1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 1999 Eric Youngdale
4 * Copyright (C) 2014 Christoph Hellwig
5 *
6 * SCSI queueing library.
7 * Initial versions: Eric Youngdale (eric@andante.org).
8 * Based upon conversations with large numbers
9 * of people at Linux Expo.
10 */
11
12 #include <linux/bio.h>
13 #include <linux/bitops.h>
14 #include <linux/blkdev.h>
15 #include <linux/completion.h>
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/init.h>
19 #include <linux/pci.h>
20 #include <linux/delay.h>
21 #include <linux/hardirq.h>
22 #include <linux/scatterlist.h>
23 #include <linux/blk-mq.h>
24 #include <linux/ratelimit.h>
25 #include <asm/unaligned.h>
26
27 #include <scsi/scsi.h>
28 #include <scsi/scsi_cmnd.h>
29 #include <scsi/scsi_dbg.h>
30 #include <scsi/scsi_device.h>
31 #include <scsi/scsi_driver.h>
32 #include <scsi/scsi_eh.h>
33 #include <scsi/scsi_host.h>
34 #include <scsi/scsi_transport.h> /* __scsi_init_queue() */
35 #include <scsi/scsi_dh.h>
36
37 #include <trace/events/scsi.h>
38
39 #include "scsi_debugfs.h"
40 #include "scsi_priv.h"
41 #include "scsi_logging.h"
42
43 /*
44 * Size of integrity metadata is usually small, 1 inline sg should
45 * cover normal cases.
46 */
47 #ifdef CONFIG_ARCH_NO_SG_CHAIN
48 #define SCSI_INLINE_PROT_SG_CNT 0
49 #define SCSI_INLINE_SG_CNT 0
50 #else
51 #define SCSI_INLINE_PROT_SG_CNT 1
52 #define SCSI_INLINE_SG_CNT 2
53 #endif
54
55 static struct kmem_cache *scsi_sense_cache;
56 static DEFINE_MUTEX(scsi_sense_cache_mutex);
57
58 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd);
59
scsi_init_sense_cache(struct Scsi_Host * shost)60 int scsi_init_sense_cache(struct Scsi_Host *shost)
61 {
62 int ret = 0;
63
64 mutex_lock(&scsi_sense_cache_mutex);
65 if (!scsi_sense_cache) {
66 scsi_sense_cache =
67 kmem_cache_create_usercopy("scsi_sense_cache",
68 SCSI_SENSE_BUFFERSIZE, 0, SLAB_HWCACHE_ALIGN,
69 0, SCSI_SENSE_BUFFERSIZE, NULL);
70 if (!scsi_sense_cache)
71 ret = -ENOMEM;
72 }
73 mutex_unlock(&scsi_sense_cache_mutex);
74 return ret;
75 }
76
77 /*
78 * When to reinvoke queueing after a resource shortage. It's 3 msecs to
79 * not change behaviour from the previous unplug mechanism, experimentation
80 * may prove this needs changing.
81 */
82 #define SCSI_QUEUE_DELAY 3
83
84 static void
scsi_set_blocked(struct scsi_cmnd * cmd,int reason)85 scsi_set_blocked(struct scsi_cmnd *cmd, int reason)
86 {
87 struct Scsi_Host *host = cmd->device->host;
88 struct scsi_device *device = cmd->device;
89 struct scsi_target *starget = scsi_target(device);
90
91 /*
92 * Set the appropriate busy bit for the device/host.
93 *
94 * If the host/device isn't busy, assume that something actually
95 * completed, and that we should be able to queue a command now.
96 *
97 * Note that the prior mid-layer assumption that any host could
98 * always queue at least one command is now broken. The mid-layer
99 * will implement a user specifiable stall (see
100 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
101 * if a command is requeued with no other commands outstanding
102 * either for the device or for the host.
103 */
104 switch (reason) {
105 case SCSI_MLQUEUE_HOST_BUSY:
106 atomic_set(&host->host_blocked, host->max_host_blocked);
107 break;
108 case SCSI_MLQUEUE_DEVICE_BUSY:
109 case SCSI_MLQUEUE_EH_RETRY:
110 atomic_set(&device->device_blocked,
111 device->max_device_blocked);
112 break;
113 case SCSI_MLQUEUE_TARGET_BUSY:
114 atomic_set(&starget->target_blocked,
115 starget->max_target_blocked);
116 break;
117 }
118 }
119
scsi_mq_requeue_cmd(struct scsi_cmnd * cmd)120 static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd)
121 {
122 struct request *rq = scsi_cmd_to_rq(cmd);
123
124 if (rq->rq_flags & RQF_DONTPREP) {
125 rq->rq_flags &= ~RQF_DONTPREP;
126 scsi_mq_uninit_cmd(cmd);
127 } else {
128 WARN_ON_ONCE(true);
129 }
130 blk_mq_requeue_request(rq, !scsi_host_in_recovery(cmd->device->host));
131 }
132
133 /**
134 * __scsi_queue_insert - private queue insertion
135 * @cmd: The SCSI command being requeued
136 * @reason: The reason for the requeue
137 * @unbusy: Whether the queue should be unbusied
138 *
139 * This is a private queue insertion. The public interface
140 * scsi_queue_insert() always assumes the queue should be unbusied
141 * because it's always called before the completion. This function is
142 * for a requeue after completion, which should only occur in this
143 * file.
144 */
__scsi_queue_insert(struct scsi_cmnd * cmd,int reason,bool unbusy)145 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, bool unbusy)
146 {
147 struct scsi_device *device = cmd->device;
148
149 SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd,
150 "Inserting command %p into mlqueue\n", cmd));
151
152 scsi_set_blocked(cmd, reason);
153
154 /*
155 * Decrement the counters, since these commands are no longer
156 * active on the host/device.
157 */
158 if (unbusy)
159 scsi_device_unbusy(device, cmd);
160
161 /*
162 * Requeue this command. It will go before all other commands
163 * that are already in the queue. Schedule requeue work under
164 * lock such that the kblockd_schedule_work() call happens
165 * before blk_cleanup_queue() finishes.
166 */
167 cmd->result = 0;
168
169 blk_mq_requeue_request(scsi_cmd_to_rq(cmd),
170 !scsi_host_in_recovery(cmd->device->host));
171 }
172
173 /**
174 * scsi_queue_insert - Reinsert a command in the queue.
175 * @cmd: command that we are adding to queue.
176 * @reason: why we are inserting command to queue.
177 *
178 * We do this for one of two cases. Either the host is busy and it cannot accept
179 * any more commands for the time being, or the device returned QUEUE_FULL and
180 * can accept no more commands.
181 *
182 * Context: This could be called either from an interrupt context or a normal
183 * process context.
184 */
scsi_queue_insert(struct scsi_cmnd * cmd,int reason)185 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
186 {
187 __scsi_queue_insert(cmd, reason, true);
188 }
189
190
191 /**
192 * __scsi_execute - insert request and wait for the result
193 * @sdev: scsi device
194 * @cmd: scsi command
195 * @data_direction: data direction
196 * @buffer: data buffer
197 * @bufflen: len of buffer
198 * @sense: optional sense buffer
199 * @sshdr: optional decoded sense header
200 * @timeout: request timeout in HZ
201 * @retries: number of times to retry request
202 * @flags: flags for ->cmd_flags
203 * @rq_flags: flags for ->rq_flags
204 * @resid: optional residual length
205 *
206 * Returns the scsi_cmnd result field if a command was executed, or a negative
207 * Linux error code if we didn't get that far.
208 */
__scsi_execute(struct scsi_device * sdev,const unsigned char * cmd,int data_direction,void * buffer,unsigned bufflen,unsigned char * sense,struct scsi_sense_hdr * sshdr,int timeout,int retries,u64 flags,req_flags_t rq_flags,int * resid)209 int __scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
210 int data_direction, void *buffer, unsigned bufflen,
211 unsigned char *sense, struct scsi_sense_hdr *sshdr,
212 int timeout, int retries, u64 flags, req_flags_t rq_flags,
213 int *resid)
214 {
215 struct request *req;
216 struct scsi_request *rq;
217 int ret;
218
219 req = blk_get_request(sdev->request_queue,
220 data_direction == DMA_TO_DEVICE ?
221 REQ_OP_DRV_OUT : REQ_OP_DRV_IN,
222 rq_flags & RQF_PM ? BLK_MQ_REQ_PM : 0);
223 if (IS_ERR(req))
224 return PTR_ERR(req);
225
226 rq = scsi_req(req);
227
228 if (bufflen) {
229 ret = blk_rq_map_kern(sdev->request_queue, req,
230 buffer, bufflen, GFP_NOIO);
231 if (ret)
232 goto out;
233 }
234 rq->cmd_len = COMMAND_SIZE(cmd[0]);
235 memcpy(rq->cmd, cmd, rq->cmd_len);
236 rq->retries = retries;
237 req->timeout = timeout;
238 req->cmd_flags |= flags;
239 req->rq_flags |= rq_flags | RQF_QUIET;
240
241 /*
242 * head injection *required* here otherwise quiesce won't work
243 */
244 blk_execute_rq(NULL, req, 1);
245
246 /*
247 * Some devices (USB mass-storage in particular) may transfer
248 * garbage data together with a residue indicating that the data
249 * is invalid. Prevent the garbage from being misinterpreted
250 * and prevent security leaks by zeroing out the excess data.
251 */
252 if (unlikely(rq->resid_len > 0 && rq->resid_len <= bufflen))
253 memset(buffer + (bufflen - rq->resid_len), 0, rq->resid_len);
254
255 if (resid)
256 *resid = rq->resid_len;
257 if (sense && rq->sense_len)
258 memcpy(sense, rq->sense, SCSI_SENSE_BUFFERSIZE);
259 if (sshdr)
260 scsi_normalize_sense(rq->sense, rq->sense_len, sshdr);
261 ret = rq->result;
262 out:
263 blk_put_request(req);
264
265 return ret;
266 }
267 EXPORT_SYMBOL(__scsi_execute);
268
269 /*
270 * Wake up the error handler if necessary. Avoid as follows that the error
271 * handler is not woken up if host in-flight requests number ==
272 * shost->host_failed: use call_rcu() in scsi_eh_scmd_add() in combination
273 * with an RCU read lock in this function to ensure that this function in
274 * its entirety either finishes before scsi_eh_scmd_add() increases the
275 * host_failed counter or that it notices the shost state change made by
276 * scsi_eh_scmd_add().
277 */
scsi_dec_host_busy(struct Scsi_Host * shost,struct scsi_cmnd * cmd)278 static void scsi_dec_host_busy(struct Scsi_Host *shost, struct scsi_cmnd *cmd)
279 {
280 unsigned long flags;
281
282 rcu_read_lock();
283 __clear_bit(SCMD_STATE_INFLIGHT, &cmd->state);
284 if (unlikely(scsi_host_in_recovery(shost))) {
285 unsigned int busy = scsi_host_busy(shost);
286
287 spin_lock_irqsave(shost->host_lock, flags);
288 if (shost->host_failed || shost->host_eh_scheduled)
289 scsi_eh_wakeup(shost, busy);
290 spin_unlock_irqrestore(shost->host_lock, flags);
291 }
292 rcu_read_unlock();
293 }
294
scsi_device_unbusy(struct scsi_device * sdev,struct scsi_cmnd * cmd)295 void scsi_device_unbusy(struct scsi_device *sdev, struct scsi_cmnd *cmd)
296 {
297 struct Scsi_Host *shost = sdev->host;
298 struct scsi_target *starget = scsi_target(sdev);
299
300 scsi_dec_host_busy(shost, cmd);
301
302 if (starget->can_queue > 0)
303 atomic_dec(&starget->target_busy);
304
305 sbitmap_put(&sdev->budget_map, cmd->budget_token);
306 cmd->budget_token = -1;
307 }
308
309 /*
310 * Called for single_lun devices on IO completion. Clear starget_sdev_user,
311 * and call blk_run_queue for all the scsi_devices on the target -
312 * including current_sdev first.
313 *
314 * Called with *no* scsi locks held.
315 */
scsi_single_lun_run(struct scsi_device * current_sdev)316 static void scsi_single_lun_run(struct scsi_device *current_sdev)
317 {
318 struct Scsi_Host *shost = current_sdev->host;
319 struct scsi_device *sdev, *tmp;
320 struct scsi_target *starget = scsi_target(current_sdev);
321 unsigned long flags;
322
323 spin_lock_irqsave(shost->host_lock, flags);
324 starget->starget_sdev_user = NULL;
325 spin_unlock_irqrestore(shost->host_lock, flags);
326
327 /*
328 * Call blk_run_queue for all LUNs on the target, starting with
329 * current_sdev. We race with others (to set starget_sdev_user),
330 * but in most cases, we will be first. Ideally, each LU on the
331 * target would get some limited time or requests on the target.
332 */
333 blk_mq_run_hw_queues(current_sdev->request_queue,
334 shost->queuecommand_may_block);
335
336 spin_lock_irqsave(shost->host_lock, flags);
337 if (starget->starget_sdev_user)
338 goto out;
339 list_for_each_entry_safe(sdev, tmp, &starget->devices,
340 same_target_siblings) {
341 if (sdev == current_sdev)
342 continue;
343 if (scsi_device_get(sdev))
344 continue;
345
346 spin_unlock_irqrestore(shost->host_lock, flags);
347 blk_mq_run_hw_queues(sdev->request_queue, false);
348 spin_lock_irqsave(shost->host_lock, flags);
349
350 scsi_device_put(sdev);
351 }
352 out:
353 spin_unlock_irqrestore(shost->host_lock, flags);
354 }
355
scsi_device_is_busy(struct scsi_device * sdev)356 static inline bool scsi_device_is_busy(struct scsi_device *sdev)
357 {
358 if (scsi_device_busy(sdev) >= sdev->queue_depth)
359 return true;
360 if (atomic_read(&sdev->device_blocked) > 0)
361 return true;
362 return false;
363 }
364
scsi_target_is_busy(struct scsi_target * starget)365 static inline bool scsi_target_is_busy(struct scsi_target *starget)
366 {
367 if (starget->can_queue > 0) {
368 if (atomic_read(&starget->target_busy) >= starget->can_queue)
369 return true;
370 if (atomic_read(&starget->target_blocked) > 0)
371 return true;
372 }
373 return false;
374 }
375
scsi_host_is_busy(struct Scsi_Host * shost)376 static inline bool scsi_host_is_busy(struct Scsi_Host *shost)
377 {
378 if (atomic_read(&shost->host_blocked) > 0)
379 return true;
380 if (shost->host_self_blocked)
381 return true;
382 return false;
383 }
384
scsi_starved_list_run(struct Scsi_Host * shost)385 static void scsi_starved_list_run(struct Scsi_Host *shost)
386 {
387 LIST_HEAD(starved_list);
388 struct scsi_device *sdev;
389 unsigned long flags;
390
391 spin_lock_irqsave(shost->host_lock, flags);
392 list_splice_init(&shost->starved_list, &starved_list);
393
394 while (!list_empty(&starved_list)) {
395 struct request_queue *slq;
396
397 /*
398 * As long as shost is accepting commands and we have
399 * starved queues, call blk_run_queue. scsi_request_fn
400 * drops the queue_lock and can add us back to the
401 * starved_list.
