1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * KVM guest address space mapping code
4 *
5 * Copyright IBM Corp. 2007, 2020
6 * Author(s): Martin Schwidefsky <schwidefsky@de.ibm.com>
7 * David Hildenbrand <david@redhat.com>
8 * Janosch Frank <frankja@linux.vnet.ibm.com>
9 */
10
11 #include <linux/kernel.h>
12 #include <linux/pagewalk.h>
13 #include <linux/swap.h>
14 #include <linux/smp.h>
15 #include <linux/spinlock.h>
16 #include <linux/slab.h>
17 #include <linux/swapops.h>
18 #include <linux/ksm.h>
19 #include <linux/mman.h>
20 #include <linux/pgtable.h>
21
22 #include <asm/pgalloc.h>
23 #include <asm/gmap.h>
24 #include <asm/tlb.h>
25
26 #define GMAP_SHADOW_FAKE_TABLE 1ULL
27
28 /**
29 * gmap_alloc - allocate and initialize a guest address space
30 * @limit: maximum address of the gmap address space
31 *
32 * Returns a guest address space structure.
33 */
gmap_alloc(unsigned long limit)34 static struct gmap *gmap_alloc(unsigned long limit)
35 {
36 struct gmap *gmap;
37 struct page *page;
38 unsigned long *table;
39 unsigned long etype, atype;
40
41 if (limit < _REGION3_SIZE) {
42 limit = _REGION3_SIZE - 1;
43 atype = _ASCE_TYPE_SEGMENT;
44 etype = _SEGMENT_ENTRY_EMPTY;
45 } else if (limit < _REGION2_SIZE) {
46 limit = _REGION2_SIZE - 1;
47 atype = _ASCE_TYPE_REGION3;
48 etype = _REGION3_ENTRY_EMPTY;
49 } else if (limit < _REGION1_SIZE) {
50 limit = _REGION1_SIZE - 1;
51 atype = _ASCE_TYPE_REGION2;
52 etype = _REGION2_ENTRY_EMPTY;
53 } else {
54 limit = -1UL;
55 atype = _ASCE_TYPE_REGION1;
56 etype = _REGION1_ENTRY_EMPTY;
57 }
58 gmap = kzalloc(sizeof(struct gmap), GFP_KERNEL_ACCOUNT);
59 if (!gmap)
60 goto out;
61 INIT_LIST_HEAD(&gmap->crst_list);
62 INIT_LIST_HEAD(&gmap->children);
63 INIT_LIST_HEAD(&gmap->pt_list);
64 INIT_RADIX_TREE(&gmap->guest_to_host, GFP_KERNEL_ACCOUNT);
65 INIT_RADIX_TREE(&gmap->host_to_guest, GFP_ATOMIC | __GFP_ACCOUNT);
66 INIT_RADIX_TREE(&gmap->host_to_rmap, GFP_ATOMIC | __GFP_ACCOUNT);
67 spin_lock_init(&gmap->guest_table_lock);
68 spin_lock_init(&gmap->shadow_lock);
69 refcount_set(&gmap->ref_count, 1);
70 page = alloc_pages(GFP_KERNEL_ACCOUNT, CRST_ALLOC_ORDER);
71 if (!page)
72 goto out_free;
73 page->index = 0;
74 list_add(&page->lru, &gmap->crst_list);
75 table = (unsigned long *) page_to_phys(page);
76 crst_table_init(table, etype);
77 gmap->table = table;
78 gmap->asce = atype | _ASCE_TABLE_LENGTH |
79 _ASCE_USER_BITS | __pa(table);
80 gmap->asce_end = limit;
81 return gmap;
82
83 out_free:
84 kfree(gmap);
85 out:
86 return NULL;
87 }
88
89 /**
90 * gmap_create - create a guest address space
91 * @mm: pointer to the parent mm_struct
92 * @limit: maximum size of the gmap address space
93 *
94 * Returns a guest address space structure.
95 */
gmap_create(struct mm_struct * mm,unsigned long limit)96 struct gmap *gmap_create(struct mm_struct *mm, unsigned long limit)
97 {
98 struct gmap *gmap;
99 unsigned long gmap_asce;
100
101 gmap = gmap_alloc(limit);
102 if (!gmap)
103 return NULL;
104 gmap->mm = mm;
105 spin_lock(&mm->context.lock);
106 list_add_rcu(&gmap->list, &mm->context.gmap_list);
107 if (list_is_singular(&mm->context.gmap_list))
108 gmap_asce = gmap->asce;
109 else
110 gmap_asce = -1UL;
111 WRITE_ONCE(mm->context.gmap_asce, gmap_asce);
112 spin_unlock(&mm->context.lock);
113 return gmap;
114 }
115 EXPORT_SYMBOL_GPL(gmap_create);
116
gmap_flush_tlb(struct gmap * gmap)117 static void gmap_flush_tlb(struct gmap *gmap)
118 {
119 if (MACHINE_HAS_IDTE)
120 __tlb_flush_idte(gmap->asce);
121 else
122 __tlb_flush_global();
123 }
124
gmap_radix_tree_free(struct radix_tree_root * root)125 static void gmap_radix_tree_free(struct radix_tree_root *root)
126 {
127 struct radix_tree_iter iter;
128 unsigned long indices[16];
129 unsigned long index;
130 void __rcu **slot;
131 int i, nr;
132
133 /* A radix tree is freed by deleting all of its entries */
134 index = 0;
135 do {
136 nr = 0;
137 radix_tree_for_each_slot(slot, root, &iter, index) {
138 indices[nr] = iter.index;
139 if (++nr == 16)
140 break;
141 }
142 for (i = 0; i < nr; i++) {
143 index = indices[i];
144 radix_tree_delete(root, index);
145 }
146 } while (nr > 0);
147 }
148
gmap_rmap_radix_tree_free(struct radix_tree_root * root)149 static void gmap_rmap_radix_tree_free(struct radix_tree_root *root)
150 {
151 struct gmap_rmap *rmap, *rnext, *head;
152 struct radix_tree_iter iter;
153 unsigned long indices[16];
154 unsigned long index;
155 void __rcu **slot;
156 int i, nr;
157
158 /* A radix tree is freed by deleting all of its entries */
159 index = 0;
160 do {
161 nr = 0;
162 radix_tree_for_each_slot(slot, root, &iter, index) {
163 indices[nr] = iter.index;
164 if (++nr == 16)
165 break;
166 }
167 for (i = 0; i < nr; i++) {
168 index = indices[i];
169 head = radix_tree_delete(root, index);
170 gmap_for_each_rmap_safe(rmap, rnext, head)
171 kfree(rmap);
172 }
173 } while (nr > 0);
174 }
175
176 /**
177 * gmap_free - free a guest address space
178 * @gmap: pointer to the guest address space structure
179 *
180 * No locks required. There are no references to this gmap anymore.
181 */
gmap_free(struct gmap * gmap)182 static void gmap_free(struct gmap *gmap)
183 {
184 struct page *page, *next;
185
186 /* Flush tlb of all gmaps (if not already done for shadows) */
187 if (!(gmap_is_shadow(gmap) && gmap->removed))
188 gmap_flush_tlb(gmap);
189 /* Free all segment & region tables. */
190 list_for_each_entry_safe(page, next, &gmap->crst_list, lru)
191 __free_pages(page, CRST_ALLOC_ORDER);
192 gmap_radix_tree_free(&gmap->guest_to_host);
193 gmap_radix_tree_free(&gmap->host_to_guest);
194
195 /* Free additional data for a shadow gmap */
196 if (gmap_is_shadow(gmap)) {
197 /* Free all page tables. */
198 list_for_each_entry_safe(page, next, &gmap->pt_list, lru)
199 page_table_free_pgste(page);
200 gmap_rmap_radix_tree_free(&gmap->host_to_rmap);
201 /* Release reference to the parent */
202 gmap_put(gmap->parent);
203 }
204
205 kfree(gmap);
206 }
207
208 /**
209 * gmap_get - increase reference counter for guest address space
210 * @gmap: pointer to the guest address space structure
211 *
212 * Returns the gmap pointer
213 */
gmap_get(struct gmap * gmap)214 struct gmap *gmap_get(struct gmap *gmap)
215 {
216 refcount_inc(&gmap->ref_count);
217 return gmap;
218 }
219 EXPORT_SYMBOL_GPL(gmap_get);
220
221 /**
222 * gmap_put - decrease reference counter for guest address space
223 * @gmap: pointer to the guest address space structure
224 *
225 * If the reference counter reaches zero the guest address space is freed.
226 */
gmap_put(struct gmap * gmap)227 void gmap_put(struct gmap *gmap)
228 {
229 if (refcount_dec_and_test(&gmap->ref_count))
230 gmap_free(gmap);
231 }
232 EXPORT_SYMBOL_GPL(gmap_put);
233
234 /**
235 * gmap_remove - remove a guest address space but do not free it yet
236 * @gmap: pointer to the guest address space structure
237 */
gmap_remove(struct gmap * gmap)238 void gmap_remove(struct gmap *gmap)
239 {
240 struct gmap *sg, *next;
241 unsigned long gmap_asce;
242
243 /* Remove all shadow gmaps linked to this gmap */
244 if (!list_empty(&gmap->children)) {
245 spin_lock(&gmap->shadow_lock);
246 list_for_each_entry_safe(sg, next, &gmap->children, list) {
247 list_del(&sg->list);
248 gmap_put(sg);
249 }
250 spin_unlock(&gmap->shadow_lock);
251 }
252 /* Remove gmap from the pre-mm list */
253 spin_lock(&gmap->mm->context.lock);
254 list_del_rcu(&gmap->list);
255 if (list_empty(&gmap->mm->context.gmap_list))
256 gmap_asce = 0;
257 else if (list_is_singular(&gmap->mm->context.gmap_list))
258 gmap_asce = list_first_entry(&gmap->mm->context.gmap_list,
259 struct gmap, list)->asce;
260 else
261 gmap_asce = -1UL;
262 WRITE_ONCE(gmap->mm->context.gmap_asce, gmap_asce);
263 spin_unlock(&gmap->mm->context.lock);
264 synchronize_rcu();
265 /* Put reference */
266 gmap_put(gmap);
267 }
268 EXPORT_SYMBOL_GPL(gmap_remove);
269
270 /**
271 * gmap_enable - switch primary space to the guest address space
272 * @gmap: pointer to the guest address space structure
273 */
gmap_enable(struct gmap * gmap)274 void gmap_enable(struct gmap *gmap)
275 {
276 S390_lowcore.gmap = (unsigned long) gmap;
277 }
278 EXPORT_SYMBOL_GPL(gmap_enable);
279
280 /**
281 * gmap_disable - switch back to the standard primary address space
282 * @gmap: pointer to the guest address space structure
283 */
gmap_disable(struct gmap * gmap)284 void gmap_disable(struct gmap *gmap)
285 {
286 S390_lowcore.gmap = 0UL;
287 }
288 EXPORT_SYMBOL_GPL(gmap_disable);
289
290 /**
291 * gmap_get_enabled - get a pointer to the currently enabled gmap
292 *
293 * Returns a pointer to the currently enabled gmap. 0 if none is enabled.
294 */
gmap_get_enabled(void)295 struct gmap *gmap_get_enabled(void)
296 {
297 return (struct gmap *) S390_lowcore.gmap;
298 }
299 EXPORT_SYMBOL_GPL(gmap_get_enabled);
300
301 /*
302 * gmap_alloc_table is assumed to be called with mmap_lock held
303 */
gmap_alloc_table(struct gmap * gmap,unsigned long * table,unsigned long init,unsigned long gaddr)304 static int gmap_alloc_table(struct gmap *gmap, unsigned long *table,
305 unsigned long init, unsigned long gaddr)
306 {
307 struct page *page;
308 unsigned long *new;
309
310 /* since we dont free the gmap table until gmap_free we can unlock */
311 page = alloc_pages(GFP_KERNEL_ACCOUNT, CRST_ALLOC_ORDER);
312 if (!page)
313 return -ENOMEM;
314 new = (unsigned long *) page_to_phys(page);
315 crst_table_init(new, init);
316 spin_lock(&gmap->guest_table_lock);
317 if (*table & _REGION_ENTRY_INVALID) {
318 list_add(&page->lru, &gmap->crst_list);
319 *table = (unsigned long) new | _REGION_ENTRY_LENGTH |
320 (*table & _REGION_ENTRY_TYPE_MASK);
321 page->index = gaddr;
322 page = NULL;
323 }
324 spin_unlock(&gmap->guest_table_lock);
325 if (page)
326 __free_pages(page, CRST_ALLOC_ORDER);
327 return 0;
328 }
329
330 /**
331 * __gmap_segment_gaddr - find virtual address from segment pointer
332 * @entry: pointer to a segment table entry in the guest address space
333 *
334 * Returns the virtual address in the guest address space for the segment
335 */
__gmap_segment_gaddr(unsigned long * entry)336 static unsigned long __gmap_segment_gaddr(unsigned long *entry)
337 {
338 struct page *page;
339 unsigned long offset, mask;
340
341 offset = (unsigned long) entry / sizeof(unsigned long);
342 offset = (offset & (PTRS_PER_PMD - 1)) * PMD_SIZE;
343 mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
344 page = virt_to_page((void *)((unsigned long) entry & mask));
345 return page->index + offset;
346 }
347
348 /**
349 * __gmap_unlink_by_vmaddr - unlink a single segment via a host address
350 * @gmap: pointer to the guest address space structure
351 * @vmaddr: address in the host process address space
352 *
353 * Returns 1 if a TLB flush is required
354 */
__gmap_unlink_by_vmaddr(struct gmap * gmap,unsigned long vmaddr)355 static int __gmap_unlink_by_vmaddr(struct gmap *gmap, unsigned long vmaddr)
356 {
357 unsigned long *entry;
358 int flush = 0;
359
360 BUG_ON(gmap_is_shadow(gmap));
361 spin_lock(&gmap->guest_table_lock);
362 entry = radix_tree_delete(&gmap->host_to_guest, vmaddr >> PMD_SHIFT);
363 if (entry) {
364 flush = (*entry != _SEGMENT_ENTRY_EMPTY);
365 *entry = _SEGMENT_ENTRY_EMPTY;
366 }
367 spin_unlock(&gmap->guest_table_lock);
368 return flush;
369 }
370
371 /**
372 * __gmap_unmap_by_gaddr - unmap a single segment via a guest address
373 * @gmap: pointer to the guest address space structure
374 * @gaddr: address in the guest address space
375 *
376 * Returns 1 if a TLB flush is required
377 */
__gmap_unmap_by_gaddr(struct gmap * gmap,unsigned long gaddr)378 static int __gmap_unmap_by_gaddr(struct gmap *gmap, unsigned long gaddr)
379 {
380 unsigned long vmaddr;
381
382 vmaddr = (unsigned long) radix_tree_delete(&gmap->guest_to_host,
383 gaddr >> PMD_SHIFT);
384 return vmaddr ? __gmap_unlink_by_vmaddr(gmap, vmaddr) : 0;
385 }
386
387 /**
388 * gmap_unmap_segment - unmap segment from the guest address space
389 * @gmap: pointer to the guest address space structure
390 * @to: address in the guest address space
391 * @len: length of the memory area to unmap
392 *
393 * Returns 0 if the unmap succeeded, -EINVAL if not.
