1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
4 *
5 * Swap reorganised 29.12.95, Stephen Tweedie.
6 * kswapd added: 7.1.96 sct
7 * Removed kswapd_ctl limits, and swap out as many pages as needed
8 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
9 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
10 * Multiqueue VM started 5.8.00, Rik van Riel.
11 */
12
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14
15 #include <linux/mm.h>
16 #include <linux/sched/mm.h>
17 #include <linux/module.h>
18 #include <linux/gfp.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/swap.h>
21 #include <linux/pagemap.h>
22 #include <linux/init.h>
23 #include <linux/highmem.h>
24 #include <linux/vmpressure.h>
25 #include <linux/vmstat.h>
26 #include <linux/file.h>
27 #include <linux/writeback.h>
28 #include <linux/blkdev.h>
29 #include <linux/buffer_head.h> /* for try_to_release_page(),
30 buffer_heads_over_limit */
31 #include <linux/mm_inline.h>
32 #include <linux/backing-dev.h>
33 #include <linux/rmap.h>
34 #include <linux/topology.h>
35 #include <linux/cpu.h>
36 #include <linux/cpuset.h>
37 #include <linux/compaction.h>
38 #include <linux/notifier.h>
39 #include <linux/rwsem.h>
40 #include <linux/delay.h>
41 #include <linux/kthread.h>
42 #include <linux/freezer.h>
43 #include <linux/memcontrol.h>
44 #include <linux/migrate.h>
45 #include <linux/delayacct.h>
46 #include <linux/sysctl.h>
47 #include <linux/oom.h>
48 #include <linux/pagevec.h>
49 #include <linux/prefetch.h>
50 #include <linux/printk.h>
51 #include <linux/dax.h>
52 #include <linux/psi.h>
53 #include <linux/pagewalk.h>
54 #include <linux/shmem_fs.h>
55 #include <linux/ctype.h>
56 #include <linux/debugfs.h>
57 #include <linux/rculist_nulls.h>
58 #include <linux/random.h>
59
60 #include <asm/tlbflush.h>
61 #include <asm/div64.h>
62
63 #include <linux/swapops.h>
64 #include <linux/balloon_compaction.h>
65
66 #include "internal.h"
67
68 #define CREATE_TRACE_POINTS
69 #include <trace/events/vmscan.h>
70
71 #undef CREATE_TRACE_POINTS
72 #include <trace/hooks/vmscan.h>
73
74 #undef CREATE_TRACE_POINTS
75 #include <trace/hooks/mm.h>
76
77 EXPORT_TRACEPOINT_SYMBOL_GPL(mm_vmscan_direct_reclaim_begin);
78 EXPORT_TRACEPOINT_SYMBOL_GPL(mm_vmscan_direct_reclaim_end);
79
80 struct scan_control {
81 /* How many pages shrink_list() should reclaim */
82 unsigned long nr_to_reclaim;
83
84 /*
85 * Nodemask of nodes allowed by the caller. If NULL, all nodes
86 * are scanned.
87 */
88 nodemask_t *nodemask;
89
90 /*
91 * The memory cgroup that hit its limit and as a result is the
92 * primary target of this reclaim invocation.
93 */
94 struct mem_cgroup *target_mem_cgroup;
95
96 /*
97 * Scan pressure balancing between anon and file LRUs
98 */
99 unsigned long anon_cost;
100 unsigned long file_cost;
101
102 /* Can active pages be deactivated as part of reclaim? */
103 #define DEACTIVATE_ANON 1
104 #define DEACTIVATE_FILE 2
105 unsigned int may_deactivate:2;
106 unsigned int force_deactivate:1;
107 unsigned int skipped_deactivate:1;
108
109 /* Writepage batching in laptop mode; RECLAIM_WRITE */
110 unsigned int may_writepage:1;
111
112 /* Can mapped pages be reclaimed? */
113 unsigned int may_unmap:1;
114
115 /* Can pages be swapped as part of reclaim? */
116 unsigned int may_swap:1;
117
118 /* Proactive reclaim invoked by userspace through memory.reclaim */
119 unsigned int proactive:1;
120
121 /*
122 * Cgroup memory below memory.low is protected as long as we
123 * don't threaten to OOM. If any cgroup is reclaimed at
124 * reduced force or passed over entirely due to its memory.low
125 * setting (memcg_low_skipped), and nothing is reclaimed as a
126 * result, then go back for one more cycle that reclaims the protected
127 * memory (memcg_low_reclaim) to avert OOM.
