• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  kernel/sched/core.c
4  *
5  *  Core kernel scheduler code and related syscalls
6  *
7  *  Copyright (C) 1991-2002  Linus Torvalds
8  */
9 #define CREATE_TRACE_POINTS
10 #include <trace/events/sched.h>
11 #undef CREATE_TRACE_POINTS
12 
13 #include "sched.h"
14 
15 #include <linux/nospec.h>
16 
17 #include <linux/kcov.h>
18 #include <linux/scs.h>
19 
20 #include <asm/switch_to.h>
21 #include <asm/tlb.h>
22 
23 #include "../workqueue_internal.h"
24 #include "../../io_uring/io-wq.h"
25 #include "../smpboot.h"
26 
27 #include "pelt.h"
28 #include "smp.h"
29 
30 #include <trace/hooks/sched.h>
31 #include <trace/hooks/dtask.h>
32 #include <trace/hooks/cgroup.h>
33 
34 /*
35  * Export tracepoints that act as a bare tracehook (ie: have no trace event
36  * associated with them) to allow external modules to probe them.
37  */
38 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp);
39 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp);
40 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp);
41 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp);
42 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp);
43 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_thermal_tp);
44 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_cpu_capacity_tp);
45 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp);
46 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_cfs_tp);
47 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_se_tp);
48 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_update_nr_running_tp);
49 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_switch);
50 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_waking);
51 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_wakeup);
52 #ifdef CONFIG_SCHEDSTATS
53 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_stat_sleep);
54 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_stat_wait);
55 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_stat_iowait);
56 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_stat_blocked);
57 #endif
58 
59 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
60 EXPORT_SYMBOL_GPL(runqueues);
61 
62 #ifdef CONFIG_SCHED_DEBUG
63 /*
64  * Debugging: various feature bits
65  *
66  * If SCHED_DEBUG is disabled, each compilation unit has its own copy of
67  * sysctl_sched_features, defined in sched.h, to allow constants propagation
68  * at compile time and compiler optimization based on features default.
69  */
70 #define SCHED_FEAT(name, enabled)	\
71 	(1UL << __SCHED_FEAT_##name) * enabled |
72 const_debug unsigned int sysctl_sched_features =
73 #include "features.h"
74 	0;
75 EXPORT_SYMBOL_GPL(sysctl_sched_features);
76 #undef SCHED_FEAT
77 
78 /*
79  * Print a warning if need_resched is set for the given duration (if
80  * LATENCY_WARN is enabled).
81  *
82  * If sysctl_resched_latency_warn_once is set, only one warning will be shown
83  * per boot.
84  */
85 __read_mostly int sysctl_resched_latency_warn_ms = 100;
86 __read_mostly int sysctl_resched_latency_warn_once = 1;
87 #endif /* CONFIG_SCHED_DEBUG */
88 
89 /*
90  * Number of tasks to iterate in a single balance run.
91  * Limited because this is done with IRQs disabled.
92  */
93 const_debug unsigned int sysctl_sched_nr_migrate = 32;
94 
95 /*
96  * period over which we measure -rt task CPU usage in us.
97  * default: 1s
98  */
99 unsigned int sysctl_sched_rt_period = 1000000;
100 
101 __read_mostly int scheduler_running;
102 
103 #ifdef CONFIG_SCHED_CORE
104 
105 DEFINE_STATIC_KEY_FALSE(__sched_core_enabled);
106 
107 /* kernel prio, less is more */
__task_prio(struct task_struct * p)108 static inline int __task_prio(struct task_struct *p)
109 {
110 	if (p->sched_class == &stop_sched_class) /* trumps deadline */
111 		return -2;
112 
113 	if (rt_prio(p->prio)) /* includes deadline */
114 		return p->prio; /* [-1, 99] */
115 
116 	if (p->sched_class == &idle_sched_class)
117 		return MAX_RT_PRIO + NICE_WIDTH; /* 140 */
118 
119 	return MAX_RT_PRIO + MAX_NICE; /* 120, squash fair */
120 }
121 
122 /*
123  * l(a,b)
124  * le(a,b) := !l(b,a)
125  * g(a,b)  := l(b,a)
126  * ge(a,b) := !l(a,b)
127  */
128 
129 /* real prio, less is less */
prio_less(struct task_struct * a,struct task_struct * b,bool in_fi)130 static inline bool prio_less(struct task_struct *a, struct task_struct *b, bool in_fi)
131 {
132 
133 	int pa = __task_prio(a), pb = __task_prio(b);
134 
135 	if (-pa < -pb)
136 		return true;
137 
138 	if (-pb < -pa)
139 		return false;
140 
141 	if (pa == -1) /* dl_prio() doesn't work because of stop_class above */
142 		return !dl_time_before(a->dl.deadline, b->dl.deadline);
143 
144 	if (pa == MAX_RT_PRIO + MAX_NICE)	/* fair */
145 		return cfs_prio_less(a, b, in_fi);
146 
147 	return false;
148 }
149 
__sched_core_less(struct task_struct * a,struct task_struct * b)150 static inline bool __sched_core_less(struct task_struct *a, struct task_struct *b)
151 {
152 	if (a->core_cookie < b->core_cookie)
153 		return true;
154 
155 	if (a->core_cookie > b->core_cookie)
156 		return false;
157 
158 	/* flip prio, so high prio is leftmost */
159 	if (prio_less(b, a, task_rq(a)->core->core_forceidle))
160 		return true;
161 
162 	return false;
163 }
164 
165 #define __node_2_sc(node) rb_entry((node), struct task_struct, core_node)
166 
rb_sched_core_less(struct rb_node * a,const struct rb_node * b)167 static inline bool rb_sched_core_less(struct rb_node *a, const struct rb_node *b)
168 {
169 	return __sched_core_less(__node_2_sc(a), __node_2_sc(b));
170 }
171 
rb_sched_core_cmp(const void * key,const struct rb_node * node)172 static inline int rb_sched_core_cmp(const void *key, const struct rb_node *node)
173 {
174 	const struct task_struct *p = __node_2_sc(node);
175 	unsigned long cookie = (unsigned long)key;
176 
177 	if (cookie < p->core_cookie)
178 		return -1;
179 
180 	if (cookie > p->core_cookie)
181 		return 1;
182 
183 	return 0;
184 }
185 
sched_core_enqueue(struct rq * rq,struct task_struct * p)186 void sched_core_enqueue(struct rq *rq, struct task_struct *p)
187 {
188 	rq->core->core_task_seq++;
189 
190 	if (!p->core_cookie)
191 		return;
192 
193 	rb_add(&p->core_node, &rq->core_tree, rb_sched_core_less);
194 }
195 
sched_core_dequeue(struct rq * rq,struct task_struct * p)196 void sched_core_dequeue(struct rq *rq, struct task_struct *p)
197 {
198 	rq->core->core_task_seq++;
199 
200 	if (!sched_core_enqueued(p))
201 		return;
202 
203 	rb_erase(&p->core_node, &rq->core_tree);
204 	RB_CLEAR_NODE(&p->core_node);
205 }
206 
207 /*
208  * Find left-most (aka, highest priority) task matching @cookie.
209  */
sched_core_find(struct rq * rq,unsigned long cookie)210 static struct task_struct *sched_core_find(struct rq *rq, unsigned long cookie)
211 {
212 	struct rb_node *node;
213 
214 	node = rb_find_first((void *)cookie, &rq->core_tree, rb_sched_core_cmp);
215 	/*
216 	 * The idle task always matches any cookie!
217 	 */
218 	if (!node)
219 		return idle_sched_class.pick_task(rq);
220 
221 	return __node_2_sc(node);
222 }
223 
sched_core_next(struct task_struct * p,unsigned long cookie)224 static struct task_struct *sched_core_next(struct task_struct *p, unsigned long cookie)
225 {
226 	struct rb_node *node = &p->core_node;
227 
228 	node = rb_next(node);
229 	if (!node)
230 		return NULL;
231 
232 	p = container_of(node, struct task_struct, core_node);
233 	if (p->core_cookie != cookie)
234 		return NULL;
235 
236 	return p;
237 }
238 
239 /*
240  * Magic required such that:
241  *
242  *	raw_spin_rq_lock(rq);
243  *	...
244  *	raw_spin_rq_unlock(rq);
245  *
246  * ends up locking and unlocking the _same_ lock, and all CPUs
247  * always agree on what rq has what lock.
248  *
249  * XXX entirely possible to selectively enable cores, don't bother for now.
250  */
251 
252 static DEFINE_MUTEX(sched_core_mutex);
253 static atomic_t sched_core_count;
254 static struct cpumask sched_core_mask;
255 
sched_core_lock(int cpu,unsigned long * flags)256 static void sched_core_lock(int cpu, unsigned long *flags)
257 {
258 	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
259 	int t, i = 0;
260 
261 	local_irq_save(*flags);
262 	for_each_cpu(t, smt_mask)
263 		raw_spin_lock_nested(&cpu_rq(t)->__lock, i++);
264 }
265 
sched_core_unlock(int cpu,unsigned long * flags)266 static void sched_core_unlock(int cpu, unsigned long *flags)
267 {
268 	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
269 	int t;
270 
271 	for_each_cpu(t, smt_mask)
272 		raw_spin_unlock(&cpu_rq(t)->__lock);
273 	local_irq_restore(*flags);
274 }
275 
__sched_core_flip(bool enabled)276 static void __sched_core_flip(bool enabled)
277 {
278 	unsigned long flags;
279 	int cpu, t;
280 
281 	cpus_read_lock();
282 
283 	/*
284 	 * Toggle the online cores, one by one.
285 	 */
286 	cpumask_copy(&sched_core_mask, cpu_online_mask);
287 	for_each_cpu(cpu, &sched_core_mask) {
288 		const struct cpumask *smt_mask = cpu_smt_mask(cpu);
289 
290 		sched_core_lock(cpu, &flags);
291 
292 		for_each_cpu(t, smt_mask)
293 			cpu_rq(t)->core_enabled = enabled;
294 
295 		sched_core_unlock(cpu, &flags);
296 
297 		cpumask_andnot(&sched_core_mask, &sched_core_mask, smt_mask);
298 	}
299 
300 	/*
301 	 * Toggle the offline CPUs.
302 	 */
303 	cpumask_copy(&sched_core_mask, cpu_possible_mask);
304 	cpumask_andnot(&sched_core_mask, &sched_core_mask, cpu_online_mask);
305 
306 	for_each_cpu(cpu, &sched_core_mask)
307 		cpu_rq(cpu)->core_enabled = enabled;
308 
309 	cpus_read_unlock();
310 }
311 
sched_core_assert_empty(void)312 static void sched_core_assert_empty(void)
313 {
314 	int cpu;
315 
316 	for_each_possible_cpu(cpu)
317 		WARN_ON_ONCE(!RB_EMPTY_ROOT(&cpu_rq(cpu)->core_tree));
318 }
319 
__sched_core_enable(void)320 static void __sched_core_enable(void)
321 {
322 	static_branch_enable(&__sched_core_enabled);
323 	/*
324 	 * Ensure all previous instances of raw_spin_rq_*lock() have finished
325 	 * and future ones will observe !sched_core_disabled().
326 	 */
327 	synchronize_rcu();
328 	__sched_core_flip(true);
329 	sched_core_assert_empty();
330 }
331 
__sched_core_disable(void)332 static void __sched_core_disable(void)
333 {
334 	sched_core_assert_empty();
335 	__sched_core_flip(false);
336 	static_branch_disable(&__sched_core_enabled);
337 }
338 
sched_core_get(void)339 void sched_core_get(void)
340 {
341 	if (atomic_inc_not_zero(&sched_core_count))
342 		return;
343 
344 	mutex_lock(&sched_core_mutex);
345 	if (!atomic_read(&sched_core_count))
346 		__sched_core_enable();
347 
348 	smp_mb__before_atomic();
349 	atomic_inc(&sched_core_count);
350 	mutex_unlock(&sched_core_mutex);
351 }
352 
__sched_core_put(struct work_struct * work)353 static void __sched_core_put(struct work_struct *work)
354 {
355 	if (atomic_dec_and_mutex_lock(&sched_core_count, &sched_core_mutex)) {
356 		__sched_core_disable();
357 		mutex_unlock(&sched_core_mutex);
358 	}
359 }
360 
sched_core_put(void)361 void sched_core_put(void)
362 {
363 	static DECLARE_WORK(_work, __sched_core_put);
364 
365 	/*
366 	 * "There can be only one"
367 	 *
368 	 * Either this is the last one, or we don't actually need to do any
369 	 * 'work'. If it is the last *again*, we rely on
370 	 * WORK_STRUCT_PENDING_BIT.
371 	 */
372 	if (!atomic_add_unless(&sched_core_count, -1, 1))
373 		schedule_work(&_work);
374 }
375 
376 #else /* !CONFIG_SCHED_CORE */
377 
sched_core_enqueue(struct rq * rq,struct task_struct * p)378 static inline void sched_core_enqueue(struct rq *rq, struct task_struct *p) { }
sched_core_dequeue(struct rq * rq,struct task_struct * p)379 static inline void sched_core_dequeue(struct rq *rq, struct task_struct *p) { }
380 
381 #endif /* CONFIG_SCHED_CORE */
382 
383 /*
384  * part of the period that we allow rt tasks to run in us.
385  * default: 0.95s
386  */
387 int sysctl_sched_rt_runtime = 950000;
388 
389 
390 /*
391  * Serialization rules:
392  *
393  * Lock order:
394  *
395  *   p->pi_lock
396  *     rq->lock
397  *       hrtimer_cpu_base->lock (hrtimer_start() for bandwidth controls)
398  *
399  *  rq1->lock
400  *    rq2->lock  where: rq1 < rq2
401  *
402  * Regular state:
403  *
404  * Normal scheduling state is serialized by rq->lock. __schedule() takes the
405  * local CPU's rq->lock, it optionally removes the task from the runqueue and
406  * always looks at the local rq data structures to find the most eligible task
407  * to run next.
408  *
409  * Task enqueue is also under rq->lock, possibly taken from another CPU.
410  * Wakeups from another LLC domain might use an IPI to transfer the enqueue to
411  * the local CPU to avoid bouncing the runqueue state around [ see
412  * ttwu_queue_wakelist() ]
413  *
414  * Task wakeup, specifically wakeups that involve migration, are horribly
415  * complicated to avoid having to take two rq->locks.
416  *
417  * Special state:
418  *
419  * System-calls and anything external will use task_rq_lock() which acquires
420  * both p->pi_lock and rq->lock. As a consequence the state they change is
421  * stable while holding either lock:
422  *
423  *  - sched_setaffinity()/
424  *    set_cpus_allowed_ptr():	p->cpus_ptr, p->nr_cpus_allowed
425  *  - set_user_nice():		p->se.load, p->*prio
426  *  - __sched_setscheduler():	p->sched_class, p->policy, p->*prio,
427  *				p->se.load, p->rt_priority,
428  *				p->dl.dl_{runtime, deadline, period, flags, bw, density}
429  *  - sched_setnuma():		p->numa_preferred_nid
430  *  - sched_move_task()/
431  *    cpu_cgroup_fork():	p->sched_task_group
432  *  - uclamp_update_active()	p->uclamp*
433  *
434  * p->state <- TASK_*:
435  *
436  *   is changed locklessly using set_current_state(), __set_current_state() or
437  *   set_special_state(), see their respective comments, or by
438  *   try_to_wake_up(). This latter uses p->pi_lock to serialize against
439  *   concurrent self.
440  *
441  * p->on_rq <- { 0, 1 = TASK_ON_RQ_QUEUED, 2 = TASK_ON_RQ_MIGRATING }:
442  *
443  *   is set by activate_task() and cleared by deactivate_task(), under
444  *   rq->lock. Non-zero indicates the task is runnable, the special
445  *   ON_RQ_MIGRATING state is used for migration without holding both
446  *   rq->locks. It indicates task_cpu() is not stable, see task_rq_lock().
447  *
448  * p->on_cpu <- { 0, 1 }:
449  *
450  *   is set by prepare_task() and cleared by finish_task() such that it will be
451  *   set before p is scheduled-in and cleared after p is scheduled-out, both
452  *   under rq->lock. Non-zero indicates the task is running on its CPU.
453  *
454  *   [ The astute reader will observe that it is possible for two tasks on one
455  *     CPU to have ->on_cpu = 1 at the same time. ]
456  *
457  * task_cpu(p): is changed by set_task_cpu(), the rules are:
458  *
459  *  - Don't call set_task_cpu() on a blocked task:
460  *
461  *    We don't care what CPU we're not running on, this simplifies hotplug,
462  *    the CPU assignment of blocked tasks isn't required to be valid.
463  *
464  *  - for try_to_wake_up(), called under p->pi_lock:
465  *
466  *    This allows try_to_wake_up() to only take one rq->lock, see its comment.
467  *
468  *  - for migration called under rq->lock:
469  *    [ see task_on_rq_migrating() in task_rq_lock() ]
470  *
471  *    o move_queued_task()
472  *    o detach_task()
473  *
474  *  - for migration called under double_rq_lock():
475  *
476  *    o __migrate_swap_task()
477  *    o push_rt_task() / pull_rt_task()
478  *    o push_dl_task() / pull_dl_task()
479  *    o dl_task_offline_migration()
480  *
481  */
482 
raw_spin_rq_lock_nested(struct rq * rq,int subclass)483 void raw_spin_rq_lock_nested(struct rq *rq, int subclass)
484 {
485 	raw_spinlock_t *lock;
486 
487 	/* Matches synchronize_rcu() in __sched_core_enable() */
488 	preempt_disable();
489 	if (sched_core_disabled()) {
490 		raw_spin_lock_nested(&rq->__lock, subclass);
491 		/* preempt_count *MUST* be > 1 */
492 		preempt_enable_no_resched();
493 		return;
494 	}
495 
496 	for (;;) {
497 		lock = __rq_lockp(rq);
498 		raw_spin_lock_nested(lock, subclass);
499 		if (likely(lock == __rq_lockp(rq))) {
500 			/* preempt_count *MUST* be > 1 */
501 			preempt_enable_no_resched();
502 			return;
503 		}
504 		raw_spin_unlock(lock);
505 	}
506 }
507 EXPORT_SYMBOL_GPL(raw_spin_rq_lock_nested);
508 
raw_spin_rq_trylock(struct rq * rq)509 bool raw_spin_rq_trylock(struct rq *rq)
510 {
511 	raw_spinlock_t *lock;
512 	bool ret;
513 
514 	/* Matches synchronize_rcu() in __sched_core_enable() */
515 	preempt_disable();
516 	if (sched_core_disabled()) {
517 		ret = raw_spin_trylock(&rq->__lock);
518 		preempt_enable();
519 		return ret;
520 	}
521 
522 	for (;;) {
523 		lock = __rq_lockp(rq);
524 		ret = raw_spin_trylock(lock);
525 		if (!ret || (likely(lock == __rq_lockp(rq)))) {
526 			preempt_enable();
527 			return ret;
528 		}
529 		raw_spin_unlock(lock);
530 	}
531 }
532 
raw_spin_rq_unlock(struct rq * rq)533 void raw_spin_rq_unlock(struct rq *rq)
534 {
535 	raw_spin_unlock(rq_lockp(rq));
536 }
537 EXPORT_SYMBOL_GPL(raw_spin_rq_unlock);
538 
539 #ifdef CONFIG_SMP
540 /*
541  * double_rq_lock - safely lock two runqueues
542  */
double_rq_lock(struct rq * rq1,struct rq * rq2)543 void double_rq_lock(struct rq *rq1, struct rq *rq2)
544 {
545 	lockdep_assert_irqs_disabled();
546 
547 	if (rq_order_less(rq2, rq1))
548 		swap(rq1, rq2);
549 
550 	raw_spin_rq_lock(rq1);
551 	if (__rq_lockp(rq1) != __rq_lockp(rq2))
552 		raw_spin_rq_lock_nested(rq2, SINGLE_DEPTH_NESTING);
553 
554 	double_rq_clock_clear_update(rq1, rq2);
555 }
556 EXPORT_SYMBOL_GPL(double_rq_lock);
557 #endif
558 
559 /*
560  * __task_rq_lock - lock the rq @p resides on.
561  */
__task_rq_lock(struct task_struct * p,struct rq_flags * rf)562 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
563 	__acquires(rq->lock)
564 {
565 	struct rq *rq;
566 
567 	lockdep_assert_held(&p->pi_lock);
568 
569 	for (;;) {
570 		rq = task_rq(p);
571 		raw_spin_rq_lock(rq);
572 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
573 			rq_pin_lock(rq, rf);
574 			return rq;
575 		}
576 		raw_spin_rq_unlock(rq);
577 
578 		while (unlikely(task_on_rq_migrating(p)))
579 			cpu_relax();
580 	}
581 }
582 EXPORT_SYMBOL_GPL(__task_rq_lock);
583 
584 /*
585  * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
586  */
task_rq_lock(struct task_struct * p,struct rq_flags * rf)587 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
588 	__acquires(p->pi_lock)
589 	__acquires(rq->lock)
590 {
591 	struct rq *rq;
592 
593 	for (;;) {
594 		raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
595 		rq = task_rq(p);
596 		raw_spin_rq_lock(rq);
597 		/*
598 		 *	move_queued_task()		task_rq_lock()
599 		 *
600 		 *	ACQUIRE (rq->lock)
601 		 *	[S] ->on_rq = MIGRATING		[L] rq = task_rq()
602 		 *	WMB (__set_task_cpu())		ACQUIRE (rq->lock);
603 		 *	[S] ->cpu = new_cpu		[L] task_rq()
604 		 *					[L] ->on_rq
605 		 *	RELEASE (rq->lock)
606 		 *
607 		 * If we observe the old CPU in task_rq_lock(), the acquire of
608 		 * the old rq->lock will fully serialize against the stores.
609 		 *
610 		 * If we observe the new CPU in task_rq_lock(), the address
611 		 * dependency headed by '[L] rq = task_rq()' and the acquire
612 		 * will pair with the WMB to ensure we then also see migrating.
613 		 */
614 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
615 			rq_pin_lock(rq, rf);
616 			return rq;
617 		}
618 		raw_spin_rq_unlock(rq);
619 		raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
620 
621 		while (unlikely(task_on_rq_migrating(p)))
622 			cpu_relax();
623 	}
624 }
625 EXPORT_SYMBOL_GPL(task_rq_lock);
626 
627 /*
628  * RQ-clock updating methods:
629  */
630 
update_rq_clock_task(struct rq * rq,s64 delta)631 static void update_rq_clock_task(struct rq *rq, s64 delta)
632 {
633 /*
634  * In theory, the compile should just see 0 here, and optimize out the call
635  * to sched_rt_avg_update. But I don't trust it...
636  */
637 	s64 __maybe_unused steal = 0, irq_delta = 0;
638 
639 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
640 	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
641 
642 	/*
643 	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
644 	 * this case when a previous update_rq_clock() happened inside a
645 	 * {soft,}irq region.
646 	 *
647 	 * When this happens, we stop ->clock_task and only update the
648 	 * prev_irq_time stamp to account for the part that fit, so that a next
649 	 * update will consume the rest. This ensures ->clock_task is
650 	 * monotonic.
651 	 *
652 	 * It does however cause some slight miss-attribution of {soft,}irq
653 	 * time, a more accurate solution would be to update the irq_time using
654 	 * the current rq->clock timestamp, except that would require using
655 	 * atomic ops.
656 	 */
657 	if (irq_delta > delta)
658 		irq_delta = delta;
659 
660 	rq->prev_irq_time += irq_delta;
661 	delta -= irq_delta;
662 #endif
663 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
664 	if (static_key_false((&paravirt_steal_rq_enabled))) {
665 		steal = paravirt_steal_clock(cpu_of(rq));
666 		steal -= rq->prev_steal_time_rq;
667 
668 		if (unlikely(steal > delta))
669 			steal = delta;
670 
671 		rq->prev_steal_time_rq += steal;
672 		delta -= steal;
673 	}
674 #endif
675 
676 	rq->clock_task += delta;
677 
678 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
679 	if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
680 		update_irq_load_avg(rq, irq_delta + steal);
681 #endif
682 	update_rq_clock_pelt(rq, delta);
683 }
684 
update_rq_clock(struct rq * rq)685 void update_rq_clock(struct rq *rq)
686 {
687 	s64 delta;
688 
689 	lockdep_assert_rq_held(rq);
690 
691 	if (rq->clock_update_flags & RQCF_ACT_SKIP)
692 		return;
693 
694 #ifdef CONFIG_SCHED_DEBUG
695 	if (sched_feat(WARN_DOUBLE_CLOCK))
696 		SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
697 	rq->clock_update_flags |= RQCF_UPDATED;
698 #endif
699 
700 	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
701 	if (delta < 0)
702 		return;
703 	rq->clock += delta;
704 	update_rq_clock_task(rq, delta);
705 }
706 EXPORT_SYMBOL_GPL(update_rq_clock);
707 
708 #ifdef CONFIG_SCHED_HRTICK
709 /*
710  * Use HR-timers to deliver accurate preemption points.
711  */
712 
hrtick_clear(struct rq * rq)713 static void hrtick_clear(struct rq *rq)
714 {
715 	if (hrtimer_active(&rq->hrtick_timer))
716 		hrtimer_cancel(&rq->hrtick_timer);
717 }
718 
719 /*
720  * High-resolution timer tick.
721  * Runs from hardirq context with interrupts disabled.
722  */
hrtick(struct hrtimer * timer)723 static enum hrtimer_restart hrtick(struct hrtimer *timer)
724 {
725 	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
726 	struct rq_flags rf;
727 
728 	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
729 
730 	rq_lock(rq, &rf);
731 	update_rq_clock(rq);
732 	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
733 	rq_unlock(rq, &rf);
734 
735 	return HRTIMER_NORESTART;
736 }
737 
738 #ifdef CONFIG_SMP
739 
__hrtick_restart(struct rq * rq)740 static void __hrtick_restart(struct rq *rq)
741 {
742 	struct hrtimer *timer = &rq->hrtick_timer;
743 	ktime_t time = rq->hrtick_time;
744 
745 	hrtimer_start(timer, time, HRTIMER_MODE_ABS_PINNED_HARD);
746 }
747 
748 /*
749  * called from hardirq (IPI) context
750  */
__hrtick_start(void * arg)751 static void __hrtick_start(void *arg)
752 {
753 	struct rq *rq = arg;
754 	struct rq_flags rf;
755 
756 	rq_lock(rq, &rf);
757 	__hrtick_restart(rq);
758 	rq_unlock(rq, &rf);
759 }
760 
761 /*
762  * Called to set the hrtick timer state.
763  *
764  * called with rq->lock held and irqs disabled
765  */
hrtick_start(struct rq * rq,u64 delay)766 void hrtick_start(struct rq *rq, u64 delay)
767 {
768 	struct hrtimer *timer = &rq->hrtick_timer;
769 	s64 delta;
770 
771 	/*
772 	 * Don't schedule slices shorter than 10000ns, that just
773 	 * doesn't make sense and can cause timer DoS.
774 	 */
775 	delta = max_t(s64, delay, 10000LL);
776 	rq->hrtick_time = ktime_add_ns(timer->base->get_time(), delta);
777 
778 	if (rq == this_rq())
779 		__hrtick_restart(rq);
780 	else
781 		smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
782 }
783 
784 #else
785 /*
786  * Called to set the hrtick timer state.
787  *
788  * called with rq->lock held and irqs disabled
789  */
hrtick_start(struct rq * rq,u64 delay)790 void hrtick_start(struct rq *rq, u64 delay)
791 {
792 	/*
793 	 * Don't schedule slices shorter than 10000ns, that just
794 	 * doesn't make sense. Rely on vruntime for fairness.
795 	 */
796 	delay = max_t(u64, delay, 10000LL);
797 	hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
798 		      HRTIMER_MODE_REL_PINNED_HARD);
799 }
800 
801 #endif /* CONFIG_SMP */
802 
hrtick_rq_init(struct rq * rq)803 static void hrtick_rq_init(struct rq *rq)
804 {
805 #ifdef CONFIG_SMP
806 	INIT_CSD(&rq->hrtick_csd, __hrtick_start, rq);
807 #endif
808 	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
809 	rq->hrtick_timer.function = hrtick;
810 }
811 #else	/* CONFIG_SCHED_HRTICK */
hrtick_clear(struct rq * rq)812 static inline void hrtick_clear(struct rq *rq)
813 {
814 }
815 
hrtick_rq_init(struct rq * rq)816 static inline void hrtick_rq_init(struct rq *rq)
817 {
818 }
819 #endif	/* CONFIG_SCHED_HRTICK */
820 
821 /*
822  * cmpxchg based fetch_or, macro so it works for different integer types
823  */
824 #define fetch_or(ptr, mask)						\
825 	({								\
826 		typeof(ptr) _ptr = (ptr);				\
827 		typeof(mask) _mask = (mask);				\
828 		typeof(*_ptr) _old, _val = *_ptr;			\
829 									\
830 		for (;;) {						\
831 			_old = cmpxchg(_ptr, _val, _val | _mask);	\
832 			if (_old == _val)				\
833 				break;					\
834 			_val = _old;					\
835 		}							\
836 	_old;								\
837 })
838 
839 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
840 /*
841  * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
842  * this avoids any races wrt polling state changes and thereby avoids
843  * spurious IPIs.
844  */
set_nr_and_not_polling(struct task_struct * p)845 static bool set_nr_and_not_polling(struct task_struct *p)
846 {
847 	struct thread_info *ti = task_thread_info(p);
848 	return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
849 }
850 
851 /*
852  * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
853  *
854  * If this returns true, then the idle task promises to call
855  * sched_ttwu_pending() and reschedule soon.
856  */
set_nr_if_polling(struct task_struct * p)857 static bool set_nr_if_polling(struct task_struct *p)
858 {
859 	struct thread_info *ti = task_thread_info(p);
860 	typeof(ti->flags) old, val = READ_ONCE(ti->flags);
861 
862 	for (;;) {
863 		if (!(val & _TIF_POLLING_NRFLAG))
864 			return false;
865 		if (val & _TIF_NEED_RESCHED)
866 			return true;
867 		old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
868 		if (old == val)
869 			break;
870 		val = old;
871 	}
872 	return true;
873 }
874 
875 #else
set_nr_and_not_polling(struct task_struct * p)876 static bool set_nr_and_not_polling(struct task_struct *p)
877 {
878 	set_tsk_need_resched(p);
879 	return true;
880 }
881 
882 #ifdef CONFIG_SMP
set_nr_if_polling(struct task_struct * p)883 static bool set_nr_if_polling(struct task_struct *p)
884 {
885 	return false;
886 }
887 #endif
888 #endif
889 
__wake_q_add(struct wake_q_head * head,struct task_struct * task)890 static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task)
891 {
892 	struct wake_q_node *node = &task->wake_q;
893 
894 	/*
895 	 * Atomically grab the task, if ->wake_q is !nil already it means
896 	 * it's already queued (either by us or someone else) and will get the
897 	 * wakeup due to that.
898 	 *
899 	 * In order to ensure that a pending wakeup will observe our pending
900 	 * state, even in the failed case, an explicit smp_mb() must be used.
901 	 */
902 	smp_mb__before_atomic();
903 	if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL)))
904 		return false;
905 
906 	/*
907 	 * The head is context local, there can be no concurrency.
908 	 */
909 	*head->lastp = node;
910 	head->lastp = &node->next;
911 	head->count++;
912 	return true;
913 }
914 
915 /**
916  * wake_q_add() - queue a wakeup for 'later' waking.
917  * @head: the wake_q_head to add @task to
918  * @task: the task to queue for 'later' wakeup
919  *
920  * Queue a task for later wakeup, most likely by the wake_up_q() call in the
921  * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
922  * instantly.
923  *
924  * This function must be used as-if it were wake_up_process(); IOW the task
925  * must be ready to be woken at this location.
926  */
wake_q_add(struct wake_q_head * head,struct task_struct * task)927 void wake_q_add(struct wake_q_head *head, struct task_struct *task)
928 {
929 	if (__wake_q_add(head, task))
930 		get_task_struct(task);
931 }
932 
933 /**
934  * wake_q_add_safe() - safely queue a wakeup for 'later' waking.
935  * @head: the wake_q_head to add @task to
936  * @task: the task to queue for 'later' wakeup
937  *
938  * Queue a task for later wakeup, most likely by the wake_up_q() call in the
939  * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
940  * instantly.
941  *
942  * This function must be used as-if it were wake_up_process(); IOW the task
943  * must be ready to be woken at this location.
944  *
945  * This function is essentially a task-safe equivalent to wake_q_add(). Callers
946  * that already hold reference to @task can call the 'safe' version and trust
947  * wake_q to do the right thing depending whether or not the @task is already
948  * queued for wakeup.
949  */
wake_q_add_safe(struct wake_q_head * head,struct task_struct * task)950 void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task)
951 {
952 	if (!__wake_q_add(head, task))
953 		put_task_struct(task);
954 }
955 
wake_up_q(struct wake_q_head * head)956 void wake_up_q(struct wake_q_head *head)
957 {
958 	struct wake_q_node *node = head->first;
959 
960 	while (node != WAKE_Q_TAIL) {
961 		struct task_struct *task;
962 
963 		task = container_of(node, struct task_struct, wake_q);
964 		/* Task can safely be re-inserted now: */
965 		node = node->next;
966 		task->wake_q.next = NULL;
967 		task->wake_q_count = head->count;
968 
969 		/*
970 		 * wake_up_process() executes a full barrier, which pairs with
971 		 * the queueing in wake_q_add() so as not to miss wakeups.
972 		 */
973 		wake_up_process(task);
974 		task->wake_q_count = 0;
975 		put_task_struct(task);
976 	}
977 }
978 
979 /*
980  * resched_curr - mark rq's current task 'to be rescheduled now'.
981  *
982  * On UP this means the setting of the need_resched flag, on SMP it
983  * might also involve a cross-CPU call to trigger the scheduler on
984  * the target CPU.
985  */
resched_curr(struct rq * rq)986 void resched_curr(struct rq *rq)
987 {
988 	struct task_struct *curr = rq->curr;
989 	int cpu;
990 
991 	lockdep_assert_rq_held(rq);
992 
993 	if (test_tsk_need_resched(curr))
994 		return;
995 
996 	cpu = cpu_of(rq);
997 
998 	if (cpu == smp_processor_id()) {
999 		set_tsk_need_resched(curr);
1000 		set_preempt_need_resched();
1001 		return;
1002 	}
1003 
1004 	if (set_nr_and_not_polling(curr))
1005 		smp_send_reschedule(cpu);
1006 	else
1007 		trace_sched_wake_idle_without_ipi(cpu);
1008 }
1009 EXPORT_SYMBOL_GPL(resched_curr);
1010 
resched_cpu(int cpu)1011 void resched_cpu(int cpu)
1012 {
1013 	struct rq *rq = cpu_rq(cpu);
1014 	unsigned long flags;
1015 
1016 	raw_spin_rq_lock_irqsave(rq, flags);
1017 	if (cpu_online(cpu) || cpu == smp_processor_id())
1018 		resched_curr(rq);
1019 	raw_spin_rq_unlock_irqrestore(rq, flags);
1020 }
1021 
1022 #ifdef CONFIG_SMP
1023 #ifdef CONFIG_NO_HZ_COMMON
1024 /*
1025  * In the semi idle case, use the nearest busy CPU for migrating timers
1026  * from an idle CPU.  This is good for power-savings.
1027  *
1028  * We don't do similar optimization for completely idle system, as
1029  * selecting an idle CPU will add more delays to the timers than intended
1030  * (as that CPU's timer base may not be uptodate wrt jiffies etc).
1031  */
get_nohz_timer_target(void)1032 int get_nohz_timer_target(void)
1033 {
1034 	int i, cpu = smp_processor_id(), default_cpu = -1;
1035 	struct sched_domain *sd;
1036 	const struct cpumask *hk_mask;
1037 	bool done = false;
1038 
1039 	trace_android_rvh_get_nohz_timer_target(&cpu, &done);
1040 	if (done)
1041 		return cpu;
1042 
1043 	if (housekeeping_cpu(cpu, HK_FLAG_TIMER)) {
1044 		if (!idle_cpu(cpu))
1045 			return cpu;
1046 		default_cpu = cpu;
1047 	}
1048 
1049 	hk_mask = housekeeping_cpumask(HK_FLAG_TIMER);
1050 
1051 	rcu_read_lock();
1052 	for_each_domain(cpu, sd) {
1053 		for_each_cpu_and(i, sched_domain_span(sd), hk_mask) {
1054 			if (cpu == i)
1055 				continue;
1056 
1057 			if (!idle_cpu(i)) {
1058 				cpu = i;
1059 				goto unlock;
1060 			}
1061 		}
1062 	}
1063 
1064 	if (default_cpu == -1)
1065 		default_cpu = housekeeping_any_cpu(HK_FLAG_TIMER);
1066 	cpu = default_cpu;
1067 unlock:
1068 	rcu_read_unlock();
1069 	return cpu;
1070 }
1071 
1072 /*
1073  * When add_timer_on() enqueues a timer into the timer wheel of an
1074  * idle CPU then this timer might expire before the next timer event
1075  * which is scheduled to wake up that CPU. In case of a completely
1076  * idle system the next event might even be infinite time into the
1077  * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1078  * leaves the inner idle loop so the newly added timer is taken into
1079  * account when the CPU goes back to idle and evaluates the timer
1080  * wheel for the next timer event.
1081  */
wake_up_idle_cpu(int cpu)1082 static void wake_up_idle_cpu(int cpu)
1083 {
1084 	struct rq *rq = cpu_rq(cpu);
1085 
1086 	if (cpu == smp_processor_id())
1087 		return;
1088 
1089 	if (set_nr_and_not_polling(rq->idle))
1090 		smp_send_reschedule(cpu);
1091 	else
1092 		trace_sched_wake_idle_without_ipi(cpu);
1093 }
1094 
wake_up_full_nohz_cpu(int cpu)1095 static bool wake_up_full_nohz_cpu(int cpu)
1096 {
1097 	/*
1098 	 * We just need the target to call irq_exit() and re-evaluate
1099 	 * the next tick. The nohz full kick at least implies that.
1100 	 * If needed we can still optimize that later with an
1101 	 * empty IRQ.
1102 	 */
1103 	if (cpu_is_offline(cpu))
1104 		return true;  /* Don't try to wake offline CPUs. */
1105 	if (tick_nohz_full_cpu(cpu)) {
1106 		if (cpu != smp_processor_id() ||
1107 		    tick_nohz_tick_stopped())
1108 			tick_nohz_full_kick_cpu(cpu);
1109 		return true;
1110 	}
1111 
1112 	return false;
1113 }
1114 
1115 /*
1116  * Wake up the specified CPU.  If the CPU is going offline, it is the
1117  * caller's responsibility to deal with the lost wakeup, for example,
1118  * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
1119  */
wake_up_nohz_cpu(int cpu)1120 void wake_up_nohz_cpu(int cpu)
1121 {
1122 	if (!wake_up_full_nohz_cpu(cpu))
1123 		wake_up_idle_cpu(cpu);
1124 }
1125 
nohz_csd_func(void * info)1126 static void nohz_csd_func(void *info)
1127 {
1128 	struct rq *rq = info;
1129 	int cpu = cpu_of(rq);
1130 	unsigned int flags;
1131 
1132 	/*
1133 	 * Release the rq::nohz_csd.
1134 	 */
1135 	flags = atomic_fetch_andnot(NOHZ_KICK_MASK | NOHZ_NEWILB_KICK, nohz_flags(cpu));
1136 	WARN_ON(!(flags & NOHZ_KICK_MASK));
1137 
1138 	rq->idle_balance = idle_cpu(cpu);
1139 	if (rq->idle_balance && !need_resched()) {
1140 		rq->nohz_idle_balance = flags;
1141 		raise_softirq_irqoff(SCHED_SOFTIRQ);
1142 	}
1143 }
1144 
1145 #endif /* CONFIG_NO_HZ_COMMON */
1146 
1147 #ifdef CONFIG_NO_HZ_FULL
sched_can_stop_tick(struct rq * rq)1148 bool sched_can_stop_tick(struct rq *rq)
1149 {
1150 	int fifo_nr_running;
1151 
1152 	/* Deadline tasks, even if single, need the tick */
1153 	if (rq->dl.dl_nr_running)
1154 		return false;
1155 
1156 	/*
1157 	 * If there are more than one RR tasks, we need the tick to affect the
1158 	 * actual RR behaviour.
1159 	 */
1160 	if (rq->rt.rr_nr_running) {
1161 		if (rq->rt.rr_nr_running == 1)
1162 			return true;
1163 		else
1164 			return false;
1165 	}
1166 
1167 	/*
1168 	 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
1169 	 * forced preemption between FIFO tasks.
1170 	 */
1171 	fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
1172 	if (fifo_nr_running)
1173 		return true;
1174 
1175 	/*
1176 	 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
1177 	 * if there's more than one we need the tick for involuntary
1178 	 * preemption.
1179 	 */
1180 	if (rq->nr_running > 1)
1181 		return false;
1182 
1183 	return true;
1184 }
1185 #endif /* CONFIG_NO_HZ_FULL */
1186 #endif /* CONFIG_SMP */
1187 
1188 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
1189 			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
1190 /*
1191  * Iterate task_group tree rooted at *from, calling @down when first entering a
1192  * node and @up when leaving it for the final time.
1193  *
1194  * Caller must hold rcu_lock or sufficient equivalent.
1195  */
walk_tg_tree_from(struct task_group * from,tg_visitor down,tg_visitor up,void * data)1196 int walk_tg_tree_from(struct task_group *from,
1197 			     tg_visitor down, tg_visitor up, void *data)
1198 {
1199 	struct task_group *parent, *child;
1200 	int ret;
1201 
1202 	parent = from;
1203 
1204 down:
1205 	ret = (*down)(parent, data);
1206 	if (ret)
1207 		goto out;
1208 	list_for_each_entry_rcu(child, &parent->children, siblings) {
1209 		parent = child;
1210 		goto down;
1211 
1212 up:
1213 		continue;
1214 	}
1215 	ret = (*up)(parent, data);
1216 	if (ret || parent == from)
1217 		goto out;
1218 
1219 	child = parent;
1220 	parent = parent->parent;
1221 	if (parent)
1222 		goto up;
1223 out:
1224 	return ret;
1225 }
1226 
tg_nop(struct task_group * tg,void * data)1227 int tg_nop(struct task_group *tg, void *data)
1228 {
1229 	return 0;
1230 }
1231 #endif
1232 
set_load_weight(struct task_struct * p,bool update_load)1233 static void set_load_weight(struct task_struct *p, bool update_load)
1234 {
1235 	int prio = p->static_prio - MAX_RT_PRIO;
1236 	struct load_weight *load = &p->se.load;
1237 
1238 	/*
1239 	 * SCHED_IDLE tasks get minimal weight:
1240 	 */
1241 	if (task_has_idle_policy(p)) {
1242 		load->weight = scale_load(WEIGHT_IDLEPRIO);
1243 		load->inv_weight = WMULT_IDLEPRIO;
1244 		return;
1245 	}
1246 
1247 	/*
1248 	 * SCHED_OTHER tasks have to update their load when changing their
1249 	 * weight
1250 	 */
1251 	if (update_load && p->sched_class == &fair_sched_class) {
1252 		reweight_task(p, prio);
1253 	} else {
1254 		load->weight = scale_load(sched_prio_to_weight[prio]);
1255 		load->inv_weight = sched_prio_to_wmult[prio];
1256 	}
1257 }
1258 
1259 #ifdef CONFIG_UCLAMP_TASK
1260 /*
1261  * Serializes updates of utilization clamp values
1262  *
1263  * The (slow-path) user-space triggers utilization clamp value updates which
1264  * can require updates on (fast-path) scheduler's data structures used to
1265  * support enqueue/dequeue operations.
1266  * While the per-CPU rq lock protects fast-path update operations, user-space
1267  * requests are serialized using a mutex to reduce the risk of conflicting
1268  * updates or API abuses.
1269  */
1270 static DEFINE_MUTEX(uclamp_mutex);
1271 
1272 /* Max allowed minimum utilization */
1273 unsigned int sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE;
1274 
1275 /* Max allowed maximum utilization */
1276 unsigned int sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE;
1277 
1278 /*
1279  * By default RT tasks run at the maximum performance point/capacity of the
1280  * system. Uclamp enforces this by always setting UCLAMP_MIN of RT tasks to
1281  * SCHED_CAPACITY_SCALE.
1282  *
1283  * This knob allows admins to change the default behavior when uclamp is being
1284  * used. In battery powered devices, particularly, running at the maximum
1285  * capacity and frequency will increase energy consumption and shorten the
1286  * battery life.
1287  *
1288  * This knob only affects RT tasks that their uclamp_se->user_defined == false.
1289  *
1290  * This knob will not override the system default sched_util_clamp_min defined
1291  * above.
1292  */
1293 unsigned int sysctl_sched_uclamp_util_min_rt_default = SCHED_CAPACITY_SCALE;
1294 
1295 /* All clamps are required to be less or equal than these values */
1296 static struct uclamp_se uclamp_default[UCLAMP_CNT];
1297 
1298 /*
1299  * This static key is used to reduce the uclamp overhead in the fast path. It
1300  * primarily disables the call to uclamp_rq_{inc, dec}() in
1301  * enqueue/dequeue_task().
1302  *
1303  * This allows users to continue to enable uclamp in their kernel config with
1304  * minimum uclamp overhead in the fast path.
1305  *
1306  * As soon as userspace modifies any of the uclamp knobs, the static key is
1307  * enabled, since we have an actual users that make use of uclamp
1308  * functionality.
1309  *
1310  * The knobs that would enable this static key are:
1311  *
1312  *   * A task modifying its uclamp value with sched_setattr().
1313  *   * An admin modifying the sysctl_sched_uclamp_{min, max} via procfs.
1314  *   * An admin modifying the cgroup cpu.uclamp.{min, max}
1315  */
1316 DEFINE_STATIC_KEY_FALSE(sched_uclamp_used);
1317 EXPORT_SYMBOL_GPL(sched_uclamp_used);
1318 
1319 /* Integer rounded range for each bucket */
1320 #define UCLAMP_BUCKET_DELTA DIV_ROUND_CLOSEST(SCHED_CAPACITY_SCALE, UCLAMP_BUCKETS)
1321 
1322 #define for_each_clamp_id(clamp_id) \
1323 	for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++)
1324 
uclamp_bucket_id(unsigned int clamp_value)1325 static inline unsigned int uclamp_bucket_id(unsigned int clamp_value)
1326 {
1327 	return min_t(unsigned int, clamp_value / UCLAMP_BUCKET_DELTA, UCLAMP_BUCKETS - 1);
1328 }
1329 
uclamp_none(enum uclamp_id clamp_id)1330 static inline unsigned int uclamp_none(enum uclamp_id clamp_id)
1331 {
1332 	if (clamp_id == UCLAMP_MIN)
1333 		return 0;
1334 	return SCHED_CAPACITY_SCALE;
1335 }
1336 
uclamp_se_set(struct uclamp_se * uc_se,unsigned int value,bool user_defined)1337 static inline void uclamp_se_set(struct uclamp_se *uc_se,
1338 				 unsigned int value, bool user_defined)
1339 {
1340 	uc_se->value = value;
1341 	uc_se->bucket_id = uclamp_bucket_id(value);
1342 	uc_se->user_defined = user_defined;
1343 }
1344 
1345 static inline unsigned int
uclamp_idle_value(struct rq * rq,enum uclamp_id clamp_id,unsigned int clamp_value)1346 uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id,
1347 		  unsigned int clamp_value)
1348 {
1349 	/*
1350 	 * Avoid blocked utilization pushing up the frequency when we go
1351 	 * idle (which drops the max-clamp) by retaining the last known
1352 	 * max-clamp.
1353 	 */
1354 	if (clamp_id == UCLAMP_MAX) {
1355 		rq->uclamp_flags |= UCLAMP_FLAG_IDLE;
1356 		return clamp_value;
1357 	}
1358 
1359 	return uclamp_none(UCLAMP_MIN);
1360 }
1361 
uclamp_idle_reset(struct rq * rq,enum uclamp_id clamp_id,unsigned int clamp_value)1362 static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id,
1363 				     unsigned int clamp_value)
1364 {
1365 	/* Reset max-clamp retention only on idle exit */
1366 	if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE))
1367 		return;
1368 
1369 	uclamp_rq_set(rq, clamp_id, clamp_value);
1370 }
1371 
1372 static inline
uclamp_rq_max_value(struct rq * rq,enum uclamp_id clamp_id,unsigned int clamp_value)1373 unsigned int uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id,
1374 				   unsigned int clamp_value)
1375 {
1376 	struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket;
1377 	int bucket_id = UCLAMP_BUCKETS - 1;
1378 
1379 	/*
1380 	 * Since both min and max clamps are max aggregated, find the
1381 	 * top most bucket with tasks in.
1382 	 */
1383 	for ( ; bucket_id >= 0; bucket_id--) {
1384 		if (!bucket[bucket_id].tasks)
1385 			continue;
1386 		return bucket[bucket_id].value;
1387 	}
1388 
1389 	/* No tasks -- default clamp values */
1390 	return uclamp_idle_value(rq, clamp_id, clamp_value);
1391 }
1392 
__uclamp_update_util_min_rt_default(struct task_struct * p)1393 static void __uclamp_update_util_min_rt_default(struct task_struct *p)
1394 {
1395 	unsigned int default_util_min;
1396 	struct uclamp_se *uc_se;
1397 
1398 	lockdep_assert_held(&p->pi_lock);
1399 
1400 	uc_se = &p->uclamp_req[UCLAMP_MIN];
1401 
1402 	/* Only sync if user didn't override the default */
1403 	if (uc_se->user_defined)
1404 		return;
1405 
1406 	default_util_min = sysctl_sched_uclamp_util_min_rt_default;
1407 	uclamp_se_set(uc_se, default_util_min, false);
1408 }
1409 
uclamp_update_util_min_rt_default(struct task_struct * p)1410 static void uclamp_update_util_min_rt_default(struct task_struct *p)
1411 {
1412 	struct rq_flags rf;
1413 	struct rq *rq;
1414 
1415 	if (!rt_task(p))
1416 		return;
1417 
1418 	/* Protect updates to p->uclamp_* */
1419 	rq = task_rq_lock(p, &rf);
1420 	__uclamp_update_util_min_rt_default(p);
1421 	task_rq_unlock(rq, p, &rf);
1422 }
1423 
uclamp_sync_util_min_rt_default(void)1424 static void uclamp_sync_util_min_rt_default(void)
1425 {
1426 	struct task_struct *g, *p;
1427 
1428 	/*
1429 	 * copy_process()			sysctl_uclamp
1430 	 *					  uclamp_min_rt = X;
1431 	 *   write_lock(&tasklist_lock)		  read_lock(&tasklist_lock)
1432 	 *   // link thread			  smp_mb__after_spinlock()
1433 	 *   write_unlock(&tasklist_lock)	  read_unlock(&tasklist_lock);
1434 	 *   sched_post_fork()			  for_each_process_thread()
1435 	 *     __uclamp_sync_rt()		    __uclamp_sync_rt()
1436 	 *
1437 	 * Ensures that either sched_post_fork() will observe the new
1438 	 * uclamp_min_rt or for_each_process_thread() will observe the new
1439 	 * task.
1440 	 */
1441 	read_lock(&tasklist_lock);
1442 	smp_mb__after_spinlock();
1443 	read_unlock(&tasklist_lock);
1444 
1445 	rcu_read_lock();
1446 	for_each_process_thread(g, p)
1447 		uclamp_update_util_min_rt_default(p);
1448 	rcu_read_unlock();
1449 }
1450 
1451 static inline struct uclamp_se
uclamp_tg_restrict(struct task_struct * p,enum uclamp_id clamp_id)1452 uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id)
1453 {
1454 	/* Copy by value as we could modify it */
1455 	struct uclamp_se uc_req = p->uclamp_req[clamp_id];
1456 #ifdef CONFIG_UCLAMP_TASK_GROUP
1457 	unsigned int tg_min, tg_max, value;
1458 
1459 	/*
1460 	 * Tasks in autogroups or root task group will be
1461 	 * restricted by system defaults.