394 */
gmap_unmap_segment(struct gmap * gmap,unsigned long to,unsigned long len)395 int gmap_unmap_segment(struct gmap *gmap, unsigned long to, unsigned long len)
396 {
397 unsigned long off;
398 int flush;
399
400 BUG_ON(gmap_is_shadow(gmap));
401 if ((to | len) & (PMD_SIZE - 1))
402 return -EINVAL;
403 if (len == 0 || to + len < to)
404 return -EINVAL;
405
406 flush = 0;
407 mmap_write_lock(gmap->mm);
408 for (off = 0; off < len; off += PMD_SIZE)
409 flush |= __gmap_unmap_by_gaddr(gmap, to + off);
410 mmap_write_unlock(gmap->mm);
411 if (flush)
412 gmap_flush_tlb(gmap);
413 return 0;
414 }
415 EXPORT_SYMBOL_GPL(gmap_unmap_segment);
416
417 /**
418 * gmap_map_segment - map a segment to the guest address space
419 * @gmap: pointer to the guest address space structure
420 * @from: source address in the parent address space
421 * @to: target address in the guest address space
422 * @len: length of the memory area to map
423 *
424 * Returns 0 if the mmap succeeded, -EINVAL or -ENOMEM if not.
425 */
gmap_map_segment(struct gmap * gmap,unsigned long from,unsigned long to,unsigned long len)426 int gmap_map_segment(struct gmap *gmap, unsigned long from,
427 unsigned long to, unsigned long len)
428 {
429 unsigned long off;
430 int flush;
431
432 BUG_ON(gmap_is_shadow(gmap));
433 if ((from | to | len) & (PMD_SIZE - 1))
434 return -EINVAL;
435 if (len == 0 || from + len < from || to + len < to ||
436 from + len - 1 > TASK_SIZE_MAX || to + len - 1 > gmap->asce_end)
437 return -EINVAL;
438
439 flush = 0;
440 mmap_write_lock(gmap->mm);
441 for (off = 0; off < len; off += PMD_SIZE) {
442 /* Remove old translation */
443 flush |= __gmap_unmap_by_gaddr(gmap, to + off);
444 /* Store new translation */
445 if (radix_tree_insert(&gmap->guest_to_host,
446 (to + off) >> PMD_SHIFT,
447 (void *) from + off))
448 break;
449 }
450 mmap_write_unlock(gmap->mm);
451 if (flush)
452 gmap_flush_tlb(gmap);
453 if (off >= len)
454 return 0;
455 gmap_unmap_segment(gmap, to, len);
456 return -ENOMEM;
457 }
458 EXPORT_SYMBOL_GPL(gmap_map_segment);
459
460 /**
461 * __gmap_translate - translate a guest address to a user space address
462 * @gmap: pointer to guest mapping meta data structure
463 * @gaddr: guest address
464 *
465 * Returns user space address which corresponds to the guest address or
466 * -EFAULT if no such mapping exists.
467 * This function does not establish potentially missing page table entries.
468 * The mmap_lock of the mm that belongs to the address space must be held
469 * when this function gets called.
470 *
471 * Note: Can also be called for shadow gmaps.
472 */
__gmap_translate(struct gmap * gmap,unsigned long gaddr)473 unsigned long __gmap_translate(struct gmap *gmap, unsigned long gaddr)
474 {
475 unsigned long vmaddr;
476
477 vmaddr = (unsigned long)
478 radix_tree_lookup(&gmap->guest_to_host, gaddr >> PMD_SHIFT);
479 /* Note: guest_to_host is empty for a shadow gmap */
480 return vmaddr ? (vmaddr | (gaddr & ~PMD_MASK)) : -EFAULT;
481 }
482 EXPORT_SYMBOL_GPL(__gmap_translate);
483
484 /**
485 * gmap_translate - translate a guest address to a user space address
486 * @gmap: pointer to guest mapping meta data structure
487 * @gaddr: guest address
488 *
489 * Returns user space address which corresponds to the guest address or
490 * -EFAULT if no such mapping exists.
491 * This function does not establish potentially missing page table entries.
492 */
gmap_translate(struct gmap * gmap,unsigned long gaddr)493 unsigned long gmap_translate(struct gmap *gmap, unsigned long gaddr)
494 {
495 unsigned long rc;
496
497 mmap_read_lock(gmap->mm);
498 rc = __gmap_translate(gmap, gaddr);
499 mmap_read_unlock(gmap->mm);
500 return rc;
501 }
502 EXPORT_SYMBOL_GPL(gmap_translate);
503
504 /**
505 * gmap_unlink - disconnect a page table from the gmap shadow tables
506 * @mm: pointer to the parent mm_struct
507 * @table: pointer to the host page table
508 * @vmaddr: vm address associated with the host page table
509 */
gmap_unlink(struct mm_struct * mm,unsigned long * table,unsigned long vmaddr)510 void gmap_unlink(struct mm_struct *mm, unsigned long *table,
511 unsigned long vmaddr)
512 {
513 struct gmap *gmap;
514 int flush;
515
516 rcu_read_lock();
517 list_for_each_entry_rcu(gmap, &mm->context.gmap_list, list) {
518 flush = __gmap_unlink_by_vmaddr(gmap, vmaddr);
519 if (flush)
520 gmap_flush_tlb(gmap);
521 }
522 rcu_read_unlock();
523 }
524
525 static void gmap_pmdp_xchg(struct gmap *gmap, pmd_t *old, pmd_t new,
526 unsigned long gaddr);
527
528 /**
529 * __gmap_link - set up shadow page tables to connect a host to a guest address
530 * @gmap: pointer to guest mapping meta data structure
531 * @gaddr: guest address
532 * @vmaddr: vm address
533 *
534 * Returns 0 on success, -ENOMEM for out of memory conditions, and -EFAULT
535 * if the vm address is already mapped to a different guest segment.
536 * The mmap_lock of the mm that belongs to the address space must be held
537 * when this function gets called.
538 */
__gmap_link(struct gmap * gmap,unsigned long gaddr,unsigned long vmaddr)539 int __gmap_link(struct gmap *gmap, unsigned long gaddr, unsigned long vmaddr)
540 {
541 struct mm_struct *mm;
542 unsigned long *table;
543 spinlock_t *ptl;
544 pgd_t *pgd;
545 p4d_t *p4d;
546 pud_t *pud;
547 pmd_t *pmd;
548 u64 unprot;
549 int rc;
550
551 BUG_ON(gmap_is_shadow(gmap));
552 /* Create higher level tables in the gmap page table */
553 table = gmap->table;
554 if ((gmap->asce & _ASCE_TYPE_MASK) >= _ASCE_TYPE_REGION1) {
555 table += (gaddr & _REGION1_INDEX) >> _REGION1_SHIFT;
556 if ((*table & _REGION_ENTRY_INVALID) &&
557 gmap_alloc_table(gmap, table, _REGION2_ENTRY_EMPTY,
558 gaddr & _REGION1_MASK))
559 return -ENOMEM;
560 table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
561 }
562 if ((gmap->asce & _ASCE_TYPE_MASK) >= _ASCE_TYPE_REGION2) {
563 table += (gaddr & _REGION2_INDEX) >> _REGION2_SHIFT;
564 if ((*table & _REGION_ENTRY_INVALID) &&
565 gmap_alloc_table(gmap, table, _REGION3_ENTRY_EMPTY,
566 gaddr & _REGION2_MASK))
567 return -ENOMEM;
568 table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
569 }
570 if ((gmap->asce & _ASCE_TYPE_MASK) >= _ASCE_TYPE_REGION3) {
571 table += (gaddr & _REGION3_INDEX) >> _REGION3_SHIFT;
572 if ((*table & _REGION_ENTRY_INVALID) &&
573 gmap_alloc_table(gmap, table, _SEGMENT_ENTRY_EMPTY,
574 gaddr & _REGION3_MASK))
575 return -ENOMEM;
576 table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
577 }
578 table += (gaddr & _SEGMENT_INDEX) >> _SEGMENT_SHIFT;
579 /* Walk the parent mm page table */
580 mm = gmap->mm;
581 pgd = pgd_offset(mm, vmaddr);
582 VM_BUG_ON(pgd_none(*pgd));
583 p4d = p4d_offset(pgd, vmaddr);
584 VM_BUG_ON(p4d_none(*p4d));
585 pud = pud_offset(p4d, vmaddr);
586 VM_BUG_ON(pud_none(*pud));
587 /* large puds cannot yet be handled */
588 if (pud_large(*pud))
589 return -EFAULT;
590 pmd = pmd_offset(pud, vmaddr);
591 VM_BUG_ON(pmd_none(*pmd));
592 /* Are we allowed to use huge pages? */
593 if (pmd_large(*pmd) && !gmap->mm->context.allow_gmap_hpage_1m)
594 return -EFAULT;
595 /* Link gmap segment table entry location to page table. */
596 rc = radix_tree_preload(GFP_KERNEL_ACCOUNT);
597 if (rc)
598 return rc;
599 ptl = pmd_lock(mm, pmd);
600 spin_lock(&gmap->guest_table_lock);
601 if (*table == _SEGMENT_ENTRY_EMPTY) {
602 rc = radix_tree_insert(&gmap->host_to_guest,
603 vmaddr >> PMD_SHIFT, table);
604 if (!rc) {
605 if (pmd_large(*pmd)) {
606 *table = (pmd_val(*pmd) &
607 _SEGMENT_ENTRY_HARDWARE_BITS_LARGE)
608 | _SEGMENT_ENTRY_GMAP_UC;
609 } else
610 *table = pmd_val(*pmd) &
611 _SEGMENT_ENTRY_HARDWARE_BITS;
612 }
613 } else if (*table & _SEGMENT_ENTRY_PROTECT &&
614 !(pmd_val(*pmd) & _SEGMENT_ENTRY_PROTECT)) {
615 unprot = (u64)*table;
616 unprot &= ~_SEGMENT_ENTRY_PROTECT;
617 unprot |= _SEGMENT_ENTRY_GMAP_UC;
618 gmap_pmdp_xchg(gmap, (pmd_t *)table, __pmd(unprot), gaddr);
619 }
620 spin_unlock(&gmap->guest_table_lock);
621 spin_unlock(ptl);
622 radix_tree_preload_end();
623 return rc;
624 }
625
626 /**
627 * gmap_fault - resolve a fault on a guest address
628 * @gmap: pointer to guest mapping meta data structure
629 * @gaddr: guest address
630 * @fault_flags: flags to pass down to handle_mm_fault()
631 *
632 * Returns 0 on success, -ENOMEM for out of memory conditions, and -EFAULT
633 * if the vm address is already mapped to a different guest segment.
634 */
gmap_fault(struct gmap * gmap,unsigned long gaddr,unsigned int fault_flags)635 int gmap_fault(struct gmap *gmap, unsigned long gaddr,
636 unsigned int fault_flags)
637 {
638 unsigned long vmaddr;
639 int rc;
640 bool unlocked;
641
642 mmap_read_lock(gmap->mm);
643
644 retry:
645 unlocked = false;
646 vmaddr = __gmap_translate(gmap, gaddr);
647 if (IS_ERR_VALUE(vmaddr)) {
648 rc = vmaddr;
649 goto out_up;
650 }
651 if (fixup_user_fault(gmap->mm, vmaddr, fault_flags,
652 &unlocked)) {
653 rc = -EFAULT;
654 goto out_up;
655 }
656 /*
657 * In the case that fixup_user_fault unlocked the mmap_lock during
658 * faultin redo __gmap_translate to not race with a map/unmap_segment.
659 */
660 if (unlocked)
661 goto retry;
662
663 rc = __gmap_link(gmap, gaddr, vmaddr);
664 out_up:
665 mmap_read_unlock(gmap->mm);
666 return rc;
667 }
668 EXPORT_SYMBOL_GPL(gmap_fault);
669
670 /*
671 * this function is assumed to be called with mmap_lock held
672 */
__gmap_zap(struct gmap * gmap,unsigned long gaddr)673 void __gmap_zap(struct gmap *gmap, unsigned long gaddr)
674 {
675 struct vm_area_struct *vma;
676 unsigned long vmaddr;
677 spinlock_t *ptl;
678 pte_t *ptep;
679
680 /* Find the vm address for the guest address */
681 vmaddr = (unsigned long) radix_tree_lookup(&gmap->guest_to_host,
682 gaddr >> PMD_SHIFT);
683 if (vmaddr) {
684 vmaddr |= gaddr & ~PMD_MASK;
685
686 vma = vma_lookup(gmap->mm, vmaddr);
687 if (!vma || is_vm_hugetlb_page(vma))
688 return;
689
690 /* Get pointer to the page table entry */
691 ptep = get_locked_pte(gmap->mm, vmaddr, &ptl);
692 if (likely(ptep)) {
693 ptep_zap_unused(gmap->mm, vmaddr, ptep, 0);
694 pte_unmap_unlock(ptep, ptl);
695 }
696 }
697 }
698 EXPORT_SYMBOL_GPL(__gmap_zap);
699
gmap_discard(struct gmap * gmap,unsigned long from,unsigned long to)700 void gmap_discard(struct gmap *gmap, unsigned long from, unsigned long to)
701 {
702 unsigned long gaddr, vmaddr, size;
703 struct vm_area_struct *vma;
704
705 mmap_read_lock(gmap->mm);
706 for (gaddr = from; gaddr < to;
707 gaddr = (gaddr + PMD_SIZE) & PMD_MASK) {
708 /* Find the vm address for the guest address */
709 vmaddr = (unsigned long)
710 radix_tree_lookup(&gmap->guest_to_host,
711 gaddr >> PMD_SHIFT);
712 if (!vmaddr)
713 continue;
714 vmaddr |= gaddr & ~PMD_MASK;
715 /* Find vma in the parent mm */
716 vma = find_vma(gmap->mm, vmaddr);
717 if (!vma)
718 continue;
719 /*
720 * We do not discard pages that are backed by
721 * hugetlbfs, so we don't have to refault them.
722 */
723 if (is_vm_hugetlb_page(vma))
724 continue;
725 size = min(to - gaddr, PMD_SIZE - (gaddr & ~PMD_MASK));
726 zap_page_range(vma, vmaddr, size);
727 }
728 mmap_read_unlock(gmap->mm);
729 }
730 EXPORT_SYMBOL_GPL(gmap_discard);
731
732 static LIST_HEAD(gmap_notifier_list);
733 static DEFINE_SPINLOCK(gmap_notifier_lock);
734
735 /**
736 * gmap_register_pte_notifier - register a pte invalidation callback
737 * @nb: pointer to the gmap notifier block
738 */
gmap_register_pte_notifier(struct gmap_notifier * nb)739 void gmap_register_pte_notifier(struct gmap_notifier *nb)
740 {
741 spin_lock(&gmap_notifier_lock);
742 list_add_rcu(&nb->list, &gmap_notifier_list);
743 spin_unlock(&gmap_notifier_lock);
744 }
745 EXPORT_SYMBOL_GPL(gmap_register_pte_notifier);
746
747 /**
748 * gmap_unregister_pte_notifier - remove a pte invalidation callback
749 * @nb: pointer to the gmap notifier block
750 */
gmap_unregister_pte_notifier(struct gmap_notifier * nb)751 void gmap_unregister_pte_notifier(struct gmap_notifier *nb)
752 {
753 spin_lock(&gmap_notifier_lock);
754 list_del_rcu(&nb->list);
755 spin_unlock(&gmap_notifier_lock);
756 synchronize_rcu();
757 }
758 EXPORT_SYMBOL_GPL(gmap_unregister_pte_notifier);
759
760 /**
761 * gmap_call_notifier - call all registered invalidation callbacks
762 * @gmap: pointer to guest mapping meta data structure
763 * @start: start virtual address in the guest address space
764 * @end: end virtual address in the guest address space
765 */
gmap_call_notifier(struct gmap * gmap,unsigned long start,unsigned long end)766 static void gmap_call_notifier(struct gmap *gmap, unsigned long start,
767 unsigned long end)
768 {
769 struct gmap_notifier *nb;
770
771 list_for_each_entry(nb, &gmap_notifier_list, list)
772 nb->notifier_call(gmap, start, end);
773 }
774
775 /**
776 * gmap_table_walk - walk the gmap page tables
777 * @gmap: pointer to guest mapping meta data structure
778 * @gaddr: virtual address in the guest address space
779 * @level: page table level to stop at
780 *
781 * Returns a table entry pointer for the given guest address and @level
782 * @level=0 : returns a pointer to a page table table entry (or NULL)
783 * @level=1 : returns a pointer to a segment table entry (or NULL)
784 * @level=2 : returns a pointer to a region-3 table entry (or NULL)
785 * @level=3 : returns a pointer to a region-2 table entry (or NULL)
786 * @level=4 : returns a pointer to a region-1 table entry (or NULL)
787 *
788 * Returns NULL if the gmap page tables could not be walked to the
789 * requested level.