128 */
129 unsigned int memcg_low_reclaim:1;
130 unsigned int memcg_low_skipped:1;
131
132 unsigned int hibernation_mode:1;
133
134 /* One of the zones is ready for compaction */
135 unsigned int compaction_ready:1;
136
137 /* There is easily reclaimable cold cache in the current node */
138 unsigned int cache_trim_mode:1;
139
140 /* The file pages on the current node are dangerously low */
141 unsigned int file_is_tiny:1;
142
143 /* Always discard instead of demoting to lower tier memory */
144 unsigned int no_demotion:1;
145
146 /* Allocation order */
147 s8 order;
148
149 /* Scan (total_size >> priority) pages at once */
150 s8 priority;
151
152 /* The highest zone to isolate pages for reclaim from */
153 s8 reclaim_idx;
154
155 /* This context's GFP mask */
156 gfp_t gfp_mask;
157
158 /* Incremented by the number of inactive pages that were scanned */
159 unsigned long nr_scanned;
160
161 /* Number of pages freed so far during a call to shrink_zones() */
162 unsigned long nr_reclaimed;
163
164 struct {
165 unsigned int dirty;
166 unsigned int unqueued_dirty;
167 unsigned int congested;
168 unsigned int writeback;
169 unsigned int immediate;
170 unsigned int file_taken;
171 unsigned int taken;
172 } nr;
173
174 /* for recording the reclaimed slab by now */
175 struct reclaim_state reclaim_state;
176 };
177
178 #ifdef ARCH_HAS_PREFETCHW
179 #define prefetchw_prev_lru_page(_page, _base, _field) \
180 do { \
181 if ((_page)->lru.prev != _base) { \
182 struct page *prev; \
183 \
184 prev = lru_to_page(&(_page->lru)); \
185 prefetchw(&prev->_field); \
186 } \
187 } while (0)
188 #else
189 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
190 #endif
191
192 /*
193 * From 0 .. 200. Higher means more swappy.
194 */
195 int vm_swappiness = 60;
196
set_task_reclaim_state(struct task_struct * task,struct reclaim_state * rs)197 static void set_task_reclaim_state(struct task_struct *task,
198 struct reclaim_state *rs)
199 {
200 /* Check for an overwrite */
201 WARN_ON_ONCE(rs && task->reclaim_state);
202
203 /* Check for the nulling of an already-nulled member */
204 WARN_ON_ONCE(!rs && !task->reclaim_state);
205
206 task->reclaim_state = rs;
207 }
208
209 static LIST_HEAD(shrinker_list);
210 static DECLARE_RWSEM(shrinker_rwsem);
211
212 #ifdef CONFIG_MEMCG
213 static int shrinker_nr_max;
214
215 /* The shrinker_info is expanded in a batch of BITS_PER_LONG */
shrinker_map_size(int nr_items)216 static inline int shrinker_map_size(int nr_items)
217 {
218 return (DIV_ROUND_UP(nr_items, BITS_PER_LONG) * sizeof(unsigned long));
219 }
220
shrinker_defer_size(int nr_items)221 static inline int shrinker_defer_size(int nr_items)
222 {
223 return (round_up(nr_items, BITS_PER_LONG) * sizeof(atomic_long_t));
224 }
225
shrinker_info_protected(struct mem_cgroup * memcg,int nid)226 static struct shrinker_info *shrinker_info_protected(struct mem_cgroup *memcg,
227 int nid)
228 {
229 return rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_info,
230 lockdep_is_held(&shrinker_rwsem));
231 }
232
expand_one_shrinker_info(struct mem_cgroup * memcg,int map_size,int defer_size,int old_map_size,int old_defer_size)233 static int expand_one_shrinker_info(struct mem_cgroup *memcg,
234 int map_size, int defer_size,
235 int old_map_size, int old_defer_size)
236 {
237 struct shrinker_info *new, *old;
238 struct mem_cgroup_per_node *pn;
239 int nid;
240 int size = map_size + defer_size;
241
242 for_each_node(nid) {
243 pn = memcg->nodeinfo[nid];
244 old = shrinker_info_protected(memcg, nid);
245 /* Not yet online memcg */
246 if (!old)
247 return 0;
248
249 new = kvmalloc_node(sizeof(*new) + size, GFP_KERNEL, nid);
250 if (!new)
251 return -ENOMEM;
252
253 new->nr_deferred = (atomic_long_t *)(new + 1);
254 new->map = (void *)new->nr_deferred + defer_size;
255
256 /* map: set all old bits, clear all new bits */
257 memset(new->map, (int)0xff, old_map_size);
258 memset((void *)new->map + old_map_size, 0, map_size - old_map_size);
259 /* nr_deferred: copy old values, clear all new values */
260 memcpy(new->nr_deferred, old->nr_deferred, old_defer_size);
261 memset((void *)new->nr_deferred + old_defer_size, 0,
262 defer_size - old_defer_size);
263
264 rcu_assign_pointer(pn->shrinker_info, new);
265 kvfree_rcu(old, rcu);
266 }
267
268 return 0;
269 }
270
free_shrinker_info(struct mem_cgroup * memcg)271 void free_shrinker_info(struct mem_cgroup *memcg)
272 {
273 struct mem_cgroup_per_node *pn;
274 struct shrinker_info *info;
275 int nid;
276
277 for_each_node(nid) {
278 pn = memcg->nodeinfo[nid];
279 info = rcu_dereference_protected(pn->shrinker_info, true);
280 kvfree(info);
281 rcu_assign_pointer(pn->shrinker_info, NULL);
282 }
283 }
284
alloc_shrinker_info(struct mem_cgroup * memcg)285 int alloc_shrinker_info(struct mem_cgroup *memcg)
286 {
287 struct shrinker_info *info;
288 int nid, size, ret = 0;
289 int map_size, defer_size = 0;
290
291 down_write(&shrinker_rwsem);
292 map_size = shrinker_map_size(shrinker_nr_max);
