• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: (GPL-2.0 OR BSD-3-Clause)
2 // Copyright(c) 2015-17 Intel Corporation.
3 
4 #include <linux/acpi.h>
5 #include <linux/delay.h>
6 #include <linux/mod_devicetable.h>
7 #include <linux/pm_runtime.h>
8 #include <linux/soundwire/sdw_registers.h>
9 #include <linux/soundwire/sdw.h>
10 #include <linux/soundwire/sdw_type.h>
11 #include "bus.h"
12 #include "sysfs_local.h"
13 
14 static DEFINE_IDA(sdw_ida);
15 
sdw_get_id(struct sdw_bus * bus)16 static int sdw_get_id(struct sdw_bus *bus)
17 {
18 	int rc = ida_alloc(&sdw_ida, GFP_KERNEL);
19 
20 	if (rc < 0)
21 		return rc;
22 
23 	bus->id = rc;
24 	return 0;
25 }
26 
27 /**
28  * sdw_bus_master_add() - add a bus Master instance
29  * @bus: bus instance
30  * @parent: parent device
31  * @fwnode: firmware node handle
32  *
33  * Initializes the bus instance, read properties and create child
34  * devices.
35  */
sdw_bus_master_add(struct sdw_bus * bus,struct device * parent,struct fwnode_handle * fwnode)36 int sdw_bus_master_add(struct sdw_bus *bus, struct device *parent,
37 		       struct fwnode_handle *fwnode)
38 {
39 	struct sdw_master_prop *prop = NULL;
40 	int ret;
41 
42 	if (!parent) {
43 		pr_err("SoundWire parent device is not set\n");
44 		return -ENODEV;
45 	}
46 
47 	ret = sdw_get_id(bus);
48 	if (ret < 0) {
49 		dev_err(parent, "Failed to get bus id\n");
50 		return ret;
51 	}
52 
53 	ret = sdw_master_device_add(bus, parent, fwnode);
54 	if (ret < 0) {
55 		dev_err(parent, "Failed to add master device at link %d\n",
56 			bus->link_id);
57 		return ret;
58 	}
59 
60 	if (!bus->ops) {
61 		dev_err(bus->dev, "SoundWire Bus ops are not set\n");
62 		return -EINVAL;
63 	}
64 
65 	if (!bus->compute_params) {
66 		dev_err(bus->dev,
67 			"Bandwidth allocation not configured, compute_params no set\n");
68 		return -EINVAL;
69 	}
70 
71 	mutex_init(&bus->msg_lock);
72 	mutex_init(&bus->bus_lock);
73 	INIT_LIST_HEAD(&bus->slaves);
74 	INIT_LIST_HEAD(&bus->m_rt_list);
75 
76 	/*
77 	 * Initialize multi_link flag
78 	 * TODO: populate this flag by reading property from FW node
79 	 */
80 	bus->multi_link = false;
81 	if (bus->ops->read_prop) {
82 		ret = bus->ops->read_prop(bus);
83 		if (ret < 0) {
84 			dev_err(bus->dev,
85 				"Bus read properties failed:%d\n", ret);
86 			return ret;
87 		}
88 	}
89 
90 	sdw_bus_debugfs_init(bus);
91 
92 	/*
93 	 * Device numbers in SoundWire are 0 through 15. Enumeration device
94 	 * number (0), Broadcast device number (15), Group numbers (12 and
95 	 * 13) and Master device number (14) are not used for assignment so
96 	 * mask these and other higher bits.
97 	 */
98 
99 	/* Set higher order bits */
100 	*bus->assigned = ~GENMASK(SDW_BROADCAST_DEV_NUM, SDW_ENUM_DEV_NUM);
101 
102 	/* Set enumuration device number and broadcast device number */
103 	set_bit(SDW_ENUM_DEV_NUM, bus->assigned);
104 	set_bit(SDW_BROADCAST_DEV_NUM, bus->assigned);
105 
106 	/* Set group device numbers and master device number */
107 	set_bit(SDW_GROUP12_DEV_NUM, bus->assigned);
108 	set_bit(SDW_GROUP13_DEV_NUM, bus->assigned);
109 	set_bit(SDW_MASTER_DEV_NUM, bus->assigned);
110 
111 	/*
112 	 * SDW is an enumerable bus, but devices can be powered off. So,
113 	 * they won't be able to report as present.
114 	 *
115 	 * Create Slave devices based on Slaves described in
116 	 * the respective firmware (ACPI/DT)
117 	 */
118 	if (IS_ENABLED(CONFIG_ACPI) && ACPI_HANDLE(bus->dev))
119 		ret = sdw_acpi_find_slaves(bus);
120 	else if (IS_ENABLED(CONFIG_OF) && bus->dev->of_node)
121 		ret = sdw_of_find_slaves(bus);
122 	else
123 		ret = -ENOTSUPP; /* No ACPI/DT so error out */
124 
125 	if (ret < 0) {
126 		dev_err(bus->dev, "Finding slaves failed:%d\n", ret);
127 		return ret;
128 	}
129 
130 	/*
131 	 * Initialize clock values based on Master properties. The max
132 	 * frequency is read from max_clk_freq property. Current assumption
133 	 * is that the bus will start at highest clock frequency when
134 	 * powered on.
135 	 *
136 	 * Default active bank will be 0 as out of reset the Slaves have
137 	 * to start with bank 0 (Table 40 of Spec)
138 	 */
139 	prop = &bus->prop;
140 	bus->params.max_dr_freq = prop->max_clk_freq * SDW_DOUBLE_RATE_FACTOR;
141 	bus->params.curr_dr_freq = bus->params.max_dr_freq;
142 	bus->params.curr_bank = SDW_BANK0;
143 	bus->params.next_bank = SDW_BANK1;
144 
145 	return 0;
146 }
147 EXPORT_SYMBOL(sdw_bus_master_add);
148 
sdw_delete_slave(struct device * dev,void * data)149 static int sdw_delete_slave(struct device *dev, void *data)
150 {
151 	struct sdw_slave *slave = dev_to_sdw_dev(dev);
152 	struct sdw_bus *bus = slave->bus;
153 
154 	pm_runtime_disable(dev);
155 
156 	sdw_slave_debugfs_exit(slave);
157 
158 	mutex_lock(&bus->bus_lock);
159 
160 	if (slave->dev_num) /* clear dev_num if assigned */
161 		clear_bit(slave->dev_num, bus->assigned);
162 
163 	list_del_init(&slave->node);
164 	mutex_unlock(&bus->bus_lock);
165 
166 	device_unregister(dev);
167 	return 0;
168 }
169 
170 /**
171  * sdw_bus_master_delete() - delete the bus master instance
172  * @bus: bus to be deleted
173  *
174  * Remove the instance, delete the child devices.
175  */
sdw_bus_master_delete(struct sdw_bus * bus)176 void sdw_bus_master_delete(struct sdw_bus *bus)
177 {
178 	device_for_each_child(bus->dev, NULL, sdw_delete_slave);
179 	sdw_master_device_del(bus);
180 
181 	sdw_bus_debugfs_exit(bus);
182 	ida_free(&sdw_ida, bus->id);
183 }
184 EXPORT_SYMBOL(sdw_bus_master_delete);
185 
186 /*
187  * SDW IO Calls
188  */
189 
find_response_code(enum sdw_command_response resp)190 static inline int find_response_code(enum sdw_command_response resp)
191 {
192 	switch (resp) {
193 	case SDW_CMD_OK:
194 		return 0;
195 
196 	case SDW_CMD_IGNORED:
197 		return -ENODATA;
198 
199 	case SDW_CMD_TIMEOUT:
200 		return -ETIMEDOUT;
201 
202 	default:
203 		return -EIO;
204 	}
205 }
206 
do_transfer(struct sdw_bus * bus,struct sdw_msg * msg)207 static inline int do_transfer(struct sdw_bus *bus, struct sdw_msg *msg)
208 {
209 	int retry = bus->prop.err_threshold;
210 	enum sdw_command_response resp;
211 	int ret = 0, i;
212 
213 	for (i = 0; i <= retry; i++) {
214 		resp = bus->ops->xfer_msg(bus, msg);
215 		ret = find_response_code(resp);
216 
217 		/* if cmd is ok or ignored return */
218 		if (ret == 0 || ret == -ENODATA)
219 			return ret;
220 	}
221 
222 	return ret;
223 }
224 
do_transfer_defer(struct sdw_bus * bus,struct sdw_msg * msg,struct sdw_defer * defer)225 static inline int do_transfer_defer(struct sdw_bus *bus,
226 				    struct sdw_msg *msg,
227 				    struct sdw_defer *defer)
228 {
229 	int retry = bus->prop.err_threshold;
230 	enum sdw_command_response resp;
231 	int ret = 0, i;
232 
233 	defer->msg = msg;
234 	defer->length = msg->len;
235 	init_completion(&defer->complete);
236 
237 	for (i = 0; i <= retry; i++) {
238 		resp = bus->ops->xfer_msg_defer(bus, msg, defer);
239 		ret = find_response_code(resp);
240 		/* if cmd is ok or ignored return */
241 		if (ret == 0 || ret == -ENODATA)
242 			return ret;
243 	}
244 
245 	return ret;
246 }
247 
sdw_reset_page(struct sdw_bus * bus,u16 dev_num)248 static int sdw_reset_page(struct sdw_bus *bus, u16 dev_num)
249 {
250 	int retry = bus->prop.err_threshold;