1462 	 */
1463 	if (task_group_is_autogroup(task_group(p)))
1464 		return uc_req;
1465 	if (task_group(p) == &root_task_group)
1466 		return uc_req;
1467 
1468 	tg_min = task_group(p)->uclamp[UCLAMP_MIN].value;
1469 	tg_max = task_group(p)->uclamp[UCLAMP_MAX].value;
1470 	value = uc_req.value;
1471 	value = clamp(value, tg_min, tg_max);
1472 	uclamp_se_set(&uc_req, value, false);
1473 #endif
1474 
1475 	return uc_req;
1476 }
1477 
1478 /*
1479  * The effective clamp bucket index of a task depends on, by increasing
1480  * priority:
1481  * - the task specific clamp value, when explicitly requested from userspace
1482  * - the task group effective clamp value, for tasks not either in the root
1483  *   group or in an autogroup
1484  * - the system default clamp value, defined by the sysadmin
1485  */
1486 static inline struct uclamp_se
uclamp_eff_get(struct task_struct * p,enum uclamp_id clamp_id)1487 uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id)
1488 {
1489 	struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id);
1490 	struct uclamp_se uc_max = uclamp_default[clamp_id];
1491 	struct uclamp_se uc_eff;
1492 	int ret = 0;
1493 
1494 	trace_android_rvh_uclamp_eff_get(p, clamp_id, &uc_max, &uc_eff, &ret);
1495 	if (ret)
1496 		return uc_eff;
1497 
1498 	/* System default restrictions always apply */
1499 	if (unlikely(uc_req.value > uc_max.value))
1500 		return uc_max;
1501 
1502 	return uc_req;
1503 }
1504 
uclamp_eff_value(struct task_struct * p,enum uclamp_id clamp_id)1505 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id)
1506 {
1507 	struct uclamp_se uc_eff;
1508 
1509 	/* Task currently refcounted: use back-annotated (effective) value */
1510 	if (p->uclamp[clamp_id].active)
1511 		return (unsigned long)p->uclamp[clamp_id].value;
1512 
1513 	uc_eff = uclamp_eff_get(p, clamp_id);
1514 
1515 	return (unsigned long)uc_eff.value;
1516 }
1517 EXPORT_SYMBOL_GPL(uclamp_eff_value);
1518 
1519 /*
1520  * When a task is enqueued on a rq, the clamp bucket currently defined by the
1521  * task's uclamp::bucket_id is refcounted on that rq. This also immediately
1522  * updates the rq's clamp value if required.
1523  *
1524  * Tasks can have a task-specific value requested from user-space, track
1525  * within each bucket the maximum value for tasks refcounted in it.
1526  * This "local max aggregation" allows to track the exact "requested" value
1527  * for each bucket when all its RUNNABLE tasks require the same clamp.
1528  */
uclamp_rq_inc_id(struct rq * rq,struct task_struct * p,enum uclamp_id clamp_id)1529 static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p,
1530 				    enum uclamp_id clamp_id)
1531 {
1532 	struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1533 	struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1534 	struct uclamp_bucket *bucket;
1535 
1536 	lockdep_assert_rq_held(rq);
1537 
1538 	/* Update task effective clamp */
1539 	p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id);
1540 
1541 	bucket = &uc_rq->bucket[uc_se->bucket_id];
1542 	bucket->tasks++;
1543 	uc_se->active = true;
1544 
1545 	uclamp_idle_reset(rq, clamp_id, uc_se->value);
1546 
1547 	/*
1548 	 * Local max aggregation: rq buckets always track the max
1549 	 * "requested" clamp value of its RUNNABLE tasks.
1550 	 */
1551 	if (bucket->tasks == 1 || uc_se->value > bucket->value)
1552 		bucket->value = uc_se->value;
1553 
1554 	if (uc_se->value > uclamp_rq_get(rq, clamp_id))
1555 		uclamp_rq_set(rq, clamp_id, uc_se->value);
1556 }
1557 
1558 /*
1559  * When a task is dequeued from a rq, the clamp bucket refcounted by the task
1560  * is released. If this is the last task reference counting the rq's max
1561  * active clamp value, then the rq's clamp value is updated.
1562  *
1563  * Both refcounted tasks and rq's cached clamp values are expected to be
1564  * always valid. If it's detected they are not, as defensive programming,
1565  * enforce the expected state and warn.
1566  */
uclamp_rq_dec_id(struct rq * rq,struct task_struct * p,enum uclamp_id clamp_id)1567 static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p,
1568 				    enum uclamp_id clamp_id)
1569 {
1570 	struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1571 	struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1572 	struct uclamp_bucket *bucket;
1573 	unsigned int bkt_clamp;
1574 	unsigned int rq_clamp;
1575 
1576 	lockdep_assert_rq_held(rq);
1577 
1578 	/*
1579 	 * If sched_uclamp_used was enabled after task @p was enqueued,
1580 	 * we could end up with unbalanced call to uclamp_rq_dec_id().
1581 	 *
1582 	 * In this case the uc_se->active flag should be false since no uclamp
1583 	 * accounting was performed at enqueue time and we can just return
1584 	 * here.
1585 	 *
1586 	 * Need to be careful of the following enqueue/dequeue ordering
1587 	 * problem too
1588 	 *
1589 	 *	enqueue(taskA)
1590 	 *	// sched_uclamp_used gets enabled
1591 	 *	enqueue(taskB)
1592 	 *	dequeue(taskA)
1593 	 *	// Must not decrement bucket->tasks here
1594 	 *	dequeue(taskB)
1595 	 *
1596 	 * where we could end up with stale data in uc_se and
1597 	 * bucket[uc_se->bucket_id].
1598 	 *
1599 	 * The following check here eliminates the possibility of such race.
1600 	 */
1601 	if (unlikely(!uc_se->active))
1602 		return;
1603 
1604 	bucket = &uc_rq->bucket[uc_se->bucket_id];
1605 
1606 	SCHED_WARN_ON(!bucket->tasks);
1607 	if (likely(bucket->tasks))
1608 		bucket->tasks--;
1609 
1610 	uc_se->active = false;
1611 
1612 	/*
1613 	 * Keep "local max aggregation" simple and accept to (possibly)
1614 	 * overboost some RUNNABLE tasks in the same bucket.
1615 	 * The rq clamp bucket value is reset to its base value whenever
1616 	 * there are no more RUNNABLE tasks refcounting it.
1617 	 */
1618 	if (likely(bucket->tasks))
1619 		return;
1620 
1621 	rq_clamp = uclamp_rq_get(rq, clamp_id);
1622 	/*
1623 	 * Defensive programming: this should never happen. If it happens,
1624 	 * e.g. due to future modification, warn and fixup the expected value.
1625 	 */
1626 	SCHED_WARN_ON(bucket->value > rq_clamp);
1627 	if (bucket->value >= rq_clamp) {
1628 		bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value);
1629 		uclamp_rq_set(rq, clamp_id, bkt_clamp);
1630 	}
1631 }
1632 
uclamp_rq_inc(struct rq * rq,struct task_struct * p)1633 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p)
1634 {
1635 	enum uclamp_id clamp_id;
1636 
1637 	/*
1638 	 * Avoid any overhead until uclamp is actually used by the userspace.
1639 	 *
1640 	 * The condition is constructed such that a NOP is generated when
1641 	 * sched_uclamp_used is disabled.
1642 	 */
1643 	if (!static_branch_unlikely(&sched_uclamp_used))
1644 		return;
1645 
1646 	if (unlikely(!p->sched_class->uclamp_enabled))
1647 		return;
1648 
1649 	for_each_clamp_id(clamp_id)
1650 		uclamp_rq_inc_id(rq, p, clamp_id);
1651 
1652 	/* Reset clamp idle holding when there is one RUNNABLE task */
1653 	if (rq->uclamp_flags & UCLAMP_FLAG_IDLE)
1654 		rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
1655 }
1656 
uclamp_rq_dec(struct rq * rq,struct task_struct * p)1657 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p)
1658 {
1659 	enum uclamp_id clamp_id;
1660 
1661 	/*
1662 	 * Avoid any overhead until uclamp is actually used by the userspace.
1663 	 *
1664 	 * The condition is constructed such that a NOP is generated when
1665 	 * sched_uclamp_used is disabled.
1666 	 */
1667 	if (!static_branch_unlikely(&sched_uclamp_used))
1668 		return;
1669 
1670 	if (unlikely(!p->sched_class->uclamp_enabled))
1671 		return;
1672 
1673 	for_each_clamp_id(clamp_id)
1674 		uclamp_rq_dec_id(rq, p, clamp_id);
1675 }
1676 
uclamp_rq_reinc_id(struct rq * rq,struct task_struct * p,enum uclamp_id clamp_id)1677 static inline void uclamp_rq_reinc_id(struct rq *rq, struct task_struct *p,
1678 				      enum uclamp_id clamp_id)
1679 {
1680 	if (!p->uclamp[clamp_id].active)
1681 		return;
1682 
1683 	uclamp_rq_dec_id(rq, p, clamp_id);
1684 	uclamp_rq_inc_id(rq, p, clamp_id);
1685 
1686 	/*
1687 	 * Make sure to clear the idle flag if we've transiently reached 0
1688 	 * active tasks on rq.
1689 	 */
1690 	if (clamp_id == UCLAMP_MAX && (rq->uclamp_flags & UCLAMP_FLAG_IDLE))
1691 		rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
1692 }
1693 
1694 static inline void
uclamp_update_active(struct task_struct * p)1695 uclamp_update_active(struct task_struct *p)
1696 {
1697 	enum uclamp_id clamp_id;
1698 	struct rq_flags rf;
1699 	struct rq *rq;
1700 
1701 	/*
1702 	 * Lock the task and the rq where the task is (or was) queued.
1703 	 *
1704 	 * We might lock the (previous) rq of a !RUNNABLE task, but that's the
1705 	 * price to pay to safely serialize util_{min,max} updates with
1706 	 * enqueues, dequeues and migration operations.
1707 	 * This is the same locking schema used by __set_cpus_allowed_ptr().
1708 	 */
1709 	rq = task_rq_lock(p, &rf);
1710 
1711 	/*
1712 	 * Setting the clamp bucket is serialized by task_rq_lock().
1713 	 * If the task is not yet RUNNABLE and its task_struct is not
1714 	 * affecting a valid clamp bucket, the next time it's enqueued,
1715 	 * it will already see the updated clamp bucket value.
1716 	 */
1717 	for_each_clamp_id(clamp_id)
1718 		uclamp_rq_reinc_id(rq, p, clamp_id);
1719 
1720 	task_rq_unlock(rq, p, &rf);
1721 }
1722 
1723 #ifdef CONFIG_UCLAMP_TASK_GROUP
1724 static inline void
uclamp_update_active_tasks(struct cgroup_subsys_state * css)1725 uclamp_update_active_tasks(struct cgroup_subsys_state *css)
1726 {
1727 	struct css_task_iter it;
1728 	struct task_struct *p;
1729 
1730 	css_task_iter_start(css, 0, &it);
1731 	while ((p = css_task_iter_next(&it)))
1732 		uclamp_update_active(p);
1733 	css_task_iter_end(&it);
1734 }
1735 
1736 static void cpu_util_update_eff(struct cgroup_subsys_state *css);
uclamp_update_root_tg(void)1737 static void uclamp_update_root_tg(void)
1738 {
1739 	struct task_group *tg = &root_task_group;
1740 
1741 	uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN],
1742 		      sysctl_sched_uclamp_util_min, false);
1743 	uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX],
1744 		      sysctl_sched_uclamp_util_max, false);
1745 
1746 	rcu_read_lock();
1747 	cpu_util_update_eff(&root_task_group.css);
1748 	rcu_read_unlock();
1749 }
1750 #else
uclamp_update_root_tg(void)1751 static void uclamp_update_root_tg(void) { }
1752 #endif
1753 
sysctl_sched_uclamp_handler(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)1754 int sysctl_sched_uclamp_handler(struct ctl_table *table, int write,
1755 				void *buffer, size_t *lenp, loff_t *ppos)
1756 {
1757 	bool update_root_tg = false;
1758 	int old_min, old_max, old_min_rt;
1759 	int result;
1760 
1761 	mutex_lock(&uclamp_mutex);
1762 	old_min = sysctl_sched_uclamp_util_min;
1763 	old_max = sysctl_sched_uclamp_util_max;
1764 	old_min_rt = sysctl_sched_uclamp_util_min_rt_default;
1765 
1766 	result = proc_dointvec(table, write, buffer, lenp, ppos);
1767 	if (result)
1768 		goto undo;
1769 	if (!write)
1770 		goto done;
1771 
1772 	if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max ||
1773 	    sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE	||
1774 	    sysctl_sched_uclamp_util_min_rt_default > SCHED_CAPACITY_SCALE) {
1775 
1776 		result = -EINVAL;
1777 		goto undo;
1778 	}
1779 
1780 	if (old_min != sysctl_sched_uclamp_util_min) {
1781 		uclamp_se_set(&uclamp_default[UCLAMP_MIN],
1782 			      sysctl_sched_uclamp_util_min, false);
1783 		update_root_tg = true;
1784 	}
1785 	if (old_max != sysctl_sched_uclamp_util_max) {
1786 		uclamp_se_set(&uclamp_default[UCLAMP_MAX],
1787 			      sysctl_sched_uclamp_util_max, false);
1788 		update_root_tg = true;
1789 	}
1790 
1791 	if (update_root_tg) {
1792 		static_branch_enable(&sched_uclamp_used);
1793 		uclamp_update_root_tg();
1794 	}
1795 
1796 	if (old_min_rt != sysctl_sched_uclamp_util_min_rt_default) {
1797 		static_branch_enable(&sched_uclamp_used);
1798 		uclamp_sync_util_min_rt_default();
1799 	}
1800 
1801 	/*
1802 	 * We update all RUNNABLE tasks only when task groups are in use.
1803 	 * Otherwise, keep it simple and do just a lazy update at each next
1804 	 * task enqueue time.
1805 	 */
1806 
1807 	goto done;
1808 
1809 undo:
1810 	sysctl_sched_uclamp_util_min = old_min;
1811 	sysctl_sched_uclamp_util_max = old_max;
1812 	sysctl_sched_uclamp_util_min_rt_default = old_min_rt;
1813 done:
1814 	mutex_unlock(&uclamp_mutex);
1815 
1816 	return result;
1817 }
1818 
uclamp_validate(struct task_struct * p,const struct sched_attr * attr,bool user)1819 static int uclamp_validate(struct task_struct *p,
1820 			   const struct sched_attr *attr, bool user)
1821 {
1822 	int util_min = p->uclamp_req[UCLAMP_MIN].value;
1823 	int util_max = p->uclamp_req[UCLAMP_MAX].value;
1824 	bool done = false;
1825 	int ret = 0;
1826 
1827 	trace_android_vh_uclamp_validate(p, attr, user, &ret, &done);
1828 	if (done)
1829 		return ret;
1830 
1831 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN) {
1832 		util_min = attr->sched_util_min;
1833 
1834 		if (util_min + 1 > SCHED_CAPACITY_SCALE + 1)
1835 			return -EINVAL;
1836 	}
1837 
1838 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX) {
1839 		util_max = attr->sched_util_max;
1840 
1841 		if (util_max + 1 > SCHED_CAPACITY_SCALE + 1)
1842 			return -EINVAL;
1843 	}
1844 
1845 	if (util_min != -1 && util_max != -1 && util_min > util_max)
1846 		return -EINVAL;
1847 
1848 	/*
1849 	 * We have valid uclamp attributes; make sure uclamp is enabled.
1850 	 *
1851 	 * We need to do that here, because enabling static branches is
1852 	 * a blocking operation which obviously cannot be done while holding
1853 	 * scheduler locks.
1854 	 *
1855 	 * We only enable the static key if this was initiated by user space
1856 	 * request. There should be no in-kernel users of uclamp except to
1857 	 * implement things like inheritance like in binder. These in-kernel
1858 	 * callers can rightfully be called be sometimes in_atomic() context
1859 	 * which is invalid context to enable the key in. The enabling path
1860 	 * unconditionally holds the cpus_read_lock() which might_sleep().
1861 	 */
1862 	if (user)
1863 		static_branch_enable(&sched_uclamp_used);
1864 
1865 	return 0;
1866 }
1867 
uclamp_reset(const struct sched_attr * attr,enum uclamp_id clamp_id,struct uclamp_se * uc_se)1868 static bool uclamp_reset(const struct sched_attr *attr,
1869 			 enum uclamp_id clamp_id,
1870 			 struct uclamp_se *uc_se)
1871 {
1872 	/* Reset on sched class change for a non user-defined clamp value. */
1873 	if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)) &&
1874 	    !uc_se->user_defined)
1875 		return true;
1876 
1877 	/* Reset on sched_util_{min,max} == -1. */
1878 	if (clamp_id == UCLAMP_MIN &&
1879 	    attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN &&
1880 	    attr->sched_util_min == -1) {
1881 		return true;
1882 	}
1883 
1884 	if (clamp_id == UCLAMP_MAX &&
1885 	    attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX &&
1886 	    attr->sched_util_max == -1) {
1887 		return true;
1888 	}
1889 
1890 	return false;
1891 }
1892 
__setscheduler_uclamp(struct task_struct * p,const struct sched_attr * attr)1893 static void __setscheduler_uclamp(struct task_struct *p,
1894 				  const struct sched_attr *attr)
1895 {
1896 	enum uclamp_id clamp_id;
1897 
1898 	for_each_clamp_id(clamp_id) {
1899 		struct uclamp_se *uc_se = &p->uclamp_req[clamp_id];
1900 		unsigned int value;
1901 
1902 		if (!uclamp_reset(attr, clamp_id, uc_se))
1903 			continue;
1904 
1905 		/*
1906 		 * RT by default have a 100% boost value that could be modified
1907 		 * at runtime.
1908 		 */
1909 		if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN))
1910 			value = sysctl_sched_uclamp_util_min_rt_default;
1911 		else
1912 			value = uclamp_none(clamp_id);
1913 
1914 		uclamp_se_set(uc_se, value, false);
1915 
1916 	}
1917 
1918 	if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)))
1919 		return;
1920 
1921 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN &&
1922 	    attr->sched_util_min != -1) {
1923 		uclamp_se_set(&p->uclamp_req[UCLAMP_MIN],
1924 			      attr->sched_util_min, true);
1925 		trace_android_vh_setscheduler_uclamp(p, UCLAMP_MIN, attr->sched_util_min);
1926 	}
1927 
1928 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX &&
1929 	    attr->sched_util_max != -1) {
1930 		uclamp_se_set(&p->uclamp_req[UCLAMP_MAX],
1931 			      attr->sched_util_max, true);
1932 		trace_android_vh_setscheduler_uclamp(p, UCLAMP_MAX, attr->sched_util_max);
1933 	}
1934 }
1935 
uclamp_fork(struct task_struct * p)1936 static void uclamp_fork(struct task_struct *p)
1937 {
1938 	enum uclamp_id clamp_id;
1939 
1940 	/*
1941 	 * We don't need to hold task_rq_lock() when updating p->uclamp_* here
1942 	 * as the task is still at its early fork stages.
1943 	 */
1944 	for_each_clamp_id(clamp_id)
1945 		p->uclamp[clamp_id].active = false;
1946 
1947 	if (likely(!p->sched_reset_on_fork))
1948 		return;
1949 
1950 	for_each_clamp_id(clamp_id) {
1951 		uclamp_se_set(&p->uclamp_req[clamp_id],
1952 			      uclamp_none(clamp_id), false);
1953 	}
1954 }
1955 
uclamp_post_fork(struct task_struct * p)1956 static void uclamp_post_fork(struct task_struct *p)
1957 {
1958 	uclamp_update_util_min_rt_default(p);
1959 }
1960 
init_uclamp_rq(struct rq * rq)1961 static void __init init_uclamp_rq(struct rq *rq)
1962 {
1963 	enum uclamp_id clamp_id;
1964 	struct uclamp_rq *uc_rq = rq->uclamp;
1965 
1966 	for_each_clamp_id(clamp_id) {
1967 		uc_rq[clamp_id] = (struct uclamp_rq) {
1968 			.value = uclamp_none(clamp_id)
1969 		};
1970 	}
1971 
1972 	rq->uclamp_flags = UCLAMP_FLAG_IDLE;
1973 }
1974 
init_uclamp(void)1975 static void __init init_uclamp(void)
1976 {
1977 	struct uclamp_se uc_max = {};
1978 	enum uclamp_id clamp_id;
1979 	int cpu;
1980 
1981 	for_each_possible_cpu(cpu)
1982 		init_uclamp_rq(cpu_rq(cpu));
1983 
1984 	for_each_clamp_id(clamp_id) {
1985 		uclamp_se_set(&init_task.uclamp_req[clamp_id],
1986 			      uclamp_none(clamp_id), false);
1987 	}
1988 
1989 	/* System defaults allow max clamp values for both indexes */
1990 	uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false);
1991 	for_each_clamp_id(clamp_id) {
1992 		uclamp_default[clamp_id] = uc_max;
1993 #ifdef CONFIG_UCLAMP_TASK_GROUP
1994 		root_task_group.uclamp_req[clamp_id] = uc_max;
1995 		root_task_group.uclamp[clamp_id] = uc_max;
1996 #endif
1997 	}
1998 }
1999 
2000 #else /* CONFIG_UCLAMP_TASK */
uclamp_rq_inc(struct rq * rq,struct task_struct * p)2001 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { }
uclamp_rq_dec(struct rq * rq,struct task_struct * p)2002 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { }
uclamp_validate(struct task_struct * p,const struct sched_attr * attr,bool user)2003 static inline int uclamp_validate(struct task_struct *p,
2004 				  const struct sched_attr *attr, bool user)
2005 {
2006 	return -EOPNOTSUPP;
2007 }
__setscheduler_uclamp(struct task_struct * p,const struct sched_attr * attr)2008 static void __setscheduler_uclamp(struct task_struct *p,
2009 				  const struct sched_attr *attr) { }
uclamp_fork(struct task_struct * p)2010 static inline void uclamp_fork(struct task_struct *p) { }
uclamp_post_fork(struct task_struct * p)2011 static inline void uclamp_post_fork(struct task_struct *p) { }
init_uclamp(void)2012 static inline void init_uclamp(void) { }
2013 #endif /* CONFIG_UCLAMP_TASK */
2014 
sched_task_on_rq(struct task_struct * p)2015 bool sched_task_on_rq(struct task_struct *p)
2016 {
2017 	return task_on_rq_queued(p);
2018 }
2019 
enqueue_task(struct rq * rq,struct task_struct * p,int flags)2020 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2021 {
2022 	if (!(flags & ENQUEUE_NOCLOCK))
2023 		update_rq_clock(rq);
2024 
2025 	if (!(flags & ENQUEUE_RESTORE)) {
2026 		sched_info_enqueue(rq, p);
2027 		psi_enqueue(p, flags & ENQUEUE_WAKEUP);
2028 	}
2029 
2030 	uclamp_rq_inc(rq, p);
2031 	trace_android_rvh_enqueue_task(rq, p, flags);
2032 	p->sched_class->enqueue_task(rq, p, flags);
2033 	trace_android_rvh_after_enqueue_task(rq, p, flags);
2034 
2035 	if (sched_core_enabled(rq))
2036 		sched_core_enqueue(rq, p);
2037 }
2038 
dequeue_task(struct rq * rq,struct task_struct * p,int flags)2039 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
2040 {
2041 	if (sched_core_enabled(rq))
2042 		sched_core_dequeue(rq, p);
2043 
2044 	if (!(flags & DEQUEUE_NOCLOCK))
2045 		update_rq_clock(rq);
2046 
2047 	if (!(flags & DEQUEUE_SAVE)) {
2048 		sched_info_dequeue(rq, p);
2049 		psi_dequeue(p, flags & DEQUEUE_SLEEP);
2050 	}
2051 
2052 	uclamp_rq_dec(rq, p);
2053 	trace_android_rvh_dequeue_task(rq, p, flags);
2054 	p->sched_class->dequeue_task(rq, p, flags);
2055 	trace_android_rvh_after_dequeue_task(rq, p, flags);
2056 }
2057 
activate_task(struct rq * rq,struct task_struct * p,int flags)2058 void activate_task(struct rq *rq, struct task_struct *p, int flags)
2059 {
2060 	if (task_on_rq_migrating(p))
2061 		flags |= ENQUEUE_MIGRATED;
2062 
2063 	enqueue_task(rq, p, flags);
2064 
2065 	p->on_rq = TASK_ON_RQ_QUEUED;
2066 }
2067 EXPORT_SYMBOL_GPL(activate_task);
2068 
deactivate_task(struct rq * rq,struct task_struct * p,int flags)2069 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
2070 {
2071 	p->on_rq = (flags & DEQUEUE_SLEEP) ? 0 : TASK_ON_RQ_MIGRATING;
2072 
2073 	dequeue_task(rq, p, flags);
2074 }
2075 EXPORT_SYMBOL_GPL(deactivate_task);
2076 
__normal_prio(int policy,int rt_prio,int nice)2077 static inline int __normal_prio(int policy, int rt_prio, int nice)
2078 {
2079 	int prio;
2080 
2081 	if (dl_policy(policy))
2082 		prio = MAX_DL_PRIO - 1;
2083 	else if (rt_policy(policy))
2084 		prio = MAX_RT_PRIO - 1 - rt_prio;
2085 	else
2086 		prio = NICE_TO_PRIO(nice);
2087 
2088 	return prio;
2089 }
2090 
2091 /*
2092  * Calculate the expected normal priority: i.e. priority
2093  * without taking RT-inheritance into account. Might be
2094  * boosted by interactivity modifiers. Changes upon fork,
2095  * setprio syscalls, and whenever the interactivity
2096  * estimator recalculates.
2097  */
normal_prio(struct task_struct * p)2098 static inline int normal_prio(struct task_struct *p)
2099 {
2100 	return __normal_prio(p->policy, p->rt_priority, PRIO_TO_NICE(p->static_prio));
2101 }
2102 
2103 /*
2104  * Calculate the current priority, i.e. the priority
2105  * taken into account by the scheduler. This value might
2106  * be boosted by RT tasks, or might be boosted by
2107  * interactivity modifiers. Will be RT if the task got
2108  * RT-boosted. If not then it returns p->normal_prio.
2109  */
effective_prio(struct task_struct * p)2110 static int effective_prio(struct task_struct *p)
2111 {
2112 	p->normal_prio = normal_prio(p);
2113 	/*
2114 	 * If we are RT tasks or we were boosted to RT priority,
2115 	 * keep the priority unchanged. Otherwise, update priority
2116 	 * to the normal priority:
2117 	 */
2118 	if (!rt_prio(p->prio))
2119 		return p->normal_prio;
2120 	return p->prio;
2121 }
2122 
2123 /**
2124  * task_curr - is this task currently executing on a CPU?
2125  * @p: the task in question.
2126  *
2127  * Return: 1 if the task is currently executing. 0 otherwise.
2128  */
task_curr(const struct task_struct * p)2129 inline int task_curr(const struct task_struct *p)
2130 {
2131 	return cpu_curr(task_cpu(p)) == p;
2132 }
2133 
2134 /*
2135  * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
2136  * use the balance_callback list if you want balancing.
2137  *
2138  * this means any call to check_class_changed() must be followed by a call to
2139  * balance_callback().
2140  */
check_class_changed(struct rq * rq,struct task_struct * p,const struct sched_class * prev_class,int oldprio)2141 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
2142 				       const struct sched_class *prev_class,
2143 				       int oldprio)
2144 {
2145 	if (prev_class != p->sched_class) {
2146 		if (prev_class->switched_from)
2147 			prev_class->switched_from(rq, p);
2148 
2149 		p->sched_class->switched_to(rq, p);
2150 	} else if (oldprio != p->prio || dl_task(p))
2151 		p->sched_class->prio_changed(rq, p, oldprio);
2152 }
2153 
check_preempt_curr(struct rq * rq,struct task_struct * p,int flags)2154 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
2155 {
2156 	if (p->sched_class == rq->curr->sched_class)
2157 		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
2158 	else if (p->sched_class > rq->curr->sched_class)
2159 		resched_curr(rq);
2160 
2161 	/*
2162 	 * A queue event has occurred, and we're going to schedule.  In
2163 	 * this case, we can save a useless back to back clock update.
2164 	 */
2165 	if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
2166 		rq_clock_skip_update(rq);
2167 }
2168 EXPORT_SYMBOL_GPL(check_preempt_curr);
2169 
2170 #ifdef CONFIG_SMP
2171 
2172 static void
2173 __do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask, u32 flags);
2174 
2175 static int __set_cpus_allowed_ptr(struct task_struct *p,
2176 				  const struct cpumask *new_mask,
2177 				  u32 flags);
2178 
migrate_disable_switch(struct rq * rq,struct task_struct * p)2179 static void migrate_disable_switch(struct rq *rq, struct task_struct *p)
2180 {
2181 	if (likely(!p->migration_disabled))
2182 		return;
2183 
2184 	if (p->cpus_ptr != &p->cpus_mask)
2185 		return;
2186 
2187 	/*
2188 	 * Violates locking rules! see comment in __do_set_cpus_allowed().
2189 	 */
2190 	__do_set_cpus_allowed(p, cpumask_of(rq->cpu), SCA_MIGRATE_DISABLE);
2191 }
2192 
migrate_disable(void)2193 void migrate_disable(void)
2194 {
2195 	struct task_struct *p = current;
2196 
2197 	if (p->migration_disabled) {
2198 		p->migration_disabled++;
2199 		return;
2200 	}
2201 
2202 	preempt_disable();
2203 	this_rq()->nr_pinned++;
2204 	p->migration_disabled = 1;
2205 	preempt_enable();
2206 }
2207 EXPORT_SYMBOL_GPL(migrate_disable);
2208 
migrate_enable(void)2209 void migrate_enable(void)
2210 {
2211 	struct task_struct *p = current;
2212 
2213 	if (p->migration_disabled > 1) {
2214 		p->migration_disabled--;
2215 		return;
2216 	}
2217 
2218 	/*
2219 	 * Ensure stop_task runs either before or after this, and that
2220 	 * __set_cpus_allowed_ptr(SCA_MIGRATE_ENABLE) doesn't schedule().
2221 	 */
2222 	preempt_disable();
2223 	if (p->cpus_ptr != &p->cpus_mask)
2224 		__set_cpus_allowed_ptr(p, &p->cpus_mask, SCA_MIGRATE_ENABLE);
2225 	/*
2226 	 * Mustn't clear migration_disabled() until cpus_ptr points back at the
2227 	 * regular cpus_mask, otherwise things that race (eg.
2228 	 * select_fallback_rq) get confused.
2229 	 */
2230 	barrier();
2231 	p->migration_disabled = 0;
2232 	this_rq()->nr_pinned--;
2233 	preempt_enable();
2234 }
2235 EXPORT_SYMBOL_GPL(migrate_enable);
2236 
rq_has_pinned_tasks(struct rq * rq)2237 static inline bool rq_has_pinned_tasks(struct rq *rq)
2238 {
2239 	return rq->nr_pinned;
2240 }
2241 
2242 /*
2243  * Per-CPU kthreads are allowed to run on !active && online CPUs, see
2244  * __set_cpus_allowed_ptr() and select_fallback_rq().
2245  */
is_cpu_allowed(struct task_struct * p,int cpu)2246 static inline bool is_cpu_allowed(struct task_struct *p, int cpu)
2247 {
2248 	bool allowed = true;
2249 
2250 	/* When not in the task's cpumask, no point in looking further. */
2251 	if (!cpumask_test_cpu(cpu, p->cpus_ptr))
2252 		return false;
2253 
2254 	/* migrate_disabled() must be allowed to finish. */
2255 	if (is_migration_disabled(p))
2256 		return cpu_online(cpu);
2257 
2258 	/* check for all cases */
2259 	trace_android_rvh_is_cpu_allowed(p, cpu, &allowed);
2260 
2261 	/* Non kernel threads are not allowed during either online or offline. */
2262 	if (!(p->flags & PF_KTHREAD))
2263 		return cpu_active(cpu) && task_cpu_possible(cpu, p) && allowed;
2264 
2265 	/* KTHREAD_IS_PER_CPU is always allowed. */
2266 	if (kthread_is_per_cpu(p))
2267 		return cpu_online(cpu);
2268 
2269 	if (!allowed)
2270 		return false;
2271 
2272 	/* Regular kernel threads don't get to stay during offline. */
2273 	if (cpu_dying(cpu))
2274 		return false;
2275 
2276 	/* But are allowed during online. */
2277 	return cpu_online(cpu);
2278 }
2279 
2280 /*
2281  * This is how migration works:
2282  *
2283  * 1) we invoke migration_cpu_stop() on the target CPU using
2284  *    stop_one_cpu().
2285  * 2) stopper starts to run (implicitly forcing the migrated thread
2286  *    off the CPU)
2287  * 3) it checks whether the migrated task is still in the wrong runqueue.
2288  * 4) if it's in the wrong runqueue then the migration thread removes
2289  *    it and puts it into the right queue.
2290  * 5) stopper completes and stop_one_cpu() returns and the migration
2291  *    is done.
2292  */
2293 
2294 /*
2295  * move_queued_task - move a queued task to new rq.
2296  *
2297  * Returns (locked) new rq. Old rq's lock is released.
2298  */
move_queued_task(struct rq * rq,struct rq_flags * rf,struct task_struct * p,int new_cpu)2299 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
2300 				   struct task_struct *p, int new_cpu)
2301 {
2302 	int detached = 0;
2303 
2304 	lockdep_assert_rq_held(rq);
2305 
2306 	/*
2307 	 * The vendor hook may drop the lock temporarily, so
2308 	 * pass the rq flags to unpin lock. We expect the
2309 	 * rq lock to be held after return.
2310 	 */
2311 	trace_android_rvh_migrate_queued_task(rq, rf, p, new_cpu, &detached);
2312 	if (detached)
2313 		goto attach;
2314 
2315 	deactivate_task(rq, p, DEQUEUE_NOCLOCK);
2316 	set_task_cpu(p, new_cpu);
2317 
2318 attach:
2319 	rq_unlock(rq, rf);
2320 	rq = cpu_rq(new_cpu);
2321 
2322 	rq_lock(rq, rf);
2323 	BUG_ON(task_cpu(p) != new_cpu);
2324 	activate_task(rq, p, 0);
2325 	check_preempt_curr(rq, p, 0);
2326 
2327 	return rq;
2328 }
2329 
2330 struct migration_arg {
2331 	struct task_struct		*task;
2332 	int				dest_cpu;
2333 	struct set_affinity_pending	*pending;
2334 };
2335 
2336 /*
2337  * @refs: number of wait_for_completion()
2338  * @stop_pending: is @stop_work in use
2339  */
2340 struct set_affinity_pending {
2341 	refcount_t		refs;
2342 	unsigned int		stop_pending;
2343 	struct completion	done;
2344 	struct cpu_stop_work	stop_work;
2345 	struct migration_arg	arg;
2346 };
2347 
2348 /*
2349  * Move (not current) task off this CPU, onto the destination CPU. We're doing
2350  * this because either it can't run here any more (set_cpus_allowed()
2351  * away from this CPU, or CPU going down), or because we're
2352  * attempting to rebalance this task on exec (sched_exec).
2353  *
2354  * So we race with normal scheduler movements, but that's OK, as long
2355  * as the task is no longer on this CPU.
2356  */
__migrate_task(struct rq * rq,struct rq_flags * rf,struct task_struct * p,int dest_cpu)2357 struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
2358 			  struct task_struct *p, int dest_cpu)
2359 {
2360 	/* Affinity changed (again). */
2361 	if (!is_cpu_allowed(p, dest_cpu))
2362 		return rq;
2363 
2364 	update_rq_clock(rq);
2365 	rq = move_queued_task(rq, rf, p, dest_cpu);
2366 
2367 	return rq;
2368 }
2369 EXPORT_SYMBOL_GPL(__migrate_task);
2370 
2371 /*
2372  * migration_cpu_stop - this will be executed by a highprio stopper thread
2373  * and performs thread migration by bumping thread off CPU then
2374  * 'pushing' onto another runqueue.
2375  */
migration_cpu_stop(void * data)2376 static int migration_cpu_stop(void *data)
2377 {
2378 	struct migration_arg *arg = data;
2379 	struct set_affinity_pending *pending = arg->pending;
2380 	struct task_struct *p = arg->task;
2381 	struct rq *rq = this_rq();
2382 	bool complete = false;
2383 	struct rq_flags rf;
2384 
2385 	/*
2386 	 * The original target CPU might have gone down and we might
2387 	 * be on another CPU but it doesn't matter.
2388 	 */
2389 	local_irq_save(rf.flags);
2390 	/*
2391 	 * We need to explicitly wake pending tasks before running
2392 	 * __migrate_task() such that we will not miss enforcing cpus_ptr
2393 	 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
2394 	 */
2395 	flush_smp_call_function_from_idle();
2396 
2397 	raw_spin_lock(&p->pi_lock);
2398 	rq_lock(rq, &rf);
2399 
2400 	/*
2401 	 * If we were passed a pending, then ->stop_pending was set, thus
2402 	 * p->migration_pending must have remained stable.
2403 	 */
2404 	WARN_ON_ONCE(pending && pending != p->migration_pending);
2405 
2406 	/*
2407 	 * If task_rq(p) != rq, it cannot be migrated here, because we're
2408 	 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
2409 	 * we're holding p->pi_lock.
2410 	 */
2411 	if (task_rq(p) == rq) {
2412 		if (is_migration_disabled(p))
2413 			goto out;
2414 
2415 		if (pending) {
2416 			p->migration_pending = NULL;
2417 			complete = true;
2418 
2419 			if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask))
2420 				goto out;
2421 		}
2422 
2423 		if (task_on_rq_queued(p))
2424 			rq = __migrate_task(rq, &rf, p, arg->dest_cpu);
2425 		else
2426 			p->wake_cpu = arg->dest_cpu;
2427 
2428 		/*
2429 		 * XXX __migrate_task() can fail, at which point we might end
2430 		 * up running on a dodgy CPU, AFAICT this can only happen
2431 		 * during CPU hotplug, at which point we'll get pushed out
2432 		 * anyway, so it's probably not a big deal.
2433 		 */
2434 
2435 	} else if (pending) {
2436 		/*
2437 		 * This happens when we get migrated between migrate_enable()'s
2438 		 * preempt_enable() and scheduling the stopper task. At that
2439 		 * point we're a regular task again and not current anymore.
2440 		 *
2441 		 * A !PREEMPT kernel has a giant hole here, which makes it far
2442 		 * more likely.
2443 		 */
2444 
2445 		/*
2446 		 * The task moved before the stopper got to run. We're holding
2447 		 * ->pi_lock, so the allowed mask is stable - if it got
2448 		 * somewhere allowed, we're done.
2449 		 */
2450 		if (cpumask_test_cpu(task_cpu(p), p->cpus_ptr)) {
2451 			p->migration_pending = NULL;
2452 			complete = true;
2453 			goto out;
2454 		}
2455 
2456 		/*
2457 		 * When migrate_enable() hits a rq mis-match we can't reliably
2458 		 * determine is_migration_disabled() and so have to chase after
2459 		 * it.
2460 		 */
2461 		WARN_ON_ONCE(!pending->stop_pending);
2462 		preempt_disable();
2463 		task_rq_unlock(rq, p, &rf);
2464 		stop_one_cpu_nowait(task_cpu(p), migration_cpu_stop,
2465 				    &pending->arg, &pending->stop_work);
2466 		preempt_enable();
2467 		return 0;
2468 	}
2469 out:
2470 	if (pending)
2471 		pending->stop_pending = false;
2472 	task_rq_unlock(rq, p, &rf);
2473 
2474 	if (complete)
2475 		complete_all(&pending->done);
2476 
2477 	return 0;
2478 }
2479 
push_cpu_stop(void * arg)2480 int push_cpu_stop(void *arg)
2481 {
2482 	struct rq *lowest_rq = NULL, *rq = this_rq();
2483 	struct task_struct *p = arg;
2484 
2485 	raw_spin_lock_irq(&p->pi_lock);
2486 	raw_spin_rq_lock(rq);
2487 
2488 	if (task_rq(p) != rq)
2489 		goto out_unlock;
2490 
2491 	if (is_migration_disabled(p)) {
2492 		p->migration_flags |= MDF_PUSH;
2493 		goto out_unlock;
2494 	}
2495 
2496 	p->migration_flags &= ~MDF_PUSH;
2497 
2498 	if (p->sched_class->find_lock_rq)
2499 		lowest_rq = p->sched_class->find_lock_rq(p, rq);
2500 
2501 	if (!lowest_rq)
2502 		goto out_unlock;
2503 
2504 	// XXX validate p is still the highest prio task
2505 	if (task_rq(p) == rq) {
2506 		deactivate_task(rq, p, 0);
2507 		set_task_cpu(p, lowest_rq->cpu);
2508 		activate_task(lowest_rq, p, 0);
2509 		resched_curr(lowest_rq);
2510 	}
2511 
2512 	double_unlock_balance(rq, lowest_rq);
2513 
2514 out_unlock:
2515 	rq->push_busy = false;
2516 	raw_spin_rq_unlock(rq);
2517 	raw_spin_unlock_irq(&p->pi_lock);
2518 
2519 	put_task_struct(p);
2520 	return 0;
2521 }
2522 EXPORT_SYMBOL_GPL(push_cpu_stop);
2523 
2524 /*
2525  * sched_class::set_cpus_allowed must do the below, but is not required to
2526  * actually call this function.
2527  */
set_cpus_allowed_common(struct task_struct * p,const struct cpumask * new_mask,u32 flags)2528 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask, u32 flags)
2529 {
2530 	if (flags & (SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) {
2531 		p->cpus_ptr = new_mask;
2532 		return;
2533 	}
2534 
2535 	cpumask_copy(&p->cpus_mask, new_mask);
2536 	p->nr_cpus_allowed = cpumask_weight(new_mask);
2537 	trace_android_rvh_set_cpus_allowed_comm(p, new_mask);
2538 }
2539 
2540 static void
__do_set_cpus_allowed(struct task_struct * p,const struct cpumask * new_mask,u32 flags)2541 __do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask, u32 flags)
2542 {
2543 	struct rq *rq = task_rq(p);
2544 	bool queued, running;
2545 
2546 	/*
2547 	 * This here violates the locking rules for affinity, since we're only
2548 	 * supposed to change these variables while holding both rq->lock and
2549 	 * p->pi_lock.
2550 	 *
2551 	 * HOWEVER, it magically works, because ttwu() is the only code that
2552 	 * accesses these variables under p->pi_lock and only does so after
2553 	 * smp_cond_load_acquire(&p->on_cpu, !VAL), and we're in __schedule()
2554 	 * before finish_task().
2555 	 *
2556 	 * XXX do further audits, this smells like something putrid.
2557 	 */
2558 	if (flags & SCA_MIGRATE_DISABLE)
2559 		SCHED_WARN_ON(!p->on_cpu);
2560 	else
2561 		lockdep_assert_held(&p->pi_lock);
2562 
2563 	queued = task_on_rq_queued(p);
2564 	running = task_current(rq, p);
2565 
2566 	if (queued) {
2567 		/*
2568 		 * Because __kthread_bind() calls this on blocked tasks without
2569 		 * holding rq->lock.
2570 		 */
2571 		lockdep_assert_rq_held(rq);
2572 		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
2573 	}
2574 	if (running)
2575 		put_prev_task(rq, p);
2576 
2577 	p->sched_class->set_cpus_allowed(p, new_mask, flags);
2578 
2579 	if (queued)
2580 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
2581 	if (running)
2582 		set_next_task(rq, p);
2583 }
2584 
do_set_cpus_allowed(struct task_struct * p,const struct cpumask * new_mask)2585 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
2586 {
2587 	__do_set_cpus_allowed(p, new_mask, 0);
2588 }
2589 
dup_user_cpus_ptr(struct task_struct * dst,struct task_struct * src,int node)2590 int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src,
2591 		      int node)
2592 {
2593 	cpumask_t *user_mask;
2594 	unsigned long flags;
2595 
2596 	/*
2597 	 * Always clear dst->user_cpus_ptr first as their user_cpus_ptr's
2598 	 * may differ by now due to racing.
2599 	 */
2600 	dst->user_cpus_ptr = NULL;
2601 
2602 	/*
2603 	 * This check is racy and losing the race is a valid situation.
2604 	 * It is not worth the extra overhead of taking the pi_lock on
2605 	 * every fork/clone.
2606 	 */
2607 	if (data_race(!src->user_cpus_ptr))
2608 		return 0;
2609 
2610 	user_mask = kmalloc_node(cpumask_size(), GFP_KERNEL, node);
2611 	if (!user_mask)
2612 		return -ENOMEM;
2613 
2614 	/*
2615 	 * Use pi_lock to protect content of user_cpus_ptr
2616 	 *
2617 	 * Though unlikely, user_cpus_ptr can be reset to NULL by a concurrent
2618 	 * do_set_cpus_allowed().
2619 	 */
2620 	raw_spin_lock_irqsave(&src->pi_lock, flags);
2621 	if (src->user_cpus_ptr) {
2622 		swap(dst->user_cpus_ptr, user_mask);
2623 		cpumask_copy(dst->user_cpus_ptr, src->user_cpus_ptr);
2624 	}
2625 	raw_spin_unlock_irqrestore(&src->pi_lock, flags);
2626 
2627 	if (unlikely(user_mask))
2628 		kfree(user_mask);
2629 
2630 	return 0;
2631 }
2632 
clear_user_cpus_ptr(struct task_struct * p)2633 static inline struct cpumask *clear_user_cpus_ptr(struct task_struct *p)
2634 {
2635 	struct cpumask *user_mask = NULL;
2636 
2637 	swap(p->user_cpus_ptr, user_mask);
2638 
2639 	return user_mask;
2640 }
2641 
release_user_cpus_ptr(struct task_struct * p)2642 void release_user_cpus_ptr(struct task_struct *p)
2643 {
2644 	kfree(clear_user_cpus_ptr(p));
2645 }
2646 
2647 /*
2648  * This function is wildly self concurrent; here be dragons.
2649  *
2650  *
2651  * When given a valid mask, __set_cpus_allowed_ptr() must block until the
2652  * designated task is enqueued on an allowed CPU. If that task is currently
2653  * running, we have to kick it out using the CPU stopper.
2654  *
2655  * Migrate-Disable comes along and tramples all over our nice sandcastle.
2656  * Consider:
2657  *
2658  *     Initial conditions: P0->cpus_mask = [0, 1]
2659  *
2660  *     P0@CPU0                  P1
2661  *
2662  *     migrate_disable();
2663  *     <preempted>
2664  *                              set_cpus_allowed_ptr(P0, [1]);
2665  *
2666  * P1 *cannot* return from this set_cpus_allowed_ptr() call until P0 executes
2667  * its outermost migrate_enable() (i.e. it exits its Migrate-Disable region).
2668  * This means we need the following scheme:
2669  *
2670  *     P0@CPU0                  P1
2671  *
2672  *     migrate_disable();
2673  *     <preempted>
2674  *                              set_cpus_allowed_ptr(P0, [1]);
2675  *                                <blocks>
2676  *     <resumes>
2677  *     migrate_enable();
2678  *       __set_cpus_allowed_ptr();
2679  *       <wakes local stopper>
2680  *                         `--> <woken on migration completion>
2681  *
2682  * Now the fun stuff: there may be several P1-like tasks, i.e. multiple
2683  * concurrent set_cpus_allowed_ptr(P0, [*]) calls. CPU affinity changes of any
2684  * task p are serialized by p->pi_lock, which we can leverage: the one that
2685  * should come into effect at the end of the Migrate-Disable region is the last
2686  * one. This means we only need to track a single cpumask (i.e. p->cpus_mask),
2687  * but we still need to properly signal those waiting tasks at the appropriate
2688  * moment.
2689  *
2690  * This is implemented using struct set_affinity_pending. The first
2691  * __set_cpus_allowed_ptr() caller within a given Migrate-Disable region will
2692  * setup an instance of that struct and install it on the targeted task_struct.
2693  * Any and all further callers will reuse that instance. Those then wait for
2694  * a completion signaled at the tail of the CPU stopper callback (1), triggered
2695  * on the end of the Migrate-Disable region (i.e. outermost migrate_enable()).
2696  *
2697  *
2698  * (1) In the cases covered above. There is one more where the completion is
2699  * signaled within affine_move_task() itself: when a subsequent affinity request
2700  * occurs after the stopper bailed out due to the targeted task still being
2701  * Migrate-Disable. Consider:
2702  *
2703  *     Initial conditions: P0->cpus_mask = [0, 1]
2704  *
2705  *     CPU0		  P1				P2
2706  *     <P0>
2707  *       migrate_disable();
2708  *       <preempted>
2709  *                        set_cpus_allowed_ptr(P0, [1]);
2710  *                          <blocks>
2711  *     <migration/0>
2712  *       migration_cpu_stop()
2713  *         is_migration_disabled()
2714  *           <bails>
2715  *                                                       set_cpus_allowed_ptr(P0, [0, 1]);
2716  *                                                         <signal completion>
2717  *                          <awakes>
2718  *
2719  * Note that the above is safe vs a concurrent migrate_enable(), as any
2720  * pending affinity completion is preceded by an uninstallation of
2721  * p->migration_pending done with p->pi_lock held.
2722  */
affine_move_task(struct rq * rq,struct task_struct * p,struct rq_flags * rf,int dest_cpu,unsigned int flags)2723 static int affine_move_task(struct rq *rq, struct task_struct *p, struct rq_flags *rf,
2724 			    int dest_cpu, unsigned int flags)
2725 {
2726 	struct set_affinity_pending my_pending = { }, *pending = NULL;
2727 	bool stop_pending, complete = false;
2728 
2729 	/* Can the task run on the task's current CPU? If so, we're done */
2730 	if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask)) {
2731 		struct task_struct *push_task = NULL;
2732 
2733 		if ((flags & SCA_MIGRATE_ENABLE) &&
2734 		    (p->migration_flags & MDF_PUSH) && !rq->push_busy) {
2735 			rq->push_busy = true;
2736 			push_task = get_task_struct(p);
2737 		}
2738 
2739 		/*
2740 		 * If there are pending waiters, but no pending stop_work,
2741 		 * then complete now.
2742 		 */
2743 		pending = p->migration_pending;
2744 		if (pending && !pending->stop_pending) {
2745 			p->migration_pending = NULL;
2746 			complete = true;
2747 		}
2748 
2749 		preempt_disable();
2750 		task_rq_unlock(rq, p, rf);
2751 		if (push_task) {
2752 			stop_one_cpu_nowait(rq->cpu, push_cpu_stop,
2753 					    p, &rq->push_work);
2754 		}
2755 		preempt_enable();
2756 
2757 		if (complete)
2758 			complete_all(&pending->done);
2759 
2760 		return 0;
2761 	}
2762 
2763 	if (!(flags & SCA_MIGRATE_ENABLE)) {
2764 		/* serialized by p->pi_lock */
2765 		if (!p->migration_pending) {
2766 			/* Install the request */
2767 			refcount_set(&my_pending.refs, 1);
2768 			init_completion(&my_pending.done);
2769 			my_pending.arg = (struct migration_arg) {
2770 				.task = p,
2771 				.dest_cpu = dest_cpu,
2772 				.pending = &my_pending,
2773 			};
2774 
2775 			p->migration_pending = &my_pending;
2776 		} else {
2777 			pending = p->migration_pending;
2778 			refcount_inc(&pending->refs);
2779 			/*
2780 			 * Affinity has changed, but we've already installed a
2781 			 * pending. migration_cpu_stop() *must* see this, else
2782 			 * we risk a completion of the pending despite having a
2783 			 * task on a disallowed CPU.
2784 			 *
2785 			 * Serialized by p->pi_lock, so this is safe.
2786 			 */
2787 			pending->arg.dest_cpu = dest_cpu;
2788 		}
2789 	}
2790 	pending = p->migration_pending;
2791 	/*
2792 	 * - !MIGRATE_ENABLE:
2793 	 *   we'll have installed a pending if there wasn't one already.
2794 	 *
2795 	 * - MIGRATE_ENABLE:
2796 	 *   we're here because the current CPU isn't matching anymore,
2797 	 *   the only way that can happen is because of a concurrent
2798 	 *   set_cpus_allowed_ptr() call, which should then still be
2799 	 *   pending completion.