293 defer_size = shrinker_defer_size(shrinker_nr_max);
294 size = map_size + defer_size;
295 for_each_node(nid) {
296 info = kvzalloc_node(sizeof(*info) + size, GFP_KERNEL, nid);
297 if (!info) {
298 free_shrinker_info(memcg);
299 ret = -ENOMEM;
300 break;
301 }
302 info->nr_deferred = (atomic_long_t *)(info + 1);
303 info->map = (void *)info->nr_deferred + defer_size;
304 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_info, info);
305 }
306 up_write(&shrinker_rwsem);
307
308 return ret;
309 }
310
need_expand(int nr_max)311 static inline bool need_expand(int nr_max)
312 {
313 return round_up(nr_max, BITS_PER_LONG) >
314 round_up(shrinker_nr_max, BITS_PER_LONG);
315 }
316
expand_shrinker_info(int new_id)317 static int expand_shrinker_info(int new_id)
318 {
319 int ret = 0;
320 int new_nr_max = new_id + 1;
321 int map_size, defer_size = 0;
322 int old_map_size, old_defer_size = 0;
323 struct mem_cgroup *memcg;
324
325 if (!need_expand(new_nr_max))
326 goto out;
327
328 if (!root_mem_cgroup)
329 goto out;
330
331 lockdep_assert_held(&shrinker_rwsem);
332
333 map_size = shrinker_map_size(new_nr_max);
334 defer_size = shrinker_defer_size(new_nr_max);
335 old_map_size = shrinker_map_size(shrinker_nr_max);
336 old_defer_size = shrinker_defer_size(shrinker_nr_max);
337
338 memcg = mem_cgroup_iter(NULL, NULL, NULL);
339 do {
340 ret = expand_one_shrinker_info(memcg, map_size, defer_size,
341 old_map_size, old_defer_size);
342 if (ret) {
343 mem_cgroup_iter_break(NULL, memcg);
344 goto out;
345 }
346 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
347 out:
348 if (!ret)
349 shrinker_nr_max = new_nr_max;
350
351 return ret;
352 }
353
set_shrinker_bit(struct mem_cgroup * memcg,int nid,int shrinker_id)354 void set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
355 {
356 if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
357 struct shrinker_info *info;
358
359 rcu_read_lock();
360 info = rcu_dereference(memcg->nodeinfo[nid]->shrinker_info);
361 /* Pairs with smp mb in shrink_slab() */
362 smp_mb__before_atomic();
363 set_bit(shrinker_id, info->map);
364 rcu_read_unlock();
365 }
366 }
367
368 static DEFINE_IDR(shrinker_idr);
369
prealloc_memcg_shrinker(struct shrinker * shrinker)370 static int prealloc_memcg_shrinker(struct shrinker *shrinker)
371 {
372 int id, ret = -ENOMEM;
373
374 if (mem_cgroup_disabled())
375 return -ENOSYS;
376
377 down_write(&shrinker_rwsem);
378 /* This may call shrinker, so it must use down_read_trylock() */
379 id = idr_alloc(&shrinker_idr, shrinker, 0, 0, GFP_KERNEL);
380 if (id < 0)
381 goto unlock;
382
383 if (id >= shrinker_nr_max) {
384 if (expand_shrinker_info(id)) {
385 idr_remove(&shrinker_idr, id);
386 goto unlock;
387 }
388 }
389 shrinker->id = id;
390 ret = 0;
391 unlock:
392 up_write(&shrinker_rwsem);
393 return ret;
394 }
395
unregister_memcg_shrinker(struct shrinker * shrinker)396 static void unregister_memcg_shrinker(struct shrinker *shrinker)
397 {
398 int id = shrinker->id;
399
400 BUG_ON(id < 0);
401
402 lockdep_assert_held(&shrinker_rwsem);
403
404 idr_remove(&shrinker_idr, id);
405 }
406
xchg_nr_deferred_memcg(int nid,struct shrinker * shrinker,struct mem_cgroup * memcg)407 static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker,
408 struct mem_cgroup *memcg)
409 {
410 struct shrinker_info *info;
411
412 info = shrinker_info_protected(memcg, nid);
413 return atomic_long_xchg(&info->nr_deferred[shrinker->id], 0);
414 }
415
add_nr_deferred_memcg(long nr,int nid,struct shrinker * shrinker,struct mem_cgroup * memcg)416 static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker,
417 struct mem_cgroup *memcg)
418 {
419 struct shrinker_info *info;
420
421 info = shrinker_info_protected(memcg, nid);
422 return atomic_long_add_return(nr, &info->nr_deferred[shrinker->id]);
423 }
424
reparent_shrinker_deferred(struct mem_cgroup * memcg)425 void reparent_shrinker_deferred(struct mem_cgroup *memcg)
426 {
427 int i, nid;
428 long nr;
429 struct mem_cgroup *parent;
430 struct shrinker_info *child_info, *parent_info;
431
432 parent = parent_mem_cgroup(memcg);
433 if (!parent)
434 parent = root_mem_cgroup;
435
436 /* Prevent from concurrent shrinker_info expand */
437 down_read(&shrinker_rwsem);
438 for_each_node(nid) {
439 child_info = shrinker_info_protected(memcg, nid);
440 parent_info = shrinker_info_protected(parent, nid);
441 for (i = 0; i < shrinker_nr_max; i++) {
442 nr = atomic_long_read(&child_info->nr_deferred[i]);
443 atomic_long_add(nr, &parent_info->nr_deferred[i]);
444 }
445 }
446 up_read(&shrinker_rwsem);
447 }
448
cgroup_reclaim(struct scan_control * sc)449 static bool cgroup_reclaim(struct scan_control *sc)
450 {
451 return sc->target_mem_cgroup;
452 }
453
global_reclaim(struct scan_control * sc)454 static bool global_reclaim(struct scan_control *sc)
455 {
456 return !sc->target_mem_cgroup || mem_cgroup_is_root(sc->target_mem_cgroup);
457 }
458
459 /**
460 * writeback_throttling_sane - is the usual dirty throttling mechanism available?