251 	enum sdw_command_response resp;
252 	int ret = 0, i;
253 
254 	for (i = 0; i <= retry; i++) {
255 		resp = bus->ops->reset_page_addr(bus, dev_num);
256 		ret = find_response_code(resp);
257 		/* if cmd is ok or ignored return */
258 		if (ret == 0 || ret == -ENODATA)
259 			return ret;
260 	}
261 
262 	return ret;
263 }
264 
sdw_transfer_unlocked(struct sdw_bus * bus,struct sdw_msg * msg)265 static int sdw_transfer_unlocked(struct sdw_bus *bus, struct sdw_msg *msg)
266 {
267 	int ret;
268 
269 	ret = do_transfer(bus, msg);
270 	if (ret != 0 && ret != -ENODATA)
271 		dev_err(bus->dev, "trf on Slave %d failed:%d %s addr %x count %d\n",
272 			msg->dev_num, ret,
273 			(msg->flags & SDW_MSG_FLAG_WRITE) ? "write" : "read",
274 			msg->addr, msg->len);
275 
276 	if (msg->page)
277 		sdw_reset_page(bus, msg->dev_num);
278 
279 	return ret;
280 }
281 
282 /**
283  * sdw_transfer() - Synchronous transfer message to a SDW Slave device
284  * @bus: SDW bus
285  * @msg: SDW message to be xfered
286  */
sdw_transfer(struct sdw_bus * bus,struct sdw_msg * msg)287 int sdw_transfer(struct sdw_bus *bus, struct sdw_msg *msg)
288 {
289 	int ret;
290 
291 	mutex_lock(&bus->msg_lock);
292 
293 	ret = sdw_transfer_unlocked(bus, msg);
294 
295 	mutex_unlock(&bus->msg_lock);
296 
297 	return ret;
298 }
299 
300 /**
301  * sdw_transfer_defer() - Asynchronously transfer message to a SDW Slave device
302  * @bus: SDW bus
303  * @msg: SDW message to be xfered
304  * @defer: Defer block for signal completion
305  *
306  * Caller needs to hold the msg_lock lock while calling this
307  */
sdw_transfer_defer(struct sdw_bus * bus,struct sdw_msg * msg,struct sdw_defer * defer)308 int sdw_transfer_defer(struct sdw_bus *bus, struct sdw_msg *msg,
309 		       struct sdw_defer *defer)
310 {
311 	int ret;
312 
313 	if (!bus->ops->xfer_msg_defer)
314 		return -ENOTSUPP;
315 
316 	ret = do_transfer_defer(bus, msg, defer);
317 	if (ret != 0 && ret != -ENODATA)
318 		dev_err(bus->dev, "Defer trf on Slave %d failed:%d\n",
319 			msg->dev_num, ret);
320 
321 	if (msg->page)
322 		sdw_reset_page(bus, msg->dev_num);
323 
324 	return ret;
325 }
326 
sdw_fill_msg(struct sdw_msg * msg,struct sdw_slave * slave,u32 addr,size_t count,u16 dev_num,u8 flags,u8 * buf)327 int sdw_fill_msg(struct sdw_msg *msg, struct sdw_slave *slave,
328 		 u32 addr, size_t count, u16 dev_num, u8 flags, u8 *buf)
329 {
330 	memset(msg, 0, sizeof(*msg));
331 	msg->addr = addr; /* addr is 16 bit and truncated here */
332 	msg->len = count;
333 	msg->dev_num = dev_num;
334 	msg->flags = flags;
335 	msg->buf = buf;
336 
337 	if (addr < SDW_REG_NO_PAGE) /* no paging area */
338 		return 0;
339 
340 	if (addr >= SDW_REG_MAX) { /* illegal addr */
341 		pr_err("SDW: Invalid address %x passed\n", addr);
342 		return -EINVAL;
343 	}
344 
345 	if (addr < SDW_REG_OPTIONAL_PAGE) { /* 32k but no page */
346 		if (slave && !slave->prop.paging_support)
347 			return 0;
348 		/* no need for else as that will fall-through to paging */
349 	}
350 
351 	/* paging mandatory */
352 	if (dev_num == SDW_ENUM_DEV_NUM || dev_num == SDW_BROADCAST_DEV_NUM) {
353 		pr_err("SDW: Invalid device for paging :%d\n", dev_num);
354 		return -EINVAL;
355 	}
356 
357 	if (!slave) {
358 		pr_err("SDW: No slave for paging addr\n");
359 		return -EINVAL;
360 	}
361 
362 	if (!slave->prop.paging_support) {
363 		dev_err(&slave->dev,
364 			"address %x needs paging but no support\n", addr);
365 		return -EINVAL;
366 	}
367 
368 	msg->addr_page1 = FIELD_GET(SDW_SCP_ADDRPAGE1_MASK, addr);
369 	msg->addr_page2 = FIELD_GET(SDW_SCP_ADDRPAGE2_MASK, addr);
370 	msg->addr |= BIT(15);
371 	msg->page = true;
372 
373 	return 0;
374 }
375 
376 /*
377  * Read/Write IO functions.
378  * no_pm versions can only be called by the bus, e.g. while enumerating or
379  * handling suspend-resume sequences.
380  * all clients need to use the pm versions
381  */
382 
383 static int
sdw_nread_no_pm(struct sdw_slave * slave,u32 addr,size_t count,u8 * val)384 sdw_nread_no_pm(struct sdw_slave *slave, u32 addr, size_t count, u8 *val)
385 {
386 	struct sdw_msg msg;
387 	int ret;
388 
389 	ret = sdw_fill_msg(&msg, slave, addr, count,
390 			   slave->dev_num, SDW_MSG_FLAG_READ, val);
391 	if (ret < 0)
392 		return ret;
393 
394 	ret = sdw_transfer(slave->bus, &msg);
395 	if (slave->is_mockup_device)
396 		ret = 0;
397 	return ret;
398 }
399 
400 static int
sdw_nwrite_no_pm(struct sdw_slave * slave,u32 addr,size_t count,const u8 * val)401 sdw_nwrite_no_pm(struct sdw_slave *slave, u32 addr, size_t count, const u8 *val)
402 {
403 	struct sdw_msg msg;
404 	int ret;
405 
406 	ret = sdw_fill_msg(&msg, slave, addr, count,
407 			   slave->dev_num, SDW_MSG_FLAG_WRITE, (u8 *)val);
408 	if (ret < 0)
409 		return ret;
410 
411 	ret = sdw_transfer(slave->bus, &msg);
412 	if (slave->is_mockup_device)
413 		ret = 0;
414 	return ret;
415 }
416 
sdw_write_no_pm(struct sdw_slave * slave,u32 addr,u8 value)417 int sdw_write_no_pm(struct sdw_slave *slave, u32 addr, u8 value)
418 {
419 	return sdw_nwrite_no_pm(slave, addr, 1, &value);
420 }
421 EXPORT_SYMBOL(sdw_write_no_pm);
422 
423 static int
sdw_bread_no_pm(struct sdw_bus * bus,u16 dev_num,u32 addr)424 sdw_bread_no_pm(struct sdw_bus *bus, u16 dev_num, u32 addr)
425 {
426 	struct sdw_msg msg;
427 	u8 buf;
428 	int ret;
429 
430 	ret = sdw_fill_msg(&msg, NULL, addr, 1, dev_num,
431 			   SDW_MSG_FLAG_READ, &buf);
432 	if (ret < 0)
433 		return ret;
434 
435 	ret = sdw_transfer(bus, &msg);
436 	if (ret < 0)
437 		return ret;
438 
439 	return buf;
440 }
441 
442 static int
sdw_bwrite_no_pm(struct sdw_bus * bus,u16 dev_num,u32 addr,u8 value)443 sdw_bwrite_no_pm(struct sdw_bus *bus, u16 dev_num, u32 addr, u8 value)
444 {
445 	struct sdw_msg msg;
446 	int ret;
447 
448 	ret = sdw_fill_msg(&msg, NULL, addr, 1, dev_num,
449 			   SDW_MSG_FLAG_WRITE, &value);
450 	if (ret < 0)
451 		return ret;
452 
453 	return sdw_transfer(bus, &msg);
454 }
455 
sdw_bread_no_pm_unlocked(struct sdw_bus * bus,u16 dev_num,u32 addr)456 int sdw_bread_no_pm_unlocked(struct sdw_bus *bus, u16 dev_num, u32 addr)
457 {
458 	struct sdw_msg msg;
459 	u8 buf;
460 	int ret;
461 
462 	ret = sdw_fill_msg(&msg, NULL, addr, 1, dev_num,
463 			   SDW_MSG_FLAG_READ, &buf);
464 	if (ret < 0)
465 		return ret;
466 
467 	ret = sdw_transfer_unlocked(bus, &msg);
468 	if (ret < 0)
469 		return ret;
470 
471 	return buf;
472 }
473 EXPORT_SYMBOL(sdw_bread_no_pm_unlocked);
474 
sdw_bwrite_no_pm_unlocked(struct sdw_bus * bus,u16 dev_num,u32 addr,u8 value)475 int sdw_bwrite_no_pm_unlocked(struct sdw_bus *bus, u16 dev_num, u32 addr, u8 value)
476 {
477 	struct sdw_msg msg;
478 	int ret;
479 
480 	ret = sdw_fill_msg(&msg, NULL, addr, 1, dev_num,
481 			   SDW_MSG_FLAG_WRITE, &value);
482 	if (ret < 0)
483 		return ret;
484 
485 	return sdw_transfer_unlocked(bus, &msg);
486 }
487 EXPORT_SYMBOL(sdw_bwrite_no_pm_unlocked);
488 
sdw_read_no_pm(struct sdw_slave * slave,u32 addr)489 int sdw_read_no_pm(struct sdw_slave *slave, u32 addr)
490 {
491 	u8 buf;
492 	int ret;
493 
494 	ret = sdw_nread_no_pm(slave, addr, 1, &buf);
495 	if (ret < 0)
496 		return ret;
497 	else
498 		return buf;
499 }
500 EXPORT_SYMBOL(sdw_read_no_pm);
501 
sdw_update_no_pm(struct sdw_slave * slave,u32 addr,u8 mask,u8 val)502 int sdw_update_no_pm(struct sdw_slave *slave, u32 addr, u8 mask, u8 val)