790 *
791 * Note: Can also be called for shadow gmaps.
792 */
gmap_table_walk(struct gmap * gmap,unsigned long gaddr,int level)793 static inline unsigned long *gmap_table_walk(struct gmap *gmap,
794 unsigned long gaddr, int level)
795 {
796 const int asce_type = gmap->asce & _ASCE_TYPE_MASK;
797 unsigned long *table = gmap->table;
798
799 if (gmap_is_shadow(gmap) && gmap->removed)
800 return NULL;
801
802 if (WARN_ON_ONCE(level > (asce_type >> 2) + 1))
803 return NULL;
804
805 if (asce_type != _ASCE_TYPE_REGION1 &&
806 gaddr & (-1UL << (31 + (asce_type >> 2) * 11)))
807 return NULL;
808
809 switch (asce_type) {
810 case _ASCE_TYPE_REGION1:
811 table += (gaddr & _REGION1_INDEX) >> _REGION1_SHIFT;
812 if (level == 4)
813 break;
814 if (*table & _REGION_ENTRY_INVALID)
815 return NULL;
816 table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
817 fallthrough;
818 case _ASCE_TYPE_REGION2:
819 table += (gaddr & _REGION2_INDEX) >> _REGION2_SHIFT;
820 if (level == 3)
821 break;
822 if (*table & _REGION_ENTRY_INVALID)
823 return NULL;
824 table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
825 fallthrough;
826 case _ASCE_TYPE_REGION3:
827 table += (gaddr & _REGION3_INDEX) >> _REGION3_SHIFT;
828 if (level == 2)
829 break;
830 if (*table & _REGION_ENTRY_INVALID)
831 return NULL;
832 table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
833 fallthrough;
834 case _ASCE_TYPE_SEGMENT:
835 table += (gaddr & _SEGMENT_INDEX) >> _SEGMENT_SHIFT;
836 if (level == 1)
837 break;
838 if (*table & _REGION_ENTRY_INVALID)
839 return NULL;
840 table = (unsigned long *)(*table & _SEGMENT_ENTRY_ORIGIN);
841 table += (gaddr & _PAGE_INDEX) >> _PAGE_SHIFT;
842 }
843 return table;
844 }
845
846 /**
847 * gmap_pte_op_walk - walk the gmap page table, get the page table lock
848 * and return the pte pointer
849 * @gmap: pointer to guest mapping meta data structure
850 * @gaddr: virtual address in the guest address space
851 * @ptl: pointer to the spinlock pointer
852 *
853 * Returns a pointer to the locked pte for a guest address, or NULL
854 */
gmap_pte_op_walk(struct gmap * gmap,unsigned long gaddr,spinlock_t ** ptl)855 static pte_t *gmap_pte_op_walk(struct gmap *gmap, unsigned long gaddr,
856 spinlock_t **ptl)
857 {
858 unsigned long *table;
859
860 BUG_ON(gmap_is_shadow(gmap));
861 /* Walk the gmap page table, lock and get pte pointer */
862 table = gmap_table_walk(gmap, gaddr, 1); /* get segment pointer */
863 if (!table || *table & _SEGMENT_ENTRY_INVALID)
864 return NULL;
865 return pte_alloc_map_lock(gmap->mm, (pmd_t *) table, gaddr, ptl);
866 }
867
868 /**
869 * gmap_pte_op_fixup - force a page in and connect the gmap page table
870 * @gmap: pointer to guest mapping meta data structure
871 * @gaddr: virtual address in the guest address space
872 * @vmaddr: address in the host process address space
873 * @prot: indicates access rights: PROT_NONE, PROT_READ or PROT_WRITE
874 *
875 * Returns 0 if the caller can retry __gmap_translate (might fail again),
876 * -ENOMEM if out of memory and -EFAULT if anything goes wrong while fixing
877 * up or connecting the gmap page table.
878 */
gmap_pte_op_fixup(struct gmap * gmap,unsigned long gaddr,unsigned long vmaddr,int prot)879 static int gmap_pte_op_fixup(struct gmap *gmap, unsigned long gaddr,
880 unsigned long vmaddr, int prot)
881 {
882 struct mm_struct *mm = gmap->mm;
883 unsigned int fault_flags;
884 bool unlocked = false;
885
886 BUG_ON(gmap_is_shadow(gmap));
887 fault_flags = (prot == PROT_WRITE) ? FAULT_FLAG_WRITE : 0;
888 if (fixup_user_fault(mm, vmaddr, fault_flags, &unlocked))
889 return -EFAULT;
890 if (unlocked)
891 /* lost mmap_lock, caller has to retry __gmap_translate */
892 return 0;
893 /* Connect the page tables */
894 return __gmap_link(gmap, gaddr, vmaddr);
895 }
896
897 /**
898 * gmap_pte_op_end - release the page table lock
899 * @ptl: pointer to the spinlock pointer
900 */
gmap_pte_op_end(spinlock_t * ptl)901 static void gmap_pte_op_end(spinlock_t *ptl)
902 {
903 if (ptl)
904 spin_unlock(ptl);
905 }
906
907 /**
908 * gmap_pmd_op_walk - walk the gmap tables, get the guest table lock
909 * and return the pmd pointer
910 * @gmap: pointer to guest mapping meta data structure
911 * @gaddr: virtual address in the guest address space
912 *
913 * Returns a pointer to the pmd for a guest address, or NULL
914 */
gmap_pmd_op_walk(struct gmap * gmap,unsigned long gaddr)915 static inline pmd_t *gmap_pmd_op_walk(struct gmap *gmap, unsigned long gaddr)
916 {
917 pmd_t *pmdp;
918
919 BUG_ON(gmap_is_shadow(gmap));
920 pmdp = (pmd_t *) gmap_table_walk(gmap, gaddr, 1);
921 if (!pmdp)
922 return NULL;
923
924 /* without huge pages, there is no need to take the table lock */
925 if (!gmap->mm->context.allow_gmap_hpage_1m)
926 return pmd_none(*pmdp) ? NULL : pmdp;
927
928 spin_lock(&gmap->guest_table_lock);
929 if (pmd_none(*pmdp)) {
930 spin_unlock(&gmap->guest_table_lock);
931 return NULL;
932 }
933
934 /* 4k page table entries are locked via the pte (pte_alloc_map_lock). */
935 if (!pmd_large(*pmdp))
936 spin_unlock(&gmap->guest_table_lock);
937 return pmdp;
938 }
939
940 /**
941 * gmap_pmd_op_end - release the guest_table_lock if needed
942 * @gmap: pointer to the guest mapping meta data structure
943 * @pmdp: pointer to the pmd
944 */
gmap_pmd_op_end(struct gmap * gmap,pmd_t * pmdp)945 static inline void gmap_pmd_op_end(struct gmap *gmap, pmd_t *pmdp)
946 {
947 if (pmd_large(*pmdp))
948 spin_unlock(&gmap->guest_table_lock);
949 }
950
951 /*
952 * gmap_protect_pmd - remove access rights to memory and set pmd notification bits
953 * @pmdp: pointer to the pmd to be protected
954 * @prot: indicates access rights: PROT_NONE, PROT_READ or PROT_WRITE
955 * @bits: notification bits to set
956 *
957 * Returns:
958 * 0 if successfully protected
959 * -EAGAIN if a fixup is needed
960 * -EINVAL if unsupported notifier bits have been specified
961 *
962 * Expected to be called with sg->mm->mmap_lock in read and
963 * guest_table_lock held.
964 */
gmap_protect_pmd(struct gmap * gmap,unsigned long gaddr,pmd_t * pmdp,int prot,unsigned long bits)965 static int gmap_protect_pmd(struct gmap *gmap, unsigned long gaddr,
966 pmd_t *pmdp, int prot, unsigned long bits)
967 {
968 int pmd_i = pmd_val(*pmdp) & _SEGMENT_ENTRY_INVALID;
969 int pmd_p = pmd_val(*pmdp) & _SEGMENT_ENTRY_PROTECT;
970 pmd_t new = *pmdp;
971
972 /* Fixup needed */
973 if ((pmd_i && (prot != PROT_NONE)) || (pmd_p && (prot == PROT_WRITE)))
974 return -EAGAIN;
975
976 if (prot == PROT_NONE && !pmd_i) {
977 pmd_val(new) |= _SEGMENT_ENTRY_INVALID;
978 gmap_pmdp_xchg(gmap, pmdp, new, gaddr);
979 }
980
981 if (prot == PROT_READ && !pmd_p) {
982 pmd_val(new) &= ~_SEGMENT_ENTRY_INVALID;
983 pmd_val(new) |= _SEGMENT_ENTRY_PROTECT;
984 gmap_pmdp_xchg(gmap, pmdp, new, gaddr);
985 }
986
987 if (bits & GMAP_NOTIFY_MPROT)
988 pmd_val(*pmdp) |= _SEGMENT_ENTRY_GMAP_IN;
989
990 /* Shadow GMAP protection needs split PMDs */
991 if (bits & GMAP_NOTIFY_SHADOW)
992 return -EINVAL;
993
994 return 0;
995 }
996
997 /*
998 * gmap_protect_pte - remove access rights to memory and set pgste bits
999 * @gmap: pointer to guest mapping meta data structure
1000 * @gaddr: virtual address in the guest address space
1001 * @pmdp: pointer to the pmd associated with the pte
1002 * @prot: indicates access rights: PROT_NONE, PROT_READ or PROT_WRITE
1003 * @bits: notification bits to set
1004 *
1005 * Returns 0 if successfully protected, -ENOMEM if out of memory and
1006 * -EAGAIN if a fixup is needed.
1007 *
1008 * Expected to be called with sg->mm->mmap_lock in read
1009 */
gmap_protect_pte(struct gmap * gmap,unsigned long gaddr,pmd_t * pmdp,int prot,unsigned long bits)1010 static int gmap_protect_pte(struct gmap *gmap, unsigned long gaddr,
1011 pmd_t *pmdp, int prot, unsigned long bits)
1012 {
1013 int rc;
1014 pte_t *ptep;
1015 spinlock_t *ptl = NULL;
1016 unsigned long pbits = 0;
1017
1018 if (pmd_val(*pmdp) & _SEGMENT_ENTRY_INVALID)
1019 return -EAGAIN;
1020
1021 ptep = pte_alloc_map_lock(gmap->mm, pmdp, gaddr, &ptl);
1022 if (!ptep)
1023 return -ENOMEM;
1024
1025 pbits |= (bits & GMAP_NOTIFY_MPROT) ? PGSTE_IN_BIT : 0;
1026 pbits |= (bits & GMAP_NOTIFY_SHADOW) ? PGSTE_VSIE_BIT : 0;
1027 /* Protect and unlock. */
1028 rc = ptep_force_prot(gmap->mm, gaddr, ptep, prot, pbits);
1029 gmap_pte_op_end(ptl);
1030 return rc;
1031 }
1032
1033 /*
1034 * gmap_protect_range - remove access rights to memory and set pgste bits
1035 * @gmap: pointer to guest mapping meta data structure
1036 * @gaddr: virtual address in the guest address space
1037 * @len: size of area
1038 * @prot: indicates access rights: PROT_NONE, PROT_READ or PROT_WRITE
1039 * @bits: pgste notification bits to set
1040 *
1041 * Returns 0 if successfully protected, -ENOMEM if out of memory and
1042 * -EFAULT if gaddr is invalid (or mapping for shadows is missing).
1043 *
1044 * Called with sg->mm->mmap_lock in read.
1045 */
gmap_protect_range(struct gmap * gmap,unsigned long gaddr,unsigned long len,int prot,unsigned long bits)1046 static int gmap_protect_range(struct gmap *gmap, unsigned long gaddr,
1047 unsigned long len, int prot, unsigned long bits)
1048 {
1049 unsigned long vmaddr, dist;
1050 pmd_t *pmdp;
1051 int rc;
1052
1053 BUG_ON(gmap_is_shadow(gmap));
1054 while (len) {
1055 rc = -EAGAIN;
1056 pmdp = gmap_pmd_op_walk(gmap, gaddr);
1057 if (pmdp) {
1058 if (!pmd_large(*pmdp)) {
1059 rc = gmap_protect_pte(gmap, gaddr, pmdp, prot,
1060 bits);
1061 if (!rc) {
1062 len -= PAGE_SIZE;
1063 gaddr += PAGE_SIZE;
1064 }
1065 } else {
1066 rc = gmap_protect_pmd(gmap, gaddr, pmdp, prot,
1067 bits);
1068 if (!rc) {
1069 dist = HPAGE_SIZE - (gaddr & ~HPAGE_MASK);
1070 len = len < dist ? 0 : len - dist;
1071 gaddr = (gaddr & HPAGE_MASK) + HPAGE_SIZE;
1072 }
1073 }
1074 gmap_pmd_op_end(gmap, pmdp);
1075 }
1076 if (rc) {
1077 if (rc == -EINVAL)
1078 return rc;
1079
1080 /* -EAGAIN, fixup of userspace mm and gmap */
1081 vmaddr = __gmap_translate(gmap, gaddr);
1082 if (IS_ERR_VALUE(vmaddr))
1083 return vmaddr;
1084 rc = gmap_pte_op_fixup(gmap, gaddr, vmaddr, prot);
1085 if (rc)
1086 return rc;
1087 }
1088 }
1089 return 0;
1090 }
1091
1092 /**
1093 * gmap_mprotect_notify - change access rights for a range of ptes and
1094 * call the notifier if any pte changes again
1095 * @gmap: pointer to guest mapping meta data structure
1096 * @gaddr: virtual address in the guest address space
1097 * @len: size of area
1098 * @prot: indicates access rights: PROT_NONE, PROT_READ or PROT_WRITE
1099 *
1100 * Returns 0 if for each page in the given range a gmap mapping exists,
1101 * the new access rights could be set and the notifier could be armed.
1102 * If the gmap mapping is missing for one or more pages -EFAULT is
1103 * returned. If no memory could be allocated -ENOMEM is returned.
1104 * This function establishes missing page table entries.
1105 */
gmap_mprotect_notify(struct gmap * gmap,unsigned long gaddr,unsigned long len,int prot)1106 int gmap_mprotect_notify(struct gmap *gmap, unsigned long gaddr,
1107 unsigned long len, int prot)
1108 {
1109 int rc;
1110
1111 if ((gaddr & ~PAGE_MASK) || (len & ~PAGE_MASK) || gmap_is_shadow(gmap))
1112 return -EINVAL;
1113 if (!MACHINE_HAS_ESOP && prot == PROT_READ)
1114 return -EINVAL;
1115 mmap_read_lock(gmap->mm);
1116 rc = gmap_protect_range(gmap, gaddr, len, prot, GMAP_NOTIFY_MPROT);
1117 mmap_read_unlock(gmap->mm);
1118 return rc;
1119 }
1120 EXPORT_SYMBOL_GPL(gmap_mprotect_notify);
1121
1122 /**
1123 * gmap_read_table - get an unsigned long value from a guest page table using
1124 * absolute addressing, without marking the page referenced.
1125 * @gmap: pointer to guest mapping meta data structure
1126 * @gaddr: virtual address in the guest address space
1127 * @val: pointer to the unsigned long value to return
1128 *
1129 * Returns 0 if the value was read, -ENOMEM if out of memory and -EFAULT
1130 * if reading using the virtual address failed. -EINVAL if called on a gmap
1131 * shadow.
1132 *
1133 * Called with gmap->mm->mmap_lock in read.