461 * @sc: scan_control in question
462 *
463 * The normal page dirty throttling mechanism in balance_dirty_pages() is
464 * completely broken with the legacy memcg and direct stalling in
465 * shrink_page_list() is used for throttling instead, which lacks all the
466 * niceties such as fairness, adaptive pausing, bandwidth proportional
467 * allocation and configurability.
468 *
469 * This function tests whether the vmscan currently in progress can assume
470 * that the normal dirty throttling mechanism is operational.
471 */
writeback_throttling_sane(struct scan_control * sc)472 static bool writeback_throttling_sane(struct scan_control *sc)
473 {
474 if (!cgroup_reclaim(sc))
475 return true;
476 #ifdef CONFIG_CGROUP_WRITEBACK
477 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
478 return true;
479 #endif
480 return false;
481 }
482 #else
prealloc_memcg_shrinker(struct shrinker * shrinker)483 static int prealloc_memcg_shrinker(struct shrinker *shrinker)
484 {
485 return -ENOSYS;
486 }
487
unregister_memcg_shrinker(struct shrinker * shrinker)488 static void unregister_memcg_shrinker(struct shrinker *shrinker)
489 {
490 }
491
xchg_nr_deferred_memcg(int nid,struct shrinker * shrinker,struct mem_cgroup * memcg)492 static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker,
493 struct mem_cgroup *memcg)
494 {
495 return 0;
496 }
497
add_nr_deferred_memcg(long nr,int nid,struct shrinker * shrinker,struct mem_cgroup * memcg)498 static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker,
499 struct mem_cgroup *memcg)
500 {
501 return 0;
502 }
503
cgroup_reclaim(struct scan_control * sc)504 static bool cgroup_reclaim(struct scan_control *sc)
505 {
506 return false;
507 }
508
global_reclaim(struct scan_control * sc)509 static bool global_reclaim(struct scan_control *sc)
510 {
511 return true;
512 }
513
writeback_throttling_sane(struct scan_control * sc)514 static bool writeback_throttling_sane(struct scan_control *sc)
515 {
516 return true;
517 }
518 #endif
519
xchg_nr_deferred(struct shrinker * shrinker,struct shrink_control * sc)520 static long xchg_nr_deferred(struct shrinker *shrinker,
521 struct shrink_control *sc)
522 {
523 int nid = sc->nid;
524
525 if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
526 nid = 0;
527
528 if (sc->memcg &&
529 (shrinker->flags & SHRINKER_MEMCG_AWARE))
530 return xchg_nr_deferred_memcg(nid, shrinker,
531 sc->memcg);
532
533 return atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
534 }
535
536
add_nr_deferred(long nr,struct shrinker * shrinker,struct shrink_control * sc)537 static long add_nr_deferred(long nr, struct shrinker *shrinker,
538 struct shrink_control *sc)
539 {
540 int nid = sc->nid;
541
542 if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
543 nid = 0;
544
545 if (sc->memcg &&
546 (shrinker->flags & SHRINKER_MEMCG_AWARE))
547 return add_nr_deferred_memcg(nr, nid, shrinker,
548 sc->memcg);
549
550 return atomic_long_add_return(nr, &shrinker->nr_deferred[nid]);
551 }
552
can_demote(int nid,struct scan_control * sc)553 static bool can_demote(int nid, struct scan_control *sc)
554 {
555 if (!numa_demotion_enabled)
556 return false;
557 if (sc) {
558 if (sc->no_demotion)
559 return false;
560 /* It is pointless to do demotion in memcg reclaim */
561 if (cgroup_reclaim(sc))
562 return false;
563 }
564 if (next_demotion_node(nid) == NUMA_NO_NODE)
565 return false;
566
567 return true;
568 }
569
can_reclaim_anon_pages(struct mem_cgroup * memcg,int nid,struct scan_control * sc)570 static inline bool can_reclaim_anon_pages(struct mem_cgroup *memcg,
571 int nid,
572 struct scan_control *sc)
573 {
574 if (memcg == NULL) {
575 /*
576 * For non-memcg reclaim, is there
577 * space in any swap device?
578 */
579 if (get_nr_swap_pages() > 0)
580 return true;
581 } else {
582 /* Is the memcg below its swap limit? */
583 if (mem_cgroup_get_nr_swap_pages(memcg) > 0)
584 return true;
585 }
586
587 /*
588 * The page can not be swapped.