503 {
504 	int tmp;
505 
506 	tmp = sdw_read_no_pm(slave, addr);
507 	if (tmp < 0)
508 		return tmp;
509 
510 	tmp = (tmp & ~mask) | val;
511 	return sdw_write_no_pm(slave, addr, tmp);
512 }
513 EXPORT_SYMBOL(sdw_update_no_pm);
514 
515 /* Read-Modify-Write Slave register */
sdw_update(struct sdw_slave * slave,u32 addr,u8 mask,u8 val)516 int sdw_update(struct sdw_slave *slave, u32 addr, u8 mask, u8 val)
517 {
518 	int tmp;
519 
520 	tmp = sdw_read(slave, addr);
521 	if (tmp < 0)
522 		return tmp;
523 
524 	tmp = (tmp & ~mask) | val;
525 	return sdw_write(slave, addr, tmp);
526 }
527 EXPORT_SYMBOL(sdw_update);
528 
529 /**
530  * sdw_nread() - Read "n" contiguous SDW Slave registers
531  * @slave: SDW Slave
532  * @addr: Register address
533  * @count: length
534  * @val: Buffer for values to be read
535  */
sdw_nread(struct sdw_slave * slave,u32 addr,size_t count,u8 * val)536 int sdw_nread(struct sdw_slave *slave, u32 addr, size_t count, u8 *val)
537 {
538 	int ret;
539 
540 	ret = pm_runtime_get_sync(&slave->dev);
541 	if (ret < 0 && ret != -EACCES) {
542 		pm_runtime_put_noidle(&slave->dev);
543 		return ret;
544 	}
545 
546 	ret = sdw_nread_no_pm(slave, addr, count, val);
547 
548 	pm_runtime_mark_last_busy(&slave->dev);
549 	pm_runtime_put(&slave->dev);
550 
551 	return ret;
552 }
553 EXPORT_SYMBOL(sdw_nread);
554 
555 /**
556  * sdw_nwrite() - Write "n" contiguous SDW Slave registers
557  * @slave: SDW Slave
558  * @addr: Register address
559  * @count: length
560  * @val: Buffer for values to be written
561  */
sdw_nwrite(struct sdw_slave * slave,u32 addr,size_t count,const u8 * val)562 int sdw_nwrite(struct sdw_slave *slave, u32 addr, size_t count, const u8 *val)
563 {
564 	int ret;
565 
566 	ret = pm_runtime_get_sync(&slave->dev);
567 	if (ret < 0 && ret != -EACCES) {
568 		pm_runtime_put_noidle(&slave->dev);
569 		return ret;
570 	}
571 
572 	ret = sdw_nwrite_no_pm(slave, addr, count, val);
573 
574 	pm_runtime_mark_last_busy(&slave->dev);
575 	pm_runtime_put(&slave->dev);
576 
577 	return ret;
578 }
579 EXPORT_SYMBOL(sdw_nwrite);
580 
581 /**
582  * sdw_read() - Read a SDW Slave register
583  * @slave: SDW Slave
584  * @addr: Register address
585  */
sdw_read(struct sdw_slave * slave,u32 addr)586 int sdw_read(struct sdw_slave *slave, u32 addr)
587 {
588 	u8 buf;
589 	int ret;
590 
591 	ret = sdw_nread(slave, addr, 1, &buf);
592 	if (ret < 0)
593 		return ret;
594 
595 	return buf;
596 }
597 EXPORT_SYMBOL(sdw_read);
598 
599 /**
600  * sdw_write() - Write a SDW Slave register
601  * @slave: SDW Slave
602  * @addr: Register address
603  * @value: Register value
604  */
sdw_write(struct sdw_slave * slave,u32 addr,u8 value)605 int sdw_write(struct sdw_slave *slave, u32 addr, u8 value)
606 {
607 	return sdw_nwrite(slave, addr, 1, &value);
608 }
609 EXPORT_SYMBOL(sdw_write);
610 
611 /*
612  * SDW alert handling
613  */
614 
615 /* called with bus_lock held */
sdw_get_slave(struct sdw_bus * bus,int i)616 static struct sdw_slave *sdw_get_slave(struct sdw_bus *bus, int i)
617 {
618 	struct sdw_slave *slave;
619 
620 	list_for_each_entry(slave, &bus->slaves, node) {
621 		if (slave->dev_num == i)
622 			return slave;
623 	}
624 
625 	return NULL;
626 }
627 
sdw_compare_devid(struct sdw_slave * slave,struct sdw_slave_id id)628 int sdw_compare_devid(struct sdw_slave *slave, struct sdw_slave_id id)
629 {
630 	if (slave->id.mfg_id != id.mfg_id ||
631 	    slave->id.part_id != id.part_id ||
632 	    slave->id.class_id != id.class_id ||
633 	    (slave->id.unique_id != SDW_IGNORED_UNIQUE_ID &&
634 	     slave->id.unique_id != id.unique_id))
635 		return -ENODEV;
636 
637 	return 0;
638 }
639 EXPORT_SYMBOL(sdw_compare_devid);
640 
641 /* called with bus_lock held */
sdw_get_device_num(struct sdw_slave * slave)642 static int sdw_get_device_num(struct sdw_slave *slave)
643 {
644 	int bit;
645 
646 	bit = find_first_zero_bit(slave->bus->assigned, SDW_MAX_DEVICES);
647 	if (bit == SDW_MAX_DEVICES) {
648 		bit = -ENODEV;
649 		goto err;
650 	}
651 
652 	/*
653 	 * Do not update dev_num in Slave data structure here,
654 	 * Update once program dev_num is successful
655 	 */
656 	set_bit(bit, slave->bus->assigned);
657 
658 err:
659 	return bit;
660 }
661 
sdw_assign_device_num(struct sdw_slave * slave)662 static int sdw_assign_device_num(struct sdw_slave *slave)
663 {
664 	struct sdw_bus *bus = slave->bus;
665 	int ret, dev_num;
666 	bool new_device = false;
667 
668 	/* check first if device number is assigned, if so reuse that */
669 	if (!slave->dev_num) {
670 		if (!slave->dev_num_sticky) {
671 			mutex_lock(&slave->bus->bus_lock);
672 			dev_num = sdw_get_device_num(slave);
673 			mutex_unlock(&slave->bus->bus_lock);
674 			if (dev_num < 0) {
675 				dev_err(bus->dev, "Get dev_num failed: %d\n",
676 					dev_num);
677 				return dev_num;
678 			}
679 			slave->dev_num = dev_num;
680 			slave->dev_num_sticky = dev_num;
681 			new_device = true;
682 		} else {
683 			slave->dev_num = slave->dev_num_sticky;
684 		}
685 	}
686 
687 	if (!new_device)
688 		dev_dbg(bus->dev,
689 			"Slave already registered, reusing dev_num:%d\n",
690 			slave->dev_num);
691 
692 	/* Clear the slave->dev_num to transfer message on device 0 */
693 	dev_num = slave->dev_num;
694 	slave->dev_num = 0;
695 
696 	ret = sdw_write_no_pm(slave, SDW_SCP_DEVNUMBER, dev_num);
697 	if (ret < 0) {
698 		dev_err(bus->dev, "Program device_num %d failed: %d\n",
699 			dev_num, ret);
700 		return ret;
701 	}
702 
703 	/* After xfer of msg, restore dev_num */
704 	slave->dev_num = slave->dev_num_sticky;
705 
706 	return 0;
707 }
708 
sdw_extract_slave_id(struct sdw_bus * bus,u64 addr,struct sdw_slave_id * id)709 void sdw_extract_slave_id(struct sdw_bus *bus,
710 			  u64 addr, struct sdw_slave_id *id)
711 {
712 	dev_dbg(bus->dev, "SDW Slave Addr: %llx\n", addr);
713 
714 	id->sdw_version = SDW_VERSION(addr);
715 	id->unique_id = SDW_UNIQUE_ID(addr);
716 	id->mfg_id = SDW_MFG_ID(addr);
717 	id->part_id = SDW_PART_ID(addr);
718 	id->class_id = SDW_CLASS_ID(addr);
719 
720 	dev_dbg(bus->dev,
721 		"SDW Slave class_id 0x%02x, mfg_id 0x%04x, part_id 0x%04x, unique_id 0x%x, version 0x%x\n",
722 		id->class_id, id->mfg_id, id->part_id, id->unique_id, id->sdw_version);
723 }
724 EXPORT_SYMBOL(sdw_extract_slave_id);
725 
sdw_program_device_num(struct sdw_bus * bus)726 static int sdw_program_device_num(struct sdw_bus *bus)
727 {
728 	u8 buf[SDW_NUM_DEV_ID_REGISTERS] = {0};
729 	struct sdw_slave *slave, *_s;
730 	struct sdw_slave_id id;
731 	struct sdw_msg msg;
732 	bool found;
733 	int count = 0, ret;
734 	u64 addr;
735 
736 	/* No Slave, so use raw xfer api */
737 	ret = sdw_fill_msg(&msg, NULL, SDW_SCP_DEVID_0,
738 			   SDW_NUM_DEV_ID_REGISTERS, 0, SDW_MSG_FLAG_READ, buf);
739 	if (ret < 0)
740 		return ret;
741 
742 	do {
743 		ret = sdw_transfer(bus, &msg);
744 		if (ret == -ENODATA) { /* end of device id reads */
745 			dev_dbg(bus->dev, "No more devices to enumerate\n");
746 			ret = 0;
747 			break;
748 		}
749 		if (ret < 0) {
750 			dev_err(bus->dev, "DEVID read fail:%d\n", ret);
751 			break;
752 		}
753 
754 		/*
755 		 * Construct the addr and extract. Cast the higher shift
756 		 * bits to avoid truncation due to size limit.