1134 */
gmap_read_table(struct gmap * gmap,unsigned long gaddr,unsigned long * val)1135 int gmap_read_table(struct gmap *gmap, unsigned long gaddr, unsigned long *val)
1136 {
1137 unsigned long address, vmaddr;
1138 spinlock_t *ptl;
1139 pte_t *ptep, pte;
1140 int rc;
1141
1142 if (gmap_is_shadow(gmap))
1143 return -EINVAL;
1144
1145 while (1) {
1146 rc = -EAGAIN;
1147 ptep = gmap_pte_op_walk(gmap, gaddr, &ptl);
1148 if (ptep) {
1149 pte = *ptep;
1150 if (pte_present(pte) && (pte_val(pte) & _PAGE_READ)) {
1151 address = pte_val(pte) & PAGE_MASK;
1152 address += gaddr & ~PAGE_MASK;
1153 *val = *(unsigned long *) address;
1154 pte_val(*ptep) |= _PAGE_YOUNG;
1155 /* Do *NOT* clear the _PAGE_INVALID bit! */
1156 rc = 0;
1157 }
1158 gmap_pte_op_end(ptl);
1159 }
1160 if (!rc)
1161 break;
1162 vmaddr = __gmap_translate(gmap, gaddr);
1163 if (IS_ERR_VALUE(vmaddr)) {
1164 rc = vmaddr;
1165 break;
1166 }
1167 rc = gmap_pte_op_fixup(gmap, gaddr, vmaddr, PROT_READ);
1168 if (rc)
1169 break;
1170 }
1171 return rc;
1172 }
1173 EXPORT_SYMBOL_GPL(gmap_read_table);
1174
1175 /**
1176 * gmap_insert_rmap - add a rmap to the host_to_rmap radix tree
1177 * @sg: pointer to the shadow guest address space structure
1178 * @vmaddr: vm address associated with the rmap
1179 * @rmap: pointer to the rmap structure
1180 *
1181 * Called with the sg->guest_table_lock
1182 */
gmap_insert_rmap(struct gmap * sg,unsigned long vmaddr,struct gmap_rmap * rmap)1183 static inline void gmap_insert_rmap(struct gmap *sg, unsigned long vmaddr,
1184 struct gmap_rmap *rmap)
1185 {
1186 void __rcu **slot;
1187
1188 BUG_ON(!gmap_is_shadow(sg));
1189 slot = radix_tree_lookup_slot(&sg->host_to_rmap, vmaddr >> PAGE_SHIFT);
1190 if (slot) {
1191 rmap->next = radix_tree_deref_slot_protected(slot,
1192 &sg->guest_table_lock);
1193 radix_tree_replace_slot(&sg->host_to_rmap, slot, rmap);
1194 } else {
1195 rmap->next = NULL;
1196 radix_tree_insert(&sg->host_to_rmap, vmaddr >> PAGE_SHIFT,
1197 rmap);
1198 }
1199 }
1200
1201 /**
1202 * gmap_protect_rmap - restrict access rights to memory (RO) and create an rmap
1203 * @sg: pointer to the shadow guest address space structure
1204 * @raddr: rmap address in the shadow gmap
1205 * @paddr: address in the parent guest address space
1206 * @len: length of the memory area to protect
1207 *
1208 * Returns 0 if successfully protected and the rmap was created, -ENOMEM
1209 * if out of memory and -EFAULT if paddr is invalid.
1210 */
gmap_protect_rmap(struct gmap * sg,unsigned long raddr,unsigned long paddr,unsigned long len)1211 static int gmap_protect_rmap(struct gmap *sg, unsigned long raddr,
1212 unsigned long paddr, unsigned long len)
1213 {
1214 struct gmap *parent;
1215 struct gmap_rmap *rmap;
1216 unsigned long vmaddr;
1217 spinlock_t *ptl;
1218 pte_t *ptep;
1219 int rc;
1220
1221 BUG_ON(!gmap_is_shadow(sg));
1222 parent = sg->parent;
1223 while (len) {
1224 vmaddr = __gmap_translate(parent, paddr);
1225 if (IS_ERR_VALUE(vmaddr))
1226 return vmaddr;
1227 rmap = kzalloc(sizeof(*rmap), GFP_KERNEL_ACCOUNT);
1228 if (!rmap)
1229 return -ENOMEM;
1230 rmap->raddr = raddr;
1231 rc = radix_tree_preload(GFP_KERNEL_ACCOUNT);
1232 if (rc) {
1233 kfree(rmap);
1234 return rc;
1235 }
1236 rc = -EAGAIN;
1237 ptep = gmap_pte_op_walk(parent, paddr, &ptl);
1238 if (ptep) {
1239 spin_lock(&sg->guest_table_lock);
1240 rc = ptep_force_prot(parent->mm, paddr, ptep, PROT_READ,
1241 PGSTE_VSIE_BIT);
1242 if (!rc)
1243 gmap_insert_rmap(sg, vmaddr, rmap);
1244 spin_unlock(&sg->guest_table_lock);
1245 gmap_pte_op_end(ptl);
1246 }
1247 radix_tree_preload_end();
1248 if (rc) {
1249 kfree(rmap);
1250 rc = gmap_pte_op_fixup(parent, paddr, vmaddr, PROT_READ);
1251 if (rc)
1252 return rc;
1253 continue;
1254 }
1255 paddr += PAGE_SIZE;
1256 len -= PAGE_SIZE;
1257 }
1258 return 0;
1259 }
1260
1261 #define _SHADOW_RMAP_MASK 0x7
1262 #define _SHADOW_RMAP_REGION1 0x5
1263 #define _SHADOW_RMAP_REGION2 0x4
1264 #define _SHADOW_RMAP_REGION3 0x3
1265 #define _SHADOW_RMAP_SEGMENT 0x2
1266 #define _SHADOW_RMAP_PGTABLE 0x1
1267
1268 /**
1269 * gmap_idte_one - invalidate a single region or segment table entry
1270 * @asce: region or segment table *origin* + table-type bits
1271 * @vaddr: virtual address to identify the table entry to flush
1272 *
1273 * The invalid bit of a single region or segment table entry is set
1274 * and the associated TLB entries depending on the entry are flushed.
1275 * The table-type of the @asce identifies the portion of the @vaddr
1276 * that is used as the invalidation index.
1277 */
gmap_idte_one(unsigned long asce,unsigned long vaddr)1278 static inline void gmap_idte_one(unsigned long asce, unsigned long vaddr)
1279 {
1280 asm volatile(
1281 " .insn rrf,0xb98e0000,%0,%1,0,0"
1282 : : "a" (asce), "a" (vaddr) : "cc", "memory");
1283 }
1284
1285 /**
1286 * gmap_unshadow_page - remove a page from a shadow page table
1287 * @sg: pointer to the shadow guest address space structure
1288 * @raddr: rmap address in the shadow guest address space
1289 *
1290 * Called with the sg->guest_table_lock
1291 */
gmap_unshadow_page(struct gmap * sg,unsigned long raddr)1292 static void gmap_unshadow_page(struct gmap *sg, unsigned long raddr)
1293 {
1294 unsigned long *table;
1295
1296 BUG_ON(!gmap_is_shadow(sg));
1297 table = gmap_table_walk(sg, raddr, 0); /* get page table pointer */
1298 if (!table || *table & _PAGE_INVALID)
1299 return;
1300 gmap_call_notifier(sg, raddr, raddr + _PAGE_SIZE - 1);
1301 ptep_unshadow_pte(sg->mm, raddr, (pte_t *) table);
1302 }
1303
1304 /**
1305 * __gmap_unshadow_pgt - remove all entries from a shadow page table
1306 * @sg: pointer to the shadow guest address space structure
1307 * @raddr: rmap address in the shadow guest address space
1308 * @pgt: pointer to the start of a shadow page table
1309 *
1310 * Called with the sg->guest_table_lock
1311 */
__gmap_unshadow_pgt(struct gmap * sg,unsigned long raddr,unsigned long * pgt)1312 static void __gmap_unshadow_pgt(struct gmap *sg, unsigned long raddr,
1313 unsigned long *pgt)
1314 {
1315 int i;
1316
1317 BUG_ON(!gmap_is_shadow(sg));
1318 for (i = 0; i < _PAGE_ENTRIES; i++, raddr += _PAGE_SIZE)
1319 pgt[i] = _PAGE_INVALID;
1320 }
1321
1322 /**
1323 * gmap_unshadow_pgt - remove a shadow page table from a segment entry
1324 * @sg: pointer to the shadow guest address space structure
1325 * @raddr: address in the shadow guest address space
1326 *
1327 * Called with the sg->guest_table_lock
1328 */
gmap_unshadow_pgt(struct gmap * sg,unsigned long raddr)1329 static void gmap_unshadow_pgt(struct gmap *sg, unsigned long raddr)
1330 {
1331 unsigned long sto, *ste, *pgt;
1332 struct page *page;
1333
1334 BUG_ON(!gmap_is_shadow(sg));
1335 ste = gmap_table_walk(sg, raddr, 1); /* get segment pointer */
1336 if (!ste || !(*ste & _SEGMENT_ENTRY_ORIGIN))
1337 return;
1338 gmap_call_notifier(sg, raddr, raddr + _SEGMENT_SIZE - 1);
1339 sto = (unsigned long) (ste - ((raddr & _SEGMENT_INDEX) >> _SEGMENT_SHIFT));
1340 gmap_idte_one(sto | _ASCE_TYPE_SEGMENT, raddr);
1341 pgt = (unsigned long *)(*ste & _SEGMENT_ENTRY_ORIGIN);
1342 *ste = _SEGMENT_ENTRY_EMPTY;
1343 __gmap_unshadow_pgt(sg, raddr, pgt);
1344 /* Free page table */
1345 page = pfn_to_page(__pa(pgt) >> PAGE_SHIFT);
1346 list_del(&page->lru);
1347 page_table_free_pgste(page);
1348 }
1349
1350 /**
1351 * __gmap_unshadow_sgt - remove all entries from a shadow segment table
1352 * @sg: pointer to the shadow guest address space structure
1353 * @raddr: rmap address in the shadow guest address space
1354 * @sgt: pointer to the start of a shadow segment table
1355 *
1356 * Called with the sg->guest_table_lock
1357 */
__gmap_unshadow_sgt(struct gmap * sg,unsigned long raddr,unsigned long * sgt)1358 static void __gmap_unshadow_sgt(struct gmap *sg, unsigned long raddr,
1359 unsigned long *sgt)
1360 {
1361 unsigned long *pgt;
1362 struct page *page;
1363 int i;
1364
1365 BUG_ON(!gmap_is_shadow(sg));
1366 for (i = 0; i < _CRST_ENTRIES; i++, raddr += _SEGMENT_SIZE) {
1367 if (!(sgt[i] & _SEGMENT_ENTRY_ORIGIN))
1368 continue;
1369 pgt = (unsigned long *)(sgt[i] & _REGION_ENTRY_ORIGIN);
1370 sgt[i] = _SEGMENT_ENTRY_EMPTY;
1371 __gmap_unshadow_pgt(sg, raddr, pgt);
1372 /* Free page table */
1373 page = pfn_to_page(__pa(pgt) >> PAGE_SHIFT);
1374 list_del(&page->lru);
1375 page_table_free_pgste(page);
1376 }
1377 }
1378
1379 /**
1380 * gmap_unshadow_sgt - remove a shadow segment table from a region-3 entry
1381 * @sg: pointer to the shadow guest address space structure
1382 * @raddr: rmap address in the shadow guest address space
1383 *
1384 * Called with the shadow->guest_table_lock
1385 */
gmap_unshadow_sgt(struct gmap * sg,unsigned long raddr)1386 static void gmap_unshadow_sgt(struct gmap *sg, unsigned long raddr)
1387 {
1388 unsigned long r3o, *r3e, *sgt;
1389 struct page *page;
1390
1391 BUG_ON(!gmap_is_shadow(sg));
1392 r3e = gmap_table_walk(sg, raddr, 2); /* get region-3 pointer */
1393 if (!r3e || !(*r3e & _REGION_ENTRY_ORIGIN))
1394 return;
1395 gmap_call_notifier(sg, raddr, raddr + _REGION3_SIZE - 1);
1396 r3o = (unsigned long) (r3e - ((raddr & _REGION3_INDEX) >> _REGION3_SHIFT));
1397 gmap_idte_one(r3o | _ASCE_TYPE_REGION3, raddr);
1398 sgt = (unsigned long *)(*r3e & _REGION_ENTRY_ORIGIN);
1399 *r3e = _REGION3_ENTRY_EMPTY;
1400 __gmap_unshadow_sgt(sg, raddr, sgt);
1401 /* Free segment table */
1402 page = pfn_to_page(__pa(sgt) >> PAGE_SHIFT);
1403 list_del(&page->lru);
1404 __free_pages(page, CRST_ALLOC_ORDER);
1405 }
1406
1407 /**
1408 * __gmap_unshadow_r3t - remove all entries from a shadow region-3 table
1409 * @sg: pointer to the shadow guest address space structure
1410 * @raddr: address in the shadow guest address space
1411 * @r3t: pointer to the start of a shadow region-3 table
1412 *
1413 * Called with the sg->guest_table_lock
1414 */
__gmap_unshadow_r3t(struct gmap * sg,unsigned long raddr,unsigned long * r3t)1415 static void __gmap_unshadow_r3t(struct gmap *sg, unsigned long raddr,
1416 unsigned long *r3t)
1417 {
1418 unsigned long *sgt;
1419 struct page *page;
1420 int i;
1421
1422 BUG_ON(!gmap_is_shadow(sg));
1423 for (i = 0; i < _CRST_ENTRIES; i++, raddr += _REGION3_SIZE) {
1424 if (!(r3t[i] & _REGION_ENTRY_ORIGIN))
1425 continue;
1426 sgt = (unsigned long *)(r3t[i] & _REGION_ENTRY_ORIGIN);
1427 r3t[i] = _REGION3_ENTRY_EMPTY;
1428 __gmap_unshadow_sgt(sg, raddr, sgt);
1429 /* Free segment table */
1430 page = pfn_to_page(__pa(sgt) >> PAGE_SHIFT);
1431 list_del(&page->lru);
1432 __free_pages(page, CRST_ALLOC_ORDER);
1433 }
1434 }
1435
1436 /**
1437 * gmap_unshadow_r3t - remove a shadow region-3 table from a region-2 entry
1438 * @sg: pointer to the shadow guest address space structure
1439 * @raddr: rmap address in the shadow guest address space
1440 *
1441 * Called with the sg->guest_table_lock
1442 */
gmap_unshadow_r3t(struct gmap * sg,unsigned long raddr)1443 static void gmap_unshadow_r3t(struct gmap *sg, unsigned long raddr)
1444 {
1445 unsigned long r2o, *r2e, *r3t;
1446 struct page *page;
1447
1448 BUG_ON(!gmap_is_shadow(sg));
1449 r2e = gmap_table_walk(sg, raddr, 3); /* get region-2 pointer */
1450 if (!r2e || !(*r2e & _REGION_ENTRY_ORIGIN))
1451 return;
1452 gmap_call_notifier(sg, raddr, raddr + _REGION2_SIZE - 1);
1453 r2o = (unsigned long) (r2e - ((raddr & _REGION2_INDEX) >> _REGION2_SHIFT));
1454 gmap_idte_one(r2o | _ASCE_TYPE_REGION2, raddr);
1455 r3t = (unsigned long *)(*r2e & _REGION_ENTRY_ORIGIN);
1456 *r2e = _REGION2_ENTRY_EMPTY;
1457 __gmap_unshadow_r3t(sg, raddr, r3t);
1458 /* Free region 3 table */
1459 page = pfn_to_page(__pa(r3t) >> PAGE_SHIFT);
1460 list_del(&page->lru);
1461 __free_pages(page, CRST_ALLOC_ORDER);
1462 }
1463
1464 /**
1465 * __gmap_unshadow_r2t - remove all entries from a shadow region-2 table
1466 * @sg: pointer to the shadow guest address space structure
1467 * @raddr: rmap address in the shadow guest address space
1468 * @r2t: pointer to the start of a shadow region-2 table
1469 *
1470 * Called with the sg->guest_table_lock
1471 */
__gmap_unshadow_r2t(struct gmap * sg,unsigned long raddr,unsigned long * r2t)1472 static void __gmap_unshadow_r2t(struct gmap *sg, unsigned long raddr,
1473 unsigned long *r2t)
1474 {
1475 unsigned long *r3t;
1476 struct page *page;
1477 int i;
1478
1479 BUG_ON(!gmap_is_shadow(sg));
1480 for (i = 0; i < _CRST_ENTRIES; i++, raddr += _REGION2_SIZE) {
1481 if (!(r2t[i] & _REGION_ENTRY_ORIGIN))
1482 continue;
1483 r3t = (unsigned long *)(r2t[i] & _REGION_ENTRY_ORIGIN);
1484 r2t[i] = _REGION2_ENTRY_EMPTY;
