a copy of the resource table for the remainder of the
1730 	 * shutdown process.
1731 	 */
1732 	rproc->table_ptr = rproc->cached_table;
1733 	return 0;
1734 }
1735 
1736 /*
1737  * Attach to remote processor - similar to rproc_fw_boot() but without
1738  * the steps that deal with the firmware image.
1739  */
rproc_attach(struct rproc * rproc)1740 static int rproc_attach(struct rproc *rproc)
1741 {
1742 	struct device *dev = &rproc->dev;
1743 	int ret;
1744 
1745 	/*
1746 	 * if enabling an IOMMU isn't relevant for this rproc, this is
1747 	 * just a nop
1748 	 */
1749 	ret = rproc_enable_iommu(rproc);
1750 	if (ret) {
1751 		dev_err(dev, "can't enable iommu: %d\n", ret);
1752 		return ret;
1753 	}
1754 
1755 	/* Do anything that is needed to boot the remote processor */
1756 	ret = rproc_prepare_device(rproc);
1757 	if (ret) {
1758 		dev_err(dev, "can't prepare rproc %s: %d\n", rproc->name, ret);
1759 		goto disable_iommu;
1760 	}
1761 
1762 	ret = rproc_set_rsc_table(rproc);
1763 	if (ret) {
1764 		dev_err(dev, "can't load resource table: %d\n", ret);
1765 		goto unprepare_device;
1766 	}
1767 
1768 	/* reset max_notifyid */
1769 	rproc->max_notifyid = -1;
1770 
1771 	/* reset handled vdev */
1772 	rproc->nb_vdev = 0;
1773 
1774 	/*
1775 	 * Handle firmware resources required to attach to a remote processor.
1776 	 * Because we are attaching rather than booting the remote processor,
1777 	 * we expect the platform driver to properly set rproc->table_ptr.
1778 	 */
1779 	ret = rproc_handle_resources(rproc, rproc_loading_handlers);
1780 	if (ret) {
1781 		dev_err(dev, "Failed to process resources: %d\n", ret);
1782 		goto unprepare_device;
1783 	}
1784 
1785 	/* Allocate carveout resources associated to rproc */
1786 	ret = rproc_alloc_registered_carveouts(rproc);
1787 	if (ret) {
1788 		dev_err(dev, "Failed to allocate associated carveouts: %d\n",
1789 			ret);
1790 		goto clean_up_resources;
1791 	}
1792 
1793 	ret = __rproc_attach(rproc);
1794 	if (ret)
1795 		goto clean_up_resources;
1796 
1797 	return 0;
1798 
1799 clean_up_resources:
1800 	rproc_resource_cleanup(rproc);
1801 unprepare_device:
1802 	/* release HW resources if needed */
1803 	rproc_unprepare_device(rproc);
1804 disable_iommu:
1805 	rproc_disable_iommu(rproc);
1806 	return ret;
1807 }
1808 
1809 /*
1810  * take a firmware and boot it up.
1811  *
1812  * Note: this function is called asynchronously upon registration of the
1813  * remote processor (so we must wait until it completes before we try
1814  * to unregister the device. one other option is just to use kref here,
1815  * that might be cleaner).
1816  */
rproc_auto_boot_callback(const struct firmware * fw,void * context)1817 static void rproc_auto_boot_callback(const struct firmware *fw, void *context)
1818 {
1819 	struct rproc *rproc = context;
1820 
1821 	rproc_boot(rproc);
1822 
1823 	release_firmware(fw);
1824 }
1825 
rproc_trigger_auto_boot(struct rproc * rproc)1826 static int rproc_trigger_auto_boot(struct rproc *rproc)
1827 {
1828 	int ret;
1829 
1830 	/*
1831 	 * Since the remote processor is in a detached state, it has already
1832 	 * been booted by another entity.  As such there is no point in waiting
1833 	 * for a firmware image to be loaded, we can simply initiate the process
1834 	 * of attaching to it immediately.
1835 	 */
1836 	if (rproc->state == RPROC_DETACHED)
1837 		return rproc_boot(rproc);
1838 
1839 	/*
1840 	 * We're initiating an asynchronous firmware loading, so we can
1841 	 * be built-in kernel code, without hanging the boot process.