757 		 */
758 		addr = buf[5] | (buf[4] << 8) | (buf[3] << 16) |
759 			((u64)buf[2] << 24) | ((u64)buf[1] << 32) |
760 			((u64)buf[0] << 40);
761 
762 		sdw_extract_slave_id(bus, addr, &id);
763 
764 		found = false;
765 		/* Now compare with entries */
766 		list_for_each_entry_safe(slave, _s, &bus->slaves, node) {
767 			if (sdw_compare_devid(slave, id) == 0) {
768 				found = true;
769 
770 				/*
771 				 * Assign a new dev_num to this Slave and
772 				 * not mark it present. It will be marked
773 				 * present after it reports ATTACHED on new
774 				 * dev_num
775 				 */
776 				ret = sdw_assign_device_num(slave);
777 				if (ret < 0) {
778 					dev_err(bus->dev,
779 						"Assign dev_num failed:%d\n",
780 						ret);
781 					return ret;
782 				}
783 
784 				break;
785 			}
786 		}
787 
788 		if (!found) {
789 			/* TODO: Park this device in Group 13 */
790 
791 			/*
792 			 * add Slave device even if there is no platform
793 			 * firmware description. There will be no driver probe
794 			 * but the user/integration will be able to see the
795 			 * device, enumeration status and device number in sysfs
796 			 */
797 			sdw_slave_add(bus, &id, NULL);
798 
799 			dev_err(bus->dev, "Slave Entry not found\n");
800 		}
801 
802 		count++;
803 
804 		/*
805 		 * Check till error out or retry (count) exhausts.
806 		 * Device can drop off and rejoin during enumeration
807 		 * so count till twice the bound.
808 		 */
809 
810 	} while (ret == 0 && count < (SDW_MAX_DEVICES * 2));
811 
812 	return ret;
813 }
814 
sdw_modify_slave_status(struct sdw_slave * slave,enum sdw_slave_status status)815 static void sdw_modify_slave_status(struct sdw_slave *slave,
816 				    enum sdw_slave_status status)
817 {
818 	struct sdw_bus *bus = slave->bus;
819 
820 	mutex_lock(&bus->bus_lock);
821 
822 	dev_vdbg(bus->dev,
823 		 "%s: changing status slave %d status %d new status %d\n",
824 		 __func__, slave->dev_num, slave->status, status);
825 
826 	if (status == SDW_SLAVE_UNATTACHED) {
827 		dev_dbg(&slave->dev,
828 			"%s: initializing enumeration and init completion for Slave %d\n",
829 			__func__, slave->dev_num);
830 
831 		reinit_completion(&slave->enumeration_complete);
832 		reinit_completion(&slave->initialization_complete);
833 
834 	} else if ((status == SDW_SLAVE_ATTACHED) &&
835 		   (slave->status == SDW_SLAVE_UNATTACHED)) {
836 		dev_dbg(&slave->dev,
837 			"%s: signaling enumeration completion for Slave %d\n",
838 			__func__, slave->dev_num);
839 
840 		complete_all(&slave->enumeration_complete);
841 	}
842 	slave->status = status;
843 	mutex_unlock(&bus->bus_lock);
844 }
845 
sdw_slave_clk_stop_callback(struct sdw_slave * slave,enum sdw_clk_stop_mode mode,enum sdw_clk_stop_type type)846 static int sdw_slave_clk_stop_callback(struct sdw_slave *slave,
847 				       enum sdw_clk_stop_mode mode,
848 				       enum sdw_clk_stop_type type)
849 {
850 	int ret = 0;
851 
852 	mutex_lock(&slave->sdw_dev_lock);
853 
854 	if (slave->probed)  {
855 		struct device *dev = &slave->dev;
856 		struct sdw_driver *drv = drv_to_sdw_driver(dev->driver);
857 
858 		if (drv->ops && drv->ops->clk_stop)
859 			ret = drv->ops->clk_stop(slave, mode, type);
860 	}
861 
862 	mutex_unlock(&slave->sdw_dev_lock);
863 
864 	return ret;
865 }
866 
sdw_slave_clk_stop_prepare(struct sdw_slave * slave,enum sdw_clk_stop_mode mode,bool prepare)867 static int sdw_slave_clk_stop_prepare(struct sdw_slave *slave,
868 				      enum sdw_clk_stop_mode mode,
869 				      bool prepare)
870 {
871 	bool wake_en;
872 	u32 val = 0;
873 	int ret;
874 
875 	wake_en = slave->prop.wake_capable;
876 
877 	if (prepare) {
878 		val = SDW_SCP_SYSTEMCTRL_CLK_STP_PREP;
879 
880 		if (mode == SDW_CLK_STOP_MODE1)
881 			val |= SDW_SCP_SYSTEMCTRL_CLK_STP_MODE1;
882 
883 		if (wake_en)
884 			val |= SDW_SCP_SYSTEMCTRL_WAKE_UP_EN;
885 	} else {
886 		ret = sdw_read_no_pm(slave, SDW_SCP_SYSTEMCTRL);
887 		if (ret < 0) {
888 			if (ret != -ENODATA)
889 				dev_err(&slave->dev, "SDW_SCP_SYSTEMCTRL read failed:%d\n", ret);
890 			return ret;
891 		}
892 		val = ret;
893 		val &= ~(SDW_SCP_SYSTEMCTRL_CLK_STP_PREP);
894 	}
895 
896 	ret = sdw_write_no_pm(slave, SDW_SCP_SYSTEMCTRL, val);
897 
898 	if (ret < 0 && ret != -ENODATA)
899 		dev_err(&slave->dev, "SDW_SCP_SYSTEMCTRL write failed:%d\n", ret);
900 
901 	return ret;
902 }
903 
sdw_bus_wait_for_clk_prep_deprep(struct sdw_bus * bus,u16 dev_num)904 static int sdw_bus_wait_for_clk_prep_deprep(struct sdw_bus *bus, u16 dev_num)
905 {
906 	int retry = bus->clk_stop_timeout;
907 	int val;
908 
909 	do {
910 		val = sdw_bread_no_pm(bus, dev_num, SDW_SCP_STAT);
911 		if (val < 0) {
912 			if (val != -ENODATA)
913 				dev_err(bus->dev, "SDW_SCP_STAT bread failed:%d\n", val);
914 			return val;
915 		}
916 		val &= SDW_SCP_STAT_CLK_STP_NF;
917 		if (!val) {
918 			dev_dbg(bus->dev, "clock stop prep/de-prep done slave:%d\n",
919 				dev_num);
920 			return 0;
921 		}
922 
923 		usleep_range(1000, 1500);
924 		retry--;
925 	} while (retry);
926 
927 	dev_err(bus->dev, "clock stop prep/de-prep failed slave:%d\n",
928 		dev_num);
929 
930 	return -ETIMEDOUT;
931 }
932 
933 /**
934  * sdw_bus_prep_clk_stop: prepare Slave(s) for clock stop
935  *
936  * @bus: SDW bus instance
937  *
938  * Query Slave for clock stop mode and prepare for that mode.
939  */
sdw_bus_prep_clk_stop(struct sdw_bus * bus)940 int sdw_bus_prep_clk_stop(struct sdw_bus *bus)
941 {
942 	bool simple_clk_stop = true;
943 	struct sdw_slave *slave;
944 	bool is_slave = false;
945 	int ret = 0;
946 
947 	/*
948 	 * In order to save on transition time, prepare
949 	 * each Slave and then wait for all Slave(s) to be
950 	 * prepared for clock stop.
951 	 * If one of the Slave devices has lost sync and
952 	 * replies with Command Ignored/-ENODATA, we continue
953 	 * the loop
954 	 */
955 	list_for_each_entry(slave, &bus->slaves, node) {
956 		if (!slave->dev_num)
957 			continue;
958 
959 		if (slave->status != SDW_SLAVE_ATTACHED &&
960 		    slave->status != SDW_SLAVE_ALERT)
961 			continue;
962 
963 		/* Identify if Slave(s) are available on Bus */
964 		is_slave = true;
965 
966 		ret = sdw_slave_clk_stop_callback(slave,
967 						  SDW_CLK_STOP_MODE0,
968 						  SDW_CLK_PRE_PREPARE);
969 		if (ret < 0 && ret != -ENODATA) {
970 			dev_err(&slave->dev, "clock stop pre-prepare cb failed:%d\n", ret);
971 			return ret;
972 		}
973 
974 		/* Only prepare a Slave device if needed */
975 		if (!slave->prop.simple_clk_stop_capable) {
976 			simple_clk_stop = false;
977 
978 			ret = sdw_slave_clk_stop_prepare(slave,
979 							 SDW_CLK_STOP_MODE0,
980 							 true);
981 			if (ret < 0 && ret != -ENODATA) {
982 				dev_err(&slave->dev, "clock stop prepare failed:%d\n", ret);
983 				return ret;
984 			}
985 		}
986 	}
987 
988 	/* Skip remaining clock stop preparation if no Slave is attached */
989 	if (!is_slave)
990 		return 0;
991 
992 	/*
993 	 * Don't wait for all Slaves to be ready if they follow the simple
994 	 * state machine
995 	 */
996 	if (!simple_clk_stop) {
997 		ret = sdw_bus_wait_for_clk_prep_deprep(bus,
998 						       SDW_BROADCAST_DEV_NUM);
999 		/*
1000 		 * if there are no Slave devices present and the reply is
1001 		 * Command_Ignored/-ENODATA, we don't need to continue with the
1002 		 * flow and can just return here. The error code is not modified
1003 		 * and its handling left as an exercise for the caller.