1485 __gmap_unshadow_r3t(sg, raddr, r3t);
1486 /* Free region 3 table */
1487 page = pfn_to_page(__pa(r3t) >> PAGE_SHIFT);
1488 list_del(&page->lru);
1489 __free_pages(page, CRST_ALLOC_ORDER);
1490 }
1491 }
1492
1493 /**
1494 * gmap_unshadow_r2t - remove a shadow region-2 table from a region-1 entry
1495 * @sg: pointer to the shadow guest address space structure
1496 * @raddr: rmap address in the shadow guest address space
1497 *
1498 * Called with the sg->guest_table_lock
1499 */
gmap_unshadow_r2t(struct gmap * sg,unsigned long raddr)1500 static void gmap_unshadow_r2t(struct gmap *sg, unsigned long raddr)
1501 {
1502 unsigned long r1o, *r1e, *r2t;
1503 struct page *page;
1504
1505 BUG_ON(!gmap_is_shadow(sg));
1506 r1e = gmap_table_walk(sg, raddr, 4); /* get region-1 pointer */
1507 if (!r1e || !(*r1e & _REGION_ENTRY_ORIGIN))
1508 return;
1509 gmap_call_notifier(sg, raddr, raddr + _REGION1_SIZE - 1);
1510 r1o = (unsigned long) (r1e - ((raddr & _REGION1_INDEX) >> _REGION1_SHIFT));
1511 gmap_idte_one(r1o | _ASCE_TYPE_REGION1, raddr);
1512 r2t = (unsigned long *)(*r1e & _REGION_ENTRY_ORIGIN);
1513 *r1e = _REGION1_ENTRY_EMPTY;
1514 __gmap_unshadow_r2t(sg, raddr, r2t);
1515 /* Free region 2 table */
1516 page = pfn_to_page(__pa(r2t) >> PAGE_SHIFT);
1517 list_del(&page->lru);
1518 __free_pages(page, CRST_ALLOC_ORDER);
1519 }
1520
1521 /**
1522 * __gmap_unshadow_r1t - remove all entries from a shadow region-1 table
1523 * @sg: pointer to the shadow guest address space structure
1524 * @raddr: rmap address in the shadow guest address space
1525 * @r1t: pointer to the start of a shadow region-1 table
1526 *
1527 * Called with the shadow->guest_table_lock
1528 */
__gmap_unshadow_r1t(struct gmap * sg,unsigned long raddr,unsigned long * r1t)1529 static void __gmap_unshadow_r1t(struct gmap *sg, unsigned long raddr,
1530 unsigned long *r1t)
1531 {
1532 unsigned long asce, *r2t;
1533 struct page *page;
1534 int i;
1535
1536 BUG_ON(!gmap_is_shadow(sg));
1537 asce = (unsigned long) r1t | _ASCE_TYPE_REGION1;
1538 for (i = 0; i < _CRST_ENTRIES; i++, raddr += _REGION1_SIZE) {
1539 if (!(r1t[i] & _REGION_ENTRY_ORIGIN))
1540 continue;
1541 r2t = (unsigned long *)(r1t[i] & _REGION_ENTRY_ORIGIN);
1542 __gmap_unshadow_r2t(sg, raddr, r2t);
1543 /* Clear entry and flush translation r1t -> r2t */
1544 gmap_idte_one(asce, raddr);
1545 r1t[i] = _REGION1_ENTRY_EMPTY;
1546 /* Free region 2 table */
1547 page = pfn_to_page(__pa(r2t) >> PAGE_SHIFT);
1548 list_del(&page->lru);
1549 __free_pages(page, CRST_ALLOC_ORDER);
1550 }
1551 }
1552
1553 /**
1554 * gmap_unshadow - remove a shadow page table completely
1555 * @sg: pointer to the shadow guest address space structure
1556 *
1557 * Called with sg->guest_table_lock
1558 */
gmap_unshadow(struct gmap * sg)1559 static void gmap_unshadow(struct gmap *sg)
1560 {
1561 unsigned long *table;
1562
1563 BUG_ON(!gmap_is_shadow(sg));
1564 if (sg->removed)
1565 return;
1566 sg->removed = 1;
1567 gmap_call_notifier(sg, 0, -1UL);
1568 gmap_flush_tlb(sg);
1569 table = (unsigned long *)(sg->asce & _ASCE_ORIGIN);
1570 switch (sg->asce & _ASCE_TYPE_MASK) {
1571 case _ASCE_TYPE_REGION1:
1572 __gmap_unshadow_r1t(sg, 0, table);
1573 break;
1574 case _ASCE_TYPE_REGION2:
1575 __gmap_unshadow_r2t(sg, 0, table);
1576 break;
1577 case _ASCE_TYPE_REGION3:
1578 __gmap_unshadow_r3t(sg, 0, table);
1579 break;
1580 case _ASCE_TYPE_SEGMENT:
1581 __gmap_unshadow_sgt(sg, 0, table);
1582 break;
1583 }
1584 }
1585
1586 /**
1587 * gmap_find_shadow - find a specific asce in the list of shadow tables
1588 * @parent: pointer to the parent gmap
1589 * @asce: ASCE for which the shadow table is created
1590 * @edat_level: edat level to be used for the shadow translation
1591 *
1592 * Returns the pointer to a gmap if a shadow table with the given asce is
1593 * already available, ERR_PTR(-EAGAIN) if another one is just being created,
1594 * otherwise NULL
1595 */
gmap_find_shadow(struct gmap * parent,unsigned long asce,int edat_level)1596 static struct gmap *gmap_find_shadow(struct gmap *parent, unsigned long asce,
1597 int edat_level)
1598 {
1599 struct gmap *sg;
1600
1601 list_for_each_entry(sg, &parent->children, list) {
1602 if (sg->orig_asce != asce || sg->edat_level != edat_level ||
1603 sg->removed)
1604 continue;
1605 if (!sg->initialized)
1606 return ERR_PTR(-EAGAIN);
1607 refcount_inc(&sg->ref_count);
1608 return sg;
1609 }
1610 return NULL;
1611 }
1612
1613 /**
1614 * gmap_shadow_valid - check if a shadow guest address space matches the
1615 * given properties and is still valid
1616 * @sg: pointer to the shadow guest address space structure
1617 * @asce: ASCE for which the shadow table is requested
1618 * @edat_level: edat level to be used for the shadow translation
1619 *
1620 * Returns 1 if the gmap shadow is still valid and matches the given
1621 * properties, the caller can continue using it. Returns 0 otherwise, the
1622 * caller has to request a new shadow gmap in this case.
1623 *
1624 */
gmap_shadow_valid(struct gmap * sg,unsigned long asce,int edat_level)1625 int gmap_shadow_valid(struct gmap *sg, unsigned long asce, int edat_level)
1626 {
1627 if (sg->removed)
1628 return 0;
1629 return sg->orig_asce == asce && sg->edat_level == edat_level;
1630 }
1631 EXPORT_SYMBOL_GPL(gmap_shadow_valid);
1632
1633 /**
1634 * gmap_shadow - create/find a shadow guest address space
1635 * @parent: pointer to the parent gmap
1636 * @asce: ASCE for which the shadow table is created
1637 * @edat_level: edat level to be used for the shadow translation
1638 *
1639 * The pages of the top level page table referred by the asce parameter
1640 * will be set to read-only and marked in the PGSTEs of the kvm process.
1641 * The shadow table will be removed automatically on any change to the
1642 * PTE mapping for the source table.
1643 *
1644 * Returns a guest address space structure, ERR_PTR(-ENOMEM) if out of memory,
1645 * ERR_PTR(-EAGAIN) if the caller has to retry and ERR_PTR(-EFAULT) if the
1646 * parent gmap table could not be protected.
1647 */
gmap_shadow(struct gmap * parent,unsigned long asce,int edat_level)1648 struct gmap *gmap_shadow(struct gmap *parent, unsigned long asce,
1649 int edat_level)
1650 {
1651 struct gmap *sg, *new;
1652 unsigned long limit;
1653 int rc;
1654
1655 BUG_ON(parent->mm->context.allow_gmap_hpage_1m);
1656 BUG_ON(gmap_is_shadow(parent));
1657 spin_lock(&parent->shadow_lock);
1658 sg = gmap_find_shadow(parent, asce, edat_level);
1659 spin_unlock(&parent->shadow_lock);
1660 if (sg)
1661 return sg;
1662 /* Create a new shadow gmap */
1663 limit = -1UL >> (33 - (((asce & _ASCE_TYPE_MASK) >> 2) * 11));
1664 if (asce & _ASCE_REAL_SPACE)
1665 limit = -1UL;
1666 new = gmap_alloc(limit);
1667 if (!new)
1668 return ERR_PTR(-ENOMEM);
1669 new->mm = parent->mm;
1670 new->parent = gmap_get(parent);
1671 new->orig_asce = asce;
1672 new->edat_level = edat_level;
1673 new->initialized = false;
1674 spin_lock(&parent->shadow_lock);
1675 /* Recheck if another CPU created the same shadow */
1676 sg = gmap_find_shadow(parent, asce, edat_level);
1677 if (sg) {
1678 spin_unlock(&parent->shadow_lock);
1679 gmap_free(new);
1680 return sg;
1681 }
1682 if (asce & _ASCE_REAL_SPACE) {
1683 /* only allow one real-space gmap shadow */
1684 list_for_each_entry(sg, &parent->children, list) {
1685 if (sg->orig_asce & _ASCE_REAL_SPACE) {
1686 spin_lock(&sg->guest_table_lock);
1687 gmap_unshadow(sg);
1688 spin_unlock(&sg->guest_table_lock);
1689 list_del(&sg->list);
1690 gmap_put(sg);
1691 break;
1692 }
1693 }
1694 }
1695 refcount_set(&new->ref_count, 2);
1696 list_add(&new->list, &parent->children);
1697 if (asce & _ASCE_REAL_SPACE) {
1698 /* nothing to protect, return right away */
1699 new->initialized = true;
1700 spin_unlock(&parent->shadow_lock);
1701 return new;
1702 }
1703 spin_unlock(&parent->shadow_lock);
1704 /* protect after insertion, so it will get properly invalidated */
1705 mmap_read_lock(parent->mm);
1706 rc = gmap_protect_range(parent, asce & _ASCE_ORIGIN,
1707 ((asce & _ASCE_TABLE_LENGTH) + 1) * PAGE_SIZE,
1708 PROT_READ, GMAP_NOTIFY_SHADOW);
1709 mmap_read_unlock(parent->mm);
1710 spin_lock(&parent->shadow_lock);
1711 new->initialized = true;
1712 if (rc) {
1713 list_del(&new->list);
1714 gmap_free(new);
1715 new = ERR_PTR(rc);
1716 }
1717 spin_unlock(&parent->shadow_lock);
1718 return new;
1719 }
1720 EXPORT_SYMBOL_GPL(gmap_shadow);
1721
1722 /**
1723 * gmap_shadow_r2t - create an empty shadow region 2 table
1724 * @sg: pointer to the shadow guest address space structure
1725 * @saddr: faulting address in the shadow gmap
1726 * @r2t: parent gmap address of the region 2 table to get shadowed
1727 * @fake: r2t references contiguous guest memory block, not a r2t
1728 *
1729 * The r2t parameter specifies the address of the source table. The
1730 * four pages of the source table are made read-only in the parent gmap
1731 * address space. A write to the source table area @r2t will automatically
1732 * remove the shadow r2 table and all of its decendents.
1733 *
1734 * Returns 0 if successfully shadowed or already shadowed, -EAGAIN if the
1735 * shadow table structure is incomplete, -ENOMEM if out of memory and
1736 * -EFAULT if an address in the parent gmap could not be resolved.
1737 *
1738 * Called with sg->mm->mmap_lock in read.
1739 */
gmap_shadow_r2t(struct gmap * sg,unsigned long saddr,unsigned long r2t,int fake)1740 int gmap_shadow_r2t(struct gmap *sg, unsigned long saddr, unsigned long r2t,
1741 int fake)
1742 {
1743 unsigned long raddr, origin, offset, len;
1744 unsigned long *s_r2t, *table;
1745 struct page *page;
1746 int rc;
1747
1748 BUG_ON(!gmap_is_shadow(sg));
1749 /* Allocate a shadow region second table */
1750 page = alloc_pages(GFP_KERNEL_ACCOUNT, CRST_ALLOC_ORDER);
1751 if (!page)
1752 return -ENOMEM;
1753 page->index = r2t & _REGION_ENTRY_ORIGIN;
1754 if (fake)
1755 page->index |= GMAP_SHADOW_FAKE_TABLE;
1756 s_r2t = (unsigned long *) page_to_phys(page);
1757 /* Install shadow region second table */
1758 spin_lock(&sg->guest_table_lock);
1759 table = gmap_table_walk(sg, saddr, 4); /* get region-1 pointer */
1760 if (!table) {
1761 rc = -EAGAIN; /* Race with unshadow */
1762 goto out_free;
1763 }
1764 if (!(*table & _REGION_ENTRY_INVALID)) {
1765 rc = 0; /* Already established */
1766 goto out_free;
1767 } else if (*table & _REGION_ENTRY_ORIGIN) {
1768 rc = -EAGAIN; /* Race with shadow */
1769 goto out_free;
1770 }
1771 crst_table_init(s_r2t, _REGION2_ENTRY_EMPTY);
1772 /* mark as invalid as long as the parent table is not protected */
1773 *table = (unsigned long) s_r2t | _REGION_ENTRY_LENGTH |
1774 _REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_INVALID;
1775 if (sg->edat_level >= 1)
1776 *table |= (r2t & _REGION_ENTRY_PROTECT);
1777 list_add(&page->lru, &sg->crst_list);
1778 if (fake) {
1779 /* nothing to protect for fake tables */
1780 *table &= ~_REGION_ENTRY_INVALID;
1781 spin_unlock(&sg->guest_table_lock);
1782 return 0;
1783 }
1784 spin_unlock(&sg->guest_table_lock);
1785 /* Make r2t read-only in parent gmap page table */
1786 raddr = (saddr & _REGION1_MASK) | _SHADOW_RMAP_REGION1;
1787 origin = r2t & _REGION_ENTRY_ORIGIN;
1788 offset = ((r2t & _REGION_ENTRY_OFFSET) >> 6) * PAGE_SIZE;
1789 len = ((r2t & _REGION_ENTRY_LENGTH) + 1) * PAGE_SIZE - offset;
1790 rc = gmap_protect_rmap(sg, raddr, origin + offset, len);
1791 spin_lock(&sg->guest_table_lock);
1792 if (!rc) {
1793 table = gmap_table_walk(sg, saddr, 4);
1794 if (!table || (*table & _REGION_ENTRY_ORIGIN) !=
1795 (unsigned long) s_r2t)
1796 rc = -EAGAIN; /* Race with unshadow */
1797 else
1798 *table &= ~_REGION_ENTRY_INVALID;
1799 } else {
1800 gmap_unshadow_r2t(sg, raddr);
1801 }
1802 spin_unlock(&sg->guest_table_lock);
1803 return rc;
1804 out_free:
1805 spin_unlock(&sg->guest_table_lock);
1806 __free_pages(page, CRST_ALLOC_ORDER);
1807 return rc;
1808 }
1809 EXPORT_SYMBOL_GPL(gmap_shadow_r2t);
1810
1811 /**
1812 * gmap_shadow_r3t - create a shadow region 3 table
1813 * @sg: pointer to the shadow guest address space structure
1814 * @saddr: faulting address in the shadow gmap
1815 * @r3t: parent gmap address of the region 3 table to get shadowed
1816 * @fake: r3t references contiguous guest memory block, not a r3t
1817 *
1818 * Returns 0 if successfully shadowed or already shadowed, -EAGAIN if the
1819 * shadow table structure is incomplete, -ENOMEM if out of memory and
1820 * -EFAULT if an address in the parent gmap could not be resolved.
