• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * rtmutex API
4  */
5 #include <linux/spinlock.h>
6 #include <linux/export.h>
7 
8 #define RT_MUTEX_BUILD_MUTEX
9 #include "rtmutex.c"
10 
11 /*
12  * Max number of times we'll walk the boosting chain:
13  */
14 int max_lock_depth = 1024;
15 
16 /*
17  * Debug aware fast / slowpath lock,trylock,unlock
18  *
19  * The atomic acquire/release ops are compiled away, when either the
20  * architecture does not support cmpxchg or when debugging is enabled.
21  */
__rt_mutex_lock_common(struct rt_mutex * lock,unsigned int state,unsigned int subclass)22 static __always_inline int __rt_mutex_lock_common(struct rt_mutex *lock,
23 						  unsigned int state,
24 						  unsigned int subclass)
25 {
26 	int ret;
27 
28 	might_sleep();
29 	mutex_acquire(&lock->dep_map, subclass, 0, _RET_IP_);
30 	ret = __rt_mutex_lock(&lock->rtmutex, state);
31 	if (ret)
32 		mutex_release(&lock->dep_map, _RET_IP_);
33 	else
34 		trace_android_vh_record_rtmutex_lock_starttime(current, jiffies);
35 	return ret;
36 }
37 
rt_mutex_base_init(struct rt_mutex_base * rtb)38 void rt_mutex_base_init(struct rt_mutex_base *rtb)
39 {
40 	__rt_mutex_base_init(rtb);
41 }
42 EXPORT_SYMBOL(rt_mutex_base_init);
43 
44 #ifdef CONFIG_DEBUG_LOCK_ALLOC
45 /**
46  * rt_mutex_lock_nested - lock a rt_mutex
47  *
48  * @lock: the rt_mutex to be locked
49  * @subclass: the lockdep subclass
50  */
rt_mutex_lock_nested(struct rt_mutex * lock,unsigned int subclass)51 void __sched rt_mutex_lock_nested(struct rt_mutex *lock, unsigned int subclass)
52 {
53 	__rt_mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, subclass);
54 }
55 EXPORT_SYMBOL_GPL(rt_mutex_lock_nested);
56 
57 #else /* !CONFIG_DEBUG_LOCK_ALLOC */
58 
59 /**
60  * rt_mutex_lock - lock a rt_mutex
61  *
62  * @lock: the rt_mutex to be locked
63  */
rt_mutex_lock(struct rt_mutex * lock)64 void __sched rt_mutex_lock(struct rt_mutex *lock)
65 {
66 	__rt_mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, 0);
67 }
68 EXPORT_SYMBOL_GPL(rt_mutex_lock);
69 #endif
70 
71 /**
72  * rt_mutex_lock_interruptible - lock a rt_mutex interruptible
73  *
74  * @lock:		the rt_mutex to be locked
75  *
76  * Returns:
77  *  0		on success
78  * -EINTR	when interrupted by a signal
79  */
rt_mutex_lock_interruptible(struct rt_mutex * lock)80 int __sched rt_mutex_lock_interruptible(struct rt_mutex *lock)
81 {
82 	return __rt_mutex_lock_common(lock, TASK_INTERRUPTIBLE, 0);
83 }
84 EXPORT_SYMBOL_GPL(rt_mutex_lock_interruptible);
85 
86 /**
87  * rt_mutex_trylock - try to lock a rt_mutex
88  *
89  * @lock:	the rt_mutex to be locked
90  *
91  * This function can only be called in thread context. It's safe to call it
92  * from atomic regions, but not from hard or soft interrupt context.
93  *
94  * Returns:
95  *  1 on success
96  *  0 on contention
97  */
rt_mutex_trylock(struct rt_mutex * lock)98 int __sched rt_mutex_trylock(struct rt_mutex *lock)
99 {
100 	int ret;
101 
102 	if (IS_ENABLED(CONFIG_DEBUG_RT_MUTEXES) && WARN_ON_ONCE(!in_task()))
103 		return 0;
104 
105 	ret = __rt_mutex_trylock(&lock->rtmutex);
106 	if (ret) {
107 		trace_android_vh_record_rtmutex_lock_starttime(current, jiffies);
108 		mutex_acquire(&lock->dep_map, 0, 1, _RET_IP_);
109 	}
110 
111 	return ret;
112 }
113 EXPORT_SYMBOL_GPL(rt_mutex_trylock);
114 
115 /**
116  * rt_mutex_unlock - unlock a rt_mutex
117  *
118  * @lock: the rt_mutex to be unlocked
119  */
rt_mutex_unlock(struct rt_mutex * lock)120 void __sched rt_mutex_unlock(struct rt_mutex *lock)
121 {
122 	trace_android_vh_record_rtmutex_lock_starttime(current, 0);
123 	mutex_release(&lock->dep_map, _RET_IP_);
124 	__rt_mutex_unlock(&lock->rtmutex);
125 }
126 EXPORT_SYMBOL_GPL(rt_mutex_unlock);
127 
128 /*
129  * Futex variants, must not use fastpath.