589 *
590 * Can it be reclaimed from this node via demotion?
591 */
592 return can_demote(nid, sc);
593 }
594
595 /*
596 * This misses isolated pages which are not accounted for to save counters.
597 * As the data only determines if reclaim or compaction continues, it is
598 * not expected that isolated pages will be a dominating factor.
599 */
zone_reclaimable_pages(struct zone * zone)600 unsigned long zone_reclaimable_pages(struct zone *zone)
601 {
602 unsigned long nr;
603
604 nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
605 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
606 if (can_reclaim_anon_pages(NULL, zone_to_nid(zone), NULL))
607 nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
608 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
609
610 return nr;
611 }
612
613 /**
614 * lruvec_lru_size - Returns the number of pages on the given LRU list.
615 * @lruvec: lru vector
616 * @lru: lru to use
617 * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
618 */
lruvec_lru_size(struct lruvec * lruvec,enum lru_list lru,int zone_idx)619 static unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru,
620 int zone_idx)
621 {
622 unsigned long size = 0;
623 int zid;
624
625 for (zid = 0; zid <= zone_idx && zid < MAX_NR_ZONES; zid++) {
626 struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
627
628 if (!managed_zone(zone))
629 continue;
630
631 if (!mem_cgroup_disabled())
632 size += mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
633 else
634 size += zone_page_state(zone, NR_ZONE_LRU_BASE + lru);
635 }
636 return size;
637 }
638
639 /*
640 * Add a shrinker callback to be called from the vm.
641 */
prealloc_shrinker(struct shrinker * shrinker)642 int prealloc_shrinker(struct shrinker *shrinker)
643 {
644 unsigned int size;
645 int err;
646
647 if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
648 err = prealloc_memcg_shrinker(shrinker);
649 if (err != -ENOSYS)
650 return err;
651
652 shrinker->flags &= ~SHRINKER_MEMCG_AWARE;
653 }
654
655 size = sizeof(*shrinker->nr_deferred);
656 if (shrinker->flags & SHRINKER_NUMA_AWARE)
657 size *= nr_node_ids;
658
659 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
660 if (!shrinker->nr_deferred)
661 return -ENOMEM;
662
663 return 0;
664 }
665
free_prealloced_shrinker(struct shrinker * shrinker)666 void free_prealloced_shrinker(struct shrinker *shrinker)
667 {
668 if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
669 down_write(&shrinker_rwsem);
670 unregister_memcg_shrinker(shrinker);
671 up_write(&shrinker_rwsem);
672 return;
673 }
674
675 kfree(shrinker->nr_deferred);
676 shrinker->nr_deferred = NULL;
677 }
678
register_shrinker_prepared(struct shrinker * shrinker)679 void register_shrinker_prepared(struct shrinker *shrinker)
680 {
681 down_write(&shrinker_rwsem);
682 list_add_tail(&shrinker->list, &shrinker_list);
683 shrinker->flags |= SHRINKER_REGISTERED;
684 up_write(&shrinker_rwsem);
685 }
686
register_shrinker(struct shrinker * shrinker)687 int register_shrinker(struct shrinker *shrinker)
688 {
689 int err = prealloc_shrinker(shrinker);
690
691 if (err)
692 return err;
693 register_shrinker_prepared(shrinker);
694 return 0;
695 }
696 EXPORT_SYMBOL(register_shrinker);
697
698 /*
699 * Remove one
700 */
unregister_shrinker(struct shrinker * shrinker)701 void unregister_shrinker(struct shrinker *shrinker)
702 {
703 if (!(shrinker->flags & SHRINKER_REGISTERED))
704 return;
705
706 down_write(&shrinker_rwsem);
707 list_del(&shrinker->list);
708 shrinker->flags &= ~SHRINKER_REGISTERED;
709 if (shrinker->flags & SHRINKER_MEMCG_AWARE)
710 unregister_memcg_shrinker(shrinker);
711 up_write(&shrinker_rwsem);
712
713 kfree(shrinker->nr_deferred);
714 shrinker->nr_deferred = NULL;
715 }
716 EXPORT_SYMBOL(unregister_shrinker);
717
718 #define SHRINK_BATCH 128
719
do_shrink_slab(struct shrink_control * shrinkctl,struct shrinker * shrinker,int priority)720 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
721 struct shrinker *shrinker, int priority)
722 {
723 unsigned long freed = 0;
724 unsigned long long delta;
725 long total_scan;
726 long freeable;
727 long nr;
728 long new_nr;
729 long batch_size = shrinker->batch ? shrinker->batch
730 : SHRINK_BATCH;
731 long scanned = 0, next_deferred;
732
733 trace_android_vh_do_shrink_slab(shrinker, shrinkctl, priority);
734
735 freeable = shrinker->count_objects(shrinker, shrinkctl);
736 if (freeable == 0 || freeable == SHRINK_EMPTY)
737 return freeable;
738
739 /*
740 * copy the current shrinker scan count into a local variable
741 * and zero it so that other concurrent shrinker invocations
742 * don't also do this scanning work.