402 *
403 * host_lock protects the starved_list and starved_entry.
404 * scsi_request_fn must get the host_lock before checking
405 * or modifying starved_list or starved_entry.
406 */
407 if (scsi_host_is_busy(shost))
408 break;
409
410 sdev = list_entry(starved_list.next,
411 struct scsi_device, starved_entry);
412 list_del_init(&sdev->starved_entry);
413 if (scsi_target_is_busy(scsi_target(sdev))) {
414 list_move_tail(&sdev->starved_entry,
415 &shost->starved_list);
416 continue;
417 }
418
419 /*
420 * Once we drop the host lock, a racing scsi_remove_device()
421 * call may remove the sdev from the starved list and destroy
422 * it and the queue. Mitigate by taking a reference to the
423 * queue and never touching the sdev again after we drop the
424 * host lock. Note: if __scsi_remove_device() invokes
425 * blk_cleanup_queue() before the queue is run from this
426 * function then blk_run_queue() will return immediately since
427 * blk_cleanup_queue() marks the queue with QUEUE_FLAG_DYING.
428 */
429 slq = sdev->request_queue;
430 if (!blk_get_queue(slq))
431 continue;
432 spin_unlock_irqrestore(shost->host_lock, flags);
433
434 blk_mq_run_hw_queues(slq, false);
435 blk_put_queue(slq);
436
437 spin_lock_irqsave(shost->host_lock, flags);
438 }
439 /* put any unprocessed entries back */
440 list_splice(&starved_list, &shost->starved_list);
441 spin_unlock_irqrestore(shost->host_lock, flags);
442 }
443
444 /**
445 * scsi_run_queue - Select a proper request queue to serve next.
446 * @q: last request's queue
447 *
448 * The previous command was completely finished, start a new one if possible.
449 */
scsi_run_queue(struct request_queue * q)450 static void scsi_run_queue(struct request_queue *q)
451 {
452 struct scsi_device *sdev = q->queuedata;
453
454 if (scsi_target(sdev)->single_lun)
455 scsi_single_lun_run(sdev);
456 if (!list_empty(&sdev->host->starved_list))
457 scsi_starved_list_run(sdev->host);
458
459 /* Note: blk_mq_kick_requeue_list() runs the queue asynchronously. */
460 blk_mq_kick_requeue_list(q);
461 }
462
scsi_requeue_run_queue(struct work_struct * work)463 void scsi_requeue_run_queue(struct work_struct *work)
464 {
465 struct scsi_device *sdev;
466 struct request_queue *q;
467
468 sdev = container_of(work, struct scsi_device, requeue_work);
469 q = sdev->request_queue;
470 scsi_run_queue(q);
471 }
472
scsi_run_host_queues(struct Scsi_Host * shost)473 void scsi_run_host_queues(struct Scsi_Host *shost)
474 {
475 struct scsi_device *sdev;
476
477 shost_for_each_device(sdev, shost)
478 scsi_run_queue(sdev->request_queue);
479 }
480
scsi_uninit_cmd(struct scsi_cmnd * cmd)481 static void scsi_uninit_cmd(struct scsi_cmnd *cmd)
482 {
483 if (!blk_rq_is_passthrough(scsi_cmd_to_rq(cmd))) {
484 struct scsi_driver *drv = scsi_cmd_to_driver(cmd);
485
486 if (drv->uninit_command)
487 drv->uninit_command(cmd);
488 }
489 }
490
scsi_free_sgtables(struct scsi_cmnd * cmd)491 void scsi_free_sgtables(struct scsi_cmnd *cmd)
492 {
493 if (cmd->sdb.table.nents)
494 sg_free_table_chained(&cmd->sdb.table,
495 SCSI_INLINE_SG_CNT);
496 if (scsi_prot_sg_count(cmd))
497 sg_free_table_chained(&cmd->prot_sdb->table,
498 SCSI_INLINE_PROT_SG_CNT);
499 }
500 EXPORT_SYMBOL_GPL(scsi_free_sgtables);
501
scsi_mq_uninit_cmd(struct scsi_cmnd * cmd)502 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd)
503 {
504 scsi_free_sgtables(cmd);
505 scsi_uninit_cmd(cmd);
506 }
507
scsi_run_queue_async(struct scsi_device * sdev)508 static void scsi_run_queue_async(struct scsi_device *sdev)
509 {
510 if (scsi_host_in_recovery(sdev->host))
511 return;
512
513 if (scsi_target(sdev)->single_lun ||
514 !list_empty(&sdev->host->starved_list)) {
515 kblockd_schedule_work(&sdev->requeue_work);
516 } else {
517 /*
518 * smp_mb() present in sbitmap_queue_clear() or implied in
519 * .end_io is for ordering writing .device_busy in
520 * scsi_device_unbusy() and reading sdev->restarts.
521 */
522 int old = atomic_read(&sdev->restarts);
523
524 /*
525 * ->restarts has to be kept as non-zero if new budget
526 * contention occurs.
527 *
528 * No need to run queue when either another re-run
529 * queue wins in updating ->restarts or a new budget
530 * contention occurs.
531 */
532 if (old && atomic_cmpxchg(&sdev->restarts, old, 0) == old)
533 blk_mq_run_hw_queues(sdev->request_queue, true);
534 }
535 }
536
537 /* Returns false when no more bytes to process, true if there are more */
scsi_end_request(struct request * req,blk_status_t error,unsigned int bytes)538 static bool scsi_end_request(struct request *req, blk_status_t error,
539 unsigned int bytes)
540 {
541 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
542 struct scsi_device *sdev = cmd->device;
543 struct request_queue *q = sdev->request_queue;
544
545 if (blk_update_request(req, error, bytes))
546 return true;
547
548 if (blk_queue_add_random(q))
549 add_disk_randomness(req->rq_disk);
550
551 if (!blk_rq_is_passthrough(req)) {
552 WARN_ON_ONCE(!(cmd->flags & SCMD_INITIALIZED));
553 cmd->flags &= ~SCMD_INITIALIZED;
554 }
555
556 /*
557 * Calling rcu_barrier() is not necessary here because the
558 * SCSI error handler guarantees that the function called by
559 * call_rcu() has been called before scsi_end_request() is
560 * called.
561 */
562 destroy_rcu_head(&cmd->rcu);
563
564 /*
565 * In the MQ case the command gets freed by __blk_mq_end_request,
566 * so we have to do all cleanup that depends on it earlier.
567 *
568 * We also can't kick the queues from irq context, so we
569 * will have to defer it to a workqueue.
570 */
571 scsi_mq_uninit_cmd(cmd);
572
573 /*
574 * queue is still alive, so grab the ref for preventing it
575 * from being cleaned up during running queue.
576 */
577 percpu_ref_get(&q->q_usage_counter);
578
579 __blk_mq_end_request(req, error);
580
581 scsi_run_queue_async(sdev);
582
583 percpu_ref_put(&q->q_usage_counter);
584 return false;
585 }
586
587 /**
588 * scsi_result_to_blk_status - translate a SCSI result code into blk_status_t
589 * @cmd: SCSI command
590 * @result: scsi error code
591 *
592 * Translate a SCSI result code into a blk_status_t value. May reset the host
593 * byte of @cmd->result.
594 */
scsi_result_to_blk_status(struct scsi_cmnd * cmd,int result)595 static blk_status_t scsi_result_to_blk_status(struct scsi_cmnd *cmd, int result)
596 {
597 switch (host_byte(result)) {
598 case DID_OK:
599 if (scsi_status_is_good(result))
600 return BLK_STS_OK;
601 return BLK_STS_IOERR;
602 case DID_TRANSPORT_FAILFAST:
603 case DID_TRANSPORT_MARGINAL:
604 return BLK_STS_TRANSPORT;
605 case DID_TARGET_FAILURE:
606 set_host_byte(cmd, DID_OK);
607 return BLK_STS_TARGET;
608 case DID_NEXUS_FAILURE:
609 set_host_byte(cmd, DID_OK);
610 return BLK_STS_NEXUS;
611 case DID_ALLOC_FAILURE:
612 set_host_byte(cmd, DID_OK);
613 return BLK_STS_NOSPC;
614 case DID_MEDIUM_ERROR:
615 set_host_byte(cmd, DID_OK);
616 return BLK_STS_MEDIUM;
617 default:
618 return BLK_STS_IOERR;
619 }
620 }
621
622 /* Helper for scsi_io_completion() when "reprep" action required. */
scsi_io_completion_reprep(struct scsi_cmnd * cmd,struct request_queue * q)623 static void scsi_io_completion_reprep(struct scsi_cmnd *cmd,
624 struct request_queue *q)
625 {
626 /* A new command will be prepared and issued. */
627 scsi_mq_requeue_cmd(cmd);
628 }
629
scsi_cmd_runtime_exceeced(struct scsi_cmnd * cmd)630 static bool scsi_cmd_runtime_exceeced(struct scsi_cmnd *cmd)
631 {
632 struct request *req = scsi_cmd_to_rq(cmd);
633 unsigned long wait_for;
634
635 if (cmd->allowed == SCSI_CMD_RETRIES_NO_LIMIT)
636 return false;
637
638 wait_for = (cmd->allowed + 1) * req->timeout;
639 if (time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
640 scmd_printk(KERN_ERR, cmd, "timing out command, waited %lus\n",
641 wait_for/HZ);
642 return true;
643 }
644 return false;
645 }
646
647 /* Helper for scsi_io_completion() when special action required. */
scsi_io_completion_action(struct scsi_cmnd * cmd,int result)648 static void scsi_io_completion_action(struct scsi_cmnd *cmd, int result)
649 {
650 struct request_queue *q = cmd->device->request_queue;
651 struct request *req = scsi_cmd_to_rq(cmd);
652 int level = 0;
653 enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
654 ACTION_DELAYED_RETRY} action;
655 struct scsi_sense_hdr sshdr;
656 bool sense_valid;
657 bool sense_current = true; /* false implies "deferred sense" */
658 blk_status_t blk_stat;
659
660 sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
661 if (sense_valid)
662 sense_current = !scsi_sense_is_deferred(&sshdr);
663
664 blk_stat = scsi_result_to_blk_status(cmd, result);
665
666 if (host_byte(result) == DID_RESET) {
667 /* Third party bus reset or reset for error recovery
668 * reasons. Just retry the command and see what
669 * happens.
670 */
671 action = ACTION_RETRY;
672 } else if (sense_valid && sense_current) {
673 switch (sshdr.sense_key) {
674 case UNIT_ATTENTION:
675 if (cmd->device->removable) {
676 /* Detected disc change. Set a bit
677 * and quietly refuse further access.
678 */
679 cmd->device->changed = 1;
680 action = ACTION_FAIL;
681 } else {
682 /* Must have been a power glitch, or a
683 * bus reset. Could not have been a
684 * media change, so we just retry the
685 * command and see what happens.
686 */
687 action = ACTION_RETRY;
688 }
689 break;
690 case ILLEGAL_REQUEST:
691 /* If we had an ILLEGAL REQUEST returned, then
692 * we may have performed an unsupported
693 * command. The only thing this should be
694 * would be a ten byte read where only a six
695 * byte read was supported. Also, on a system
696 * where READ CAPACITY failed, we may have
697 * read past the end of the disk.
698 */
699 if ((cmd->device->use_10_for_rw &&
700 sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
701 (cmd->cmnd[0] == READ_10 ||
702 cmd->cmnd[0] == WRITE_10)) {
703 /* This will issue a new 6-byte command. */
704 cmd->device->use_10_for_rw = 0;
705 action = ACTION_REPREP;
706 } else if (sshdr.asc == 0x10) /* DIX */ {
707 action = ACTION_FAIL;
708 blk_stat = BLK_STS_PROTECTION;
709 /* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
710 } else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
711 action = ACTION_FAIL;
712 blk_stat = BLK_STS_TARGET;
713 } else
714 action = ACTION_FAIL;
715 break;
716 case ABORTED_COMMAND:
717 action = ACTION_FAIL;
718 if (sshdr.asc == 0x10) /* DIF */
719 blk_stat = BLK_STS_PROTECTION;
720 break;
721 case NOT_READY:
722 /* If the device is in the process of becoming
723 * ready, or has a temporary blockage, retry.
724 */
725 if (sshdr.asc == 0x04) {
726 switch (sshdr.ascq) {
727 case 0x01: /* becoming ready */
728 case 0x04: /* format in progress */
729 case 0x05: /* rebuild in progress */
730 case 0x06: /* recalculation in progress */
731 case 0x07: /* operation in progress */
732 case 0x08: /* Long write in progress */
733 case 0x09: /* self test in progress */
734 case 0x11: /* notify (enable spinup) required */
735 case 0x14: /* space allocation in progress */
736 case 0x1a: /* start stop unit in progress */
737 case 0x1b: /* sanitize in progress */
738 case 0x1d: /* configuration in progress */
739 case 0x24: /* depopulation in progress */
740 action = ACTION_DELAYED_RETRY;
741 break;
742 case 0x0a: /* ALUA state transition */
743 blk_stat = BLK_STS_AGAIN;
744 fallthrough;
745 default:
746 action = ACTION_FAIL;
747 break;
748 }
749 } else
750 action = ACTION_FAIL;
751 break;
752 case VOLUME_OVERFLOW:
753 /* See SSC3rXX or current. */
754 action = ACTION_FAIL;
755 break;
756 case DATA_PROTECT:
757 action = ACTION_FAIL;
758 if ((sshdr.asc == 0x0C && sshdr.ascq == 0x12) ||
759 (sshdr.asc == 0x55 &&
760 (sshdr.ascq == 0x0E || sshdr.ascq == 0x0F))) {
761 /* Insufficient zone resources */
762 blk_stat = BLK_STS_ZONE_OPEN_RESOURCE;
763 }
764 break;
765 default:
766 action = ACTION_FAIL;
767 break;
768 }
769 } else
770 action = ACTION_FAIL;
771
772 if (action != ACTION_FAIL && scsi_cmd_runtime_exceeced(cmd))
773 action = ACTION_FAIL;
774
775 switch (action) {
776 case ACTION_FAIL:
777 /* Give up and fail the remainder of the request */
778 if (!(req->rq_flags & RQF_QUIET)) {
779 static DEFINE_RATELIMIT_STATE(_rs,
780 DEFAULT_RATELIMIT_INTERVAL,
781 DEFAULT_RATELIMIT_BURST);
782
783 if (unlikely(scsi_logging_level))
784 level =
785 SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT,
786 SCSI_LOG_MLCOMPLETE_BITS);
787
788 /*
789 * if logging is enabled the failure will be printed
790 * in scsi_log_completion(), so avoid duplicate messages
791 */
792 if (!level && __ratelimit(&_rs)) {
793 scsi_print_result(cmd, NULL, FAILED);
794 if (sense_valid)
795 scsi_print_sense(cmd);
796 scsi_print_command(cmd);
797 }
798 }
799 if (!scsi_end_request(req, blk_stat, blk_rq_err_bytes(req)))
800 return;
801 fallthrough;
802 case ACTION_REPREP:
803 scsi_io_completion_reprep(cmd, q);
804 break;
805 case ACTION_RETRY:
806 /* Retry the same command immediately */
807 __scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, false);
808 break;
809 case ACTION_DELAYED_RETRY:
810 /* Retry the same command after a delay */
811 __scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, false);
812 break;
813 }
814 }
815
816 /*
817 * Helper for scsi_io_completion() when cmd->result is non-zero. Returns a
818 * new result that may suppress further error checking. Also modifies
819 * *blk_statp in some cases.