130  */
rt_mutex_futex_trylock(struct rt_mutex_base * lock)131 int __sched rt_mutex_futex_trylock(struct rt_mutex_base *lock)
132 {
133 	return rt_mutex_slowtrylock(lock);
134 }
135 
__rt_mutex_futex_trylock(struct rt_mutex_base * lock)136 int __sched __rt_mutex_futex_trylock(struct rt_mutex_base *lock)
137 {
138 	return __rt_mutex_slowtrylock(lock);
139 }
140 
141 /**
142  * __rt_mutex_futex_unlock - Futex variant, that since futex variants
143  * do not use the fast-path, can be simple and will not need to retry.
144  *
145  * @lock:	The rt_mutex to be unlocked
146  * @wqh:	The wake queue head from which to get the next lock waiter
147  */
__rt_mutex_futex_unlock(struct rt_mutex_base * lock,struct rt_wake_q_head * wqh)148 bool __sched __rt_mutex_futex_unlock(struct rt_mutex_base *lock,
149 				     struct rt_wake_q_head *wqh)
150 {
151 	lockdep_assert_held(&lock->wait_lock);
152 
153 	debug_rt_mutex_unlock(lock);
154 
155 	if (!rt_mutex_has_waiters(lock)) {
156 		lock->owner = NULL;
157 		return false; /* done */
158 	}
159 
160 	/*
161 	 * We've already deboosted, mark_wakeup_next_waiter() will
162 	 * retain preempt_disabled when we drop the wait_lock, to
163 	 * avoid inversion prior to the wakeup.  preempt_disable()
164 	 * therein pairs with rt_mutex_postunlock().
165 	 */
166 	mark_wakeup_next_waiter(wqh, lock);
167 
168 	return true; /* call postunlock() */
169 }
170 
rt_mutex_futex_unlock(struct rt_mutex_base * lock)171 void __sched rt_mutex_futex_unlock(struct rt_mutex_base *lock)
172 {
173 	DEFINE_RT_WAKE_Q(wqh);
174 	unsigned long flags;
175 	bool postunlock;
176 
177 	raw_spin_lock_irqsave(&lock->wait_lock, flags);
178 	postunlock = __rt_mutex_futex_unlock(lock, &wqh);
179 	raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
180 
181 	if (postunlock)
182 		rt_mutex_postunlock(&wqh);
183 }
184 
185 /**
186  * __rt_mutex_init - initialize the rt_mutex
187  *
188  * @lock:	The rt_mutex to be initialized
189  * @name:	The lock name used for debugging
190  * @key:	The lock class key used for debugging
191  *
192  * Initialize the rt_mutex to unlocked state.
193  *
194  * Initializing of a locked rt_mutex is not allowed
195  */
__rt_mutex_init(struct rt_mutex * lock,const char * name,struct lock_class_key * key)196 void __sched __rt_mutex_init(struct rt_mutex *lock, const char *name,
197 			     struct lock_class_key *key)
198 {
199 	debug_check_no_locks_freed((void *)lock, sizeof(*lock));
200 	__rt_mutex_base_init(&lock->rtmutex);
201 	lockdep_init_map_wait(&lock->dep_map, name, key, 0, LD_WAIT_SLEEP);
202 }
203 EXPORT_SYMBOL_GPL(__rt_mutex_init);
204 
205 /**
206  * rt_mutex_init_proxy_locked - initialize and lock a rt_mutex on behalf of a
207  *				proxy owner
208  *
209  * @lock:	the rt_mutex to be locked
210  * @proxy_owner:the task to set as owner
211  *
212  * No locking. Caller has to do serializing itself
213  *
214  * Special API call for PI-futex support. This initializes the rtmutex and
215  * assigns it to @proxy_owner. Concurrent operations on the rtmutex are not
216  * possible at this point because the pi_state which contains the rtmutex
217  * is not yet visible to other tasks.