2800 	 *
2801 	 * Either way, we really should have a @pending here.
2802 	 */
2803 	if (WARN_ON_ONCE(!pending)) {
2804 		task_rq_unlock(rq, p, rf);
2805 		return -EINVAL;
2806 	}
2807 
2808 	if (task_running(rq, p) || READ_ONCE(p->__state) == TASK_WAKING) {
2809 		/*
2810 		 * MIGRATE_ENABLE gets here because 'p == current', but for
2811 		 * anything else we cannot do is_migration_disabled(), punt
2812 		 * and have the stopper function handle it all race-free.
2813 		 */
2814 		stop_pending = pending->stop_pending;
2815 		if (!stop_pending)
2816 			pending->stop_pending = true;
2817 
2818 		if (flags & SCA_MIGRATE_ENABLE)
2819 			p->migration_flags &= ~MDF_PUSH;
2820 
2821 		preempt_disable();
2822 		task_rq_unlock(rq, p, rf);
2823 		if (!stop_pending) {
2824 			stop_one_cpu_nowait(cpu_of(rq), migration_cpu_stop,
2825 					    &pending->arg, &pending->stop_work);
2826 		}
2827 		preempt_enable();
2828 
2829 		if (flags & SCA_MIGRATE_ENABLE)
2830 			return 0;
2831 	} else {
2832 
2833 		if (!is_migration_disabled(p)) {
2834 			if (task_on_rq_queued(p))
2835 				rq = move_queued_task(rq, rf, p, dest_cpu);
2836 
2837 			if (!pending->stop_pending) {
2838 				p->migration_pending = NULL;
2839 				complete = true;
2840 			}
2841 		}
2842 		task_rq_unlock(rq, p, rf);
2843 
2844 		if (complete)
2845 			complete_all(&pending->done);
2846 	}
2847 
2848 	wait_for_completion(&pending->done);
2849 
2850 	if (refcount_dec_and_test(&pending->refs))
2851 		wake_up_var(&pending->refs); /* No UaF, just an address */
2852 
2853 	/*
2854 	 * Block the original owner of &pending until all subsequent callers
2855 	 * have seen the completion and decremented the refcount
2856 	 */
2857 	wait_var_event(&my_pending.refs, !refcount_read(&my_pending.refs));
2858 
2859 	/* ARGH */
2860 	WARN_ON_ONCE(my_pending.stop_pending);
2861 
2862 	return 0;
2863 }
2864 
2865 /*
2866  * Called with both p->pi_lock and rq->lock held; drops both before returning.
2867  */
__set_cpus_allowed_ptr_locked(struct task_struct * p,const struct cpumask * new_mask,u32 flags,struct rq * rq,struct rq_flags * rf)2868 static int __set_cpus_allowed_ptr_locked(struct task_struct *p,
2869 					 const struct cpumask *new_mask,
2870 					 u32 flags,
2871 					 struct rq *rq,
2872 					 struct rq_flags *rf)
2873 	__releases(rq->lock)
2874 	__releases(p->pi_lock)
2875 {
2876 	const struct cpumask *cpu_allowed_mask = task_cpu_possible_mask(p);
2877 	const struct cpumask *cpu_valid_mask = cpu_active_mask;
2878 	bool kthread = p->flags & PF_KTHREAD;
2879 	struct cpumask *user_mask = NULL;
2880 	unsigned int dest_cpu;
2881 	int ret = 0;
2882 
2883 	update_rq_clock(rq);
2884 
2885 	if (kthread || is_migration_disabled(p)) {
2886 		/*
2887 		 * Kernel threads are allowed on online && !active CPUs,
2888 		 * however, during cpu-hot-unplug, even these might get pushed
2889 		 * away if not KTHREAD_IS_PER_CPU.
2890 		 *
2891 		 * Specifically, migration_disabled() tasks must not fail the
2892 		 * cpumask_any_and_distribute() pick below, esp. so on
2893 		 * SCA_MIGRATE_ENABLE, otherwise we'll not call
2894 		 * set_cpus_allowed_common() and actually reset p->cpus_ptr.
2895 		 */
2896 		cpu_valid_mask = cpu_online_mask;
2897 	}
2898 
2899 	if (!kthread && !cpumask_subset(new_mask, cpu_allowed_mask)) {
2900 		ret = -EINVAL;
2901 		goto out;
2902 	}
2903 
2904 	/*
2905 	 * Must re-check here, to close a race against __kthread_bind(),
2906 	 * sched_setaffinity() is not guaranteed to observe the flag.
2907 	 */
2908 	if ((flags & SCA_CHECK) && (p->flags & PF_NO_SETAFFINITY)) {
2909 		ret = -EINVAL;
2910 		goto out;
2911 	}
2912 
2913 	if (!(flags & SCA_MIGRATE_ENABLE)) {
2914 		if (cpumask_equal(&p->cpus_mask, new_mask))
2915 			goto out;
2916 
2917 		if (WARN_ON_ONCE(p == current &&
2918 				 is_migration_disabled(p) &&
2919 				 !cpumask_test_cpu(task_cpu(p), new_mask))) {
2920 			ret = -EBUSY;
2921 			goto out;
2922 		}
2923 	}
2924 
2925 	/*
2926 	 * Picking a ~random cpu helps in cases where we are changing affinity
2927 	 * for groups of tasks (ie. cpuset), so that load balancing is not
2928 	 * immediately required to distribute the tasks within their new mask.
2929 	 */
2930 	dest_cpu = cpumask_any_and_distribute(cpu_valid_mask, new_mask);
2931 	trace_android_rvh_set_cpus_allowed_by_task(cpu_valid_mask, new_mask, p, &dest_cpu);
2932 
2933 	if (dest_cpu >= nr_cpu_ids) {
2934 		ret = -EINVAL;
2935 		goto out;
2936 	}
2937 
2938 	__do_set_cpus_allowed(p, new_mask, flags);
2939 
2940 	if (flags & SCA_USER)
2941 		user_mask = clear_user_cpus_ptr(p);
2942 
2943 	ret = affine_move_task(rq, p, rf, dest_cpu, flags);
2944 
2945 	kfree(user_mask);
2946 
2947 	return ret;
2948 
2949 out:
2950 	task_rq_unlock(rq, p, rf);
2951 
2952 	return ret;
2953 }
2954 
2955 /*
2956  * Change a given task's CPU affinity. Migrate the thread to a
2957  * proper CPU and schedule it away if the CPU it's executing on
2958  * is removed from the allowed bitmask.
2959  *
2960  * NOTE: the caller must have a valid reference to the task, the
2961  * task must not exit() & deallocate itself prematurely. The
2962  * call is not atomic; no spinlocks may be held.
2963  */
__set_cpus_allowed_ptr(struct task_struct * p,const struct cpumask * new_mask,u32 flags)2964 static int __set_cpus_allowed_ptr(struct task_struct *p,
2965 				  const struct cpumask *new_mask, u32 flags)
2966 {
2967 	struct rq_flags rf;
2968 	struct rq *rq;
2969 
2970 	rq = task_rq_lock(p, &rf);
2971 	return __set_cpus_allowed_ptr_locked(p, new_mask, flags, rq, &rf);
2972 }
2973 
set_cpus_allowed_ptr(struct task_struct * p,const struct cpumask * new_mask)2974 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
2975 {
2976 	return __set_cpus_allowed_ptr(p, new_mask, 0);
2977 }
2978 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
2979 
2980 /*
2981  * Change a given task's CPU affinity to the intersection of its current
2982  * affinity mask and @subset_mask, writing the resulting mask to @new_mask
2983  * and pointing @p->user_cpus_ptr to a copy of the old mask.
2984  * If the resulting mask is empty, leave the affinity unchanged and return
2985  * -EINVAL.
2986  */
restrict_cpus_allowed_ptr(struct task_struct * p,struct cpumask * new_mask,const struct cpumask * subset_mask)2987 static int restrict_cpus_allowed_ptr(struct task_struct *p,
2988 				     struct cpumask *new_mask,
2989 				     const struct cpumask *subset_mask)
2990 {
2991 	struct cpumask *user_mask = NULL;
2992 	struct rq_flags rf;
2993 	struct rq *rq;
2994 	int err;
2995 
2996 	if (!p->user_cpus_ptr) {
2997 		user_mask = kmalloc(cpumask_size(), GFP_KERNEL);
2998 		if (!user_mask)
2999 			return -ENOMEM;
3000 	}
3001 
3002 	rq = task_rq_lock(p, &rf);
3003 
3004 	/*
3005 	 * Forcefully restricting the affinity of a deadline task is
3006 	 * likely to cause problems, so fail and noisily override the
3007 	 * mask entirely.
3008 	 */
3009 	if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
3010 		err = -EPERM;
3011 		goto err_unlock;
3012 	}
3013 
3014 	if (!cpumask_and(new_mask, &p->cpus_mask, subset_mask)) {
3015 		err = -EINVAL;
3016 		goto err_unlock;
3017 	}
3018 
3019 	/*
3020 	 * We're about to butcher the task affinity, so keep track of what
3021 	 * the user asked for in case we're able to restore it later on.
3022 	 */
3023 	if (user_mask) {
3024 		cpumask_copy(user_mask, p->cpus_ptr);
3025 		p->user_cpus_ptr = user_mask;
3026 	}
3027 
3028 	return __set_cpus_allowed_ptr_locked(p, new_mask, 0, rq, &rf);
3029 
3030 err_unlock:
3031 	task_rq_unlock(rq, p, &rf);
3032 	kfree(user_mask);
3033 	return err;
3034 }
3035 
3036 /*
3037  * Restrict the CPU affinity of task @p so that it is a subset of
3038  * task_cpu_possible_mask() and point @p->user_cpu_ptr to a copy of the
3039  * old affinity mask. If the resulting mask is empty, we warn and walk
3040  * up the cpuset hierarchy until we find a suitable mask.
3041  */
force_compatible_cpus_allowed_ptr(struct task_struct * p)3042 void force_compatible_cpus_allowed_ptr(struct task_struct *p)
3043 {
3044 	cpumask_var_t new_mask;
3045 	const struct cpumask *override_mask = task_cpu_possible_mask(p);
3046 
3047 	alloc_cpumask_var(&new_mask, GFP_KERNEL);
3048 
3049 	/*
3050 	 * __migrate_task() can fail silently in the face of concurrent
3051 	 * offlining of the chosen destination CPU, so take the hotplug
3052 	 * lock to ensure that the migration succeeds.
3053 	 */
3054 	trace_android_vh_force_compatible_pre(NULL);
3055 	cpus_read_lock();
3056 	if (!cpumask_available(new_mask))
3057 		goto out_set_mask;
3058 
3059 	if (!restrict_cpus_allowed_ptr(p, new_mask, override_mask))
3060 		goto out_free_mask;
3061 
3062 	/*
3063 	 * We failed to find a valid subset of the affinity mask for the
3064 	 * task, so override it based on its cpuset hierarchy.
3065 	 */
3066 	cpuset_cpus_allowed(p, new_mask);
3067 	override_mask = new_mask;
3068 
3069 out_set_mask:
3070 	if (printk_ratelimit()) {
3071 		printk_deferred("Overriding affinity for process %d (%s) to CPUs %*pbl\n",
3072 				task_pid_nr(p), p->comm,
3073 				cpumask_pr_args(override_mask));
3074 	}
3075 
3076 	WARN_ON(set_cpus_allowed_ptr(p, override_mask));
3077 out_free_mask:
3078 	cpus_read_unlock();
3079 	trace_android_vh_force_compatible_post(NULL);
3080 	free_cpumask_var(new_mask);
3081 }
3082 
3083 static int
3084 __sched_setaffinity(struct task_struct *p, const struct cpumask *mask);
3085 
3086 /*
3087  * Restore the affinity of a task @p which was previously restricted by a
3088  * call to force_compatible_cpus_allowed_ptr(). This will clear (and free)
3089  * @p->user_cpus_ptr.
3090  *
3091  * It is the caller's responsibility to serialise this with any calls to
3092  * force_compatible_cpus_allowed_ptr(@p).
3093  */
relax_compatible_cpus_allowed_ptr(struct task_struct * p)3094 void relax_compatible_cpus_allowed_ptr(struct task_struct *p)
3095 {
3096 	struct cpumask *user_mask = p->user_cpus_ptr;
3097 	unsigned long flags;
3098 
3099 	/*
3100 	 * Try to restore the old affinity mask. If this fails, then
3101 	 * we free the mask explicitly to avoid it being inherited across
3102 	 * a subsequent fork().
3103 	 */
3104 	if (!user_mask || !__sched_setaffinity(p, user_mask))
3105 		return;
3106 
3107 	raw_spin_lock_irqsave(&p->pi_lock, flags);
3108 	user_mask = clear_user_cpus_ptr(p);
3109 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3110 
3111 	kfree(user_mask);
3112 }
3113 
set_task_cpu(struct task_struct * p,unsigned int new_cpu)3114 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
3115 {
3116 #ifdef CONFIG_SCHED_DEBUG
3117 	unsigned int state = READ_ONCE(p->__state);
3118 
3119 	/*
3120 	 * We should never call set_task_cpu() on a blocked task,
3121 	 * ttwu() will sort out the placement.
3122 	 */
3123 	WARN_ON_ONCE(state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq);
3124 
3125 	/*
3126 	 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
3127 	 * because schedstat_wait_{start,end} rebase migrating task's wait_start
3128 	 * time relying on p->on_rq.
3129 	 */
3130 	WARN_ON_ONCE(state == TASK_RUNNING &&
3131 		     p->sched_class == &fair_sched_class &&
3132 		     (p->on_rq && !task_on_rq_migrating(p)));
3133 
3134 #ifdef CONFIG_LOCKDEP
3135 	/*
3136 	 * The caller should hold either p->pi_lock or rq->lock, when changing
3137 	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
3138 	 *
3139 	 * sched_move_task() holds both and thus holding either pins the cgroup,
3140 	 * see task_group().
3141 	 *
3142 	 * Furthermore, all task_rq users should acquire both locks, see
3143 	 * task_rq_lock().
3144 	 */
3145 	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
3146 				      lockdep_is_held(__rq_lockp(task_rq(p)))));
3147 #endif
3148 	/*
3149 	 * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
3150 	 */
3151 	WARN_ON_ONCE(!cpu_online(new_cpu));
3152 
3153 	WARN_ON_ONCE(is_migration_disabled(p));
3154 #endif
3155 
3156 	trace_sched_migrate_task(p, new_cpu);
3157 
3158 	if (task_cpu(p) != new_cpu) {
3159 		if (p->sched_class->migrate_task_rq)
3160 			p->sched_class->migrate_task_rq(p, new_cpu);
3161 		p->se.nr_migrations++;
3162 		rseq_migrate(p);
3163 		perf_event_task_migrate(p);
3164 		trace_android_rvh_set_task_cpu(p, new_cpu);
3165 	}
3166 
3167 	__set_task_cpu(p, new_cpu);
3168 }
3169 EXPORT_SYMBOL_GPL(set_task_cpu);
3170 
__migrate_swap_task(struct task_struct * p,int cpu)3171 static void __migrate_swap_task(struct task_struct *p, int cpu)
3172 {
3173 	if (task_on_rq_queued(p)) {
3174 		struct rq *src_rq, *dst_rq;
3175 		struct rq_flags srf, drf;
3176 
3177 		src_rq = task_rq(p);
3178 		dst_rq = cpu_rq(cpu);
3179 
3180 		rq_pin_lock(src_rq, &srf);
3181 		rq_pin_lock(dst_rq, &drf);
3182 
3183 		deactivate_task(src_rq, p, 0);
3184 		set_task_cpu(p, cpu);
3185 		activate_task(dst_rq, p, 0);
3186 		check_preempt_curr(dst_rq, p, 0);
3187 
3188 		rq_unpin_lock(dst_rq, &drf);
3189 		rq_unpin_lock(src_rq, &srf);
3190 
3191 	} else {
3192 		/*
3193 		 * Task isn't running anymore; make it appear like we migrated
3194 		 * it before it went to sleep. This means on wakeup we make the
3195 		 * previous CPU our target instead of where it really is.
3196 		 */
3197 		p->wake_cpu = cpu;
3198 	}
3199 }
3200 
3201 struct migration_swap_arg {
3202 	struct task_struct *src_task, *dst_task;
3203 	int src_cpu, dst_cpu;
3204 };
3205 
migrate_swap_stop(void * data)3206 static int migrate_swap_stop(void *data)
3207 {
3208 	struct migration_swap_arg *arg = data;
3209 	struct rq *src_rq, *dst_rq;
3210 	int ret = -EAGAIN;
3211 
3212 	if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
3213 		return -EAGAIN;
3214 
3215 	src_rq = cpu_rq(arg->src_cpu);
3216 	dst_rq = cpu_rq(arg->dst_cpu);
3217 
3218 	double_raw_lock(&arg->src_task->pi_lock,
3219 			&arg->dst_task->pi_lock);
3220 	double_rq_lock(src_rq, dst_rq);
3221 
3222 	if (task_cpu(arg->dst_task) != arg->dst_cpu)
3223 		goto unlock;
3224 
3225 	if (task_cpu(arg->src_task) != arg->src_cpu)
3226 		goto unlock;
3227 
3228 	if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr))
3229 		goto unlock;
3230 
3231 	if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr))
3232 		goto unlock;
3233 
3234 	__migrate_swap_task(arg->src_task, arg->dst_cpu);
3235 	__migrate_swap_task(arg->dst_task, arg->src_cpu);
3236 
3237 	ret = 0;
3238 
3239 unlock:
3240 	double_rq_unlock(src_rq, dst_rq);
3241 	raw_spin_unlock(&arg->dst_task->pi_lock);
3242 	raw_spin_unlock(&arg->src_task->pi_lock);
3243 
3244 	return ret;
3245 }
3246 
3247 /*
3248  * Cross migrate two tasks
3249  */
migrate_swap(struct task_struct * cur,struct task_struct * p,int target_cpu,int curr_cpu)3250 int migrate_swap(struct task_struct *cur, struct task_struct *p,
3251 		int target_cpu, int curr_cpu)
3252 {
3253 	struct migration_swap_arg arg;
3254 	int ret = -EINVAL;
3255 
3256 	arg = (struct migration_swap_arg){
3257 		.src_task = cur,
3258 		.src_cpu = curr_cpu,
3259 		.dst_task = p,
3260 		.dst_cpu = target_cpu,
3261 	};
3262 
3263 	if (arg.src_cpu == arg.dst_cpu)
3264 		goto out;
3265 
3266 	/*
3267 	 * These three tests are all lockless; this is OK since all of them
3268 	 * will be re-checked with proper locks held further down the line.
3269 	 */
3270 	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
3271 		goto out;
3272 
3273 	if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr))
3274 		goto out;
3275 
3276 	if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr))
3277 		goto out;
3278 
3279 	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
3280 	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
3281 
3282 out:
3283 	return ret;
3284 }
3285 EXPORT_SYMBOL_GPL(migrate_swap);
3286 
3287 /*
3288  * wait_task_inactive - wait for a thread to unschedule.
3289  *
3290  * If @match_state is nonzero, it's the @p->state value just checked and
3291  * not expected to change.  If it changes, i.e. @p might have woken up,
3292  * then return zero.  When we succeed in waiting for @p to be off its CPU,
3293  * we return a positive number (its total switch count).  If a second call
3294  * a short while later returns the same number, the caller can be sure that
3295  * @p has remained unscheduled the whole time.
3296  *
3297  * The caller must ensure that the task *will* unschedule sometime soon,
3298  * else this function might spin for a *long* time. This function can't
3299  * be called with interrupts off, or it may introduce deadlock with
3300  * smp_call_function() if an IPI is sent by the same process we are
3301  * waiting to become inactive.
3302  */
wait_task_inactive(struct task_struct * p,unsigned int match_state)3303 unsigned long wait_task_inactive(struct task_struct *p, unsigned int match_state)
3304 {
3305 	int running, queued;
3306 	struct rq_flags rf;
3307 	unsigned long ncsw;
3308 	struct rq *rq;
3309 
3310 	for (;;) {
3311 		/*
3312 		 * We do the initial early heuristics without holding
3313 		 * any task-queue locks at all. We'll only try to get
3314 		 * the runqueue lock when things look like they will
3315 		 * work out!
3316 		 */
3317 		rq = task_rq(p);
3318 
3319 		/*
3320 		 * If the task is actively running on another CPU
3321 		 * still, just relax and busy-wait without holding
3322 		 * any locks.
3323 		 *
3324 		 * NOTE! Since we don't hold any locks, it's not
3325 		 * even sure that "rq" stays as the right runqueue!
3326 		 * But we don't care, since "task_running()" will
3327 		 * return false if the runqueue has changed and p
3328 		 * is actually now running somewhere else!
3329 		 */
3330 		while (task_running(rq, p)) {
3331 			if (match_state && unlikely(READ_ONCE(p->__state) != match_state))
3332 				return 0;
3333 			cpu_relax();
3334 		}
3335 
3336 		/*
3337 		 * Ok, time to look more closely! We need the rq
3338 		 * lock now, to be *sure*. If we're wrong, we'll
3339 		 * just go back and repeat.
3340 		 */
3341 		rq = task_rq_lock(p, &rf);
3342 		trace_sched_wait_task(p);
3343 		running = task_running(rq, p);
3344 		queued = task_on_rq_queued(p);
3345 		ncsw = 0;
3346 		if (!match_state || READ_ONCE(p->__state) == match_state)
3347 			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
3348 		task_rq_unlock(rq, p, &rf);
3349 
3350 		/*
3351 		 * If it changed from the expected state, bail out now.
3352 		 */
3353 		if (unlikely(!ncsw))
3354 			break;
3355 
3356 		/*
3357 		 * Was it really running after all now that we
3358 		 * checked with the proper locks actually held?
3359 		 *
3360 		 * Oops. Go back and try again..
3361 		 */
3362 		if (unlikely(running)) {
3363 			cpu_relax();
3364 			continue;
3365 		}
3366 
3367 		/*
3368 		 * It's not enough that it's not actively running,
3369 		 * it must be off the runqueue _entirely_, and not
3370 		 * preempted!
3371 		 *
3372 		 * So if it was still runnable (but just not actively
3373 		 * running right now), it's preempted, and we should
3374 		 * yield - it could be a while.
3375 		 */
3376 		if (unlikely(queued)) {
3377 			ktime_t to = NSEC_PER_SEC / HZ;
3378 
3379 			set_current_state(TASK_UNINTERRUPTIBLE);
3380 			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
3381 			continue;
3382 		}
3383 
3384 		/*
3385 		 * Ahh, all good. It wasn't running, and it wasn't
3386 		 * runnable, which means that it will never become
3387 		 * running in the future either. We're all done!
3388 		 */
3389 		break;
3390 	}
3391 
3392 	return ncsw;
3393 }
3394 
3395 /***
3396  * kick_process - kick a running thread to enter/exit the kernel
3397  * @p: the to-be-kicked thread
3398  *
3399  * Cause a process which is running on another CPU to enter
3400  * kernel-mode, without any delay. (to get signals handled.)
3401  *
3402  * NOTE: this function doesn't have to take the runqueue lock,
3403  * because all it wants to ensure is that the remote task enters
3404  * the kernel. If the IPI races and the task has been migrated
3405  * to another CPU then no harm is done and the purpose has been
3406  * achieved as well.
3407  */
kick_process(struct task_struct * p)3408 void kick_process(struct task_struct *p)
3409 {
3410 	int cpu;
3411 
3412 	preempt_disable();
3413 	cpu = task_cpu(p);
3414 	if ((cpu != smp_processor_id()) && task_curr(p))
3415 		smp_send_reschedule(cpu);
3416 	preempt_enable();
3417 }
3418 EXPORT_SYMBOL_GPL(kick_process);
3419 
3420 /*
3421  * ->cpus_ptr is protected by both rq->lock and p->pi_lock
3422  *
3423  * A few notes on cpu_active vs cpu_online:
3424  *
3425  *  - cpu_active must be a subset of cpu_online
3426  *
3427  *  - on CPU-up we allow per-CPU kthreads on the online && !active CPU,
3428  *    see __set_cpus_allowed_ptr(). At this point the newly online
3429  *    CPU isn't yet part of the sched domains, and balancing will not
3430  *    see it.
3431  *
3432  *  - on CPU-down we clear cpu_active() to mask the sched domains and
3433  *    avoid the load balancer to place new tasks on the to be removed
3434  *    CPU. Existing tasks will remain running there and will be taken
3435  *    off.
3436  *
3437  * This means that fallback selection must not select !active CPUs.
3438  * And can assume that any active CPU must be online. Conversely
3439  * select_task_rq() below may allow selection of !active CPUs in order
3440  * to satisfy the above rules.
3441  */
select_fallback_rq(int cpu,struct task_struct * p)3442 int select_fallback_rq(int cpu, struct task_struct *p)
3443 {
3444 	int nid = cpu_to_node(cpu);
3445 	const struct cpumask *nodemask = NULL;
3446 	enum { cpuset, possible, fail } state = cpuset;
3447 	int dest_cpu = -1;
3448 
3449 	trace_android_rvh_select_fallback_rq(cpu, p, &dest_cpu);
3450 	if (dest_cpu >= 0)
3451 		return dest_cpu;
3452 
3453 	/*
3454 	 * If the node that the CPU is on has been offlined, cpu_to_node()
3455 	 * will return -1. There is no CPU on the node, and we should
3456 	 * select the CPU on the other node.
3457 	 */
3458 	if (nid != -1) {
3459 		nodemask = cpumask_of_node(nid);
3460 
3461 		/* Look for allowed, online CPU in same node. */
3462 		for_each_cpu(dest_cpu, nodemask) {
3463 			if (is_cpu_allowed(p, dest_cpu))
3464 				return dest_cpu;
3465 		}
3466 	}
3467 
3468 	for (;;) {
3469 		/* Any allowed, online CPU? */
3470 		for_each_cpu(dest_cpu, p->cpus_ptr) {
3471 			if (!is_cpu_allowed(p, dest_cpu))
3472 				continue;
3473 
3474 			goto out;
3475 		}
3476 
3477 		/* No more Mr. Nice Guy. */
3478 		switch (state) {
3479 		case cpuset:
3480 			if (cpuset_cpus_allowed_fallback(p)) {
3481 				state = possible;
3482 				break;
3483 			}
3484 			fallthrough;
3485 		case possible:
3486 			/*
3487 			 * XXX When called from select_task_rq() we only
3488 			 * hold p->pi_lock and again violate locking order.
3489 			 *
3490 			 * More yuck to audit.
3491 			 */
3492 			do_set_cpus_allowed(p, task_cpu_possible_mask(p));
3493 			state = fail;
3494 			break;
3495 		case fail:
3496 			BUG();
3497 			break;
3498 		}
3499 	}
3500 
3501 out:
3502 	if (state != cpuset) {
3503 		/*
3504 		 * Don't tell them about moving exiting tasks or
3505 		 * kernel threads (both mm NULL), since they never
3506 		 * leave kernel.
3507 		 */
3508 		if (p->mm && printk_ratelimit()) {
3509 			printk_deferred("process %d (%s) no longer affine to cpu%d\n",
3510 					task_pid_nr(p), p->comm, cpu);
3511 		}
3512 	}
3513 
3514 	return dest_cpu;
3515 }
3516 EXPORT_SYMBOL_GPL(select_fallback_rq);
3517 
3518 /*
3519  * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable.
3520  */
3521 static inline
select_task_rq(struct task_struct * p,int cpu,int wake_flags)3522 int select_task_rq(struct task_struct *p, int cpu, int wake_flags)
3523 {
3524 	lockdep_assert_held(&p->pi_lock);
3525 
3526 	if (p->nr_cpus_allowed > 1 && !is_migration_disabled(p))
3527 		cpu = p->sched_class->select_task_rq(p, cpu, wake_flags);
3528 	else
3529 		cpu = cpumask_any(p->cpus_ptr);
3530 
3531 	/*
3532 	 * In order not to call set_task_cpu() on a blocking task we need
3533 	 * to rely on ttwu() to place the task on a valid ->cpus_ptr
3534 	 * CPU.
3535 	 *
3536 	 * Since this is common to all placement strategies, this lives here.
3537 	 *
3538 	 * [ this allows ->select_task() to simply return task_cpu(p) and
3539 	 *   not worry about this generic constraint ]
3540 	 */
3541 	if (unlikely(!is_cpu_allowed(p, cpu)))
3542 		cpu = select_fallback_rq(task_cpu(p), p);
3543 
3544 	return cpu;
3545 }
3546 
sched_set_stop_task(int cpu,struct task_struct * stop)3547 void sched_set_stop_task(int cpu, struct task_struct *stop)
3548 {
3549 	static struct lock_class_key stop_pi_lock;
3550 	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
3551 	struct task_struct *old_stop = cpu_rq(cpu)->stop;
3552 
3553 	if (stop) {
3554 		/*
3555 		 * Make it appear like a SCHED_FIFO task, its something
3556 		 * userspace knows about and won't get confused about.
3557 		 *
3558 		 * Also, it will make PI more or less work without too
3559 		 * much confusion -- but then, stop work should not
3560 		 * rely on PI working anyway.
3561 		 */
3562 		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
3563 
3564 		stop->sched_class = &stop_sched_class;
3565 
3566 		/*
3567 		 * The PI code calls rt_mutex_setprio() with ->pi_lock held to
3568 		 * adjust the effective priority of a task. As a result,
3569 		 * rt_mutex_setprio() can trigger (RT) balancing operations,
3570 		 * which can then trigger wakeups of the stop thread to push
3571 		 * around the current task.
3572 		 *
3573 		 * The stop task itself will never be part of the PI-chain, it
3574 		 * never blocks, therefore that ->pi_lock recursion is safe.
3575 		 * Tell lockdep about this by placing the stop->pi_lock in its
3576 		 * own class.
3577 		 */
3578 		lockdep_set_class(&stop->pi_lock, &stop_pi_lock);
3579 	}
3580 
3581 	cpu_rq(cpu)->stop = stop;
3582 
3583 	if (old_stop) {
3584 		/*
3585 		 * Reset it back to a normal scheduling class so that
3586 		 * it can die in pieces.
3587 		 */
3588 		old_stop->sched_class = &rt_sched_class;
3589 	}
3590 }
3591 
3592 #else /* CONFIG_SMP */
3593 
__set_cpus_allowed_ptr(struct task_struct * p,const struct cpumask * new_mask,u32 flags)3594 static inline int __set_cpus_allowed_ptr(struct task_struct *p,
3595 					 const struct cpumask *new_mask,
3596 					 u32 flags)
3597 {
3598 	return set_cpus_allowed_ptr(p, new_mask);
3599 }
3600 
migrate_disable_switch(struct rq * rq,struct task_struct * p)3601 static inline void migrate_disable_switch(struct rq *rq, struct task_struct *p) { }
3602 
rq_has_pinned_tasks(struct rq * rq)3603 static inline bool rq_has_pinned_tasks(struct rq *rq)
3604 {
3605 	return false;
3606 }
3607 
3608 #endif /* !CONFIG_SMP */
3609 
3610 static void
ttwu_stat(struct task_struct * p,int cpu,int wake_flags)3611 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
3612 {
3613 	struct rq *rq;
3614 
3615 	if (!schedstat_enabled())
3616 		return;
3617 
3618 	rq = this_rq();
3619 
3620 #ifdef CONFIG_SMP
3621 	if (cpu == rq->cpu) {
3622 		__schedstat_inc(rq->ttwu_local);
3623 		__schedstat_inc(p->stats.nr_wakeups_local);
3624 	} else {
3625 		struct sched_domain *sd;
3626 
3627 		__schedstat_inc(p->stats.nr_wakeups_remote);
3628 		rcu_read_lock();
3629 		for_each_domain(rq->cpu, sd) {
3630 			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3631 				__schedstat_inc(sd->ttwu_wake_remote);
3632 				break;
3633 			}
3634 		}
3635 		rcu_read_unlock();
3636 	}
3637 
3638 	if (wake_flags & WF_MIGRATED)
3639 		__schedstat_inc(p->stats.nr_wakeups_migrate);
3640 #endif /* CONFIG_SMP */
3641 
3642 	__schedstat_inc(rq->ttwu_count);
3643 	__schedstat_inc(p->stats.nr_wakeups);
3644 
3645 	if (wake_flags & WF_SYNC)
3646 		__schedstat_inc(p->stats.nr_wakeups_sync);
3647 }
3648 
3649 /*
3650  * Mark the task runnable and perform wakeup-preemption.
3651  */
ttwu_do_wakeup(struct rq * rq,struct task_struct * p,int wake_flags,struct rq_flags * rf)3652 static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
3653 			   struct rq_flags *rf)
3654 {
3655 	check_preempt_curr(rq, p, wake_flags);
3656 	WRITE_ONCE(p->__state, TASK_RUNNING);
3657 	trace_sched_wakeup(p);
3658 
3659 #ifdef CONFIG_SMP
3660 	if (p->sched_class->task_woken) {
3661 		/*
3662 		 * Our task @p is fully woken up and running; so it's safe to
3663 		 * drop the rq->lock, hereafter rq is only used for statistics.
3664 		 */
3665 		rq_unpin_lock(rq, rf);
3666 		p->sched_class->task_woken(rq, p);
3667 		rq_repin_lock(rq, rf);
3668 	}
3669 
3670 	if (rq->idle_stamp) {
3671 		u64 delta = rq_clock(rq) - rq->idle_stamp;
3672 		u64 max = 2*rq->max_idle_balance_cost;
3673 
3674 		update_avg(&rq->avg_idle, delta);
3675 
3676 		if (rq->avg_idle > max)
3677 			rq->avg_idle = max;
3678 
3679 		rq->wake_stamp = jiffies;
3680 		rq->wake_avg_idle = rq->avg_idle / 2;
3681 
3682 		rq->idle_stamp = 0;
3683 	}
3684 #endif
3685 }
3686 
3687 static void
ttwu_do_activate(struct rq * rq,struct task_struct * p,int wake_flags,struct rq_flags * rf)3688 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
3689 		 struct rq_flags *rf)
3690 {
3691 	int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
3692 
3693 	if (wake_flags & WF_SYNC)
3694 		en_flags |= ENQUEUE_WAKEUP_SYNC;
3695 
3696 	lockdep_assert_rq_held(rq);
3697 
3698 	if (p->sched_contributes_to_load)
3699 		rq->nr_uninterruptible--;
3700 
3701 #ifdef CONFIG_SMP
3702 	if (wake_flags & WF_MIGRATED)
3703 		en_flags |= ENQUEUE_MIGRATED;
3704 	else
3705 #endif
3706 	if (p->in_iowait) {
3707 		delayacct_blkio_end(p);
3708 		atomic_dec(&task_rq(p)->nr_iowait);
3709 	}
3710 
3711 	activate_task(rq, p, en_flags);
3712 	ttwu_do_wakeup(rq, p, wake_flags, rf);
3713 }
3714 
3715 /*
3716  * Consider @p being inside a wait loop:
3717  *
3718  *   for (;;) {
3719  *      set_current_state(TASK_UNINTERRUPTIBLE);
3720  *
3721  *      if (CONDITION)
3722  *         break;
3723  *
3724  *      schedule();
3725  *   }
3726  *   __set_current_state(TASK_RUNNING);
3727  *
3728  * between set_current_state() and schedule(). In this case @p is still
3729  * runnable, so all that needs doing is change p->state back to TASK_RUNNING in
3730  * an atomic manner.
3731  *
3732  * By taking task_rq(p)->lock we serialize against schedule(), if @p->on_rq
3733  * then schedule() must still happen and p->state can be changed to
3734  * TASK_RUNNING. Otherwise we lost the race, schedule() has happened, and we
3735  * need to do a full wakeup with enqueue.
3736  *
3737  * Returns: %true when the wakeup is done,
3738  *          %false otherwise.
3739  */
ttwu_runnable(struct task_struct * p,int wake_flags)3740 static int ttwu_runnable(struct task_struct *p, int wake_flags)
3741 {
3742 	struct rq_flags rf;
3743 	struct rq *rq;
3744 	int ret = 0;
3745 
3746 	rq = __task_rq_lock(p, &rf);
3747 	if (task_on_rq_queued(p)) {
3748 		/* check_preempt_curr() may use rq clock */
3749 		update_rq_clock(rq);
3750 		ttwu_do_wakeup(rq, p, wake_flags, &rf);
3751 		ret = 1;
3752 	}
3753 	__task_rq_unlock(rq, &rf);
3754 
3755 	return ret;
3756 }
3757 
3758 #ifdef CONFIG_SMP
sched_ttwu_pending(void * arg)3759 void sched_ttwu_pending(void *arg)
3760 {
3761 	struct llist_node *llist = arg;
3762 	struct rq *rq = this_rq();
3763 	struct task_struct *p, *t;
3764 	struct rq_flags rf;
3765 
3766 	if (!llist)
3767 		return;
3768 
3769 	/*
3770 	 * rq::ttwu_pending racy indication of out-standing wakeups.
3771 	 * Races such that false-negatives are possible, since they
3772 	 * are shorter lived that false-positives would be.
3773 	 */
3774 	WRITE_ONCE(rq->ttwu_pending, 0);
3775 
3776 	rq_lock_irqsave(rq, &rf);
3777 	update_rq_clock(rq);
3778 
3779 	llist_for_each_entry_safe(p, t, llist, wake_entry.llist) {
3780 		if (WARN_ON_ONCE(p->on_cpu))
3781 			smp_cond_load_acquire(&p->on_cpu, !VAL);
3782 
3783 		if (WARN_ON_ONCE(task_cpu(p) != cpu_of(rq)))
3784 			set_task_cpu(p, cpu_of(rq));
3785 
3786 		ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
3787 	}
3788 
3789 	rq_unlock_irqrestore(rq, &rf);
3790 }
3791 
send_call_function_single_ipi(int cpu)3792 void send_call_function_single_ipi(int cpu)
3793 {
3794 	struct rq *rq = cpu_rq(cpu);
3795 
3796 	if (!set_nr_if_polling(rq->idle))
3797 		arch_send_call_function_single_ipi(cpu);
3798 	else
3799 		trace_sched_wake_idle_without_ipi(cpu);
3800 }
3801 
3802 /*
3803  * Queue a task on the target CPUs wake_list and wake the CPU via IPI if
3804  * necessary. The wakee CPU on receipt of the IPI will queue the task
3805  * via sched_ttwu_wakeup() for activation so the wakee incurs the cost
3806  * of the wakeup instead of the waker.
3807  */
__ttwu_queue_wakelist(struct task_struct * p,int cpu,int wake_flags)3808 static void __ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3809 {
3810 	struct rq *rq = cpu_rq(cpu);
3811 
3812 	p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
3813 
3814 	WRITE_ONCE(rq->ttwu_pending, 1);
3815 	__smp_call_single_queue(cpu, &p->wake_entry.llist);
3816 }
3817 
wake_up_if_idle(int cpu)3818 void wake_up_if_idle(int cpu)
3819 {
3820 	struct rq *rq = cpu_rq(cpu);
3821 	struct rq_flags rf;
3822 
3823 	rcu_read_lock();
3824 
3825 	if (!is_idle_task(rcu_dereference(rq->curr)))
3826 		goto out;
3827 
3828 	if (set_nr_if_polling(rq->idle)) {
3829 		trace_sched_wake_idle_without_ipi(cpu);
3830 	} else {
3831 		rq_lock_irqsave(rq, &rf);
3832 		if (is_idle_task(rq->curr))
3833 			smp_send_reschedule(cpu);
3834 		/* Else CPU is not idle, do nothing here: */
3835 		rq_unlock_irqrestore(rq, &rf);
3836 	}
3837 
3838 out:
3839 	rcu_read_unlock();
3840 }
3841 EXPORT_SYMBOL_GPL(wake_up_if_idle);
3842 
cpus_share_cache(int this_cpu,int that_cpu)3843 bool cpus_share_cache(int this_cpu, int that_cpu)
3844 {
3845 	if (this_cpu == that_cpu)
3846 		return true;
3847 
3848 	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
3849 }
3850 
ttwu_queue_cond(struct task_struct * p,int cpu)3851 static inline bool ttwu_queue_cond(struct task_struct *p, int cpu)
3852 {
3853 	/*
3854 	 * Do not complicate things with the async wake_list while the CPU is
3855 	 * in hotplug state.
3856 	 */
3857 	if (!cpu_active(cpu))
3858 		return false;
3859 
3860 	/* Ensure the task will still be allowed to run on the CPU. */
3861 	if (!cpumask_test_cpu(cpu, p->cpus_ptr))
3862 		return false;
3863 
3864 	/*
3865 	 * If the CPU does not share cache, then queue the task on the
3866 	 * remote rqs wakelist to avoid accessing remote data.
3867 	 */
3868 	if (!cpus_share_cache(smp_processor_id(), cpu))
3869 		return true;
3870 
3871 	if (cpu == smp_processor_id())
3872 		return false;
3873 
3874 	/*
3875 	 * If the wakee cpu is idle, or the task is descheduling and the
3876 	 * only running task on the CPU, then use the wakelist to offload
3877 	 * the task activation to the idle (or soon-to-be-idle) CPU as
3878 	 * the current CPU is likely busy. nr_running is checked to
3879 	 * avoid unnecessary task stacking.
3880 	 *
3881 	 * Note that we can only get here with (wakee) p->on_rq=0,
3882 	 * p->on_cpu can be whatever, we've done the dequeue, so
3883 	 * the wakee has been accounted out of ->nr_running.
3884 	 */
3885 	if (!cpu_rq(cpu)->nr_running)
3886 		return true;
3887 
3888 	return false;
3889 }
3890 
ttwu_queue_wakelist(struct task_struct * p,int cpu,int wake_flags)3891 static bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3892 {
3893 	bool cond = false;
3894 
3895 	trace_android_rvh_ttwu_cond(cpu, &cond);
3896 
3897 	if ((sched_feat(TTWU_QUEUE) && ttwu_queue_cond(p, cpu)) || cond) {
3898 		sched_clock_cpu(cpu); /* Sync clocks across CPUs */
3899 		__ttwu_queue_wakelist(p, cpu, wake_flags);
3900 		return true;
3901 	}
3902 
3903 	return false;
3904 }
3905 
3906 #else /* !CONFIG_SMP */
3907 
ttwu_queue_wakelist(struct task_struct * p,int cpu,int wake_flags)3908 static inline bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3909 {
3910 	return false;
3911 }
3912 
3913 #endif /* CONFIG_SMP */
3914 
ttwu_queue(struct task_struct * p,int cpu,int wake_flags)3915 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
3916 {
3917 	struct rq *rq = cpu_rq(cpu);
3918 	struct rq_flags rf;
3919 
3920 	if (ttwu_queue_wakelist(p, cpu, wake_flags))
3921 		return;
3922 
3923 	rq_lock(rq, &rf);
3924 	update_rq_clock(rq);
3925 	ttwu_do_activate(rq, p, wake_flags, &rf);
3926 	rq_unlock(rq, &rf);
3927 }
3928 
3929 /*
3930  * Invoked from try_to_wake_up() to check whether the task can be woken up.
3931  *
3932  * The caller holds p::pi_lock if p != current or has preemption
3933  * disabled when p == current.
3934  *
3935  * The rules of PREEMPT_RT saved_state:
3936  *
3937  *   The related locking code always holds p::pi_lock when updating
3938  *   p::saved_state, which means the code is fully serialized in both cases.
3939  *
3940  *   The lock wait and lock wakeups happen via TASK_RTLOCK_WAIT. No other
3941  *   bits set. This allows to distinguish all wakeup scenarios.
3942  */
3943 static __always_inline
ttwu_state_match(struct task_struct * p,unsigned int state,int * success)3944 bool ttwu_state_match(struct task_struct *p, unsigned int state, int *success)
3945 {
3946 	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)) {
3947 		WARN_ON_ONCE((state & TASK_RTLOCK_WAIT) &&
3948 			     state != TASK_RTLOCK_WAIT);
3949 	}
3950 
3951 	if (READ_ONCE(p->__state) & state) {
3952 		*success = 1;
3953 		return true;
3954 	}
3955 
3956 #ifdef CONFIG_PREEMPT_RT
3957 	/*
3958 	 * Saved state preserves the task state across blocking on
3959 	 * an RT lock.  If the state matches, set p::saved_state to
3960 	 * TASK_RUNNING, but do not wake the task because it waits
3961 	 * for a lock wakeup. Also indicate success because from
3962 	 * the regular waker's point of view this has succeeded.
3963 	 *
3964 	 * After acquiring the lock the task will restore p::__state
3965 	 * from p::saved_state which ensures that the regular
3966 	 * wakeup is not lost. The restore will also set
3967 	 * p::saved_state to TASK_RUNNING so any further tests will
3968 	 * not result in false positives vs. @success
3969 	 */
3970 	if (p->saved_state & state) {
3971 		p->saved_state = TASK_RUNNING;
3972 		*success = 1;
3973 	}
3974 #endif
3975 	return false;
3976 }
3977 
3978 /*
3979  * Notes on Program-Order guarantees on SMP systems.
3980  *
3981  *  MIGRATION
3982  *
3983  * The basic program-order guarantee on SMP systems is that when a task [t]
3984  * migrates, all its activity on its old CPU [c0] happens-before any subsequent
3985  * execution on its new CPU [c1].
3986  *
3987  * For migration (of runnable tasks) this is provided by the following means:
3988  *
3989  *  A) UNLOCK of the rq(c0)->lock scheduling out task t
3990  *  B) migration for t is required to synchronize *both* rq(c0)->lock and
3991  *     rq(c1)->lock (if not at the same time, then in that order).
3992  *  C) LOCK of the rq(c1)->lock scheduling in task
3993  *
3994  * Release/acquire chaining guarantees that B happens after A and C after B.
3995  * Note: the CPU doing B need not be c0 or c1
3996  *
3997  * Example:
3998  *
3999  *   CPU0            CPU1            CPU2
4000  *
4001  *   LOCK rq(0)->lock
4002  *   sched-out X
4003  *   sched-in Y
4004  *   UNLOCK rq(0)->lock
4005  *
4006  *                                   LOCK rq(0)->lock // orders against CPU0
4007  *                                   dequeue X
4008  *                                   UNLOCK rq(0)->lock
4009  *
4010  *                                   LOCK rq(1)->lock
4011  *                                   enqueue X
4012  *                                   UNLOCK rq(1)->lock
4013  *
4014  *                   LOCK rq(1)->lock // orders against CPU2
4015  *                   sched-out Z
4016  *                   sched-in X
4017  *                   UNLOCK rq(1)->lock
4018  *
4019  *
4020  *  BLOCKING -- aka. SLEEP + WAKEUP
4021  *
4022  * For blocking we (obviously) need to provide the same guarantee as for
4023  * migration. However the means are completely different as there is no lock
4024  * chain to provide order. Instead we do:
4025  *
4026  *   1) smp_store_release(X->on_cpu, 0)   -- finish_task()
4027  *   2) smp_cond_load_acquire(!X->on_cpu) -- try_to_wake_up()
4028  *
4029  * Example:
4030  *
4031  *   CPU0 (schedule)  CPU1 (try_to_wake_up) CPU2 (schedule)
4032  *
4033  *   LOCK rq(0)->lock LOCK X->pi_lock
4034  *   dequeue X
4035  *   sched-out X
4036  *   smp_store_release(X->on_cpu, 0);
4037  *
4038  *                    smp_cond_load_acquire(&X->on_cpu, !VAL);
4039  *                    X->state = WAKING
4040  *                    set_task_cpu(X,2)
4041  *
4042  *                    LOCK rq(2)->lock
4043  *                    enqueue X
4044  *                    X->state = RUNNING
4045  *                    UNLOCK rq(2)->lock
4046  *
4047  *                                          LOCK rq(2)->lock // orders against CPU1
4048  *                                          sched-out Z
4049  *                                          sched-in X
4050  *                                          UNLOCK rq(2)->lock
4051  *
4052  *                    UNLOCK X->pi_lock
4053  *   UNLOCK rq(0)->lock
4054  *
4055  *
4056  * However, for wakeups there is a second guarantee we must provide, namely we
4057  * must ensure that CONDITION=1 done by the caller can not be reordered with
4058  * accesses to the task state; see try_to_wake_up() and set_current_state().
4059  */
4060 
4061 /**
4062  * try_to_wake_up - wake up a thread
4063  * @p: the thread to be awakened
4064  * @state: the mask of task states that can be woken
4065  * @wake_flags: wake modifier flags (WF_*)
4066  *
4067  * Conceptually does:
4068  *
4069  *   If (@state & @p->state) @p->state = TASK_RUNNING.
4070  *
4071  * If the task was not queued/runnable, also place it back on a runqueue.
4072  *
4073  * This function is atomic against schedule() which would dequeue the task.
4074  *
4075  * It issues a full memory barrier before accessing @p->state, see the comment
4076  * with set_current_state().
4077  *
4078  * Uses p->pi_lock to serialize against concurrent wake-ups.
4079  *
4080  * Relies on p->pi_lock stabilizing:
4081  *  - p->sched_class
4082  *  - p->cpus_ptr
4083  *  - p->sched_task_group
4084  * in order to do migration, see its use of select_task_rq()/set_task_cpu().
4085  *
4086  * Tries really hard to only take one task_rq(p)->lock for performance.
4087  * Takes rq->lock in:
4088  *  - ttwu_runnable()    -- old rq, unavoidable, see comment there;
4089  *  - ttwu_queue()       -- new rq, for enqueue of the task;
4090  *  - psi_ttwu_dequeue() -- much sadness :-( accounting will kill us.
4091  *
4092  * As a consequence we race really badly with just about everything. See the
4093  * many memory barriers and their comments for details.
4094  *
4095  * Return: %true if @p->state changes (an actual wakeup was done),
4096  *	   %false otherwise.
4097  */
4098 static int
try_to_wake_up(struct task_struct * p,unsigned int state,int wake_flags)4099 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
4100 {
4101 	unsigned long flags;
4102 	int cpu, success = 0;
4103 
4104 	preempt_disable();
4105 	if (p == current) {
4106 		/*
4107 		 * We're waking current, this means 'p->on_rq' and 'task_cpu(p)
4108 		 * == smp_processor_id()'. Together this means we can special
4109 		 * case the whole 'p->on_rq && ttwu_runnable()' case below
4110 		 * without taking any locks.
4111 		 *
4112 		 * In particular:
4113 		 *  - we rely on Program-Order guarantees for all the ordering,
4114 		 *  - we're serialized against set_special_state() by virtue of
4115 		 *    it disabling IRQs (this allows not taking ->pi_lock).
4116 		 */
4117 		if (!ttwu_state_match(p, state, &success))
4118 			goto out;
4119 
4120 		trace_sched_waking(p);
4121 		WRITE_ONCE(p->__state, TASK_RUNNING);
4122 		trace_sched_wakeup(p);
4123 		goto out;
4124 	}
4125 
4126 	/*
4127 	 * If we are going to wake up a thread waiting for CONDITION we
4128 	 * need to ensure that CONDITION=1 done by the caller can not be
4129 	 * reordered with p->state check below. This pairs with smp_store_mb()
4130 	 * in set_current_state() that the waiting thread does.
4131 	 */
4132 	raw_spin_lock_irqsave(&p->pi_lock, flags);
4133 	smp_mb__after_spinlock();
4134 	if (!ttwu_state_match(p, state, &success))
4135 		goto unlock;
4136 
4137 #ifdef CONFIG_FREEZER
4138 	/*
4139 	 * If we're going to wake up a thread which may be frozen, then
4140 	 * we can only do so if we have an active CPU which is capable of
4141 	 * running it. This may not be the case when resuming from suspend,
4142 	 * as the secondary CPUs may not yet be back online. See __thaw_task()
4143 	 * for the actual wakeup.
4144 	 */
4145 	if (unlikely(frozen_or_skipped(p)) &&
4146 	    !cpumask_intersects(cpu_active_mask, task_cpu_possible_mask(p)))
4147 		goto unlock;
4148 #endif
4149 
4150 	trace_sched_waking(p);
4151 
4152 	/*
4153 	 * Ensure we load p->on_rq _after_ p->state, otherwise it would
4154 	 * be possible to, falsely, observe p->on_rq == 0 and get stuck
4155 	 * in smp_cond_load_acquire() below.