1004 		 */
1005 		if (ret < 0)
1006 			return ret;
1007 	}
1008 
1009 	/* Inform slaves that prep is done */
1010 	list_for_each_entry(slave, &bus->slaves, node) {
1011 		if (!slave->dev_num)
1012 			continue;
1013 
1014 		if (slave->status != SDW_SLAVE_ATTACHED &&
1015 		    slave->status != SDW_SLAVE_ALERT)
1016 			continue;
1017 
1018 		ret = sdw_slave_clk_stop_callback(slave,
1019 						  SDW_CLK_STOP_MODE0,
1020 						  SDW_CLK_POST_PREPARE);
1021 
1022 		if (ret < 0 && ret != -ENODATA) {
1023 			dev_err(&slave->dev, "clock stop post-prepare cb failed:%d\n", ret);
1024 			return ret;
1025 		}
1026 	}
1027 
1028 	return 0;
1029 }
1030 EXPORT_SYMBOL(sdw_bus_prep_clk_stop);
1031 
1032 /**
1033  * sdw_bus_clk_stop: stop bus clock
1034  *
1035  * @bus: SDW bus instance
1036  *
1037  * After preparing the Slaves for clock stop, stop the clock by broadcasting
1038  * write to SCP_CTRL register.
1039  */
sdw_bus_clk_stop(struct sdw_bus * bus)1040 int sdw_bus_clk_stop(struct sdw_bus *bus)
1041 {
1042 	int ret;
1043 
1044 	/*
1045 	 * broadcast clock stop now, attached Slaves will ACK this,
1046 	 * unattached will ignore
1047 	 */
1048 	ret = sdw_bwrite_no_pm(bus, SDW_BROADCAST_DEV_NUM,
1049 			       SDW_SCP_CTRL, SDW_SCP_CTRL_CLK_STP_NOW);
1050 	if (ret < 0) {
1051 		if (ret != -ENODATA)
1052 			dev_err(bus->dev, "ClockStopNow Broadcast msg failed %d\n", ret);
1053 		return ret;
1054 	}
1055 
1056 	return 0;
1057 }
1058 EXPORT_SYMBOL(sdw_bus_clk_stop);
1059 
1060 /**
1061  * sdw_bus_exit_clk_stop: Exit clock stop mode
1062  *
1063  * @bus: SDW bus instance
1064  *
1065  * This De-prepares the Slaves by exiting Clock Stop Mode 0. For the Slaves
1066  * exiting Clock Stop Mode 1, they will be de-prepared after they enumerate
1067  * back.
1068  */
sdw_bus_exit_clk_stop(struct sdw_bus * bus)1069 int sdw_bus_exit_clk_stop(struct sdw_bus *bus)
1070 {
1071 	bool simple_clk_stop = true;
1072 	struct sdw_slave *slave;
1073 	bool is_slave = false;
1074 	int ret;
1075 
1076 	/*
1077 	 * In order to save on transition time, de-prepare
1078 	 * each Slave and then wait for all Slave(s) to be
1079 	 * de-prepared after clock resume.
1080 	 */
1081 	list_for_each_entry(slave, &bus->slaves, node) {
1082 		if (!slave->dev_num)
1083 			continue;
1084 
1085 		if (slave->status != SDW_SLAVE_ATTACHED &&
1086 		    slave->status != SDW_SLAVE_ALERT)
1087 			continue;
1088 
1089 		/* Identify if Slave(s) are available on Bus */
1090 		is_slave = true;
1091 
1092 		ret = sdw_slave_clk_stop_callback(slave, SDW_CLK_STOP_MODE0,
1093 						  SDW_CLK_PRE_DEPREPARE);
1094 		if (ret < 0)
1095 			dev_warn(&slave->dev, "clock stop pre-deprepare cb failed:%d\n", ret);
1096 
1097 		/* Only de-prepare a Slave device if needed */
1098 		if (!slave->prop.simple_clk_stop_capable) {
1099 			simple_clk_stop = false;
1100 
1101 			ret = sdw_slave_clk_stop_prepare(slave, SDW_CLK_STOP_MODE0,
1102 							 false);
1103 
1104 			if (ret < 0)
1105 				dev_warn(&slave->dev, "clock stop deprepare failed:%d\n", ret);
1106 		}
1107 	}
1108 
1109 	/* Skip remaining clock stop de-preparation if no Slave is attached */
1110 	if (!is_slave)
1111 		return 0;
1112 
1113 	/*
1114 	 * Don't wait for all Slaves to be ready if they follow the simple
1115 	 * state machine
1116 	 */
1117 	if (!simple_clk_stop) {
1118 		ret = sdw_bus_wait_for_clk_prep_deprep(bus, SDW_BROADCAST_DEV_NUM);
1119 		if (ret < 0)
1120 			dev_warn(bus->dev, "clock stop deprepare wait failed:%d\n", ret);
1121 	}
1122 
1123 	list_for_each_entry(slave, &bus->slaves, node) {
1124 		if (!slave->dev_num)
1125 			continue;
1126 
1127 		if (slave->status != SDW_SLAVE_ATTACHED &&
1128 		    slave->status != SDW_SLAVE_ALERT)
1129 			continue;
1130 
1131 		ret = sdw_slave_clk_stop_callback(slave, SDW_CLK_STOP_MODE0,
1132 						  SDW_CLK_POST_DEPREPARE);
1133 		if (ret < 0)
1134 			dev_warn(&slave->dev, "clock stop post-deprepare cb failed:%d\n", ret);
1135 	}
1136 
1137 	return 0;
1138 }
1139 EXPORT_SYMBOL(sdw_bus_exit_clk_stop);
1140 
sdw_configure_dpn_intr(struct sdw_slave * slave,int port,bool enable,int mask)1141 int sdw_configure_dpn_intr(struct sdw_slave *slave,
1142 			   int port, bool enable, int mask)
1143 {
1144 	u32 addr;
1145 	int ret;
1146 	u8 val = 0;
1147 
1148 	if (slave->bus->params.s_data_mode != SDW_PORT_DATA_MODE_NORMAL) {
1149 		dev_dbg(&slave->dev, "TEST FAIL interrupt %s\n",
1150 			enable ? "on" : "off");
1151 		mask |= SDW_DPN_INT_TEST_FAIL;
1152 	}
1153 
1154 	addr = SDW_DPN_INTMASK(port);
1155 
1156 	/* Set/Clear port ready interrupt mask */
1157 	if (enable) {
1158 		val |= mask;
1159 		val |= SDW_DPN_INT_PORT_READY;
1160 	} else {
1161 		val &= ~(mask);
1162 		val &= ~SDW_DPN_INT_PORT_READY;
1163 	}
1164 
1165 	ret = sdw_update(slave, addr, (mask | SDW_DPN_INT_PORT_READY), val);
1166 	if (ret < 0)
1167 		dev_err(&slave->dev,
1168 			"SDW_DPN_INTMASK write failed:%d\n", val);
1169 
1170 	return ret;
1171 }
1172 
sdw_slave_set_frequency(struct sdw_slave * slave)1173 static int sdw_slave_set_frequency(struct sdw_slave *slave)
1174 {
1175 	u32 mclk_freq = slave->bus->prop.mclk_freq;
1176 	u32 curr_freq = slave->bus->params.curr_dr_freq >> 1;
1177 	unsigned int scale;
1178 	u8 scale_index;
1179 	u8 base;
1180 	int ret;
1181 
1182 	/*
1183 	 * frequency base and scale registers are required for SDCA
1184 	 * devices. They may also be used for 1.2+/non-SDCA devices,
1185 	 * but we will need a DisCo property to cover this case
1186 	 */
1187 	if (!slave->id.class_id)
1188 		return 0;
1189 
1190 	if (!mclk_freq) {
1191 		dev_err(&slave->dev,
1192 			"no bus MCLK, cannot set SDW_SCP_BUS_CLOCK_BASE\n");
1193 		return -EINVAL;
1194 	}
1195 
1196 	/*
1197 	 * map base frequency using Table 89 of SoundWire 1.2 spec.
1198 	 * The order of the tests just follows the specification, this
1199 	 * is not a selection between possible values or a search for
1200 	 * the best value but just a mapping.  Only one case per platform
1201 	 * is relevant.
1202 	 * Some BIOS have inconsistent values for mclk_freq but a
1203 	 * correct root so we force the mclk_freq to avoid variations.