820 */
scsi_io_completion_nz_result(struct scsi_cmnd * cmd,int result,blk_status_t * blk_statp)821 static int scsi_io_completion_nz_result(struct scsi_cmnd *cmd, int result,
822 blk_status_t *blk_statp)
823 {
824 bool sense_valid;
825 bool sense_current = true; /* false implies "deferred sense" */
826 struct request *req = scsi_cmd_to_rq(cmd);
827 struct scsi_sense_hdr sshdr;
828
829 sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
830 if (sense_valid)
831 sense_current = !scsi_sense_is_deferred(&sshdr);
832
833 if (blk_rq_is_passthrough(req)) {
834 if (sense_valid) {
835 /*
836 * SG_IO wants current and deferred errors
837 */
838 scsi_req(req)->sense_len =
839 min(8 + cmd->sense_buffer[7],
840 SCSI_SENSE_BUFFERSIZE);
841 }
842 if (sense_current)
843 *blk_statp = scsi_result_to_blk_status(cmd, result);
844 } else if (blk_rq_bytes(req) == 0 && sense_current) {
845 /*
846 * Flush commands do not transfers any data, and thus cannot use
847 * good_bytes != blk_rq_bytes(req) as the signal for an error.
848 * This sets *blk_statp explicitly for the problem case.
849 */
850 *blk_statp = scsi_result_to_blk_status(cmd, result);
851 }
852 /*
853 * Recovered errors need reporting, but they're always treated as
854 * success, so fiddle the result code here. For passthrough requests
855 * we already took a copy of the original into sreq->result which
856 * is what gets returned to the user
857 */
858 if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
859 bool do_print = true;
860 /*
861 * if ATA PASS-THROUGH INFORMATION AVAILABLE [0x0, 0x1d]
862 * skip print since caller wants ATA registers. Only occurs
863 * on SCSI ATA PASS_THROUGH commands when CK_COND=1
864 */
865 if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
866 do_print = false;
867 else if (req->rq_flags & RQF_QUIET)
868 do_print = false;
869 if (do_print)
870 scsi_print_sense(cmd);
871 result = 0;
872 /* for passthrough, *blk_statp may be set */
873 *blk_statp = BLK_STS_OK;
874 }
875 /*
876 * Another corner case: the SCSI status byte is non-zero but 'good'.
877 * Example: PRE-FETCH command returns SAM_STAT_CONDITION_MET when
878 * it is able to fit nominated LBs in its cache (and SAM_STAT_GOOD
879 * if it can't fit). Treat SAM_STAT_CONDITION_MET and the related
880 * intermediate statuses (both obsolete in SAM-4) as good.
881 */
882 if ((result & 0xff) && scsi_status_is_good(result)) {
883 result = 0;
884 *blk_statp = BLK_STS_OK;
885 }
886 return result;
887 }
888
889 /**
890 * scsi_io_completion - Completion processing for SCSI commands.
891 * @cmd: command that is finished.
892 * @good_bytes: number of processed bytes.
893 *
894 * We will finish off the specified number of sectors. If we are done, the
895 * command block will be released and the queue function will be goosed. If we
896 * are not done then we have to figure out what to do next:
897 *
898 * a) We can call scsi_io_completion_reprep(). The request will be
899 * unprepared and put back on the queue. Then a new command will
900 * be created for it. This should be used if we made forward
901 * progress, or if we want to switch from READ(10) to READ(6) for
902 * example.
903 *
904 * b) We can call scsi_io_completion_action(). The request will be
905 * put back on the queue and retried using the same command as
906 * before, possibly after a delay.
907 *
908 * c) We can call scsi_end_request() with blk_stat other than
909 * BLK_STS_OK, to fail the remainder of the request.
910 */
scsi_io_completion(struct scsi_cmnd * cmd,unsigned int good_bytes)911 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
912 {
913 int result = cmd->result;
914 struct request_queue *q = cmd->device->request_queue;
915 struct request *req = scsi_cmd_to_rq(cmd);
916 blk_status_t blk_stat = BLK_STS_OK;
917
918 if (unlikely(result)) /* a nz result may or may not be an error */
919 result = scsi_io_completion_nz_result(cmd, result, &blk_stat);
920
921 if (unlikely(blk_rq_is_passthrough(req))) {
922 /*
923 * scsi_result_to_blk_status may have reset the host_byte
924 */
925 scsi_req(req)->result = cmd->result;
926 }
927
928 /*
929 * Next deal with any sectors which we were able to correctly
930 * handle.
931 */
932 SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd,
933 "%u sectors total, %d bytes done.\n",
934 blk_rq_sectors(req), good_bytes));
935
936 /*
937 * Failed, zero length commands always need to drop down
938 * to retry code. Fast path should return in this block.
939 */
940 if (likely(blk_rq_bytes(req) > 0 || blk_stat == BLK_STS_OK)) {
941 if (likely(!scsi_end_request(req, blk_stat, good_bytes)))
942 return; /* no bytes remaining */
943 }
944
945 /* Kill remainder if no retries. */
946 if (unlikely(blk_stat && scsi_noretry_cmd(cmd))) {
947 if (scsi_end_request(req, blk_stat, blk_rq_bytes(req)))
948 WARN_ONCE(true,
949 "Bytes remaining after failed, no-retry command");
950 return;
951 }
952
953 /*
954 * If there had been no error, but we have leftover bytes in the
955 * requeues just queue the command up again.
956 */
957 if (likely(result == 0))
958 scsi_io_completion_reprep(cmd, q);
959 else
960 scsi_io_completion_action(cmd, result);
961 }
962
scsi_cmd_needs_dma_drain(struct scsi_device * sdev,struct request * rq)963 static inline bool scsi_cmd_needs_dma_drain(struct scsi_device *sdev,
964 struct request *rq)
965 {
966 return sdev->dma_drain_len && blk_rq_is_passthrough(rq) &&
967 !op_is_write(req_op(rq)) &&
968 sdev->host->hostt->dma_need_drain(rq);
969 }
970
971 /**
972 * scsi_alloc_sgtables - Allocate and initialize data and integrity scatterlists
973 * @cmd: SCSI command data structure to initialize.
974 *
975 * Initializes @cmd->sdb and also @cmd->prot_sdb if data integrity is enabled
976 * for @cmd.
977 *
978 * Returns:
979 * * BLK_STS_OK - on success
980 * * BLK_STS_RESOURCE - if the failure is retryable
981 * * BLK_STS_IOERR - if the failure is fatal
982 */
scsi_alloc_sgtables(struct scsi_cmnd * cmd)983 blk_status_t scsi_alloc_sgtables(struct scsi_cmnd *cmd)
984 {
985 struct scsi_device *sdev = cmd->device;
986 struct request *rq = scsi_cmd_to_rq(cmd);
987 unsigned short nr_segs = blk_rq_nr_phys_segments(rq);
988 struct scatterlist *last_sg = NULL;
989 blk_status_t ret;
990 bool need_drain = scsi_cmd_needs_dma_drain(sdev, rq);
991 int count;
992
993 if (WARN_ON_ONCE(!nr_segs))
994 return BLK_STS_IOERR;
995
996 /*
997 * Make sure there is space for the drain. The driver must adjust
998 * max_hw_segments to be prepared for this.
999 */
1000 if (need_drain)
1001 nr_segs++;
1002
1003 /*
1004 * If sg table allocation fails, requeue request later.
1005 */
1006 if (unlikely(sg_alloc_table_chained(&cmd->sdb.table, nr_segs,
1007 cmd->sdb.table.sgl, SCSI_INLINE_SG_CNT)))
1008 return BLK_STS_RESOURCE;
1009
1010 /*
1011 * Next, walk the list, and fill in the addresses and sizes of
1012 * each segment.
1013 */
1014 count = __blk_rq_map_sg(rq->q, rq, cmd->sdb.table.sgl, &last_sg);
1015
1016 if (blk_rq_bytes(rq) & rq->q->dma_pad_mask) {
1017 unsigned int pad_len =
1018 (rq->q->dma_pad_mask & ~blk_rq_bytes(rq)) + 1;
1019
1020 last_sg->length += pad_len;
1021 cmd->extra_len += pad_len;
1022 }
1023
1024 if (need_drain) {
1025 sg_unmark_end(last_sg);
1026 last_sg = sg_next(last_sg);
1027 sg_set_buf(last_sg, sdev->dma_drain_buf, sdev->dma_drain_len);
1028 sg_mark_end(last_sg);
1029
1030 cmd->extra_len += sdev->dma_drain_len;
1031 count++;
1032 }
1033
1034 BUG_ON(count > cmd->sdb.table.nents);
1035 cmd->sdb.table.nents = count;
1036 cmd->sdb.length = blk_rq_payload_bytes(rq);
1037
1038 if (blk_integrity_rq(rq)) {
1039 struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1040 int ivecs;
1041
1042 if (WARN_ON_ONCE(!prot_sdb)) {
1043 /*
1044 * This can happen if someone (e.g. multipath)
1045 * queues a command to a device on an adapter
1046 * that does not support DIX.
1047 */
1048 ret = BLK_STS_IOERR;
1049 goto out_free_sgtables;
1050 }
1051
1052 ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1053
1054 if (sg_alloc_table_chained(&prot_sdb->table, ivecs,
1055 prot_sdb->table.sgl,
1056 SCSI_INLINE_PROT_SG_CNT)) {
1057 ret = BLK_STS_RESOURCE;
1058 goto out_free_sgtables;
1059 }
1060
1061 count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1062 prot_sdb->table.sgl);
1063 BUG_ON(count > ivecs);
1064 BUG_ON(count > queue_max_integrity_segments(rq->q));
1065
1066 cmd->prot_sdb = prot_sdb;
1067 cmd->prot_sdb->table.nents = count;
1068 }
1069
1070 return BLK_STS_OK;
1071 out_free_sgtables:
1072 scsi_free_sgtables(cmd);
1073 return ret;
1074 }
1075 EXPORT_SYMBOL(scsi_alloc_sgtables);
1076
1077 /**
1078 * scsi_initialize_rq - initialize struct scsi_cmnd partially
1079 * @rq: Request associated with the SCSI command to be initialized.
1080 *
1081 * This function initializes the members of struct scsi_cmnd that must be
1082 * initialized before request processing starts and that won't be
1083 * reinitialized if a SCSI command is requeued.
1084 *
1085 * Called from inside blk_get_request() for pass-through requests and from
1086 * inside scsi_init_command() for filesystem requests.
1087 */
scsi_initialize_rq(struct request * rq)1088 static void scsi_initialize_rq(struct request *rq)
1089 {
1090 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1091 struct scsi_request *req = &cmd->req;
1092
1093 memset(req->__cmd, 0, sizeof(req->__cmd));
1094 req->cmd = req->__cmd;
1095 req->cmd_len = BLK_MAX_CDB;
1096 req->sense_len = 0;
1097
1098 init_rcu_head(&cmd->rcu);
1099 cmd->jiffies_at_alloc = jiffies;
1100 cmd->retries = 0;
1101 }
1102
1103 /*
1104 * Only called when the request isn't completed by SCSI, and not freed by
1105 * SCSI
1106 */
scsi_cleanup_rq(struct request * rq)1107 static void scsi_cleanup_rq(struct request *rq)
1108 {
1109 if (rq->rq_flags & RQF_DONTPREP) {
1110 scsi_mq_uninit_cmd(blk_mq_rq_to_pdu(rq));
1111 rq->rq_flags &= ~RQF_DONTPREP;
1112 }
1113 }
1114
1115 /* Called before a request is prepared. See also scsi_mq_prep_fn(). */
scsi_init_command(struct scsi_device * dev,struct scsi_cmnd * cmd)1116 void scsi_init_command(struct scsi_device *dev, struct scsi_cmnd *cmd)
1117 {
1118 void *buf = cmd->sense_buffer;
1119 void *prot = cmd->prot_sdb;
1120 struct request *rq = scsi_cmd_to_rq(cmd);
1121 unsigned int flags = cmd->flags & SCMD_PRESERVED_FLAGS;
1122 unsigned long jiffies_at_alloc;
1123 int retries, to_clear;
1124 bool in_flight;
1125 int budget_token = cmd->budget_token;
1126
1127 if (!blk_rq_is_passthrough(rq) && !(flags & SCMD_INITIALIZED)) {
1128 flags |= SCMD_INITIALIZED;
1129 scsi_initialize_rq(rq);
1130 }
1131
1132 jiffies_at_alloc = cmd->jiffies_at_alloc;
1133 retries = cmd->retries;
1134 in_flight = test_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1135 /*
1136 * Zero out the cmd, except for the embedded scsi_request. Only clear
1137 * the driver-private command data if the LLD does not supply a
1138 * function to initialize that data.
1139 */
1140 to_clear = sizeof(*cmd) - sizeof(cmd->req);
1141 if (!dev->host->hostt->init_cmd_priv)
1142 to_clear += dev->host->hostt->cmd_size;
1143 memset((char *)cmd + sizeof(cmd->req), 0, to_clear);
1144
1145 cmd->device = dev;
1146 cmd->sense_buffer = buf;
1147 cmd->prot_sdb = prot;
1148 cmd->flags = flags;
1149 INIT_LIST_HEAD(&cmd->eh_entry);
1150 INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler);
1151 cmd->jiffies_at_alloc = jiffies_at_alloc;
1152 cmd->retries = retries;
1153 if (in_flight)
1154 __set_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1155 cmd->budget_token = budget_token;
1156
1157 }
1158
scsi_setup_scsi_cmnd(struct scsi_device * sdev,struct request * req)1159 static blk_status_t scsi_setup_scsi_cmnd(struct scsi_device *sdev,
1160 struct request *req)
1161 {
1162 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1163
1164 /*
1165 * Passthrough requests may transfer data, in which case they must
1166 * a bio attached to them. Or they might contain a SCSI command
1167 * that does not transfer data, in which case they may optionally
1168 * submit a request without an attached bio.