4156 	 *
4157 	 * sched_ttwu_pending()			try_to_wake_up()
4158 	 *   STORE p->on_rq = 1			  LOAD p->state
4159 	 *   UNLOCK rq->lock
4160 	 *
4161 	 * __schedule() (switch to task 'p')
4162 	 *   LOCK rq->lock			  smp_rmb();
4163 	 *   smp_mb__after_spinlock();
4164 	 *   UNLOCK rq->lock
4165 	 *
4166 	 * [task p]
4167 	 *   STORE p->state = UNINTERRUPTIBLE	  LOAD p->on_rq
4168 	 *
4169 	 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
4170 	 * __schedule().  See the comment for smp_mb__after_spinlock().
4171 	 *
4172 	 * A similar smb_rmb() lives in try_invoke_on_locked_down_task().
4173 	 */
4174 	smp_rmb();
4175 	if (READ_ONCE(p->on_rq) && ttwu_runnable(p, wake_flags))
4176 		goto unlock;
4177 
4178 	if (READ_ONCE(p->__state) & TASK_UNINTERRUPTIBLE)
4179 		trace_sched_blocked_reason(p);
4180 
4181 #ifdef CONFIG_SMP
4182 	/*
4183 	 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
4184 	 * possible to, falsely, observe p->on_cpu == 0.
4185 	 *
4186 	 * One must be running (->on_cpu == 1) in order to remove oneself
4187 	 * from the runqueue.
4188 	 *
4189 	 * __schedule() (switch to task 'p')	try_to_wake_up()
4190 	 *   STORE p->on_cpu = 1		  LOAD p->on_rq
4191 	 *   UNLOCK rq->lock
4192 	 *
4193 	 * __schedule() (put 'p' to sleep)
4194 	 *   LOCK rq->lock			  smp_rmb();
4195 	 *   smp_mb__after_spinlock();
4196 	 *   STORE p->on_rq = 0			  LOAD p->on_cpu
4197 	 *
4198 	 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
4199 	 * __schedule().  See the comment for smp_mb__after_spinlock().
4200 	 *
4201 	 * Form a control-dep-acquire with p->on_rq == 0 above, to ensure
4202 	 * schedule()'s deactivate_task() has 'happened' and p will no longer
4203 	 * care about it's own p->state. See the comment in __schedule().
4204 	 */
4205 	smp_acquire__after_ctrl_dep();
4206 
4207 	/*
4208 	 * We're doing the wakeup (@success == 1), they did a dequeue (p->on_rq
4209 	 * == 0), which means we need to do an enqueue, change p->state to
4210 	 * TASK_WAKING such that we can unlock p->pi_lock before doing the
4211 	 * enqueue, such as ttwu_queue_wakelist().
4212 	 */
4213 	WRITE_ONCE(p->__state, TASK_WAKING);
4214 
4215 	/*
4216 	 * If the owning (remote) CPU is still in the middle of schedule() with
4217 	 * this task as prev, considering queueing p on the remote CPUs wake_list
4218 	 * which potentially sends an IPI instead of spinning on p->on_cpu to
4219 	 * let the waker make forward progress. This is safe because IRQs are
4220 	 * disabled and the IPI will deliver after on_cpu is cleared.
4221 	 *
4222 	 * Ensure we load task_cpu(p) after p->on_cpu:
4223 	 *
4224 	 * set_task_cpu(p, cpu);
4225 	 *   STORE p->cpu = @cpu
4226 	 * __schedule() (switch to task 'p')
4227 	 *   LOCK rq->lock
4228 	 *   smp_mb__after_spin_lock()		smp_cond_load_acquire(&p->on_cpu)
4229 	 *   STORE p->on_cpu = 1		LOAD p->cpu
4230 	 *
4231 	 * to ensure we observe the correct CPU on which the task is currently
4232 	 * scheduling.
4233 	 */
4234 	if (smp_load_acquire(&p->on_cpu) &&
4235 	    ttwu_queue_wakelist(p, task_cpu(p), wake_flags))
4236 		goto unlock;
4237 
4238 	/*
4239 	 * If the owning (remote) CPU is still in the middle of schedule() with
4240 	 * this task as prev, wait until it's done referencing the task.
4241 	 *
4242 	 * Pairs with the smp_store_release() in finish_task().
4243 	 *
4244 	 * This ensures that tasks getting woken will be fully ordered against
4245 	 * their previous state and preserve Program Order.
4246 	 */
4247 	smp_cond_load_acquire(&p->on_cpu, !VAL);
4248 
4249 	trace_android_rvh_try_to_wake_up(p);
4250 
4251 	cpu = select_task_rq(p, p->wake_cpu, wake_flags | WF_TTWU);
4252 	if (task_cpu(p) != cpu) {
4253 		if (p->in_iowait) {
4254 			delayacct_blkio_end(p);
4255 			atomic_dec(&task_rq(p)->nr_iowait);
4256 		}
4257 
4258 		wake_flags |= WF_MIGRATED;
4259 		psi_ttwu_dequeue(p);
4260 		set_task_cpu(p, cpu);
4261 	}
4262 #else
4263 	cpu = task_cpu(p);
4264 #endif /* CONFIG_SMP */
4265 
4266 	ttwu_queue(p, cpu, wake_flags);
4267 unlock:
4268 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4269 out:
4270 	if (success) {
4271 		trace_android_rvh_try_to_wake_up_success(p);
4272 		ttwu_stat(p, task_cpu(p), wake_flags);
4273 	}
4274 	preempt_enable();
4275 
4276 	return success;
4277 }
4278 
4279 /**
4280  * try_invoke_on_locked_down_task - Invoke a function on task in fixed state
4281  * @p: Process for which the function is to be invoked, can be @current.
4282  * @func: Function to invoke.
4283  * @arg: Argument to function.
4284  *
4285  * If the specified task can be quickly locked into a definite state
4286  * (either sleeping or on a given runqueue), arrange to keep it in that
4287  * state while invoking @func(@arg).  This function can use ->on_rq and
4288  * task_curr() to work out what the state is, if required.  Given that
4289  * @func can be invoked with a runqueue lock held, it had better be quite
4290  * lightweight.
4291  *
4292  * Returns:
4293  *	@false if the task slipped out from under the locks.
4294  *	@true if the task was locked onto a runqueue or is sleeping.
4295  *		However, @func can override this by returning @false.
4296  */
try_invoke_on_locked_down_task(struct task_struct * p,bool (* func)(struct task_struct * t,void * arg),void * arg)4297 bool try_invoke_on_locked_down_task(struct task_struct *p, bool (*func)(struct task_struct *t, void *arg), void *arg)
4298 {
4299 	struct rq_flags rf;
4300 	bool ret = false;
4301 	struct rq *rq;
4302 
4303 	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
4304 	if (p->on_rq) {
4305 		rq = __task_rq_lock(p, &rf);
4306 		if (task_rq(p) == rq)
4307 			ret = func(p, arg);
4308 		rq_unlock(rq, &rf);
4309 	} else {
4310 		switch (READ_ONCE(p->__state)) {
4311 		case TASK_RUNNING:
4312 		case TASK_WAKING:
4313 			break;
4314 		default:
4315 			smp_rmb(); // See smp_rmb() comment in try_to_wake_up().
4316 			if (!p->on_rq)
4317 				ret = func(p, arg);
4318 		}
4319 	}
4320 	raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags);
4321 	return ret;
4322 }
4323 
4324 /**
4325  * wake_up_process - Wake up a specific process
4326  * @p: The process to be woken up.
4327  *
4328  * Attempt to wake up the nominated process and move it to the set of runnable
4329  * processes.
4330  *
4331  * Return: 1 if the process was woken up, 0 if it was already running.
4332  *
4333  * This function executes a full memory barrier before accessing the task state.
4334  */
wake_up_process(struct task_struct * p)4335 int wake_up_process(struct task_struct *p)
4336 {
4337 	return try_to_wake_up(p, TASK_NORMAL, 0);
4338 }
4339 EXPORT_SYMBOL(wake_up_process);
4340 
wake_up_state(struct task_struct * p,unsigned int state)4341 int wake_up_state(struct task_struct *p, unsigned int state)
4342 {
4343 	return try_to_wake_up(p, state, 0);
4344 }
4345 
4346 /*
4347  * Perform scheduler related setup for a newly forked process p.
4348  * p is forked by current.
4349  *
4350  * __sched_fork() is basic setup used by init_idle() too:
4351  */
__sched_fork(unsigned long clone_flags,struct task_struct * p)4352 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
4353 {
4354 	p->on_rq			= 0;
4355 
4356 	p->se.on_rq			= 0;
4357 	p->se.exec_start		= 0;
4358 	p->se.sum_exec_runtime		= 0;
4359 	p->se.prev_sum_exec_runtime	= 0;
4360 	p->se.nr_migrations		= 0;
4361 	p->se.vruntime			= 0;
4362 	INIT_LIST_HEAD(&p->se.group_node);
4363 
4364 #ifdef CONFIG_FAIR_GROUP_SCHED
4365 	p->se.cfs_rq			= NULL;
4366 #endif
4367 
4368 	trace_android_rvh_sched_fork_init(p);
4369 
4370 #ifdef CONFIG_SCHEDSTATS
4371 	/* Even if schedstat is disabled, there should not be garbage */
4372 	memset(&p->stats, 0, sizeof(p->stats));
4373 #endif
4374 
4375 	RB_CLEAR_NODE(&p->dl.rb_node);
4376 	init_dl_task_timer(&p->dl);
4377 	init_dl_inactive_task_timer(&p->dl);
4378 	__dl_clear_params(p);
4379 
4380 	INIT_LIST_HEAD(&p->rt.run_list);
4381 	p->rt.timeout		= 0;
4382 	p->rt.time_slice	= sched_rr_timeslice;
4383 	p->rt.on_rq		= 0;
4384 	p->rt.on_list		= 0;
4385 
4386 #ifdef CONFIG_PREEMPT_NOTIFIERS
4387 	INIT_HLIST_HEAD(&p->preempt_notifiers);
4388 #endif
4389 
4390 #ifdef CONFIG_COMPACTION
4391 	p->capture_control = NULL;
4392 #endif
4393 	init_numa_balancing(clone_flags, p);
4394 #ifdef CONFIG_SMP
4395 	p->wake_entry.u_flags = CSD_TYPE_TTWU;
4396 	p->migration_pending = NULL;
4397 #endif
4398 }
4399 
4400 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
4401 
4402 #ifdef CONFIG_NUMA_BALANCING
4403 
set_numabalancing_state(bool enabled)4404 void set_numabalancing_state(bool enabled)
4405 {
4406 	if (enabled)
4407 		static_branch_enable(&sched_numa_balancing);
4408 	else
4409 		static_branch_disable(&sched_numa_balancing);
4410 }
4411 
4412 #ifdef CONFIG_PROC_SYSCTL
sysctl_numa_balancing(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)4413 int sysctl_numa_balancing(struct ctl_table *table, int write,
4414 			  void *buffer, size_t *lenp, loff_t *ppos)
4415 {
4416 	struct ctl_table t;
4417 	int err;
4418 	int state = static_branch_likely(&sched_numa_balancing);
4419 
4420 	if (write && !capable(CAP_SYS_ADMIN))
4421 		return -EPERM;
4422 
4423 	t = *table;
4424 	t.data = &state;
4425 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
4426 	if (err < 0)
4427 		return err;
4428 	if (write)
4429 		set_numabalancing_state(state);
4430 	return err;
4431 }
4432 #endif
4433 #endif
4434 
4435 #ifdef CONFIG_SCHEDSTATS
4436 
4437 DEFINE_STATIC_KEY_FALSE(sched_schedstats);
4438 
set_schedstats(bool enabled)4439 static void set_schedstats(bool enabled)
4440 {
4441 	if (enabled)
4442 		static_branch_enable(&sched_schedstats);
4443 	else
4444 		static_branch_disable(&sched_schedstats);
4445 }
4446 
force_schedstat_enabled(void)4447 void force_schedstat_enabled(void)
4448 {
4449 	if (!schedstat_enabled()) {
4450 		pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
4451 		static_branch_enable(&sched_schedstats);
4452 	}
4453 }
4454 
setup_schedstats(char * str)4455 static int __init setup_schedstats(char *str)
4456 {
4457 	int ret = 0;
4458 	if (!str)
4459 		goto out;
4460 
4461 	if (!strcmp(str, "enable")) {
4462 		set_schedstats(true);
4463 		ret = 1;
4464 	} else if (!strcmp(str, "disable")) {
4465 		set_schedstats(false);
4466 		ret = 1;
4467 	}
4468 out:
4469 	if (!ret)
4470 		pr_warn("Unable to parse schedstats=\n");
4471 
4472 	return ret;
4473 }
4474 __setup("schedstats=", setup_schedstats);
4475 
4476 #ifdef CONFIG_PROC_SYSCTL
sysctl_schedstats(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)4477 int sysctl_schedstats(struct ctl_table *table, int write, void *buffer,
4478 		size_t *lenp, loff_t *ppos)
4479 {
4480 	struct ctl_table t;
4481 	int err;
4482 	int state = static_branch_likely(&sched_schedstats);
4483 
4484 	if (write && !capable(CAP_SYS_ADMIN))
4485 		return -EPERM;
4486 
4487 	t = *table;
4488 	t.data = &state;
4489 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
4490 	if (err < 0)
4491 		return err;
4492 	if (write)
4493 		set_schedstats(state);
4494 	return err;
4495 }
4496 #endif /* CONFIG_PROC_SYSCTL */
4497 #endif /* CONFIG_SCHEDSTATS */
4498 
4499 /*
4500  * fork()/clone()-time setup:
4501  */
sched_fork(unsigned long clone_flags,struct task_struct * p)4502 int sched_fork(unsigned long clone_flags, struct task_struct *p)
4503 {
4504 	trace_android_rvh_sched_fork(p);
4505 
4506 	__sched_fork(clone_flags, p);
4507 	/*
4508 	 * We mark the process as NEW here. This guarantees that
4509 	 * nobody will actually run it, and a signal or other external
4510 	 * event cannot wake it up and insert it on the runqueue either.
4511 	 */
4512 	p->__state = TASK_NEW;
4513 
4514 	/*
4515 	 * Make sure we do not leak PI boosting priority to the child.
4516 	 */
4517 	p->prio = current->normal_prio;
4518 	trace_android_rvh_prepare_prio_fork(p);
4519 
4520 	uclamp_fork(p);
4521 
4522 	/*
4523 	 * Revert to default priority/policy on fork if requested.
4524 	 */
4525 	if (unlikely(p->sched_reset_on_fork)) {
4526 		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
4527 			p->policy = SCHED_NORMAL;
4528 			p->static_prio = NICE_TO_PRIO(0);
4529 			p->rt_priority = 0;
4530 		} else if (PRIO_TO_NICE(p->static_prio) < 0)
4531 			p->static_prio = NICE_TO_PRIO(0);
4532 
4533 		p->prio = p->normal_prio = p->static_prio;
4534 		set_load_weight(p, false);
4535 
4536 		/*
4537 		 * We don't need the reset flag anymore after the fork. It has
4538 		 * fulfilled its duty:
4539 		 */
4540 		p->sched_reset_on_fork = 0;
4541 	}
4542 
4543 	if (dl_prio(p->prio))
4544 		return -EAGAIN;
4545 	else if (rt_prio(p->prio))
4546 		p->sched_class = &rt_sched_class;
4547 	else
4548 		p->sched_class = &fair_sched_class;
4549 
4550 	init_entity_runnable_average(&p->se);
4551 	trace_android_rvh_finish_prio_fork(p);
4552 
4553 
4554 
4555 #ifdef CONFIG_SCHED_INFO
4556 	if (likely(sched_info_on()))
4557 		memset(&p->sched_info, 0, sizeof(p->sched_info));
4558 #endif
4559 #if defined(CONFIG_SMP)
4560 	p->on_cpu = 0;
4561 #endif
4562 	init_task_preempt_count(p);
4563 #ifdef CONFIG_SMP
4564 	plist_node_init(&p->pushable_tasks, MAX_PRIO);
4565 	RB_CLEAR_NODE(&p->pushable_dl_tasks);
4566 #endif
4567 	return 0;
4568 }
4569 
sched_cgroup_fork(struct task_struct * p,struct kernel_clone_args * kargs)4570 void sched_cgroup_fork(struct task_struct *p, struct kernel_clone_args *kargs)
4571 {
4572 	unsigned long flags;
4573 
4574 	/*
4575 	 * Because we're not yet on the pid-hash, p->pi_lock isn't strictly
4576 	 * required yet, but lockdep gets upset if rules are violated.
4577 	 */
4578 	raw_spin_lock_irqsave(&p->pi_lock, flags);
4579 #ifdef CONFIG_CGROUP_SCHED
4580 	if (1) {
4581 		struct task_group *tg;
4582 		tg = container_of(kargs->cset->subsys[cpu_cgrp_id],
4583 				  struct task_group, css);
4584 		tg = autogroup_task_group(p, tg);
4585 		p->sched_task_group = tg;
4586 	}
4587 #endif
4588 	rseq_migrate(p);
4589 	/*
4590 	 * We're setting the CPU for the first time, we don't migrate,
4591 	 * so use __set_task_cpu().
4592 	 */
4593 	__set_task_cpu(p, smp_processor_id());
4594 	if (p->sched_class->task_fork)
4595 		p->sched_class->task_fork(p);
4596 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4597 }
4598 
sched_post_fork(struct task_struct * p)4599 void sched_post_fork(struct task_struct *p)
4600 {
4601 	uclamp_post_fork(p);
4602 }
4603 
to_ratio(u64 period,u64 runtime)4604 unsigned long to_ratio(u64 period, u64 runtime)
4605 {
4606 	if (runtime == RUNTIME_INF)
4607 		return BW_UNIT;
4608 
4609 	/*
4610 	 * Doing this here saves a lot of checks in all
4611 	 * the calling paths, and returning zero seems
4612 	 * safe for them anyway.
4613 	 */
4614 	if (period == 0)
4615 		return 0;
4616 
4617 	return div64_u64(runtime << BW_SHIFT, period);
4618 }
4619 
4620 /*
4621  * wake_up_new_task - wake up a newly created task for the first time.
4622  *
4623  * This function will do some initial scheduler statistics housekeeping
4624  * that must be done for every newly created context, then puts the task
4625  * on the runqueue and wakes it.
4626  */
wake_up_new_task(struct task_struct * p)4627 void wake_up_new_task(struct task_struct *p)
4628 {
4629 	struct rq_flags rf;
4630 	struct rq *rq;
4631 
4632 	trace_android_rvh_wake_up_new_task(p);
4633 
4634 	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
4635 	WRITE_ONCE(p->__state, TASK_RUNNING);
4636 #ifdef CONFIG_SMP
4637 	/*
4638 	 * Fork balancing, do it here and not earlier because:
4639 	 *  - cpus_ptr can change in the fork path
4640 	 *  - any previously selected CPU might disappear through hotplug
4641 	 *
4642 	 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
4643 	 * as we're not fully set-up yet.
4644 	 */
4645 	p->recent_used_cpu = task_cpu(p);
4646 	rseq_migrate(p);
4647 	__set_task_cpu(p, select_task_rq(p, task_cpu(p), WF_FORK));
4648 #endif
4649 	rq = __task_rq_lock(p, &rf);
4650 	update_rq_clock(rq);
4651 	post_init_entity_util_avg(p);
4652 	trace_android_rvh_new_task_stats(p);
4653 
4654 	activate_task(rq, p, ENQUEUE_NOCLOCK);
4655 	trace_sched_wakeup_new(p);
4656 	check_preempt_curr(rq, p, WF_FORK);
4657 #ifdef CONFIG_SMP
4658 	if (p->sched_class->task_woken) {
4659 		/*
4660 		 * Nothing relies on rq->lock after this, so it's fine to
4661 		 * drop it.
4662 		 */
4663 		rq_unpin_lock(rq, &rf);
4664 		p->sched_class->task_woken(rq, p);
4665 		rq_repin_lock(rq, &rf);
4666 	}
4667 #endif
4668 	task_rq_unlock(rq, p, &rf);
4669 }
4670 
4671 #ifdef CONFIG_PREEMPT_NOTIFIERS
4672 
4673 static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key);
4674 
preempt_notifier_inc(void)4675 void preempt_notifier_inc(void)
4676 {
4677 	static_branch_inc(&preempt_notifier_key);
4678 }
4679 EXPORT_SYMBOL_GPL(preempt_notifier_inc);
4680 
preempt_notifier_dec(void)4681 void preempt_notifier_dec(void)
4682 {
4683 	static_branch_dec(&preempt_notifier_key);
4684 }
4685 EXPORT_SYMBOL_GPL(preempt_notifier_dec);
4686 
4687 /**
4688  * preempt_notifier_register - tell me when current is being preempted & rescheduled
4689  * @notifier: notifier struct to register
4690  */
preempt_notifier_register(struct preempt_notifier * notifier)4691 void preempt_notifier_register(struct preempt_notifier *notifier)
4692 {
4693 	if (!static_branch_unlikely(&preempt_notifier_key))
4694 		WARN(1, "registering preempt_notifier while notifiers disabled\n");
4695 
4696 	hlist_add_head(&notifier->link, &current->preempt_notifiers);
4697 }
4698 EXPORT_SYMBOL_GPL(preempt_notifier_register);
4699 
4700 /**
4701  * preempt_notifier_unregister - no longer interested in preemption notifications
4702  * @notifier: notifier struct to unregister
4703  *
4704  * This is *not* safe to call from within a preemption notifier.
4705  */
preempt_notifier_unregister(struct preempt_notifier * notifier)4706 void preempt_notifier_unregister(struct preempt_notifier *notifier)
4707 {
4708 	hlist_del(&notifier->link);
4709 }
4710 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
4711 
__fire_sched_in_preempt_notifiers(struct task_struct * curr)4712 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
4713 {
4714 	struct preempt_notifier *notifier;
4715 
4716 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
4717 		notifier->ops->sched_in(notifier, raw_smp_processor_id());
4718 }
4719 
fire_sched_in_preempt_notifiers(struct task_struct * curr)4720 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
4721 {
4722 	if (static_branch_unlikely(&preempt_notifier_key))
4723 		__fire_sched_in_preempt_notifiers(curr);
4724 }
4725 
4726 static void
__fire_sched_out_preempt_notifiers(struct task_struct * curr,struct task_struct * next)4727 __fire_sched_out_preempt_notifiers(struct task_struct *curr,
4728 				   struct task_struct *next)
4729 {
4730 	struct preempt_notifier *notifier;
4731 
4732 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
4733 		notifier->ops->sched_out(notifier, next);
4734 }
4735 
4736 static __always_inline void
fire_sched_out_preempt_notifiers(struct task_struct * curr,struct task_struct * next)4737 fire_sched_out_preempt_notifiers(struct task_struct *curr,
4738 				 struct task_struct *next)
4739 {
4740 	if (static_branch_unlikely(&preempt_notifier_key))
4741 		__fire_sched_out_preempt_notifiers(curr, next);
4742 }
4743 
4744 #else /* !CONFIG_PREEMPT_NOTIFIERS */
4745 
fire_sched_in_preempt_notifiers(struct task_struct * curr)4746 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
4747 {
4748 }
4749 
4750 static inline void
fire_sched_out_preempt_notifiers(struct task_struct * curr,struct task_struct * next)4751 fire_sched_out_preempt_notifiers(struct task_struct *curr,
4752 				 struct task_struct *next)
4753 {
4754 }
4755 
4756 #endif /* CONFIG_PREEMPT_NOTIFIERS */
4757 
prepare_task(struct task_struct * next)4758 static inline void prepare_task(struct task_struct *next)
4759 {
4760 #ifdef CONFIG_SMP
4761 	/*
4762 	 * Claim the task as running, we do this before switching to it
4763 	 * such that any running task will have this set.
4764 	 *
4765 	 * See the smp_load_acquire(&p->on_cpu) case in ttwu() and
4766 	 * its ordering comment.
4767 	 */
4768 	WRITE_ONCE(next->on_cpu, 1);
4769 #endif
4770 }
4771 
finish_task(struct task_struct * prev)4772 static inline void finish_task(struct task_struct *prev)
4773 {
4774 #ifdef CONFIG_SMP
4775 	/*
4776 	 * This must be the very last reference to @prev from this CPU. After
4777 	 * p->on_cpu is cleared, the task can be moved to a different CPU. We
4778 	 * must ensure this doesn't happen until the switch is completely
4779 	 * finished.
4780 	 *
4781 	 * In particular, the load of prev->state in finish_task_switch() must
4782 	 * happen before this.
4783 	 *
4784 	 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
4785 	 */
4786 	smp_store_release(&prev->on_cpu, 0);
4787 #endif
4788 }
4789 
4790 #ifdef CONFIG_SMP
4791 
do_balance_callbacks(struct rq * rq,struct callback_head * head)4792 static void do_balance_callbacks(struct rq *rq, struct callback_head *head)
4793 {
4794 	void (*func)(struct rq *rq);
4795 	struct callback_head *next;
4796 
4797 	lockdep_assert_rq_held(rq);
4798 
4799 	while (head) {
4800 		func = (void (*)(struct rq *))head->func;
4801 		next = head->next;
4802 		head->next = NULL;
4803 		head = next;
4804 
4805 		func(rq);
4806 	}
4807 }
4808 
4809 static void balance_push(struct rq *rq);
4810 
4811 /*
4812  * balance_push_callback is a right abuse of the callback interface and plays
4813  * by significantly different rules.
4814  *
4815  * Where the normal balance_callback's purpose is to be ran in the same context
4816  * that queued it (only later, when it's safe to drop rq->lock again),
4817  * balance_push_callback is specifically targeted at __schedule().
4818  *
4819  * This abuse is tolerated because it places all the unlikely/odd cases behind
4820  * a single test, namely: rq->balance_callback == NULL.
4821  */
4822 struct callback_head balance_push_callback = {
4823 	.next = NULL,
4824 	.func = (void (*)(struct callback_head *))balance_push,
4825 };
4826 EXPORT_SYMBOL_GPL(balance_push_callback);
4827 
4828 static inline struct callback_head *
__splice_balance_callbacks(struct rq * rq,bool split)4829 __splice_balance_callbacks(struct rq *rq, bool split)
4830 {
4831 	struct callback_head *head = rq->balance_callback;
4832 
4833 	if (likely(!head))
4834 		return NULL;
4835 
4836 	lockdep_assert_rq_held(rq);
4837 	/*
4838 	 * Must not take balance_push_callback off the list when
4839 	 * splice_balance_callbacks() and balance_callbacks() are not
4840 	 * in the same rq->lock section.
4841 	 *
4842 	 * In that case it would be possible for __schedule() to interleave
4843 	 * and observe the list empty.
4844 	 */
4845 	if (split && head == &balance_push_callback)
4846 		head = NULL;
4847 	else
4848 		rq->balance_callback = NULL;
4849 
4850 	return head;
4851 }
4852 
splice_balance_callbacks(struct rq * rq)4853 static inline struct callback_head *splice_balance_callbacks(struct rq *rq)
4854 {
4855 	return __splice_balance_callbacks(rq, true);
4856 }
4857 
__balance_callbacks(struct rq * rq)4858 void __balance_callbacks(struct rq *rq)
4859 {
4860 	do_balance_callbacks(rq, __splice_balance_callbacks(rq, false));
4861 }
4862 EXPORT_SYMBOL_GPL(__balance_callbacks);
4863 
balance_callbacks(struct rq * rq,struct callback_head * head)4864 static inline void balance_callbacks(struct rq *rq, struct callback_head *head)
4865 {
4866 	unsigned long flags;
4867 
4868 	if (unlikely(head)) {
4869 		raw_spin_rq_lock_irqsave(rq, flags);
4870 		do_balance_callbacks(rq, head);
4871 		raw_spin_rq_unlock_irqrestore(rq, flags);
4872 	}
4873 }
4874 
4875 #else
4876 
__balance_callbacks(struct rq * rq)4877 static inline void __balance_callbacks(struct rq *rq)
4878 {
4879 }
4880 
splice_balance_callbacks(struct rq * rq)4881 static inline struct callback_head *splice_balance_callbacks(struct rq *rq)
4882 {
4883 	return NULL;
4884 }
4885 
balance_callbacks(struct rq * rq,struct callback_head * head)4886 static inline void balance_callbacks(struct rq *rq, struct callback_head *head)
4887 {
4888 }
4889 
4890 #endif
4891 
4892 static inline void
prepare_lock_switch(struct rq * rq,struct task_struct * next,struct rq_flags * rf)4893 prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf)
4894 {
4895 	/*
4896 	 * Since the runqueue lock will be released by the next
4897 	 * task (which is an invalid locking op but in the case
4898 	 * of the scheduler it's an obvious special-case), so we
4899 	 * do an early lockdep release here:
4900 	 */
4901 	rq_unpin_lock(rq, rf);
4902 	spin_release(&__rq_lockp(rq)->dep_map, _THIS_IP_);
4903 #ifdef CONFIG_DEBUG_SPINLOCK
4904 	/* this is a valid case when another task releases the spinlock */
4905 	rq_lockp(rq)->owner = next;
4906 #endif
4907 }
4908 
finish_lock_switch(struct rq * rq)4909 static inline void finish_lock_switch(struct rq *rq)
4910 {
4911 	/*
4912 	 * If we are tracking spinlock dependencies then we have to
4913 	 * fix up the runqueue lock - which gets 'carried over' from
4914 	 * prev into current:
4915 	 */
4916 	spin_acquire(&__rq_lockp(rq)->dep_map, 0, 0, _THIS_IP_);
4917 	__balance_callbacks(rq);
4918 	raw_spin_rq_unlock_irq(rq);
4919 }
4920 
4921 /*
4922  * NOP if the arch has not defined these:
4923  */
4924 
4925 #ifndef prepare_arch_switch
4926 # define prepare_arch_switch(next)	do { } while (0)
4927 #endif
4928 
4929 #ifndef finish_arch_post_lock_switch
4930 # define finish_arch_post_lock_switch()	do { } while (0)
4931 #endif
4932 
kmap_local_sched_out(void)4933 static inline void kmap_local_sched_out(void)
4934 {
4935 #ifdef CONFIG_KMAP_LOCAL
4936 	if (unlikely(current->kmap_ctrl.idx))
4937 		__kmap_local_sched_out();
4938 #endif
4939 }
4940 
kmap_local_sched_in(void)4941 static inline void kmap_local_sched_in(void)
4942 {
4943 #ifdef CONFIG_KMAP_LOCAL
4944 	if (unlikely(current->kmap_ctrl.idx))
4945 		__kmap_local_sched_in();
4946 #endif
4947 }
4948 
4949 /**
4950  * prepare_task_switch - prepare to switch tasks
4951  * @rq: the runqueue preparing to switch
4952  * @prev: the current task that is being switched out
4953  * @next: the task we are going to switch to.
4954  *
4955  * This is called with the rq lock held and interrupts off. It must
4956  * be paired with a subsequent finish_task_switch after the context
4957  * switch.
4958  *
4959  * prepare_task_switch sets up locking and calls architecture specific
4960  * hooks.
4961  */
4962 static inline void
prepare_task_switch(struct rq * rq,struct task_struct * prev,struct task_struct * next)4963 prepare_task_switch(struct rq *rq, struct task_struct *prev,
4964 		    struct task_struct *next)
4965 {
4966 	kcov_prepare_switch(prev);
4967 	sched_info_switch(rq, prev, next);
4968 	perf_event_task_sched_out(prev, next);
4969 	rseq_preempt(prev);
4970 	fire_sched_out_preempt_notifiers(prev, next);
4971 	kmap_local_sched_out();
4972 	prepare_task(next);
4973 	prepare_arch_switch(next);
4974 }
4975 
4976 /**
4977  * finish_task_switch - clean up after a task-switch
4978  * @prev: the thread we just switched away from.
4979  *
4980  * finish_task_switch must be called after the context switch, paired
4981  * with a prepare_task_switch call before the context switch.
4982  * finish_task_switch will reconcile locking set up by prepare_task_switch,
4983  * and do any other architecture-specific cleanup actions.
4984  *
4985  * Note that we may have delayed dropping an mm in context_switch(). If
4986  * so, we finish that here outside of the runqueue lock. (Doing it
4987  * with the lock held can cause deadlocks; see schedule() for
4988  * details.)
4989  *
4990  * The context switch have flipped the stack from under us and restored the
4991  * local variables which were saved when this task called schedule() in the
4992  * past. prev == current is still correct but we need to recalculate this_rq
4993  * because prev may have moved to another CPU.
4994  */
finish_task_switch(struct task_struct * prev)4995 static struct rq *finish_task_switch(struct task_struct *prev)
4996 	__releases(rq->lock)
4997 {
4998 	struct rq *rq = this_rq();
4999 	struct mm_struct *mm = rq->prev_mm;
5000 	long prev_state;
5001 
5002 	/*
5003 	 * The previous task will have left us with a preempt_count of 2
5004 	 * because it left us after:
5005 	 *
5006 	 *	schedule()
5007 	 *	  preempt_disable();			// 1
5008 	 *	  __schedule()
5009 	 *	    raw_spin_lock_irq(&rq->lock)	// 2
5010 	 *
5011 	 * Also, see FORK_PREEMPT_COUNT.
5012 	 */
5013 	if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
5014 		      "corrupted preempt_count: %s/%d/0x%x\n",
5015 		      current->comm, current->pid, preempt_count()))
5016 		preempt_count_set(FORK_PREEMPT_COUNT);
5017 
5018 	rq->prev_mm = NULL;
5019 
5020 	/*
5021 	 * A task struct has one reference for the use as "current".
5022 	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
5023 	 * schedule one last time. The schedule call will never return, and
5024 	 * the scheduled task must drop that reference.
5025 	 *
5026 	 * We must observe prev->state before clearing prev->on_cpu (in
5027 	 * finish_task), otherwise a concurrent wakeup can get prev
5028 	 * running on another CPU and we could rave with its RUNNING -> DEAD
5029 	 * transition, resulting in a double drop.
5030 	 */
5031 	prev_state = READ_ONCE(prev->__state);
5032 	vtime_task_switch(prev);
5033 	perf_event_task_sched_in(prev, current);
5034 	finish_task(prev);
5035 	tick_nohz_task_switch();
5036 	finish_lock_switch(rq);
5037 	finish_arch_post_lock_switch();
5038 	kcov_finish_switch(current);
5039 	/*
5040 	 * kmap_local_sched_out() is invoked with rq::lock held and
5041 	 * interrupts disabled. There is no requirement for that, but the
5042 	 * sched out code does not have an interrupt enabled section.
5043 	 * Restoring the maps on sched in does not require interrupts being
5044 	 * disabled either.
5045 	 */
5046 	kmap_local_sched_in();
5047 
5048 	fire_sched_in_preempt_notifiers(current);
5049 	/*
5050 	 * When switching through a kernel thread, the loop in
5051 	 * membarrier_{private,global}_expedited() may have observed that
5052 	 * kernel thread and not issued an IPI. It is therefore possible to
5053 	 * schedule between user->kernel->user threads without passing though
5054 	 * switch_mm(). Membarrier requires a barrier after storing to
5055 	 * rq->curr, before returning to userspace, so provide them here:
5056 	 *
5057 	 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
5058 	 *   provided by mmdrop(),
5059 	 * - a sync_core for SYNC_CORE.
5060 	 */
5061 	if (mm) {
5062 		membarrier_mm_sync_core_before_usermode(mm);
5063 		mmdrop(mm);
5064 	}
5065 	if (unlikely(prev_state == TASK_DEAD)) {
5066 		if (prev->sched_class->task_dead)
5067 			prev->sched_class->task_dead(prev);
5068 
5069 		/*
5070 		 * Remove function-return probe instances associated with this
5071 		 * task and put them back on the free list.
5072 		 */
5073 		kprobe_flush_task(prev);
5074 		trace_android_rvh_flush_task(prev);
5075 
5076 		/* Task is done with its stack. */
5077 		put_task_stack(prev);
5078 
5079 		put_task_struct_rcu_user(prev);
5080 	}
5081 
5082 	return rq;
5083 }
5084 
5085 /**
5086  * schedule_tail - first thing a freshly forked thread must call.
5087  * @prev: the thread we just switched away from.
5088  */
schedule_tail(struct task_struct * prev)5089 asmlinkage __visible void schedule_tail(struct task_struct *prev)
5090 	__releases(rq->lock)
5091 {
5092 	/*
5093 	 * New tasks start with FORK_PREEMPT_COUNT, see there and
5094 	 * finish_task_switch() for details.
5095 	 *
5096 	 * finish_task_switch() will drop rq->lock() and lower preempt_count
5097 	 * and the preempt_enable() will end up enabling preemption (on
5098 	 * PREEMPT_COUNT kernels).
5099 	 */
5100 
5101 	finish_task_switch(prev);
5102 	preempt_enable();
5103 
5104 	if (current->set_child_tid)
5105 		put_user(task_pid_vnr(current), current->set_child_tid);
5106 
5107 	calculate_sigpending();
5108 }
5109 
5110 /*
5111  * context_switch - switch to the new MM and the new thread's register state.
5112  */
5113 static __always_inline struct rq *
context_switch(struct rq * rq,struct task_struct * prev,struct task_struct * next,struct rq_flags * rf)5114 context_switch(struct rq *rq, struct task_struct *prev,
5115 	       struct task_struct *next, struct rq_flags *rf)
5116 {
5117 	prepare_task_switch(rq, prev, next);
5118 
5119 	/*
5120 	 * For paravirt, this is coupled with an exit in switch_to to
5121 	 * combine the page table reload and the switch backend into
5122 	 * one hypercall.
5123 	 */
5124 	arch_start_context_switch(prev);
5125 
5126 	/*
5127 	 * kernel -> kernel   lazy + transfer active
5128 	 *   user -> kernel   lazy + mmgrab() active
5129 	 *
5130 	 * kernel ->   user   switch + mmdrop() active
5131 	 *   user ->   user   switch
5132 	 */
5133 	if (!next->mm) {                                // to kernel
5134 		enter_lazy_tlb(prev->active_mm, next);
5135 
5136 		next->active_mm = prev->active_mm;
5137 		if (prev->mm)                           // from user
5138 			mmgrab(prev->active_mm);
5139 		else
5140 			prev->active_mm = NULL;
5141 	} else {                                        // to user
5142 		membarrier_switch_mm(rq, prev->active_mm, next->mm);
5143 		/*
5144 		 * sys_membarrier() requires an smp_mb() between setting
5145 		 * rq->curr / membarrier_switch_mm() and returning to userspace.
5146 		 *
5147 		 * The below provides this either through switch_mm(), or in
5148 		 * case 'prev->active_mm == next->mm' through
5149 		 * finish_task_switch()'s mmdrop().
5150 		 */
5151 		switch_mm_irqs_off(prev->active_mm, next->mm, next);
5152 		lru_gen_use_mm(next->mm);
5153 
5154 		if (!prev->mm) {                        // from kernel
5155 			/* will mmdrop() in finish_task_switch(). */
5156 			rq->prev_mm = prev->active_mm;
5157 			prev->active_mm = NULL;
5158 		}
5159 	}
5160 
5161 	rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
5162 
5163 	prepare_lock_switch(rq, next, rf);
5164 
5165 	/* Here we just switch the register state and the stack. */
5166 	switch_to(prev, next, prev);
5167 	barrier();
5168 
5169 	return finish_task_switch(prev);
5170 }
5171 
5172 /*
5173  * nr_running and nr_context_switches:
5174  *
5175  * externally visible scheduler statistics: current number of runnable
5176  * threads, total number of context switches performed since bootup.
5177  */
nr_running(void)5178 unsigned int nr_running(void)
5179 {
5180 	unsigned int i, sum = 0;
5181 
5182 	for_each_online_cpu(i)
5183 		sum += cpu_rq(i)->nr_running;
5184 
5185 	return sum;
5186 }
5187 
5188 /*
5189  * Check if only the current task is running on the CPU.
5190  *
5191  * Caution: this function does not check that the caller has disabled
5192  * preemption, thus the result might have a time-of-check-to-time-of-use
5193  * race.  The caller is responsible to use it correctly, for example:
5194  *
5195  * - from a non-preemptible section (of course)
5196  *
5197  * - from a thread that is bound to a single CPU
5198  *
5199  * - in a loop with very short iterations (e.g. a polling loop)
5200  */
single_task_running(void)5201 bool single_task_running(void)
5202 {
5203 	return raw_rq()->nr_running == 1;
5204 }
5205 EXPORT_SYMBOL(single_task_running);
5206 
nr_context_switches(void)5207 unsigned long long nr_context_switches(void)
5208 {
5209 	int i;
5210 	unsigned long long sum = 0;
5211 
5212 	for_each_possible_cpu(i)
5213 		sum += cpu_rq(i)->nr_switches;
5214 
5215 	return sum;
5216 }
5217 
5218 /*
5219  * Consumers of these two interfaces, like for example the cpuidle menu
5220  * governor, are using nonsensical data. Preferring shallow idle state selection
5221  * for a CPU that has IO-wait which might not even end up running the task when
5222  * it does become runnable.
5223  */
5224 
nr_iowait_cpu(int cpu)5225 unsigned int nr_iowait_cpu(int cpu)
5226 {
5227 	return atomic_read(&cpu_rq(cpu)->nr_iowait);
5228 }
5229 
5230 /*
5231  * IO-wait accounting, and how it's mostly bollocks (on SMP).
5232  *
5233  * The idea behind IO-wait account is to account the idle time that we could
5234  * have spend running if it were not for IO. That is, if we were to improve the
5235  * storage performance, we'd have a proportional reduction in IO-wait time.
5236  *
5237  * This all works nicely on UP, where, when a task blocks on IO, we account
5238  * idle time as IO-wait, because if the storage were faster, it could've been
5239  * running and we'd not be idle.
5240  *
5241  * This has been extended to SMP, by doing the same for each CPU. This however
5242  * is broken.
5243  *
5244  * Imagine for instance the case where two tasks block on one CPU, only the one
5245  * CPU will have IO-wait accounted, while the other has regular idle. Even
5246  * though, if the storage were faster, both could've ran at the same time,
5247  * utilising both CPUs.
5248  *
5249  * This means, that when looking globally, the current IO-wait accounting on
5250  * SMP is a lower bound, by reason of under accounting.
5251  *
5252  * Worse, since the numbers are provided per CPU, they are sometimes
5253  * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
5254  * associated with any one particular CPU, it can wake to another CPU than it
5255  * blocked on. This means the per CPU IO-wait number is meaningless.
5256  *
5257  * Task CPU affinities can make all that even more 'interesting'.
5258  */
5259 
nr_iowait(void)5260 unsigned int nr_iowait(void)
5261 {
5262 	unsigned int i, sum = 0;
5263 
5264 	for_each_possible_cpu(i)
5265 		sum += nr_iowait_cpu(i);
5266 
5267 	return sum;
5268 }
5269 
5270 #ifdef CONFIG_SMP
5271 
5272 /*
5273  * sched_exec - execve() is a valuable balancing opportunity, because at
5274  * this point the task has the smallest effective memory and cache footprint.
5275  */
sched_exec(void)5276 void sched_exec(void)
5277 {
5278 	struct task_struct *p = current;
5279 	unsigned long flags;
5280 	int dest_cpu;
5281 	bool cond = false;
5282 
5283 	trace_android_rvh_sched_exec(&cond);
5284 	if (cond)
5285 		return;
5286 
5287 	raw_spin_lock_irqsave(&p->pi_lock, flags);
5288 	dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), WF_EXEC);
5289 	if (dest_cpu == smp_processor_id())
5290 		goto unlock;
5291 
5292 	if (likely(cpu_active(dest_cpu))) {
5293 		struct migration_arg arg = { p, dest_cpu };
5294 
5295 		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5296 		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
5297 		return;
5298 	}
5299 unlock:
5300 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5301 }
5302 
5303 #endif
5304 
5305 DEFINE_PER_CPU(struct kernel_stat, kstat);
5306 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
5307 
5308 EXPORT_PER_CPU_SYMBOL(kstat);
5309 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
5310 
5311 /*
5312  * The function fair_sched_class.update_curr accesses the struct curr
5313  * and its field curr->exec_start; when called from task_sched_runtime(),
5314  * we observe a high rate of cache misses in practice.
5315  * Prefetching this data results in improved performance.
5316  */
prefetch_curr_exec_start(struct task_struct * p)5317 static inline void prefetch_curr_exec_start(struct task_struct *p)
5318 {
5319 #ifdef CONFIG_FAIR_GROUP_SCHED
5320 	struct sched_entity *curr = (&p->se)->cfs_rq->curr;
5321 #else
5322 	struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
5323 #endif
5324 	prefetch(curr);
5325 	prefetch(&curr->exec_start);
5326 }
5327 
5328 /*
5329  * Return accounted runtime for the task.
5330  * In case the task is currently running, return the runtime plus current's
5331  * pending runtime that have not been accounted yet.
5332  */
task_sched_runtime(struct task_struct * p)5333 unsigned long long task_sched_runtime(struct task_struct *p)
5334 {
5335 	struct rq_flags rf;
5336 	struct rq *rq;
5337 	u64 ns;
5338 
5339 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
5340 	/*
5341 	 * 64-bit doesn't need locks to atomically read a 64-bit value.
5342 	 * So we have a optimization chance when the task's delta_exec is 0.
5343 	 * Reading ->on_cpu is racy, but this is ok.
5344 	 *
5345 	 * If we race with it leaving CPU, we'll take a lock. So we're correct.
5346 	 * If we race with it entering CPU, unaccounted time is 0. This is
5347 	 * indistinguishable from the read occurring a few cycles earlier.
5348 	 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
5349 	 * been accounted, so we're correct here as well.
5350 	 */
5351 	if (!p->on_cpu || !task_on_rq_queued(p))
5352 		return p->se.sum_exec_runtime;
5353 #endif
5354 
5355 	rq = task_rq_lock(p, &rf);
5356 	/*
5357 	 * Must be ->curr _and_ ->on_rq.  If dequeued, we would
5358 	 * project cycles that may never be accounted to this
5359 	 * thread, breaking clock_gettime().
5360 	 */
5361 	if (task_current(rq, p) && task_on_rq_queued(p)) {
5362 		prefetch_curr_exec_start(p);
5363 		update_rq_clock(rq);
5364 		p->sched_class->update_curr(rq);
5365 	}
5366 	ns = p->se.sum_exec_runtime;
5367 	task_rq_unlock(rq, p, &rf);
5368 
5369 	return ns;
5370 }
5371 EXPORT_SYMBOL_GPL(task_sched_runtime);
5372 
5373 #ifdef CONFIG_SCHED_DEBUG
cpu_resched_latency(struct rq * rq)5374 static u64 cpu_resched_latency(struct rq *rq)
5375 {
5376 	int latency_warn_ms = READ_ONCE(sysctl_resched_latency_warn_ms);
5377 	u64 resched_latency, now = rq_clock(rq);
5378 	static bool warned_once;
5379 
5380 	if (sysctl_resched_latency_warn_once && warned_once)
5381 		return 0;
5382 
5383 	if (!need_resched() || !latency_warn_ms)
5384 		return 0;
5385 
5386 	if (system_state == SYSTEM_BOOTING)
5387 		return 0;
5388 
5389 	if (!rq->last_seen_need_resched_ns) {
5390 		rq->last_seen_need_resched_ns = now;
5391 		rq->ticks_without_resched = 0;
5392 		return 0;
5393 	}
5394 
5395 	rq->ticks_without_resched++;
5396 	resched_latency = now - rq->last_seen_need_resched_ns;
5397 	if (resched_latency <= latency_warn_ms * NSEC_PER_MSEC)
5398 		return 0;
5399 
5400 	warned_once = true;
5401 
5402 	return resched_latency;
5403 }
5404 
setup_resched_latency_warn_ms(char * str)5405 static int __init setup_resched_latency_warn_ms(char *str)
5406 {
5407 	long val;
5408 
5409 	if ((kstrtol(str, 0, &val))) {
5410 		pr_warn("Unable to set resched_latency_warn_ms\n");
5411 		return 1;
5412 	}
5413 
5414 	sysctl_resched_latency_warn_ms = val;
5415 	return 1;
5416 }
5417 __setup("resched_latency_warn_ms=", setup_resched_latency_warn_ms);
5418 #else
cpu_resched_latency(struct rq * rq)5419 static inline u64 cpu_resched_latency(struct rq *rq) { return 0; }
5420 #endif /* CONFIG_SCHED_DEBUG */
5421 
5422 /*
5423  * This function gets called by the timer code, with HZ frequency.
5424  * We call it with interrupts disabled.
5425  */
scheduler_tick(void)5426 void scheduler_tick(void)
5427 {
5428 	int cpu = smp_processor_id();
5429 	struct rq *rq = cpu_rq(cpu);
5430 	struct task_struct *curr = rq->curr;
5431 	struct rq_flags rf;
5432 	unsigned long thermal_pressure;
5433 	u64 resched_latency;
5434 
5435 	arch_scale_freq_tick();
5436 	sched_clock_tick();
5437 
5438 	rq_lock(rq, &rf);
5439 
5440 	update_rq_clock(rq);
5441 	trace_android_rvh_tick_entry(rq);
5442 
5443 	thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq));
5444 	update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure);
5445 	curr->sched_class->task_tick(rq, curr, 0);
5446 	if (sched_feat(LATENCY_WARN))
5447 		resched_latency = cpu_resched_latency(rq);
5448 	calc_global_load_tick(rq);
5449 
5450 	rq_unlock(rq, &rf);
5451 
5452 	if (sched_feat(LATENCY_WARN) && resched_latency)
5453 		resched_latency_warn(cpu, resched_latency);
5454 
5455 	perf_event_task_tick();
5456 
5457 #ifdef CONFIG_SMP
5458 	rq->idle_balance = idle_cpu(cpu);
5459 	trigger_load_balance(rq);
5460 #endif
5461 
5462 	trace_android_vh_scheduler_tick(rq);
5463 }
5464 
5465 #ifdef CONFIG_NO_HZ_FULL
5466 
5467 struct tick_work {
5468 	int			cpu;
5469 	atomic_t		state;
5470 	struct delayed_work	work;
5471 };
5472 /* Values for ->state, see diagram below. */
5473 #define TICK_SCHED_REMOTE_OFFLINE	0
5474 #define TICK_SCHED_REMOTE_OFFLINING	1
5475 #define TICK_SCHED_REMOTE_RUNNING	2
5476 
5477 /*
5478  * State diagram for ->state:
5479  *
5480  *
5481  *          TICK_SCHED_REMOTE_OFFLINE
5482  *                    |   ^
5483  *                    |   |
5484  *                    |   | sched_tick_remote()
5485  *                    |   |
5486  *                    |   |
5487  *                    +--TICK_SCHED_REMOTE_OFFLINING
5488  *                    |   ^
5489  *                    |   |
5490  * sched_tick_start() |   | sched_tick_stop()
5491  *                    |   |
5492  *                    V   |
5493  *          TICK_SCHED_REMOTE_RUNNING
5494  *
5495  *
5496  * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote()
5497  * and sched_tick_start() are happy to leave the state in RUNNING.
5498  */
5499 
5500 static struct tick_work __percpu *tick_work_cpu;
5501 
sched_tick_remote(struct work_struct * work)5502 static void sched_tick_remote(struct work_struct *work)
5503 {
5504 	struct delayed_work *dwork = to_delayed_work(work);
5505 	struct tick_work *twork = container_of(dwork, struct tick_work, work);
5506 	int cpu = twork->cpu;
5507 	struct rq *rq = cpu_rq(cpu);
5508 	struct task_struct *curr;
5509 	struct rq_flags rf;
5510 	u64 delta;
5511 	int os;
5512 
5513 	/*
5514 	 * Handle the tick only if it appears the remote CPU is running in full
5515 	 * dynticks mode. The check is racy by nature, but missing a tick or
5516 	 * having one too much is no big deal because the scheduler tick updates
5517 	 * statistics and checks timeslices in a time-independent way, regardless
5518 	 * of when exactly it is running.
5519 	 */
5520 	if (!tick_nohz_tick_stopped_cpu(cpu))
5521 		goto out_requeue;
5522 
5523 	rq_lock_irq(rq, &rf);
5524 	curr = rq->curr;
5525 	if (cpu_is_offline(cpu))
5526 		goto out_unlock;
5527 
5528 	update_rq_clock(rq);
5529 
5530 	if (!is_idle_task(curr)) {
5531 		/*
5532 		 * Make sure the next tick runs within a reasonable
5533 		 * amount of time.