1842 	 */
1843 	ret = request_firmware_nowait(THIS_MODULE, FW_ACTION_UEVENT,
1844 				      rproc->firmware, &rproc->dev, GFP_KERNEL,
1845 				      rproc, rproc_auto_boot_callback);
1846 	if (ret < 0)
1847 		dev_err(&rproc->dev, "request_firmware_nowait err: %d\n", ret);
1848 
1849 	return ret;
1850 }
1851 
rproc_stop(struct rproc * rproc,bool crashed)1852 static int rproc_stop(struct rproc *rproc, bool crashed)
1853 {
1854 	struct device *dev = &rproc->dev;
1855 	int ret;
1856 
1857 	/* No need to continue if a stop() operation has not been provided */
1858 	if (!rproc->ops->stop)
1859 		return -EINVAL;
1860 
1861 	/* Stop any subdevices for the remote processor */
1862 	rproc_stop_subdevices(rproc, crashed);
1863 
1864 	/* the installed resource table is no longer accessible */
1865 	ret = rproc_reset_rsc_table_on_stop(rproc);
1866 	if (ret) {
1867 		dev_err(dev, "can't reset resource table: %d\n", ret);
1868 		return ret;
1869 	}
1870 
1871 
1872 	/* power off the remote processor */
1873 	ret = rproc->ops->stop(rproc);
1874 	if (ret) {
1875 		dev_err(dev, "can't stop rproc: %d\n", ret);
1876 		return ret;
1877 	}
1878 
1879 	rproc_unprepare_subdevices(rproc);
1880 
1881 	rproc->state = RPROC_OFFLINE;
1882 
1883 	dev_info(dev, "stopped remote processor %s\n", rproc->name);
1884 
1885 	return 0;
1886 }
1887 
1888 /*
1889  * __rproc_detach(): Does the opposite of __rproc_attach()
1890  */
__rproc_detach(struct rproc * rproc)1891 static int __rproc_detach(struct rproc *rproc)
1892 {
1893 	struct device *dev = &rproc->dev;
1894 	int ret;
1895 
1896 	/* No need to continue if a detach() operation has not been provided */
1897 	if (!rproc->ops->detach)
1898 		return -EINVAL;
1899 
1900 	/* Stop any subdevices for the remote processor */
1901 	rproc_stop_subdevices(rproc, false);
1902 
1903 	/* the installed resource table is no longer accessible */
1904 	ret = rproc_reset_rsc_table_on_detach(rproc);
1905 	if (ret) {
1906 		dev_err(dev, "can't reset resource table: %d\n", ret);
1907 		return ret;
1908 	}
1909 
1910 	/* Tell the remote processor the core isn't available anymore */
1911 	ret = rproc->ops->detach(rproc);
1912 	if (ret) {
1913 		dev_err(dev, "can't detach from rproc: %d\n", ret);
1914 		return ret;
1915 	}
1916 
1917 	rproc_unprepare_subdevices(rproc);
1918 
1919 	rproc->state = RPROC_DETACHED;
1920 
1921 	dev_info(dev, "detached remote processor %s\n", rproc->name);
1922 
1923 	return 0;
1924 }
1925 
1926 /**
1927  * rproc_trigger_recovery() - recover a remoteproc
1928  * @rproc: the remote processor
1929  *
1930  * The recovery is done by resetting all the virtio devices, that way all the
1931  * rpmsg drivers will be reseted along with the remote processor making the
1932  * remoteproc functional again.
1933  *
1934  * This function can sleep, so it cannot be called from atomic context.
1935  *
1936  * Return: 0 on success or a negative value upon failure
1937  */
rproc_trigger_recovery(struct rproc * rproc)1938 int rproc_trigger_recovery(struct rproc *rproc)
1939 {
1940 	const struct firmware *firmware_p;
1941 	struct device *dev = &rproc->dev;
1942 	int ret;
1943 
1944 	ret = mutex_lock_interruptible(&rproc->lock);
1945 	if (ret)
1946 		return ret;
1947 
1948 	/* State could have changed before we got the mutex */
1949 	if (rproc->state != RPROC_CRASHED)
1950 		goto unlock_mutex;
1951 
1952 	dev_err(dev, "recovering %s\n", rproc->name);
1953 
1954 	ret = rproc_stop(rproc, true);
1955 	if (ret)
1956 		goto unlock_mutex;
1957 
1958 	/* generate coredump */
1959 	rproc->ops->coredump(rproc);
1960 
1961 	/* load firmware */
1962 	ret = request_firmware(&firmware_p, rproc->firmware, dev);
1963 	if (ret < 0) {
1964 		dev_err(dev, "request_firmware failed: %d\n", ret);
1965 		goto unlock_mutex;
1966 	}
1967 
1968 	/* boot the remote processor up again */
1969 	ret = rproc_start(rproc, firmware_p);
1970 
1971 	release_firmware(firmware_p);
1972 
1973 unlock_mutex:
1974 	mutex_unlock(&rproc->lock);
1975 	return ret;
1976 }
1977 
1978 /**
1979  * rproc_crash_handler_work() - handle a crash
1980  * @work: work treating the crash
1981  *
1982  * This function needs to handle everything related to a crash, like cpu
1983  * registers and stack dump, information to help to debug the fatal error, etc.
1984  */
rproc_crash_handler_work(struct work_struct * work)1985 static void rproc_crash_handler_work(struct work_struct *work)
1986 {
1987 	struct rproc *rproc = container_of(work, struct rproc, crash_handler);
1988 	struct device *dev = &rproc->dev;
1989 
1990 	dev_dbg(dev, "enter %s\n", __func__);
1991 
1992 	mutex_lock(&rproc->lock);
1993 
1994 	if (rproc->state == RPROC_CRASHED) {
1995 		/* handle only the first crash detected */
1996 		mutex_unlock(&rproc->lock);
1997 		return;
1998 	}
1999 
2000 	if (rproc->state == RPROC_OFFLINE) {
2001 		/* Don't recover if the remote processor was stopped */
2002 		mutex_unlock(&rproc->lock);
2003 		goto out;
2004 	}
2005 
2006 	rproc->state = RPROC_CRASHED;
2007 	dev_err(dev, "handling crash #%u in %s\n", ++rproc->crash_cnt,
2008 		rproc->name);
2009 
2010 	mutex_unlock(&rproc->lock);
2011 
2012 	if (!rproc->recovery_disabled)
2013 		rproc_trigger_recovery(rproc);
2014 
2015 out:
2016 	trace_android_vh_rproc_recovery(rproc);
2017 	pm_relax(rproc->dev.parent);
2018 }
2019 
2020 /**
2021  * rproc_boot() - boot a remote processor
2022  * @rproc: handle of a remote processor
2023  *
2024  * Boot a remote processor (i.e. load its firmware, power it on, ...).