1169 */
1170 if (req->bio) {
1171 blk_status_t ret = scsi_alloc_sgtables(cmd);
1172 if (unlikely(ret != BLK_STS_OK))
1173 return ret;
1174 } else {
1175 BUG_ON(blk_rq_bytes(req));
1176
1177 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1178 }
1179
1180 cmd->cmd_len = scsi_req(req)->cmd_len;
1181 cmd->cmnd = scsi_req(req)->cmd;
1182 cmd->transfersize = blk_rq_bytes(req);
1183 cmd->allowed = scsi_req(req)->retries;
1184 return BLK_STS_OK;
1185 }
1186
1187 static blk_status_t
scsi_device_state_check(struct scsi_device * sdev,struct request * req)1188 scsi_device_state_check(struct scsi_device *sdev, struct request *req)
1189 {
1190 switch (sdev->sdev_state) {
1191 case SDEV_CREATED:
1192 return BLK_STS_OK;
1193 case SDEV_OFFLINE:
1194 case SDEV_TRANSPORT_OFFLINE:
1195 /*
1196 * If the device is offline we refuse to process any
1197 * commands. The device must be brought online
1198 * before trying any recovery commands.
1199 */
1200 if (!sdev->offline_already) {
1201 sdev->offline_already = true;
1202 sdev_printk(KERN_ERR, sdev,
1203 "rejecting I/O to offline device\n");
1204 }
1205 return BLK_STS_IOERR;
1206 case SDEV_DEL:
1207 /*
1208 * If the device is fully deleted, we refuse to
1209 * process any commands as well.
1210 */
1211 sdev_printk(KERN_ERR, sdev,
1212 "rejecting I/O to dead device\n");
1213 return BLK_STS_IOERR;
1214 case SDEV_BLOCK:
1215 case SDEV_CREATED_BLOCK:
1216 return BLK_STS_RESOURCE;
1217 case SDEV_QUIESCE:
1218 /*
1219 * If the device is blocked we only accept power management
1220 * commands.
1221 */
1222 if (req && WARN_ON_ONCE(!(req->rq_flags & RQF_PM)))
1223 return BLK_STS_RESOURCE;
1224 return BLK_STS_OK;
1225 default:
1226 /*
1227 * For any other not fully online state we only allow
1228 * power management commands.
1229 */
1230 if (req && !(req->rq_flags & RQF_PM))
1231 return BLK_STS_IOERR;
1232 return BLK_STS_OK;
1233 }
1234 }
1235
1236 /*
1237 * scsi_dev_queue_ready: if we can send requests to sdev, assign one token
1238 * and return the token else return -1.
1239 */
scsi_dev_queue_ready(struct request_queue * q,struct scsi_device * sdev)1240 static inline int scsi_dev_queue_ready(struct request_queue *q,
1241 struct scsi_device *sdev)
1242 {
1243 int token;
1244
1245 token = sbitmap_get(&sdev->budget_map);
1246 if (atomic_read(&sdev->device_blocked)) {
1247 if (token < 0)
1248 goto out;
1249
1250 if (scsi_device_busy(sdev) > 1)
1251 goto out_dec;
1252
1253 /*
1254 * unblock after device_blocked iterates to zero
1255 */
1256 if (atomic_dec_return(&sdev->device_blocked) > 0)
1257 goto out_dec;
1258 SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev,
1259 "unblocking device at zero depth\n"));
1260 }
1261
1262 return token;
1263 out_dec:
1264 if (token >= 0)
1265 sbitmap_put(&sdev->budget_map, token);
1266 out:
1267 return -1;
1268 }
1269
1270 /*
1271 * scsi_target_queue_ready: checks if there we can send commands to target
1272 * @sdev: scsi device on starget to check.
1273 */
scsi_target_queue_ready(struct Scsi_Host * shost,struct scsi_device * sdev)1274 static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1275 struct scsi_device *sdev)
1276 {
1277 struct scsi_target *starget = scsi_target(sdev);
1278 unsigned int busy;
1279
1280 if (starget->single_lun) {
1281 spin_lock_irq(shost->host_lock);
1282 if (starget->starget_sdev_user &&
1283 starget->starget_sdev_user != sdev) {
1284 spin_unlock_irq(shost->host_lock);
1285 return 0;
1286 }
1287 starget->starget_sdev_user = sdev;
1288 spin_unlock_irq(shost->host_lock);
1289 }
1290
1291 if (starget->can_queue <= 0)
1292 return 1;
1293
1294 busy = atomic_inc_return(&starget->target_busy) - 1;
1295 if (atomic_read(&starget->target_blocked) > 0) {
1296 if (busy)
1297 goto starved;
1298
1299 /*
1300 * unblock after target_blocked iterates to zero
1301 */
1302 if (atomic_dec_return(&starget->target_blocked) > 0)
1303 goto out_dec;
1304
1305 SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1306 "unblocking target at zero depth\n"));
1307 }
1308
1309 if (busy >= starget->can_queue)
1310 goto starved;
1311
1312 return 1;
1313
1314 starved:
1315 spin_lock_irq(shost->host_lock);
1316 list_move_tail(&sdev->starved_entry, &shost->starved_list);
1317 spin_unlock_irq(shost->host_lock);
1318 out_dec:
1319 if (starget->can_queue > 0)
1320 atomic_dec(&starget->target_busy);
1321 return 0;
1322 }
1323
1324 /*
1325 * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1326 * return 0. We must end up running the queue again whenever 0 is
1327 * returned, else IO can hang.
1328 */
scsi_host_queue_ready(struct request_queue * q,struct Scsi_Host * shost,struct scsi_device * sdev,struct scsi_cmnd * cmd)1329 static inline int scsi_host_queue_ready(struct request_queue *q,
1330 struct Scsi_Host *shost,
1331 struct scsi_device *sdev,
1332 struct scsi_cmnd *cmd)
1333 {
1334 if (atomic_read(&shost->host_blocked) > 0) {
1335 if (scsi_host_busy(shost) > 0)
1336 goto starved;
1337
1338 /*
1339 * unblock after host_blocked iterates to zero
1340 */
1341 if (atomic_dec_return(&shost->host_blocked) > 0)
1342 goto out_dec;
1343
1344 SCSI_LOG_MLQUEUE(3,
1345 shost_printk(KERN_INFO, shost,
1346 "unblocking host at zero depth\n"));
1347 }
1348
1349 if (shost->host_self_blocked)
1350 goto starved;
1351
1352 /* We're OK to process the command, so we can't be starved */
1353 if (!list_empty(&sdev->starved_entry)) {
1354 spin_lock_irq(shost->host_lock);
1355 if (!list_empty(&sdev->starved_entry))
1356 list_del_init(&sdev->starved_entry);
1357 spin_unlock_irq(shost->host_lock);
1358 }
1359
1360 __set_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1361
1362 return 1;
1363
1364 starved:
1365 spin_lock_irq(shost->host_lock);
1366 if (list_empty(&sdev->starved_entry))
1367 list_add_tail(&sdev->starved_entry, &shost->starved_list);
1368 spin_unlock_irq(shost->host_lock);
1369 out_dec:
1370 scsi_dec_host_busy(shost, cmd);
1371 return 0;
1372 }
1373
1374 /*
1375 * Busy state exporting function for request stacking drivers.
1376 *
1377 * For efficiency, no lock is taken to check the busy state of
1378 * shost/starget/sdev, since the returned value is not guaranteed and
1379 * may be changed after request stacking drivers call the function,
1380 * regardless of taking lock or not.
1381 *
1382 * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1383 * needs to return 'not busy'. Otherwise, request stacking drivers
1384 * may hold requests forever.
1385 */
scsi_mq_lld_busy(struct request_queue * q)1386 static bool scsi_mq_lld_busy(struct request_queue *q)
1387 {
1388 struct scsi_device *sdev = q->queuedata;
1389 struct Scsi_Host *shost;
1390
1391 if (blk_queue_dying(q))
1392 return false;
1393
1394 shost = sdev->host;
1395
1396 /*
1397 * Ignore host/starget busy state.
1398 * Since block layer does not have a concept of fairness across
1399 * multiple queues, congestion of host/starget needs to be handled
1400 * in SCSI layer.
1401 */
1402 if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1403 return true;
1404
1405 return false;
1406 }
1407
1408 /*
1409 * Block layer request completion callback. May be called from interrupt
1410 * context.
1411 */
scsi_complete(struct request * rq)1412 static void scsi_complete(struct request *rq)
1413 {
1414 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1415 enum scsi_disposition disposition;
1416
1417 INIT_LIST_HEAD(&cmd->eh_entry);
1418
1419 atomic_inc(&cmd->device->iodone_cnt);
1420 if (cmd->result)
1421 atomic_inc(&cmd->device->ioerr_cnt);
1422
1423 disposition = scsi_decide_disposition(cmd);
1424 if (disposition != SUCCESS && scsi_cmd_runtime_exceeced(cmd))
1425 disposition = SUCCESS;
1426
1427 scsi_log_completion(cmd, disposition);
1428
1429 switch (disposition) {
1430 case SUCCESS:
1431 scsi_finish_command(cmd);
1432 break;
1433 case NEEDS_RETRY:
1434 scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1435 break;
1436 case ADD_TO_MLQUEUE:
1437 scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1438 break;
1439 case NEEDS_DELAYED_RETRY:
1440 default:
1441 scsi_eh_scmd_add(cmd);
1442 break;
1443 }
1444 }
1445
1446 /**
1447 * scsi_dispatch_cmd - Dispatch a command to the low-level driver.
1448 * @cmd: command block we are dispatching.
1449 *
1450 * Return: nonzero return request was rejected and device's queue needs to be
1451 * plugged.
1452 */
scsi_dispatch_cmd(struct scsi_cmnd * cmd)1453 static int scsi_dispatch_cmd(struct scsi_cmnd *cmd)
1454 {
1455 struct Scsi_Host *host = cmd->device->host;
1456 int rtn = 0;
1457
1458 atomic_inc(&cmd->device->iorequest_cnt);
1459
1460 /* check if the device is still usable */
1461 if (unlikely(cmd->device->sdev_state == SDEV_DEL)) {
1462 /* in SDEV_DEL we error all commands. DID_NO_CONNECT
1463 * returns an immediate error upwards, and signals
1464 * that the device is no longer present */
1465 cmd->result = DID_NO_CONNECT << 16;
1466 goto done;
1467 }
1468
1469 /* Check to see if the scsi lld made this device blocked. */
1470 if (unlikely(scsi_device_blocked(cmd->device))) {
1471 /*
1472 * in blocked state, the command is just put back on
1473 * the device queue. The suspend state has already
1474 * blocked the queue so future requests should not
1475 * occur until the device transitions out of the
1476 * suspend state.
1477 */
1478 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1479 "queuecommand : device blocked\n"));
1480 atomic_dec(&cmd->device->iorequest_cnt);
1481 return SCSI_MLQUEUE_DEVICE_BUSY;
1482 }
1483
1484 /* Store the LUN value in cmnd, if needed. */
1485 if (cmd->device->lun_in_cdb)
1486 cmd->cmnd[1] = (cmd->cmnd[1] & 0x1f) |
1487 (cmd->device->lun << 5 & 0xe0);
1488
1489 scsi_log_send(cmd);
1490
1491 /*
1492 * Before we queue this command, check if the command
1493 * length exceeds what the host adapter can handle.
1494 */
1495 if (cmd->cmd_len > cmd->device->host->max_cmd_len) {
1496 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1497 "queuecommand : command too long. "
1498 "cdb_size=%d host->max_cmd_len=%d\n",
1499 cmd->cmd_len, cmd->device->host->max_cmd_len));
1500 cmd->result = (DID_ABORT << 16);
1501 goto done;
1502 }
1503
1504 if (unlikely(host->shost_state == SHOST_DEL)) {
1505 cmd->result = (DID_NO_CONNECT << 16);
1506 goto done;
1507
1508 }
1509
1510 trace_scsi_dispatch_cmd_start(cmd);
1511 rtn = host->hostt->queuecommand(host, cmd);
1512 if (rtn) {
1513 atomic_dec(&cmd->device->iorequest_cnt);
1514 trace_scsi_dispatch_cmd_error(cmd, rtn);
1515 if (rtn != SCSI_MLQUEUE_DEVICE_BUSY &&
1516 rtn != SCSI_MLQUEUE_TARGET_BUSY)
1517 rtn = SCSI_MLQUEUE_HOST_BUSY;
1518
1519 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1520 "queuecommand : request rejected\n"));
1521 }
1522
1523 return rtn;
1524 done:
1525 cmd->scsi_done(cmd);
1526 return 0;
1527 }
1528
1529 /* Size in bytes of the sg-list stored in the scsi-mq command-private data. */
scsi_mq_inline_sgl_size(struct Scsi_Host * shost)1530 static unsigned int scsi_mq_inline_sgl_size(struct Scsi_Host *shost)
1531 {
1532 return min_t(unsigned int, shost->sg_tablesize, SCSI_INLINE_SG_CNT) *
1533 sizeof(struct scatterlist);
1534 }
1535
scsi_prepare_cmd(struct request * req)1536 static blk_status_t scsi_prepare_cmd(struct request *req)
1537 {
1538 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1539 struct scsi_device *sdev = req->q->queuedata;
1540 struct Scsi_Host *shost = sdev->host;
1541 struct scatterlist *sg;
1542
1543 scsi_init_command(sdev, cmd);
1544
1545 cmd->prot_op = SCSI_PROT_NORMAL;
1546 if (blk_rq_bytes(req))
1547 cmd->sc_data_direction = rq_dma_dir(req);
1548 else
1549 cmd->sc_data_direction = DMA_NONE;
1550
1551 sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
1552 cmd->sdb.table.sgl = sg;
1553
1554 if (scsi_host_get_prot(shost)) {
1555 memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer));
1556
1557 cmd->prot_sdb->table.sgl =
1558 (struct scatterlist *)(cmd->prot_sdb + 1);
1559 }
1560
1561 /*
1562 * Special handling for passthrough commands, which don't go to the ULP
1563 * at all:
1564 */
1565 if (blk_rq_is_passthrough(req))
1566 return scsi_setup_scsi_cmnd(sdev, req);
1567
1568 if (sdev->handler && sdev->handler->prep_fn) {
1569 blk_status_t ret = sdev->handler->prep_fn(sdev, req);
1570
1571 if (ret != BLK_STS_OK)
1572 return ret;
1573 }
1574
1575 cmd->cmnd = scsi_req(req)->cmd = scsi_req(req)->__cmd;
1576 memset(cmd->cmnd, 0, BLK_MAX_CDB);
1577 return scsi_cmd_to_driver(cmd)->init_command(cmd);
1578 }
1579
scsi_mq_done(struct scsi_cmnd * cmd)1580 static void scsi_mq_done(struct scsi_cmnd *cmd)
1581 {
1582 if (unlikely(blk_should_fake_timeout(scsi_cmd_to_rq(cmd)->q)))
1583 return;
1584 if (unlikely(test_and_set_bit(SCMD_STATE_COMPLETE, &cmd->state)))
1585 return;
1586 trace_scsi_dispatch_cmd_done(cmd);
1587 blk_mq_complete_request(scsi_cmd_to_rq(cmd));
1588 }
1589
scsi_mq_put_budget(struct request_queue * q,int budget_token)1590 static void scsi_mq_put_budget(struct request_queue *q, int budget_token)
1591 {
1592 struct scsi_device *sdev = q->queuedata;
1593
1594 sbitmap_put(&sdev->budget_map, budget_token);
1595 }
1596
scsi_mq_get_budget(struct request_queue * q)1597 static int scsi_mq_get_budget(struct request_queue *q)
1598 {
1599 struct scsi_device *sdev = q->queuedata;
1600 int token = scsi_dev_queue_ready(q, sdev);
1601
1602 if (token >= 0)
1603 return token;
1604
1605 atomic_inc(&sdev->restarts);
1606
1607 /*
1608 * Orders atomic_inc(&sdev->restarts) and atomic_read(&sdev->device_busy).