5534 		 */
5535 		delta = rq_clock_task(rq) - curr->se.exec_start;
5536 		WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3);
5537 	}
5538 	curr->sched_class->task_tick(rq, curr, 0);
5539 
5540 	calc_load_nohz_remote(rq);
5541 out_unlock:
5542 	rq_unlock_irq(rq, &rf);
5543 out_requeue:
5544 
5545 	/*
5546 	 * Run the remote tick once per second (1Hz). This arbitrary
5547 	 * frequency is large enough to avoid overload but short enough
5548 	 * to keep scheduler internal stats reasonably up to date.  But
5549 	 * first update state to reflect hotplug activity if required.
5550 	 */
5551 	os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING);
5552 	WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE);
5553 	if (os == TICK_SCHED_REMOTE_RUNNING)
5554 		queue_delayed_work(system_unbound_wq, dwork, HZ);
5555 }
5556 
sched_tick_start(int cpu)5557 static void sched_tick_start(int cpu)
5558 {
5559 	int os;
5560 	struct tick_work *twork;
5561 
5562 	if (housekeeping_cpu(cpu, HK_FLAG_TICK))
5563 		return;
5564 
5565 	WARN_ON_ONCE(!tick_work_cpu);
5566 
5567 	twork = per_cpu_ptr(tick_work_cpu, cpu);
5568 	os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING);
5569 	WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING);
5570 	if (os == TICK_SCHED_REMOTE_OFFLINE) {
5571 		twork->cpu = cpu;
5572 		INIT_DELAYED_WORK(&twork->work, sched_tick_remote);
5573 		queue_delayed_work(system_unbound_wq, &twork->work, HZ);
5574 	}
5575 }
5576 
5577 #ifdef CONFIG_HOTPLUG_CPU
sched_tick_stop(int cpu)5578 static void sched_tick_stop(int cpu)
5579 {
5580 	struct tick_work *twork;
5581 	int os;
5582 
5583 	if (housekeeping_cpu(cpu, HK_FLAG_TICK))
5584 		return;
5585 
5586 	WARN_ON_ONCE(!tick_work_cpu);
5587 
5588 	twork = per_cpu_ptr(tick_work_cpu, cpu);
5589 	/* There cannot be competing actions, but don't rely on stop-machine. */
5590 	os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING);
5591 	WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING);
5592 	/* Don't cancel, as this would mess up the state machine. */
5593 }
5594 #endif /* CONFIG_HOTPLUG_CPU */
5595 
sched_tick_offload_init(void)5596 int __init sched_tick_offload_init(void)
5597 {
5598 	tick_work_cpu = alloc_percpu(struct tick_work);
5599 	BUG_ON(!tick_work_cpu);
5600 	return 0;
5601 }
5602 
5603 #else /* !CONFIG_NO_HZ_FULL */
sched_tick_start(int cpu)5604 static inline void sched_tick_start(int cpu) { }
sched_tick_stop(int cpu)5605 static inline void sched_tick_stop(int cpu) { }
5606 #endif
5607 
5608 #if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \
5609 				defined(CONFIG_TRACE_PREEMPT_TOGGLE))
5610 /*
5611  * If the value passed in is equal to the current preempt count
5612  * then we just disabled preemption. Start timing the latency.
5613  */
preempt_latency_start(int val)5614 static inline void preempt_latency_start(int val)
5615 {
5616 	if (preempt_count() == val) {
5617 		unsigned long ip = get_lock_parent_ip();
5618 #ifdef CONFIG_DEBUG_PREEMPT
5619 		current->preempt_disable_ip = ip;
5620 #endif
5621 		trace_preempt_off(CALLER_ADDR0, ip);
5622 	}
5623 }
5624 
preempt_count_add(int val)5625 void preempt_count_add(int val)
5626 {
5627 #ifdef CONFIG_DEBUG_PREEMPT
5628 	/*
5629 	 * Underflow?
5630 	 */
5631 	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
5632 		return;
5633 #endif
5634 	__preempt_count_add(val);
5635 #ifdef CONFIG_DEBUG_PREEMPT
5636 	/*
5637 	 * Spinlock count overflowing soon?
5638 	 */
5639 	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
5640 				PREEMPT_MASK - 10);
5641 #endif
5642 	preempt_latency_start(val);
5643 }
5644 EXPORT_SYMBOL(preempt_count_add);
5645 NOKPROBE_SYMBOL(preempt_count_add);
5646 
5647 /*
5648  * If the value passed in equals to the current preempt count
5649  * then we just enabled preemption. Stop timing the latency.
5650  */
preempt_latency_stop(int val)5651 static inline void preempt_latency_stop(int val)
5652 {
5653 	if (preempt_count() == val)
5654 		trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
5655 }
5656 
preempt_count_sub(int val)5657 void preempt_count_sub(int val)
5658 {
5659 #ifdef CONFIG_DEBUG_PREEMPT
5660 	/*
5661 	 * Underflow?
5662 	 */
5663 	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
5664 		return;
5665 	/*
5666 	 * Is the spinlock portion underflowing?
5667 	 */
5668 	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
5669 			!(preempt_count() & PREEMPT_MASK)))
5670 		return;
5671 #endif
5672 
5673 	preempt_latency_stop(val);
5674 	__preempt_count_sub(val);
5675 }
5676 EXPORT_SYMBOL(preempt_count_sub);
5677 NOKPROBE_SYMBOL(preempt_count_sub);
5678 
5679 #else
preempt_latency_start(int val)5680 static inline void preempt_latency_start(int val) { }
preempt_latency_stop(int val)5681 static inline void preempt_latency_stop(int val) { }
5682 #endif
5683 
get_preempt_disable_ip(struct task_struct * p)5684 static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
5685 {
5686 #ifdef CONFIG_DEBUG_PREEMPT
5687 	return p->preempt_disable_ip;
5688 #else
5689 	return 0;
5690 #endif
5691 }
5692 
5693 /*
5694  * Print scheduling while atomic bug:
5695  */
__schedule_bug(struct task_struct * prev)5696 static noinline void __schedule_bug(struct task_struct *prev)
5697 {
5698 	/* Save this before calling printk(), since that will clobber it */
5699 	unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
5700 
5701 	if (oops_in_progress)
5702 		return;
5703 
5704 	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
5705 		prev->comm, prev->pid, preempt_count());
5706 
5707 	debug_show_held_locks(prev);
5708 	print_modules();
5709 	if (irqs_disabled())
5710 		print_irqtrace_events(prev);
5711 	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
5712 	    && in_atomic_preempt_off()) {
5713 		pr_err("Preemption disabled at:");
5714 		print_ip_sym(KERN_ERR, preempt_disable_ip);
5715 	}
5716 	check_panic_on_warn("scheduling while atomic");
5717 
5718 	trace_android_rvh_schedule_bug(prev);
5719 
5720 	dump_stack();
5721 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
5722 }
5723 
5724 /*
5725  * Various schedule()-time debugging checks and statistics:
5726  */
schedule_debug(struct task_struct * prev,bool preempt)5727 static inline void schedule_debug(struct task_struct *prev, bool preempt)
5728 {
5729 #ifdef CONFIG_SCHED_STACK_END_CHECK
5730 	if (task_stack_end_corrupted(prev))
5731 		panic("corrupted stack end detected inside scheduler\n");
5732 
5733 	if (task_scs_end_corrupted(prev))
5734 		panic("corrupted shadow stack detected inside scheduler\n");
5735 #endif
5736 
5737 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
5738 	if (!preempt && READ_ONCE(prev->__state) && prev->non_block_count) {
5739 		printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n",
5740 			prev->comm, prev->pid, prev->non_block_count);
5741 		dump_stack();
5742 		add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
5743 	}
5744 #endif
5745 
5746 	if (unlikely(in_atomic_preempt_off())) {
5747 		__schedule_bug(prev);
5748 		preempt_count_set(PREEMPT_DISABLED);
5749 	}
5750 	rcu_sleep_check();
5751 	SCHED_WARN_ON(ct_state() == CONTEXT_USER);
5752 
5753 	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
5754 
5755 	schedstat_inc(this_rq()->sched_count);
5756 }
5757 
put_prev_task_balance(struct rq * rq,struct task_struct * prev,struct rq_flags * rf)5758 static void put_prev_task_balance(struct rq *rq, struct task_struct *prev,
5759 				  struct rq_flags *rf)
5760 {
5761 #ifdef CONFIG_SMP
5762 	const struct sched_class *class;
5763 	/*
5764 	 * We must do the balancing pass before put_prev_task(), such
5765 	 * that when we release the rq->lock the task is in the same
5766 	 * state as before we took rq->lock.
5767 	 *
5768 	 * We can terminate the balance pass as soon as we know there is
5769 	 * a runnable task of @class priority or higher.
5770 	 */
5771 	for_class_range(class, prev->sched_class, &idle_sched_class) {
5772 		if (class->balance(rq, prev, rf))
5773 			break;
5774 	}
5775 #endif
5776 
5777 	put_prev_task(rq, prev);
5778 }
5779 
5780 /*
5781  * Pick up the highest-prio task:
5782  */
5783 static inline struct task_struct *
__pick_next_task(struct rq * rq,struct task_struct * prev,struct rq_flags * rf)5784 __pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
5785 {
5786 	const struct sched_class *class;
5787 	struct task_struct *p;
5788 
5789 	/*
5790 	 * Optimization: we know that if all tasks are in the fair class we can
5791 	 * call that function directly, but only if the @prev task wasn't of a
5792 	 * higher scheduling class, because otherwise those lose the
5793 	 * opportunity to pull in more work from other CPUs.
5794 	 */
5795 	if (likely(prev->sched_class <= &fair_sched_class &&
5796 		   rq->nr_running == rq->cfs.h_nr_running)) {
5797 
5798 		p = pick_next_task_fair(rq, prev, rf);
5799 		if (unlikely(p == RETRY_TASK))
5800 			goto restart;
5801 
5802 		/* Assume the next prioritized class is idle_sched_class */
5803 		if (!p) {
5804 			put_prev_task(rq, prev);
5805 			p = pick_next_task_idle(rq);
5806 		}
5807 
5808 		return p;
5809 	}
5810 
5811 restart:
5812 	put_prev_task_balance(rq, prev, rf);
5813 
5814 	for_each_class(class) {
5815 		p = class->pick_next_task(rq);
5816 		if (p)
5817 			return p;
5818 	}
5819 
5820 	/* The idle class should always have a runnable task: */
5821 	BUG();
5822 }
5823 
5824 #ifdef CONFIG_SCHED_CORE
is_task_rq_idle(struct task_struct * t)5825 static inline bool is_task_rq_idle(struct task_struct *t)
5826 {
5827 	return (task_rq(t)->idle == t);
5828 }
5829 
cookie_equals(struct task_struct * a,unsigned long cookie)5830 static inline bool cookie_equals(struct task_struct *a, unsigned long cookie)
5831 {
5832 	return is_task_rq_idle(a) || (a->core_cookie == cookie);
5833 }
5834 
cookie_match(struct task_struct * a,struct task_struct * b)5835 static inline bool cookie_match(struct task_struct *a, struct task_struct *b)
5836 {
5837 	if (is_task_rq_idle(a) || is_task_rq_idle(b))
5838 		return true;
5839 
5840 	return a->core_cookie == b->core_cookie;
5841 }
5842 
5843 // XXX fairness/fwd progress conditions
5844 /*
5845  * Returns
5846  * - NULL if there is no runnable task for this class.
5847  * - the highest priority task for this runqueue if it matches
5848  *   rq->core->core_cookie or its priority is greater than max.
5849  * - Else returns idle_task.
5850  */
5851 static struct task_struct *
pick_task(struct rq * rq,const struct sched_class * class,struct task_struct * max,bool in_fi)5852 pick_task(struct rq *rq, const struct sched_class *class, struct task_struct *max, bool in_fi)
5853 {
5854 	struct task_struct *class_pick, *cookie_pick;
5855 	unsigned long cookie = rq->core->core_cookie;
5856 
5857 	class_pick = class->pick_task(rq);
5858 	if (!class_pick)
5859 		return NULL;
5860 
5861 	if (!cookie) {
5862 		/*
5863 		 * If class_pick is tagged, return it only if it has
5864 		 * higher priority than max.
5865 		 */
5866 		if (max && class_pick->core_cookie &&
5867 		    prio_less(class_pick, max, in_fi))
5868 			return idle_sched_class.pick_task(rq);
5869 
5870 		return class_pick;
5871 	}
5872 
5873 	/*
5874 	 * If class_pick is idle or matches cookie, return early.
5875 	 */
5876 	if (cookie_equals(class_pick, cookie))
5877 		return class_pick;
5878 
5879 	cookie_pick = sched_core_find(rq, cookie);
5880 
5881 	/*
5882 	 * If class > max && class > cookie, it is the highest priority task on
5883 	 * the core (so far) and it must be selected, otherwise we must go with
5884 	 * the cookie pick in order to satisfy the constraint.
5885 	 */
5886 	if (prio_less(cookie_pick, class_pick, in_fi) &&
5887 	    (!max || prio_less(max, class_pick, in_fi)))
5888 		return class_pick;
5889 
5890 	return cookie_pick;
5891 }
5892 
5893 extern void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi);
5894 
5895 static struct task_struct *
pick_next_task(struct rq * rq,struct task_struct * prev,struct rq_flags * rf)5896 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
5897 {
5898 	struct task_struct *next, *max = NULL;
5899 	const struct sched_class *class;
5900 	const struct cpumask *smt_mask;
5901 	bool fi_before = false;
5902 	int i, j, cpu, occ = 0;
5903 	bool need_sync;
5904 
5905 	if (!sched_core_enabled(rq))
5906 		return __pick_next_task(rq, prev, rf);
5907 
5908 	cpu = cpu_of(rq);
5909 
5910 	/* Stopper task is switching into idle, no need core-wide selection. */
5911 	if (cpu_is_offline(cpu)) {
5912 		/*
5913 		 * Reset core_pick so that we don't enter the fastpath when
5914 		 * coming online. core_pick would already be migrated to
5915 		 * another cpu during offline.
5916 		 */
5917 		rq->core_pick = NULL;
5918 		return __pick_next_task(rq, prev, rf);
5919 	}
5920 
5921 	/*
5922 	 * If there were no {en,de}queues since we picked (IOW, the task
5923 	 * pointers are all still valid), and we haven't scheduled the last
5924 	 * pick yet, do so now.
5925 	 *
5926 	 * rq->core_pick can be NULL if no selection was made for a CPU because
5927 	 * it was either offline or went offline during a sibling's core-wide
5928 	 * selection. In this case, do a core-wide selection.
5929 	 */
5930 	if (rq->core->core_pick_seq == rq->core->core_task_seq &&
5931 	    rq->core->core_pick_seq != rq->core_sched_seq &&
5932 	    rq->core_pick) {
5933 		WRITE_ONCE(rq->core_sched_seq, rq->core->core_pick_seq);
5934 
5935 		next = rq->core_pick;
5936 		if (next != prev) {
5937 			put_prev_task(rq, prev);
5938 			set_next_task(rq, next);
5939 		}
5940 
5941 		rq->core_pick = NULL;
5942 		return next;
5943 	}
5944 
5945 	put_prev_task_balance(rq, prev, rf);
5946 
5947 	smt_mask = cpu_smt_mask(cpu);
5948 	need_sync = !!rq->core->core_cookie;
5949 
5950 	/* reset state */
5951 	rq->core->core_cookie = 0UL;
5952 	if (rq->core->core_forceidle) {
5953 		need_sync = true;
5954 		fi_before = true;
5955 		rq->core->core_forceidle = false;
5956 	}
5957 
5958 	/*
5959 	 * core->core_task_seq, core->core_pick_seq, rq->core_sched_seq
5960 	 *
5961 	 * @task_seq guards the task state ({en,de}queues)
5962 	 * @pick_seq is the @task_seq we did a selection on
5963 	 * @sched_seq is the @pick_seq we scheduled
5964 	 *
5965 	 * However, preemptions can cause multiple picks on the same task set.
5966 	 * 'Fix' this by also increasing @task_seq for every pick.
5967 	 */
5968 	rq->core->core_task_seq++;
5969 
5970 	/*
5971 	 * Optimize for common case where this CPU has no cookies
5972 	 * and there are no cookied tasks running on siblings.
5973 	 */
5974 	if (!need_sync) {
5975 		for_each_class(class) {
5976 			next = class->pick_task(rq);
5977 			if (next)
5978 				break;
5979 		}
5980 
5981 		if (!next->core_cookie) {
5982 			rq->core_pick = NULL;
5983 			/*
5984 			 * For robustness, update the min_vruntime_fi for
5985 			 * unconstrained picks as well.
5986 			 */
5987 			WARN_ON_ONCE(fi_before);
5988 			task_vruntime_update(rq, next, false);
5989 			goto done;
5990 		}
5991 	}
5992 
5993 	for_each_cpu(i, smt_mask) {
5994 		struct rq *rq_i = cpu_rq(i);
5995 
5996 		rq_i->core_pick = NULL;
5997 
5998 		if (i != cpu)
5999 			update_rq_clock(rq_i);
6000 	}
6001 
6002 	/*
6003 	 * Try and select tasks for each sibling in descending sched_class
6004 	 * order.
6005 	 */
6006 	for_each_class(class) {
6007 again:
6008 		for_each_cpu_wrap(i, smt_mask, cpu) {
6009 			struct rq *rq_i = cpu_rq(i);
6010 			struct task_struct *p;
6011 
6012 			if (rq_i->core_pick)
6013 				continue;
6014 
6015 			/*
6016 			 * If this sibling doesn't yet have a suitable task to
6017 			 * run; ask for the most eligible task, given the
6018 			 * highest priority task already selected for this
6019 			 * core.
6020 			 */
6021 			p = pick_task(rq_i, class, max, fi_before);
6022 			if (!p)
6023 				continue;
6024 
6025 			if (!is_task_rq_idle(p))
6026 				occ++;
6027 
6028 			rq_i->core_pick = p;
6029 			if (rq_i->idle == p && rq_i->nr_running) {
6030 				rq->core->core_forceidle = true;
6031 				if (!fi_before)
6032 					rq->core->core_forceidle_seq++;
6033 			}
6034 
6035 			/*
6036 			 * If this new candidate is of higher priority than the
6037 			 * previous; and they're incompatible; we need to wipe
6038 			 * the slate and start over. pick_task makes sure that
6039 			 * p's priority is more than max if it doesn't match
6040 			 * max's cookie.
6041 			 *
6042 			 * NOTE: this is a linear max-filter and is thus bounded
6043 			 * in execution time.
6044 			 */
6045 			if (!max || !cookie_match(max, p)) {
6046 				struct task_struct *old_max = max;
6047 
6048 				rq->core->core_cookie = p->core_cookie;
6049 				max = p;
6050 
6051 				if (old_max) {
6052 					rq->core->core_forceidle = false;
6053 					for_each_cpu(j, smt_mask) {
6054 						if (j == i)
6055 							continue;
6056 
6057 						cpu_rq(j)->core_pick = NULL;
6058 					}
6059 					occ = 1;
6060 					goto again;
6061 				}
6062 			}
6063 		}
6064 	}
6065 
6066 	rq->core->core_pick_seq = rq->core->core_task_seq;
6067 	next = rq->core_pick;
6068 	rq->core_sched_seq = rq->core->core_pick_seq;
6069 
6070 	/* Something should have been selected for current CPU */
6071 	WARN_ON_ONCE(!next);
6072 
6073 	/*
6074 	 * Reschedule siblings
6075 	 *
6076 	 * NOTE: L1TF -- at this point we're no longer running the old task and
6077 	 * sending an IPI (below) ensures the sibling will no longer be running
6078 	 * their task. This ensures there is no inter-sibling overlap between
6079 	 * non-matching user state.
6080 	 */
6081 	for_each_cpu(i, smt_mask) {
6082 		struct rq *rq_i = cpu_rq(i);
6083 
6084 		/*
6085 		 * An online sibling might have gone offline before a task
6086 		 * could be picked for it, or it might be offline but later
6087 		 * happen to come online, but its too late and nothing was
6088 		 * picked for it.  That's Ok - it will pick tasks for itself,
6089 		 * so ignore it.
6090 		 */
6091 		if (!rq_i->core_pick)
6092 			continue;
6093 
6094 		/*
6095 		 * Update for new !FI->FI transitions, or if continuing to be in !FI:
6096 		 * fi_before     fi      update?
6097 		 *  0            0       1
6098 		 *  0            1       1
6099 		 *  1            0       1
6100 		 *  1            1       0
6101 		 */
6102 		if (!(fi_before && rq->core->core_forceidle))
6103 			task_vruntime_update(rq_i, rq_i->core_pick, rq->core->core_forceidle);
6104 
6105 		rq_i->core_pick->core_occupation = occ;
6106 
6107 		if (i == cpu) {
6108 			rq_i->core_pick = NULL;
6109 			continue;
6110 		}
6111 
6112 		/* Did we break L1TF mitigation requirements? */
6113 		WARN_ON_ONCE(!cookie_match(next, rq_i->core_pick));
6114 
6115 		if (rq_i->curr == rq_i->core_pick) {
6116 			rq_i->core_pick = NULL;
6117 			continue;
6118 		}
6119 
6120 		resched_curr(rq_i);
6121 	}
6122 
6123 done:
6124 	set_next_task(rq, next);
6125 	return next;
6126 }
6127 
try_steal_cookie(int this,int that)6128 static bool try_steal_cookie(int this, int that)
6129 {
6130 	struct rq *dst = cpu_rq(this), *src = cpu_rq(that);
6131 	struct task_struct *p;
6132 	unsigned long cookie;
6133 	bool success = false;
6134 
6135 	local_irq_disable();
6136 	double_rq_lock(dst, src);
6137 
6138 	cookie = dst->core->core_cookie;
6139 	if (!cookie)
6140 		goto unlock;
6141 
6142 	if (dst->curr != dst->idle)
6143 		goto unlock;
6144 
6145 	p = sched_core_find(src, cookie);
6146 	if (p == src->idle)
6147 		goto unlock;
6148 
6149 	do {
6150 		if (p == src->core_pick || p == src->curr)
6151 			goto next;
6152 
6153 		if (!is_cpu_allowed(p, this))
6154 			goto next;
6155 
6156 		if (p->core_occupation > dst->idle->core_occupation)
6157 			goto next;
6158 
6159 		deactivate_task(src, p, 0);
6160 		set_task_cpu(p, this);
6161 		activate_task(dst, p, 0);
6162 
6163 		resched_curr(dst);
6164 
6165 		success = true;
6166 		break;
6167 
6168 next:
6169 		p = sched_core_next(p, cookie);
6170 	} while (p);
6171 
6172 unlock:
6173 	double_rq_unlock(dst, src);
6174 	local_irq_enable();
6175 
6176 	return success;
6177 }
6178 
steal_cookie_task(int cpu,struct sched_domain * sd)6179 static bool steal_cookie_task(int cpu, struct sched_domain *sd)
6180 {
6181 	int i;
6182 
6183 	for_each_cpu_wrap(i, sched_domain_span(sd), cpu) {
6184 		if (i == cpu)
6185 			continue;
6186 
6187 		if (need_resched())
6188 			break;
6189 
6190 		if (try_steal_cookie(cpu, i))
6191 			return true;
6192 	}
6193 
6194 	return false;
6195 }
6196 
sched_core_balance(struct rq * rq)6197 static void sched_core_balance(struct rq *rq)
6198 {
6199 	struct sched_domain *sd;
6200 	int cpu = cpu_of(rq);
6201 
6202 	preempt_disable();
6203 	rcu_read_lock();
6204 	raw_spin_rq_unlock_irq(rq);
6205 	for_each_domain(cpu, sd) {
6206 		if (need_resched())
6207 			break;
6208 
6209 		if (steal_cookie_task(cpu, sd))
6210 			break;
6211 	}
6212 	raw_spin_rq_lock_irq(rq);
6213 	rcu_read_unlock();
6214 	preempt_enable();
6215 }
6216 
6217 static DEFINE_PER_CPU(struct callback_head, core_balance_head);
6218 
queue_core_balance(struct rq * rq)6219 void queue_core_balance(struct rq *rq)
6220 {
6221 	if (!sched_core_enabled(rq))
6222 		return;
6223 
6224 	if (!rq->core->core_cookie)
6225 		return;
6226 
6227 	if (!rq->nr_running) /* not forced idle */
6228 		return;
6229 
6230 	queue_balance_callback(rq, &per_cpu(core_balance_head, rq->cpu), sched_core_balance);
6231 }
6232 
sched_core_cpu_starting(unsigned int cpu)6233 static void sched_core_cpu_starting(unsigned int cpu)
6234 {
6235 	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
6236 	struct rq *rq = cpu_rq(cpu), *core_rq = NULL;
6237 	unsigned long flags;
6238 	int t;
6239 
6240 	sched_core_lock(cpu, &flags);
6241 
6242 	WARN_ON_ONCE(rq->core != rq);
6243 
6244 	/* if we're the first, we'll be our own leader */
6245 	if (cpumask_weight(smt_mask) == 1)
6246 		goto unlock;
6247 
6248 	/* find the leader */
6249 	for_each_cpu(t, smt_mask) {
6250 		if (t == cpu)
6251 			continue;
6252 		rq = cpu_rq(t);
6253 		if (rq->core == rq) {
6254 			core_rq = rq;
6255 			break;
6256 		}
6257 	}
6258 
6259 	if (WARN_ON_ONCE(!core_rq)) /* whoopsie */
6260 		goto unlock;
6261 
6262 	/* install and validate core_rq */
6263 	for_each_cpu(t, smt_mask) {
6264 		rq = cpu_rq(t);
6265 
6266 		if (t == cpu)
6267 			rq->core = core_rq;
6268 
6269 		WARN_ON_ONCE(rq->core != core_rq);
6270 	}
6271 
6272 unlock:
6273 	sched_core_unlock(cpu, &flags);
6274 }
6275 
sched_core_cpu_deactivate(unsigned int cpu)6276 static void sched_core_cpu_deactivate(unsigned int cpu)
6277 {
6278 	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
6279 	struct rq *rq = cpu_rq(cpu), *core_rq = NULL;
6280 	unsigned long flags;
6281 	int t;
6282 
6283 	sched_core_lock(cpu, &flags);
6284 
6285 	/* if we're the last man standing, nothing to do */
6286 	if (cpumask_weight(smt_mask) == 1) {
6287 		WARN_ON_ONCE(rq->core != rq);
6288 		goto unlock;
6289 	}
6290 
6291 	/* if we're not the leader, nothing to do */
6292 	if (rq->core != rq)
6293 		goto unlock;
6294 
6295 	/* find a new leader */
6296 	for_each_cpu(t, smt_mask) {
6297 		if (t == cpu)
6298 			continue;
6299 		core_rq = cpu_rq(t);
6300 		break;
6301 	}
6302 
6303 	if (WARN_ON_ONCE(!core_rq)) /* impossible */
6304 		goto unlock;
6305 
6306 	/* copy the shared state to the new leader */
6307 	core_rq->core_task_seq      = rq->core_task_seq;
6308 	core_rq->core_pick_seq      = rq->core_pick_seq;
6309 	core_rq->core_cookie        = rq->core_cookie;
6310 	core_rq->core_forceidle     = rq->core_forceidle;
6311 	core_rq->core_forceidle_seq = rq->core_forceidle_seq;
6312 
6313 	/* install new leader */
6314 	for_each_cpu(t, smt_mask) {
6315 		rq = cpu_rq(t);
6316 		rq->core = core_rq;
6317 	}
6318 
6319 unlock:
6320 	sched_core_unlock(cpu, &flags);
6321 }
6322 
sched_core_cpu_dying(unsigned int cpu)6323 static inline void sched_core_cpu_dying(unsigned int cpu)
6324 {
6325 	struct rq *rq = cpu_rq(cpu);
6326 
6327 	if (rq->core != rq)
6328 		rq->core = rq;
6329 }
6330 
6331 #else /* !CONFIG_SCHED_CORE */
6332 
sched_core_cpu_starting(unsigned int cpu)6333 static inline void sched_core_cpu_starting(unsigned int cpu) {}
sched_core_cpu_deactivate(unsigned int cpu)6334 static inline void sched_core_cpu_deactivate(unsigned int cpu) {}
sched_core_cpu_dying(unsigned int cpu)6335 static inline void sched_core_cpu_dying(unsigned int cpu) {}
6336 
6337 static struct task_struct *
pick_next_task(struct rq * rq,struct task_struct * prev,struct rq_flags * rf)6338 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6339 {
6340 	return __pick_next_task(rq, prev, rf);
6341 }
6342 
6343 #endif /* CONFIG_SCHED_CORE */
6344 
6345 /*
6346  * Constants for the sched_mode argument of __schedule().
6347  *
6348  * The mode argument allows RT enabled kernels to differentiate a
6349  * preemption from blocking on an 'sleeping' spin/rwlock. Note that
6350  * SM_MASK_PREEMPT for !RT has all bits set, which allows the compiler to
6351  * optimize the AND operation out and just check for zero.
6352  */
6353 #define SM_NONE			0x0
6354 #define SM_PREEMPT		0x1
6355 #define SM_RTLOCK_WAIT		0x2
6356 
6357 #ifndef CONFIG_PREEMPT_RT
6358 # define SM_MASK_PREEMPT	(~0U)
6359 #else
6360 # define SM_MASK_PREEMPT	SM_PREEMPT
6361 #endif
6362 
6363 /*
6364  * __schedule() is the main scheduler function.
6365  *
6366  * The main means of driving the scheduler and thus entering this function are:
6367  *
6368  *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
6369  *
6370  *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
6371  *      paths. For example, see arch/x86/entry_64.S.
6372  *
6373  *      To drive preemption between tasks, the scheduler sets the flag in timer
6374  *      interrupt handler scheduler_tick().
6375  *
6376  *   3. Wakeups don't really cause entry into schedule(). They add a
6377  *      task to the run-queue and that's it.
6378  *
6379  *      Now, if the new task added to the run-queue preempts the current
6380  *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
6381  *      called on the nearest possible occasion:
6382  *
6383  *       - If the kernel is preemptible (CONFIG_PREEMPTION=y):
6384  *
6385  *         - in syscall or exception context, at the next outmost
6386  *           preempt_enable(). (this might be as soon as the wake_up()'s
6387  *           spin_unlock()!)
6388  *
6389  *         - in IRQ context, return from interrupt-handler to
6390  *           preemptible context
6391  *
6392  *       - If the kernel is not preemptible (CONFIG_PREEMPTION is not set)
6393  *         then at the next:
6394  *
6395  *          - cond_resched() call
6396  *          - explicit schedule() call
6397  *          - return from syscall or exception to user-space
6398  *          - return from interrupt-handler to user-space
6399  *
6400  * WARNING: must be called with preemption disabled!
6401  */
__schedule(unsigned int sched_mode)6402 static void __sched notrace __schedule(unsigned int sched_mode)
6403 {
6404 	struct task_struct *prev, *next;
6405 	unsigned long *switch_count;
6406 	unsigned long prev_state;
6407 	struct rq_flags rf;
6408 	struct rq *rq;
6409 	int cpu;
6410 
6411 	cpu = smp_processor_id();
6412 	rq = cpu_rq(cpu);
6413 	prev = rq->curr;
6414 
6415 	schedule_debug(prev, !!sched_mode);
6416 
6417 	if (sched_feat(HRTICK) || sched_feat(HRTICK_DL))
6418 		hrtick_clear(rq);
6419 
6420 	local_irq_disable();
6421 	rcu_note_context_switch(!!sched_mode);
6422 
6423 	/*
6424 	 * Make sure that signal_pending_state()->signal_pending() below
6425 	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
6426 	 * done by the caller to avoid the race with signal_wake_up():
6427 	 *
6428 	 * __set_current_state(@state)		signal_wake_up()
6429 	 * schedule()				  set_tsk_thread_flag(p, TIF_SIGPENDING)
6430 	 *					  wake_up_state(p, state)
6431 	 *   LOCK rq->lock			    LOCK p->pi_state
6432 	 *   smp_mb__after_spinlock()		    smp_mb__after_spinlock()
6433 	 *     if (signal_pending_state())	    if (p->state & @state)
6434 	 *
6435 	 * Also, the membarrier system call requires a full memory barrier
6436 	 * after coming from user-space, before storing to rq->curr.
6437 	 */
6438 	rq_lock(rq, &rf);
6439 	smp_mb__after_spinlock();
6440 
6441 	/* Promote REQ to ACT */
6442 	rq->clock_update_flags <<= 1;
6443 	update_rq_clock(rq);
6444 
6445 	switch_count = &prev->nivcsw;
6446 
6447 	/*
6448 	 * We must load prev->state once (task_struct::state is volatile), such
6449 	 * that:
6450 	 *
6451 	 *  - we form a control dependency vs deactivate_task() below.
6452 	 *  - ptrace_{,un}freeze_traced() can change ->state underneath us.
6453 	 */
6454 	prev_state = READ_ONCE(prev->__state);
6455 	if (!(sched_mode & SM_MASK_PREEMPT) && prev_state) {
6456 		if (signal_pending_state(prev_state, prev)) {
6457 			WRITE_ONCE(prev->__state, TASK_RUNNING);
6458 		} else {
6459 			prev->sched_contributes_to_load =
6460 				(prev_state & TASK_UNINTERRUPTIBLE) &&
6461 				!(prev_state & TASK_NOLOAD) &&
6462 				!(prev->flags & PF_FROZEN);
6463 
6464 			if (prev->sched_contributes_to_load)
6465 				rq->nr_uninterruptible++;
6466 
6467 			/*
6468 			 * __schedule()			ttwu()
6469 			 *   prev_state = prev->state;    if (p->on_rq && ...)
6470 			 *   if (prev_state)		    goto out;
6471 			 *     p->on_rq = 0;		  smp_acquire__after_ctrl_dep();
6472 			 *				  p->state = TASK_WAKING
6473 			 *
6474 			 * Where __schedule() and ttwu() have matching control dependencies.
6475 			 *
6476 			 * After this, schedule() must not care about p->state any more.
6477 			 */
6478 			deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK);
6479 
6480 			if (prev->in_iowait) {
6481 				atomic_inc(&rq->nr_iowait);
6482 				delayacct_blkio_start();
6483 			}
6484 		}
6485 		switch_count = &prev->nvcsw;
6486 	}
6487 
6488 	next = pick_next_task(rq, prev, &rf);
6489 	clear_tsk_need_resched(prev);
6490 	clear_preempt_need_resched();
6491 #ifdef CONFIG_SCHED_DEBUG
6492 	rq->last_seen_need_resched_ns = 0;
6493 #endif
6494 
6495 	trace_android_rvh_schedule(prev, next, rq);
6496 	if (likely(prev != next)) {
6497 		rq->nr_switches++;
6498 		/*
6499 		 * RCU users of rcu_dereference(rq->curr) may not see
6500 		 * changes to task_struct made by pick_next_task().
6501 		 */
6502 		RCU_INIT_POINTER(rq->curr, next);
6503 		/*
6504 		 * The membarrier system call requires each architecture
6505 		 * to have a full memory barrier after updating
6506 		 * rq->curr, before returning to user-space.
6507 		 *
6508 		 * Here are the schemes providing that barrier on the
6509 		 * various architectures:
6510 		 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC.
6511 		 *   switch_mm() rely on membarrier_arch_switch_mm() on PowerPC.
6512 		 * - finish_lock_switch() for weakly-ordered
6513 		 *   architectures where spin_unlock is a full barrier,
6514 		 * - switch_to() for arm64 (weakly-ordered, spin_unlock
6515 		 *   is a RELEASE barrier),
6516 		 */
6517 		++*switch_count;
6518 
6519 		migrate_disable_switch(rq, prev);
6520 		psi_sched_switch(prev, next, !task_on_rq_queued(prev));
6521 
6522 		trace_sched_switch(sched_mode & SM_MASK_PREEMPT, prev, next);
6523 
6524 		/* Also unlocks the rq: */
6525 		rq = context_switch(rq, prev, next, &rf);
6526 	} else {
6527 		rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
6528 
6529 		rq_unpin_lock(rq, &rf);
6530 		__balance_callbacks(rq);
6531 		raw_spin_rq_unlock_irq(rq);
6532 	}
6533 }
6534 
do_task_dead(void)6535 void __noreturn do_task_dead(void)
6536 {
6537 	/* Causes final put_task_struct in finish_task_switch(): */
6538 	set_special_state(TASK_DEAD);
6539 
6540 	/* Tell freezer to ignore us: */
6541 	current->flags |= PF_NOFREEZE;
6542 
6543 	__schedule(SM_NONE);
6544 	BUG();
6545 
6546 	/* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
6547 	for (;;)
6548 		cpu_relax();
6549 }
6550 
sched_submit_work(struct task_struct * tsk)6551 static inline void sched_submit_work(struct task_struct *tsk)
6552 {
6553 	unsigned int task_flags;
6554 
6555 	if (task_is_running(tsk))
6556 		return;
6557 
6558 	task_flags = tsk->flags;
6559 	/*
6560 	 * If a worker went to sleep, notify and ask workqueue whether
6561 	 * it wants to wake up a task to maintain concurrency.
6562 	 * As this function is called inside the schedule() context,
6563 	 * we disable preemption to avoid it calling schedule() again
6564 	 * in the possible wakeup of a kworker and because wq_worker_sleeping()
6565 	 * requires it.
6566 	 */
6567 	if (task_flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
6568 		preempt_disable();
6569 		if (task_flags & PF_WQ_WORKER)
6570 			wq_worker_sleeping(tsk);
6571 		else
6572 			io_wq_worker_sleeping(tsk);
6573 		preempt_enable_no_resched();
6574 	}
6575 
6576 	/*
6577 	 * spinlock and rwlock must not flush block requests.  This will
6578 	 * deadlock if the callback attempts to acquire a lock which is
6579 	 * already acquired.
6580 	 */
6581 	SCHED_WARN_ON(current->__state & TASK_RTLOCK_WAIT);
6582 
6583 	/*
6584 	 * If we are going to sleep and we have plugged IO queued,
6585 	 * make sure to submit it to avoid deadlocks.
6586 	 */
6587 	if (blk_needs_flush_plug(tsk))
6588 		blk_schedule_flush_plug(tsk);
6589 }
6590 
sched_update_worker(struct task_struct * tsk)6591 static void sched_update_worker(struct task_struct *tsk)
6592 {
6593 	if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
6594 		if (tsk->flags & PF_WQ_WORKER)
6595 			wq_worker_running(tsk);
6596 		else
6597 			io_wq_worker_running(tsk);
6598 	}
6599 }
6600 
schedule(void)6601 asmlinkage __visible void __sched schedule(void)
6602 {
6603 	struct task_struct *tsk = current;
6604 
6605 	sched_submit_work(tsk);
6606 	do {
6607 		preempt_disable();
6608 		__schedule(SM_NONE);
6609 		sched_preempt_enable_no_resched();
6610 	} while (need_resched());
6611 	sched_update_worker(tsk);
6612 }
6613 EXPORT_SYMBOL(schedule);
6614 
6615 /*
6616  * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
6617  * state (have scheduled out non-voluntarily) by making sure that all
6618  * tasks have either left the run queue or have gone into user space.
6619  * As idle tasks do not do either, they must not ever be preempted
6620  * (schedule out non-voluntarily).
6621  *
6622  * schedule_idle() is similar to schedule_preempt_disable() except that it
6623  * never enables preemption because it does not call sched_submit_work().
6624  */
schedule_idle(void)6625 void __sched schedule_idle(void)
6626 {
6627 	/*
6628 	 * As this skips calling sched_submit_work(), which the idle task does
6629 	 * regardless because that function is a nop when the task is in a
6630 	 * TASK_RUNNING state, make sure this isn't used someplace that the
6631 	 * current task can be in any other state. Note, idle is always in the
6632 	 * TASK_RUNNING state.
6633 	 */
6634 	WARN_ON_ONCE(current->__state);
6635 	do {
6636 		__schedule(SM_NONE);
6637 	} while (need_resched());
6638 }
6639 
6640 #if defined(CONFIG_CONTEXT_TRACKING) && !defined(CONFIG_HAVE_CONTEXT_TRACKING_OFFSTACK)
schedule_user(void)6641 asmlinkage __visible void __sched schedule_user(void)
6642 {
6643 	/*
6644 	 * If we come here after a random call to set_need_resched(),
6645 	 * or we have been woken up remotely but the IPI has not yet arrived,
6646 	 * we haven't yet exited the RCU idle mode. Do it here manually until
6647 	 * we find a better solution.
6648 	 *
6649 	 * NB: There are buggy callers of this function.  Ideally we
6650 	 * should warn if prev_state != CONTEXT_USER, but that will trigger
6651 	 * too frequently to make sense yet.
6652 	 */
6653 	enum ctx_state prev_state = exception_enter();
6654 	schedule();
6655 	exception_exit(prev_state);
6656 }
6657 #endif
6658 
6659 /**
6660  * schedule_preempt_disabled - called with preemption disabled
6661  *
6662  * Returns with preemption disabled. Note: preempt_count must be 1
6663  */
schedule_preempt_disabled(void)6664 void __sched schedule_preempt_disabled(void)
6665 {
6666 	sched_preempt_enable_no_resched();
6667 	schedule();
6668 	preempt_disable();
6669 }
6670 
6671 #ifdef CONFIG_PREEMPT_RT
schedule_rtlock(void)6672 void __sched notrace schedule_rtlock(void)
6673 {
6674 	do {
6675 		preempt_disable();
6676 		__schedule(SM_RTLOCK_WAIT);
6677 		sched_preempt_enable_no_resched();
6678 	} while (need_resched());
6679 }
6680 NOKPROBE_SYMBOL(schedule_rtlock);
6681 #endif
6682 
preempt_schedule_common(void)6683 static void __sched notrace preempt_schedule_common(void)
6684 {
6685 	do {
6686 		/*
6687 		 * Because the function tracer can trace preempt_count_sub()
6688 		 * and it also uses preempt_enable/disable_notrace(), if
6689 		 * NEED_RESCHED is set, the preempt_enable_notrace() called
6690 		 * by the function tracer will call this function again and
6691 		 * cause infinite recursion.
6692 		 *
6693 		 * Preemption must be disabled here before the function
6694 		 * tracer can trace. Break up preempt_disable() into two
6695 		 * calls. One to disable preemption without fear of being
6696 		 * traced. The other to still record the preemption latency,
6697 		 * which can also be traced by the function tracer.
6698 		 */
6699 		preempt_disable_notrace();
6700 		preempt_latency_start(1);
6701 		__schedule(SM_PREEMPT);
6702 		preempt_latency_stop(1);
6703 		preempt_enable_no_resched_notrace();
6704 
6705 		/*
6706 		 * Check again in case we missed a preemption opportunity
6707 		 * between schedule and now.
6708 		 */
6709 	} while (need_resched());
6710 }
6711 
6712 #ifdef CONFIG_PREEMPTION
6713 /*
6714  * This is the entry point to schedule() from in-kernel preemption
6715  * off of preempt_enable.
6716  */
preempt_schedule(void)6717 asmlinkage __visible void __sched notrace preempt_schedule(void)
6718 {
6719 	/*
6720 	 * If there is a non-zero preempt_count or interrupts are disabled,
6721 	 * we do not want to preempt the current task. Just return..
6722 	 */
6723 	if (likely(!preemptible()))
6724 		return;
6725 
6726 	preempt_schedule_common();
6727 }
6728 NOKPROBE_SYMBOL(preempt_schedule);
6729 EXPORT_SYMBOL(preempt_schedule);
6730 
6731 #ifdef CONFIG_PREEMPT_DYNAMIC
6732 DEFINE_STATIC_CALL(preempt_schedule, __preempt_schedule_func);
6733 EXPORT_STATIC_CALL_TRAMP(preempt_schedule);
6734 #endif
6735 
6736 
6737 /**
6738  * preempt_schedule_notrace - preempt_schedule called by tracing
6739  *
6740  * The tracing infrastructure uses preempt_enable_notrace to prevent
6741  * recursion and tracing preempt enabling caused by the tracing
6742  * infrastructure itself. But as tracing can happen in areas coming
6743  * from userspace or just about to enter userspace, a preempt enable
6744  * can occur before user_exit() is called. This will cause the scheduler
6745  * to be called when the system is still in usermode.
6746  *
6747  * To prevent this, the preempt_enable_notrace will use this function
6748  * instead of preempt_schedule() to exit user context if needed before
6749  * calling the scheduler.
6750  */
preempt_schedule_notrace(void)6751 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
6752 {
6753 	enum ctx_state prev_ctx;
6754 
6755 	if (likely(!preemptible()))
6756 		return;
6757 
6758 	do {
6759 		/*
6760 		 * Because the function tracer can trace preempt_count_sub()
6761 		 * and it also uses preempt_enable/disable_notrace(), if
6762 		 * NEED_RESCHED is set, the preempt_enable_notrace() called
6763 		 * by the function tracer will call this function again and
6764 		 * cause infinite recursion.
6765 		 *
6766 		 * Preemption must be disabled here before the function
6767 		 * tracer can trace. Break up preempt_disable() into two
6768 		 * calls. One to disable preemption without fear of being
6769 		 * traced. The other to still record the preemption latency,
6770 		 * which can also be traced by the function tracer.
6771 		 */
6772 		preempt_disable_notrace();
6773 		preempt_latency_start(1);
6774 		/*
6775 		 * Needs preempt disabled in case user_exit() is traced
6776 		 * and the tracer calls preempt_enable_notrace() causing
6777 		 * an infinite recursion.
6778 		 */
6779 		prev_ctx = exception_enter();
6780 		__schedule(SM_PREEMPT);
6781 		exception_exit(prev_ctx);
6782 
6783 		preempt_latency_stop(1);
6784 		preempt_enable_no_resched_notrace();
6785 	} while (need_resched());
6786 }
6787 EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
6788 
6789 #ifdef CONFIG_PREEMPT_DYNAMIC
6790 DEFINE_STATIC_CALL(preempt_schedule_notrace, __preempt_schedule_notrace_func);
6791 EXPORT_STATIC_CALL_TRAMP(preempt_schedule_notrace);
6792 #endif
6793 
6794 #endif /* CONFIG_PREEMPTION */
6795 
6796 #ifdef CONFIG_PREEMPT_DYNAMIC
6797 
6798 #include <linux/entry-common.h>
6799 
6800 /*
6801  * SC:cond_resched
6802  * SC:might_resched
6803  * SC:preempt_schedule
6804  * SC:preempt_schedule_notrace
6805  * SC:irqentry_exit_cond_resched
6806  *
6807  *
6808  * NONE:
6809  *   cond_resched               <- __cond_resched
6810  *   might_resched              <- RET0
6811  *   preempt_schedule           <- NOP
6812  *   preempt_schedule_notrace   <- NOP
6813  *   irqentry_exit_cond_resched <- NOP
6814  *
6815  * VOLUNTARY:
6816  *   cond_resched               <- __cond_resched
6817  *   might_resched              <- __cond_resched
6818  *   preempt_schedule           <- NOP
6819  *   preempt_schedule_notrace   <- NOP
6820  *   irqentry_exit_cond_resched <- NOP
6821  *
6822  * FULL:
6823  *   cond_resched               <- RET0
6824  *   might_resched              <- RET0
6825  *   preempt_schedule           <- preempt_schedule
6826  *   preempt_schedule_notrace   <- preempt_schedule_notrace
6827  *   irqentry_exit_cond_resched <- irqentry_exit_cond_resched
6828  */
6829 
6830 enum {
6831 	preempt_dynamic_none = 0,
6832 	preempt_dynamic_voluntary,
6833 	preempt_dynamic_full,
6834 };
6835 
6836 int preempt_dynamic_mode = preempt_dynamic_full;
6837 
sched_dynamic_mode(const char * str)6838 int sched_dynamic_mode(const char *str)
6839 {
6840 	if (!strcmp(str, "none"))
6841 		return preempt_dynamic_none;
6842 
6843 	if (!strcmp(str, "voluntary"))
6844 		return preempt_dynamic_voluntary;
6845 
6846 	if (!strcmp(str, "full"))
6847 		return preempt_dynamic_full;
6848 
6849 	return -EINVAL;
6850 }
6851 
sched_dynamic_update(int mode)6852 void sched_dynamic_update(int mode)
6853 {
6854 	/*
6855 	 * Avoid {NONE,VOLUNTARY} -> FULL transitions from ever ending up in
6856 	 * the ZERO state, which is invalid.
6857 	 */
6858 	static_call_update(cond_resched, __cond_resched);
6859 	static_call_update(might_resched, __cond_resched);
6860 	static_call_update(preempt_schedule, __preempt_schedule_func);
6861 	static_call_update(preempt_schedule_notrace, __preempt_schedule_notrace_func);
6862 	static_call_update(irqentry_exit_cond_resched, irqentry_exit_cond_resched);
6863 
6864 	switch (mode) {
6865 	case preempt_dynamic_none:
6866 		static_call_update(cond_resched, __cond_resched);
6867 		static_call_update(might_resched, (void *)&__static_call_return0);
6868 		static_call_update(preempt_schedule, NULL);
6869 		static_call_update(preempt_schedule_notrace, NULL);
6870 		static_call_update(irqentry_exit_cond_resched, NULL);
6871 		pr_info("Dynamic Preempt: none\n");
6872 		break;
6873 
6874 	case preempt_dynamic_voluntary:
6875 		static_call_update(cond_resched, __cond_resched);
6876 		static_call_update(might_resched, __cond_resched);
6877 		static_call_update(preempt_schedule, NULL);
6878 		static_call_update(preempt_schedule_notrace, NULL);
6879 		static_call_update(irqentry_exit_cond_resched, NULL);
6880 		pr_info("Dynamic Preempt: voluntary\n");
6881 		break;
6882 
6883 	case preempt_dynamic_full:
6884 		static_call_update(cond_resched, (void *)&__static_call_return0);
6885 		static_call_update(might_resched, (void *)&__static_call_return0);
6886 		static_call_update(preempt_schedule, __preempt_schedule_func);
6887 		static_call_update(preempt_schedule_notrace, __preempt_schedule_notrace_func);
6888 		static_call_update(irqentry_exit_cond_resched, irqentry_exit_cond_resched);
6889 		pr_info("Dynamic Preempt: full\n");
6890 		break;
6891 	}
6892 
6893 	preempt_dynamic_mode = mode;
6894 }
6895 
setup_preempt_mode(char * str)6896 static int __init setup_preempt_mode(char *str)
6897 {
6898 	int mode = sched_dynamic_mode(str);
6899 	if (mode < 0) {
6900 		pr_warn("Dynamic Preempt: unsupported mode: %s\n", str);
6901 		return 0;
6902 	}
6903 
6904 	sched_dynamic_update(mode);
6905 	return 1;
6906 }
6907 __setup("preempt=", setup_preempt_mode);
6908 
6909 #endif /* CONFIG_PREEMPT_DYNAMIC */
6910 
6911 /*
6912  * This is the entry point to schedule() from kernel preemption
6913  * off of irq context.
6914  * Note, that this is called and return with irqs disabled. This will
6915  * protect us against recursive calling from irq.