2025  *
2026  * If the remote processor is already powered on, this function immediately
2027  * returns (successfully).
2028  *
2029  * Return: 0 on success, and an appropriate error value otherwise
2030  */
rproc_boot(struct rproc * rproc)2031 int rproc_boot(struct rproc *rproc)
2032 {
2033 	const struct firmware *firmware_p;
2034 	struct device *dev;
2035 	int ret;
2036 
2037 	if (!rproc) {
2038 		pr_err("invalid rproc handle\n");
2039 		return -EINVAL;
2040 	}
2041 
2042 	dev = &rproc->dev;
2043 
2044 	ret = mutex_lock_interruptible(&rproc->lock);
2045 	if (ret) {
2046 		dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
2047 		return ret;
2048 	}
2049 
2050 	if (rproc->state == RPROC_DELETED) {
2051 		ret = -ENODEV;
2052 		dev_err(dev, "can't boot deleted rproc %s\n", rproc->name);
2053 		goto unlock_mutex;
2054 	}
2055 
2056 	/* skip the boot or attach process if rproc is already powered up */
2057 	if (atomic_inc_return(&rproc->power) > 1) {
2058 		ret = 0;
2059 		goto unlock_mutex;
2060 	}
2061 
2062 	if (rproc->state == RPROC_DETACHED) {
2063 		dev_info(dev, "attaching to %s\n", rproc->name);
2064 
2065 		ret = rproc_attach(rproc);
2066 	} else {
2067 		dev_info(dev, "powering up %s\n", rproc->name);
2068 
2069 		/* load firmware */
2070 		ret = request_firmware(&firmware_p, rproc->firmware, dev);
2071 		if (ret < 0) {
2072 			dev_err(dev, "request_firmware failed: %d\n", ret);
2073 			goto downref_rproc;
2074 		}
2075 
2076 		ret = rproc_fw_boot(rproc, firmware_p);
2077 
2078 		release_firmware(firmware_p);
2079 	}
2080 
2081 downref_rproc:
2082 	if (ret)
2083 		atomic_dec(&rproc->power);
2084 unlock_mutex:
2085 	mutex_unlock(&rproc->lock);
2086 	return ret;
2087 }
2088 EXPORT_SYMBOL(rproc_boot);
2089 
2090 /**
2091  * rproc_shutdown() - power off the remote processor
2092  * @rproc: the remote processor
2093  *
2094  * Power off a remote processor (previously booted with rproc_boot()).
2095  *
2096  * In case @rproc is still being used by an additional user(s), then
2097  * this function will just decrement the power refcount and exit,
2098  * without really powering off the device.
2099  *
2100  * Every call to rproc_boot() must (eventually) be accompanied by a call
2101  * to rproc_shutdown(). Calling rproc_shutdown() redundantly is a bug.
2102  *
2103  * Notes:
2104  * - we're not decrementing the rproc's refcount, only the power refcount.
2105  *   which means that the @rproc handle stays valid even after rproc_shutdown()
2106  *   returns, and users can still use it with a subsequent rproc_boot(), if
2107  *   needed.
2108  */
rproc_shutdown(struct rproc * rproc)2109 void rproc_shutdown(struct rproc *rproc)
2110 {
2111 	struct device *dev = &rproc->dev;
2112 	int ret;
2113 
2114 	ret = mutex_lock_interruptible(&rproc->lock);
2115 	if (ret) {
2116 		dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
2117 		return;
2118 	}
2119 
2120 	/* if the remote proc is still needed, bail out */
2121 	if (!atomic_dec_and_test(&rproc->power))
2122 		goto out;
2123 
2124 	ret = rproc_stop(rproc, false);
2125 	if (ret) {
2126 		atomic_inc(&rproc->power);
2127 		goto out;
2128 	}
2129 
2130 	/* clean up all acquired resources */
2131 	rproc_resource_cleanup(rproc);
2132 
2133 	/* release HW resources if needed */
2134 	rproc_unprepare_device(rproc);
2135 
2136 	rproc_disable_iommu(rproc);
2137 
2138 	/* Free the copy of the resource table */
2139 	kfree(rproc->cached_table);
2140 	rproc->cached_table = NULL;
2141 	rproc->table_ptr = NULL;
2142 out:
2143 	mutex_unlock(&rproc->lock);
2144 }
2145 EXPORT_SYMBOL(rproc_shutdown);
2146 
2147 /**
2148  * rproc_detach() - Detach the remote processor from the
2149  * remoteproc core
2150  *
2151  * @rproc: the remote processor
2152  *
2153  * Detach a remote processor (previously attached to with rproc_attach()).
2154  *
2155  * In case @rproc is still being used by an additional user(s), then
2156  * this function will just decrement the power refcount and exit,
2157  * without disconnecting the device.
2158  *
2159  * Function rproc_detach() calls __rproc_detach() in order to let a remote
2160  * processor know that services provided by the application processor are
2161  * no longer available.  From there it should be possible to remove the
2162  * platform driver and even power cycle the application processor (if the HW
2163  * supports it) without needing to switch off the remote processor.