1204 	 */
1205 	if (!(19200000 % mclk_freq)) {
1206 		mclk_freq = 19200000;
1207 		base = SDW_SCP_BASE_CLOCK_19200000_HZ;
1208 	} else if (!(24000000 % mclk_freq)) {
1209 		mclk_freq = 24000000;
1210 		base = SDW_SCP_BASE_CLOCK_24000000_HZ;
1211 	} else if (!(24576000 % mclk_freq)) {
1212 		mclk_freq = 24576000;
1213 		base = SDW_SCP_BASE_CLOCK_24576000_HZ;
1214 	} else if (!(22579200 % mclk_freq)) {
1215 		mclk_freq = 22579200;
1216 		base = SDW_SCP_BASE_CLOCK_22579200_HZ;
1217 	} else if (!(32000000 % mclk_freq)) {
1218 		mclk_freq = 32000000;
1219 		base = SDW_SCP_BASE_CLOCK_32000000_HZ;
1220 	} else {
1221 		dev_err(&slave->dev,
1222 			"Unsupported clock base, mclk %d\n",
1223 			mclk_freq);
1224 		return -EINVAL;
1225 	}
1226 
1227 	if (mclk_freq % curr_freq) {
1228 		dev_err(&slave->dev,
1229 			"mclk %d is not multiple of bus curr_freq %d\n",
1230 			mclk_freq, curr_freq);
1231 		return -EINVAL;
1232 	}
1233 
1234 	scale = mclk_freq / curr_freq;
1235 
1236 	/*
1237 	 * map scale to Table 90 of SoundWire 1.2 spec - and check
1238 	 * that the scale is a power of two and maximum 64
1239 	 */
1240 	scale_index = ilog2(scale);
1241 
1242 	if (BIT(scale_index) != scale || scale_index > 6) {
1243 		dev_err(&slave->dev,
1244 			"No match found for scale %d, bus mclk %d curr_freq %d\n",
1245 			scale, mclk_freq, curr_freq);
1246 		return -EINVAL;
1247 	}
1248 	scale_index++;
1249 
1250 	ret = sdw_write_no_pm(slave, SDW_SCP_BUS_CLOCK_BASE, base);
1251 	if (ret < 0) {
1252 		dev_err(&slave->dev,
1253 			"SDW_SCP_BUS_CLOCK_BASE write failed:%d\n", ret);
1254 		return ret;
1255 	}
1256 
1257 	/* initialize scale for both banks */
1258 	ret = sdw_write_no_pm(slave, SDW_SCP_BUSCLOCK_SCALE_B0, scale_index);
1259 	if (ret < 0) {
1260 		dev_err(&slave->dev,
1261 			"SDW_SCP_BUSCLOCK_SCALE_B0 write failed:%d\n", ret);
1262 		return ret;
1263 	}
1264 	ret = sdw_write_no_pm(slave, SDW_SCP_BUSCLOCK_SCALE_B1, scale_index);
1265 	if (ret < 0)
1266 		dev_err(&slave->dev,
1267 			"SDW_SCP_BUSCLOCK_SCALE_B1 write failed:%d\n", ret);
1268 
1269 	dev_dbg(&slave->dev,
1270 		"Configured bus base %d, scale %d, mclk %d, curr_freq %d\n",
1271 		base, scale_index, mclk_freq, curr_freq);
1272 
1273 	return ret;
1274 }
1275 
sdw_initialize_slave(struct sdw_slave * slave)1276 static int sdw_initialize_slave(struct sdw_slave *slave)
1277 {
1278 	struct sdw_slave_prop *prop = &slave->prop;
1279 	int status;
1280 	int ret;
1281 	u8 val;
1282 
1283 	ret = sdw_slave_set_frequency(slave);
1284 	if (ret < 0)
1285 		return ret;
1286 
1287 	if (slave->bus->prop.quirks & SDW_MASTER_QUIRKS_CLEAR_INITIAL_CLASH) {
1288 		/* Clear bus clash interrupt before enabling interrupt mask */
1289 		status = sdw_read_no_pm(slave, SDW_SCP_INT1);
1290 		if (status < 0) {
1291 			dev_err(&slave->dev,
1292 				"SDW_SCP_INT1 (BUS_CLASH) read failed:%d\n", status);
1293 			return status;
1294 		}
1295 		if (status & SDW_SCP_INT1_BUS_CLASH) {
1296 			dev_warn(&slave->dev, "Bus clash detected before INT mask is enabled\n");
1297 			ret = sdw_write_no_pm(slave, SDW_SCP_INT1, SDW_SCP_INT1_BUS_CLASH);
1298 			if (ret < 0) {
1299 				dev_err(&slave->dev,
1300 					"SDW_SCP_INT1 (BUS_CLASH) write failed:%d\n", ret);
1301 				return ret;
1302 			}
1303 		}
1304 	}
1305 	if ((slave->bus->prop.quirks & SDW_MASTER_QUIRKS_CLEAR_INITIAL_PARITY) &&
1306 	    !(slave->prop.quirks & SDW_SLAVE_QUIRKS_INVALID_INITIAL_PARITY)) {
1307 		/* Clear parity interrupt before enabling interrupt mask */
1308 		status = sdw_read_no_pm(slave, SDW_SCP_INT1);
1309 		if (status < 0) {
1310 			dev_err(&slave->dev,
1311 				"SDW_SCP_INT1 (PARITY) read failed:%d\n", status);
1312 			return status;
1313 		}
1314 		if (status & SDW_SCP_INT1_PARITY) {
1315 			dev_warn(&slave->dev, "PARITY error detected before INT mask is enabled\n");
1316 			ret = sdw_write_no_pm(slave, SDW_SCP_INT1, SDW_SCP_INT1_PARITY);
1317 			if (ret < 0) {
1318 				dev_err(&slave->dev,
1319 					"SDW_SCP_INT1 (PARITY) write failed:%d\n", ret);
1320 				return ret;
1321 			}
1322 		}
1323 	}
1324 
1325 	/*
1326 	 * Set SCP_INT1_MASK register, typically bus clash and
1327 	 * implementation-defined interrupt mask. The Parity detection
1328 	 * may not always be correct on startup so its use is
1329 	 * device-dependent, it might e.g. only be enabled in
1330 	 * steady-state after a couple of frames.
1331 	 */
1332 	val = slave->prop.scp_int1_mask;
1333 
1334 	/* Enable SCP interrupts */
1335 	ret = sdw_update_no_pm(slave, SDW_SCP_INTMASK1, val, val);
1336 	if (ret < 0) {
1337 		dev_err(&slave->dev,
1338 			"SDW_SCP_INTMASK1 write failed:%d\n", ret);
1339 		return ret;
1340 	}
1341 
1342 	/* No need to continue if DP0 is not present */
1343 	if (!slave->prop.dp0_prop)
1344 		return 0;
1345 
1346 	/* Enable DP0 interrupts */
1347 	val = prop->dp0_prop->imp_def_interrupts;
1348 	val |= SDW_DP0_INT_PORT_READY | SDW_DP0_INT_BRA_FAILURE;
1349 
1350 	ret = sdw_update_no_pm(slave, SDW_DP0_INTMASK, val, val);
1351 	if (ret < 0)
1352 		dev_err(&slave->dev,
1353 			"SDW_DP0_INTMASK read failed:%d\n", ret);
1354 	return ret;
1355 }
1356 
sdw_handle_dp0_interrupt(struct sdw_slave * slave,u8 * slave_status)1357 static int sdw_handle_dp0_interrupt(struct sdw_slave *slave, u8 *slave_status)
1358 {
1359 	u8 clear, impl_int_mask;
1360 	int status, status2, ret, count = 0;
1361 
1362 	status = sdw_read_no_pm(slave, SDW_DP0_INT);
1363 	if (status < 0) {
1364 		dev_err(&slave->dev,
1365 			"SDW_DP0_INT read failed:%d\n", status);
1366 		return status;
1367 	}
1368 
1369 	do {
1370 		clear = status & ~SDW_DP0_INTERRUPTS;
1371 
1372 		if (status & SDW_DP0_INT_TEST_FAIL) {
1373 			dev_err(&slave->dev, "Test fail for port 0\n");
1374 			clear |= SDW_DP0_INT_TEST_FAIL;
1375 		}
1376 
1377 		/*
1378 		 * Assumption: PORT_READY interrupt will be received only for
1379 		 * ports implementing Channel Prepare state machine (CP_SM)
1380 		 */
1381 
1382 		if (status & SDW_DP0_INT_PORT_READY) {
1383 			complete(&slave->port_ready[0]);
1384 			clear |= SDW_DP0_INT_PORT_READY;
1385 		}
1386 
1387 		if (status & SDW_DP0_INT_BRA_FAILURE) {
1388 			dev_err(&slave->dev, "BRA failed\n");
1389 			clear |= SDW_DP0_INT_BRA_FAILURE;
1390 		}
1391 
1392 		impl_int_mask = SDW_DP0_INT_IMPDEF1 |
1393 			SDW_DP0_INT_IMPDEF2 | SDW_DP0_INT_IMPDEF3;
1394 
1395 		if (status & impl_int_mask) {
1396 			clear |= impl_int_mask;
1397 			*slave_status = clear;
1398 		}
1399 
1400 		/* clear the interrupts but don't touch reserved and SDCA_CASCADE fields */
1401 		ret = sdw_write_no_pm(slave, SDW_DP0_INT, clear);
1402 		if (ret < 0) {
1403 			dev_err(&slave->dev,
1404 				"SDW_DP0_INT write failed:%d\n", ret);
1405 			return ret;
1406 		}
1407 
1408 		/* Read DP0 interrupt again */
1409 		status2 = sdw_read_no_pm(slave, SDW_DP0_INT);
1410 		if (status2 < 0) {
1411 			dev_err(&slave->dev,
1412 				"SDW_DP0_INT read failed:%d\n", status2);
1413 			return status2;
1414 		}
1415 		/* filter to limit loop to interrupts identified in the first status read */
1416 		status &= status2;
1417 
1418 		count++;
1419 
1420 		/* we can get alerts while processing so keep retrying */
1421 	} while ((status & SDW_DP0_INTERRUPTS) && (count < SDW_READ_INTR_CLEAR_RETRY));
1422 
1423 	if (count == SDW_READ_INTR_CLEAR_RETRY)
1424 		dev_warn(&slave->dev, "Reached MAX_RETRY on DP0 read\n");
1425 
1426 	return ret;
1427 }
1428 
sdw_handle_port_interrupt(struct sdw_slave * slave,int port,u8 * slave_status)1429 static int sdw_handle_port_interrupt(struct sdw_slave *slave,
1430 				     int port, u8 *slave_status)
1431 {
1432 	u8 clear, impl_int_mask;
1433 	int status, status2, ret, count = 0;
1434 	u32 addr;
1435 
1436 	if (port == 0)
1437 		return sdw_handle_dp0_interrupt(slave, slave_status);
1438 
1439 	addr = SDW_DPN_INT(port);
1440 	status = sdw_read_no_pm(slave, addr);
1441 	if (status < 0) {
1442 		dev_err(&slave->dev,
1443 			"SDW_DPN_INT read failed:%d\n", status);
1444 
1445 		return status;
1446 	}
1447 
1448 	do {
1449 		clear = status & ~SDW_DPN_INTERRUPTS;
1450 
1451 		if (status & SDW_DPN_INT_TEST_FAIL) {
1452 			dev_err(&slave->dev, "Test fail for port:%d\n", port);
1453 			clear |= SDW_DPN_INT_TEST_FAIL;
1454 		}
1455 
1456 		/*
1457 		 * Assumption: PORT_READY interrupt will be received only
1458 		 * for ports implementing CP_SM.