1609 * .restarts must be incremented before .device_busy is read because the
1610 * code in scsi_run_queue_async() depends on the order of these operations.
1611 */
1612 smp_mb__after_atomic();
1613
1614 /*
1615 * If all in-flight requests originated from this LUN are completed
1616 * before reading .device_busy, sdev->device_busy will be observed as
1617 * zero, then blk_mq_delay_run_hw_queues() will dispatch this request
1618 * soon. Otherwise, completion of one of these requests will observe
1619 * the .restarts flag, and the request queue will be run for handling
1620 * this request, see scsi_end_request().
1621 */
1622 if (unlikely(scsi_device_busy(sdev) == 0 &&
1623 !scsi_device_blocked(sdev)))
1624 blk_mq_delay_run_hw_queues(sdev->request_queue, SCSI_QUEUE_DELAY);
1625 return -1;
1626 }
1627
scsi_mq_set_rq_budget_token(struct request * req,int token)1628 static void scsi_mq_set_rq_budget_token(struct request *req, int token)
1629 {
1630 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1631
1632 cmd->budget_token = token;
1633 }
1634
scsi_mq_get_rq_budget_token(struct request * req)1635 static int scsi_mq_get_rq_budget_token(struct request *req)
1636 {
1637 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1638
1639 return cmd->budget_token;
1640 }
1641
scsi_queue_rq(struct blk_mq_hw_ctx * hctx,const struct blk_mq_queue_data * bd)1642 static blk_status_t scsi_queue_rq(struct blk_mq_hw_ctx *hctx,
1643 const struct blk_mq_queue_data *bd)
1644 {
1645 struct request *req = bd->rq;
1646 struct request_queue *q = req->q;
1647 struct scsi_device *sdev = q->queuedata;
1648 struct Scsi_Host *shost = sdev->host;
1649 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1650 blk_status_t ret;
1651 int reason;
1652
1653 WARN_ON_ONCE(cmd->budget_token < 0);
1654
1655 /*
1656 * If the device is not in running state we will reject some or all
1657 * commands.
1658 */
1659 if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1660 ret = scsi_device_state_check(sdev, req);
1661 if (ret != BLK_STS_OK)
1662 goto out_put_budget;
1663 }
1664
1665 ret = BLK_STS_RESOURCE;
1666 if (!scsi_target_queue_ready(shost, sdev))
1667 goto out_put_budget;
1668 if (unlikely(scsi_host_in_recovery(shost))) {
1669 if (cmd->flags & SCMD_FAIL_IF_RECOVERING)
1670 ret = BLK_STS_IOERR;
1671 goto out_dec_target_busy;
1672 }
1673 if (!scsi_host_queue_ready(q, shost, sdev, cmd))
1674 goto out_dec_target_busy;
1675
1676 if (!(req->rq_flags & RQF_DONTPREP)) {
1677 ret = scsi_prepare_cmd(req);
1678 if (ret != BLK_STS_OK)
1679 goto out_dec_host_busy;
1680 req->rq_flags |= RQF_DONTPREP;
1681 } else {
1682 clear_bit(SCMD_STATE_COMPLETE, &cmd->state);
1683 }
1684
1685 cmd->flags &= SCMD_PRESERVED_FLAGS;
1686 if (sdev->simple_tags)
1687 cmd->flags |= SCMD_TAGGED;
1688 if (bd->last)
1689 cmd->flags |= SCMD_LAST;
1690
1691 scsi_set_resid(cmd, 0);
1692 memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
1693 cmd->scsi_done = scsi_mq_done;
1694
1695 blk_mq_start_request(req);
1696 reason = scsi_dispatch_cmd(cmd);
1697 if (reason) {
1698 scsi_set_blocked(cmd, reason);
1699 ret = BLK_STS_RESOURCE;
1700 goto out_dec_host_busy;
1701 }
1702
1703 return BLK_STS_OK;
1704
1705 out_dec_host_busy:
1706 scsi_dec_host_busy(shost, cmd);
1707 out_dec_target_busy:
1708 if (scsi_target(sdev)->can_queue > 0)
1709 atomic_dec(&scsi_target(sdev)->target_busy);
1710 out_put_budget:
1711 scsi_mq_put_budget(q, cmd->budget_token);
1712 cmd->budget_token = -1;
1713 switch (ret) {
1714 case BLK_STS_OK:
1715 break;
1716 case BLK_STS_RESOURCE:
1717 case BLK_STS_ZONE_RESOURCE:
1718 if (scsi_device_blocked(sdev))
1719 ret = BLK_STS_DEV_RESOURCE;
1720 break;
1721 case BLK_STS_AGAIN:
1722 scsi_req(req)->result = DID_BUS_BUSY << 16;
1723 if (req->rq_flags & RQF_DONTPREP)
1724 scsi_mq_uninit_cmd(cmd);
1725 break;
1726 default:
1727 if (unlikely(!scsi_device_online(sdev)))
1728 scsi_req(req)->result = DID_NO_CONNECT << 16;
1729 else
1730 scsi_req(req)->result = DID_ERROR << 16;
1731 /*
1732 * Make sure to release all allocated resources when
1733 * we hit an error, as we will never see this command
1734 * again.
1735 */
1736 if (req->rq_flags & RQF_DONTPREP)
1737 scsi_mq_uninit_cmd(cmd);
1738 scsi_run_queue_async(sdev);
1739 break;
1740 }
1741 return ret;
1742 }
1743
scsi_timeout(struct request * req,bool reserved)1744 static enum blk_eh_timer_return scsi_timeout(struct request *req,
1745 bool reserved)
1746 {
1747 if (reserved)
1748 return BLK_EH_RESET_TIMER;
1749 return scsi_times_out(req);
1750 }
1751
scsi_mq_init_request(struct blk_mq_tag_set * set,struct request * rq,unsigned int hctx_idx,unsigned int numa_node)1752 static int scsi_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
1753 unsigned int hctx_idx, unsigned int numa_node)
1754 {
1755 struct Scsi_Host *shost = set->driver_data;
1756 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1757 struct scatterlist *sg;
1758 int ret = 0;
1759
1760 cmd->sense_buffer =
1761 kmem_cache_alloc_node(scsi_sense_cache, GFP_KERNEL, numa_node);
1762 if (!cmd->sense_buffer)
1763 return -ENOMEM;
1764 cmd->req.sense = cmd->sense_buffer;
1765
1766 if (scsi_host_get_prot(shost)) {
1767 sg = (void *)cmd + sizeof(struct scsi_cmnd) +
1768 shost->hostt->cmd_size;
1769 cmd->prot_sdb = (void *)sg + scsi_mq_inline_sgl_size(shost);
1770 }
1771
1772 if (shost->hostt->init_cmd_priv) {
1773 ret = shost->hostt->init_cmd_priv(shost, cmd);
1774 if (ret < 0)
1775 kmem_cache_free(scsi_sense_cache, cmd->sense_buffer);
1776 }
1777
1778 return ret;
1779 }
1780
scsi_mq_exit_request(struct blk_mq_tag_set * set,struct request * rq,unsigned int hctx_idx)1781 static void scsi_mq_exit_request(struct blk_mq_tag_set *set, struct request *rq,
1782 unsigned int hctx_idx)
1783 {
1784 struct Scsi_Host *shost = set->driver_data;
1785 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1786
1787 if (shost->hostt->exit_cmd_priv)
1788 shost->hostt->exit_cmd_priv(shost, cmd);
1789 kmem_cache_free(scsi_sense_cache, cmd->sense_buffer);
1790 }
1791
1792
scsi_mq_poll(struct blk_mq_hw_ctx * hctx)1793 static int scsi_mq_poll(struct blk_mq_hw_ctx *hctx)
1794 {
1795 struct Scsi_Host *shost = hctx->driver_data;
1796
1797 if (shost->hostt->mq_poll)
1798 return shost->hostt->mq_poll(shost, hctx->queue_num);
1799
1800 return 0;
1801 }
1802
scsi_init_hctx(struct blk_mq_hw_ctx * hctx,void * data,unsigned int hctx_idx)1803 static int scsi_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
1804 unsigned int hctx_idx)
1805 {
1806 struct Scsi_Host *shost = data;
1807
1808 hctx->driver_data = shost;
1809 return 0;
1810 }
1811
scsi_map_queues(struct blk_mq_tag_set * set)1812 static int scsi_map_queues(struct blk_mq_tag_set *set)
1813 {
1814 struct Scsi_Host *shost = container_of(set, struct Scsi_Host, tag_set);
1815
1816 if (shost->hostt->map_queues)
1817 return shost->hostt->map_queues(shost);
1818 return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
1819 }
1820
__scsi_init_queue(struct Scsi_Host * shost,struct request_queue * q)1821 void __scsi_init_queue(struct Scsi_Host *shost, struct request_queue *q)
1822 {
1823 struct device *dev = shost->dma_dev;
1824
1825 /*
1826 * this limit is imposed by hardware restrictions
1827 */
1828 blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
1829 SG_MAX_SEGMENTS));
1830
1831 if (scsi_host_prot_dma(shost)) {
1832 shost->sg_prot_tablesize =
1833 min_not_zero(shost->sg_prot_tablesize,
1834 (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
1835 BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
1836 blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
1837 }
1838
1839 if (dev->dma_mask) {
1840 shost->max_sectors = min_t(unsigned int, shost->max_sectors,
1841 dma_max_mapping_size(dev) >> SECTOR_SHIFT);
1842 }
1843 blk_queue_max_hw_sectors(q, shost->max_sectors);
1844 blk_queue_segment_boundary(q, shost->dma_boundary);
1845 dma_set_seg_boundary(dev, shost->dma_boundary);
1846
1847 blk_queue_max_segment_size(q, shost->max_segment_size);
1848 blk_queue_virt_boundary(q, shost->virt_boundary_mask);
1849 dma_set_max_seg_size(dev, queue_max_segment_size(q));
1850
1851 /*
1852 * Set a reasonable default alignment: The larger of 32-byte (dword),
1853 * which is a common minimum for HBAs, and the minimum DMA alignment,
1854 * which is set by the platform.
1855 *
1856 * Devices that require a bigger alignment can increase it later.
1857 */
1858 blk_queue_dma_alignment(q, max(4, dma_get_cache_alignment()) - 1);
1859 }
1860 EXPORT_SYMBOL_GPL(__scsi_init_queue);
1861
1862 static const struct blk_mq_ops scsi_mq_ops_no_commit = {
1863 .get_budget = scsi_mq_get_budget,
1864 .put_budget = scsi_mq_put_budget,
1865 .queue_rq = scsi_queue_rq,
1866 .complete = scsi_complete,
1867 .timeout = scsi_timeout,
1868 #ifdef CONFIG_BLK_DEBUG_FS
1869 .show_rq = scsi_show_rq,
1870 #endif
1871 .init_request = scsi_mq_init_request,
1872 .exit_request = scsi_mq_exit_request,
1873 .initialize_rq_fn = scsi_initialize_rq,
1874 .cleanup_rq = scsi_cleanup_rq,
1875 .busy = scsi_mq_lld_busy,
1876 .map_queues = scsi_map_queues,
1877 .init_hctx = scsi_init_hctx,
1878 .poll = scsi_mq_poll,
1879 .set_rq_budget_token = scsi_mq_set_rq_budget_token,
1880 .get_rq_budget_token = scsi_mq_get_rq_budget_token,
1881 };
1882
1883
scsi_commit_rqs(struct blk_mq_hw_ctx * hctx)1884 static void scsi_commit_rqs(struct blk_mq_hw_ctx *hctx)
1885 {
1886 struct Scsi_Host *shost = hctx->driver_data;
1887
1888 shost->hostt->commit_rqs(shost, hctx->queue_num);
1889 }
1890
1891 static const struct blk_mq_ops scsi_mq_ops = {
1892 .get_budget = scsi_mq_get_budget,
1893 .put_budget = scsi_mq_put_budget,
1894 .queue_rq = scsi_queue_rq,
1895 .commit_rqs = scsi_commit_rqs,
1896 .complete = scsi_complete,
1897 .timeout = scsi_timeout,
1898 #ifdef CONFIG_BLK_DEBUG_FS
1899 .show_rq = scsi_show_rq,
1900 #endif
1901 .init_request = scsi_mq_init_request,
1902 .exit_request = scsi_mq_exit_request,
1903 .initialize_rq_fn = scsi_initialize_rq,
1904 .cleanup_rq = scsi_cleanup_rq,
1905 .busy = scsi_mq_lld_busy,
1906 .map_queues = scsi_map_queues,
1907 .init_hctx = scsi_init_hctx,
1908 .poll = scsi_mq_poll,
1909 .set_rq_budget_token = scsi_mq_set_rq_budget_token,
1910 .get_rq_budget_token = scsi_mq_get_rq_budget_token,
1911 };
1912
scsi_mq_setup_tags(struct Scsi_Host * shost)1913 int scsi_mq_setup_tags(struct Scsi_Host *shost)
1914 {
1915 unsigned int cmd_size, sgl_size;
1916 struct blk_mq_tag_set *tag_set = &shost->tag_set;
1917
1918 sgl_size = max_t(unsigned int, sizeof(struct scatterlist),
1919 scsi_mq_inline_sgl_size(shost));
1920 cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size;
1921 if (scsi_host_get_prot(shost))
1922 cmd_size += sizeof(struct scsi_data_buffer) +
1923 sizeof(struct scatterlist) * SCSI_INLINE_PROT_SG_CNT;
1924
1925 memset(tag_set, 0, sizeof(*tag_set));
1926 if (shost->hostt->commit_rqs)
1927 tag_set->ops = &scsi_mq_ops;
1928 else
1929 tag_set->ops = &scsi_mq_ops_no_commit;
1930 tag_set->nr_hw_queues = shost->nr_hw_queues ? : 1;
1931 tag_set->nr_maps = shost->nr_maps ? : 1;
1932 tag_set->queue_depth = shost->can_queue;
1933 tag_set->cmd_size = cmd_size;
1934 tag_set->numa_node = NUMA_NO_NODE;
1935 tag_set->flags = BLK_MQ_F_SHOULD_MERGE;
1936 tag_set->flags |=
1937 BLK_ALLOC_POLICY_TO_MQ_FLAG(shost->hostt->tag_alloc_policy);
1938 if (shost->queuecommand_may_block)
1939 tag_set->flags |= BLK_MQ_F_BLOCKING;
1940 tag_set->driver_data = shost;
1941 if (shost->host_tagset)
1942 tag_set->flags |= BLK_MQ_F_TAG_HCTX_SHARED;
1943
1944 return blk_mq_alloc_tag_set(tag_set);
1945 }
1946
scsi_mq_destroy_tags(struct Scsi_Host * shost)1947 void scsi_mq_destroy_tags(struct Scsi_Host *shost)
1948 {
1949 blk_mq_free_tag_set(&shost->tag_set);
1950 }
1951
1952 /**
1953 * scsi_device_from_queue - return sdev associated with a request_queue
1954 * @q: The request queue to return the sdev from
1955 *
1956 * Return the sdev associated with a request queue or NULL if the
1957 * request_queue does not reference a SCSI device.