2164  *
2165  * Return: 0 on success, and an appropriate error value otherwise
2166  */
rproc_detach(struct rproc * rproc)2167 int rproc_detach(struct rproc *rproc)
2168 {
2169 	struct device *dev = &rproc->dev;
2170 	int ret;
2171 
2172 	ret = mutex_lock_interruptible(&rproc->lock);
2173 	if (ret) {
2174 		dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
2175 		return ret;
2176 	}
2177 
2178 	/* if the remote proc is still needed, bail out */
2179 	if (!atomic_dec_and_test(&rproc->power)) {
2180 		ret = 0;
2181 		goto out;
2182 	}
2183 
2184 	ret = __rproc_detach(rproc);
2185 	if (ret) {
2186 		atomic_inc(&rproc->power);
2187 		goto out;
2188 	}
2189 
2190 	/* clean up all acquired resources */
2191 	rproc_resource_cleanup(rproc);
2192 
2193 	/* release HW resources if needed */
2194 	rproc_unprepare_device(rproc);
2195 
2196 	rproc_disable_iommu(rproc);
2197 
2198 	/* Free the copy of the resource table */
2199 	kfree(rproc->cached_table);
2200 	rproc->cached_table = NULL;
2201 	rproc->table_ptr = NULL;
2202 out:
2203 	mutex_unlock(&rproc->lock);
2204 	return ret;
2205 }
2206 EXPORT_SYMBOL(rproc_detach);
2207 
2208 /**
2209  * rproc_get_by_phandle() - find a remote processor by phandle
2210  * @phandle: phandle to the rproc
2211  *
2212  * Finds an rproc handle using the remote processor's phandle, and then
2213  * return a handle to the rproc.
2214  *
2215  * This function increments the remote processor's refcount, so always
2216  * use rproc_put() to decrement it back once rproc isn't needed anymore.
2217  *
2218  * Return: rproc handle on success, and NULL on failure
2219  */
2220 #ifdef CONFIG_OF
rproc_get_by_phandle(phandle phandle)2221 struct rproc *rproc_get_by_phandle(phandle phandle)
2222 {
2223 	struct rproc *rproc = NULL, *r;
2224 	struct device_node *np;
2225 
2226 	np = of_find_node_by_phandle(phandle);
2227 	if (!np)
2228 		return NULL;
2229 
2230 	rcu_read_lock();
2231 	list_for_each_entry_rcu(r, &rproc_list, node) {
2232 		if (r->dev.parent && r->dev.parent->of_node == np) {
2233 			/* prevent underlying implementation from being removed */
2234 			if (!try_module_get(r->dev.parent->driver->owner)) {
2235 				dev_err(&r->dev, "can't get owner\n");
2236 				break;
2237 			}
2238 
2239 			rproc = r;
2240 			get_device(&rproc->dev);
2241 			break;
2242 		}
2243 	}
2244 	rcu_read_unlock();
2245 
2246 	of_node_put(np);
2247 
2248 	return rproc;
2249 }
2250 #else
rproc_get_by_phandle(phandle phandle)2251 struct rproc *rproc_get_by_phandle(phandle phandle)
2252 {
2253 	return NULL;
2254 }
2255 #endif
2256 EXPORT_SYMBOL(rproc_get_by_phandle);
2257 
2258 /**
2259  * rproc_set_firmware() - assign a new firmware
2260  * @rproc: rproc handle to which the new firmware is being assigned
2261  * @fw_name: new firmware name to be assigned
2262  *
2263  * This function allows remoteproc drivers or clients to configure a custom
2264  * firmware name that is different from the default name used during remoteproc
2265  * registration. The function does not trigger a remote processor boot,
2266  * only sets the firmware name used for a subsequent boot. This function
2267  * should also be called only when the remote processor is offline.
2268  *
2269  * This allows either the userspace to configure a different name through
2270  * sysfs or a kernel-level remoteproc or a remoteproc client driver to set
2271  * a specific firmware when it is controlling the boot and shutdown of the
2272  * remote processor.
2273  *
2274  * Return: 0 on success or a negative value upon failure
2275  */
rproc_set_firmware(struct rproc * rproc,const char * fw_name)2276 int rproc_set_firmware(struct rproc *rproc, const char *fw_name)
2277 {
2278 	struct device *dev;
2279 	int ret, len;
2280 	char *p;
2281 
2282 	if (!rproc || !fw_name)
2283 		return -EINVAL;
2284 
2285 	dev = rproc->dev.parent;
2286 
2287 	ret = mutex_lock_interruptible(&rproc->lock);
2288 	if (ret) {
2289 		dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
2290 		return -EINVAL;
2291 	}
2292 
2293 	if (rproc->state != RPROC_OFFLINE) {
2294 		dev_err(dev, "can't change firmware while running\n");
2295 		ret = -EBUSY;
2296 		goto out;
2297 	}
2298 
2299 	len = strcspn(fw_name, "\n");
2300 	if (!len) {
2301 		dev_err(dev, "can't provide empty string for firmware name\n");
2302 		ret = -EINVAL;
2303 		goto out;
2304 	}
2305 
2306 	p = kstrndup(fw_name, len, GFP_KERNEL);
2307 	if (!p) {
2308 		ret = -ENOMEM;
2309 		goto out;
2310 	}
2311 
2312 	kfree_const(rproc->firmware);
2313 	rproc->firmware = p;
2314 
2315 out:
2316 	mutex_unlock(&rproc->lock);
2317 	return ret;
2318 }
2319 EXPORT_SYMBOL(rproc_set_firmware);
2320 
rproc_validate(struct rproc * rproc)2321 static int rproc_validate(struct rproc *rproc)
2322 {
2323 	switch (rproc->state) {
2324 	case RPROC_OFFLINE:
2325 		/*
2326 		 * An offline processor without a start()
2327 		 * function makes no sense.