218  */
rt_mutex_init_proxy_locked(struct rt_mutex_base * lock,struct task_struct * proxy_owner)219 void __sched rt_mutex_init_proxy_locked(struct rt_mutex_base *lock,
220 					struct task_struct *proxy_owner)
221 {
222 	static struct lock_class_key pi_futex_key;
223 
224 	__rt_mutex_base_init(lock);
225 	/*
226 	 * On PREEMPT_RT the futex hashbucket spinlock becomes 'sleeping'
227 	 * and rtmutex based. That causes a lockdep false positive, because
228 	 * some of the futex functions invoke spin_unlock(&hb->lock) with
229 	 * the wait_lock of the rtmutex associated to the pi_futex held.
230 	 * spin_unlock() in turn takes wait_lock of the rtmutex on which
231 	 * the spinlock is based, which makes lockdep notice a lock
232 	 * recursion. Give the futex/rtmutex wait_lock a separate key.
233 	 */
234 	lockdep_set_class(&lock->wait_lock, &pi_futex_key);
235 	rt_mutex_set_owner(lock, proxy_owner);
236 }
237 
238 /**
239  * rt_mutex_proxy_unlock - release a lock on behalf of owner
240  *
241  * @lock:	the rt_mutex to be locked
242  *
243  * No locking. Caller has to do serializing itself
244  *
245  * Special API call for PI-futex support. This just cleans up the rtmutex
246  * (debugging) state. Concurrent operations on this rt_mutex are not
247  * possible because it belongs to the pi_state which is about to be freed
248  * and it is not longer visible to other tasks.
249  */
rt_mutex_proxy_unlock(struct rt_mutex_base * lock)250 void __sched rt_mutex_proxy_unlock(struct rt_mutex_base *lock)
251 {
252 	debug_rt_mutex_proxy_unlock(lock);
253 	rt_mutex_clear_owner(lock);
254 }
255 
256 /**
257  * __rt_mutex_start_proxy_lock() - Start lock acquisition for another task
258  * @lock:		the rt_mutex to take
259  * @waiter:		the pre-initialized rt_mutex_waiter
260  * @task:		the task to prepare
261  *
262  * Starts the rt_mutex acquire; it enqueues the @waiter and does deadlock
263  * detection. It does not wait, see rt_mutex_wait_proxy_lock() for that.
264  *
265  * NOTE: does _NOT_ remove the @waiter on failure; must either call
266  * rt_mutex_wait_proxy_lock() or rt_mutex_cleanup_proxy_lock() after this.
267  *
268  * Returns:
269  *  0 - task blocked on lock
270  *  1 - acquired the lock for task, caller should wake it up
271  * <0 - error
272  *
273  * Special API call for PI-futex support.
274  */
__rt_mutex_start_proxy_lock(struct rt_mutex_base * lock,struct rt_mutex_waiter * waiter,struct task_struct * task)275 int __sched __rt_mutex_start_proxy_lock(struct rt_mutex_base *lock,
276 					struct rt_mutex_waiter *waiter,
277 					struct task_struct *task)
278 {
279 	int ret;
280 
281 	lockdep_assert_held(&lock->wait_lock);
282 
283 	if (try_to_take_rt_mutex(lock, task, NULL))
284 		return 1;
285 
286 	/* We enforce deadlock detection for futexes */
287 	ret = task_blocks_on_rt_mutex(lock, waiter, task, NULL,
288 				      RT_MUTEX_FULL_CHAINWALK);
289 
290 	if (ret && !rt_mutex_owner(lock)) {
291 		/*
292 		 * Reset the return value. We might have
293 		 * returned with -EDEADLK and the owner
294 		 * released the lock while we were walking the
295 		 * pi chain.  Let the waiter sort it out.
296 		 */
297 		ret = 0;
298 	}
299 
300 	return ret;
301 }
302 
303 /**
304  * rt_mutex_start_proxy_lock() - Start lock acquisition for another task
305  * @lock:		the rt_mutex to take
306  * @waiter:		the pre-initialized rt_mutex_waiter
307  * @task:		the task to prepare
308  *
309  * Starts the rt_mutex acquire; it enqueues the @waiter and does deadlock
310  * detection. It does not wait, see rt_mutex_wait_proxy_lock() for that.