1821 *
1822 * Called with sg->mm->mmap_lock in read.
1823 */
gmap_shadow_r3t(struct gmap * sg,unsigned long saddr,unsigned long r3t,int fake)1824 int gmap_shadow_r3t(struct gmap *sg, unsigned long saddr, unsigned long r3t,
1825 int fake)
1826 {
1827 unsigned long raddr, origin, offset, len;
1828 unsigned long *s_r3t, *table;
1829 struct page *page;
1830 int rc;
1831
1832 BUG_ON(!gmap_is_shadow(sg));
1833 /* Allocate a shadow region second table */
1834 page = alloc_pages(GFP_KERNEL_ACCOUNT, CRST_ALLOC_ORDER);
1835 if (!page)
1836 return -ENOMEM;
1837 page->index = r3t & _REGION_ENTRY_ORIGIN;
1838 if (fake)
1839 page->index |= GMAP_SHADOW_FAKE_TABLE;
1840 s_r3t = (unsigned long *) page_to_phys(page);
1841 /* Install shadow region second table */
1842 spin_lock(&sg->guest_table_lock);
1843 table = gmap_table_walk(sg, saddr, 3); /* get region-2 pointer */
1844 if (!table) {
1845 rc = -EAGAIN; /* Race with unshadow */
1846 goto out_free;
1847 }
1848 if (!(*table & _REGION_ENTRY_INVALID)) {
1849 rc = 0; /* Already established */
1850 goto out_free;
1851 } else if (*table & _REGION_ENTRY_ORIGIN) {
1852 rc = -EAGAIN; /* Race with shadow */
1853 goto out_free;
1854 }
1855 crst_table_init(s_r3t, _REGION3_ENTRY_EMPTY);
1856 /* mark as invalid as long as the parent table is not protected */
1857 *table = (unsigned long) s_r3t | _REGION_ENTRY_LENGTH |
1858 _REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_INVALID;
1859 if (sg->edat_level >= 1)
1860 *table |= (r3t & _REGION_ENTRY_PROTECT);
1861 list_add(&page->lru, &sg->crst_list);
1862 if (fake) {
1863 /* nothing to protect for fake tables */
1864 *table &= ~_REGION_ENTRY_INVALID;
1865 spin_unlock(&sg->guest_table_lock);
1866 return 0;
1867 }
1868 spin_unlock(&sg->guest_table_lock);
1869 /* Make r3t read-only in parent gmap page table */
1870 raddr = (saddr & _REGION2_MASK) | _SHADOW_RMAP_REGION2;
1871 origin = r3t & _REGION_ENTRY_ORIGIN;
1872 offset = ((r3t & _REGION_ENTRY_OFFSET) >> 6) * PAGE_SIZE;
1873 len = ((r3t & _REGION_ENTRY_LENGTH) + 1) * PAGE_SIZE - offset;
1874 rc = gmap_protect_rmap(sg, raddr, origin + offset, len);
1875 spin_lock(&sg->guest_table_lock);
1876 if (!rc) {
1877 table = gmap_table_walk(sg, saddr, 3);
1878 if (!table || (*table & _REGION_ENTRY_ORIGIN) !=
1879 (unsigned long) s_r3t)
1880 rc = -EAGAIN; /* Race with unshadow */
1881 else
1882 *table &= ~_REGION_ENTRY_INVALID;
1883 } else {
1884 gmap_unshadow_r3t(sg, raddr);
1885 }
1886 spin_unlock(&sg->guest_table_lock);
1887 return rc;
1888 out_free:
1889 spin_unlock(&sg->guest_table_lock);
1890 __free_pages(page, CRST_ALLOC_ORDER);
1891 return rc;
1892 }
1893 EXPORT_SYMBOL_GPL(gmap_shadow_r3t);
1894
1895 /**
1896 * gmap_shadow_sgt - create a shadow segment table
1897 * @sg: pointer to the shadow guest address space structure
1898 * @saddr: faulting address in the shadow gmap
1899 * @sgt: parent gmap address of the segment table to get shadowed
1900 * @fake: sgt references contiguous guest memory block, not a sgt
1901 *
1902 * Returns: 0 if successfully shadowed or already shadowed, -EAGAIN if the
1903 * shadow table structure is incomplete, -ENOMEM if out of memory and
1904 * -EFAULT if an address in the parent gmap could not be resolved.
1905 *
1906 * Called with sg->mm->mmap_lock in read.
1907 */
gmap_shadow_sgt(struct gmap * sg,unsigned long saddr,unsigned long sgt,int fake)1908 int gmap_shadow_sgt(struct gmap *sg, unsigned long saddr, unsigned long sgt,
1909 int fake)
1910 {
1911 unsigned long raddr, origin, offset, len;
1912 unsigned long *s_sgt, *table;
1913 struct page *page;
1914 int rc;
1915
1916 BUG_ON(!gmap_is_shadow(sg) || (sgt & _REGION3_ENTRY_LARGE));
1917 /* Allocate a shadow segment table */
1918 page = alloc_pages(GFP_KERNEL_ACCOUNT, CRST_ALLOC_ORDER);
1919 if (!page)
1920 return -ENOMEM;
1921 page->index = sgt & _REGION_ENTRY_ORIGIN;
1922 if (fake)
1923 page->index |= GMAP_SHADOW_FAKE_TABLE;
1924 s_sgt = (unsigned long *) page_to_phys(page);
1925 /* Install shadow region second table */
1926 spin_lock(&sg->guest_table_lock);
1927 table = gmap_table_walk(sg, saddr, 2); /* get region-3 pointer */
1928 if (!table) {
1929 rc = -EAGAIN; /* Race with unshadow */
1930 goto out_free;
1931 }
1932 if (!(*table & _REGION_ENTRY_INVALID)) {
1933 rc = 0; /* Already established */
1934 goto out_free;
1935 } else if (*table & _REGION_ENTRY_ORIGIN) {
1936 rc = -EAGAIN; /* Race with shadow */
1937 goto out_free;
1938 }
1939 crst_table_init(s_sgt, _SEGMENT_ENTRY_EMPTY);
1940 /* mark as invalid as long as the parent table is not protected */
1941 *table = (unsigned long) s_sgt | _REGION_ENTRY_LENGTH |
1942 _REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_INVALID;
1943 if (sg->edat_level >= 1)
1944 *table |= sgt & _REGION_ENTRY_PROTECT;
1945 list_add(&page->lru, &sg->crst_list);
1946 if (fake) {
1947 /* nothing to protect for fake tables */
1948 *table &= ~_REGION_ENTRY_INVALID;
1949 spin_unlock(&sg->guest_table_lock);
1950 return 0;
1951 }
1952 spin_unlock(&sg->guest_table_lock);
1953 /* Make sgt read-only in parent gmap page table */
1954 raddr = (saddr & _REGION3_MASK) | _SHADOW_RMAP_REGION3;
1955 origin = sgt & _REGION_ENTRY_ORIGIN;
1956 offset = ((sgt & _REGION_ENTRY_OFFSET) >> 6) * PAGE_SIZE;
1957 len = ((sgt & _REGION_ENTRY_LENGTH) + 1) * PAGE_SIZE - offset;
1958 rc = gmap_protect_rmap(sg, raddr, origin + offset, len);
1959 spin_lock(&sg->guest_table_lock);
1960 if (!rc) {
1961 table = gmap_table_walk(sg, saddr, 2);
1962 if (!table || (*table & _REGION_ENTRY_ORIGIN) !=
1963 (unsigned long) s_sgt)
1964 rc = -EAGAIN; /* Race with unshadow */
1965 else
1966 *table &= ~_REGION_ENTRY_INVALID;
1967 } else {
1968 gmap_unshadow_sgt(sg, raddr);
1969 }
1970 spin_unlock(&sg->guest_table_lock);
1971 return rc;
1972 out_free:
1973 spin_unlock(&sg->guest_table_lock);
1974 __free_pages(page, CRST_ALLOC_ORDER);
1975 return rc;
1976 }
1977 EXPORT_SYMBOL_GPL(gmap_shadow_sgt);
1978
1979 /**
1980 * gmap_shadow_pgt_lookup - find a shadow page table
1981 * @sg: pointer to the shadow guest address space structure
1982 * @saddr: the address in the shadow aguest address space
1983 * @pgt: parent gmap address of the page table to get shadowed
1984 * @dat_protection: if the pgtable is marked as protected by dat
1985 * @fake: pgt references contiguous guest memory block, not a pgtable
1986 *
1987 * Returns 0 if the shadow page table was found and -EAGAIN if the page
1988 * table was not found.
1989 *
1990 * Called with sg->mm->mmap_lock in read.
1991 */
gmap_shadow_pgt_lookup(struct gmap * sg,unsigned long saddr,unsigned long * pgt,int * dat_protection,int * fake)1992 int gmap_shadow_pgt_lookup(struct gmap *sg, unsigned long saddr,
1993 unsigned long *pgt, int *dat_protection,
1994 int *fake)
1995 {
1996 unsigned long *table;
1997 struct page *page;
1998 int rc;
1999
2000 BUG_ON(!gmap_is_shadow(sg));
2001 spin_lock(&sg->guest_table_lock);
2002 table = gmap_table_walk(sg, saddr, 1); /* get segment pointer */
2003 if (table && !(*table & _SEGMENT_ENTRY_INVALID)) {
2004 /* Shadow page tables are full pages (pte+pgste) */
2005 page = pfn_to_page(*table >> PAGE_SHIFT);
2006 *pgt = page->index & ~GMAP_SHADOW_FAKE_TABLE;
2007 *dat_protection = !!(*table & _SEGMENT_ENTRY_PROTECT);
2008 *fake = !!(page->index & GMAP_SHADOW_FAKE_TABLE);
2009 rc = 0;
2010 } else {
2011 rc = -EAGAIN;
2012 }
2013 spin_unlock(&sg->guest_table_lock);
2014 return rc;
2015
2016 }
2017 EXPORT_SYMBOL_GPL(gmap_shadow_pgt_lookup);
2018
2019 /**
2020 * gmap_shadow_pgt - instantiate a shadow page table
2021 * @sg: pointer to the shadow guest address space structure
2022 * @saddr: faulting address in the shadow gmap
2023 * @pgt: parent gmap address of the page table to get shadowed
2024 * @fake: pgt references contiguous guest memory block, not a pgtable
2025 *
2026 * Returns 0 if successfully shadowed or already shadowed, -EAGAIN if the
2027 * shadow table structure is incomplete, -ENOMEM if out of memory,
2028 * -EFAULT if an address in the parent gmap could not be resolved and
2029 *
2030 * Called with gmap->mm->mmap_lock in read
2031 */
gmap_shadow_pgt(struct gmap * sg,unsigned long saddr,unsigned long pgt,int fake)2032 int gmap_shadow_pgt(struct gmap *sg, unsigned long saddr, unsigned long pgt,
2033 int fake)
2034 {
2035 unsigned long raddr, origin;
2036 unsigned long *s_pgt, *table;
2037 struct page *page;
2038 int rc;
2039
2040 BUG_ON(!gmap_is_shadow(sg) || (pgt & _SEGMENT_ENTRY_LARGE));
2041 /* Allocate a shadow page table */
2042 page = page_table_alloc_pgste(sg->mm);
2043 if (!page)
2044 return -ENOMEM;
2045 page->index = pgt & _SEGMENT_ENTRY_ORIGIN;
2046 if (fake)
2047 page->index |= GMAP_SHADOW_FAKE_TABLE;
2048 s_pgt = (unsigned long *) page_to_phys(page);
2049 /* Install shadow page table */
2050 spin_lock(&sg->guest_table_lock);
2051 table = gmap_table_walk(sg, saddr, 1); /* get segment pointer */
2052 if (!table) {
2053 rc = -EAGAIN; /* Race with unshadow */
2054 goto out_free;
2055 }
2056 if (!(*table & _SEGMENT_ENTRY_INVALID)) {
2057 rc = 0; /* Already established */
2058 goto out_free;
2059 } else if (*table & _SEGMENT_ENTRY_ORIGIN) {
2060 rc = -EAGAIN; /* Race with shadow */
2061 goto out_free;
2062 }
2063 /* mark as invalid as long as the parent table is not protected */
2064 *table = (unsigned long) s_pgt | _SEGMENT_ENTRY |
2065 (pgt & _SEGMENT_ENTRY_PROTECT) | _SEGMENT_ENTRY_INVALID;
2066 list_add(&page->lru, &sg->pt_list);
2067 if (fake) {
2068 /* nothing to protect for fake tables */
2069 *table &= ~_SEGMENT_ENTRY_INVALID;
2070 spin_unlock(&sg->guest_table_lock);
2071 return 0;
2072 }
2073 spin_unlock(&sg->guest_table_lock);
2074 /* Make pgt read-only in parent gmap page table (not the pgste) */
2075 raddr = (saddr & _SEGMENT_MASK) | _SHADOW_RMAP_SEGMENT;
2076 origin = pgt & _SEGMENT_ENTRY_ORIGIN & PAGE_MASK;
2077 rc = gmap_protect_rmap(sg, raddr, origin, PAGE_SIZE);
2078 spin_lock(&sg->guest_table_lock);
2079 if (!rc) {
2080 table = gmap_table_walk(sg, saddr, 1);
2081 if (!table || (*table & _SEGMENT_ENTRY_ORIGIN) !=
2082 (unsigned long) s_pgt)
2083 rc = -EAGAIN; /* Race with unshadow */
2084 else
2085 *table &= ~_SEGMENT_ENTRY_INVALID;
2086 } else {
2087 gmap_unshadow_pgt(sg, raddr);
2088 }
2089 spin_unlock(&sg->guest_table_lock);
2090 return rc;
2091 out_free:
2092 spin_unlock(&sg->guest_table_lock);
2093 page_table_free_pgste(page);
2094 return rc;
2095
2096 }
2097 EXPORT_SYMBOL_GPL(gmap_shadow_pgt);
2098
2099 /**
2100 * gmap_shadow_page - create a shadow page mapping
2101 * @sg: pointer to the shadow guest address space structure
2102 * @saddr: faulting address in the shadow gmap
2103 * @pte: pte in parent gmap address space to get shadowed
2104 *
2105 * Returns 0 if successfully shadowed or already shadowed, -EAGAIN if the
2106 * shadow table structure is incomplete, -ENOMEM if out of memory and
2107 * -EFAULT if an address in the parent gmap could not be resolved.
2108 *
2109 * Called with sg->mm->mmap_lock in read.