743 */
744 nr = xchg_nr_deferred(shrinker, shrinkctl);
745
746 if (shrinker->seeks) {
747 delta = freeable >> priority;
748 delta *= 4;
749 do_div(delta, shrinker->seeks);
750 } else {
751 /*
752 * These objects don't require any IO to create. Trim
753 * them aggressively under memory pressure to keep
754 * them from causing refetches in the IO caches.
755 */
756 delta = freeable / 2;
757 }
758
759 total_scan = nr >> priority;
760 total_scan += delta;
761 total_scan = min(total_scan, (2 * freeable));
762
763 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
764 freeable, delta, total_scan, priority);
765
766 /*
767 * Normally, we should not scan less than batch_size objects in one
768 * pass to avoid too frequent shrinker calls, but if the slab has less
769 * than batch_size objects in total and we are really tight on memory,
770 * we will try to reclaim all available objects, otherwise we can end
771 * up failing allocations although there are plenty of reclaimable
772 * objects spread over several slabs with usage less than the
773 * batch_size.
774 *
775 * We detect the "tight on memory" situations by looking at the total
776 * number of objects we want to scan (total_scan). If it is greater
777 * than the total number of objects on slab (freeable), we must be
778 * scanning at high prio and therefore should try to reclaim as much as
779 * possible.
780 */
781 while (total_scan >= batch_size ||
782 total_scan >= freeable) {
783 unsigned long ret;
784 unsigned long nr_to_scan = min(batch_size, total_scan);
785
786 shrinkctl->nr_to_scan = nr_to_scan;
787 shrinkctl->nr_scanned = nr_to_scan;
788 ret = shrinker->scan_objects(shrinker, shrinkctl);
789 if (ret == SHRINK_STOP)
790 break;
791 freed += ret;
792
793 count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
794 total_scan -= shrinkctl->nr_scanned;
795 scanned += shrinkctl->nr_scanned;
796
797 cond_resched();
798 }
799
800 /*
801 * The deferred work is increased by any new work (delta) that wasn't
802 * done, decreased by old deferred work that was done now.
803 *
804 * And it is capped to two times of the freeable items.
805 */
806 next_deferred = max_t(long, (nr + delta - scanned), 0);
807 next_deferred = min(next_deferred, (2 * freeable));
808
809 /*
810 * move the unused scan count back into the shrinker in a
811 * manner that handles concurrent updates.
812 */
813 new_nr = add_nr_deferred(next_deferred, shrinker, shrinkctl);
814
815 trace_mm_shrink_slab_end(shrinker, shrinkctl->nid, freed, nr, new_nr, total_scan);
816 return freed;
817 }
818
819 #ifdef CONFIG_MEMCG
shrink_slab_memcg(gfp_t gfp_mask,int nid,struct mem_cgroup * memcg,int priority)820 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
821 struct mem_cgroup *memcg, int priority)
822 {
823 struct shrinker_info *info;
824 unsigned long ret, freed = 0;
825 int i;
826
827 if (!mem_cgroup_online(memcg))
828 return 0;
829
830 if (!down_read_trylock(&shrinker_rwsem))
831 return 0;
832
833 info = shrinker_info_protected(memcg, nid);
834 if (unlikely(!info))
835 goto unlock;
836
837 for_each_set_bit(i, info->map, shrinker_nr_max) {
838 struct shrink_control sc = {
839 .gfp_mask = gfp_mask,
840 .nid = nid,
841 .memcg = memcg,
842 };
843 struct shrinker *shrinker;
844
845 shrinker = idr_find(&shrinker_idr, i);
846 if (unlikely(!shrinker || !(shrinker->flags & SHRINKER_REGISTERED))) {
847 if (!shrinker)
848 clear_bit(i, info->map);
849 continue;
850 }
851
852 /* Call non-slab shrinkers even though kmem is disabled */
853 if (!memcg_kmem_enabled() &&
854 !(shrinker->flags & SHRINKER_NONSLAB))
855 continue;
856
857 ret = do_shrink_slab(&sc, shrinker, priority);
858 if (ret == SHRINK_EMPTY) {
859 clear_bit(i, info->map);
860 /*
861 * After the shrinker reported that it had no objects to
862 * free, but before we cleared the corresponding bit in
863 * the memcg shrinker map, a new object might have been
864 * added. To make sure, we have the bit set in this
865 * case, we invoke the shrinker one more time and reset
866 * the bit if it reports that it is not empty anymore.
867 * The memory barrier here pairs with the barrier in
868 * set_shrinker_bit():
869 *
870 * list_lru_add() shrink_slab_memcg()
871 * list_add_tail() clear_bit()
872 * <MB> <MB>
873 * set_bit() do_shrink_slab()
874 */
875 smp_mb__after_atomic();
876 ret = do_shrink_slab(&sc, shrinker, priority);
877 if (ret == SHRINK_EMPTY)
878 ret = 0;
879 else
880 set_shrinker_bit(memcg, nid, i);
881 }
882 freed += ret;
883
884 if (rwsem_is_contended(&shrinker_rwsem)) {
885 freed = freed ? : 1;
886 break;
887 }
888 }
889 unlock:
890 up_read(&shrinker_rwsem);
891 return freed;
892 }
893 #else /* CONFIG_MEMCG */
shrink_slab_memcg(gfp_t gfp_mask,int nid,struct mem_cgroup * memcg,int priority)894 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
895 struct mem_cgroup *memcg, int priority)
896 {
897 return 0;
898 }
899 #endif /* CONFIG_MEMCG */
900
901 /**
902 * shrink_slab - shrink slab caches
903 * @gfp_mask: allocation context
904 * @nid: node whose slab caches to target
905 * @memcg: memory cgroup whose slab caches to target
906 * @priority: the reclaim priority
907 *
908 * Call the shrink functions to age shrinkable caches.