311  *
312  * NOTE: unlike __rt_mutex_start_proxy_lock this _DOES_ remove the @waiter
313  * on failure.
314  *
315  * Returns:
316  *  0 - task blocked on lock
317  *  1 - acquired the lock for task, caller should wake it up
318  * <0 - error
319  *
320  * Special API call for PI-futex support.
321  */
rt_mutex_start_proxy_lock(struct rt_mutex_base * lock,struct rt_mutex_waiter * waiter,struct task_struct * task)322 int __sched rt_mutex_start_proxy_lock(struct rt_mutex_base *lock,
323 				      struct rt_mutex_waiter *waiter,
324 				      struct task_struct *task)
325 {
326 	int ret;
327 
328 	raw_spin_lock_irq(&lock->wait_lock);
329 	ret = __rt_mutex_start_proxy_lock(lock, waiter, task);
330 	if (unlikely(ret))
331 		remove_waiter(lock, waiter);
332 	raw_spin_unlock_irq(&lock->wait_lock);
333 
334 	return ret;
335 }
336 
337 /**
338  * rt_mutex_wait_proxy_lock() - Wait for lock acquisition
339  * @lock:		the rt_mutex we were woken on
340  * @to:			the timeout, null if none. hrtimer should already have
341  *			been started.
342  * @waiter:		the pre-initialized rt_mutex_waiter
343  *
344  * Wait for the lock acquisition started on our behalf by
345  * rt_mutex_start_proxy_lock(). Upon failure, the caller must call
346  * rt_mutex_cleanup_proxy_lock().
347  *
348  * Returns:
349  *  0 - success
350  * <0 - error, one of -EINTR, -ETIMEDOUT
351  *
352  * Special API call for PI-futex support
353  */
rt_mutex_wait_proxy_lock(struct rt_mutex_base * lock,struct hrtimer_sleeper * to,struct rt_mutex_waiter * waiter)354 int __sched rt_mutex_wait_proxy_lock(struct rt_mutex_base *lock,
355 				     struct hrtimer_sleeper *to,
356 				     struct rt_mutex_waiter *waiter)
357 {
358 	int ret;
359 
360 	raw_spin_lock_irq(&lock->wait_lock);
361 	/* sleep on the mutex */
362 	set_current_state(TASK_INTERRUPTIBLE);
363 	ret = rt_mutex_slowlock_block(lock, NULL, TASK_INTERRUPTIBLE, to, waiter);
364 	/*
365 	 * try_to_take_rt_mutex() sets the waiter bit unconditionally. We might
366 	 * have to fix that up.
367 	 */
368 	fixup_rt_mutex_waiters(lock, true);
369 	raw_spin_unlock_irq(&lock->wait_lock);
370 
371 	return ret;
372 }
373 
374 /**
375  * rt_mutex_cleanup_proxy_lock() - Cleanup failed lock acquisition
376  * @lock:		the rt_mutex we were woken on
377  * @waiter:		the pre-initialized rt_mutex_waiter
378  *
379  * Attempt to clean up after a failed __rt_mutex_start_proxy_lock() or
380  * rt_mutex_wait_proxy_lock().
381  *
382  * Unless we acquired the lock; we're still enqueued on the wait-list and can
383  * in fact still be granted ownership until we're removed. Therefore we can
384  * find we are in fact the owner and must disregard the
385  * rt_mutex_wait_proxy_lock() failure.
386  *
387  * Returns:
388  *  true  - did the cleanup, we done.
389  *  false - we acquired the lock after rt_mutex_wait_proxy_lock() returned,
390  *          caller should disregards its return value.
391  *
392  * Special API call for PI-futex support
393  */
rt_mutex_cleanup_proxy_lock(struct rt_mutex_base * lock,struct rt_mutex_waiter * waiter)394 bool __sched rt_mutex_cleanup_proxy_lock(struct rt_mutex_base *lock,
395 					 struct rt_mutex_waiter *waiter)
396 {
397 	bool cleanup = false;
398 
399 	raw_spin_lock_irq(&lock->wait_lock);
400 	/*
401 	 * Do an unconditional try-lock, this deals with the lock stealing
402 	 * state where __rt_mutex_futex_unlock() -> mark_wakeup_next_waiter()
403 	 * sets a NULL owner.