2328 		 */
2329 		if (!rproc->ops->start)
2330 			return -EINVAL;
2331 		break;
2332 	case RPROC_DETACHED:
2333 		/*
2334 		 * A remote processor in a detached state without an
2335 		 * attach() function makes not sense.
2336 		 */
2337 		if (!rproc->ops->attach)
2338 			return -EINVAL;
2339 		/*
2340 		 * When attaching to a remote processor the device memory
2341 		 * is already available and as such there is no need to have a
2342 		 * cached table.
2343 		 */
2344 		if (rproc->cached_table)
2345 			return -EINVAL;
2346 		break;
2347 	default:
2348 		/*
2349 		 * When adding a remote processor, the state of the device
2350 		 * can be offline or detached, nothing else.
2351 		 */
2352 		return -EINVAL;
2353 	}
2354 
2355 	return 0;
2356 }
2357 
2358 /**
2359  * rproc_add() - register a remote processor
2360  * @rproc: the remote processor handle to register
2361  *
2362  * Registers @rproc with the remoteproc framework, after it has been
2363  * allocated with rproc_alloc().
2364  *
2365  * This is called by the platform-specific rproc implementation, whenever
2366  * a new remote processor device is probed.
2367  *
2368  * Note: this function initiates an asynchronous firmware loading
2369  * context, which will look for virtio devices supported by the rproc's
2370  * firmware.
2371  *
2372  * If found, those virtio devices will be created and added, so as a result
2373  * of registering this remote processor, additional virtio drivers might be
2374  * probed.
2375  *
2376  * Return: 0 on success and an appropriate error code otherwise
2377  */
rproc_add(struct rproc * rproc)2378 int rproc_add(struct rproc *rproc)
2379 {
2380 	struct device *dev = &rproc->dev;
2381 	int ret;
2382 
2383 	ret = rproc_validate(rproc);
2384 	if (ret < 0)
2385 		return ret;
2386 
2387 	/* add char device for this remoteproc */
2388 	ret = rproc_char_device_add(rproc);
2389 	if (ret < 0)
2390 		return ret;
2391 
2392 	ret = device_add(dev);
2393 	if (ret < 0) {
2394 		put_device(dev);
2395 		goto rproc_remove_cdev;
2396 	}
2397 
2398 	dev_info(dev, "%s is available\n", rproc->name);
2399 
2400 	/* create debugfs entries */
2401 	rproc_create_debug_dir(rproc);
2402 
2403 	/* if rproc is marked always-on, request it to boot */
2404 	if (rproc->auto_boot) {
2405 		ret = rproc_trigger_auto_boot(rproc);
2406 		if (ret < 0)
2407 			goto rproc_remove_dev;
2408 	}
2409 
2410 	/* expose to rproc_get_by_phandle users */
2411 	mutex_lock(&rproc_list_mutex);
2412 	list_add_rcu(&rproc->node, &rproc_list);
2413 	mutex_unlock(&rproc_list_mutex);
2414 
2415 	return 0;
2416 
2417 rproc_remove_dev:
2418 	rproc_delete_debug_dir(rproc);
2419 	device_del(dev);
2420 rproc_remove_cdev:
2421 	rproc_char_device_remove(rproc);
2422 	return ret;
2423 }
2424 EXPORT_SYMBOL(rproc_add);
2425 
devm_rproc_remove(void * rproc)2426 static void devm_rproc_remove(void *rproc)
2427 {
2428 	rproc_del(rproc);
2429 }
2430 
2431 /**
2432  * devm_rproc_add() - resource managed rproc_add()
2433  * @dev: the underlying device
2434  * @rproc: the remote processor handle to register
2435  *
2436  * This function performs like rproc_add() but the registered rproc device will
2437  * automatically be removed on driver detach.
2438  *
2439  * Return: 0 on success, negative errno on failure
2440  */
devm_rproc_add(struct device * dev,struct rproc * rproc)2441 int devm_rproc_add(struct device *dev, struct rproc *rproc)
2442 {
2443 	int err;
2444 
2445 	err = rproc_add(rproc);
2446 	if (err)
2447 		return err;
2448 
2449 	return devm_add_action_or_reset(dev, devm_rproc_remove, rproc);
2450 }
2451 EXPORT_SYMBOL(devm_rproc_add);
2452 
2453 /**
2454  * rproc_type_release() - release a remote processor instance
2455  * @dev: the rproc's device
2456  *
2457  * This function should _never_ be called directly.
2458  *
2459  * It will be called by the driver core when no one holds a valid pointer
2460  * to @dev anymore.
2461  */
rproc_type_release(struct device * dev)2462 static void rproc_type_release(struct device *dev)
2463 {
2464 	struct rproc *rproc = container_of(dev, struct rproc, dev);
2465 
2466 	dev_info(&rproc->dev, "releasing %s\n", rproc->name);
2467 
2468 	idr_destroy(&rproc->notifyids);
2469 
2470 	if (rproc->index >= 0)
2471 		ida_simple_remove(&rproc_dev_index, rproc->index);
2472 
2473 	kfree_const(rproc->firmware);
2474 	kfree_const(rproc->name);
2475 	kfree(rproc->ops);
2476 	kfree(rproc);
2477 }
2478 
2479 static const struct device_type rproc_type = {
2480 	.name		= "remoteproc",
2481 	.release	= rproc_type_release,
2482 };
2483 
rproc_alloc_firmware(struct rproc * rproc,const char * name,const char * firmware)2484 static int rproc_alloc_firmware(struct rproc *rproc,
2485 				const char *name, const char *firmware)
2486 {
2487 	const char *p;
2488 
2489 	/*
2490 	 * Allocate a firmware name if the caller gave us one to work
2491 	 * with.  Otherwise construct a new one using a default pattern.