1459 		 */
1460 		if (status & SDW_DPN_INT_PORT_READY) {
1461 			complete(&slave->port_ready[port]);
1462 			clear |= SDW_DPN_INT_PORT_READY;
1463 		}
1464 
1465 		impl_int_mask = SDW_DPN_INT_IMPDEF1 |
1466 			SDW_DPN_INT_IMPDEF2 | SDW_DPN_INT_IMPDEF3;
1467 
1468 		if (status & impl_int_mask) {
1469 			clear |= impl_int_mask;
1470 			*slave_status = clear;
1471 		}
1472 
1473 		/* clear the interrupt but don't touch reserved fields */
1474 		ret = sdw_write_no_pm(slave, addr, clear);
1475 		if (ret < 0) {
1476 			dev_err(&slave->dev,
1477 				"SDW_DPN_INT write failed:%d\n", ret);
1478 			return ret;
1479 		}
1480 
1481 		/* Read DPN interrupt again */
1482 		status2 = sdw_read_no_pm(slave, addr);
1483 		if (status2 < 0) {
1484 			dev_err(&slave->dev,
1485 				"SDW_DPN_INT read failed:%d\n", status2);
1486 			return status2;
1487 		}
1488 		/* filter to limit loop to interrupts identified in the first status read */
1489 		status &= status2;
1490 
1491 		count++;
1492 
1493 		/* we can get alerts while processing so keep retrying */
1494 	} while ((status & SDW_DPN_INTERRUPTS) && (count < SDW_READ_INTR_CLEAR_RETRY));
1495 
1496 	if (count == SDW_READ_INTR_CLEAR_RETRY)
1497 		dev_warn(&slave->dev, "Reached MAX_RETRY on port read");
1498 
1499 	return ret;
1500 }
1501 
sdw_handle_slave_alerts(struct sdw_slave * slave)1502 static int sdw_handle_slave_alerts(struct sdw_slave *slave)
1503 {
1504 	struct sdw_slave_intr_status slave_intr;
1505 	u8 clear = 0, bit, port_status[15] = {0};
1506 	int port_num, stat, ret, count = 0;
1507 	unsigned long port;
1508 	bool slave_notify;
1509 	u8 sdca_cascade = 0;
1510 	u8 buf, buf2[2], _buf, _buf2[2];
1511 	bool parity_check;
1512 	bool parity_quirk;
1513 
1514 	sdw_modify_slave_status(slave, SDW_SLAVE_ALERT);
1515 
1516 	ret = pm_runtime_get_sync(&slave->dev);
1517 	if (ret < 0 && ret != -EACCES) {
1518 		dev_err(&slave->dev, "Failed to resume device: %d\n", ret);
1519 		pm_runtime_put_noidle(&slave->dev);
1520 		return ret;
1521 	}
1522 
1523 	/* Read Intstat 1, Intstat 2 and Intstat 3 registers */
1524 	ret = sdw_read_no_pm(slave, SDW_SCP_INT1);
1525 	if (ret < 0) {
1526 		dev_err(&slave->dev,
1527 			"SDW_SCP_INT1 read failed:%d\n", ret);
1528 		goto io_err;
1529 	}
1530 	buf = ret;
1531 
1532 	ret = sdw_nread_no_pm(slave, SDW_SCP_INTSTAT2, 2, buf2);
1533 	if (ret < 0) {
1534 		dev_err(&slave->dev,
1535 			"SDW_SCP_INT2/3 read failed:%d\n", ret);
1536 		goto io_err;
1537 	}
1538 
1539 	if (slave->prop.is_sdca) {
1540 		ret = sdw_read_no_pm(slave, SDW_DP0_INT);
1541 		if (ret < 0) {
1542 			dev_err(&slave->dev,
1543 				"SDW_DP0_INT read failed:%d\n", ret);
1544 			goto io_err;
1545 		}
1546 		sdca_cascade = ret & SDW_DP0_SDCA_CASCADE;
1547 	}
1548 
1549 	do {
1550 		slave_notify = false;
1551 
1552 		/*
1553 		 * Check parity, bus clash and Slave (impl defined)
1554 		 * interrupt
1555 		 */
1556 		if (buf & SDW_SCP_INT1_PARITY) {
1557 			parity_check = slave->prop.scp_int1_mask & SDW_SCP_INT1_PARITY;
1558 			parity_quirk = !slave->first_interrupt_done &&
1559 				(slave->prop.quirks & SDW_SLAVE_QUIRKS_INVALID_INITIAL_PARITY);
1560 
1561 			if (parity_check && !parity_quirk)
1562 				dev_err(&slave->dev, "Parity error detected\n");
1563 			clear |= SDW_SCP_INT1_PARITY;
1564 		}
1565 
1566 		if (buf & SDW_SCP_INT1_BUS_CLASH) {
1567 			if (slave->prop.scp_int1_mask & SDW_SCP_INT1_BUS_CLASH)
1568 				dev_err(&slave->dev, "Bus clash detected\n");
1569 			clear |= SDW_SCP_INT1_BUS_CLASH;
1570 		}
1571 
1572 		/*
1573 		 * When bus clash or parity errors are detected, such errors
1574 		 * are unlikely to be recoverable errors.
1575 		 * TODO: In such scenario, reset bus. Make this configurable
1576 		 * via sysfs property with bus reset being the default.
1577 		 */
1578 
1579 		if (buf & SDW_SCP_INT1_IMPL_DEF) {
1580 			if (slave->prop.scp_int1_mask & SDW_SCP_INT1_IMPL_DEF) {
1581 				dev_dbg(&slave->dev, "Slave impl defined interrupt\n");
1582 				slave_notify = true;
1583 			}
1584 			clear |= SDW_SCP_INT1_IMPL_DEF;
1585 		}
1586 
1587 		/* the SDCA interrupts are cleared in the codec driver .interrupt_callback() */
1588 		if (sdca_cascade)
1589 			slave_notify = true;
1590 
1591 		/* Check port 0 - 3 interrupts */
1592 		port = buf & SDW_SCP_INT1_PORT0_3;
1593 
1594 		/* To get port number corresponding to bits, shift it */
1595 		port = FIELD_GET(SDW_SCP_INT1_PORT0_3, port);
1596 		for_each_set_bit(bit, &port, 8) {
1597 			sdw_handle_port_interrupt(slave, bit,
1598 						  &port_status[bit]);
1599 		}
1600 
1601 		/* Check if cascade 2 interrupt is present */
1602 		if (buf & SDW_SCP_INT1_SCP2_CASCADE) {
1603 			port = buf2[0] & SDW_SCP_INTSTAT2_PORT4_10;
1604 			for_each_set_bit(bit, &port, 8) {
1605 				/* scp2 ports start from 4 */
1606 				port_num = bit + 3;
1607 				sdw_handle_port_interrupt(slave,
1608 						port_num,
1609 						&port_status[port_num]);
1610 			}
1611 		}
1612 
1613 		/* now check last cascade */
1614 		if (buf2[0] & SDW_SCP_INTSTAT2_SCP3_CASCADE) {
1615 			port = buf2[1] & SDW_SCP_INTSTAT3_PORT11_14;
1616 			for_each_set_bit(bit, &port, 8) {
1617 				/* scp3 ports start from 11 */
1618 				port_num = bit + 10;
1619 				sdw_handle_port_interrupt(slave,
1620 						port_num,
1621 						&port_status[port_num]);
1622 			}
1623 		}
1624 
1625 		/* Update the Slave driver */
1626 		if (slave_notify) {
1627 			mutex_lock(&slave->sdw_dev_lock);
1628 
1629 			if (slave->probed) {
1630 				struct device *dev = &slave->dev;
1631 				struct sdw_driver *drv = drv_to_sdw_driver(dev->driver);
1632 
1633 				if (drv->ops && drv->ops->interrupt_callback) {
1634 					slave_intr.sdca_cascade = sdca_cascade;
1635 					slave_intr.control_port = clear;
1636 					memcpy(slave_intr.port, &port_status,
1637 					       sizeof(slave_intr.port));
1638 
1639 					drv->ops->interrupt_callback(slave, &slave_intr);
1640 				}
1641 			}
1642 
1643 			mutex_unlock(&slave->sdw_dev_lock);
1644 		}
1645 
1646 		/* Ack interrupt */
1647 		ret = sdw_write_no_pm(slave, SDW_SCP_INT1, clear);
1648 		if (ret < 0) {
1649 			dev_err(&slave->dev,
1650 				"SDW_SCP_INT1 write failed:%d\n", ret);
1651 			goto io_err;
1652 		}
1653 
1654 		/* at this point all initial interrupt sources were handled */
1655 		slave->first_interrupt_done = true;
1656 
1657 		/*
1658 		 * Read status again to ensure no new interrupts arrived
1659 		 * while servicing interrupts.