404 	 *
405 	 * We're not interested in the return value, because the subsequent
406 	 * test on rt_mutex_owner() will infer that. If the trylock succeeded,
407 	 * we will own the lock and it will have removed the waiter. If we
408 	 * failed the trylock, we're still not owner and we need to remove
409 	 * ourselves.
410 	 */
411 	try_to_take_rt_mutex(lock, current, waiter);
412 	/*
413 	 * Unless we're the owner; we're still enqueued on the wait_list.
414 	 * So check if we became owner, if not, take us off the wait_list.
415 	 */
416 	if (rt_mutex_owner(lock) != current) {
417 		remove_waiter(lock, waiter);
418 		cleanup = true;
419 	}
420 	/*
421 	 * try_to_take_rt_mutex() sets the waiter bit unconditionally. We might
422 	 * have to fix that up.
423 	 */
424 	fixup_rt_mutex_waiters(lock, false);
425 
426 	raw_spin_unlock_irq(&lock->wait_lock);
427 
428 	return cleanup;
429 }
430 
431 /*
432  * Recheck the pi chain, in case we got a priority setting
433  *
434  * Called from sched_setscheduler
435  */
rt_mutex_adjust_pi(struct task_struct * task)436 void __sched rt_mutex_adjust_pi(struct task_struct *task)
437 {
438 	struct rt_mutex_waiter *waiter;
439 	struct rt_mutex_base *next_lock;
440 	unsigned long flags;
441 
442 	raw_spin_lock_irqsave(&task->pi_lock, flags);
443 
444 	waiter = task->pi_blocked_on;
445 	if (!waiter || rt_mutex_waiter_equal(waiter, task_to_waiter(task))) {
446 		raw_spin_unlock_irqrestore(&task->pi_lock, flags);
447 		return;
448 	}
449 	next_lock = waiter->lock;
450 	raw_spin_unlock_irqrestore(&task->pi_lock, flags);
451 
452 	/* gets dropped in rt_mutex_adjust_prio_chain()! */
453 	get_task_struct(task);
454 
455 	rt_mutex_adjust_prio_chain(task, RT_MUTEX_MIN_CHAINWALK, NULL,
456 				   next_lock, NULL, task);
457 }
458 
459 /*
460  * Performs the wakeup of the top-waiter and re-enables preemption.
461  */
rt_mutex_postunlock(struct rt_wake_q_head * wqh)462 void __sched rt_mutex_postunlock(struct rt_wake_q_head *wqh)
463 {
464 	rt_mutex_wake_up_q(wqh);
465 }
466 
467 #ifdef CONFIG_DEBUG_RT_MUTEXES
rt_mutex_debug_task_free(struct task_struct * task)468 void rt_mutex_debug_task_free(struct task_struct *task)
469 {
470 	DEBUG_LOCKS_WARN_ON(!RB_EMPTY_ROOT(&task->pi_waiters.rb_root));
471 	DEBUG_LOCKS_WARN_ON(task->pi_blocked_on);
472 }
473 #endif
474 
475 #ifdef CONFIG_PREEMPT_RT
476 /* Mutexes */
__mutex_rt_init(struct mutex * mutex,const char * name,struct lock_class_key * key)477 void __mutex_rt_init(struct mutex *mutex, const char *name,
478 		     struct lock_class_key *key)
479 {
480 	debug_check_no_locks_freed((void *)mutex, sizeof(*mutex));
481 	lockdep_init_map_wait(&mutex->dep_map, name, key, 0, LD_WAIT_SLEEP);
482 }
483 EXPORT_SYMBOL(__mutex_rt_init);
484 
__mutex_lock_common(struct mutex * lock,unsigned int state,unsigned int subclass,struct lockdep_map * nest_lock,unsigned long ip)485 static __always_inline int __mutex_lock_common(struct mutex *lock,
486 					       unsigned int state,
487 					       unsigned int subclass,
488 					       struct lockdep_map *nest_lock,
489 					       unsigned long ip)
490 {
491 	int ret;
492 
493 	might_sleep();
494 	mutex_acquire_nest(&lock->dep_map, subclass, 0, nest_lock, ip);
495 	ret = __rt_mutex_lock(&lock->rtmutex, state);
496 	if (ret)
497 		mutex_release(&lock->dep_map, ip);
498 	else
499 		lock_acquired(&lock->dep_map, ip);
500 	return ret;
501 }
502 