2492 	 */
2493 	if (firmware)
2494 		p = kstrdup_const(firmware, GFP_KERNEL);
2495 	else
2496 		p = kasprintf(GFP_KERNEL, "rproc-%s-fw", name);
2497 
2498 	if (!p)
2499 		return -ENOMEM;
2500 
2501 	rproc->firmware = p;
2502 
2503 	return 0;
2504 }
2505 
rproc_alloc_ops(struct rproc * rproc,const struct rproc_ops * ops)2506 static int rproc_alloc_ops(struct rproc *rproc, const struct rproc_ops *ops)
2507 {
2508 	rproc->ops = kmemdup(ops, sizeof(*ops), GFP_KERNEL);
2509 	if (!rproc->ops)
2510 		return -ENOMEM;
2511 
2512 	/* Default to rproc_coredump if no coredump function is specified */
2513 	if (!rproc->ops->coredump)
2514 		rproc->ops->coredump = rproc_coredump;
2515 
2516 	if (rproc->ops->load)
2517 		return 0;
2518 
2519 	/* Default to ELF loader if no load function is specified */
2520 	rproc->ops->load = rproc_elf_load_segments;
2521 	rproc->ops->parse_fw = rproc_elf_load_rsc_table;
2522 	rproc->ops->find_loaded_rsc_table = rproc_elf_find_loaded_rsc_table;
2523 	rproc->ops->sanity_check = rproc_elf_sanity_check;
2524 	rproc->ops->get_boot_addr = rproc_elf_get_boot_addr;
2525 
2526 	return 0;
2527 }
2528 
2529 /**
2530  * rproc_alloc() - allocate a remote processor handle
2531  * @dev: the underlying device
2532  * @name: name of this remote processor
2533  * @ops: platform-specific handlers (mainly start/stop)
2534  * @firmware: name of firmware file to load, can be NULL
2535  * @len: length of private data needed by the rproc driver (in bytes)
2536  *
2537  * Allocates a new remote processor handle, but does not register
2538  * it yet. if @firmware is NULL, a default name is used.
2539  *
2540  * This function should be used by rproc implementations during initialization
2541  * of the remote processor.
2542  *
2543  * After creating an rproc handle using this function, and when ready,
2544  * implementations should then call rproc_add() to complete
2545  * the registration of the remote processor.
2546  *
2547  * Note: _never_ directly deallocate @rproc, even if it was not registered
2548  * yet. Instead, when you need to unroll rproc_alloc(), use rproc_free().
2549  *
2550  * Return: new rproc pointer on success, and NULL on failure
2551  */
rproc_alloc(struct device * dev,const char * name,const struct rproc_ops * ops,const char * firmware,int len)2552 struct rproc *rproc_alloc(struct device *dev, const char *name,
2553 			  const struct rproc_ops *ops,
2554 			  const char *firmware, int len)
2555 {
2556 	struct rproc *rproc;
2557 
2558 	if (!dev || !name || !ops)
2559 		return NULL;
2560 
2561 	rproc = kzalloc(sizeof(struct rproc) + len, GFP_KERNEL);
2562 	if (!rproc)
2563 		return NULL;
2564 
2565 	rproc->priv = &rproc[1];
2566 	rproc->auto_boot = true;
2567 	rproc->elf_class = ELFCLASSNONE;
2568 	rproc->elf_machine = EM_NONE;
2569 
2570 	device_initialize(&rproc->dev);
2571 	rproc->dev.parent = dev;
2572 	rproc->dev.type = &rproc_type;
2573 	rproc->dev.class = &rproc_class;
2574 	rproc->dev.driver_data = rproc;
2575 	idr_init(&rproc->notifyids);
2576 
2577 	rproc->name = kstrdup_const(name, GFP_KERNEL);
2578 	if (!rproc->name)
2579 		goto put_device;
2580 
2581 	if (rproc_alloc_firmware(rproc, name, firmware))
2582 		goto put_device;
2583 
2584 	if (rproc_alloc_ops(rproc, ops))
2585 		goto put_device;
2586 
2587 	/* Assign a unique device index and name */
2588 	rproc->index = ida_simple_get(&rproc_dev_index, 0, 0, GFP_KERNEL);
2589 	if (rproc->index < 0) {
2590 		dev_err(dev, "ida_simple_get failed: %d\n", rproc->index);
2591 		goto put_device;
2592 	}
2593 
2594 	dev_set_name(&rproc->dev, "remoteproc%d", rproc->index);
2595 
2596 	atomic_set(&rproc->power, 0);
2597 
2598 	mutex_init(&rproc->lock);
2599 
2600 	INIT_LIST_HEAD(&rproc->carveouts);
2601 	INIT_LIST_HEAD(&rproc->mappings);
2602 	INIT_LIST_HEAD(&rproc->traces);
2603 	INIT_LIST_HEAD(&rproc->rvdevs);
2604 	INIT_LIST_HEAD(&rproc->subdevs);
2605 	INIT_LIST_HEAD(&rproc->dump_segments);
2606 
2607 	INIT_WORK(&rproc->crash_handler, rproc_crash_handler_work);
2608 
2609 	rproc->state = RPROC_OFFLINE;
2610 
2611 	return rproc;
2612 
2613 put_device:
2614 	put_device(&rproc->dev);
2615 	return NULL;
2616 }
2617 EXPORT_SYMBOL(rproc_alloc);
2618 
2619 /**
2620  * rproc_free() - unroll rproc_alloc()
2621  * @rproc: the remote processor handle
2622  *
2623  * This function decrements the rproc dev refcount.