2110 */
gmap_shadow_page(struct gmap * sg,unsigned long saddr,pte_t pte)2111 int gmap_shadow_page(struct gmap *sg, unsigned long saddr, pte_t pte)
2112 {
2113 struct gmap *parent;
2114 struct gmap_rmap *rmap;
2115 unsigned long vmaddr, paddr;
2116 spinlock_t *ptl;
2117 pte_t *sptep, *tptep;
2118 int prot;
2119 int rc;
2120
2121 BUG_ON(!gmap_is_shadow(sg));
2122 parent = sg->parent;
2123 prot = (pte_val(pte) & _PAGE_PROTECT) ? PROT_READ : PROT_WRITE;
2124
2125 rmap = kzalloc(sizeof(*rmap), GFP_KERNEL_ACCOUNT);
2126 if (!rmap)
2127 return -ENOMEM;
2128 rmap->raddr = (saddr & PAGE_MASK) | _SHADOW_RMAP_PGTABLE;
2129
2130 while (1) {
2131 paddr = pte_val(pte) & PAGE_MASK;
2132 vmaddr = __gmap_translate(parent, paddr);
2133 if (IS_ERR_VALUE(vmaddr)) {
2134 rc = vmaddr;
2135 break;
2136 }
2137 rc = radix_tree_preload(GFP_KERNEL_ACCOUNT);
2138 if (rc)
2139 break;
2140 rc = -EAGAIN;
2141 sptep = gmap_pte_op_walk(parent, paddr, &ptl);
2142 if (sptep) {
2143 spin_lock(&sg->guest_table_lock);
2144 /* Get page table pointer */
2145 tptep = (pte_t *) gmap_table_walk(sg, saddr, 0);
2146 if (!tptep) {
2147 spin_unlock(&sg->guest_table_lock);
2148 gmap_pte_op_end(ptl);
2149 radix_tree_preload_end();
2150 break;
2151 }
2152 rc = ptep_shadow_pte(sg->mm, saddr, sptep, tptep, pte);
2153 if (rc > 0) {
2154 /* Success and a new mapping */
2155 gmap_insert_rmap(sg, vmaddr, rmap);
2156 rmap = NULL;
2157 rc = 0;
2158 }
2159 gmap_pte_op_end(ptl);
2160 spin_unlock(&sg->guest_table_lock);
2161 }
2162 radix_tree_preload_end();
2163 if (!rc)
2164 break;
2165 rc = gmap_pte_op_fixup(parent, paddr, vmaddr, prot);
2166 if (rc)
2167 break;
2168 }
2169 kfree(rmap);
2170 return rc;
2171 }
2172 EXPORT_SYMBOL_GPL(gmap_shadow_page);
2173
2174 /*
2175 * gmap_shadow_notify - handle notifications for shadow gmap
2176 *
2177 * Called with sg->parent->shadow_lock.
2178 */
gmap_shadow_notify(struct gmap * sg,unsigned long vmaddr,unsigned long gaddr)2179 static void gmap_shadow_notify(struct gmap *sg, unsigned long vmaddr,
2180 unsigned long gaddr)
2181 {
2182 struct gmap_rmap *rmap, *rnext, *head;
2183 unsigned long start, end, bits, raddr;
2184
2185 BUG_ON(!gmap_is_shadow(sg));
2186
2187 spin_lock(&sg->guest_table_lock);
2188 if (sg->removed) {
2189 spin_unlock(&sg->guest_table_lock);
2190 return;
2191 }
2192 /* Check for top level table */
2193 start = sg->orig_asce & _ASCE_ORIGIN;
2194 end = start + ((sg->orig_asce & _ASCE_TABLE_LENGTH) + 1) * PAGE_SIZE;
2195 if (!(sg->orig_asce & _ASCE_REAL_SPACE) && gaddr >= start &&
2196 gaddr < end) {
2197 /* The complete shadow table has to go */
2198 gmap_unshadow(sg);
2199 spin_unlock(&sg->guest_table_lock);
2200 list_del(&sg->list);
2201 gmap_put(sg);
2202 return;
2203 }
2204 /* Remove the page table tree from on specific entry */
2205 head = radix_tree_delete(&sg->host_to_rmap, vmaddr >> PAGE_SHIFT);
2206 gmap_for_each_rmap_safe(rmap, rnext, head) {
2207 bits = rmap->raddr & _SHADOW_RMAP_MASK;
2208 raddr = rmap->raddr ^ bits;
2209 switch (bits) {
2210 case _SHADOW_RMAP_REGION1:
2211 gmap_unshadow_r2t(sg, raddr);
2212 break;
2213 case _SHADOW_RMAP_REGION2:
2214 gmap_unshadow_r3t(sg, raddr);
2215 break;
2216 case _SHADOW_RMAP_REGION3:
2217 gmap_unshadow_sgt(sg, raddr);
2218 break;
2219 case _SHADOW_RMAP_SEGMENT:
2220 gmap_unshadow_pgt(sg, raddr);
2221 break;
2222 case _SHADOW_RMAP_PGTABLE:
2223 gmap_unshadow_page(sg, raddr);
2224 break;
2225 }
2226 kfree(rmap);
2227 }
2228 spin_unlock(&sg->guest_table_lock);
2229 }
2230
2231 /**
2232 * ptep_notify - call all invalidation callbacks for a specific pte.
2233 * @mm: pointer to the process mm_struct
2234 * @vmaddr: virtual address in the process address space
2235 * @pte: pointer to the page table entry
2236 * @bits: bits from the pgste that caused the notify call
2237 *
2238 * This function is assumed to be called with the page table lock held
2239 * for the pte to notify.
2240 */
ptep_notify(struct mm_struct * mm,unsigned long vmaddr,pte_t * pte,unsigned long bits)2241 void ptep_notify(struct mm_struct *mm, unsigned long vmaddr,
2242 pte_t *pte, unsigned long bits)
2243 {
2244 unsigned long offset, gaddr = 0;
2245 unsigned long *table;
2246 struct gmap *gmap, *sg, *next;
2247
2248 offset = ((unsigned long) pte) & (255 * sizeof(pte_t));
2249 offset = offset * (PAGE_SIZE / sizeof(pte_t));
2250 rcu_read_lock();
2251 list_for_each_entry_rcu(gmap, &mm->context.gmap_list, list) {
2252 spin_lock(&gmap->guest_table_lock);
2253 table = radix_tree_lookup(&gmap->host_to_guest,
2254 vmaddr >> PMD_SHIFT);
2255 if (table)
2256 gaddr = __gmap_segment_gaddr(table) + offset;
2257 spin_unlock(&gmap->guest_table_lock);
2258 if (!table)
2259 continue;
2260
2261 if (!list_empty(&gmap->children) && (bits & PGSTE_VSIE_BIT)) {
2262 spin_lock(&gmap->shadow_lock);
2263 list_for_each_entry_safe(sg, next,
2264 &gmap->children, list)
2265 gmap_shadow_notify(sg, vmaddr, gaddr);
2266 spin_unlock(&gmap->shadow_lock);
2267 }
2268 if (bits & PGSTE_IN_BIT)
2269 gmap_call_notifier(gmap, gaddr, gaddr + PAGE_SIZE - 1);
2270 }
2271 rcu_read_unlock();
2272 }
2273 EXPORT_SYMBOL_GPL(ptep_notify);
2274
pmdp_notify_gmap(struct gmap * gmap,pmd_t * pmdp,unsigned long gaddr)2275 static void pmdp_notify_gmap(struct gmap *gmap, pmd_t *pmdp,
2276 unsigned long gaddr)
2277 {
2278 pmd_val(*pmdp) &= ~_SEGMENT_ENTRY_GMAP_IN;
2279 gmap_call_notifier(gmap, gaddr, gaddr + HPAGE_SIZE - 1);
2280 }
2281
2282 /**
2283 * gmap_pmdp_xchg - exchange a gmap pmd with another
2284 * @gmap: pointer to the guest address space structure
2285 * @pmdp: pointer to the pmd entry
2286 * @new: replacement entry
2287 * @gaddr: the affected guest address
2288 *
2289 * This function is assumed to be called with the guest_table_lock
2290 * held.
2291 */
gmap_pmdp_xchg(struct gmap * gmap,pmd_t * pmdp,pmd_t new,unsigned long gaddr)2292 static void gmap_pmdp_xchg(struct gmap *gmap, pmd_t *pmdp, pmd_t new,
2293 unsigned long gaddr)
2294 {
2295 gaddr &= HPAGE_MASK;
2296 pmdp_notify_gmap(gmap, pmdp, gaddr);
2297 pmd_val(new) &= ~_SEGMENT_ENTRY_GMAP_IN;
2298 if (MACHINE_HAS_TLB_GUEST)
2299 __pmdp_idte(gaddr, (pmd_t *)pmdp, IDTE_GUEST_ASCE, gmap->asce,
2300 IDTE_GLOBAL);
2301 else if (MACHINE_HAS_IDTE)
2302 __pmdp_idte(gaddr, (pmd_t *)pmdp, 0, 0, IDTE_GLOBAL);
2303 else
2304 __pmdp_csp(pmdp);
2305 *pmdp = new;
2306 }
2307
gmap_pmdp_clear(struct mm_struct * mm,unsigned long vmaddr,int purge)2308 static void gmap_pmdp_clear(struct mm_struct *mm, unsigned long vmaddr,
2309 int purge)
2310 {
2311 pmd_t *pmdp;
2312 struct gmap *gmap;
2313 unsigned long gaddr;
2314
2315 rcu_read_lock();
2316 list_for_each_entry_rcu(gmap, &mm->context.gmap_list, list) {
2317 spin_lock(&gmap->guest_table_lock);
2318 pmdp = (pmd_t *)radix_tree_delete(&gmap->host_to_guest,
2319 vmaddr >> PMD_SHIFT);
2320 if (pmdp) {
2321 gaddr = __gmap_segment_gaddr((unsigned long *)pmdp);
2322 pmdp_notify_gmap(gmap, pmdp, gaddr);
2323 WARN_ON(pmd_val(*pmdp) & ~(_SEGMENT_ENTRY_HARDWARE_BITS_LARGE |
2324 _SEGMENT_ENTRY_GMAP_UC));
2325 if (purge)
2326 __pmdp_csp(pmdp);
2327 pmd_val(*pmdp) = _SEGMENT_ENTRY_EMPTY;
2328 }
2329 spin_unlock(&gmap->guest_table_lock);
2330 }
2331 rcu_read_unlock();
2332 }
2333
2334 /**
2335 * gmap_pmdp_invalidate - invalidate all affected guest pmd entries without
2336 * flushing
2337 * @mm: pointer to the process mm_struct
2338 * @vmaddr: virtual address in the process address space
2339 */
gmap_pmdp_invalidate(struct mm_struct * mm,unsigned long vmaddr)2340 void gmap_pmdp_invalidate(struct mm_struct *mm, unsigned long vmaddr)
2341 {
2342 gmap_pmdp_clear(mm, vmaddr, 0);
2343 }
2344 EXPORT_SYMBOL_GPL(gmap_pmdp_invalidate);
2345
2346 /**
2347 * gmap_pmdp_csp - csp all affected guest pmd entries
2348 * @mm: pointer to the process mm_struct
2349 * @vmaddr: virtual address in the process address space
2350 */
gmap_pmdp_csp(struct mm_struct * mm,unsigned long vmaddr)2351 void gmap_pmdp_csp(struct mm_struct *mm, unsigned long vmaddr)
2352 {
2353 gmap_pmdp_clear(mm, vmaddr, 1);
2354 }
2355 EXPORT_SYMBOL_GPL(gmap_pmdp_csp);
2356
2357 /**
2358 * gmap_pmdp_idte_local - invalidate and clear a guest pmd entry
2359 * @mm: pointer to the process mm_struct
2360 * @vmaddr: virtual address in the process address space
2361 */
gmap_pmdp_idte_local(struct mm_struct * mm,unsigned long vmaddr)2362 void gmap_pmdp_idte_local(struct mm_struct *mm, unsigned long vmaddr)
2363 {
2364 unsigned long *entry, gaddr;
2365 struct gmap *gmap;
2366 pmd_t *pmdp;
2367
2368 rcu_read_lock();
2369 list_for_each_entry_rcu(gmap, &mm->context.gmap_list, list) {
2370 spin_lock(&gmap->guest_table_lock);
2371 entry = radix_tree_delete(&gmap->host_to_guest,
2372 vmaddr >> PMD_SHIFT);
2373 if (entry) {
2374 pmdp = (pmd_t *)entry;
2375 gaddr = __gmap_segment_gaddr(entry);
2376 pmdp_notify_gmap(gmap, pmdp, gaddr);
2377 WARN_ON(*entry & ~(_SEGMENT_ENTRY_HARDWARE_BITS_LARGE |
2378 _SEGMENT_ENTRY_GMAP_UC));
2379 if (MACHINE_HAS_TLB_GUEST)
2380 __pmdp_idte(gaddr, pmdp, IDTE_GUEST_ASCE,
2381 gmap->asce, IDTE_LOCAL);
2382 else if (MACHINE_HAS_IDTE)
2383 __pmdp_idte(gaddr, pmdp, 0, 0, IDTE_LOCAL);
2384 *entry = _SEGMENT_ENTRY_EMPTY;
2385 }
2386 spin_unlock(&gmap->guest_table_lock);
2387 }
2388 rcu_read_unlock();
2389 }
2390 EXPORT_SYMBOL_GPL(gmap_pmdp_idte_local);
2391
2392 /**
2393 * gmap_pmdp_idte_global - invalidate and clear a guest pmd entry
2394 * @mm: pointer to the process mm_struct
2395 * @vmaddr: virtual address in the process address space
2396 */
gmap_pmdp_idte_global(struct mm_struct * mm,unsigned long vmaddr)2397 void gmap_pmdp_idte_global(struct mm_struct *mm, unsigned long vmaddr)
2398 {
2399 unsigned long *entry, gaddr;
2400 struct gmap *gmap;
2401 pmd_t *pmdp;
2402
2403 rcu_read_lock();
2404 list_for_each_entry_rcu(gmap, &mm->context.gmap_list, list) {
2405 spin_lock(&gmap->guest_table_lock);
2406 entry = radix_tree_delete(&gmap->host_to_guest,
2407 vmaddr >> PMD_SHIFT);
2408 if (entry) {
2409 pmdp = (pmd_t *)entry;
2410 gaddr = __gmap_segment_gaddr(entry);
2411 pmdp_notify_gmap(gmap, pmdp, gaddr);
2412 WARN_ON(*entry & ~(_SEGMENT_ENTRY_HARDWARE_BITS_LARGE |
2413 _SEGMENT_ENTRY_GMAP_UC));
2414 if (MACHINE_HAS_TLB_GUEST)
2415 __pmdp_idte(gaddr, pmdp, IDTE_GUEST_ASCE,
2416 gmap->asce, IDTE_GLOBAL);
2417 else if (MACHINE_HAS_IDTE)
2418 __pmdp_idte(gaddr, pmdp, 0, 0, IDTE_GLOBAL);
2419 else
2420 __pmdp_csp(pmdp);
2421 *entry = _SEGMENT_ENTRY_EMPTY;
2422 }
2423 spin_unlock(&gmap->guest_table_lock);
2424 }
2425 rcu_read_unlock();
2426 }
2427 EXPORT_SYMBOL_GPL(gmap_pmdp_idte_global);
2428
2429 /**
2430 * gmap_test_and_clear_dirty_pmd - test and reset segment dirty status
2431 * @gmap: pointer to guest address space
2432 * @pmdp: pointer to the pmd to be tested
2433 * @gaddr: virtual address in the guest address space
2434 *
2435 * This function is assumed to be called with the guest_table_lock
2436 * held.
2437 */
gmap_test_and_clear_dirty_pmd(struct gmap * gmap,pmd_t * pmdp,unsigned long gaddr)2438 static bool gmap_test_and_clear_dirty_pmd(struct gmap *gmap, pmd_t *pmdp,
2439 unsigned long gaddr)
2440 {
2441 if (pmd_val(*pmdp) & _SEGMENT_ENTRY_INVALID)
2442 return false;
2443
2444 /* Already protected memory, which did not change is clean */
2445 if (pmd_val(*pmdp) & _SEGMENT_ENTRY_PROTECT &&
2446 !(pmd_val(*pmdp) & _SEGMENT_ENTRY_GMAP_UC))
2447 return false;
2448
2449 /* Clear UC indication and reset protection */
2450 pmd_val(*pmdp) &= ~_SEGMENT_ENTRY_GMAP_UC;
2451 gmap_protect_pmd(gmap, gaddr, pmdp, PROT_READ, 0);
2452 return true;
2453 }
2454
2455 /**
2456 * gmap_sync_dirty_log_pmd - set bitmap based on dirty status of segment
2457 * @gmap: pointer to guest address space
2458 * @bitmap: dirty bitmap for this pmd
2459 * @gaddr: virtual address in the guest address space
2460 * @vmaddr: virtual address in the host address space
2461 *
2462 * This function is assumed to be called with the guest_table_lock
2463 * held.