503 #ifdef CONFIG_DEBUG_LOCK_ALLOC
mutex_lock_nested(struct mutex * lock,unsigned int subclass)504 void __sched mutex_lock_nested(struct mutex *lock, unsigned int subclass)
505 {
506 	__mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, subclass, NULL, _RET_IP_);
507 }
508 EXPORT_SYMBOL_GPL(mutex_lock_nested);
509 
_mutex_lock_nest_lock(struct mutex * lock,struct lockdep_map * nest_lock)510 void __sched _mutex_lock_nest_lock(struct mutex *lock,
511 				   struct lockdep_map *nest_lock)
512 {
513 	__mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, 0, nest_lock, _RET_IP_);
514 }
515 EXPORT_SYMBOL_GPL(_mutex_lock_nest_lock);
516 
mutex_lock_interruptible_nested(struct mutex * lock,unsigned int subclass)517 int __sched mutex_lock_interruptible_nested(struct mutex *lock,
518 					    unsigned int subclass)
519 {
520 	return __mutex_lock_common(lock, TASK_INTERRUPTIBLE, subclass, NULL, _RET_IP_);
521 }
522 EXPORT_SYMBOL_GPL(mutex_lock_interruptible_nested);
523 
mutex_lock_killable_nested(struct mutex * lock,unsigned int subclass)524 int __sched mutex_lock_killable_nested(struct mutex *lock,
525 					    unsigned int subclass)
526 {
527 	return __mutex_lock_common(lock, TASK_KILLABLE, subclass, NULL, _RET_IP_);
528 }
529 EXPORT_SYMBOL_GPL(mutex_lock_killable_nested);
530 
mutex_lock_io_nested(struct mutex * lock,unsigned int subclass)531 void __sched mutex_lock_io_nested(struct mutex *lock, unsigned int subclass)
532 {
533 	int token;
534 
535 	might_sleep();
536 
537 	token = io_schedule_prepare();
538 	__mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, subclass, NULL, _RET_IP_);
539 	io_schedule_finish(token);
540 }
541 EXPORT_SYMBOL_GPL(mutex_lock_io_nested);
542 
543 #else /* CONFIG_DEBUG_LOCK_ALLOC */
544 
mutex_lock(struct mutex * lock)545 void __sched mutex_lock(struct mutex *lock)
546 {
547 	__mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, 0, NULL, _RET_IP_);
548 }
549 EXPORT_SYMBOL(mutex_lock);
550 
mutex_lock_interruptible(struct mutex * lock)551 int __sched mutex_lock_interruptible(struct mutex *lock)
552 {
553 	return __mutex_lock_common(lock, TASK_INTERRUPTIBLE, 0, NULL, _RET_IP_);
554 }
555 EXPORT_SYMBOL(mutex_lock_interruptible);
556 
mutex_lock_killable(struct mutex * lock)557 int __sched mutex_lock_killable(struct mutex *lock)
558 {
559 	return __mutex_lock_common(lock, TASK_KILLABLE, 0, NULL, _RET_IP_);
560 }
561 EXPORT_SYMBOL(mutex_lock_killable);
562 
mutex_lock_io(struct mutex * lock)563 void __sched mutex_lock_io(struct mutex *lock)
564 {
565 	int token = io_schedule_prepare();
566 
567 	__mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, 0, NULL, _RET_IP_);
568 	io_schedule_finish(token);
569 }
570 EXPORT_SYMBOL(mutex_lock_io);
571 #endif /* !CONFIG_DEBUG_LOCK_ALLOC */
572 
mutex_trylock(struct mutex * lock)573 int __sched mutex_trylock(struct mutex *lock)
574 {
575 	int ret;
576 
577 	if (IS_ENABLED(CONFIG_DEBUG_RT_MUTEXES) && WARN_ON_ONCE(!in_task()))
578 		return 0;
579 
580 	ret = __rt_mutex_trylock(&lock->rtmutex);
581 	if (ret)
582 		mutex_acquire(&lock->dep_map, 0, 1, _RET_IP_);
583 
584 	return ret;
585 }
586 EXPORT_SYMBOL(mutex_trylock);
587 
mutex_unlock(struct mutex * lock)588 void __sched mutex_unlock(struct mutex *lock)
589 {
590 	mutex_release(&lock->dep_map, _RET_IP_);
591 	__rt_mutex_unlock(&lock->rtmutex);
592 }
593 EXPORT_SYMBOL(mutex_unlock);
594 
595 #endif /* CONFIG_PREEMPT_RT */
596