909 *
910 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
911 * unaware shrinkers will receive a node id of 0 instead.
912 *
913 * @memcg specifies the memory cgroup to target. Unaware shrinkers
914 * are called only if it is the root cgroup.
915 *
916 * @priority is sc->priority, we take the number of objects and >> by priority
917 * in order to get the scan target.
918 *
919 * Returns the number of reclaimed slab objects.
920 */
shrink_slab(gfp_t gfp_mask,int nid,struct mem_cgroup * memcg,int priority)921 unsigned long shrink_slab(gfp_t gfp_mask, int nid,
922 struct mem_cgroup *memcg,
923 int priority)
924 {
925 unsigned long ret, freed = 0;
926 struct shrinker *shrinker;
927 bool bypass = false;
928
929 trace_android_vh_shrink_slab_bypass(gfp_mask, nid, memcg, priority, &bypass);
930 if (bypass)
931 return 0;
932
933 /*
934 * The root memcg might be allocated even though memcg is disabled
935 * via "cgroup_disable=memory" boot parameter. This could make
936 * mem_cgroup_is_root() return false, then just run memcg slab
937 * shrink, but skip global shrink. This may result in premature
938 * oom.
939 */
940 if (!mem_cgroup_disabled() && !mem_cgroup_is_root(memcg))
941 return shrink_slab_memcg(gfp_mask, nid, memcg, priority);
942
943 if (!down_read_trylock(&shrinker_rwsem))
944 goto out;
945
946 list_for_each_entry(shrinker, &shrinker_list, list) {
947 struct shrink_control sc = {
948 .gfp_mask = gfp_mask,
949 .nid = nid,
950 .memcg = memcg,
951 };
952
953 ret = do_shrink_slab(&sc, shrinker, priority);
954 if (ret == SHRINK_EMPTY)
955 ret = 0;
956 freed += ret;
957 /*
958 * Bail out if someone want to register a new shrinker to
959 * prevent the registration from being stalled for long periods
960 * by parallel ongoing shrinking.
961 */
962 if (rwsem_is_contended(&shrinker_rwsem)) {
963 freed = freed ? : 1;
964 break;
965 }
966 }
967
968 up_read(&shrinker_rwsem);
969 out:
970 cond_resched();
971 return freed;
972 }
973 EXPORT_SYMBOL_GPL(shrink_slab);
974
drop_slab_node(int nid)975 void drop_slab_node(int nid)
976 {
977 unsigned long freed;
978 int shift = 0;
979
980 do {
981 struct mem_cgroup *memcg = NULL;
982
983 if (fatal_signal_pending(current))
984 return;
985
986 freed = 0;
987 memcg = mem_cgroup_iter(NULL, NULL, NULL);
988 do {
989 freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
990 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
991 } while ((freed >> shift++) > 1);
992 }
993
drop_slab(void)994 void drop_slab(void)
995 {
996 int nid;
997
998 for_each_online_node(nid)
999 drop_slab_node(nid);
1000 }
1001
is_page_cache_freeable(struct page * page)1002 static inline int is_page_cache_freeable(struct page *page)
1003 {
1004 /*
1005 * A freeable page cache page is referenced only by the caller
1006 * that isolated the page, the page cache and optional buffer
1007 * heads at page->private.
1008 */
1009 int page_cache_pins = thp_nr_pages(page);
1010 return page_count(page) - page_has_private(page) == 1 + page_cache_pins;
1011 }
1012
may_write_to_inode(struct inode * inode)1013 static int may_write_to_inode(struct inode *inode)
1014 {
1015 if (current->flags & PF_SWAPWRITE)
1016 return 1;
1017 if (!inode_write_congested(inode))
1018 return 1;
1019 if (inode_to_bdi(inode) == current->backing_dev_info)
1020 return 1;
1021 return 0;
1022 }
1023
1024 /*
1025 * We detected a synchronous write error writing a page out. Probably
1026 * -ENOSPC. We need to propagate that into the address_space for a subsequent
1027 * fsync(), msync() or close().
1028 *
1029 * The tricky part is that after writepage we cannot touch the mapping: nothing
1030 * prevents it from being freed up. But we have a ref on the page and once
1031 * that page is locked, the mapping is pinned.
1032 *
1033 * We're allowed to run sleeping lock_page() here because we know the caller has
1034 * __GFP_FS.