2464 */
gmap_sync_dirty_log_pmd(struct gmap * gmap,unsigned long bitmap[4],unsigned long gaddr,unsigned long vmaddr)2465 void gmap_sync_dirty_log_pmd(struct gmap *gmap, unsigned long bitmap[4],
2466 unsigned long gaddr, unsigned long vmaddr)
2467 {
2468 int i;
2469 pmd_t *pmdp;
2470 pte_t *ptep;
2471 spinlock_t *ptl;
2472
2473 pmdp = gmap_pmd_op_walk(gmap, gaddr);
2474 if (!pmdp)
2475 return;
2476
2477 if (pmd_large(*pmdp)) {
2478 if (gmap_test_and_clear_dirty_pmd(gmap, pmdp, gaddr))
2479 bitmap_fill(bitmap, _PAGE_ENTRIES);
2480 } else {
2481 for (i = 0; i < _PAGE_ENTRIES; i++, vmaddr += PAGE_SIZE) {
2482 ptep = pte_alloc_map_lock(gmap->mm, pmdp, vmaddr, &ptl);
2483 if (!ptep)
2484 continue;
2485 if (ptep_test_and_clear_uc(gmap->mm, vmaddr, ptep))
2486 set_bit(i, bitmap);
2487 spin_unlock(ptl);
2488 }
2489 }
2490 gmap_pmd_op_end(gmap, pmdp);
2491 }
2492 EXPORT_SYMBOL_GPL(gmap_sync_dirty_log_pmd);
2493
2494 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
thp_split_walk_pmd_entry(pmd_t * pmd,unsigned long addr,unsigned long end,struct mm_walk * walk)2495 static int thp_split_walk_pmd_entry(pmd_t *pmd, unsigned long addr,
2496 unsigned long end, struct mm_walk *walk)
2497 {
2498 struct vm_area_struct *vma = walk->vma;
2499
2500 split_huge_pmd(vma, pmd, addr);
2501 return 0;
2502 }
2503
2504 static const struct mm_walk_ops thp_split_walk_ops = {
2505 .pmd_entry = thp_split_walk_pmd_entry,
2506 };
2507
thp_split_mm(struct mm_struct * mm)2508 static inline void thp_split_mm(struct mm_struct *mm)
2509 {
2510 struct vm_area_struct *vma;
2511
2512 for (vma = mm->mmap; vma != NULL; vma = vma->vm_next) {
2513 vma->vm_flags &= ~VM_HUGEPAGE;
2514 vma->vm_flags |= VM_NOHUGEPAGE;
2515 walk_page_vma(vma, &thp_split_walk_ops, NULL);
2516 }
2517 mm->def_flags |= VM_NOHUGEPAGE;
2518 }
2519 #else
thp_split_mm(struct mm_struct * mm)2520 static inline void thp_split_mm(struct mm_struct *mm)
2521 {
2522 }
2523 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2524
2525 /*
2526 * Remove all empty zero pages from the mapping for lazy refaulting
2527 * - This must be called after mm->context.has_pgste is set, to avoid
2528 * future creation of zero pages
2529 * - This must be called after THP was enabled
2530 */
__zap_zero_pages(pmd_t * pmd,unsigned long start,unsigned long end,struct mm_walk * walk)2531 static int __zap_zero_pages(pmd_t *pmd, unsigned long start,
2532 unsigned long end, struct mm_walk *walk)
2533 {
2534 unsigned long addr;
2535
2536 for (addr = start; addr != end; addr += PAGE_SIZE) {
2537 pte_t *ptep;
2538 spinlock_t *ptl;
2539
2540 ptep = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
2541 if (is_zero_pfn(pte_pfn(*ptep)))
2542 ptep_xchg_direct(walk->mm, addr, ptep, __pte(_PAGE_INVALID));
2543 pte_unmap_unlock(ptep, ptl);
2544 }
2545 return 0;
2546 }
2547
2548 static const struct mm_walk_ops zap_zero_walk_ops = {
2549 .pmd_entry = __zap_zero_pages,
2550 };
2551
2552 /*
2553 * switch on pgstes for its userspace process (for kvm)
2554 */
s390_enable_sie(void)2555 int s390_enable_sie(void)
2556 {
2557 struct mm_struct *mm = current->mm;
2558
2559 /* Do we have pgstes? if yes, we are done */
2560 if (mm_has_pgste(mm))
2561 return 0;
2562 /* Fail if the page tables are 2K */
2563 if (!mm_alloc_pgste(mm))
2564 return -EINVAL;
2565 mmap_write_lock(mm);
2566 mm->context.has_pgste = 1;
2567 /* split thp mappings and disable thp for future mappings */
2568 thp_split_mm(mm);
2569 walk_page_range(mm, 0, TASK_SIZE, &zap_zero_walk_ops, NULL);
2570 mmap_write_unlock(mm);
2571 return 0;
2572 }
2573 EXPORT_SYMBOL_GPL(s390_enable_sie);
2574
gmap_mark_unmergeable(void)2575 int gmap_mark_unmergeable(void)
2576 {
2577 struct mm_struct *mm = current->mm;
2578 struct vm_area_struct *vma;
2579 int ret;
2580
2581 for (vma = mm->mmap; vma; vma = vma->vm_next) {
2582 ret = ksm_madvise(vma, vma->vm_start, vma->vm_end,
2583 MADV_UNMERGEABLE, &vma->vm_flags);
2584 if (ret)
2585 return ret;
2586 }
2587 mm->def_flags &= ~VM_MERGEABLE;
2588 return 0;
2589 }
2590 EXPORT_SYMBOL_GPL(gmap_mark_unmergeable);
2591
2592 /*
2593 * Enable storage key handling from now on and initialize the storage
2594 * keys with the default key.
2595 */
__s390_enable_skey_pte(pte_t * pte,unsigned long addr,unsigned long next,struct mm_walk * walk)2596 static int __s390_enable_skey_pte(pte_t *pte, unsigned long addr,
2597 unsigned long next, struct mm_walk *walk)
2598 {
2599 /* Clear storage key */
2600 ptep_zap_key(walk->mm, addr, pte);
2601 return 0;
2602 }
2603
2604 /*
2605 * Give a chance to schedule after setting a key to 256 pages.
2606 * We only hold the mm lock, which is a rwsem and the kvm srcu.
2607 * Both can sleep.
2608 */
__s390_enable_skey_pmd(pmd_t * pmd,unsigned long addr,unsigned long next,struct mm_walk * walk)2609 static int __s390_enable_skey_pmd(pmd_t *pmd, unsigned long addr,
2610 unsigned long next, struct mm_walk *walk)
2611 {
2612 cond_resched();
2613 return 0;
2614 }
2615
__s390_enable_skey_hugetlb(pte_t * pte,unsigned long addr,unsigned long hmask,unsigned long next,struct mm_walk * walk)2616 static int __s390_enable_skey_hugetlb(pte_t *pte, unsigned long addr,
2617 unsigned long hmask, unsigned long next,
2618 struct mm_walk *walk)
2619 {
2620 pmd_t *pmd = (pmd_t *)pte;
2621 unsigned long start, end;
2622 struct page *page = pmd_page(*pmd);
2623
2624 /*
2625 * The write check makes sure we do not set a key on shared
2626 * memory. This is needed as the walker does not differentiate
2627 * between actual guest memory and the process executable or
2628 * shared libraries.
2629 */
2630 if (pmd_val(*pmd) & _SEGMENT_ENTRY_INVALID ||
2631 !(pmd_val(*pmd) & _SEGMENT_ENTRY_WRITE))
2632 return 0;
2633
2634 start = pmd_val(*pmd) & HPAGE_MASK;
2635 end = start + HPAGE_SIZE - 1;
2636 __storage_key_init_range(start, end);
2637 set_bit(PG_arch_1, &page->flags);
2638 cond_resched();
2639 return 0;
2640 }
2641
2642 static const struct mm_walk_ops enable_skey_walk_ops = {
2643 .hugetlb_entry = __s390_enable_skey_hugetlb,
2644 .pte_entry = __s390_enable_skey_pte,
2645 .pmd_entry = __s390_enable_skey_pmd,
2646 };
2647
s390_enable_skey(void)2648 int s390_enable_skey(void)
2649 {
2650 struct mm_struct *mm = current->mm;
2651 int rc = 0;
2652
2653 mmap_write_lock(mm);
2654 if (mm_uses_skeys(mm))
2655 goto out_up;
2656
2657 mm->context.uses_skeys = 1;
2658 rc = gmap_mark_unmergeable();
2659 if (rc) {
2660 mm->context.uses_skeys = 0;
2661 goto out_up;
2662 }
2663 walk_page_range(mm, 0, TASK_SIZE, &enable_skey_walk_ops, NULL);
2664
2665 out_up:
2666 mmap_write_unlock(mm);
2667 return rc;
2668 }
2669 EXPORT_SYMBOL_GPL(s390_enable_skey);
2670
2671 /*
2672 * Reset CMMA state, make all pages stable again.
2673 */
__s390_reset_cmma(pte_t * pte,unsigned long addr,unsigned long next,struct mm_walk * walk)2674 static int __s390_reset_cmma(pte_t *pte, unsigned long addr,
2675 unsigned long next, struct mm_walk *walk)
2676 {
2677 ptep_zap_unused(walk->mm, addr, pte, 1);
2678 return 0;
2679 }
2680
2681 static const struct mm_walk_ops reset_cmma_walk_ops = {
2682 .pte_entry = __s390_reset_cmma,
2683 };
2684
s390_reset_cmma(struct mm_struct * mm)2685 void s390_reset_cmma(struct mm_struct *mm)
2686 {
2687 mmap_write_lock(mm);
2688 walk_page_range(mm, 0, TASK_SIZE, &reset_cmma_walk_ops, NULL);
2689 mmap_write_unlock(mm);
2690 }
2691 EXPORT_SYMBOL_GPL(s390_reset_cmma);
2692
2693 /*
2694 * make inaccessible pages accessible again
2695 */
__s390_reset_acc(pte_t * ptep,unsigned long addr,unsigned long next,struct mm_walk * walk)2696 static int __s390_reset_acc(pte_t *ptep, unsigned long addr,
2697 unsigned long next, struct mm_walk *walk)
2698 {
2699 pte_t pte = READ_ONCE(*ptep);
2700
2701 if (pte_present(pte))
2702 WARN_ON_ONCE(uv_destroy_page(pte_val(pte) & PAGE_MASK));
2703 return 0;
2704 }
2705
2706 static const struct mm_walk_ops reset_acc_walk_ops = {
2707 .pte_entry = __s390_reset_acc,
2708 };
2709
2710 #include <linux/sched/mm.h>
s390_reset_acc(struct mm_struct * mm)2711 void s390_reset_acc(struct mm_struct *mm)
2712 {
2713 if (!mm_is_protected(mm))
2714 return;
2715 /*
2716 * we might be called during
2717 * reset: we walk the pages and clear
2718 * close of all kvm file descriptors: we walk the pages and clear
2719 * exit of process on fd closure: vma already gone, do nothing
2720 */
2721 if (!mmget_not_zero(mm))
2722 return;
2723 mmap_read_lock(mm);
2724 walk_page_range(mm, 0, TASK_SIZE, &reset_acc_walk_ops, NULL);
2725 mmap_read_unlock(mm);
2726 mmput(mm);
2727 }
2728 EXPORT_SYMBOL_GPL(s390_reset_acc);
2729
2730 /**
2731 * s390_unlist_old_asce - Remove the topmost level of page tables from the
2732 * list of page tables of the gmap.
2733 * @gmap: the gmap whose table is to be removed
2734 *
2735 * On s390x, KVM keeps a list of all pages containing the page tables of the
2736 * gmap (the CRST list). This list is used at tear down time to free all
2737 * pages that are now not needed anymore.
2738 *
2739 * This function removes the topmost page of the tree (the one pointed to by
2740 * the ASCE) from the CRST list.
2741 *
2742 * This means that it will not be freed when the VM is torn down, and needs
2743 * to be handled separately by the caller, unless a leak is actually
2744 * intended. Notice that this function will only remove the page from the
2745 * list, the page will still be used as a top level page table (and ASCE).
2746 */
s390_unlist_old_asce(struct gmap * gmap)2747 void s390_unlist_old_asce(struct gmap *gmap)
2748 {
2749 struct page *old;
2750
2751 old = virt_to_page(gmap->table);
2752 spin_lock(&gmap->guest_table_lock);
2753 list_del(&old->lru);
2754 /*
2755 * Sometimes the topmost page might need to be "removed" multiple
2756 * times, for example if the VM is rebooted into secure mode several
2757 * times concurrently, or if s390_replace_asce fails after calling
2758 * s390_remove_old_asce and is attempted again later. In that case
2759 * the old asce has been removed from the list, and therefore it
2760 * will not be freed when the VM terminates, but the ASCE is still
2761 * in use and still pointed to.
2762 * A subsequent call to replace_asce will follow the pointer and try
2763 * to remove the same page from the list again.
2764 * Therefore it's necessary that the page of the ASCE has valid
2765 * pointers, so list_del can work (and do nothing) without
2766 * dereferencing stale or invalid pointers.
2767 */
2768 INIT_LIST_HEAD(&old->lru);
2769 spin_unlock(&gmap->guest_table_lock);
2770 }
2771 EXPORT_SYMBOL_GPL(s390_unlist_old_asce);
2772
2773 /**
2774 * s390_replace_asce - Try to replace the current ASCE of a gmap with a copy
2775 * @gmap: the gmap whose ASCE needs to be replaced
2776 *
2777 * If the allocation of the new top level page table fails, the ASCE is not
2778 * replaced.
2779 * In any case, the old ASCE is always removed from the gmap CRST list.
2780 * Therefore the caller has to make sure to save a pointer to it
2781 * beforehand, unless a leak is actually intended.
2782 */
s390_replace_asce(struct gmap * gmap)2783 int s390_replace_asce(struct gmap *gmap)
2784 {
2785 unsigned long asce;
2786 struct page *page;
2787 void *table;
2788
2789 s390_unlist_old_asce(gmap);
2790
2791 page = alloc_pages(GFP_KERNEL_ACCOUNT, CRST_ALLOC_ORDER);
2792 if (!page)
2793 return -ENOMEM;
2794 page->index = 0;
2795 table = page_to_virt(page);
2796 memcpy(table, gmap->table, 1UL << (CRST_ALLOC_ORDER + PAGE_SHIFT));
2797
2798 /*
2799 * The caller has to deal with the old ASCE, but here we make sure
2800 * the new one is properly added to the CRST list, so that
2801 * it will be freed when the VM is torn down.
2802 */
2803 spin_lock(&gmap->guest_table_lock);
2804 list_add(&page->lru, &gmap->crst_list);
2805 spin_unlock(&gmap->guest_table_lock);
2806
2807 /* Set new table origin while preserving existing ASCE control bits */
2808 asce = (gmap->asce & ~_ASCE_ORIGIN) | __pa(table);
2809 WRITE_ONCE(gmap->asce, asce);
2810 WRITE_ONCE(gmap->mm->context.gmap_asce, asce);
2811 WRITE_ONCE(gmap->table, table);
2812
2813 return 0;
2814 }
2815 EXPORT_SYMBOL_GPL(s390_replace_asce);
2816