2624  *
2625  * If no one holds any reference to rproc anymore, then its refcount would
2626  * now drop to zero, and it would be freed.
2627  */
rproc_free(struct rproc * rproc)2628 void rproc_free(struct rproc *rproc)
2629 {
2630 	put_device(&rproc->dev);
2631 }
2632 EXPORT_SYMBOL(rproc_free);
2633 
2634 /**
2635  * rproc_put() - release rproc reference
2636  * @rproc: the remote processor handle
2637  *
2638  * This function decrements the rproc dev refcount.
2639  *
2640  * If no one holds any reference to rproc anymore, then its refcount would
2641  * now drop to zero, and it would be freed.
2642  */
rproc_put(struct rproc * rproc)2643 void rproc_put(struct rproc *rproc)
2644 {
2645 	module_put(rproc->dev.parent->driver->owner);
2646 	put_device(&rproc->dev);
2647 }
2648 EXPORT_SYMBOL(rproc_put);
2649 
2650 /**
2651  * rproc_del() - unregister a remote processor
2652  * @rproc: rproc handle to unregister
2653  *
2654  * This function should be called when the platform specific rproc
2655  * implementation decides to remove the rproc device. it should
2656  * _only_ be called if a previous invocation of rproc_add()
2657  * has completed successfully.
2658  *
2659  * After rproc_del() returns, @rproc isn't freed yet, because
2660  * of the outstanding reference created by rproc_alloc. To decrement that
2661  * one last refcount, one still needs to call rproc_free().
2662  *
2663  * Return: 0 on success and -EINVAL if @rproc isn't valid
2664  */
rproc_del(struct rproc * rproc)2665 int rproc_del(struct rproc *rproc)
2666 {
2667 	if (!rproc)
2668 		return -EINVAL;
2669 
2670 	/* TODO: make sure this works with rproc->power > 1 */
2671 	rproc_shutdown(rproc);
2672 
2673 	mutex_lock(&rproc->lock);
2674 	rproc->state = RPROC_DELETED;
2675 	mutex_unlock(&rproc->lock);
2676 
2677 	rproc_delete_debug_dir(rproc);
2678 
2679 	/* the rproc is downref'ed as soon as it's removed from the klist */
2680 	mutex_lock(&rproc_list_mutex);
2681 	list_del_rcu(&rproc->node);
2682 	mutex_unlock(&rproc_list_mutex);
2683 
2684 	/* Ensure that no readers of rproc_list are still active */
2685 	synchronize_rcu();
2686 
2687 	device_del(&rproc->dev);
2688 	rproc_char_device_remove(rproc);
2689 
2690 	return 0;
2691 }
2692 EXPORT_SYMBOL(rproc_del);
2693 
devm_rproc_free(struct device * dev,void * res)2694 static void devm_rproc_free(struct device *dev, void *res)
2695 {
2696 	rproc_free(*(struct rproc **)res);
2697 }
2698 
2699 /**
2700  * devm_rproc_alloc() - resource managed rproc_alloc()
2701  * @dev: the underlying device
2702  * @name: name of this remote processor
2703  * @ops: platform-specific handlers (mainly start/stop)
2704  * @firmware: name of firmware file to load, can be NULL
2705  * @len: length of private data needed by the rproc driver (in bytes)
2706  *
2707  * This function performs like rproc_alloc() but the acquired rproc device will
2708  * automatically be released on driver detach.
2709  *
2710  * Return: new rproc instance, or NULL on failure
2711  */
devm_rproc_alloc(struct device * dev,const char * name,const struct rproc_ops * ops,const char * firmware,int len)2712 struct rproc *devm_rproc_alloc(struct device *dev, const char *name,
2713 			       const struct rproc_ops *ops,
2714 			       const char *firmware, int len)
2715 {
2716 	struct rproc **ptr, *rproc;
2717 
2718 	ptr = devres_alloc(devm_rproc_free, sizeof(*ptr), GFP_KERNEL);
2719 	if (!ptr)
2720 		return NULL;
2721 
2722 	rproc = rproc_alloc(dev, name, ops, firmware, len);
2723 	if (rproc) {
2724 		*ptr = rproc;
2725 		devres_add(dev, ptr);
2726 	} else {
2727 		devres_free(ptr);
2728 	}
2729 
2730 	return rproc;
2731 }
2732 EXPORT_SYMBOL(devm_rproc_alloc);
2733 
2734 /**
2735  * rproc_add_subdev() - add a subdevice to a remoteproc
2736  * @rproc: rproc handle to add the subdevice to
2737  * @subdev: subdev handle to register
2738  *
2739  * Caller is responsible for populating optional subdevice function pointers.