6916  */
preempt_schedule_irq(void)6917 asmlinkage __visible void __sched preempt_schedule_irq(void)
6918 {
6919 	enum ctx_state prev_state;
6920 
6921 	/* Catch callers which need to be fixed */
6922 	BUG_ON(preempt_count() || !irqs_disabled());
6923 
6924 	prev_state = exception_enter();
6925 
6926 	do {
6927 		preempt_disable();
6928 		local_irq_enable();
6929 		__schedule(SM_PREEMPT);
6930 		local_irq_disable();
6931 		sched_preempt_enable_no_resched();
6932 	} while (need_resched());
6933 
6934 	exception_exit(prev_state);
6935 }
6936 
default_wake_function(wait_queue_entry_t * curr,unsigned mode,int wake_flags,void * key)6937 int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
6938 			  void *key)
6939 {
6940 	WARN_ON_ONCE(IS_ENABLED(CONFIG_SCHED_DEBUG) && wake_flags & ~(WF_SYNC | WF_ANDROID_VENDOR));
6941 	return try_to_wake_up(curr->private, mode, wake_flags);
6942 }
6943 EXPORT_SYMBOL(default_wake_function);
6944 
__setscheduler_prio(struct task_struct * p,int prio)6945 static void __setscheduler_prio(struct task_struct *p, int prio)
6946 {
6947 	if (dl_prio(prio))
6948 		p->sched_class = &dl_sched_class;
6949 	else if (rt_prio(prio))
6950 		p->sched_class = &rt_sched_class;
6951 	else
6952 		p->sched_class = &fair_sched_class;
6953 
6954 	p->prio = prio;
6955 }
6956 
6957 #ifdef CONFIG_RT_MUTEXES
6958 
__rt_effective_prio(struct task_struct * pi_task,int prio)6959 static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
6960 {
6961 	if (pi_task)
6962 		prio = min(prio, pi_task->prio);
6963 
6964 	return prio;
6965 }
6966 
rt_effective_prio(struct task_struct * p,int prio)6967 static inline int rt_effective_prio(struct task_struct *p, int prio)
6968 {
6969 	struct task_struct *pi_task = rt_mutex_get_top_task(p);
6970 
6971 	return __rt_effective_prio(pi_task, prio);
6972 }
6973 
6974 /*
6975  * rt_mutex_setprio - set the current priority of a task
6976  * @p: task to boost
6977  * @pi_task: donor task
6978  *
6979  * This function changes the 'effective' priority of a task. It does
6980  * not touch ->normal_prio like __setscheduler().
6981  *
6982  * Used by the rt_mutex code to implement priority inheritance
6983  * logic. Call site only calls if the priority of the task changed.
6984  */
rt_mutex_setprio(struct task_struct * p,struct task_struct * pi_task)6985 void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
6986 {
6987 	int prio, oldprio, queued, running, queue_flag =
6988 		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
6989 	const struct sched_class *prev_class;
6990 	struct rq_flags rf;
6991 	struct rq *rq;
6992 
6993 	trace_android_rvh_rtmutex_prepare_setprio(p, pi_task);
6994 	/* XXX used to be waiter->prio, not waiter->task->prio */
6995 	prio = __rt_effective_prio(pi_task, p->normal_prio);
6996 
6997 	/*
6998 	 * If nothing changed; bail early.
6999 	 */
7000 	if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
7001 		return;
7002 
7003 	rq = __task_rq_lock(p, &rf);
7004 	update_rq_clock(rq);
7005 	/*
7006 	 * Set under pi_lock && rq->lock, such that the value can be used under
7007 	 * either lock.
7008 	 *
7009 	 * Note that there is loads of tricky to make this pointer cache work
7010 	 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
7011 	 * ensure a task is de-boosted (pi_task is set to NULL) before the
7012 	 * task is allowed to run again (and can exit). This ensures the pointer
7013 	 * points to a blocked task -- which guarantees the task is present.
7014 	 */
7015 	p->pi_top_task = pi_task;
7016 
7017 	/*
7018 	 * For FIFO/RR we only need to set prio, if that matches we're done.
7019 	 */
7020 	if (prio == p->prio && !dl_prio(prio))
7021 		goto out_unlock;
7022 
7023 	/*
7024 	 * Idle task boosting is a nono in general. There is one
7025 	 * exception, when PREEMPT_RT and NOHZ is active:
7026 	 *
7027 	 * The idle task calls get_next_timer_interrupt() and holds
7028 	 * the timer wheel base->lock on the CPU and another CPU wants
7029 	 * to access the timer (probably to cancel it). We can safely
7030 	 * ignore the boosting request, as the idle CPU runs this code
7031 	 * with interrupts disabled and will complete the lock
7032 	 * protected section without being interrupted. So there is no
7033 	 * real need to boost.
7034 	 */
7035 	if (unlikely(p == rq->idle)) {
7036 		WARN_ON(p != rq->curr);
7037 		WARN_ON(p->pi_blocked_on);
7038 		goto out_unlock;
7039 	}
7040 
7041 	trace_sched_pi_setprio(p, pi_task);
7042 	oldprio = p->prio;
7043 
7044 	if (oldprio == prio)
7045 		queue_flag &= ~DEQUEUE_MOVE;
7046 
7047 	prev_class = p->sched_class;
7048 	queued = task_on_rq_queued(p);
7049 	running = task_current(rq, p);
7050 	if (queued)
7051 		dequeue_task(rq, p, queue_flag);
7052 	if (running)
7053 		put_prev_task(rq, p);
7054 
7055 	/*
7056 	 * Boosting condition are:
7057 	 * 1. -rt task is running and holds mutex A
7058 	 *      --> -dl task blocks on mutex A
7059 	 *
7060 	 * 2. -dl task is running and holds mutex A
7061 	 *      --> -dl task blocks on mutex A and could preempt the
7062 	 *          running task
7063 	 */
7064 	if (dl_prio(prio)) {
7065 		if (!dl_prio(p->normal_prio) ||
7066 		    (pi_task && dl_prio(pi_task->prio) &&
7067 		     dl_entity_preempt(&pi_task->dl, &p->dl))) {
7068 			p->dl.pi_se = pi_task->dl.pi_se;
7069 			queue_flag |= ENQUEUE_REPLENISH;
7070 		} else {
7071 			p->dl.pi_se = &p->dl;
7072 		}
7073 	} else if (rt_prio(prio)) {
7074 		if (dl_prio(oldprio))
7075 			p->dl.pi_se = &p->dl;
7076 		if (oldprio < prio)
7077 			queue_flag |= ENQUEUE_HEAD;
7078 	} else {
7079 		if (dl_prio(oldprio))
7080 			p->dl.pi_se = &p->dl;
7081 		if (rt_prio(oldprio))
7082 			p->rt.timeout = 0;
7083 	}
7084 
7085 	__setscheduler_prio(p, prio);
7086 
7087 	if (queued)
7088 		enqueue_task(rq, p, queue_flag);
7089 	if (running)
7090 		set_next_task(rq, p);
7091 
7092 	check_class_changed(rq, p, prev_class, oldprio);
7093 out_unlock:
7094 	/* Avoid rq from going away on us: */
7095 	preempt_disable();
7096 
7097 	rq_unpin_lock(rq, &rf);
7098 	__balance_callbacks(rq);
7099 	raw_spin_rq_unlock(rq);
7100 
7101 	preempt_enable();
7102 }
7103 #else
rt_effective_prio(struct task_struct * p,int prio)7104 static inline int rt_effective_prio(struct task_struct *p, int prio)
7105 {
7106 	return prio;
7107 }
7108 #endif
7109 
set_user_nice(struct task_struct * p,long nice)7110 void set_user_nice(struct task_struct *p, long nice)
7111 {
7112 	bool queued, running, allowed = false;
7113 	int old_prio;
7114 	struct rq_flags rf;
7115 	struct rq *rq;
7116 
7117 	trace_android_rvh_set_user_nice(p, &nice, &allowed);
7118 	if ((task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE) && !allowed)
7119 		return;
7120 	/*
7121 	 * We have to be careful, if called from sys_setpriority(),
7122 	 * the task might be in the middle of scheduling on another CPU.
7123 	 */
7124 	rq = task_rq_lock(p, &rf);
7125 	update_rq_clock(rq);
7126 
7127 	trace_android_rvh_set_user_nice_locked(p, &nice);
7128 	if (task_nice(p) == nice)
7129 		goto out_unlock;
7130 
7131 	/*
7132 	 * The RT priorities are set via sched_setscheduler(), but we still
7133 	 * allow the 'normal' nice value to be set - but as expected
7134 	 * it won't have any effect on scheduling until the task is
7135 	 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
7136 	 */
7137 	if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
7138 		p->static_prio = NICE_TO_PRIO(nice);
7139 		goto out_unlock;
7140 	}
7141 	queued = task_on_rq_queued(p);
7142 	running = task_current(rq, p);
7143 	if (queued)
7144 		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
7145 	if (running)
7146 		put_prev_task(rq, p);
7147 
7148 	p->static_prio = NICE_TO_PRIO(nice);
7149 	set_load_weight(p, true);
7150 	old_prio = p->prio;
7151 	p->prio = effective_prio(p);
7152 
7153 	if (queued)
7154 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
7155 	if (running)
7156 		set_next_task(rq, p);
7157 
7158 	/*
7159 	 * If the task increased its priority or is running and
7160 	 * lowered its priority, then reschedule its CPU:
7161 	 */
7162 	p->sched_class->prio_changed(rq, p, old_prio);
7163 
7164 out_unlock:
7165 	task_rq_unlock(rq, p, &rf);
7166 }
7167 EXPORT_SYMBOL(set_user_nice);
7168 
7169 /*
7170  * can_nice - check if a task can reduce its nice value
7171  * @p: task
7172  * @nice: nice value
7173  */
can_nice(const struct task_struct * p,const int nice)7174 int can_nice(const struct task_struct *p, const int nice)
7175 {
7176 	/* Convert nice value [19,-20] to rlimit style value [1,40]: */
7177 	int nice_rlim = nice_to_rlimit(nice);
7178 
7179 	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
7180 		capable(CAP_SYS_NICE));
7181 }
7182 
7183 #ifdef __ARCH_WANT_SYS_NICE
7184 
7185 /*
7186  * sys_nice - change the priority of the current process.
7187  * @increment: priority increment
7188  *
7189  * sys_setpriority is a more generic, but much slower function that
7190  * does similar things.
7191  */
SYSCALL_DEFINE1(nice,int,increment)7192 SYSCALL_DEFINE1(nice, int, increment)
7193 {
7194 	long nice, retval;
7195 
7196 	/*
7197 	 * Setpriority might change our priority at the same moment.
7198 	 * We don't have to worry. Conceptually one call occurs first
7199 	 * and we have a single winner.
7200 	 */
7201 	increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
7202 	nice = task_nice(current) + increment;
7203 
7204 	nice = clamp_val(nice, MIN_NICE, MAX_NICE);
7205 	if (increment < 0 && !can_nice(current, nice))
7206 		return -EPERM;
7207 
7208 	retval = security_task_setnice(current, nice);
7209 	if (retval)
7210 		return retval;
7211 
7212 	set_user_nice(current, nice);
7213 	return 0;
7214 }
7215 
7216 #endif
7217 
7218 /**
7219  * task_prio - return the priority value of a given task.
7220  * @p: the task in question.
7221  *
7222  * Return: The priority value as seen by users in /proc.
7223  *
7224  * sched policy         return value   kernel prio    user prio/nice
7225  *
7226  * normal, batch, idle     [0 ... 39]  [100 ... 139]          0/[-20 ... 19]
7227  * fifo, rr             [-2 ... -100]     [98 ... 0]  [1 ... 99]
7228  * deadline                     -101             -1           0
7229  */
task_prio(const struct task_struct * p)7230 int task_prio(const struct task_struct *p)
7231 {
7232 	return p->prio - MAX_RT_PRIO;
7233 }
7234 
7235 /**
7236  * idle_cpu - is a given CPU idle currently?
7237  * @cpu: the processor in question.
7238  *
7239  * Return: 1 if the CPU is currently idle. 0 otherwise.
7240  */
idle_cpu(int cpu)7241 int idle_cpu(int cpu)
7242 {
7243 	struct rq *rq = cpu_rq(cpu);
7244 
7245 	if (rq->curr != rq->idle)
7246 		return 0;
7247 
7248 	if (rq->nr_running)
7249 		return 0;
7250 
7251 #ifdef CONFIG_SMP
7252 	if (rq->ttwu_pending)
7253 		return 0;
7254 #endif
7255 
7256 	return 1;
7257 }
7258 
7259 /**
7260  * available_idle_cpu - is a given CPU idle for enqueuing work.
7261  * @cpu: the CPU in question.
7262  *
7263  * Return: 1 if the CPU is currently idle. 0 otherwise.
7264  */
available_idle_cpu(int cpu)7265 int available_idle_cpu(int cpu)
7266 {
7267 	if (!idle_cpu(cpu))
7268 		return 0;
7269 
7270 	if (vcpu_is_preempted(cpu))
7271 		return 0;
7272 
7273 	return 1;
7274 }
7275 EXPORT_SYMBOL_GPL(available_idle_cpu);
7276 
7277 /**
7278  * idle_task - return the idle task for a given CPU.
7279  * @cpu: the processor in question.
7280  *
7281  * Return: The idle task for the CPU @cpu.
7282  */
idle_task(int cpu)7283 struct task_struct *idle_task(int cpu)
7284 {
7285 	return cpu_rq(cpu)->idle;
7286 }
7287 
7288 #ifdef CONFIG_SMP
7289 /*
7290  * This function computes an effective utilization for the given CPU, to be
7291  * used for frequency selection given the linear relation: f = u * f_max.
7292  *
7293  * The scheduler tracks the following metrics:
7294  *
7295  *   cpu_util_{cfs,rt,dl,irq}()
7296  *   cpu_bw_dl()
7297  *
7298  * Where the cfs,rt and dl util numbers are tracked with the same metric and
7299  * synchronized windows and are thus directly comparable.
7300  *
7301  * The cfs,rt,dl utilization are the running times measured with rq->clock_task
7302  * which excludes things like IRQ and steal-time. These latter are then accrued
7303  * in the irq utilization.
7304  *
7305  * The DL bandwidth number otoh is not a measured metric but a value computed
7306  * based on the task model parameters and gives the minimal utilization
7307  * required to meet deadlines.
7308  */
effective_cpu_util(int cpu,unsigned long util_cfs,unsigned long max,enum cpu_util_type type,struct task_struct * p)7309 unsigned long effective_cpu_util(int cpu, unsigned long util_cfs,
7310 				 unsigned long max, enum cpu_util_type type,
7311 				 struct task_struct *p)
7312 {
7313 	unsigned long dl_util, util, irq;
7314 	struct rq *rq = cpu_rq(cpu);
7315 	unsigned long new_util = ULONG_MAX;
7316 
7317 	trace_android_rvh_effective_cpu_util(cpu, util_cfs, max, type, p, &new_util);
7318 	if (new_util != ULONG_MAX)
7319 		return new_util;
7320 
7321 	if (!uclamp_is_used() &&
7322 	    type == FREQUENCY_UTIL && rt_rq_is_runnable(&rq->rt)) {
7323 		return max;
7324 	}
7325 
7326 	/*
7327 	 * Early check to see if IRQ/steal time saturates the CPU, can be
7328 	 * because of inaccuracies in how we track these -- see
7329 	 * update_irq_load_avg().
7330 	 */
7331 	irq = cpu_util_irq(rq);
7332 	if (unlikely(irq >= max))
7333 		return max;
7334 
7335 	/*
7336 	 * Because the time spend on RT/DL tasks is visible as 'lost' time to
7337 	 * CFS tasks and we use the same metric to track the effective
7338 	 * utilization (PELT windows are synchronized) we can directly add them
7339 	 * to obtain the CPU's actual utilization.
7340 	 *
7341 	 * CFS and RT utilization can be boosted or capped, depending on
7342 	 * utilization clamp constraints requested by currently RUNNABLE
7343 	 * tasks.
7344 	 * When there are no CFS RUNNABLE tasks, clamps are released and
7345 	 * frequency will be gracefully reduced with the utilization decay.
7346 	 */
7347 	util = util_cfs + cpu_util_rt(rq);
7348 	if (type == FREQUENCY_UTIL)
7349 		util = uclamp_rq_util_with(rq, util, p);
7350 
7351 	dl_util = cpu_util_dl(rq);
7352 
7353 	/*
7354 	 * For frequency selection we do not make cpu_util_dl() a permanent part
7355 	 * of this sum because we want to use cpu_bw_dl() later on, but we need
7356 	 * to check if the CFS+RT+DL sum is saturated (ie. no idle time) such
7357 	 * that we select f_max when there is no idle time.
7358 	 *
7359 	 * NOTE: numerical errors or stop class might cause us to not quite hit
7360 	 * saturation when we should -- something for later.
7361 	 */
7362 	if (util + dl_util >= max)
7363 		return max;
7364 
7365 	/*
7366 	 * OTOH, for energy computation we need the estimated running time, so
7367 	 * include util_dl and ignore dl_bw.
7368 	 */
7369 	if (type == ENERGY_UTIL)
7370 		util += dl_util;
7371 
7372 	/*
7373 	 * There is still idle time; further improve the number by using the
7374 	 * irq metric. Because IRQ/steal time is hidden from the task clock we
7375 	 * need to scale the task numbers:
7376 	 *
7377 	 *              max - irq
7378 	 *   U' = irq + --------- * U
7379 	 *                 max
7380 	 */
7381 	util = scale_irq_capacity(util, irq, max);
7382 	util += irq;
7383 
7384 	/*
7385 	 * Bandwidth required by DEADLINE must always be granted while, for
7386 	 * FAIR and RT, we use blocked utilization of IDLE CPUs as a mechanism
7387 	 * to gracefully reduce the frequency when no tasks show up for longer
7388 	 * periods of time.
7389 	 *
7390 	 * Ideally we would like to set bw_dl as min/guaranteed freq and util +
7391 	 * bw_dl as requested freq. However, cpufreq is not yet ready for such
7392 	 * an interface. So, we only do the latter for now.
7393 	 */
7394 	if (type == FREQUENCY_UTIL)
7395 		util += cpu_bw_dl(rq);
7396 
7397 	return min(max, util);
7398 }
7399 
sched_cpu_util(int cpu,unsigned long max)7400 unsigned long sched_cpu_util(int cpu, unsigned long max)
7401 {
7402 	return effective_cpu_util(cpu, cpu_util_cfs(cpu_rq(cpu)), max,
7403 				  ENERGY_UTIL, NULL);
7404 }
7405 #endif /* CONFIG_SMP */
7406 
7407 /**
7408  * find_process_by_pid - find a process with a matching PID value.
7409  * @pid: the pid in question.
7410  *
7411  * The task of @pid, if found. %NULL otherwise.
7412  */
find_process_by_pid(pid_t pid)7413 static struct task_struct *find_process_by_pid(pid_t pid)
7414 {
7415 	return pid ? find_task_by_vpid(pid) : current;
7416 }
7417 
7418 /*
7419  * sched_setparam() passes in -1 for its policy, to let the functions
7420  * it calls know not to change it.
7421  */
7422 #define SETPARAM_POLICY	-1
7423 
__setscheduler_params(struct task_struct * p,const struct sched_attr * attr)7424 static void __setscheduler_params(struct task_struct *p,
7425 		const struct sched_attr *attr)
7426 {
7427 	int policy = attr->sched_policy;
7428 
7429 	if (policy == SETPARAM_POLICY)
7430 		policy = p->policy;
7431 
7432 	p->policy = policy;
7433 
7434 	if (dl_policy(policy))
7435 		__setparam_dl(p, attr);
7436 	else if (fair_policy(policy))
7437 		p->static_prio = NICE_TO_PRIO(attr->sched_nice);
7438 
7439 	/*
7440 	 * __sched_setscheduler() ensures attr->sched_priority == 0 when
7441 	 * !rt_policy. Always setting this ensures that things like
7442 	 * getparam()/getattr() don't report silly values for !rt tasks.
7443 	 */
7444 	p->rt_priority = attr->sched_priority;
7445 	p->normal_prio = normal_prio(p);
7446 	set_load_weight(p, true);
7447 }
7448 
7449 /*
7450  * Check the target process has a UID that matches the current process's:
7451  */
check_same_owner(struct task_struct * p)7452 static bool check_same_owner(struct task_struct *p)
7453 {
7454 	const struct cred *cred = current_cred(), *pcred;
7455 	bool match;
7456 
7457 	rcu_read_lock();
7458 	pcred = __task_cred(p);
7459 	match = (uid_eq(cred->euid, pcred->euid) ||
7460 		 uid_eq(cred->euid, pcred->uid));
7461 	rcu_read_unlock();
7462 	return match;
7463 }
7464 
__sched_setscheduler(struct task_struct * p,const struct sched_attr * attr,bool user,bool pi)7465 static int __sched_setscheduler(struct task_struct *p,
7466 				const struct sched_attr *attr,
7467 				bool user, bool pi)
7468 {
7469 	int oldpolicy = -1, policy = attr->sched_policy;
7470 	int retval, oldprio, newprio, queued, running;
7471 	const struct sched_class *prev_class;
7472 	struct callback_head *head;
7473 	struct rq_flags rf;
7474 	int reset_on_fork;
7475 	int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
7476 	struct rq *rq;
7477 	bool cpuset_locked = false;
7478 
7479 	/* The pi code expects interrupts enabled */
7480 	BUG_ON(pi && in_interrupt());
7481 recheck:
7482 	/* Double check policy once rq lock held: */
7483 	if (policy < 0) {
7484 		reset_on_fork = p->sched_reset_on_fork;
7485 		policy = oldpolicy = p->policy;
7486 	} else {
7487 		reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
7488 
7489 		if (!valid_policy(policy))
7490 			return -EINVAL;
7491 	}
7492 
7493 	if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV))
7494 		return -EINVAL;
7495 
7496 	/*
7497 	 * Valid priorities for SCHED_FIFO and SCHED_RR are
7498 	 * 1..MAX_RT_PRIO-1, valid priority for SCHED_NORMAL,
7499 	 * SCHED_BATCH and SCHED_IDLE is 0.
7500 	 */
7501 	if (attr->sched_priority > MAX_RT_PRIO-1)
7502 		return -EINVAL;
7503 	if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
7504 	    (rt_policy(policy) != (attr->sched_priority != 0)))
7505 		return -EINVAL;
7506 
7507 	/*
7508 	 * Allow unprivileged RT tasks to decrease priority:
7509 	 */
7510 	if (user && !capable(CAP_SYS_NICE)) {
7511 		if (fair_policy(policy)) {
7512 			if (attr->sched_nice < task_nice(p) &&
7513 			    !can_nice(p, attr->sched_nice))
7514 				return -EPERM;
7515 		}
7516 
7517 		if (rt_policy(policy)) {
7518 			unsigned long rlim_rtprio =
7519 					task_rlimit(p, RLIMIT_RTPRIO);
7520 
7521 			/* Can't set/change the rt policy: */
7522 			if (policy != p->policy && !rlim_rtprio)
7523 				return -EPERM;
7524 
7525 			/* Can't increase priority: */
7526 			if (attr->sched_priority > p->rt_priority &&
7527 			    attr->sched_priority > rlim_rtprio)
7528 				return -EPERM;
7529 		}
7530 
7531 		 /*
7532 		  * Can't set/change SCHED_DEADLINE policy at all for now
7533 		  * (safest behavior); in the future we would like to allow
7534 		  * unprivileged DL tasks to increase their relative deadline
7535 		  * or reduce their runtime (both ways reducing utilization)
7536 		  */
7537 		if (dl_policy(policy))
7538 			return -EPERM;
7539 
7540 		/*
7541 		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
7542 		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
7543 		 */
7544 		if (task_has_idle_policy(p) && !idle_policy(policy)) {
7545 			if (!can_nice(p, task_nice(p)))
7546 				return -EPERM;
7547 		}
7548 
7549 		/* Can't change other user's priorities: */
7550 		if (!check_same_owner(p))
7551 			return -EPERM;
7552 
7553 		/* Normal users shall not reset the sched_reset_on_fork flag: */
7554 		if (p->sched_reset_on_fork && !reset_on_fork)
7555 			return -EPERM;
7556 
7557 		/* Can't change util-clamps */
7558 		if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)
7559 			return -EPERM;
7560 	}
7561 
7562 	if (user) {
7563 		if (attr->sched_flags & SCHED_FLAG_SUGOV)
7564 			return -EINVAL;
7565 
7566 		retval = security_task_setscheduler(p);
7567 		if (retval)
7568 			return retval;
7569 	}
7570 
7571 	/* Update task specific "requested" clamps */
7572 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) {
7573 		retval = uclamp_validate(p, attr, user);
7574 		if (retval)
7575 			return retval;
7576 	}
7577 
7578 	/*
7579 	 * SCHED_DEADLINE bandwidth accounting relies on stable cpusets
7580 	 * information.
7581 	 */
7582 	if (dl_policy(policy) || dl_policy(p->policy)) {
7583 		cpuset_locked = true;
7584 		cpuset_lock();
7585 	}
7586 
7587 	/*
7588 	 * Make sure no PI-waiters arrive (or leave) while we are
7589 	 * changing the priority of the task:
7590 	 *
7591 	 * To be able to change p->policy safely, the appropriate
7592 	 * runqueue lock must be held.
7593 	 */
7594 	rq = task_rq_lock(p, &rf);
7595 	update_rq_clock(rq);
7596 
7597 	/*
7598 	 * Changing the policy of the stop threads its a very bad idea:
7599 	 */
7600 	if (p == rq->stop) {
7601 		retval = -EINVAL;
7602 		goto unlock;
7603 	}
7604 
7605 	/*
7606 	 * If not changing anything there's no need to proceed further,
7607 	 * but store a possible modification of reset_on_fork.
7608 	 */
7609 	if (unlikely(policy == p->policy)) {
7610 		if (fair_policy(policy) && attr->sched_nice != task_nice(p))
7611 			goto change;
7612 		if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
7613 			goto change;
7614 		if (dl_policy(policy) && dl_param_changed(p, attr))
7615 			goto change;
7616 		if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)
7617 			goto change;
7618 
7619 		p->sched_reset_on_fork = reset_on_fork;
7620 		retval = 0;
7621 		goto unlock;
7622 	}
7623 change:
7624 
7625 	if (user) {
7626 #ifdef CONFIG_RT_GROUP_SCHED
7627 		/*
7628 		 * Do not allow realtime tasks into groups that have no runtime
7629 		 * assigned.
7630 		 */
7631 		if (rt_bandwidth_enabled() && rt_policy(policy) &&
7632 				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
7633 				!task_group_is_autogroup(task_group(p))) {
7634 			retval = -EPERM;
7635 			goto unlock;
7636 		}
7637 #endif
7638 #ifdef CONFIG_SMP
7639 		if (dl_bandwidth_enabled() && dl_policy(policy) &&
7640 				!(attr->sched_flags & SCHED_FLAG_SUGOV)) {
7641 			cpumask_t *span = rq->rd->span;
7642 
7643 			/*
7644 			 * Don't allow tasks with an affinity mask smaller than
7645 			 * the entire root_domain to become SCHED_DEADLINE. We
7646 			 * will also fail if there's no bandwidth available.
7647 			 */
7648 			if (!cpumask_subset(span, p->cpus_ptr) ||
7649 			    rq->rd->dl_bw.bw == 0) {
7650 				retval = -EPERM;
7651 				goto unlock;
7652 			}
7653 		}
7654 #endif
7655 	}
7656 
7657 	/* Re-check policy now with rq lock held: */
7658 	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
7659 		policy = oldpolicy = -1;
7660 		task_rq_unlock(rq, p, &rf);
7661 		if (cpuset_locked)
7662 			cpuset_unlock();
7663 		goto recheck;
7664 	}
7665 
7666 	/*
7667 	 * If setscheduling to SCHED_DEADLINE (or changing the parameters
7668 	 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
7669 	 * is available.
7670 	 */
7671 	if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) {
7672 		retval = -EBUSY;
7673 		goto unlock;
7674 	}
7675 
7676 	p->sched_reset_on_fork = reset_on_fork;
7677 	oldprio = p->prio;
7678 
7679 	newprio = __normal_prio(policy, attr->sched_priority, attr->sched_nice);
7680 	if (pi) {
7681 		/*
7682 		 * Take priority boosted tasks into account. If the new
7683 		 * effective priority is unchanged, we just store the new
7684 		 * normal parameters and do not touch the scheduler class and
7685 		 * the runqueue. This will be done when the task deboost
7686 		 * itself.
7687 		 */
7688 		newprio = rt_effective_prio(p, newprio);
7689 		if (newprio == oldprio)
7690 			queue_flags &= ~DEQUEUE_MOVE;
7691 	}
7692 
7693 	queued = task_on_rq_queued(p);
7694 	running = task_current(rq, p);
7695 	if (queued)
7696 		dequeue_task(rq, p, queue_flags);
7697 	if (running)
7698 		put_prev_task(rq, p);
7699 
7700 	prev_class = p->sched_class;
7701 
7702 	if (!(attr->sched_flags & SCHED_FLAG_KEEP_PARAMS)) {
7703 		__setscheduler_params(p, attr);
7704 		__setscheduler_prio(p, newprio);
7705 		trace_android_rvh_setscheduler(p);
7706 	}
7707 	__setscheduler_uclamp(p, attr);
7708 
7709 	if (queued) {
7710 		/*
7711 		 * We enqueue to tail when the priority of a task is
7712 		 * increased (user space view).
7713 		 */
7714 		if (oldprio < p->prio)
7715 			queue_flags |= ENQUEUE_HEAD;
7716 
7717 		enqueue_task(rq, p, queue_flags);
7718 	}
7719 	if (running)
7720 		set_next_task(rq, p);
7721 
7722 	check_class_changed(rq, p, prev_class, oldprio);
7723 
7724 	/* Avoid rq from going away on us: */
7725 	preempt_disable();
7726 	head = splice_balance_callbacks(rq);
7727 	task_rq_unlock(rq, p, &rf);
7728 
7729 	if (pi) {
7730 		if (cpuset_locked)
7731 			cpuset_unlock();
7732 		rt_mutex_adjust_pi(p);
7733 	}
7734 
7735 	/* Run balance callbacks after we've adjusted the PI chain: */
7736 	balance_callbacks(rq, head);
7737 	preempt_enable();
7738 
7739 	return 0;
7740 
7741 unlock:
7742 	task_rq_unlock(rq, p, &rf);
7743 	if (cpuset_locked)
7744 		cpuset_unlock();
7745 	return retval;
7746 }
7747 
_sched_setscheduler(struct task_struct * p,int policy,const struct sched_param * param,bool check)7748 static int _sched_setscheduler(struct task_struct *p, int policy,
7749 			       const struct sched_param *param, bool check)
7750 {
7751 	struct sched_attr attr = {
7752 		.sched_policy   = policy,
7753 		.sched_priority = param->sched_priority,
7754 		.sched_nice	= PRIO_TO_NICE(p->static_prio),
7755 	};
7756 
7757 	/* Fixup the legacy SCHED_RESET_ON_FORK hack. */
7758 	if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
7759 		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
7760 		policy &= ~SCHED_RESET_ON_FORK;
7761 		attr.sched_policy = policy;
7762 	}
7763 
7764 	return __sched_setscheduler(p, &attr, check, true);
7765 }
7766 /**
7767  * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
7768  * @p: the task in question.
7769  * @policy: new policy.
7770  * @param: structure containing the new RT priority.
7771  *
7772  * Use sched_set_fifo(), read its comment.
7773  *
7774  * Return: 0 on success. An error code otherwise.
7775  *
7776  * NOTE that the task may be already dead.
7777  */
sched_setscheduler(struct task_struct * p,int policy,const struct sched_param * param)7778 int sched_setscheduler(struct task_struct *p, int policy,
7779 		       const struct sched_param *param)
7780 {
7781 	return _sched_setscheduler(p, policy, param, true);
7782 }
7783 EXPORT_SYMBOL_GPL(sched_setscheduler);
7784 
sched_setattr(struct task_struct * p,const struct sched_attr * attr)7785 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
7786 {
7787 	return __sched_setscheduler(p, attr, true, true);
7788 }
7789 EXPORT_SYMBOL_GPL(sched_setattr);
7790 
sched_setattr_nocheck(struct task_struct * p,const struct sched_attr * attr)7791 int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr)
7792 {
7793 	return __sched_setscheduler(p, attr, false, true);
7794 }
7795 EXPORT_SYMBOL_GPL(sched_setattr_nocheck);
7796 
7797 /**
7798  * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
7799  * @p: the task in question.
7800  * @policy: new policy.
7801  * @param: structure containing the new RT priority.
7802  *
7803  * Just like sched_setscheduler, only don't bother checking if the
7804  * current context has permission.  For example, this is needed in
7805  * stop_machine(): we create temporary high priority worker threads,
7806  * but our caller might not have that capability.
7807  *
7808  * Return: 0 on success. An error code otherwise.
7809  */
sched_setscheduler_nocheck(struct task_struct * p,int policy,const struct sched_param * param)7810 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
7811 			       const struct sched_param *param)
7812 {
7813 	return _sched_setscheduler(p, policy, param, false);
7814 }
7815 EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck);
7816 
7817 /*
7818  * SCHED_FIFO is a broken scheduler model; that is, it is fundamentally
7819  * incapable of resource management, which is the one thing an OS really should
7820  * be doing.
7821  *
7822  * This is of course the reason it is limited to privileged users only.
7823  *
7824  * Worse still; it is fundamentally impossible to compose static priority
7825  * workloads. You cannot take two correctly working static prio workloads
7826  * and smash them together and still expect them to work.
7827  *
7828  * For this reason 'all' FIFO tasks the kernel creates are basically at:
7829  *
7830  *   MAX_RT_PRIO / 2
7831  *
7832  * The administrator _MUST_ configure the system, the kernel simply doesn't
7833  * know enough information to make a sensible choice.
7834  */
sched_set_fifo(struct task_struct * p)7835 void sched_set_fifo(struct task_struct *p)
7836 {
7837 	struct sched_param sp = { .sched_priority = MAX_RT_PRIO / 2 };
7838 	WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
7839 }
7840 EXPORT_SYMBOL_GPL(sched_set_fifo);
7841 
7842 /*
7843  * For when you don't much care about FIFO, but want to be above SCHED_NORMAL.
7844  */
sched_set_fifo_low(struct task_struct * p)7845 void sched_set_fifo_low(struct task_struct *p)
7846 {
7847 	struct sched_param sp = { .sched_priority = 1 };
7848 	WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
7849 }
7850 EXPORT_SYMBOL_GPL(sched_set_fifo_low);
7851 
sched_set_normal(struct task_struct * p,int nice)7852 void sched_set_normal(struct task_struct *p, int nice)
7853 {
7854 	struct sched_attr attr = {
7855 		.sched_policy = SCHED_NORMAL,
7856 		.sched_nice = nice,
7857 	};
7858 	WARN_ON_ONCE(sched_setattr_nocheck(p, &attr) != 0);
7859 }
7860 EXPORT_SYMBOL_GPL(sched_set_normal);
7861 
7862 static int
do_sched_setscheduler(pid_t pid,int policy,struct sched_param __user * param)7863 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
7864 {
7865 	struct sched_param lparam;
7866 	struct task_struct *p;
7867 	int retval;
7868 
7869 	if (!param || pid < 0)
7870 		return -EINVAL;
7871 	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
7872 		return -EFAULT;
7873 
7874 	rcu_read_lock();
7875 	retval = -ESRCH;
7876 	p = find_process_by_pid(pid);
7877 	if (p != NULL)
7878 		retval = sched_setscheduler(p, policy, &lparam);
7879 	rcu_read_unlock();
7880 
7881 	return retval;
7882 }
7883 
7884 /*
7885  * Mimics kernel/events/core.c perf_copy_attr().
7886  */
sched_copy_attr(struct sched_attr __user * uattr,struct sched_attr * attr)7887 static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
7888 {
7889 	u32 size;
7890 	int ret;
7891 
7892 	/* Zero the full structure, so that a short copy will be nice: */
7893 	memset(attr, 0, sizeof(*attr));
7894 
7895 	ret = get_user(size, &uattr->size);
7896 	if (ret)
7897 		return ret;
7898 
7899 	/* ABI compatibility quirk: */
7900 	if (!size)
7901 		size = SCHED_ATTR_SIZE_VER0;
7902 	if (size < SCHED_ATTR_SIZE_VER0 || size > PAGE_SIZE)
7903 		goto err_size;
7904 
7905 	ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
7906 	if (ret) {
7907 		if (ret == -E2BIG)
7908 			goto err_size;
7909 		return ret;
7910 	}
7911 
7912 	if ((attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) &&
7913 	    size < SCHED_ATTR_SIZE_VER1)
7914 		return -EINVAL;
7915 
7916 	/*
7917 	 * XXX: Do we want to be lenient like existing syscalls; or do we want
7918 	 * to be strict and return an error on out-of-bounds values?
7919 	 */
7920 	attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
7921 
7922 	return 0;
7923 
7924 err_size:
7925 	put_user(sizeof(*attr), &uattr->size);
7926 	return -E2BIG;
7927 }
7928 
get_params(struct task_struct * p,struct sched_attr * attr)7929 static void get_params(struct task_struct *p, struct sched_attr *attr)
7930 {
7931 	if (task_has_dl_policy(p))
7932 		__getparam_dl(p, attr);
7933 	else if (task_has_rt_policy(p))
7934 		attr->sched_priority = p->rt_priority;
7935 	else
7936 		attr->sched_nice = task_nice(p);
7937 }
7938 
7939 /**
7940  * sys_sched_setscheduler - set/change the scheduler policy and RT priority
7941  * @pid: the pid in question.
7942  * @policy: new policy.
7943  * @param: structure containing the new RT priority.
7944  *
7945  * Return: 0 on success. An error code otherwise.
7946  */
SYSCALL_DEFINE3(sched_setscheduler,pid_t,pid,int,policy,struct sched_param __user *,param)7947 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
7948 {
7949 	if (policy < 0)
7950 		return -EINVAL;
7951 
7952 	return do_sched_setscheduler(pid, policy, param);
7953 }
7954 
7955 /**
7956  * sys_sched_setparam - set/change the RT priority of a thread
7957  * @pid: the pid in question.
7958  * @param: structure containing the new RT priority.
7959  *
7960  * Return: 0 on success. An error code otherwise.
7961  */
SYSCALL_DEFINE2(sched_setparam,pid_t,pid,struct sched_param __user *,param)7962 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
7963 {
7964 	return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
7965 }
7966 
7967 /**
7968  * sys_sched_setattr - same as above, but with extended sched_attr
7969  * @pid: the pid in question.
7970  * @uattr: structure containing the extended parameters.
7971  * @flags: for future extension.
7972  */
SYSCALL_DEFINE3(sched_setattr,pid_t,pid,struct sched_attr __user *,uattr,unsigned int,flags)7973 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
7974 			       unsigned int, flags)
7975 {
7976 	struct sched_attr attr;
7977 	struct task_struct *p;
7978 	int retval;
7979 
7980 	if (!uattr || pid < 0 || flags)
7981 		return -EINVAL;
7982 
7983 	retval = sched_copy_attr(uattr, &attr);
7984 	if (retval)
7985 		return retval;
7986 
7987 	if ((int)attr.sched_policy < 0)
7988 		return -EINVAL;
7989 	if (attr.sched_flags & SCHED_FLAG_KEEP_POLICY)
7990 		attr.sched_policy = SETPARAM_POLICY;
7991 
7992 	rcu_read_lock();
7993 	retval = -ESRCH;
7994 	p = find_process_by_pid(pid);
7995 	if (likely(p))
7996 		get_task_struct(p);
7997 	rcu_read_unlock();
7998 
7999 	if (likely(p)) {
8000 		if (attr.sched_flags & SCHED_FLAG_KEEP_PARAMS)
8001 			get_params(p, &attr);
8002 		retval = sched_setattr(p, &attr);
8003 		put_task_struct(p);
8004 	}
8005 
8006 	return retval;
8007 }
8008 
8009 /**
8010  * sys_sched_getscheduler - get the policy (scheduling class) of a thread
8011  * @pid: the pid in question.
8012  *
8013  * Return: On success, the policy of the thread. Otherwise, a negative error
8014  * code.
8015  */
SYSCALL_DEFINE1(sched_getscheduler,pid_t,pid)8016 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
8017 {
8018 	struct task_struct *p;
8019 	int retval;
8020 
8021 	if (pid < 0)
8022 		return -EINVAL;
8023 
8024 	retval = -ESRCH;
8025 	rcu_read_lock();
8026 	p = find_process_by_pid(pid);
8027 	if (p) {
8028 		retval = security_task_getscheduler(p);
8029 		if (!retval)
8030 			retval = p->policy
8031 				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
8032 	}
8033 	rcu_read_unlock();
8034 	return retval;
8035 }
8036 
8037 /**
8038  * sys_sched_getparam - get the RT priority of a thread
8039  * @pid: the pid in question.
8040  * @param: structure containing the RT priority.
8041  *
8042  * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
8043  * code.
8044  */
SYSCALL_DEFINE2(sched_getparam,pid_t,pid,struct sched_param __user *,param)8045 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
8046 {
8047 	struct sched_param lp = { .sched_priority = 0 };
8048 	struct task_struct *p;
8049 	int retval;
8050 
8051 	if (!param || pid < 0)
8052 		return -EINVAL;
8053 
8054 	rcu_read_lock();
8055 	p = find_process_by_pid(pid);
8056 	retval = -ESRCH;
8057 	if (!p)
8058 		goto out_unlock;
8059 
8060 	retval = security_task_getscheduler(p);
8061 	if (retval)
8062 		goto out_unlock;
8063 
8064 	if (task_has_rt_policy(p))
8065 		lp.sched_priority = p->rt_priority;
8066 	rcu_read_unlock();
8067 
8068 	/*
8069 	 * This one might sleep, we cannot do it with a spinlock held ...
8070 	 */
8071 	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
8072 
8073 	return retval;
8074 
8075 out_unlock:
8076 	rcu_read_unlock();
8077 	return retval;
8078 }
8079 
8080 /*
8081  * Copy the kernel size attribute structure (which might be larger
8082  * than what user-space knows about) to user-space.
8083  *
8084  * Note that all cases are valid: user-space buffer can be larger or
8085  * smaller than the kernel-space buffer. The usual case is that both
8086  * have the same size.
8087  */
8088 static int
sched_attr_copy_to_user(struct sched_attr __user * uattr,struct sched_attr * kattr,unsigned int usize)8089 sched_attr_copy_to_user(struct sched_attr __user *uattr,
8090 			struct sched_attr *kattr,
8091 			unsigned int usize)
8092 {
8093 	unsigned int ksize = sizeof(*kattr);
8094 
8095 	if (!access_ok(uattr, usize))
8096 		return -EFAULT;
8097 
8098 	/*
8099 	 * sched_getattr() ABI forwards and backwards compatibility:
8100 	 *
8101 	 * If usize == ksize then we just copy everything to user-space and all is good.
8102 	 *
8103 	 * If usize < ksize then we only copy as much as user-space has space for,
8104 	 * this keeps ABI compatibility as well. We skip the rest.
8105 	 *
8106 	 * If usize > ksize then user-space is using a newer version of the ABI,
8107 	 * which part the kernel doesn't know about. Just ignore it - tooling can
8108 	 * detect the kernel's knowledge of attributes from the attr->size value
8109 	 * which is set to ksize in this case.
8110 	 */
8111 	kattr->size = min(usize, ksize);
8112 
8113 	if (copy_to_user(uattr, kattr, kattr->size))
8114 		return -EFAULT;
8115 
8116 	return 0;
8117 }
8118 
8119 /**
8120  * sys_sched_getattr - similar to sched_getparam, but with sched_attr
8121  * @pid: the pid in question.
8122  * @uattr: structure containing the extended parameters.
8123  * @usize: sizeof(attr) for fwd/bwd comp.
8124  * @flags: for future extension.
8125  */
SYSCALL_DEFINE4(sched_getattr,pid_t,pid,struct sched_attr __user *,uattr,unsigned int,usize,unsigned int,flags)8126 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
8127 		unsigned int, usize, unsigned int, flags)
8128 {
8129 	struct sched_attr kattr = { };
8130 	struct task_struct *p;
8131 	int retval;
8132 
8133 	if (!uattr || pid < 0 || usize > PAGE_SIZE ||
8134 	    usize < SCHED_ATTR_SIZE_VER0 || flags)
8135 		return -EINVAL;
8136 
8137 	rcu_read_lock();
8138 	p = find_process_by_pid(pid);
8139 	retval = -ESRCH;
8140 	if (!p)
8141 		goto out_unlock;
8142 
8143 	retval = security_task_getscheduler(p);
8144 	if (retval)
8145 		goto out_unlock;
8146 
8147 	kattr.sched_policy = p->policy;
8148 	if (p->sched_reset_on_fork)
8149 		kattr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
8150 	get_params(p, &kattr);
8151 	kattr.sched_flags &= SCHED_FLAG_ALL;
8152 
8153 #ifdef CONFIG_UCLAMP_TASK
8154 	/*
8155 	 * This could race with another potential updater, but this is fine
8156 	 * because it'll correctly read the old or the new value. We don't need
8157 	 * to guarantee who wins the race as long as it doesn't return garbage.
8158 	 */
8159 	kattr.sched_util_min = p->uclamp_req[UCLAMP_MIN].value;
8160 	kattr.sched_util_max = p->uclamp_req[UCLAMP_MAX].value;
8161 #endif
8162 
8163 	rcu_read_unlock();
8164 
8165 	return sched_attr_copy_to_user(uattr, &kattr, usize);
8166 
8167 out_unlock:
8168 	rcu_read_unlock();
8169 	return retval;
8170 }
8171 
8172 #ifdef CONFIG_SMP
dl_task_check_affinity(struct task_struct * p,const struct cpumask * mask)8173 int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask)
8174 {
8175 	int ret = 0;
8176 
8177 	/*
8178 	 * If the task isn't a deadline task or admission control is
8179 	 * disabled then we don't care about affinity changes.
8180 	 */
8181 	if (!task_has_dl_policy(p) || !dl_bandwidth_enabled())
8182 		return 0;
8183 
8184 	/*
8185 	 * Since bandwidth control happens on root_domain basis,
8186 	 * if admission test is enabled, we only admit -deadline
8187 	 * tasks allowed to run on all the CPUs in the task's
8188 	 * root_domain.
8189 	 */
8190 	rcu_read_lock();
8191 	if (!cpumask_subset(task_rq(p)->rd->span, mask))
8192 		ret = -EBUSY;
8193 	rcu_read_unlock();
8194 	return ret;
8195 }
8196 #endif
8197 
8198 static int
__sched_setaffinity(struct task_struct * p,const struct cpumask * mask)8199 __sched_setaffinity(struct task_struct *p, const struct cpumask *mask)
8200 {
8201 	int retval;
8202 	cpumask_var_t cpus_allowed, new_mask;
8203 
8204 	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL))
8205 		return -ENOMEM;
8206 
8207 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
8208 		retval = -ENOMEM;
8209 		goto out_free_cpus_allowed;
8210 	}
8211 
8212 	cpuset_cpus_allowed(p, cpus_allowed);
8213 	cpumask_and(new_mask, mask, cpus_allowed);
8214 
8215 	retval = dl_task_check_affinity(p, new_mask);
8216 	if (retval)
8217 		goto out_free_new_mask;
8218 again:
8219 	retval = __set_cpus_allowed_ptr(p, new_mask, SCA_CHECK | SCA_USER);
8220 	if (retval)
8221 		goto out_free_new_mask;
8222 
8223 	cpuset_cpus_allowed(p, cpus_allowed);
8224 	if (!cpumask_subset(new_mask, cpus_allowed)) {
8225 		/*
8226 		 * We must have raced with a concurrent cpuset update.
8227 		 * Just reset the cpumask to the cpuset's cpus_allowed.
8228 		 */
8229 		cpumask_copy(new_mask, cpus_allowed);
8230 		goto again;
8231 	}
8232 
8233 out_free_new_mask:
8234 	free_cpumask_var(new_mask);
8235 out_free_cpus_allowed:
8236 	free_cpumask_var(cpus_allowed);
8237 	return retval;
8238 }
8239 
sched_setaffinity(pid_t pid,const struct cpumask * in_mask)8240 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
8241 {
8242 	struct task_struct *p;
8243 	int retval = 0;
8244 	bool skip = false;
8245 
8246 	rcu_read_lock();
8247 
8248 	p = find_process_by_pid(pid);
8249 	if (!p) {
8250 		rcu_read_unlock();
8251 		return -ESRCH;
8252 	}
8253 
8254 	/* Prevent p going away */
8255 	get_task_struct(p);
8256 	rcu_read_unlock();
8257 
8258 	if (p->flags & PF_NO_SETAFFINITY) {
8259 		retval = -EINVAL;
8260 		goto out_put_task;
8261 	}
8262 
8263 	if (!check_same_owner(p)) {
8264 		rcu_read_lock();
8265 		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
8266 			rcu_read_unlock();
8267 			retval = -EPERM;
8268 			goto out_put_task;
8269 		}
8270 		rcu_read_unlock();
8271 	}
8272 
8273 	trace_android_vh_sched_setaffinity_early(p, in_mask, &skip);
8274 	if (skip)
8275 		goto out_put_task;
8276 	retval = security_task_setscheduler(p);
8277 	if (retval)
8278 		goto out_put_task;
8279 
8280 	retval = __sched_setaffinity(p, in_mask);
8281 	trace_android_rvh_sched_setaffinity(p, in_mask, &retval);
8282 
8283 out_put_task:
8284 	put_task_struct(p);
8285 	return retval;
8286 }
8287 
get_user_cpu_mask(unsigned long __user * user_mask_ptr,unsigned len,struct cpumask * new_mask)8288 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
8289 			     struct cpumask *new_mask)
8290 {
8291 	if (len < cpumask_size())
8292 		cpumask_clear(new_mask);
8293 	else if (len > cpumask_size())
8294 		len = cpumask_size();
8295 
8296 	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
8297 }
8298 
8299 /**
8300  * sys_sched_setaffinity - set the CPU affinity of a process
8301  * @pid: pid of the process
8302  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
8303  * @user_mask_ptr: user-space pointer to the new CPU mask
8304  *
8305  * Return: 0 on success. An error code otherwise.
8306  */
SYSCALL_DEFINE3(sched_setaffinity,pid_t,pid,unsigned int,len,unsigned long __user *,user_mask_ptr)8307 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
8308 		unsigned long __user *, user_mask_ptr)
8309 {
8310 	cpumask_var_t new_mask;
8311 	int retval;
8312 
8313 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
8314 		return -ENOMEM;
8315 
8316 	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
8317 	if (retval == 0)
8318 		retval = sched_setaffinity(pid, new_mask);
8319 	free_cpumask_var(new_mask);
8320 	return retval;
8321 }
8322 
sched_getaffinity(pid_t pid,struct cpumask * mask)8323 long sched_getaffinity(pid_t pid, struct cpumask *mask)
8324 {
8325 	struct task_struct *p;
8326 	unsigned long flags;
8327 	int retval;
8328 
8329 	rcu_read_lock();
8330 
8331 	retval = -ESRCH;
8332 	p = find_process_by_pid(pid);
8333 	if (!p)
8334 		goto out_unlock;
8335 
8336 	retval = security_task_getscheduler(p);
8337 	if (retval)
8338 		goto out_unlock;
8339 
8340 	raw_spin_lock_irqsave(&p->pi_lock, flags);
8341 	cpumask_and(mask, &p->cpus_mask, cpu_active_mask);
8342 	trace_android_rvh_sched_getaffinity(p, mask);
8343 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
8344 
8345 out_unlock:
8346 	rcu_read_unlock();
8347 
8348 	return retval;
8349 }
8350 
8351 /**
8352  * sys_sched_getaffinity - get the CPU affinity of a process
8353  * @pid: pid of the process
8354  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
8355  * @user_mask_ptr: user-space pointer to hold the current CPU mask
8356  *
8357  * Return: size of CPU mask copied to user_mask_ptr on success. An
8358  * error code otherwise.
8359  */
SYSCALL_DEFINE3(sched_getaffinity,pid_t,pid,unsigned int,len,unsigned long __user *,user_mask_ptr)8360 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
8361 		unsigned long __user *, user_mask_ptr)
8362 {
8363 	int ret;
8364 	cpumask_var_t mask;
8365 
8366 	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
8367 		return -EINVAL;
8368 	if (len & (sizeof(unsigned long)-1))
8369 		return -EINVAL;
8370 
8371 	if (!zalloc_cpumask_var(&mask, GFP_KERNEL))
8372 		return -ENOMEM;
8373 
8374 	ret = sched_getaffinity(pid, mask);
8375 	if (ret == 0) {
8376 		unsigned int retlen = min(len, cpumask_size());
8377 
8378 		if (copy_to_user(user_mask_ptr, cpumask_bits(mask), retlen))
8379 			ret = -EFAULT;
8380 		else
8381 			ret = retlen;
8382 	}
8383 	free_cpumask_var(mask);
8384 
8385 	return ret;
8386 }
8387 
do_sched_yield(void)8388 static void do_sched_yield(void)
8389 {
8390 	struct rq_flags rf;
8391 	struct rq *rq;
8392 
8393 	rq = this_rq_lock_irq(&rf);
8394 
8395 	schedstat_inc(rq->yld_count);
8396 	current->sched_class->yield_task(rq);
8397 
8398 	trace_android_rvh_do_sched_yield(rq);
8399 
8400 	preempt_disable();
8401 	rq_unlock_irq(rq, &rf);
8402 	sched_preempt_enable_no_resched();
8403 
8404 	schedule();
8405 }
8406 
8407 /**
8408  * sys_sched_yield - yield the current processor to other threads.