1958 */
scsi_device_from_queue(struct request_queue * q)1959 struct scsi_device *scsi_device_from_queue(struct request_queue *q)
1960 {
1961 struct scsi_device *sdev = NULL;
1962
1963 if (q->mq_ops == &scsi_mq_ops_no_commit ||
1964 q->mq_ops == &scsi_mq_ops)
1965 sdev = q->queuedata;
1966 if (!sdev || !get_device(&sdev->sdev_gendev))
1967 sdev = NULL;
1968
1969 return sdev;
1970 }
1971
1972 /**
1973 * scsi_block_requests - Utility function used by low-level drivers to prevent
1974 * further commands from being queued to the device.
1975 * @shost: host in question
1976 *
1977 * There is no timer nor any other means by which the requests get unblocked
1978 * other than the low-level driver calling scsi_unblock_requests().
1979 */
scsi_block_requests(struct Scsi_Host * shost)1980 void scsi_block_requests(struct Scsi_Host *shost)
1981 {
1982 shost->host_self_blocked = 1;
1983 }
1984 EXPORT_SYMBOL(scsi_block_requests);
1985
1986 /**
1987 * scsi_unblock_requests - Utility function used by low-level drivers to allow
1988 * further commands to be queued to the device.
1989 * @shost: host in question
1990 *
1991 * There is no timer nor any other means by which the requests get unblocked
1992 * other than the low-level driver calling scsi_unblock_requests(). This is done
1993 * as an API function so that changes to the internals of the scsi mid-layer
1994 * won't require wholesale changes to drivers that use this feature.
1995 */
scsi_unblock_requests(struct Scsi_Host * shost)1996 void scsi_unblock_requests(struct Scsi_Host *shost)
1997 {
1998 shost->host_self_blocked = 0;
1999 scsi_run_host_queues(shost);
2000 }
2001 EXPORT_SYMBOL(scsi_unblock_requests);
2002
scsi_exit_queue(void)2003 void scsi_exit_queue(void)
2004 {
2005 kmem_cache_destroy(scsi_sense_cache);
2006 }
2007
2008 /**
2009 * scsi_mode_select - issue a mode select
2010 * @sdev: SCSI device to be queried
2011 * @pf: Page format bit (1 == standard, 0 == vendor specific)
2012 * @sp: Save page bit (0 == don't save, 1 == save)
2013 * @modepage: mode page being requested
2014 * @buffer: request buffer (may not be smaller than eight bytes)
2015 * @len: length of request buffer.
2016 * @timeout: command timeout
2017 * @retries: number of retries before failing
2018 * @data: returns a structure abstracting the mode header data
2019 * @sshdr: place to put sense data (or NULL if no sense to be collected).
2020 * must be SCSI_SENSE_BUFFERSIZE big.
2021 *
2022 * Returns zero if successful; negative error number or scsi
2023 * status on error
2024 *
2025 */
2026 int
scsi_mode_select(struct scsi_device * sdev,int pf,int sp,int modepage,unsigned char * buffer,int len,int timeout,int retries,struct scsi_mode_data * data,struct scsi_sense_hdr * sshdr)2027 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
2028 unsigned char *buffer, int len, int timeout, int retries,
2029 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2030 {
2031 unsigned char cmd[10];
2032 unsigned char *real_buffer;
2033 int ret;
2034
2035 memset(cmd, 0, sizeof(cmd));
2036 cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
2037
2038 if (sdev->use_10_for_ms) {
2039 if (len > 65535)
2040 return -EINVAL;
2041 real_buffer = kmalloc(8 + len, GFP_KERNEL);
2042 if (!real_buffer)
2043 return -ENOMEM;
2044 memcpy(real_buffer + 8, buffer, len);
2045 len += 8;
2046 real_buffer[0] = 0;
2047 real_buffer[1] = 0;
2048 real_buffer[2] = data->medium_type;
2049 real_buffer[3] = data->device_specific;
2050 real_buffer[4] = data->longlba ? 0x01 : 0;
2051 real_buffer[5] = 0;
2052 real_buffer[6] = data->block_descriptor_length >> 8;
2053 real_buffer[7] = data->block_descriptor_length;
2054
2055 cmd[0] = MODE_SELECT_10;
2056 cmd[7] = len >> 8;
2057 cmd[8] = len;
2058 } else {
2059 if (len > 255 || data->block_descriptor_length > 255 ||
2060 data->longlba)
2061 return -EINVAL;
2062
2063 real_buffer = kmalloc(4 + len, GFP_KERNEL);
2064 if (!real_buffer)
2065 return -ENOMEM;
2066 memcpy(real_buffer + 4, buffer, len);
2067 len += 4;
2068 real_buffer[0] = 0;
2069 real_buffer[1] = data->medium_type;
2070 real_buffer[2] = data->device_specific;
2071 real_buffer[3] = data->block_descriptor_length;
2072
2073 cmd[0] = MODE_SELECT;
2074 cmd[4] = len;
2075 }
2076
2077 ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
2078 sshdr, timeout, retries, NULL);
2079 kfree(real_buffer);
2080 return ret;
2081 }
2082 EXPORT_SYMBOL_GPL(scsi_mode_select);
2083
2084 /**
2085 * scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
2086 * @sdev: SCSI device to be queried
2087 * @dbd: set to prevent mode sense from returning block descriptors
2088 * @modepage: mode page being requested
2089 * @buffer: request buffer (may not be smaller than eight bytes)
2090 * @len: length of request buffer.
2091 * @timeout: command timeout
2092 * @retries: number of retries before failing
2093 * @data: returns a structure abstracting the mode header data
2094 * @sshdr: place to put sense data (or NULL if no sense to be collected).
2095 * must be SCSI_SENSE_BUFFERSIZE big.
2096 *
2097 * Returns zero if successful, or a negative error number on failure
2098 */
2099 int
scsi_mode_sense(struct scsi_device * sdev,int dbd,int modepage,unsigned char * buffer,int len,int timeout,int retries,struct scsi_mode_data * data,struct scsi_sense_hdr * sshdr)2100 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
2101 unsigned char *buffer, int len, int timeout, int retries,
2102 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2103 {
2104 unsigned char cmd[12];
2105 int use_10_for_ms;
2106 int header_length;
2107 int result, retry_count = retries;
2108 struct scsi_sense_hdr my_sshdr;
2109
2110 memset(data, 0, sizeof(*data));
2111 memset(&cmd[0], 0, 12);
2112
2113 dbd = sdev->set_dbd_for_ms ? 8 : dbd;
2114 cmd[1] = dbd & 0x18; /* allows DBD and LLBA bits */
2115 cmd[2] = modepage;
2116
2117 /* caller might not be interested in sense, but we need it */
2118 if (!sshdr)
2119 sshdr = &my_sshdr;
2120
2121 retry:
2122 use_10_for_ms = sdev->use_10_for_ms || len > 255;
2123
2124 if (use_10_for_ms) {
2125 if (len < 8 || len > 65535)
2126 return -EINVAL;
2127
2128 cmd[0] = MODE_SENSE_10;
2129 put_unaligned_be16(len, &cmd[7]);
2130 header_length = 8;
2131 } else {
2132 if (len < 4)
2133 return -EINVAL;
2134
2135 cmd[0] = MODE_SENSE;
2136 cmd[4] = len;
2137 header_length = 4;
2138 }
2139
2140 memset(buffer, 0, len);
2141
2142 result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
2143 sshdr, timeout, retries, NULL);
2144 if (result < 0)
2145 return result;
2146
2147 /* This code looks awful: what it's doing is making sure an
2148 * ILLEGAL REQUEST sense return identifies the actual command
2149 * byte as the problem. MODE_SENSE commands can return
2150 * ILLEGAL REQUEST if the code page isn't supported */
2151
2152 if (!scsi_status_is_good(result)) {
2153 if (scsi_sense_valid(sshdr)) {
2154 if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
2155 (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
2156 /*
2157 * Invalid command operation code: retry using
2158 * MODE SENSE(6) if this was a MODE SENSE(10)
2159 * request, except if the request mode page is
2160 * too large for MODE SENSE single byte
2161 * allocation length field.
2162 */
2163 if (use_10_for_ms) {
2164 if (len > 255)
2165 return -EIO;
2166 sdev->use_10_for_ms = 0;
2167 goto retry;
2168 }
2169 }
2170 if (scsi_status_is_check_condition(result) &&
2171 sshdr->sense_key == UNIT_ATTENTION &&
2172 retry_count) {
2173 retry_count--;
2174 goto retry;
2175 }
2176 }
2177 return -EIO;
2178 }
2179 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
2180 (modepage == 6 || modepage == 8))) {
2181 /* Initio breakage? */
2182 header_length = 0;
2183 data->length = 13;
2184 data->medium_type = 0;
2185 data->device_specific = 0;
2186 data->longlba = 0;
2187 data->block_descriptor_length = 0;
2188 } else if (use_10_for_ms) {
2189 data->length = get_unaligned_be16(&buffer[0]) + 2;
2190 data->medium_type = buffer[2];
2191 data->device_specific = buffer[3];
2192 data->longlba = buffer[4] & 0x01;
2193 data->block_descriptor_length = get_unaligned_be16(&buffer[6]);
2194 } else {
2195 data->length = buffer[0] + 1;
2196 data->medium_type = buffer[1];
2197 data->device_specific = buffer[2];
2198 data->block_descriptor_length = buffer[3];
2199 }
2200 data->header_length = header_length;
2201
2202 return 0;
2203 }
2204 EXPORT_SYMBOL(scsi_mode_sense);
2205
2206 /**
2207 * scsi_test_unit_ready - test if unit is ready
2208 * @sdev: scsi device to change the state of.
2209 * @timeout: command timeout
2210 * @retries: number of retries before failing
2211 * @sshdr: outpout pointer for decoded sense information.
2212 *
2213 * Returns zero if unsuccessful or an error if TUR failed. For
2214 * removable media, UNIT_ATTENTION sets ->changed flag.
2215 **/
2216 int
scsi_test_unit_ready(struct scsi_device * sdev,int timeout,int retries,struct scsi_sense_hdr * sshdr)2217 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2218 struct scsi_sense_hdr *sshdr)
2219 {
2220 char cmd[] = {
2221 TEST_UNIT_READY, 0, 0, 0, 0, 0,
2222 };
2223 int result;
2224
2225 /* try to eat the UNIT_ATTENTION if there are enough retries */
2226 do {
2227 result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2228 timeout, 1, NULL);
2229 if (sdev->removable && scsi_sense_valid(sshdr) &&
2230 sshdr->sense_key == UNIT_ATTENTION)
2231 sdev->changed = 1;
2232 } while (scsi_sense_valid(sshdr) &&
2233 sshdr->sense_key == UNIT_ATTENTION && --retries);
2234
2235 return result;
2236 }
2237 EXPORT_SYMBOL(scsi_test_unit_ready);
2238
2239 /**
2240 * scsi_device_set_state - Take the given device through the device state model.
2241 * @sdev: scsi device to change the state of.
2242 * @state: state to change to.
2243 *
2244 * Returns zero if successful or an error if the requested
2245 * transition is illegal.
2246 */
2247 int
scsi_device_set_state(struct scsi_device * sdev,enum scsi_device_state state)2248 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2249 {
2250 enum scsi_device_state oldstate = sdev->sdev_state;
2251
2252 if (state == oldstate)
2253 return 0;
2254
2255 switch (state) {
2256 case SDEV_CREATED:
2257 switch (oldstate) {
2258 case SDEV_CREATED_BLOCK:
2259 break;
2260 default:
2261 goto illegal;
2262 }
2263 break;
2264
2265 case SDEV_RUNNING:
2266 switch (oldstate) {
2267 case SDEV_CREATED:
2268 case SDEV_OFFLINE:
2269 case SDEV_TRANSPORT_OFFLINE:
2270 case SDEV_QUIESCE:
2271 case SDEV_BLOCK:
2272 break;
2273 default:
2274 goto illegal;
2275 }
2276 break;
2277
2278 case SDEV_QUIESCE:
2279 switch (oldstate) {
2280 case SDEV_RUNNING:
2281 case SDEV_OFFLINE:
2282 case SDEV_TRANSPORT_OFFLINE:
2283 break;
2284 default:
2285 goto illegal;
2286 }
2287 break;
2288
2289 case SDEV_OFFLINE:
2290 case SDEV_TRANSPORT_OFFLINE:
2291 switch (oldstate) {
2292 case SDEV_CREATED:
2293 case SDEV_RUNNING:
2294 case SDEV_QUIESCE:
2295 case SDEV_BLOCK:
2296 break;
2297 default:
2298 goto illegal;
2299 }
2300 break;
2301
2302 case SDEV_BLOCK:
2303 switch (oldstate) {
2304 case SDEV_RUNNING:
2305 case SDEV_CREATED_BLOCK:
2306 case SDEV_QUIESCE:
2307 case SDEV_OFFLINE:
2308 break;
2309 default:
2310 goto illegal;
2311 }
2312 break;
2313
2314 case SDEV_CREATED_BLOCK:
2315 switch (oldstate) {
2316 case SDEV_CREATED:
2317 break;
2318 default:
2319 goto illegal;
2320 }
2321 break;
2322
2323 case SDEV_CANCEL:
2324 switch (oldstate) {
2325 case SDEV_CREATED:
2326 case SDEV_RUNNING:
2327 case SDEV_QUIESCE:
2328 case SDEV_OFFLINE:
2329 case SDEV_TRANSPORT_OFFLINE:
2330 break;
2331 default:
2332 goto illegal;
2333 }
2334 break;
2335
2336 case SDEV_DEL:
2337 switch (oldstate) {
2338 case SDEV_CREATED:
2339 case SDEV_RUNNING:
2340 case SDEV_OFFLINE:
2341 case SDEV_TRANSPORT_OFFLINE:
2342 case SDEV_CANCEL:
2343 case SDEV_BLOCK:
2344 case SDEV_CREATED_BLOCK:
2345 break;
2346 default:
2347 goto illegal;
2348 }
2349 break;
2350
2351 }
2352 sdev->offline_already = false;
2353 sdev->sdev_state = state;
2354 return 0;
2355
2356 illegal:
2357 SCSI_LOG_ERROR_RECOVERY(1,
2358 sdev_printk(KERN_ERR, sdev,
2359 "Illegal state transition %s->%s",
2360 scsi_device_state_name(oldstate),
2361 scsi_device_state_name(state))
2362 );
2363 return -EINVAL;
2364 }
2365 EXPORT_SYMBOL(scsi_device_set_state);
2366
2367 /**
2368 * scsi_evt_emit - emit a single SCSI device uevent
2369 * @sdev: associated SCSI device
2370 * @evt: event to emit
2371 *
2372 * Send a single uevent (scsi_event) to the associated scsi_device.