2740  */
rproc_add_subdev(struct rproc * rproc,struct rproc_subdev * subdev)2741 void rproc_add_subdev(struct rproc *rproc, struct rproc_subdev *subdev)
2742 {
2743 	list_add_tail(&subdev->node, &rproc->subdevs);
2744 }
2745 EXPORT_SYMBOL(rproc_add_subdev);
2746 
2747 /**
2748  * rproc_remove_subdev() - remove a subdevice from a remoteproc
2749  * @rproc: rproc handle to remove the subdevice from
2750  * @subdev: subdev handle, previously registered with rproc_add_subdev()
2751  */
rproc_remove_subdev(struct rproc * rproc,struct rproc_subdev * subdev)2752 void rproc_remove_subdev(struct rproc *rproc, struct rproc_subdev *subdev)
2753 {
2754 	list_del(&subdev->node);
2755 }
2756 EXPORT_SYMBOL(rproc_remove_subdev);
2757 
2758 /**
2759  * rproc_get_by_child() - acquire rproc handle of @dev's ancestor
2760  * @dev:	child device to find ancestor of
2761  *
2762  * Return: the ancestor rproc instance, or NULL if not found
2763  */
rproc_get_by_child(struct device * dev)2764 struct rproc *rproc_get_by_child(struct device *dev)
2765 {
2766 	for (dev = dev->parent; dev; dev = dev->parent) {
2767 		if (dev->type == &rproc_type)
2768 			return dev->driver_data;
2769 	}
2770 
2771 	return NULL;
2772 }
2773 EXPORT_SYMBOL(rproc_get_by_child);
2774 
2775 /**
2776  * rproc_report_crash() - rproc crash reporter function
2777  * @rproc: remote processor
2778  * @type: crash type
2779  *
2780  * This function must be called every time a crash is detected by the low-level
2781  * drivers implementing a specific remoteproc. This should not be called from a
2782  * non-remoteproc driver.
2783  *
2784  * This function can be called from atomic/interrupt context.
2785  */
rproc_report_crash(struct rproc * rproc,enum rproc_crash_type type)2786 void rproc_report_crash(struct rproc *rproc, enum rproc_crash_type type)
2787 {
2788 	if (!rproc) {
2789 		pr_err("NULL rproc pointer\n");
2790 		return;
2791 	}
2792 
2793 	/* Prevent suspend while the remoteproc is being recovered */
2794 	pm_stay_awake(rproc->dev.parent);
2795 
2796 	dev_err(&rproc->dev, "crash detected in %s: type %s\n",
2797 		rproc->name, rproc_crash_to_string(type));
2798 
2799 	if (rproc_recovery_wq)
2800 		queue_work(rproc_recovery_wq, &rproc->crash_handler);
2801 	else
2802 	/* Have a worker handle the error; ensure system is not suspended */
2803 		queue_work(system_freezable_wq, &rproc->crash_handler);
2804 }
2805 EXPORT_SYMBOL(rproc_report_crash);
2806 
rproc_panic_handler(struct notifier_block * nb,unsigned long event,void * ptr)2807 static int rproc_panic_handler(struct notifier_block *nb, unsigned long event,
2808 			       void *ptr)
2809 {
2810 	unsigned int longest = 0;
2811 	struct rproc *rproc;
2812 	unsigned int d;
2813 
2814 	rcu_read_lock();
2815 	list_for_each_entry_rcu(rproc, &rproc_list, node) {
2816 		if (!rproc->ops->panic)
2817 			continue;
2818 
2819 		if (rproc->state != RPROC_RUNNING &&
2820 		    rproc->state != RPROC_ATTACHED)
2821 			continue;
2822 
2823 		d = rproc->ops->panic(rproc);
2824 		longest = max(longest, d);
2825 	}
2826 	rcu_read_unlock();
2827 
2828 	/*
2829 	 * Delay for the longest requested duration before returning. This can
2830 	 * be used by the remoteproc drivers to give the remote processor time
2831 	 * to perform any requested operations (such as flush caches), when
2832 	 * it's not possible to signal the Linux side due to the panic.
2833 	 */
2834 	mdelay(longest);
2835 
2836 	return NOTIFY_DONE;
2837 }
2838 
rproc_init_panic(void)2839 static void __init rproc_init_panic(void)
2840 {
2841 	rproc_panic_nb.notifier_call = rproc_panic_handler;
2842 	atomic_notifier_chain_register(&panic_notifier_list, &rproc_panic_nb);
2843 }
2844 
rproc_exit_panic(void)2845 static void __exit rproc_exit_panic(void)
2846 {
2847 	atomic_notifier_chain_unregister(&panic_notifier_list, &rproc_panic_nb);
2848 }
2849 
remoteproc_init(void)2850 static int __init remoteproc_init(void)
2851 {
2852 	rproc_recovery_wq = alloc_workqueue("rproc_recovery_wq",
2853 						WQ_UNBOUND | WQ_FREEZABLE, 0);
2854 	if (!rproc_recovery_wq)
2855 		pr_err("remoteproc: creation of rproc_recovery_wq failed\n");
2856 
2857 	rproc_init_sysfs();
2858 	rproc_init_debugfs();
2859 	rproc_init_cdev();
2860 	rproc_init_panic();
2861 
2862 	return 0;
2863 }
2864 subsys_initcall(remoteproc_init);
2865 
remoteproc_exit(void)2866 static void __exit remoteproc_exit(void)
2867 {
2868 	ida_destroy(&rproc_dev_index);
2869 
2870 	rproc_exit_panic();
2871 	rproc_exit_debugfs();
2872 	rproc_exit_sysfs();
2873 	if (rproc_recovery_wq)
2874 		destroy_workqueue(rproc_recovery_wq);
2875 }
2876 module_exit(remoteproc_exit);
2877 
2878 MODULE_LICENSE("GPL v2");
2879 MODULE_DESCRIPTION("Generic Remote Processor Framework");
2880