8409  *
8410  * This function yields the current CPU to other tasks. If there are no
8411  * other threads running on this CPU then this function will return.
8412  *
8413  * Return: 0.
8414  */
SYSCALL_DEFINE0(sched_yield)8415 SYSCALL_DEFINE0(sched_yield)
8416 {
8417 	do_sched_yield();
8418 	return 0;
8419 }
8420 
8421 #if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC)
__cond_resched(void)8422 int __sched __cond_resched(void)
8423 {
8424 	if (should_resched(0)) {
8425 		preempt_schedule_common();
8426 		return 1;
8427 	}
8428 	/*
8429 	 * In preemptible kernels, ->rcu_read_lock_nesting tells the tick
8430 	 * whether the current CPU is in an RCU read-side critical section,
8431 	 * so the tick can report quiescent states even for CPUs looping
8432 	 * in kernel context.  In contrast, in non-preemptible kernels,
8433 	 * RCU readers leave no in-memory hints, which means that CPU-bound
8434 	 * processes executing in kernel context might never report an
8435 	 * RCU quiescent state.  Therefore, the following code causes
8436 	 * cond_resched() to report a quiescent state, but only when RCU
8437 	 * is in urgent need of one.
8438 	 */
8439 #ifndef CONFIG_PREEMPT_RCU
8440 	rcu_all_qs();
8441 #endif
8442 	return 0;
8443 }
8444 EXPORT_SYMBOL(__cond_resched);
8445 #endif
8446 
8447 #ifdef CONFIG_PREEMPT_DYNAMIC
8448 DEFINE_STATIC_CALL_RET0(cond_resched, __cond_resched);
8449 EXPORT_STATIC_CALL_TRAMP(cond_resched);
8450 
8451 DEFINE_STATIC_CALL_RET0(might_resched, __cond_resched);
8452 EXPORT_STATIC_CALL_TRAMP(might_resched);
8453 #endif
8454 
8455 /*
8456  * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
8457  * call schedule, and on return reacquire the lock.
8458  *
8459  * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level
8460  * operations here to prevent schedule() from being called twice (once via
8461  * spin_unlock(), once by hand).
8462  */
__cond_resched_lock(spinlock_t * lock)8463 int __cond_resched_lock(spinlock_t *lock)
8464 {
8465 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
8466 	int ret = 0;
8467 
8468 	lockdep_assert_held(lock);
8469 
8470 	if (spin_needbreak(lock) || resched) {
8471 		spin_unlock(lock);
8472 		if (!_cond_resched())
8473 			cpu_relax();
8474 		ret = 1;
8475 		spin_lock(lock);
8476 	}
8477 	return ret;
8478 }
8479 EXPORT_SYMBOL(__cond_resched_lock);
8480 
__cond_resched_rwlock_read(rwlock_t * lock)8481 int __cond_resched_rwlock_read(rwlock_t *lock)
8482 {
8483 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
8484 	int ret = 0;
8485 
8486 	lockdep_assert_held_read(lock);
8487 
8488 	if (rwlock_needbreak(lock) || resched) {
8489 		read_unlock(lock);
8490 		if (!_cond_resched())
8491 			cpu_relax();
8492 		ret = 1;
8493 		read_lock(lock);
8494 	}
8495 	return ret;
8496 }
8497 EXPORT_SYMBOL(__cond_resched_rwlock_read);
8498 
__cond_resched_rwlock_write(rwlock_t * lock)8499 int __cond_resched_rwlock_write(rwlock_t *lock)
8500 {
8501 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
8502 	int ret = 0;
8503 
8504 	lockdep_assert_held_write(lock);
8505 
8506 	if (rwlock_needbreak(lock) || resched) {
8507 		write_unlock(lock);
8508 		if (!_cond_resched())
8509 			cpu_relax();
8510 		ret = 1;
8511 		write_lock(lock);
8512 	}
8513 	return ret;
8514 }
8515 EXPORT_SYMBOL(__cond_resched_rwlock_write);
8516 
8517 /**
8518  * yield - yield the current processor to other threads.
8519  *
8520  * Do not ever use this function, there's a 99% chance you're doing it wrong.
8521  *
8522  * The scheduler is at all times free to pick the calling task as the most
8523  * eligible task to run, if removing the yield() call from your code breaks
8524  * it, it's already broken.
8525  *
8526  * Typical broken usage is:
8527  *
8528  * while (!event)
8529  *	yield();
8530  *
8531  * where one assumes that yield() will let 'the other' process run that will
8532  * make event true. If the current task is a SCHED_FIFO task that will never
8533  * happen. Never use yield() as a progress guarantee!!
8534  *
8535  * If you want to use yield() to wait for something, use wait_event().
8536  * If you want to use yield() to be 'nice' for others, use cond_resched().
8537  * If you still want to use yield(), do not!
8538  */
yield(void)8539 void __sched yield(void)
8540 {
8541 	set_current_state(TASK_RUNNING);
8542 	do_sched_yield();
8543 }
8544 EXPORT_SYMBOL(yield);
8545 
8546 /**
8547  * yield_to - yield the current processor to another thread in
8548  * your thread group, or accelerate that thread toward the
8549  * processor it's on.
8550  * @p: target task
8551  * @preempt: whether task preemption is allowed or not
8552  *
8553  * It's the caller's job to ensure that the target task struct
8554  * can't go away on us before we can do any checks.
8555  *
8556  * Return:
8557  *	true (>0) if we indeed boosted the target task.
8558  *	false (0) if we failed to boost the target.
8559  *	-ESRCH if there's no task to yield to.
8560  */
yield_to(struct task_struct * p,bool preempt)8561 int __sched yield_to(struct task_struct *p, bool preempt)
8562 {
8563 	struct task_struct *curr = current;
8564 	struct rq *rq, *p_rq;
8565 	unsigned long flags;
8566 	int yielded = 0;
8567 
8568 	local_irq_save(flags);
8569 	rq = this_rq();
8570 
8571 again:
8572 	p_rq = task_rq(p);
8573 	/*
8574 	 * If we're the only runnable task on the rq and target rq also
8575 	 * has only one task, there's absolutely no point in yielding.
8576 	 */
8577 	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
8578 		yielded = -ESRCH;
8579 		goto out_irq;
8580 	}
8581 
8582 	double_rq_lock(rq, p_rq);
8583 	if (task_rq(p) != p_rq) {
8584 		double_rq_unlock(rq, p_rq);
8585 		goto again;
8586 	}
8587 
8588 	if (!curr->sched_class->yield_to_task)
8589 		goto out_unlock;
8590 
8591 	if (curr->sched_class != p->sched_class)
8592 		goto out_unlock;
8593 
8594 	if (task_running(p_rq, p) || !task_is_running(p))
8595 		goto out_unlock;
8596 
8597 	yielded = curr->sched_class->yield_to_task(rq, p);
8598 	if (yielded) {
8599 		schedstat_inc(rq->yld_count);
8600 		/*
8601 		 * Make p's CPU reschedule; pick_next_entity takes care of
8602 		 * fairness.
8603 		 */
8604 		if (preempt && rq != p_rq)
8605 			resched_curr(p_rq);
8606 	}
8607 
8608 out_unlock:
8609 	double_rq_unlock(rq, p_rq);
8610 out_irq:
8611 	local_irq_restore(flags);
8612 
8613 	if (yielded > 0)
8614 		schedule();
8615 
8616 	return yielded;
8617 }
8618 EXPORT_SYMBOL_GPL(yield_to);
8619 
io_schedule_prepare(void)8620 int io_schedule_prepare(void)
8621 {
8622 	int old_iowait = current->in_iowait;
8623 
8624 	current->in_iowait = 1;
8625 	blk_schedule_flush_plug(current);
8626 
8627 	return old_iowait;
8628 }
8629 
io_schedule_finish(int token)8630 void io_schedule_finish(int token)
8631 {
8632 	current->in_iowait = token;
8633 }
8634 
8635 /*
8636  * This task is about to go to sleep on IO. Increment rq->nr_iowait so
8637  * that process accounting knows that this is a task in IO wait state.
8638  */
io_schedule_timeout(long timeout)8639 long __sched io_schedule_timeout(long timeout)
8640 {
8641 	int token;
8642 	long ret;
8643 
8644 	token = io_schedule_prepare();
8645 	ret = schedule_timeout(timeout);
8646 	io_schedule_finish(token);
8647 
8648 	return ret;
8649 }
8650 EXPORT_SYMBOL(io_schedule_timeout);
8651 
io_schedule(void)8652 void __sched io_schedule(void)
8653 {
8654 	int token;
8655 
8656 	token = io_schedule_prepare();
8657 	schedule();
8658 	io_schedule_finish(token);
8659 }
8660 EXPORT_SYMBOL(io_schedule);
8661 
8662 /**
8663  * sys_sched_get_priority_max - return maximum RT priority.
8664  * @policy: scheduling class.
8665  *
8666  * Return: On success, this syscall returns the maximum
8667  * rt_priority that can be used by a given scheduling class.
8668  * On failure, a negative error code is returned.
8669  */
SYSCALL_DEFINE1(sched_get_priority_max,int,policy)8670 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
8671 {
8672 	int ret = -EINVAL;
8673 
8674 	switch (policy) {
8675 	case SCHED_FIFO:
8676 	case SCHED_RR:
8677 		ret = MAX_RT_PRIO-1;
8678 		break;
8679 	case SCHED_DEADLINE:
8680 	case SCHED_NORMAL:
8681 	case SCHED_BATCH:
8682 	case SCHED_IDLE:
8683 		ret = 0;
8684 		break;
8685 	}
8686 	return ret;
8687 }
8688 
8689 /**
8690  * sys_sched_get_priority_min - return minimum RT priority.
8691  * @policy: scheduling class.
8692  *
8693  * Return: On success, this syscall returns the minimum
8694  * rt_priority that can be used by a given scheduling class.
8695  * On failure, a negative error code is returned.
8696  */
SYSCALL_DEFINE1(sched_get_priority_min,int,policy)8697 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
8698 {
8699 	int ret = -EINVAL;
8700 
8701 	switch (policy) {
8702 	case SCHED_FIFO:
8703 	case SCHED_RR:
8704 		ret = 1;
8705 		break;
8706 	case SCHED_DEADLINE:
8707 	case SCHED_NORMAL:
8708 	case SCHED_BATCH:
8709 	case SCHED_IDLE:
8710 		ret = 0;
8711 	}
8712 	return ret;
8713 }
8714 
sched_rr_get_interval(pid_t pid,struct timespec64 * t)8715 static int sched_rr_get_interval(pid_t pid, struct timespec64 *t)
8716 {
8717 	struct task_struct *p;
8718 	unsigned int time_slice;
8719 	struct rq_flags rf;
8720 	struct rq *rq;
8721 	int retval;
8722 
8723 	if (pid < 0)
8724 		return -EINVAL;
8725 
8726 	retval = -ESRCH;
8727 	rcu_read_lock();
8728 	p = find_process_by_pid(pid);
8729 	if (!p)
8730 		goto out_unlock;
8731 
8732 	retval = security_task_getscheduler(p);
8733 	if (retval)
8734 		goto out_unlock;
8735 
8736 	rq = task_rq_lock(p, &rf);
8737 	time_slice = 0;
8738 	if (p->sched_class->get_rr_interval)
8739 		time_slice = p->sched_class->get_rr_interval(rq, p);
8740 	task_rq_unlock(rq, p, &rf);
8741 
8742 	rcu_read_unlock();
8743 	jiffies_to_timespec64(time_slice, t);
8744 	return 0;
8745 
8746 out_unlock:
8747 	rcu_read_unlock();
8748 	return retval;
8749 }
8750 
8751 /**
8752  * sys_sched_rr_get_interval - return the default timeslice of a process.
8753  * @pid: pid of the process.
8754  * @interval: userspace pointer to the timeslice value.
8755  *
8756  * this syscall writes the default timeslice value of a given process
8757  * into the user-space timespec buffer. A value of '0' means infinity.
8758  *
8759  * Return: On success, 0 and the timeslice is in @interval. Otherwise,
8760  * an error code.
8761  */
SYSCALL_DEFINE2(sched_rr_get_interval,pid_t,pid,struct __kernel_timespec __user *,interval)8762 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
8763 		struct __kernel_timespec __user *, interval)
8764 {
8765 	struct timespec64 t;
8766 	int retval = sched_rr_get_interval(pid, &t);
8767 
8768 	if (retval == 0)
8769 		retval = put_timespec64(&t, interval);
8770 
8771 	return retval;
8772 }
8773 
8774 #ifdef CONFIG_COMPAT_32BIT_TIME
SYSCALL_DEFINE2(sched_rr_get_interval_time32,pid_t,pid,struct old_timespec32 __user *,interval)8775 SYSCALL_DEFINE2(sched_rr_get_interval_time32, pid_t, pid,
8776 		struct old_timespec32 __user *, interval)
8777 {
8778 	struct timespec64 t;
8779 	int retval = sched_rr_get_interval(pid, &t);
8780 
8781 	if (retval == 0)
8782 		retval = put_old_timespec32(&t, interval);
8783 	return retval;
8784 }
8785 #endif
8786 
sched_show_task(struct task_struct * p)8787 void sched_show_task(struct task_struct *p)
8788 {
8789 	unsigned long free = 0;
8790 	int ppid;
8791 
8792 	if (!try_get_task_stack(p))
8793 		return;
8794 
8795 	pr_info("task:%-15.15s state:%c", p->comm, task_state_to_char(p));
8796 
8797 	if (task_is_running(p))
8798 		pr_cont("  running task    ");
8799 #ifdef CONFIG_DEBUG_STACK_USAGE
8800 	free = stack_not_used(p);
8801 #endif
8802 	ppid = 0;
8803 	rcu_read_lock();
8804 	if (pid_alive(p))
8805 		ppid = task_pid_nr(rcu_dereference(p->real_parent));
8806 	rcu_read_unlock();
8807 	pr_cont(" stack:%5lu pid:%5d ppid:%6d flags:0x%08lx\n",
8808 		free, task_pid_nr(p), ppid,
8809 		(unsigned long)task_thread_info(p)->flags);
8810 
8811 	print_worker_info(KERN_INFO, p);
8812 	print_stop_info(KERN_INFO, p);
8813 	trace_android_vh_sched_show_task(p);
8814 	show_stack(p, NULL, KERN_INFO);
8815 	put_task_stack(p);
8816 }
8817 EXPORT_SYMBOL_GPL(sched_show_task);
8818 
8819 static inline bool
state_filter_match(unsigned long state_filter,struct task_struct * p)8820 state_filter_match(unsigned long state_filter, struct task_struct *p)
8821 {
8822 	unsigned int state = READ_ONCE(p->__state);
8823 
8824 	/* no filter, everything matches */
8825 	if (!state_filter)
8826 		return true;
8827 
8828 	/* filter, but doesn't match */
8829 	if (!(state & state_filter))
8830 		return false;
8831 
8832 	/*
8833 	 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
8834 	 * TASK_KILLABLE).
8835 	 */
8836 	if (state_filter == TASK_UNINTERRUPTIBLE && state == TASK_IDLE)
8837 		return false;
8838 
8839 	return true;
8840 }
8841 
8842 
show_state_filter(unsigned int state_filter)8843 void show_state_filter(unsigned int state_filter)
8844 {
8845 	struct task_struct *g, *p;
8846 
8847 	rcu_read_lock();
8848 	for_each_process_thread(g, p) {
8849 		/*
8850 		 * reset the NMI-timeout, listing all files on a slow
8851 		 * console might take a lot of time:
8852 		 * Also, reset softlockup watchdogs on all CPUs, because
8853 		 * another CPU might be blocked waiting for us to process
8854 		 * an IPI.
8855 		 */
8856 		touch_nmi_watchdog();
8857 		touch_all_softlockup_watchdogs();
8858 		if (state_filter_match(state_filter, p))
8859 			sched_show_task(p);
8860 	}
8861 
8862 #ifdef CONFIG_SCHED_DEBUG
8863 	if (!state_filter)
8864 		sysrq_sched_debug_show();
8865 #endif
8866 	rcu_read_unlock();
8867 	/*
8868 	 * Only show locks if all tasks are dumped:
8869 	 */
8870 	if (!state_filter)
8871 		debug_show_all_locks();
8872 }
8873 
8874 /**
8875  * init_idle - set up an idle thread for a given CPU
8876  * @idle: task in question
8877  * @cpu: CPU the idle task belongs to
8878  *
8879  * NOTE: this function does not set the idle thread's NEED_RESCHED
8880  * flag, to make booting more robust.
8881  */
init_idle(struct task_struct * idle,int cpu)8882 void __init init_idle(struct task_struct *idle, int cpu)
8883 {
8884 	struct rq *rq = cpu_rq(cpu);
8885 	unsigned long flags;
8886 
8887 	__sched_fork(0, idle);
8888 
8889 	/*
8890 	 * The idle task doesn't need the kthread struct to function, but it
8891 	 * is dressed up as a per-CPU kthread and thus needs to play the part
8892 	 * if we want to avoid special-casing it in code that deals with per-CPU
8893 	 * kthreads.
8894 	 */
8895 	set_kthread_struct(idle);
8896 
8897 	raw_spin_lock_irqsave(&idle->pi_lock, flags);
8898 	raw_spin_rq_lock(rq);
8899 
8900 	idle->__state = TASK_RUNNING;
8901 	idle->se.exec_start = sched_clock();
8902 	/*
8903 	 * PF_KTHREAD should already be set at this point; regardless, make it
8904 	 * look like a proper per-CPU kthread.
8905 	 */
8906 	idle->flags |= PF_IDLE | PF_KTHREAD | PF_NO_SETAFFINITY;
8907 	kthread_set_per_cpu(idle, cpu);
8908 
8909 #ifdef CONFIG_SMP
8910 	/*
8911 	 * It's possible that init_idle() gets called multiple times on a task,
8912 	 * in that case do_set_cpus_allowed() will not do the right thing.
8913 	 *
8914 	 * And since this is boot we can forgo the serialization.
8915 	 */
8916 	set_cpus_allowed_common(idle, cpumask_of(cpu), 0);
8917 #endif
8918 	/*
8919 	 * We're having a chicken and egg problem, even though we are
8920 	 * holding rq->lock, the CPU isn't yet set to this CPU so the
8921 	 * lockdep check in task_group() will fail.
8922 	 *
8923 	 * Similar case to sched_fork(). / Alternatively we could
8924 	 * use task_rq_lock() here and obtain the other rq->lock.
8925 	 *
8926 	 * Silence PROVE_RCU
8927 	 */
8928 	rcu_read_lock();
8929 	__set_task_cpu(idle, cpu);
8930 	rcu_read_unlock();
8931 
8932 	rq->idle = idle;
8933 	rcu_assign_pointer(rq->curr, idle);
8934 	idle->on_rq = TASK_ON_RQ_QUEUED;
8935 #ifdef CONFIG_SMP
8936 	idle->on_cpu = 1;
8937 #endif
8938 	raw_spin_rq_unlock(rq);
8939 	raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
8940 
8941 	/* Set the preempt count _outside_ the spinlocks! */
8942 	init_idle_preempt_count(idle, cpu);
8943 
8944 	/*
8945 	 * The idle tasks have their own, simple scheduling class:
8946 	 */
8947 	idle->sched_class = &idle_sched_class;
8948 	ftrace_graph_init_idle_task(idle, cpu);
8949 	vtime_init_idle(idle, cpu);
8950 #ifdef CONFIG_SMP
8951 	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
8952 #endif
8953 }
8954 
8955 #ifdef CONFIG_SMP
8956 
cpuset_cpumask_can_shrink(const struct cpumask * cur,const struct cpumask * trial)8957 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
8958 			      const struct cpumask *trial)
8959 {
8960 	int ret = 1;
8961 
8962 	if (!cpumask_weight(cur))
8963 		return ret;
8964 
8965 	ret = dl_cpuset_cpumask_can_shrink(cur, trial);
8966 
8967 	return ret;
8968 }
8969 
task_can_attach(struct task_struct * p)8970 int task_can_attach(struct task_struct *p)
8971 {
8972 	int ret = 0;
8973 
8974 	/*
8975 	 * Kthreads which disallow setaffinity shouldn't be moved
8976 	 * to a new cpuset; we don't want to change their CPU
8977 	 * affinity and isolating such threads by their set of
8978 	 * allowed nodes is unnecessary.  Thus, cpusets are not
8979 	 * applicable for such threads.  This prevents checking for
8980 	 * success of set_cpus_allowed_ptr() on all attached tasks
8981 	 * before cpus_mask may be changed.
8982 	 */
8983 	if (p->flags & PF_NO_SETAFFINITY)
8984 		ret = -EINVAL;
8985 
8986 	return ret;
8987 }
8988 
8989 bool sched_smp_initialized __read_mostly;
8990 
8991 #ifdef CONFIG_NUMA_BALANCING
8992 /* Migrate current task p to target_cpu */
migrate_task_to(struct task_struct * p,int target_cpu)8993 int migrate_task_to(struct task_struct *p, int target_cpu)
8994 {
8995 	struct migration_arg arg = { p, target_cpu };
8996 	int curr_cpu = task_cpu(p);
8997 
8998 	if (curr_cpu == target_cpu)
8999 		return 0;
9000 
9001 	if (!cpumask_test_cpu(target_cpu, p->cpus_ptr))
9002 		return -EINVAL;
9003 
9004 	/* TODO: This is not properly updating schedstats */
9005 
9006 	trace_sched_move_numa(p, curr_cpu, target_cpu);
9007 	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
9008 }
9009 
9010 /*
9011  * Requeue a task on a given node and accurately track the number of NUMA
9012  * tasks on the runqueues
9013  */
sched_setnuma(struct task_struct * p,int nid)9014 void sched_setnuma(struct task_struct *p, int nid)
9015 {
9016 	bool queued, running;
9017 	struct rq_flags rf;
9018 	struct rq *rq;
9019 
9020 	rq = task_rq_lock(p, &rf);
9021 	queued = task_on_rq_queued(p);
9022 	running = task_current(rq, p);
9023 
9024 	if (queued)
9025 		dequeue_task(rq, p, DEQUEUE_SAVE);
9026 	if (running)
9027 		put_prev_task(rq, p);
9028 
9029 	p->numa_preferred_nid = nid;
9030 
9031 	if (queued)
9032 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
9033 	if (running)
9034 		set_next_task(rq, p);
9035 	task_rq_unlock(rq, p, &rf);
9036 }
9037 #endif /* CONFIG_NUMA_BALANCING */
9038 
9039 #ifdef CONFIG_HOTPLUG_CPU
9040 /*
9041  * Ensure that the idle task is using init_mm right before its CPU goes
9042  * offline.
9043  */
idle_task_exit(void)9044 void idle_task_exit(void)
9045 {
9046 	struct mm_struct *mm = current->active_mm;
9047 
9048 	BUG_ON(cpu_online(smp_processor_id()));
9049 	BUG_ON(current != this_rq()->idle);
9050 
9051 	if (mm != &init_mm) {
9052 		switch_mm(mm, &init_mm, current);
9053 		finish_arch_post_lock_switch();
9054 	}
9055 
9056 	/* finish_cpu(), as ran on the BP, will clean up the active_mm state */
9057 }
9058 
pick_migrate_task(struct rq * rq)9059 struct task_struct *pick_migrate_task(struct rq *rq)
9060 {
9061 	const struct sched_class *class;
9062 	struct task_struct *next;
9063 
9064 	for_each_class(class) {
9065 		next = class->pick_next_task(rq);
9066 		if (next) {
9067 			next->sched_class->put_prev_task(rq, next);
9068 			return next;
9069 		}
9070 	}
9071 
9072 	/* The idle class should always have a runnable task */
9073 	BUG();
9074 }
9075 EXPORT_SYMBOL_GPL(pick_migrate_task);
9076 
__balance_push_cpu_stop(void * arg)9077 static int __balance_push_cpu_stop(void *arg)
9078 {
9079 	struct task_struct *p = arg;
9080 	struct rq *rq = this_rq();
9081 	struct rq_flags rf;
9082 	int cpu;
9083 
9084 	raw_spin_lock_irq(&p->pi_lock);
9085 	rq_lock(rq, &rf);
9086 
9087 	update_rq_clock(rq);
9088 
9089 	if (task_rq(p) == rq && task_on_rq_queued(p)) {
9090 		cpu = select_fallback_rq(rq->cpu, p);
9091 		rq = __migrate_task(rq, &rf, p, cpu);
9092 	}
9093 
9094 	rq_unlock(rq, &rf);
9095 	raw_spin_unlock_irq(&p->pi_lock);
9096 
9097 	put_task_struct(p);
9098 
9099 	return 0;
9100 }
9101 
9102 static DEFINE_PER_CPU(struct cpu_stop_work, push_work);
9103 
9104 /*
9105  * Ensure we only run per-cpu kthreads once the CPU goes !active.
9106  *
9107  * This is enabled below SCHED_AP_ACTIVE; when !cpu_active(), but only
9108  * effective when the hotplug motion is down.
9109  */
balance_push(struct rq * rq)9110 static void balance_push(struct rq *rq)
9111 {
9112 	struct task_struct *push_task = rq->curr;
9113 
9114 	lockdep_assert_rq_held(rq);
9115 
9116 	/*
9117 	 * Ensure the thing is persistent until balance_push_set(.on = false);
9118 	 */
9119 	rq->balance_callback = &balance_push_callback;
9120 
9121 	/*
9122 	 * Only active while going offline and when invoked on the outgoing
9123 	 * CPU.
9124 	 */
9125 	if (!cpu_dying(rq->cpu) || rq != this_rq())
9126 		return;
9127 
9128 	/*
9129 	 * Both the cpu-hotplug and stop task are in this case and are
9130 	 * required to complete the hotplug process.
9131 	 */
9132 	if (kthread_is_per_cpu(push_task) ||
9133 	    is_migration_disabled(push_task)) {
9134 
9135 		/*
9136 		 * If this is the idle task on the outgoing CPU try to wake
9137 		 * up the hotplug control thread which might wait for the
9138 		 * last task to vanish. The rcuwait_active() check is
9139 		 * accurate here because the waiter is pinned on this CPU
9140 		 * and can't obviously be running in parallel.
9141 		 *
9142 		 * On RT kernels this also has to check whether there are
9143 		 * pinned and scheduled out tasks on the runqueue. They
9144 		 * need to leave the migrate disabled section first.
9145 		 */
9146 		if (!rq->nr_running && !rq_has_pinned_tasks(rq) &&
9147 		    rcuwait_active(&rq->hotplug_wait)) {
9148 			raw_spin_rq_unlock(rq);
9149 			rcuwait_wake_up(&rq->hotplug_wait);
9150 			raw_spin_rq_lock(rq);
9151 		}
9152 		return;
9153 	}
9154 
9155 	get_task_struct(push_task);
9156 	/*
9157 	 * Temporarily drop rq->lock such that we can wake-up the stop task.
9158 	 * Both preemption and IRQs are still disabled.
9159 	 */
9160 	preempt_disable();
9161 	raw_spin_rq_unlock(rq);
9162 	stop_one_cpu_nowait(rq->cpu, __balance_push_cpu_stop, push_task,
9163 			    this_cpu_ptr(&push_work));
9164 	preempt_enable();
9165 	/*
9166 	 * At this point need_resched() is true and we'll take the loop in
9167 	 * schedule(). The next pick is obviously going to be the stop task
9168 	 * which kthread_is_per_cpu() and will push this task away.
9169 	 */
9170 	raw_spin_rq_lock(rq);
9171 }
9172 
balance_push_set(int cpu,bool on)9173 static void balance_push_set(int cpu, bool on)
9174 {
9175 	struct rq *rq = cpu_rq(cpu);
9176 	struct rq_flags rf;
9177 
9178 	rq_lock_irqsave(rq, &rf);
9179 	if (on) {
9180 		WARN_ON_ONCE(rq->balance_callback);
9181 		rq->balance_callback = &balance_push_callback;
9182 	} else if (rq->balance_callback == &balance_push_callback) {
9183 		rq->balance_callback = NULL;
9184 	}
9185 	rq_unlock_irqrestore(rq, &rf);
9186 }
9187 
9188 /*
9189  * Invoked from a CPUs hotplug control thread after the CPU has been marked
9190  * inactive. All tasks which are not per CPU kernel threads are either
9191  * pushed off this CPU now via balance_push() or placed on a different CPU
9192  * during wakeup. Wait until the CPU is quiescent.
9193  */
balance_hotplug_wait(void)9194 static void balance_hotplug_wait(void)
9195 {
9196 	struct rq *rq = this_rq();
9197 
9198 	rcuwait_wait_event(&rq->hotplug_wait,
9199 			   rq->nr_running == 1 && !rq_has_pinned_tasks(rq),
9200 			   TASK_UNINTERRUPTIBLE);
9201 }
9202 
9203 #else
9204 
balance_push(struct rq * rq)9205 static inline void balance_push(struct rq *rq)
9206 {
9207 }
9208 
balance_push_set(int cpu,bool on)9209 static inline void balance_push_set(int cpu, bool on)
9210 {
9211 }
9212 
balance_hotplug_wait(void)9213 static inline void balance_hotplug_wait(void)
9214 {
9215 }
9216 
9217 #endif /* CONFIG_HOTPLUG_CPU */
9218 
set_rq_online(struct rq * rq)9219 void set_rq_online(struct rq *rq)
9220 {
9221 	if (!rq->online) {
9222 		const struct sched_class *class;
9223 
9224 		cpumask_set_cpu(rq->cpu, rq->rd->online);
9225 		rq->online = 1;
9226 
9227 		for_each_class(class) {
9228 			if (class->rq_online)
9229 				class->rq_online(rq);
9230 		}
9231 	}
9232 }
9233 
set_rq_offline(struct rq * rq)9234 void set_rq_offline(struct rq *rq)
9235 {
9236 	if (rq->online) {
9237 		const struct sched_class *class;
9238 
9239 		for_each_class(class) {
9240 			if (class->rq_offline)
9241 				class->rq_offline(rq);
9242 		}
9243 
9244 		cpumask_clear_cpu(rq->cpu, rq->rd->online);
9245 		rq->online = 0;
9246 	}
9247 }
9248 
9249 /*
9250  * used to mark begin/end of suspend/resume:
9251  */
9252 static int num_cpus_frozen;
9253 
9254 /*
9255  * Update cpusets according to cpu_active mask.  If cpusets are
9256  * disabled, cpuset_update_active_cpus() becomes a simple wrapper
9257  * around partition_sched_domains().
9258  *
9259  * If we come here as part of a suspend/resume, don't touch cpusets because we
9260  * want to restore it back to its original state upon resume anyway.
9261  */
cpuset_cpu_active(void)9262 static void cpuset_cpu_active(void)
9263 {
9264 	if (cpuhp_tasks_frozen) {
9265 		/*
9266 		 * num_cpus_frozen tracks how many CPUs are involved in suspend
9267 		 * resume sequence. As long as this is not the last online
9268 		 * operation in the resume sequence, just build a single sched
9269 		 * domain, ignoring cpusets.
9270 		 */
9271 		partition_sched_domains(1, NULL, NULL);
9272 		if (--num_cpus_frozen)
9273 			return;
9274 		/*
9275 		 * This is the last CPU online operation. So fall through and
9276 		 * restore the original sched domains by considering the
9277 		 * cpuset configurations.
9278 		 */
9279 		cpuset_force_rebuild();
9280 	}
9281 	cpuset_update_active_cpus();
9282 }
9283 
cpuset_cpu_inactive(unsigned int cpu)9284 static int cpuset_cpu_inactive(unsigned int cpu)
9285 {
9286 	if (!cpuhp_tasks_frozen) {
9287 		int ret = dl_bw_check_overflow(cpu);
9288 
9289 		if (ret)
9290 			return ret;
9291 		cpuset_update_active_cpus();
9292 	} else {
9293 		num_cpus_frozen++;
9294 		partition_sched_domains(1, NULL, NULL);
9295 	}
9296 	return 0;
9297 }
9298 
sched_cpu_activate(unsigned int cpu)9299 int sched_cpu_activate(unsigned int cpu)
9300 {
9301 	struct rq *rq = cpu_rq(cpu);
9302 	struct rq_flags rf;
9303 
9304 	/*
9305 	 * Clear the balance_push callback and prepare to schedule
9306 	 * regular tasks.
9307 	 */
9308 	balance_push_set(cpu, false);
9309 
9310 #ifdef CONFIG_SCHED_SMT
9311 	/*
9312 	 * When going up, increment the number of cores with SMT present.
9313 	 */
9314 	if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
9315 		static_branch_inc_cpuslocked(&sched_smt_present);
9316 #endif
9317 	set_cpu_active(cpu, true);
9318 
9319 	if (sched_smp_initialized) {
9320 		sched_domains_numa_masks_set(cpu);
9321 		cpuset_cpu_active();
9322 	}
9323 
9324 	/*
9325 	 * Put the rq online, if not already. This happens:
9326 	 *
9327 	 * 1) In the early boot process, because we build the real domains
9328 	 *    after all CPUs have been brought up.
9329 	 *
9330 	 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
9331 	 *    domains.
9332 	 */
9333 	rq_lock_irqsave(rq, &rf);
9334 	if (rq->rd) {
9335 		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
9336 		set_rq_online(rq);
9337 	}
9338 	rq_unlock_irqrestore(rq, &rf);
9339 
9340 	return 0;
9341 }
9342 
sched_cpu_deactivate(unsigned int cpu)9343 int sched_cpu_deactivate(unsigned int cpu)
9344 {
9345 	struct rq *rq = cpu_rq(cpu);
9346 	struct rq_flags rf;
9347 	int ret;
9348 
9349 	/*
9350 	 * Remove CPU from nohz.idle_cpus_mask to prevent participating in
9351 	 * load balancing when not active
9352 	 */
9353 	nohz_balance_exit_idle(rq);
9354 
9355 	set_cpu_active(cpu, false);
9356 
9357 	/*
9358 	 * From this point forward, this CPU will refuse to run any task that
9359 	 * is not: migrate_disable() or KTHREAD_IS_PER_CPU, and will actively
9360 	 * push those tasks away until this gets cleared, see
9361 	 * sched_cpu_dying().
9362 	 */
9363 	balance_push_set(cpu, true);
9364 
9365 	/*
9366 	 * We've cleared cpu_active_mask / set balance_push, wait for all
9367 	 * preempt-disabled and RCU users of this state to go away such that
9368 	 * all new such users will observe it.
9369 	 *
9370 	 * Specifically, we rely on ttwu to no longer target this CPU, see
9371 	 * ttwu_queue_cond() and is_cpu_allowed().
9372 	 *
9373 	 * Do sync before park smpboot threads to take care the rcu boost case.
9374 	 */
9375 	synchronize_rcu();
9376 
9377 	rq_lock_irqsave(rq, &rf);
9378 	if (rq->rd) {
9379 		update_rq_clock(rq);
9380 		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
9381 		set_rq_offline(rq);
9382 	}
9383 	rq_unlock_irqrestore(rq, &rf);
9384 
9385 #ifdef CONFIG_SCHED_SMT
9386 	/*
9387 	 * When going down, decrement the number of cores with SMT present.
9388 	 */
9389 	if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
9390 		static_branch_dec_cpuslocked(&sched_smt_present);
9391 
9392 	sched_core_cpu_deactivate(cpu);
9393 #endif
9394 
9395 	if (!sched_smp_initialized)
9396 		return 0;
9397 
9398 	ret = cpuset_cpu_inactive(cpu);
9399 	if (ret) {
9400 		balance_push_set(cpu, false);
9401 		set_cpu_active(cpu, true);
9402 		return ret;
9403 	}
9404 	sched_domains_numa_masks_clear(cpu);
9405 	return 0;
9406 }
9407 
sched_rq_cpu_starting(unsigned int cpu)9408 static void sched_rq_cpu_starting(unsigned int cpu)
9409 {
9410 	struct rq *rq = cpu_rq(cpu);
9411 
9412 	rq->calc_load_update = calc_load_update;
9413 	update_max_interval();
9414 }
9415 
sched_cpu_starting(unsigned int cpu)9416 int sched_cpu_starting(unsigned int cpu)
9417 {
9418 	sched_core_cpu_starting(cpu);
9419 	sched_rq_cpu_starting(cpu);
9420 	sched_tick_start(cpu);
9421 	trace_android_rvh_sched_cpu_starting(cpu);
9422 	return 0;
9423 }
9424 
9425 #ifdef CONFIG_HOTPLUG_CPU
9426 
9427 /*
9428  * Invoked immediately before the stopper thread is invoked to bring the
9429  * CPU down completely. At this point all per CPU kthreads except the
9430  * hotplug thread (current) and the stopper thread (inactive) have been
9431  * either parked or have been unbound from the outgoing CPU. Ensure that
9432  * any of those which might be on the way out are gone.
9433  *
9434  * If after this point a bound task is being woken on this CPU then the
9435  * responsible hotplug callback has failed to do it's job.
9436  * sched_cpu_dying() will catch it with the appropriate fireworks.
9437  */
sched_cpu_wait_empty(unsigned int cpu)9438 int sched_cpu_wait_empty(unsigned int cpu)
9439 {
9440 	balance_hotplug_wait();
9441 	return 0;
9442 }
9443 
9444 /*
9445  * Since this CPU is going 'away' for a while, fold any nr_active delta we
9446  * might have. Called from the CPU stopper task after ensuring that the
9447  * stopper is the last running task on the CPU, so nr_active count is
9448  * stable. We need to take the teardown thread which is calling this into
9449  * account, so we hand in adjust = 1 to the load calculation.
9450  *
9451  * Also see the comment "Global load-average calculations".
9452  */
calc_load_migrate(struct rq * rq)9453 static void calc_load_migrate(struct rq *rq)
9454 {
9455 	long delta = calc_load_fold_active(rq, 1);
9456 
9457 	if (delta)
9458 		atomic_long_add(delta, &calc_load_tasks);
9459 }
9460 
dump_rq_tasks(struct rq * rq,const char * loglvl)9461 static void dump_rq_tasks(struct rq *rq, const char *loglvl)
9462 {
9463 	struct task_struct *g, *p;
9464 	int cpu = cpu_of(rq);
9465 
9466 	lockdep_assert_rq_held(rq);
9467 
9468 	printk("%sCPU%d enqueued tasks (%u total):\n", loglvl, cpu, rq->nr_running);
9469 	for_each_process_thread(g, p) {
9470 		if (task_cpu(p) != cpu)
9471 			continue;
9472 
9473 		if (!task_on_rq_queued(p))
9474 			continue;
9475 
9476 		printk("%s\tpid: %d, name: %s\n", loglvl, p->pid, p->comm);
9477 	}
9478 }
9479 
sched_cpu_dying(unsigned int cpu)9480 int sched_cpu_dying(unsigned int cpu)
9481 {
9482 	struct rq *rq = cpu_rq(cpu);
9483 	struct rq_flags rf;
9484 
9485 	/* Handle pending wakeups and then migrate everything off */
9486 	sched_tick_stop(cpu);
9487 
9488 	rq_lock_irqsave(rq, &rf);
9489 	if (rq->nr_running != 1 || rq_has_pinned_tasks(rq)) {
9490 		WARN(true, "Dying CPU not properly vacated!");
9491 		dump_rq_tasks(rq, KERN_WARNING);
9492 	}
9493 	rq_unlock_irqrestore(rq, &rf);
9494 
9495 	trace_android_rvh_sched_cpu_dying(cpu);
9496 
9497 	calc_load_migrate(rq);
9498 	update_max_interval();
9499 	hrtick_clear(rq);
9500 	sched_core_cpu_dying(cpu);
9501 	return 0;
9502 }
9503 #endif
9504 
sched_init_smp(void)9505 void __init sched_init_smp(void)
9506 {
9507 	sched_init_numa();
9508 
9509 	/*
9510 	 * There's no userspace yet to cause hotplug operations; hence all the
9511 	 * CPU masks are stable and all blatant races in the below code cannot
9512 	 * happen.
9513 	 */
9514 	mutex_lock(&sched_domains_mutex);
9515 	sched_init_domains(cpu_active_mask);
9516 	mutex_unlock(&sched_domains_mutex);
9517 
9518 	/* Move init over to a non-isolated CPU */
9519 	if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_FLAG_DOMAIN)) < 0)
9520 		BUG();
9521 	current->flags &= ~PF_NO_SETAFFINITY;
9522 	sched_init_granularity();
9523 
9524 	init_sched_rt_class();
9525 	init_sched_dl_class();
9526 
9527 	sched_smp_initialized = true;
9528 }
9529 
migration_init(void)9530 static int __init migration_init(void)
9531 {
9532 	sched_cpu_starting(smp_processor_id());
9533 	return 0;
9534 }
9535 early_initcall(migration_init);
9536 
9537 #else
sched_init_smp(void)9538 void __init sched_init_smp(void)
9539 {
9540 	sched_init_granularity();
9541 }
9542 #endif /* CONFIG_SMP */
9543 
in_sched_functions(unsigned long addr)9544 int in_sched_functions(unsigned long addr)
9545 {
9546 	return in_lock_functions(addr) ||
9547 		(addr >= (unsigned long)__sched_text_start
9548 		&& addr < (unsigned long)__sched_text_end);
9549 }
9550 
9551 #ifdef CONFIG_CGROUP_SCHED
9552 /*
9553  * Default task group.
9554  * Every task in system belongs to this group at bootup.
9555  */
9556 struct task_group root_task_group;
9557 EXPORT_SYMBOL_GPL(root_task_group);
9558 LIST_HEAD(task_groups);
9559 EXPORT_SYMBOL_GPL(task_groups);
9560 
9561 /* Cacheline aligned slab cache for task_group */
9562 static struct kmem_cache *task_group_cache __read_mostly;
9563 #endif
9564 
9565 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
9566 DECLARE_PER_CPU(cpumask_var_t, select_idle_mask);
9567 
sched_init(void)9568 void __init sched_init(void)
9569 {
9570 	unsigned long ptr = 0;
9571 	int i;
9572 
9573 	/* Make sure the linker didn't screw up */
9574 	BUG_ON(&idle_sched_class + 1 != &fair_sched_class ||
9575 	       &fair_sched_class + 1 != &rt_sched_class ||
9576 	       &rt_sched_class + 1   != &dl_sched_class);
9577 #ifdef CONFIG_SMP
9578 	BUG_ON(&dl_sched_class + 1 != &stop_sched_class);
9579 #endif
9580 
9581 	wait_bit_init();
9582 
9583 #ifdef CONFIG_FAIR_GROUP_SCHED
9584 	ptr += 2 * nr_cpu_ids * sizeof(void **);
9585 #endif
9586 #ifdef CONFIG_RT_GROUP_SCHED
9587 	ptr += 2 * nr_cpu_ids * sizeof(void **);
9588 #endif
9589 	if (ptr) {
9590 		ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT);
9591 
9592 #ifdef CONFIG_FAIR_GROUP_SCHED
9593 		root_task_group.se = (struct sched_entity **)ptr;
9594 		ptr += nr_cpu_ids * sizeof(void **);
9595 
9596 		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
9597 		ptr += nr_cpu_ids * sizeof(void **);
9598 
9599 		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
9600 		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
9601 #endif /* CONFIG_FAIR_GROUP_SCHED */
9602 #ifdef CONFIG_RT_GROUP_SCHED
9603 		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
9604 		ptr += nr_cpu_ids * sizeof(void **);
9605 
9606 		root_task_group.rt_rq = (struct rt_rq **)ptr;
9607 		ptr += nr_cpu_ids * sizeof(void **);
9608 
9609 #endif /* CONFIG_RT_GROUP_SCHED */
9610 	}
9611 #ifdef CONFIG_CPUMASK_OFFSTACK
9612 	for_each_possible_cpu(i) {
9613 		per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
9614 			cpumask_size(), GFP_KERNEL, cpu_to_node(i));
9615 		per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node(
9616 			cpumask_size(), GFP_KERNEL, cpu_to_node(i));
9617 	}
9618 #endif /* CONFIG_CPUMASK_OFFSTACK */
9619 
9620 	init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime());
9621 	init_dl_bandwidth(&def_dl_bandwidth, global_rt_period(), global_rt_runtime());
9622 
9623 #ifdef CONFIG_SMP
9624 	init_defrootdomain();
9625 #endif
9626 
9627 #ifdef CONFIG_RT_GROUP_SCHED
9628 	init_rt_bandwidth(&root_task_group.rt_bandwidth,
9629 			global_rt_period(), global_rt_runtime());
9630 #endif /* CONFIG_RT_GROUP_SCHED */
9631 
9632 #ifdef CONFIG_CGROUP_SCHED
9633 	task_group_cache = KMEM_CACHE(task_group, 0);
9634 
9635 	list_add(&root_task_group.list, &task_groups);
9636 	INIT_LIST_HEAD(&root_task_group.children);
9637 	INIT_LIST_HEAD(&root_task_group.siblings);
9638 	autogroup_init(&init_task);
9639 #endif /* CONFIG_CGROUP_SCHED */
9640 
9641 	for_each_possible_cpu(i) {
9642 		struct rq *rq;
9643 
9644 		rq = cpu_rq(i);
9645 		raw_spin_lock_init(&rq->__lock);
9646 		rq->nr_running = 0;
9647 		rq->calc_load_active = 0;
9648 		rq->calc_load_update = jiffies + LOAD_FREQ;
9649 		init_cfs_rq(&rq->cfs);
9650 		init_rt_rq(&rq->rt);
9651 		init_dl_rq(&rq->dl);
9652 #ifdef CONFIG_FAIR_GROUP_SCHED
9653 		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
9654 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
9655 		/*
9656 		 * How much CPU bandwidth does root_task_group get?
9657 		 *
9658 		 * In case of task-groups formed thr' the cgroup filesystem, it
9659 		 * gets 100% of the CPU resources in the system. This overall
9660 		 * system CPU resource is divided among the tasks of
9661 		 * root_task_group and its child task-groups in a fair manner,
9662 		 * based on each entity's (task or task-group's) weight
9663 		 * (se->load.weight).
9664 		 *
9665 		 * In other words, if root_task_group has 10 tasks of weight
9666 		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
9667 		 * then A0's share of the CPU resource is:
9668 		 *
9669 		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
9670 		 *
9671 		 * We achieve this by letting root_task_group's tasks sit
9672 		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
9673 		 */
9674 		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
9675 #endif /* CONFIG_FAIR_GROUP_SCHED */
9676 
9677 		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
9678 #ifdef CONFIG_RT_GROUP_SCHED
9679 		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
9680 #endif
9681 #ifdef CONFIG_SMP
9682 		rq->sd = NULL;
9683 		rq->rd = NULL;
9684 		rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
9685 		rq->balance_callback = &balance_push_callback;
9686 		rq->active_balance = 0;
9687 		rq->next_balance = jiffies;
9688 		rq->push_cpu = 0;
9689 		rq->cpu = i;
9690 		rq->online = 0;
9691 		rq->idle_stamp = 0;
9692 		rq->avg_idle = 2*sysctl_sched_migration_cost;
9693 		rq->wake_stamp = jiffies;
9694 		rq->wake_avg_idle = rq->avg_idle;
9695 		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
9696 
9697 		INIT_LIST_HEAD(&rq->cfs_tasks);
9698 
9699 		rq_attach_root(rq, &def_root_domain);
9700 #ifdef CONFIG_NO_HZ_COMMON
9701 		rq->last_blocked_load_update_tick = jiffies;
9702 		atomic_set(&rq->nohz_flags, 0);
9703 
9704 		INIT_CSD(&rq->nohz_csd, nohz_csd_func, rq);
9705 #endif
9706 #ifdef CONFIG_HOTPLUG_CPU
9707 		rcuwait_init(&rq->hotplug_wait);
9708 #endif
9709 #endif /* CONFIG_SMP */
9710 		hrtick_rq_init(rq);
9711 		atomic_set(&rq->nr_iowait, 0);
9712 
9713 #ifdef CONFIG_SCHED_CORE
9714 		rq->core = rq;
9715 		rq->core_pick = NULL;
9716 		rq->core_enabled = 0;
9717 		rq->core_tree = RB_ROOT;
9718 		rq->core_forceidle = false;
9719 
9720 		rq->core_cookie = 0UL;
9721 #endif
9722 	}
9723 
9724 	set_load_weight(&init_task, false);
9725 
9726 	/*
9727 	 * The boot idle thread does lazy MMU switching as well:
9728 	 */
9729 	mmgrab(&init_mm);
9730 	enter_lazy_tlb(&init_mm, current);
9731 
9732 	/*
9733 	 * Make us the idle thread. Technically, schedule() should not be
9734 	 * called from this thread, however somewhere below it might be,
9735 	 * but because we are the idle thread, we just pick up running again
9736 	 * when this runqueue becomes "idle".
9737 	 */
9738 	init_idle(current, smp_processor_id());
9739 
9740 	calc_load_update = jiffies + LOAD_FREQ;
9741 
9742 #ifdef CONFIG_SMP
9743 	idle_thread_set_boot_cpu();
9744 	balance_push_set(smp_processor_id(), false);
9745 #endif
9746 	init_sched_fair_class();
9747 
9748 	psi_init();
9749 
9750 	init_uclamp();
9751 
9752 	scheduler_running = 1;
9753 }
9754 
9755 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
preempt_count_equals(int preempt_offset)9756 static inline int preempt_count_equals(int preempt_offset)
9757 {
9758 	int nested = preempt_count() + rcu_preempt_depth();
9759 
9760 	return (nested == preempt_offset);
9761 }
9762 
__might_sleep(const char * file,int line,int preempt_offset)9763 void __might_sleep(const char *file, int line, int preempt_offset)
9764 {
9765 	unsigned int state = get_current_state();
9766 	/*
9767 	 * Blocking primitives will set (and therefore destroy) current->state,
9768 	 * since we will exit with TASK_RUNNING make sure we enter with it,
9769 	 * otherwise we will destroy state.