2373 */
scsi_evt_emit(struct scsi_device * sdev,struct scsi_event * evt)2374 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2375 {
2376 int idx = 0;
2377 char *envp[3];
2378
2379 switch (evt->evt_type) {
2380 case SDEV_EVT_MEDIA_CHANGE:
2381 envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2382 break;
2383 case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2384 scsi_rescan_device(&sdev->sdev_gendev);
2385 envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED";
2386 break;
2387 case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2388 envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED";
2389 break;
2390 case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2391 envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED";
2392 break;
2393 case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2394 envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED";
2395 break;
2396 case SDEV_EVT_LUN_CHANGE_REPORTED:
2397 envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED";
2398 break;
2399 case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2400 envp[idx++] = "SDEV_UA=ASYMMETRIC_ACCESS_STATE_CHANGED";
2401 break;
2402 case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2403 envp[idx++] = "SDEV_UA=POWER_ON_RESET_OCCURRED";
2404 break;
2405 default:
2406 /* do nothing */
2407 break;
2408 }
2409
2410 envp[idx++] = NULL;
2411
2412 kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2413 }
2414
2415 /**
2416 * scsi_evt_thread - send a uevent for each scsi event
2417 * @work: work struct for scsi_device
2418 *
2419 * Dispatch queued events to their associated scsi_device kobjects
2420 * as uevents.
2421 */
scsi_evt_thread(struct work_struct * work)2422 void scsi_evt_thread(struct work_struct *work)
2423 {
2424 struct scsi_device *sdev;
2425 enum scsi_device_event evt_type;
2426 LIST_HEAD(event_list);
2427
2428 sdev = container_of(work, struct scsi_device, event_work);
2429
2430 for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++)
2431 if (test_and_clear_bit(evt_type, sdev->pending_events))
2432 sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL);
2433
2434 while (1) {
2435 struct scsi_event *evt;
2436 struct list_head *this, *tmp;
2437 unsigned long flags;
2438
2439 spin_lock_irqsave(&sdev->list_lock, flags);
2440 list_splice_init(&sdev->event_list, &event_list);
2441 spin_unlock_irqrestore(&sdev->list_lock, flags);
2442
2443 if (list_empty(&event_list))
2444 break;
2445
2446 list_for_each_safe(this, tmp, &event_list) {
2447 evt = list_entry(this, struct scsi_event, node);
2448 list_del(&evt->node);
2449 scsi_evt_emit(sdev, evt);
2450 kfree(evt);
2451 }
2452 }
2453 }
2454
2455 /**
2456 * sdev_evt_send - send asserted event to uevent thread
2457 * @sdev: scsi_device event occurred on
2458 * @evt: event to send
2459 *
2460 * Assert scsi device event asynchronously.
2461 */
sdev_evt_send(struct scsi_device * sdev,struct scsi_event * evt)2462 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2463 {
2464 unsigned long flags;
2465
2466 #if 0
2467 /* FIXME: currently this check eliminates all media change events
2468 * for polled devices. Need to update to discriminate between AN
2469 * and polled events */
2470 if (!test_bit(evt->evt_type, sdev->supported_events)) {
2471 kfree(evt);
2472 return;
2473 }
2474 #endif
2475
2476 spin_lock_irqsave(&sdev->list_lock, flags);
2477 list_add_tail(&evt->node, &sdev->event_list);
2478 schedule_work(&sdev->event_work);
2479 spin_unlock_irqrestore(&sdev->list_lock, flags);
2480 }
2481 EXPORT_SYMBOL_GPL(sdev_evt_send);
2482
2483 /**
2484 * sdev_evt_alloc - allocate a new scsi event
2485 * @evt_type: type of event to allocate
2486 * @gfpflags: GFP flags for allocation
2487 *
2488 * Allocates and returns a new scsi_event.
2489 */
sdev_evt_alloc(enum scsi_device_event evt_type,gfp_t gfpflags)2490 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2491 gfp_t gfpflags)
2492 {
2493 struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2494 if (!evt)
2495 return NULL;
2496
2497 evt->evt_type = evt_type;
2498 INIT_LIST_HEAD(&evt->node);
2499
2500 /* evt_type-specific initialization, if any */
2501 switch (evt_type) {
2502 case SDEV_EVT_MEDIA_CHANGE:
2503 case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2504 case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2505 case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2506 case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2507 case SDEV_EVT_LUN_CHANGE_REPORTED:
2508 case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2509 case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2510 default:
2511 /* do nothing */
2512 break;
2513 }
2514
2515 return evt;
2516 }
2517 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2518
2519 /**
2520 * sdev_evt_send_simple - send asserted event to uevent thread
2521 * @sdev: scsi_device event occurred on
2522 * @evt_type: type of event to send
2523 * @gfpflags: GFP flags for allocation
2524 *
2525 * Assert scsi device event asynchronously, given an event type.
2526 */
sdev_evt_send_simple(struct scsi_device * sdev,enum scsi_device_event evt_type,gfp_t gfpflags)2527 void sdev_evt_send_simple(struct scsi_device *sdev,
2528 enum scsi_device_event evt_type, gfp_t gfpflags)
2529 {
2530 struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2531 if (!evt) {
2532 sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2533 evt_type);
2534 return;
2535 }
2536
2537 sdev_evt_send(sdev, evt);
2538 }
2539 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2540
2541 /**
2542 * scsi_device_quiesce - Block all commands except power management.
2543 * @sdev: scsi device to quiesce.
2544 *
2545 * This works by trying to transition to the SDEV_QUIESCE state
2546 * (which must be a legal transition). When the device is in this
2547 * state, only power management requests will be accepted, all others will
2548 * be deferred.
2549 *
2550 * Must be called with user context, may sleep.
2551 *
2552 * Returns zero if unsuccessful or an error if not.
2553 */
2554 int
scsi_device_quiesce(struct scsi_device * sdev)2555 scsi_device_quiesce(struct scsi_device *sdev)
2556 {
2557 struct request_queue *q = sdev->request_queue;
2558 int err;
2559
2560 /*
2561 * It is allowed to call scsi_device_quiesce() multiple times from
2562 * the same context but concurrent scsi_device_quiesce() calls are
2563 * not allowed.
2564 */
2565 WARN_ON_ONCE(sdev->quiesced_by && sdev->quiesced_by != current);
2566
2567 if (sdev->quiesced_by == current)
2568 return 0;
2569
2570 blk_set_pm_only(q);
2571
2572 blk_mq_freeze_queue(q);
2573 /*
2574 * Ensure that the effect of blk_set_pm_only() will be visible
2575 * for percpu_ref_tryget() callers that occur after the queue
2576 * unfreeze even if the queue was already frozen before this function
2577 * was called. See also https://lwn.net/Articles/573497/.
2578 */
2579 synchronize_rcu();
2580 blk_mq_unfreeze_queue(q);
2581
2582 mutex_lock(&sdev->state_mutex);
2583 err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2584 if (err == 0)
2585 sdev->quiesced_by = current;
2586 else
2587 blk_clear_pm_only(q);
2588 mutex_unlock(&sdev->state_mutex);
2589
2590 return err;
2591 }
2592 EXPORT_SYMBOL(scsi_device_quiesce);
2593
2594 /**
2595 * scsi_device_resume - Restart user issued commands to a quiesced device.
2596 * @sdev: scsi device to resume.
2597 *
2598 * Moves the device from quiesced back to running and restarts the
2599 * queues.
2600 *
2601 * Must be called with user context, may sleep.
2602 */
scsi_device_resume(struct scsi_device * sdev)2603 void scsi_device_resume(struct scsi_device *sdev)
2604 {
2605 /* check if the device state was mutated prior to resume, and if
2606 * so assume the state is being managed elsewhere (for example
2607 * device deleted during suspend)
2608 */
2609 mutex_lock(&sdev->state_mutex);
2610 if (sdev->sdev_state == SDEV_QUIESCE)
2611 scsi_device_set_state(sdev, SDEV_RUNNING);
2612 if (sdev->quiesced_by) {
2613 sdev->quiesced_by = NULL;
2614 blk_clear_pm_only(sdev->request_queue);
2615 }
2616 mutex_unlock(&sdev->state_mutex);
2617 }
2618 EXPORT_SYMBOL(scsi_device_resume);
2619
2620 static void
device_quiesce_fn(struct scsi_device * sdev,void * data)2621 device_quiesce_fn(struct scsi_device *sdev, void *data)
2622 {
2623 scsi_device_quiesce(sdev);
2624 }
2625
2626 void
scsi_target_quiesce(struct scsi_target * starget)2627 scsi_target_quiesce(struct scsi_target *starget)
2628 {
2629 starget_for_each_device(starget, NULL, device_quiesce_fn);
2630 }
2631 EXPORT_SYMBOL(scsi_target_quiesce);
2632
2633 static void
device_resume_fn(struct scsi_device * sdev,void * data)2634 device_resume_fn(struct scsi_device *sdev, void *data)
2635 {
2636 scsi_device_resume(sdev);
2637 }
2638
2639 void
scsi_target_resume(struct scsi_target * starget)2640 scsi_target_resume(struct scsi_target *starget)
2641 {
2642 starget_for_each_device(starget, NULL, device_resume_fn);
2643 }
2644 EXPORT_SYMBOL(scsi_target_resume);
2645
2646 /**
2647 * scsi_internal_device_block_nowait - try to transition to the SDEV_BLOCK state
2648 * @sdev: device to block
2649 *
2650 * Pause SCSI command processing on the specified device. Does not sleep.
2651 *
2652 * Returns zero if successful or a negative error code upon failure.
2653 *
2654 * Notes:
2655 * This routine transitions the device to the SDEV_BLOCK state (which must be
2656 * a legal transition). When the device is in this state, command processing
2657 * is paused until the device leaves the SDEV_BLOCK state. See also
2658 * scsi_internal_device_unblock_nowait().
2659 */
scsi_internal_device_block_nowait(struct scsi_device * sdev)2660 int scsi_internal_device_block_nowait(struct scsi_device *sdev)
2661 {
2662 struct request_queue *q = sdev->request_queue;
2663 int err = 0;
2664
2665 err = scsi_device_set_state(sdev, SDEV_BLOCK);
2666 if (err) {
2667 err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2668
2669 if (err)
2670 return err;
2671 }
2672
2673 /*
2674 * The device has transitioned to SDEV_BLOCK. Stop the
2675 * block layer from calling the midlayer with this device's
2676 * request queue.
2677 */
2678 blk_mq_quiesce_queue_nowait(q);
2679 return 0;
2680 }
2681 EXPORT_SYMBOL_GPL(scsi_internal_device_block_nowait);
2682
2683 /**
2684 * scsi_internal_device_block - try to transition to the SDEV_BLOCK state
2685 * @sdev: device to block
2686 *
2687 * Pause SCSI command processing on the specified device and wait until all
2688 * ongoing scsi_request_fn() / scsi_queue_rq() calls have finished. May sleep.
2689 *
2690 * Returns zero if successful or a negative error code upon failure.
2691 *
2692 * Note:
2693 * This routine transitions the device to the SDEV_BLOCK state (which must be
2694 * a legal transition). When the device is in this state, command processing
2695 * is paused until the device leaves the SDEV_BLOCK state. See also
2696 * scsi_internal_device_unblock().
2697 */
scsi_internal_device_block(struct scsi_device * sdev)2698 static int scsi_internal_device_block(struct scsi_device *sdev)
2699 {
2700 struct request_queue *q = sdev->request_queue;
2701 int err;
2702
2703 mutex_lock(&sdev->state_mutex);
2704 err = scsi_internal_device_block_nowait(sdev);
2705 if (err == 0)
2706 blk_mq_quiesce_queue(q);
2707 mutex_unlock(&sdev->state_mutex);
2708
2709 return err;
2710 }
2711
scsi_start_queue(struct scsi_device * sdev)2712 void scsi_start_queue(struct scsi_device *sdev)
2713 {
2714 struct request_queue *q = sdev->request_queue;
2715
2716 blk_mq_unquiesce_queue(q);
2717 }
2718
2719 /**
2720 * scsi_internal_device_unblock_nowait - resume a device after a block request
2721 * @sdev: device to resume
2722 * @new_state: state to set the device to after unblocking
2723 *
2724 * Restart the device queue for a previously suspended SCSI device. Does not
2725 * sleep.
2726 *
2727 * Returns zero if successful or a negative error code upon failure.
2728 *
2729 * Notes:
2730 * This routine transitions the device to the SDEV_RUNNING state or to one of
2731 * the offline states (which must be a legal transition) allowing the midlayer
2732 * to goose the queue for this device.
2733 */
scsi_internal_device_unblock_nowait(struct scsi_device * sdev,enum scsi_device_state new_state)2734 int scsi_internal_device_unblock_nowait(struct scsi_device *sdev,
2735 enum scsi_device_state new_state)
2736 {
2737 switch (new_state) {
2738 case SDEV_RUNNING:
2739 case SDEV_TRANSPORT_OFFLINE:
2740 break;
2741 default:
2742 return -EINVAL;
2743 }
2744
2745 /*
2746 * Try to transition the scsi device to SDEV_RUNNING or one of the
2747 * offlined states and goose the device queue if successful.
2748 */
2749 switch (sdev->sdev_state) {
2750 case SDEV_BLOCK:
2751 case SDEV_TRANSPORT_OFFLINE:
2752 sdev->sdev_state = new_state;
2753 break;
2754 case SDEV_CREATED_BLOCK:
2755 if (new_state == SDEV_TRANSPORT_OFFLINE ||
2756 new_state == SDEV_OFFLINE)
2757 sdev->sdev_state = new_state;
2758 else
2759 sdev->sdev_state = SDEV_CREATED;
2760 break;
2761 case SDEV_CANCEL:
2762 case SDEV_OFFLINE:
2763 break;
2764 default:
2765 return -EINVAL;
2766 }
2767 scsi_start_queue(sdev);
2768
2769 return 0;
2770 }
2771 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock_nowait);
2772
2773 /**
2774 * scsi_internal_device_unblock - resume a device after a block request
2775 * @sdev: device to resume
2776 * @new_state: state to set the device to after unblocking
2777 *
2778 * Restart the device queue for a previously suspended SCSI device. May sleep.
2779 *
2780 * Returns zero if successful or a negative error code upon failure.
2781 *
2782 * Notes:
2783 * This routine transitions the device to the SDEV_RUNNING state or to one of
2784 * the offline states (which must be a legal transition) allowing the midlayer
2785 * to goose the queue for this device.