1660 		 */
1661 		ret = sdw_read_no_pm(slave, SDW_SCP_INT1);
1662 		if (ret < 0) {
1663 			dev_err(&slave->dev,
1664 				"SDW_SCP_INT1 recheck read failed:%d\n", ret);
1665 			goto io_err;
1666 		}
1667 		_buf = ret;
1668 
1669 		ret = sdw_nread_no_pm(slave, SDW_SCP_INTSTAT2, 2, _buf2);
1670 		if (ret < 0) {
1671 			dev_err(&slave->dev,
1672 				"SDW_SCP_INT2/3 recheck read failed:%d\n", ret);
1673 			goto io_err;
1674 		}
1675 
1676 		if (slave->prop.is_sdca) {
1677 			ret = sdw_read_no_pm(slave, SDW_DP0_INT);
1678 			if (ret < 0) {
1679 				dev_err(&slave->dev,
1680 					"SDW_DP0_INT recheck read failed:%d\n", ret);
1681 				goto io_err;
1682 			}
1683 			sdca_cascade = ret & SDW_DP0_SDCA_CASCADE;
1684 		}
1685 
1686 		/*
1687 		 * Make sure no interrupts are pending, but filter to limit loop
1688 		 * to interrupts identified in the first status read
1689 		 */
1690 		buf &= _buf;
1691 		buf2[0] &= _buf2[0];
1692 		buf2[1] &= _buf2[1];
1693 		stat = buf || buf2[0] || buf2[1] || sdca_cascade;
1694 
1695 		/*
1696 		 * Exit loop if Slave is continuously in ALERT state even
1697 		 * after servicing the interrupt multiple times.
1698 		 */
1699 		count++;
1700 
1701 		/* we can get alerts while processing so keep retrying */
1702 	} while (stat != 0 && count < SDW_READ_INTR_CLEAR_RETRY);
1703 
1704 	if (count == SDW_READ_INTR_CLEAR_RETRY)
1705 		dev_warn(&slave->dev, "Reached MAX_RETRY on alert read\n");
1706 
1707 io_err:
1708 	pm_runtime_mark_last_busy(&slave->dev);
1709 	pm_runtime_put_autosuspend(&slave->dev);
1710 
1711 	return ret;
1712 }
1713 
sdw_update_slave_status(struct sdw_slave * slave,enum sdw_slave_status status)1714 static int sdw_update_slave_status(struct sdw_slave *slave,
1715 				   enum sdw_slave_status status)
1716 {
1717 	int ret = 0;
1718 
1719 	mutex_lock(&slave->sdw_dev_lock);
1720 
1721 	if (slave->probed) {
1722 		struct device *dev = &slave->dev;
1723 		struct sdw_driver *drv = drv_to_sdw_driver(dev->driver);
1724 
1725 		if (drv->ops && drv->ops->update_status)
1726 			ret = drv->ops->update_status(slave, status);
1727 	}
1728 
1729 	mutex_unlock(&slave->sdw_dev_lock);
1730 
1731 	return ret;
1732 }
1733 
1734 /**
1735  * sdw_handle_slave_status() - Handle Slave status
1736  * @bus: SDW bus instance
1737  * @status: Status for all Slave(s)
1738  */
sdw_handle_slave_status(struct sdw_bus * bus,enum sdw_slave_status status[])1739 int sdw_handle_slave_status(struct sdw_bus *bus,
1740 			    enum sdw_slave_status status[])
1741 {
1742 	enum sdw_slave_status prev_status;
1743 	struct sdw_slave *slave;
1744 	bool attached_initializing;
1745 	int i, ret = 0;
1746 
1747 	/* first check if any Slaves fell off the bus */
1748 	for (i = 1; i <= SDW_MAX_DEVICES; i++) {
1749 		mutex_lock(&bus->bus_lock);
1750 		if (test_bit(i, bus->assigned) == false) {
1751 			mutex_unlock(&bus->bus_lock);
1752 			continue;
1753 		}
1754 		mutex_unlock(&bus->bus_lock);
1755 
1756 		slave = sdw_get_slave(bus, i);
1757 		if (!slave)
1758 			continue;
1759 
1760 		if (status[i] == SDW_SLAVE_UNATTACHED &&
1761 		    slave->status != SDW_SLAVE_UNATTACHED)
1762 			sdw_modify_slave_status(slave, SDW_SLAVE_UNATTACHED);
1763 	}
1764 
1765 	if (status[0] == SDW_SLAVE_ATTACHED) {
1766 		dev_dbg(bus->dev, "Slave attached, programming device number\n");
1767 		ret = sdw_program_device_num(bus);
1768 		if (ret < 0)
1769 			dev_err(bus->dev, "Slave attach failed: %d\n", ret);
1770 		/*
1771 		 * programming a device number will have side effects,
1772 		 * so we deal with other devices at a later time
1773 		 */
1774 		return ret;
1775 	}
1776 
1777 	/* Continue to check other slave statuses */
1778 	for (i = 1; i <= SDW_MAX_DEVICES; i++) {
1779 		mutex_lock(&bus->bus_lock);
1780 		if (test_bit(i, bus->assigned) == false) {
1781 			mutex_unlock(&bus->bus_lock);
1782 			continue;
1783 		}
1784 		mutex_unlock(&bus->bus_lock);
1785 
1786 		slave = sdw_get_slave(bus, i);
1787 		if (!slave)
1788 			continue;
1789 
1790 		attached_initializing = false;
1791 
1792 		switch (status[i]) {
1793 		case SDW_SLAVE_UNATTACHED:
1794 			if (slave->status == SDW_SLAVE_UNATTACHED)
1795 				break;
1796 
1797 			sdw_modify_slave_status(slave, SDW_SLAVE_UNATTACHED);
1798 			break;
1799 
1800 		case SDW_SLAVE_ALERT:
1801 			ret = sdw_handle_slave_alerts(slave);
1802 			if (ret < 0)
1803 				dev_err(&slave->dev,
1804 					"Slave %d alert handling failed: %d\n",
1805 					i, ret);
1806 			break;
1807 
1808 		case SDW_SLAVE_ATTACHED:
1809 			if (slave->status == SDW_SLAVE_ATTACHED)
1810 				break;
1811 
1812 			prev_status = slave->status;
1813 			sdw_modify_slave_status(slave, SDW_SLAVE_ATTACHED);
1814 
1815 			if (prev_status == SDW_SLAVE_ALERT)
1816 				break;
1817 
1818 			attached_initializing = true;
1819 
1820 			ret = sdw_initialize_slave(slave);
1821 			if (ret < 0)
1822 				dev_err(&slave->dev,
1823 					"Slave %d initialization failed: %d\n",
1824 					i, ret);
1825 
1826 			break;
1827 
1828 		default:
1829 			dev_err(&slave->dev, "Invalid slave %d status:%d\n",
1830 				i, status[i]);
1831 			break;
1832 		}
1833 
1834 		ret = sdw_update_slave_status(slave, status[i]);
1835 		if (ret < 0)
1836 			dev_err(&slave->dev,
1837 				"Update Slave status failed:%d\n", ret);
1838 		if (attached_initializing) {
1839 			dev_dbg(&slave->dev,
1840 				"%s: signaling initialization completion for Slave %d\n",
1841 				__func__, slave->dev_num);
1842 
1843 			complete_all(&slave->initialization_complete);
1844 
1845 			/*
1846 			 * If the manager became pm_runtime active, the peripherals will be
1847 			 * restarted and attach, but their pm_runtime status may remain
1848 			 * suspended. If the 'update_slave_status' callback initiates
1849 			 * any sort of deferred processing, this processing would not be
1850 			 * cancelled on pm_runtime suspend.
1851 			 * To avoid such zombie states, we queue a request to resume.
1852 			 * This would be a no-op in case the peripheral was being resumed
1853 			 * by e.g. the ALSA/ASoC framework.
1854 			 */
1855 			pm_request_resume(&slave->dev);
1856 		}
1857 	}
1858 
1859 	return ret;
1860 }
1861 EXPORT_SYMBOL(sdw_handle_slave_status);
1862 
sdw_clear_slave_status(struct sdw_bus * bus,u32 request)1863 void sdw_clear_slave_status(struct sdw_bus *bus, u32 request)
1864 {
1865 	struct sdw_slave *slave;
1866 	int i;
1867 
1868 	/* Check all non-zero devices */
1869 	for (i = 1; i <= SDW_MAX_DEVICES; i++) {
1870 		mutex_lock(&bus->bus_lock);
1871 		if (test_bit(i, bus->assigned) == false) {
1872 			mutex_unlock(&bus->bus_lock);
1873 			continue;
1874 		}
1875 		mutex_unlock(&bus->bus_lock);
1876 
1877 		slave = sdw_get_slave(bus, i);
1878 		if (!slave)
1879 			continue;
1880 
1881 		if (slave->status != SDW_SLAVE_UNATTACHED) {
1882 			sdw_modify_slave_status(slave, SDW_SLAVE_UNATTACHED);
1883 			slave->first_interrupt_done = false;
1884 			sdw_update_slave_status(slave, SDW_SLAVE_UNATTACHED);
1885 		}
1886 
1887 		/* keep track of request, used in pm_runtime resume */
1888 		slave->unattach_request = request;
1889 	}
1890 }
1891 EXPORT_SYMBOL(sdw_clear_slave_status);
1892