9770 	 */
9771 	WARN_ONCE(state != TASK_RUNNING && current->task_state_change,
9772 			"do not call blocking ops when !TASK_RUNNING; "
9773 			"state=%x set at [<%p>] %pS\n", state,
9774 			(void *)current->task_state_change,
9775 			(void *)current->task_state_change);
9776 
9777 	___might_sleep(file, line, preempt_offset);
9778 }
9779 EXPORT_SYMBOL(__might_sleep);
9780 
___might_sleep(const char * file,int line,int preempt_offset)9781 void ___might_sleep(const char *file, int line, int preempt_offset)
9782 {
9783 	/* Ratelimiting timestamp: */
9784 	static unsigned long prev_jiffy;
9785 
9786 	unsigned long preempt_disable_ip;
9787 
9788 	/* WARN_ON_ONCE() by default, no rate limit required: */
9789 	rcu_sleep_check();
9790 
9791 	if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
9792 	     !is_idle_task(current) && !current->non_block_count) ||
9793 	    system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
9794 	    oops_in_progress)
9795 		return;
9796 
9797 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
9798 		return;
9799 	prev_jiffy = jiffies;
9800 
9801 	/* Save this before calling printk(), since that will clobber it: */
9802 	preempt_disable_ip = get_preempt_disable_ip(current);
9803 
9804 	printk(KERN_ERR
9805 		"BUG: sleeping function called from invalid context at %s:%d\n",
9806 			file, line);
9807 	printk(KERN_ERR
9808 		"in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n",
9809 			in_atomic(), irqs_disabled(), current->non_block_count,
9810 			current->pid, current->comm);
9811 
9812 	if (task_stack_end_corrupted(current))
9813 		printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
9814 
9815 	debug_show_held_locks(current);
9816 	if (irqs_disabled())
9817 		print_irqtrace_events(current);
9818 	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
9819 	    && !preempt_count_equals(preempt_offset)) {
9820 		pr_err("Preemption disabled at:");
9821 		print_ip_sym(KERN_ERR, preempt_disable_ip);
9822 	}
9823 
9824 	trace_android_rvh_schedule_bug(NULL);
9825 
9826 	dump_stack();
9827 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
9828 }
9829 EXPORT_SYMBOL(___might_sleep);
9830 
__cant_sleep(const char * file,int line,int preempt_offset)9831 void __cant_sleep(const char *file, int line, int preempt_offset)
9832 {
9833 	static unsigned long prev_jiffy;
9834 
9835 	if (irqs_disabled())
9836 		return;
9837 
9838 	if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
9839 		return;
9840 
9841 	if (preempt_count() > preempt_offset)
9842 		return;
9843 
9844 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
9845 		return;
9846 	prev_jiffy = jiffies;
9847 
9848 	printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line);
9849 	printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
9850 			in_atomic(), irqs_disabled(),
9851 			current->pid, current->comm);
9852 
9853 	debug_show_held_locks(current);
9854 	dump_stack();
9855 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
9856 }
9857 EXPORT_SYMBOL_GPL(__cant_sleep);
9858 
9859 #ifdef CONFIG_SMP
__cant_migrate(const char * file,int line)9860 void __cant_migrate(const char *file, int line)
9861 {
9862 	static unsigned long prev_jiffy;
9863 
9864 	if (irqs_disabled())
9865 		return;
9866 
9867 	if (is_migration_disabled(current))
9868 		return;
9869 
9870 	if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
9871 		return;
9872 
9873 	if (preempt_count() > 0)
9874 		return;
9875 
9876 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
9877 		return;
9878 	prev_jiffy = jiffies;
9879 
9880 	pr_err("BUG: assuming non migratable context at %s:%d\n", file, line);
9881 	pr_err("in_atomic(): %d, irqs_disabled(): %d, migration_disabled() %u pid: %d, name: %s\n",
9882 	       in_atomic(), irqs_disabled(), is_migration_disabled(current),
9883 	       current->pid, current->comm);
9884 
9885 	debug_show_held_locks(current);
9886 	dump_stack();
9887 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
9888 }
9889 EXPORT_SYMBOL_GPL(__cant_migrate);
9890 #endif
9891 #endif
9892 
9893 #ifdef CONFIG_MAGIC_SYSRQ
normalize_rt_tasks(void)9894 void normalize_rt_tasks(void)
9895 {
9896 	struct task_struct *g, *p;
9897 	struct sched_attr attr = {
9898 		.sched_policy = SCHED_NORMAL,
9899 	};
9900 
9901 	read_lock(&tasklist_lock);
9902 	for_each_process_thread(g, p) {
9903 		/*
9904 		 * Only normalize user tasks:
9905 		 */
9906 		if (p->flags & PF_KTHREAD)
9907 			continue;
9908 
9909 		p->se.exec_start = 0;
9910 		schedstat_set(p->stats.wait_start,  0);
9911 		schedstat_set(p->stats.sleep_start, 0);
9912 		schedstat_set(p->stats.block_start, 0);
9913 
9914 		if (!dl_task(p) && !rt_task(p)) {
9915 			/*
9916 			 * Renice negative nice level userspace
9917 			 * tasks back to 0:
9918 			 */
9919 			if (task_nice(p) < 0)
9920 				set_user_nice(p, 0);
9921 			continue;
9922 		}
9923 
9924 		__sched_setscheduler(p, &attr, false, false);
9925 	}
9926 	read_unlock(&tasklist_lock);
9927 }
9928 
9929 #endif /* CONFIG_MAGIC_SYSRQ */
9930 
9931 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
9932 /*
9933  * These functions are only useful for the IA64 MCA handling, or kdb.
9934  *
9935  * They can only be called when the whole system has been
9936  * stopped - every CPU needs to be quiescent, and no scheduling
9937  * activity can take place. Using them for anything else would
9938  * be a serious bug, and as a result, they aren't even visible
9939  * under any other configuration.
9940  */
9941 
9942 /**
9943  * curr_task - return the current task for a given CPU.
9944  * @cpu: the processor in question.
9945  *
9946  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9947  *
9948  * Return: The current task for @cpu.
9949  */
curr_task(int cpu)9950 struct task_struct *curr_task(int cpu)
9951 {
9952 	return cpu_curr(cpu);
9953 }
9954 
9955 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
9956 
9957 #ifdef CONFIG_IA64
9958 /**
9959  * ia64_set_curr_task - set the current task for a given CPU.
9960  * @cpu: the processor in question.
9961  * @p: the task pointer to set.
9962  *
9963  * Description: This function must only be used when non-maskable interrupts
9964  * are serviced on a separate stack. It allows the architecture to switch the
9965  * notion of the current task on a CPU in a non-blocking manner. This function
9966  * must be called with all CPU's synchronized, and interrupts disabled, the
9967  * and caller must save the original value of the current task (see
9968  * curr_task() above) and restore that value before reenabling interrupts and
9969  * re-starting the system.
9970  *
9971  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9972  */
ia64_set_curr_task(int cpu,struct task_struct * p)9973 void ia64_set_curr_task(int cpu, struct task_struct *p)
9974 {
9975 	cpu_curr(cpu) = p;
9976 }
9977 
9978 #endif
9979 
9980 #ifdef CONFIG_CGROUP_SCHED
9981 /* task_group_lock serializes the addition/removal of task groups */
9982 static DEFINE_SPINLOCK(task_group_lock);
9983 
alloc_uclamp_sched_group(struct task_group * tg,struct task_group * parent)9984 static inline void alloc_uclamp_sched_group(struct task_group *tg,
9985 					    struct task_group *parent)
9986 {
9987 #ifdef CONFIG_UCLAMP_TASK_GROUP
9988 	enum uclamp_id clamp_id;
9989 
9990 	for_each_clamp_id(clamp_id) {
9991 		uclamp_se_set(&tg->uclamp_req[clamp_id],
9992 			      uclamp_none(clamp_id), false);
9993 		tg->uclamp[clamp_id] = parent->uclamp[clamp_id];
9994 	}
9995 #endif
9996 }
9997 
sched_free_group(struct task_group * tg)9998 static void sched_free_group(struct task_group *tg)
9999 {
10000 	free_fair_sched_group(tg);
10001 	free_rt_sched_group(tg);
10002 	autogroup_free(tg);
10003 	kmem_cache_free(task_group_cache, tg);
10004 }
10005 
sched_free_group_rcu(struct rcu_head * rcu)10006 static void sched_free_group_rcu(struct rcu_head *rcu)
10007 {
10008 	sched_free_group(container_of(rcu, struct task_group, rcu));
10009 }
10010 
sched_unregister_group(struct task_group * tg)10011 static void sched_unregister_group(struct task_group *tg)
10012 {
10013 	unregister_fair_sched_group(tg);
10014 	unregister_rt_sched_group(tg);
10015 	/*
10016 	 * We have to wait for yet another RCU grace period to expire, as
10017 	 * print_cfs_stats() might run concurrently.
10018 	 */
10019 	call_rcu(&tg->rcu, sched_free_group_rcu);
10020 }
10021 
10022 /* allocate runqueue etc for a new task group */
sched_create_group(struct task_group * parent)10023 struct task_group *sched_create_group(struct task_group *parent)
10024 {
10025 	struct task_group *tg;
10026 
10027 	tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
10028 	if (!tg)
10029 		return ERR_PTR(-ENOMEM);
10030 
10031 	if (!alloc_fair_sched_group(tg, parent))
10032 		goto err;
10033 
10034 	if (!alloc_rt_sched_group(tg, parent))
10035 		goto err;
10036 
10037 	alloc_uclamp_sched_group(tg, parent);
10038 
10039 	return tg;
10040 
10041 err:
10042 	sched_free_group(tg);
10043 	return ERR_PTR(-ENOMEM);
10044 }
10045 
sched_online_group(struct task_group * tg,struct task_group * parent)10046 void sched_online_group(struct task_group *tg, struct task_group *parent)
10047 {
10048 	unsigned long flags;
10049 
10050 	spin_lock_irqsave(&task_group_lock, flags);
10051 	list_add_rcu(&tg->list, &task_groups);
10052 
10053 	/* Root should already exist: */
10054 	WARN_ON(!parent);
10055 
10056 	tg->parent = parent;
10057 	INIT_LIST_HEAD(&tg->children);
10058 	list_add_rcu(&tg->siblings, &parent->children);
10059 	spin_unlock_irqrestore(&task_group_lock, flags);
10060 
10061 	online_fair_sched_group(tg);
10062 }
10063 
10064 /* rcu callback to free various structures associated with a task group */
sched_unregister_group_rcu(struct rcu_head * rhp)10065 static void sched_unregister_group_rcu(struct rcu_head *rhp)
10066 {
10067 	/* Now it should be safe to free those cfs_rqs: */
10068 	sched_unregister_group(container_of(rhp, struct task_group, rcu));
10069 }
10070 
sched_destroy_group(struct task_group * tg)10071 void sched_destroy_group(struct task_group *tg)
10072 {
10073 	/* Wait for possible concurrent references to cfs_rqs complete: */
10074 	call_rcu(&tg->rcu, sched_unregister_group_rcu);
10075 }
10076 
sched_release_group(struct task_group * tg)10077 void sched_release_group(struct task_group *tg)
10078 {
10079 	unsigned long flags;
10080 
10081 	/*
10082 	 * Unlink first, to avoid walk_tg_tree_from() from finding us (via
10083 	 * sched_cfs_period_timer()).
10084 	 *
10085 	 * For this to be effective, we have to wait for all pending users of
10086 	 * this task group to leave their RCU critical section to ensure no new
10087 	 * user will see our dying task group any more. Specifically ensure
10088 	 * that tg_unthrottle_up() won't add decayed cfs_rq's to it.
10089 	 *
10090 	 * We therefore defer calling unregister_fair_sched_group() to
10091 	 * sched_unregister_group() which is guarantied to get called only after the
10092 	 * current RCU grace period has expired.
10093 	 */
10094 	spin_lock_irqsave(&task_group_lock, flags);
10095 	list_del_rcu(&tg->list);
10096 	list_del_rcu(&tg->siblings);
10097 	spin_unlock_irqrestore(&task_group_lock, flags);
10098 }
10099 
sched_change_group(struct task_struct * tsk,int type)10100 static void sched_change_group(struct task_struct *tsk, int type)
10101 {
10102 	struct task_group *tg;
10103 
10104 	/*
10105 	 * All callers are synchronized by task_rq_lock(); we do not use RCU
10106 	 * which is pointless here. Thus, we pass "true" to task_css_check()
10107 	 * to prevent lockdep warnings.
10108 	 */
10109 	tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
10110 			  struct task_group, css);
10111 	tg = autogroup_task_group(tsk, tg);
10112 	tsk->sched_task_group = tg;
10113 
10114 #ifdef CONFIG_FAIR_GROUP_SCHED
10115 	if (tsk->sched_class->task_change_group)
10116 		tsk->sched_class->task_change_group(tsk, type);
10117 	else
10118 #endif
10119 		set_task_rq(tsk, task_cpu(tsk));
10120 }
10121 
10122 /*
10123  * Change task's runqueue when it moves between groups.
10124  *
10125  * The caller of this function should have put the task in its new group by
10126  * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
10127  * its new group.
10128  */
sched_move_task(struct task_struct * tsk)10129 void sched_move_task(struct task_struct *tsk)
10130 {
10131 	int queued, running, queue_flags =
10132 		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
10133 	struct rq_flags rf;
10134 	struct rq *rq;
10135 
10136 	rq = task_rq_lock(tsk, &rf);
10137 	update_rq_clock(rq);
10138 
10139 	running = task_current(rq, tsk);
10140 	queued = task_on_rq_queued(tsk);
10141 
10142 	if (queued)
10143 		dequeue_task(rq, tsk, queue_flags);
10144 	if (running)
10145 		put_prev_task(rq, tsk);
10146 
10147 	sched_change_group(tsk, TASK_MOVE_GROUP);
10148 
10149 	if (queued)
10150 		enqueue_task(rq, tsk, queue_flags);
10151 	if (running) {
10152 		set_next_task(rq, tsk);
10153 		/*
10154 		 * After changing group, the running task may have joined a
10155 		 * throttled one but it's still the running task. Trigger a
10156 		 * resched to make sure that task can still run.
10157 		 */
10158 		resched_curr(rq);
10159 	}
10160 
10161 	task_rq_unlock(rq, tsk, &rf);
10162 }
10163 
css_tg(struct cgroup_subsys_state * css)10164 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
10165 {
10166 	return css ? container_of(css, struct task_group, css) : NULL;
10167 }
10168 
10169 static struct cgroup_subsys_state *
cpu_cgroup_css_alloc(struct cgroup_subsys_state * parent_css)10170 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
10171 {
10172 	struct task_group *parent = css_tg(parent_css);
10173 	struct task_group *tg;
10174 
10175 	if (!parent) {
10176 		/* This is early initialization for the top cgroup */
10177 		return &root_task_group.css;
10178 	}
10179 
10180 	tg = sched_create_group(parent);
10181 	if (IS_ERR(tg))
10182 		return ERR_PTR(-ENOMEM);
10183 
10184 	return &tg->css;
10185 }
10186 
10187 /* Expose task group only after completing cgroup initialization */
cpu_cgroup_css_online(struct cgroup_subsys_state * css)10188 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
10189 {
10190 	struct task_group *tg = css_tg(css);
10191 	struct task_group *parent = css_tg(css->parent);
10192 
10193 	if (parent)
10194 		sched_online_group(tg, parent);
10195 
10196 #ifdef CONFIG_UCLAMP_TASK_GROUP
10197 	/* Propagate the effective uclamp value for the new group */
10198 	mutex_lock(&uclamp_mutex);
10199 	rcu_read_lock();
10200 	cpu_util_update_eff(css);
10201 	rcu_read_unlock();
10202 	mutex_unlock(&uclamp_mutex);
10203 #endif
10204 
10205 	trace_android_rvh_cpu_cgroup_online(css);
10206 	return 0;
10207 }
10208 
cpu_cgroup_css_released(struct cgroup_subsys_state * css)10209 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
10210 {
10211 	struct task_group *tg = css_tg(css);
10212 
10213 	sched_release_group(tg);
10214 }
10215 
cpu_cgroup_css_free(struct cgroup_subsys_state * css)10216 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
10217 {
10218 	struct task_group *tg = css_tg(css);
10219 
10220 	/*
10221 	 * Relies on the RCU grace period between css_released() and this.
10222 	 */
10223 	sched_unregister_group(tg);
10224 }
10225 
10226 /*
10227  * This is called before wake_up_new_task(), therefore we really only
10228  * have to set its group bits, all the other stuff does not apply.
10229  */
cpu_cgroup_fork(struct task_struct * task)10230 static void cpu_cgroup_fork(struct task_struct *task)
10231 {
10232 	struct rq_flags rf;
10233 	struct rq *rq;
10234 
10235 	rq = task_rq_lock(task, &rf);
10236 
10237 	update_rq_clock(rq);
10238 	sched_change_group(task, TASK_SET_GROUP);
10239 
10240 	task_rq_unlock(rq, task, &rf);
10241 }
10242 
cpu_cgroup_can_attach(struct cgroup_taskset * tset)10243 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
10244 {
10245 	struct task_struct *task;
10246 	struct cgroup_subsys_state *css;
10247 	int ret = 0;
10248 
10249 	cgroup_taskset_for_each(task, css, tset) {
10250 #ifdef CONFIG_RT_GROUP_SCHED
10251 		if (!sched_rt_can_attach(css_tg(css), task))
10252 			return -EINVAL;
10253 #endif
10254 		/*
10255 		 * Serialize against wake_up_new_task() such that if it's
10256 		 * running, we're sure to observe its full state.
10257 		 */
10258 		raw_spin_lock_irq(&task->pi_lock);
10259 		/*
10260 		 * Avoid calling sched_move_task() before wake_up_new_task()
10261 		 * has happened. This would lead to problems with PELT, due to
10262 		 * move wanting to detach+attach while we're not attached yet.
10263 		 */
10264 		if (READ_ONCE(task->__state) == TASK_NEW)
10265 			ret = -EINVAL;
10266 		raw_spin_unlock_irq(&task->pi_lock);
10267 
10268 		if (ret)
10269 			break;
10270 	}
10271 
10272 	trace_android_rvh_cpu_cgroup_can_attach(tset, &ret);
10273 
10274 	return ret;
10275 }
10276 
cpu_cgroup_attach(struct cgroup_taskset * tset)10277 static void cpu_cgroup_attach(struct cgroup_taskset *tset)
10278 {
10279 	struct task_struct *task;
10280 	struct cgroup_subsys_state *css;
10281 
10282 	cgroup_taskset_for_each(task, css, tset)
10283 		sched_move_task(task);
10284 
10285 	trace_android_rvh_cpu_cgroup_attach(tset);
10286 }
10287 
10288 #ifdef CONFIG_UCLAMP_TASK_GROUP
cpu_util_update_eff(struct cgroup_subsys_state * css)10289 static void cpu_util_update_eff(struct cgroup_subsys_state *css)
10290 {
10291 	struct cgroup_subsys_state *top_css = css;
10292 	struct uclamp_se *uc_parent = NULL;
10293 	struct uclamp_se *uc_se = NULL;
10294 	unsigned int eff[UCLAMP_CNT];
10295 	enum uclamp_id clamp_id;
10296 	unsigned int clamps;
10297 
10298 	lockdep_assert_held(&uclamp_mutex);
10299 	SCHED_WARN_ON(!rcu_read_lock_held());
10300 
10301 	css_for_each_descendant_pre(css, top_css) {
10302 		uc_parent = css_tg(css)->parent
10303 			? css_tg(css)->parent->uclamp : NULL;
10304 
10305 		for_each_clamp_id(clamp_id) {
10306 			/* Assume effective clamps matches requested clamps */
10307 			eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value;
10308 			/* Cap effective clamps with parent's effective clamps */
10309 			if (uc_parent &&
10310 			    eff[clamp_id] > uc_parent[clamp_id].value) {
10311 				eff[clamp_id] = uc_parent[clamp_id].value;
10312 			}
10313 		}
10314 		/* Ensure protection is always capped by limit */
10315 		eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]);
10316 
10317 		/* Propagate most restrictive effective clamps */
10318 		clamps = 0x0;
10319 		uc_se = css_tg(css)->uclamp;
10320 		for_each_clamp_id(clamp_id) {
10321 			if (eff[clamp_id] == uc_se[clamp_id].value)
10322 				continue;
10323 			uc_se[clamp_id].value = eff[clamp_id];
10324 			uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]);
10325 			clamps |= (0x1 << clamp_id);
10326 		}
10327 		if (!clamps) {
10328 			css = css_rightmost_descendant(css);
10329 			continue;
10330 		}
10331 
10332 		/* Immediately update descendants RUNNABLE tasks */
10333 		uclamp_update_active_tasks(css);
10334 	}
10335 }
10336 
10337 /*
10338  * Integer 10^N with a given N exponent by casting to integer the literal "1eN"
10339  * C expression. Since there is no way to convert a macro argument (N) into a
10340  * character constant, use two levels of macros.
10341  */
10342 #define _POW10(exp) ((unsigned int)1e##exp)
10343 #define POW10(exp) _POW10(exp)
10344 
10345 struct uclamp_request {
10346 #define UCLAMP_PERCENT_SHIFT	2
10347 #define UCLAMP_PERCENT_SCALE	(100 * POW10(UCLAMP_PERCENT_SHIFT))
10348 	s64 percent;
10349 	u64 util;
10350 	int ret;
10351 };
10352 
10353 static inline struct uclamp_request
capacity_from_percent(char * buf)10354 capacity_from_percent(char *buf)
10355 {
10356 	struct uclamp_request req = {
10357 		.percent = UCLAMP_PERCENT_SCALE,
10358 		.util = SCHED_CAPACITY_SCALE,
10359 		.ret = 0,
10360 	};
10361 
10362 	buf = strim(buf);
10363 	if (strcmp(buf, "max")) {
10364 		req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT,
10365 					     &req.percent);
10366 		if (req.ret)
10367 			return req;
10368 		if ((u64)req.percent > UCLAMP_PERCENT_SCALE) {
10369 			req.ret = -ERANGE;
10370 			return req;
10371 		}
10372 
10373 		req.util = req.percent << SCHED_CAPACITY_SHIFT;
10374 		req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE);
10375 	}
10376 
10377 	return req;
10378 }
10379 
cpu_uclamp_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off,enum uclamp_id clamp_id)10380 static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf,
10381 				size_t nbytes, loff_t off,
10382 				enum uclamp_id clamp_id)
10383 {
10384 	struct uclamp_request req;
10385 	struct task_group *tg;
10386 
10387 	req = capacity_from_percent(buf);
10388 	if (req.ret)
10389 		return req.ret;
10390 
10391 	static_branch_enable(&sched_uclamp_used);
10392 
10393 	mutex_lock(&uclamp_mutex);
10394 	rcu_read_lock();
10395 
10396 	tg = css_tg(of_css(of));
10397 	if (tg->uclamp_req[clamp_id].value != req.util)
10398 		uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false);
10399 
10400 	/*
10401 	 * Because of not recoverable conversion rounding we keep track of the
10402 	 * exact requested value
10403 	 */
10404 	tg->uclamp_pct[clamp_id] = req.percent;
10405 
10406 	/* Update effective clamps to track the most restrictive value */
10407 	cpu_util_update_eff(of_css(of));
10408 
10409 	rcu_read_unlock();
10410 	mutex_unlock(&uclamp_mutex);
10411 
10412 	return nbytes;
10413 }
10414 
cpu_uclamp_min_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)10415 static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of,
10416 				    char *buf, size_t nbytes,
10417 				    loff_t off)
10418 {
10419 	return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN);
10420 }
10421 
cpu_uclamp_max_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)10422 static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of,
10423 				    char *buf, size_t nbytes,
10424 				    loff_t off)
10425 {
10426 	return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX);
10427 }
10428 
cpu_uclamp_print(struct seq_file * sf,enum uclamp_id clamp_id)10429 static inline void cpu_uclamp_print(struct seq_file *sf,
10430 				    enum uclamp_id clamp_id)
10431 {
10432 	struct task_group *tg;
10433 	u64 util_clamp;
10434 	u64 percent;
10435 	u32 rem;
10436 
10437 	rcu_read_lock();
10438 	tg = css_tg(seq_css(sf));
10439 	util_clamp = tg->uclamp_req[clamp_id].value;
10440 	rcu_read_unlock();
10441 
10442 	if (util_clamp == SCHED_CAPACITY_SCALE) {
10443 		seq_puts(sf, "max\n");
10444 		return;
10445 	}
10446 
10447 	percent = tg->uclamp_pct[clamp_id];
10448 	percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem);
10449 	seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem);
10450 }
10451 
cpu_uclamp_min_show(struct seq_file * sf,void * v)10452 static int cpu_uclamp_min_show(struct seq_file *sf, void *v)
10453 {
10454 	cpu_uclamp_print(sf, UCLAMP_MIN);
10455 	return 0;
10456 }
10457 
cpu_uclamp_max_show(struct seq_file * sf,void * v)10458 static int cpu_uclamp_max_show(struct seq_file *sf, void *v)
10459 {
10460 	cpu_uclamp_print(sf, UCLAMP_MAX);
10461 	return 0;
10462 }
10463 
cpu_uclamp_ls_write_u64(struct cgroup_subsys_state * css,struct cftype * cftype,u64 ls)10464 static int cpu_uclamp_ls_write_u64(struct cgroup_subsys_state *css,
10465 				   struct cftype *cftype, u64 ls)
10466 {
10467 	struct task_group *tg;
10468 
10469 	if (ls > 1)
10470 		return -EINVAL;
10471 	tg = css_tg(css);
10472 	tg->latency_sensitive = (unsigned int) ls;
10473 
10474 	return 0;
10475 }
10476 
cpu_uclamp_ls_read_u64(struct cgroup_subsys_state * css,struct cftype * cft)10477 static u64 cpu_uclamp_ls_read_u64(struct cgroup_subsys_state *css,
10478 				  struct cftype *cft)
10479 {
10480 	struct task_group *tg = css_tg(css);
10481 
10482 	return (u64) tg->latency_sensitive;
10483 }
10484 #endif /* CONFIG_UCLAMP_TASK_GROUP */
10485 
10486 #ifdef CONFIG_FAIR_GROUP_SCHED
cpu_shares_write_u64(struct cgroup_subsys_state * css,struct cftype * cftype,u64 shareval)10487 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
10488 				struct cftype *cftype, u64 shareval)
10489 {
10490 	if (shareval > scale_load_down(ULONG_MAX))
10491 		shareval = MAX_SHARES;
10492 	return sched_group_set_shares(css_tg(css), scale_load(shareval));
10493 }
10494 
cpu_shares_read_u64(struct cgroup_subsys_state * css,struct cftype * cft)10495 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
10496 			       struct cftype *cft)
10497 {
10498 	struct task_group *tg = css_tg(css);
10499 
10500 	return (u64) scale_load_down(tg->shares);
10501 }
10502 
10503 #ifdef CONFIG_CFS_BANDWIDTH
10504 static DEFINE_MUTEX(cfs_constraints_mutex);
10505 
10506 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
10507 static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
10508 /* More than 203 days if BW_SHIFT equals 20. */
10509 static const u64 max_cfs_runtime = MAX_BW * NSEC_PER_USEC;
10510 
10511 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
10512 
tg_set_cfs_bandwidth(struct task_group * tg,u64 period,u64 quota,u64 burst)10513 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota,
10514 				u64 burst)
10515 {
10516 	int i, ret = 0, runtime_enabled, runtime_was_enabled;
10517 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
10518 
10519 	if (tg == &root_task_group)
10520 		return -EINVAL;
10521 
10522 	/*
10523 	 * Ensure we have at some amount of bandwidth every period.  This is
10524 	 * to prevent reaching a state of large arrears when throttled via
10525 	 * entity_tick() resulting in prolonged exit starvation.
10526 	 */
10527 	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
10528 		return -EINVAL;
10529 
10530 	/*
10531 	 * Likewise, bound things on the other side by preventing insane quota
10532 	 * periods.  This also allows us to normalize in computing quota
10533 	 * feasibility.
10534 	 */
10535 	if (period > max_cfs_quota_period)
10536 		return -EINVAL;
10537 
10538 	/*
10539 	 * Bound quota to defend quota against overflow during bandwidth shift.
10540 	 */
10541 	if (quota != RUNTIME_INF && quota > max_cfs_runtime)
10542 		return -EINVAL;
10543 
10544 	if (quota != RUNTIME_INF && (burst > quota ||
10545 				     burst + quota > max_cfs_runtime))
10546 		return -EINVAL;
10547 
10548 	/*
10549 	 * Prevent race between setting of cfs_rq->runtime_enabled and
10550 	 * unthrottle_offline_cfs_rqs().
10551 	 */
10552 	cpus_read_lock();
10553 	mutex_lock(&cfs_constraints_mutex);
10554 	ret = __cfs_schedulable(tg, period, quota);
10555 	if (ret)
10556 		goto out_unlock;
10557 
10558 	runtime_enabled = quota != RUNTIME_INF;
10559 	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
10560 	/*
10561 	 * If we need to toggle cfs_bandwidth_used, off->on must occur
10562 	 * before making related changes, and on->off must occur afterwards
10563 	 */
10564 	if (runtime_enabled && !runtime_was_enabled)
10565 		cfs_bandwidth_usage_inc();
10566 	raw_spin_lock_irq(&cfs_b->lock);
10567 	cfs_b->period = ns_to_ktime(period);
10568 	cfs_b->quota = quota;
10569 	cfs_b->burst = burst;
10570 
10571 	__refill_cfs_bandwidth_runtime(cfs_b);
10572 
10573 	/* Restart the period timer (if active) to handle new period expiry: */
10574 	if (runtime_enabled)
10575 		start_cfs_bandwidth(cfs_b);
10576 
10577 	raw_spin_unlock_irq(&cfs_b->lock);
10578 
10579 	for_each_online_cpu(i) {
10580 		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
10581 		struct rq *rq = cfs_rq->rq;
10582 		struct rq_flags rf;
10583 
10584 		rq_lock_irq(rq, &rf);
10585 		cfs_rq->runtime_enabled = runtime_enabled;
10586 		cfs_rq->runtime_remaining = 0;
10587 
10588 		if (cfs_rq->throttled)
10589 			unthrottle_cfs_rq(cfs_rq);
10590 		rq_unlock_irq(rq, &rf);
10591 	}
10592 	if (runtime_was_enabled && !runtime_enabled)
10593 		cfs_bandwidth_usage_dec();
10594 out_unlock:
10595 	mutex_unlock(&cfs_constraints_mutex);
10596 	cpus_read_unlock();
10597 
10598 	return ret;
10599 }
10600 
tg_set_cfs_quota(struct task_group * tg,long cfs_quota_us)10601 static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
10602 {
10603 	u64 quota, period, burst;
10604 
10605 	period = ktime_to_ns(tg->cfs_bandwidth.period);
10606 	burst = tg->cfs_bandwidth.burst;
10607 	if (cfs_quota_us < 0)
10608 		quota = RUNTIME_INF;
10609 	else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC)
10610 		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
10611 	else
10612 		return -EINVAL;
10613 
10614 	return tg_set_cfs_bandwidth(tg, period, quota, burst);
10615 }
10616 
tg_get_cfs_quota(struct task_group * tg)10617 static long tg_get_cfs_quota(struct task_group *tg)
10618 {
10619 	u64 quota_us;
10620 
10621 	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
10622 		return -1;
10623 
10624 	quota_us = tg->cfs_bandwidth.quota;
10625 	do_div(quota_us, NSEC_PER_USEC);
10626 
10627 	return quota_us;
10628 }
10629 
tg_set_cfs_period(struct task_group * tg,long cfs_period_us)10630 static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
10631 {
10632 	u64 quota, period, burst;
10633 
10634 	if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC)
10635 		return -EINVAL;
10636 
10637 	period = (u64)cfs_period_us * NSEC_PER_USEC;
10638 	quota = tg->cfs_bandwidth.quota;
10639 	burst = tg->cfs_bandwidth.burst;
10640 
10641 	return tg_set_cfs_bandwidth(tg, period, quota, burst);
10642 }
10643 
tg_get_cfs_period(struct task_group * tg)10644 static long tg_get_cfs_period(struct task_group *tg)
10645 {
10646 	u64 cfs_period_us;
10647 
10648 	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
10649 	do_div(cfs_period_us, NSEC_PER_USEC);
10650 
10651 	return cfs_period_us;
10652 }
10653 
tg_set_cfs_burst(struct task_group * tg,long cfs_burst_us)10654 static int tg_set_cfs_burst(struct task_group *tg, long cfs_burst_us)
10655 {
10656 	u64 quota, period, burst;
10657 
10658 	if ((u64)cfs_burst_us > U64_MAX / NSEC_PER_USEC)
10659 		return -EINVAL;
10660 
10661 	burst = (u64)cfs_burst_us * NSEC_PER_USEC;
10662 	period = ktime_to_ns(tg->cfs_bandwidth.period);
10663 	quota = tg->cfs_bandwidth.quota;
10664 
10665 	return tg_set_cfs_bandwidth(tg, period, quota, burst);
10666 }
10667 
tg_get_cfs_burst(struct task_group * tg)10668 static long tg_get_cfs_burst(struct task_group *tg)
10669 {
10670 	u64 burst_us;
10671 
10672 	burst_us = tg->cfs_bandwidth.burst;
10673 	do_div(burst_us, NSEC_PER_USEC);
10674 
10675 	return burst_us;
10676 }
10677 
cpu_cfs_quota_read_s64(struct cgroup_subsys_state * css,struct cftype * cft)10678 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
10679 				  struct cftype *cft)
10680 {
10681 	return tg_get_cfs_quota(css_tg(css));
10682 }
10683 
cpu_cfs_quota_write_s64(struct cgroup_subsys_state * css,struct cftype * cftype,s64 cfs_quota_us)10684 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
10685 				   struct cftype *cftype, s64 cfs_quota_us)
10686 {
10687 	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
10688 }
10689 
cpu_cfs_period_read_u64(struct cgroup_subsys_state * css,struct cftype * cft)10690 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
10691 				   struct cftype *cft)
10692 {
10693 	return tg_get_cfs_period(css_tg(css));
10694 }
10695 
cpu_cfs_period_write_u64(struct cgroup_subsys_state * css,struct cftype * cftype,u64 cfs_period_us)10696 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
10697 				    struct cftype *cftype, u64 cfs_period_us)
10698 {
10699 	return tg_set_cfs_period(css_tg(css), cfs_period_us);
10700 }
10701 
cpu_cfs_burst_read_u64(struct cgroup_subsys_state * css,struct cftype * cft)10702 static u64 cpu_cfs_burst_read_u64(struct cgroup_subsys_state *css,
10703 				  struct cftype *cft)
10704 {
10705 	return tg_get_cfs_burst(css_tg(css));
10706 }
10707 
cpu_cfs_burst_write_u64(struct cgroup_subsys_state * css,struct cftype * cftype,u64 cfs_burst_us)10708 static int cpu_cfs_burst_write_u64(struct cgroup_subsys_state *css,
10709 				   struct cftype *cftype, u64 cfs_burst_us)
10710 {
10711 	return tg_set_cfs_burst(css_tg(css), cfs_burst_us);
10712 }
10713 
10714 struct cfs_schedulable_data {
10715 	struct task_group *tg;
10716 	u64 period, quota;
10717 };
10718 
10719 /*
10720  * normalize group quota/period to be quota/max_period
10721  * note: units are usecs
10722  */
normalize_cfs_quota(struct task_group * tg,struct cfs_schedulable_data * d)10723 static u64 normalize_cfs_quota(struct task_group *tg,
10724 			       struct cfs_schedulable_data *d)
10725 {
10726 	u64 quota, period;
10727 
10728 	if (tg == d->tg) {
10729 		period = d->period;
10730 		quota = d->quota;
10731 	} else {
10732 		period = tg_get_cfs_period(tg);
10733 		quota = tg_get_cfs_quota(tg);
10734 	}
10735 
10736 	/* note: these should typically be equivalent */
10737 	if (quota == RUNTIME_INF || quota == -1)
10738 		return RUNTIME_INF;
10739 
10740 	return to_ratio(period, quota);
10741 }
10742 
tg_cfs_schedulable_down(struct task_group * tg,void * data)10743 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
10744 {
10745 	struct cfs_schedulable_data *d = data;
10746 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
10747 	s64 quota = 0, parent_quota = -1;
10748 
10749 	if (!tg->parent) {
10750 		quota = RUNTIME_INF;
10751 	} else {
10752 		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
10753 
10754 		quota = normalize_cfs_quota(tg, d);
10755 		parent_quota = parent_b->hierarchical_quota;
10756 
10757 		/*
10758 		 * Ensure max(child_quota) <= parent_quota.  On cgroup2,
10759 		 * always take the min.  On cgroup1, only inherit when no
10760 		 * limit is set:
10761 		 */
10762 		if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) {
10763 			quota = min(quota, parent_quota);
10764 		} else {
10765 			if (quota == RUNTIME_INF)
10766 				quota = parent_quota;
10767 			else if (parent_quota != RUNTIME_INF && quota > parent_quota)
10768 				return -EINVAL;
10769 		}
10770 	}
10771 	cfs_b->hierarchical_quota = quota;
10772 
10773 	return 0;
10774 }
10775 
__cfs_schedulable(struct task_group * tg,u64 period,u64 quota)10776 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
10777 {
10778 	int ret;
10779 	struct cfs_schedulable_data data = {
10780 		.tg = tg,
10781 		.period = period,
10782 		.quota = quota,
10783 	};
10784 
10785 	if (quota != RUNTIME_INF) {
10786 		do_div(data.period, NSEC_PER_USEC);
10787 		do_div(data.quota, NSEC_PER_USEC);
10788 	}
10789 
10790 	rcu_read_lock();
10791 	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
10792 	rcu_read_unlock();
10793 
10794 	return ret;
10795 }
10796 
cpu_cfs_stat_show(struct seq_file * sf,void * v)10797 static int cpu_cfs_stat_show(struct seq_file *sf, void *v)
10798 {
10799 	struct task_group *tg = css_tg(seq_css(sf));
10800 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
10801 
10802 	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
10803 	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
10804 	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
10805 
10806 	if (schedstat_enabled() && tg != &root_task_group) {
10807 		struct sched_statistics *stats;
10808 		u64 ws = 0;
10809 		int i;
10810 
10811 		for_each_possible_cpu(i) {
10812 			stats = __schedstats_from_se(tg->se[i]);
10813 			ws += schedstat_val(stats->wait_sum);
10814 		}
10815 
10816 		seq_printf(sf, "wait_sum %llu\n", ws);
10817 	}
10818 
10819 	return 0;
10820 }
10821 #endif /* CONFIG_CFS_BANDWIDTH */
10822 #endif /* CONFIG_FAIR_GROUP_SCHED */
10823 
10824 #ifdef CONFIG_RT_GROUP_SCHED
cpu_rt_runtime_write(struct cgroup_subsys_state * css,struct cftype * cft,s64 val)10825 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
10826 				struct cftype *cft, s64 val)
10827 {
10828 	return sched_group_set_rt_runtime(css_tg(css), val);
10829 }
10830 
cpu_rt_runtime_read(struct cgroup_subsys_state * css,struct cftype * cft)10831 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
10832 			       struct cftype *cft)
10833 {
10834 	return sched_group_rt_runtime(css_tg(css));
10835 }
10836 
cpu_rt_period_write_uint(struct cgroup_subsys_state * css,struct cftype * cftype,u64 rt_period_us)10837 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
10838 				    struct cftype *cftype, u64 rt_period_us)
10839 {
10840 	return sched_group_set_rt_period(css_tg(css), rt_period_us);
10841 }
10842 
cpu_rt_period_read_uint(struct cgroup_subsys_state * css,struct cftype * cft)10843 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
10844 				   struct cftype *cft)
10845 {
10846 	return sched_group_rt_period(css_tg(css));
10847 }
10848 #endif /* CONFIG_RT_GROUP_SCHED */
10849 
10850 #ifdef CONFIG_FAIR_GROUP_SCHED
cpu_idle_read_s64(struct cgroup_subsys_state * css,struct cftype * cft)10851 static s64 cpu_idle_read_s64(struct cgroup_subsys_state *css,
10852 			       struct cftype *cft)
10853 {
10854 	return css_tg(css)->idle;
10855 }
10856 
cpu_idle_write_s64(struct cgroup_subsys_state * css,struct cftype * cft,s64 idle)10857 static int cpu_idle_write_s64(struct cgroup_subsys_state *css,
10858 				struct cftype *cft, s64 idle)
10859 {
10860 	return sched_group_set_idle(css_tg(css), idle);
10861 }
10862 #endif
10863 
10864 static struct cftype cpu_legacy_files[] = {
10865 #ifdef CONFIG_FAIR_GROUP_SCHED
10866 	{
10867 		.name = "shares",
10868 		.read_u64 = cpu_shares_read_u64,
10869 		.write_u64 = cpu_shares_write_u64,
10870 	},
10871 	{
10872 		.name = "idle",
10873 		.read_s64 = cpu_idle_read_s64,
10874 		.write_s64 = cpu_idle_write_s64,
10875 	},
10876 #endif
10877 #ifdef CONFIG_CFS_BANDWIDTH
10878 	{
10879 		.name = "cfs_quota_us",
10880 		.read_s64 = cpu_cfs_quota_read_s64,
10881 		.write_s64 = cpu_cfs_quota_write_s64,
10882 	},
10883 	{
10884 		.name = "cfs_period_us",
10885 		.read_u64 = cpu_cfs_period_read_u64,
10886 		.write_u64 = cpu_cfs_period_write_u64,
10887 	},
10888 	{
10889 		.name = "cfs_burst_us",
10890 		.read_u64 = cpu_cfs_burst_read_u64,
10891 		.write_u64 = cpu_cfs_burst_write_u64,
10892 	},
10893 	{
10894 		.name = "stat",
10895 		.seq_show = cpu_cfs_stat_show,
10896 	},
10897 #endif
10898 #ifdef CONFIG_RT_GROUP_SCHED
10899 	{
10900 		.name = "rt_runtime_us",
10901 		.read_s64 = cpu_rt_runtime_read,
10902 		.write_s64 = cpu_rt_runtime_write,
10903 	},
10904 	{
10905 		.name = "rt_period_us",
10906 		.read_u64 = cpu_rt_period_read_uint,
10907 		.write_u64 = cpu_rt_period_write_uint,
10908 	},
10909 #endif
10910 #ifdef CONFIG_UCLAMP_TASK_GROUP
10911 	{
10912 		.name = "uclamp.min",
10913 		.flags = CFTYPE_NOT_ON_ROOT,
10914 		.seq_show = cpu_uclamp_min_show,
10915 		.write = cpu_uclamp_min_write,
10916 	},
10917 	{
10918 		.name = "uclamp.max",
10919 		.flags = CFTYPE_NOT_ON_ROOT,
10920 		.seq_show = cpu_uclamp_max_show,
10921 		.write = cpu_uclamp_max_write,
10922 	},
10923 	{
10924 		.name = "uclamp.latency_sensitive",
10925 		.flags = CFTYPE_NOT_ON_ROOT,
10926 		.read_u64 = cpu_uclamp_ls_read_u64,
10927 		.write_u64 = cpu_uclamp_ls_write_u64,
10928 	},
10929 #endif
10930 	{ }	/* Terminate */
10931 };
10932 
cpu_extra_stat_show(struct seq_file * sf,struct cgroup_subsys_state * css)10933 static int cpu_extra_stat_show(struct seq_file *sf,
10934 			       struct cgroup_subsys_state *css)
10935 {
10936 #ifdef CONFIG_CFS_BANDWIDTH
10937 	{
10938 		struct task_group *tg = css_tg(css);
10939 		struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
10940 		u64 throttled_usec;
10941 
10942 		throttled_usec = cfs_b->throttled_time;
10943 		do_div(throttled_usec, NSEC_PER_USEC);
10944 
10945 		seq_printf(sf, "nr_periods %d\n"
10946 			   "nr_throttled %d\n"
10947 			   "throttled_usec %llu\n",
10948 			   cfs_b->nr_periods, cfs_b->nr_throttled,
10949 			   throttled_usec);
10950 	}
10951 #endif
10952 	return 0;
10953 }
10954 
10955 #ifdef CONFIG_FAIR_GROUP_SCHED
cpu_weight_read_u64(struct cgroup_subsys_state * css,struct cftype * cft)10956 static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css,
10957 			       struct cftype *cft)
10958 {
10959 	struct task_group *tg = css_tg(css);
10960 	u64 weight = scale_load_down(tg->shares);
10961 
10962 	return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024);
10963 }
10964 
cpu_weight_write_u64(struct cgroup_subsys_state * css,struct cftype * cft,u64 weight)10965 static int cpu_weight_write_u64(struct cgroup_subsys_state *css,
10966 				struct cftype *cft, u64 weight)
10967 {
10968 	/*
10969 	 * cgroup weight knobs should use the common MIN, DFL and MAX
10970 	 * values which are 1, 100 and 10000 respectively.  While it loses
10971 	 * a bit of range on both ends, it maps pretty well onto the shares
10972 	 * value used by scheduler and the round-trip conversions preserve
10973 	 * the original value over the entire range.
10974 	 */
10975 	if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX)
10976 		return -ERANGE;
10977 
10978 	weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL);
10979 
10980 	return sched_group_set_shares(css_tg(css), scale_load(weight));
10981 }
10982 
cpu_weight_nice_read_s64(struct cgroup_subsys_state * css,struct cftype * cft)10983 static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css,
10984 				    struct cftype *cft)
10985 {
10986 	unsigned long weight = scale_load_down(css_tg(css)->shares);
10987 	int last_delta = INT_MAX;
10988 	int prio, delta;
10989 
10990 	/* find the closest nice value to the current weight */
10991 	for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) {
10992 		delta = abs(sched_prio_to_weight[prio] - weight);
10993 		if (delta >= last_delta)
10994 			break;
10995 		last_delta = delta;
10996 	}
10997 
10998 	return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO);
10999 }
11000 
cpu_weight_nice_write_s64(struct cgroup_subsys_state * css,struct cftype * cft,s64 nice)11001 static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css,
11002 				     struct cftype *cft, s64 nice)
11003 {
11004 	unsigned long weight;
11005 	int idx;
11006 
11007 	if (nice < MIN_NICE || nice > MAX_NICE)
11008 		return -ERANGE;
11009 
11010 	idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO;
11011 	idx = array_index_nospec(idx, 40);
11012 	weight = sched_prio_to_weight[idx];
11013 
11014 	return sched_group_set_shares(css_tg(css), scale_load(weight));
11015 }
11016 #endif
11017 
cpu_period_quota_print(struct seq_file * sf,long period,long quota)11018 static void __maybe_unused cpu_period_quota_print(struct seq_file *sf,
11019 						  long period, long quota)
11020 {
11021 	if (quota < 0)
11022 		seq_puts(sf, "max");
11023 	else
11024 		seq_printf(sf, "%ld", quota);
11025 
11026 	seq_printf(sf, " %ld\n", period);
11027 }
11028 
11029 /* caller should put the current value in *@periodp before calling */
cpu_period_quota_parse(char * buf,u64 * periodp,u64 * quotap)11030 static int __maybe_unused cpu_period_quota_parse(char *buf,
11031 						 u64 *periodp, u64 *quotap)
11032 {
11033 	char tok[21];	/* U64_MAX */
11034 
11035 	if (sscanf(buf, "%20s %llu", tok, periodp) < 1)
11036 		return -EINVAL;
11037 
11038 	*periodp *= NSEC_PER_USEC;
11039 
11040 	if (sscanf(tok, "%llu", quotap))
11041 		*quotap *= NSEC_PER_USEC;
11042 	else if (!strcmp(tok, "max"))
11043 		*quotap = RUNTIME_INF;
11044 	else
11045 		return -EINVAL;
11046 
11047 	return 0;
11048 }
11049 
11050 #ifdef CONFIG_CFS_BANDWIDTH
cpu_max_show(struct seq_file * sf,void * v)11051 static int cpu_max_show(struct seq_file *sf, void *v)
11052 {
11053 	struct task_group *tg = css_tg(seq_css(sf));
11054 
11055 	cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg));
11056 	return 0;
11057 }
11058 
cpu_max_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)11059 static ssize_t cpu_max_write(struct kernfs_open_file *of,
11060 			     char *buf, size_t nbytes, loff_t off)
11061 {
11062 	struct task_group *tg = css_tg(of_css(of));
11063 	u64 period = tg_get_cfs_period(tg);
11064 	u64 burst = tg_get_cfs_burst(tg);
11065 	u64 quota;
11066 	int ret;
11067 
11068 	ret = cpu_period_quota_parse(buf, &period, &quota);
11069 	if (!ret)
11070 		ret = tg_set_cfs_bandwidth(tg, period, quota, burst);
11071 	return ret ?: nbytes;
11072 }
11073 #endif
11074 
11075 static struct cftype cpu_files[] = {
11076 #ifdef CONFIG_FAIR_GROUP_SCHED
11077 	{
11078 		.name = "weight",
11079 		.flags = CFTYPE_NOT_ON_ROOT,
11080 		.read_u64 = cpu_weight_read_u64,
11081 		.write_u64 = cpu_weight_write_u64,
11082 	},
11083 	{
11084 		.name = "weight.nice",
11085 		.flags = CFTYPE_NOT_ON_ROOT,
11086 		.read_s64 = cpu_weight_nice_read_s64,
11087 		.write_s64 = cpu_weight_nice_write_s64,
11088 	},
11089 	{
11090 		.name = "idle",
11091 		.flags = CFTYPE_NOT_ON_ROOT,
11092 		.read_s64 = cpu_idle_read_s64,
11093 		.write_s64 = cpu_idle_write_s64,
11094 	},
11095 #endif
11096 #ifdef CONFIG_CFS_BANDWIDTH
11097 	{
11098 		.name = "max",
11099 		.flags = CFTYPE_NOT_ON_ROOT,
11100 		.seq_show = cpu_max_show,
11101 		.write = cpu_max_write,
11102 	},
11103 	{
11104 		.name = "max.burst",
11105 		.flags = CFTYPE_NOT_ON_ROOT,
11106 		.read_u64 = cpu_cfs_burst_read_u64,
11107 		.write_u64 = cpu_cfs_burst_write_u64,
11108 	},
11109 #endif
11110 #ifdef CONFIG_UCLAMP_TASK_GROUP
11111 	{
11112 		.name = "uclamp.min",
11113 		.flags = CFTYPE_NOT_ON_ROOT,
11114 		.seq_show = cpu_uclamp_min_show,
11115 		.write = cpu_uclamp_min_write,
11116 	},
11117 	{
11118 		.name = "uclamp.max",
11119 		.flags = CFTYPE_NOT_ON_ROOT,
11120 		.seq_show = cpu_uclamp_max_show,
11121 		.write = cpu_uclamp_max_write,
11122 	},
11123 	{
11124 		.name = "uclamp.latency_sensitive",
11125 		.flags = CFTYPE_NOT_ON_ROOT,
11126 		.read_u64 = cpu_uclamp_ls_read_u64,
11127 		.write_u64 = cpu_uclamp_ls_write_u64,
11128 	},
11129 #endif
11130 	{ }	/* terminate */
11131 };
11132 
11133 struct cgroup_subsys cpu_cgrp_subsys = {
11134 	.css_alloc	= cpu_cgroup_css_alloc,
11135 	.css_online	= cpu_cgroup_css_online,
11136 	.css_released	= cpu_cgroup_css_released,
11137 	.css_free	= cpu_cgroup_css_free,
11138 	.css_extra_stat_show = cpu_extra_stat_show,
11139 	.fork		= cpu_cgroup_fork,
11140 	.can_attach	= cpu_cgroup_can_attach,
11141 	.attach		= cpu_cgroup_attach,
11142 	.legacy_cftypes	= cpu_legacy_files,
11143 	.dfl_cftypes	= cpu_files,
11144 	.early_init	= true,
11145 	.threaded	= true,
11146 };
11147 
11148 #endif	/* CONFIG_CGROUP_SCHED */
11149 
dump_cpu_task(int cpu)11150 void dump_cpu_task(int cpu)
11151 {
11152 	pr_info("Task dump for CPU %d:\n", cpu);
11153 	sched_show_task(cpu_curr(cpu));
11154 }
11155 
11156 /*
11157  * Nice levels are multiplicative, with a gentle 10% change for every
11158  * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
11159  * nice 1, it will get ~10% less CPU time than another CPU-bound task
11160  * that remained on nice 0.
11161  *
11162  * The "10% effect" is relative and cumulative: from _any_ nice level,
11163  * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
11164  * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
11165  * If a task goes up by ~10% and another task goes down by ~10% then
11166  * the relative distance between them is ~25%.)
11167  */
11168 const int sched_prio_to_weight[40] = {
11169  /* -20 */     88761,     71755,     56483,     46273,     36291,
11170  /* -15 */     29154,     23254,     18705,     14949,     11916,
11171  /* -10 */      9548,      7620,      6100,      4904,      3906,
11172  /*  -5 */      3121,      2501,      1991,      1586,      1277,
11173  /*   0 */      1024,       820,       655,       526,       423,
11174  /*   5 */       335,       272,       215,       172,       137,
11175  /*  10 */       110,        87,        70,        56,        45,
11176  /*  15 */        36,        29,        23,        18,        15,
11177 };
11178 
11179 /*
11180  * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
11181  *
11182  * In cases where the weight does not change often, we can use the
11183  * precalculated inverse to speed up arithmetics by turning divisions
11184  * into multiplications:
11185  */
11186 const u32 sched_prio_to_wmult[40] = {
11187  /* -20 */     48388,     59856,     76040,     92818,    118348,
11188  /* -15 */    147320,    184698,    229616,    287308,    360437,
11189  /* -10 */    449829,    563644,    704093,    875809,   1099582,
11190  /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
11191  /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
11192  /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
11193  /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
11194  /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
11195 };
11196 
call_trace_sched_update_nr_running(struct rq * rq,int count)11197 void call_trace_sched_update_nr_running(struct rq *rq, int count)
11198 {
11199         trace_sched_update_nr_running_tp(rq, count);
11200 }
11201