2786 */
scsi_internal_device_unblock(struct scsi_device * sdev,enum scsi_device_state new_state)2787 static int scsi_internal_device_unblock(struct scsi_device *sdev,
2788 enum scsi_device_state new_state)
2789 {
2790 int ret;
2791
2792 mutex_lock(&sdev->state_mutex);
2793 ret = scsi_internal_device_unblock_nowait(sdev, new_state);
2794 mutex_unlock(&sdev->state_mutex);
2795
2796 return ret;
2797 }
2798
2799 static void
device_block(struct scsi_device * sdev,void * data)2800 device_block(struct scsi_device *sdev, void *data)
2801 {
2802 int ret;
2803
2804 ret = scsi_internal_device_block(sdev);
2805
2806 WARN_ONCE(ret, "scsi_internal_device_block(%s) failed: ret = %d\n",
2807 dev_name(&sdev->sdev_gendev), ret);
2808 }
2809
2810 static int
target_block(struct device * dev,void * data)2811 target_block(struct device *dev, void *data)
2812 {
2813 if (scsi_is_target_device(dev))
2814 starget_for_each_device(to_scsi_target(dev), NULL,
2815 device_block);
2816 return 0;
2817 }
2818
2819 void
scsi_target_block(struct device * dev)2820 scsi_target_block(struct device *dev)
2821 {
2822 if (scsi_is_target_device(dev))
2823 starget_for_each_device(to_scsi_target(dev), NULL,
2824 device_block);
2825 else
2826 device_for_each_child(dev, NULL, target_block);
2827 }
2828 EXPORT_SYMBOL_GPL(scsi_target_block);
2829
2830 static void
device_unblock(struct scsi_device * sdev,void * data)2831 device_unblock(struct scsi_device *sdev, void *data)
2832 {
2833 scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data);
2834 }
2835
2836 static int
target_unblock(struct device * dev,void * data)2837 target_unblock(struct device *dev, void *data)
2838 {
2839 if (scsi_is_target_device(dev))
2840 starget_for_each_device(to_scsi_target(dev), data,
2841 device_unblock);
2842 return 0;
2843 }
2844
2845 void
scsi_target_unblock(struct device * dev,enum scsi_device_state new_state)2846 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
2847 {
2848 if (scsi_is_target_device(dev))
2849 starget_for_each_device(to_scsi_target(dev), &new_state,
2850 device_unblock);
2851 else
2852 device_for_each_child(dev, &new_state, target_unblock);
2853 }
2854 EXPORT_SYMBOL_GPL(scsi_target_unblock);
2855
2856 int
scsi_host_block(struct Scsi_Host * shost)2857 scsi_host_block(struct Scsi_Host *shost)
2858 {
2859 struct scsi_device *sdev;
2860 int ret = 0;
2861
2862 /*
2863 * Call scsi_internal_device_block_nowait so we can avoid
2864 * calling synchronize_rcu() for each LUN.
2865 */
2866 shost_for_each_device(sdev, shost) {
2867 mutex_lock(&sdev->state_mutex);
2868 ret = scsi_internal_device_block_nowait(sdev);
2869 mutex_unlock(&sdev->state_mutex);
2870 if (ret) {
2871 scsi_device_put(sdev);
2872 break;
2873 }
2874 }
2875
2876 /*
2877 * SCSI never enables blk-mq's BLK_MQ_F_BLOCKING flag so
2878 * calling synchronize_rcu() once is enough.
2879 */
2880 WARN_ON_ONCE(shost->tag_set.flags & BLK_MQ_F_BLOCKING);
2881
2882 if (!ret)
2883 synchronize_rcu();
2884
2885 return ret;
2886 }
2887 EXPORT_SYMBOL_GPL(scsi_host_block);
2888
2889 int
scsi_host_unblock(struct Scsi_Host * shost,int new_state)2890 scsi_host_unblock(struct Scsi_Host *shost, int new_state)
2891 {
2892 struct scsi_device *sdev;
2893 int ret = 0;
2894
2895 shost_for_each_device(sdev, shost) {
2896 ret = scsi_internal_device_unblock(sdev, new_state);
2897 if (ret) {
2898 scsi_device_put(sdev);
2899 break;
2900 }
2901 }
2902 return ret;
2903 }
2904 EXPORT_SYMBOL_GPL(scsi_host_unblock);
2905
2906 /**
2907 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2908 * @sgl: scatter-gather list
2909 * @sg_count: number of segments in sg
2910 * @offset: offset in bytes into sg, on return offset into the mapped area
2911 * @len: bytes to map, on return number of bytes mapped
2912 *
2913 * Returns virtual address of the start of the mapped page
2914 */
scsi_kmap_atomic_sg(struct scatterlist * sgl,int sg_count,size_t * offset,size_t * len)2915 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
2916 size_t *offset, size_t *len)
2917 {
2918 int i;
2919 size_t sg_len = 0, len_complete = 0;
2920 struct scatterlist *sg;
2921 struct page *page;
2922
2923 WARN_ON(!irqs_disabled());
2924
2925 for_each_sg(sgl, sg, sg_count, i) {
2926 len_complete = sg_len; /* Complete sg-entries */
2927 sg_len += sg->length;
2928 if (sg_len > *offset)
2929 break;
2930 }
2931
2932 if (unlikely(i == sg_count)) {
2933 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
2934 "elements %d\n",
2935 __func__, sg_len, *offset, sg_count);
2936 WARN_ON(1);
2937 return NULL;
2938 }
2939
2940 /* Offset starting from the beginning of first page in this sg-entry */
2941 *offset = *offset - len_complete + sg->offset;
2942
2943 /* Assumption: contiguous pages can be accessed as "page + i" */
2944 page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
2945 *offset &= ~PAGE_MASK;
2946
2947 /* Bytes in this sg-entry from *offset to the end of the page */
2948 sg_len = PAGE_SIZE - *offset;
2949 if (*len > sg_len)
2950 *len = sg_len;
2951
2952 return kmap_atomic(page);
2953 }
2954 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
2955
2956 /**
2957 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
2958 * @virt: virtual address to be unmapped
2959 */
scsi_kunmap_atomic_sg(void * virt)2960 void scsi_kunmap_atomic_sg(void *virt)
2961 {
2962 kunmap_atomic(virt);
2963 }
2964 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
2965
sdev_disable_disk_events(struct scsi_device * sdev)2966 void sdev_disable_disk_events(struct scsi_device *sdev)
2967 {
2968 atomic_inc(&sdev->disk_events_disable_depth);
2969 }
2970 EXPORT_SYMBOL(sdev_disable_disk_events);
2971
sdev_enable_disk_events(struct scsi_device * sdev)2972 void sdev_enable_disk_events(struct scsi_device *sdev)
2973 {
2974 if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0))
2975 return;
2976 atomic_dec(&sdev->disk_events_disable_depth);
2977 }
2978 EXPORT_SYMBOL(sdev_enable_disk_events);
2979
designator_prio(const unsigned char * d)2980 static unsigned char designator_prio(const unsigned char *d)
2981 {
2982 if (d[1] & 0x30)
2983 /* not associated with LUN */
2984 return 0;
2985
2986 if (d[3] == 0)
2987 /* invalid length */
2988 return 0;
2989
2990 /*
2991 * Order of preference for lun descriptor:
2992 * - SCSI name string
2993 * - NAA IEEE Registered Extended
2994 * - EUI-64 based 16-byte
2995 * - EUI-64 based 12-byte
2996 * - NAA IEEE Registered
2997 * - NAA IEEE Extended
2998 * - EUI-64 based 8-byte
2999 * - SCSI name string (truncated)
3000 * - T10 Vendor ID
3001 * as longer descriptors reduce the likelyhood
3002 * of identification clashes.
3003 */
3004
3005 switch (d[1] & 0xf) {
3006 case 8:
3007 /* SCSI name string, variable-length UTF-8 */
3008 return 9;
3009 case 3:
3010 switch (d[4] >> 4) {
3011 case 6:
3012 /* NAA registered extended */
3013 return 8;
3014 case 5:
3015 /* NAA registered */
3016 return 5;
3017 case 4:
3018 /* NAA extended */
3019 return 4;
3020 case 3:
3021 /* NAA locally assigned */
3022 return 1;
3023 default:
3024 break;
3025 }
3026 break;
3027 case 2:
3028 switch (d[3]) {
3029 case 16:
3030 /* EUI64-based, 16 byte */
3031 return 7;
3032 case 12:
3033 /* EUI64-based, 12 byte */
3034 return 6;
3035 case 8:
3036 /* EUI64-based, 8 byte */
3037 return 3;
3038 default:
3039 break;
3040 }
3041 break;
3042 case 1:
3043 /* T10 vendor ID */
3044 return 1;
3045 default:
3046 break;
3047 }
3048
3049 return 0;
3050 }
3051
3052 /**
3053 * scsi_vpd_lun_id - return a unique device identification
3054 * @sdev: SCSI device
3055 * @id: buffer for the identification
3056 * @id_len: length of the buffer
3057 *
3058 * Copies a unique device identification into @id based
3059 * on the information in the VPD page 0x83 of the device.
3060 * The string will be formatted as a SCSI name string.
3061 *
3062 * Returns the length of the identification or error on failure.
3063 * If the identifier is longer than the supplied buffer the actual
3064 * identifier length is returned and the buffer is not zero-padded.
3065 */
scsi_vpd_lun_id(struct scsi_device * sdev,char * id,size_t id_len)3066 int scsi_vpd_lun_id(struct scsi_device *sdev, char *id, size_t id_len)
3067 {
3068 u8 cur_id_prio = 0;
3069 u8 cur_id_size = 0;
3070 const unsigned char *d, *cur_id_str;
3071 const struct scsi_vpd *vpd_pg83;
3072 int id_size = -EINVAL;
3073
3074 rcu_read_lock();
3075 vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3076 if (!vpd_pg83) {
3077 rcu_read_unlock();
3078 return -ENXIO;
3079 }
3080
3081 /* The id string must be at least 20 bytes + terminating NULL byte */
3082 if (id_len < 21) {
3083 rcu_read_unlock();
3084 return -EINVAL;
3085 }
3086
3087 memset(id, 0, id_len);
3088 for (d = vpd_pg83->data + 4;
3089 d < vpd_pg83->data + vpd_pg83->len;
3090 d += d[3] + 4) {
3091 u8 prio = designator_prio(d);
3092
3093 if (prio == 0 || cur_id_prio > prio)
3094 continue;
3095
3096 switch (d[1] & 0xf) {
3097 case 0x1:
3098 /* T10 Vendor ID */
3099 if (cur_id_size > d[3])
3100 break;
3101 cur_id_prio = prio;
3102 cur_id_size = d[3];
3103 if (cur_id_size + 4 > id_len)
3104 cur_id_size = id_len - 4;
3105 cur_id_str = d + 4;
3106 id_size = snprintf(id, id_len, "t10.%*pE",
3107 cur_id_size, cur_id_str);
3108 break;
3109 case 0x2:
3110 /* EUI-64 */
3111 cur_id_prio = prio;
3112 cur_id_size = d[3];
3113 cur_id_str = d + 4;
3114 switch (cur_id_size) {
3115 case 8:
3116 id_size = snprintf(id, id_len,
3117 "eui.%8phN",
3118 cur_id_str);
3119 break;
3120 case 12:
3121 id_size = snprintf(id, id_len,
3122 "eui.%12phN",
3123 cur_id_str);
3124 break;
3125 case 16:
3126 id_size = snprintf(id, id_len,
3127 "eui.%16phN",
3128 cur_id_str);
3129 break;
3130 default:
3131 break;
3132 }
3133 break;
3134 case 0x3:
3135 /* NAA */
3136 cur_id_prio = prio;
3137 cur_id_size = d[3];
3138 cur_id_str = d + 4;
3139 switch (cur_id_size) {
3140 case 8:
3141 id_size = snprintf(id, id_len,
3142 "naa.%8phN",
3143 cur_id_str);
3144 break;
3145 case 16:
3146 id_size = snprintf(id, id_len,
3147 "naa.%16phN",
3148 cur_id_str);
3149 break;
3150 default:
3151 break;
3152 }
3153 break;
3154 case 0x8:
3155 /* SCSI name string */
3156 if (cur_id_size > d[3])
3157 break;
3158 /* Prefer others for truncated descriptor */
3159 if (d[3] > id_len) {
3160 prio = 2;
3161 if (cur_id_prio > prio)
3162 break;
3163 }
3164 cur_id_prio = prio;
3165 cur_id_size = id_size = d[3];
3166 cur_id_str = d + 4;
3167 if (cur_id_size >= id_len)
3168 cur_id_size = id_len - 1;
3169 memcpy(id, cur_id_str, cur_id_size);
3170 break;
3171 default:
3172 break;
3173 }
3174 }
3175 rcu_read_unlock();
3176
3177 return id_size;
3178 }
3179 EXPORT_SYMBOL(scsi_vpd_lun_id);
3180
3181 /*
3182 * scsi_vpd_tpg_id - return a target port group identifier
3183 * @sdev: SCSI device
3184 *
3185 * Returns the Target Port Group identifier from the information
3186 * froom VPD page 0x83 of the device.
3187 *
3188 * Returns the identifier or error on failure.
3189 */
scsi_vpd_tpg_id(struct scsi_device * sdev,int * rel_id)3190 int scsi_vpd_tpg_id(struct scsi_device *sdev, int *rel_id)
3191 {
3192 const unsigned char *d;
3193 const struct scsi_vpd *vpd_pg83;
3194 int group_id = -EAGAIN, rel_port = -1;
3195
3196 rcu_read_lock();
3197 vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3198 if (!vpd_pg83) {
3199 rcu_read_unlock();
3200 return -ENXIO;
3201 }
3202
3203 d = vpd_pg83->data + 4;
3204 while (d < vpd_pg83->data + vpd_pg83->len) {
3205 switch (d[1] & 0xf) {
3206 case 0x4:
3207 /* Relative target port */
3208 rel_port = get_unaligned_be16(&d[6]);
3209 break;
3210 case 0x5:
3211 /* Target port group */
3212 group_id = get_unaligned_be16(&d[6]);
3213 break;
3214 default:
3215 break;
3216 }
3217 d += d[3] + 4;
3218 }
3219 rcu_read_unlock();
3220
3221 if (group_id >= 0 && rel_id && rel_port != -1)
3222 *rel_id = rel_port;
3223
3224 return group_id;
3225 }
3226 EXPORT_SYMBOL(scsi_vpd_tpg_id);
3227
3228 /**
3229 * scsi_build_sense - build sense data for a command
3230 * @scmd: scsi command for which the sense should be formatted
3231 * @desc: Sense format (non-zero == descriptor format,
3232 * 0 == fixed format)
3233 * @key: Sense key
3234 * @asc: Additional sense code
3235 * @ascq: Additional sense code qualifier
3236 *
3237 **/
scsi_build_sense(struct scsi_cmnd * scmd,int desc,u8 key,u8 asc,u8 ascq)3238 void scsi_build_sense(struct scsi_cmnd *scmd, int desc, u8 key, u8 asc, u8 ascq)
3239 {
3240 scsi_build_sense_buffer(desc, scmd->sense_buffer, key, asc, ascq);
3241 scmd->result = SAM_STAT_CHECK_CONDITION;
3242 }
3243 EXPORT_SYMBOL_GPL(scsi_build_sense);
3244