1035 */
handle_write_error(struct address_space * mapping,struct page * page,int error)1036 static void handle_write_error(struct address_space *mapping,
1037 struct page *page, int error)
1038 {
1039 lock_page(page);
1040 if (page_mapping(page) == mapping)
1041 mapping_set_error(mapping, error);
1042 unlock_page(page);
1043 }
1044
1045 /* possible outcome of pageout() */
1046 typedef enum {
1047 /* failed to write page out, page is locked */
1048 PAGE_KEEP,
1049 /* move page to the active list, page is locked */
1050 PAGE_ACTIVATE,
1051 /* page has been sent to the disk successfully, page is unlocked */
1052 PAGE_SUCCESS,
1053 /* page is clean and locked */
1054 PAGE_CLEAN,
1055 } pageout_t;
1056
1057 /*
1058 * pageout is called by shrink_page_list() for each dirty page.
1059 * Calls ->writepage().
1060 */
pageout(struct page * page,struct address_space * mapping)1061 static pageout_t pageout(struct page *page, struct address_space *mapping)
1062 {
1063 /*
1064 * If the page is dirty, only perform writeback if that write
1065 * will be non-blocking. To prevent this allocation from being
1066 * stalled by pagecache activity. But note that there may be
1067 * stalls if we need to run get_block(). We could test
1068 * PagePrivate for that.
1069 *
1070 * If this process is currently in __generic_file_write_iter() against
1071 * this page's queue, we can perform writeback even if that
1072 * will block.
1073 *
1074 * If the page is swapcache, write it back even if that would
1075 * block, for some throttling. This happens by accident, because
1076 * swap_backing_dev_info is bust: it doesn't reflect the
1077 * congestion state of the swapdevs. Easy to fix, if needed.
1078 */
1079 if (!is_page_cache_freeable(page))
1080 return PAGE_KEEP;
1081 if (!mapping) {
1082 /*
1083 * Some data journaling orphaned pages can have
1084 * page->mapping == NULL while being dirty with clean buffers.
1085 */
1086 if (page_has_private(page)) {
1087 if (try_to_free_buffers(page)) {
1088 ClearPageDirty(page);
1089 pr_info("%s: orphaned page\n", __func__);
1090 return PAGE_CLEAN;
1091 }
1092 }
1093 return PAGE_KEEP;
1094 }
1095 if (mapping->a_ops->writepage == NULL)
1096 return PAGE_ACTIVATE;
1097 if (!may_write_to_inode(mapping->host))
1098 return PAGE_KEEP;
1099
1100 if (clear_page_dirty_for_io(page)) {
1101 int res;
1102 struct writeback_control wbc = {
1103 .sync_mode = WB_SYNC_NONE,
1104 .nr_to_write = SWAP_CLUSTER_MAX,
1105 .range_start = 0,
1106 .range_end = LLONG_MAX,
1107 .for_reclaim = 1,
1108 };
1109
1110 SetPageReclaim(page);
1111 res = mapping->a_ops->writepage(page, &wbc);
1112 if (res < 0)
1113 handle_write_error(mapping, page, res);
1114 if (res == AOP_WRITEPAGE_ACTIVATE) {
1115 ClearPageReclaim(page);
1116 return PAGE_ACTIVATE;
1117 }
1118
1119 if (!PageWriteback(page)) {
1120 /* synchronous write or broken a_ops? */
1121 ClearPageReclaim(page);
1122 }
1123 trace_mm_vmscan_writepage(page);
1124 inc_node_page_state(page, NR_VMSCAN_WRITE);
1125 return PAGE_SUCCESS;
1126 }
1127
1128 return PAGE_CLEAN;
1129 }
1130
1131 /*
1132 * Same as remove_mapping, but if the page is removed from the mapping, it
1133 * gets returned with a refcount of 0.
1134 */
__remove_mapping(struct address_space * mapping,struct page * page,bool reclaimed,struct mem_cgroup * target_memcg)1135 static int __remove_mapping(struct address_space *mapping, struct page *page,
1136 bool reclaimed, struct mem_cgroup *target_memcg)
1137 {
1138 int refcount;
1139 void *shadow = NULL;
1140
1141 BUG_ON(!PageLocked(page));
1142 BUG_ON(mapping != page_mapping(page));
1143
1144 xa_lock_irq(&mapping->i_pages);
1145 /*
1146 * The non racy check for a busy page.
1147 *
1148 * Must be careful with the order of the tests. When someone has
1149 * a ref to the page, it may be possible that they dirty it then
1150 * drop the reference. So if PageDirty is tested before page_count
1151 * here, then the following race may occur:
1152 *
1153 * get_user_pages(&page);
1154 * [user mapping goes away]
1155 * write_to(page);
1156 * !PageDirty(page) [good]
1157 * SetPageDirty(page);
1158 * put_page(page);
1159 * !page_count(page) [good, discard it]
1160 *
1161 * [oops, our write_to data is lost]
1162 *
1163 * Reversing the order of the tests ensures such a situation cannot
1164 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
1165 * load is not satisfied before that of page->_refcount.
1166 *
1167 * Note that if SetPageDirty is always performed via set_page_dirty,
1168 * and thus under the i_pages lock, then this ordering is not required.
1169 */
1170 refcount = 1 + compound_nr(page);
1171 if (!page_ref_freeze(page, refcount))
1172 goto cannot_free;
1173 /* note: atomic_cmpxchg in page_ref_freeze provides the smp_rmb */
1174 if (unlikely(PageDirty(page))) {
1175 page_ref_unfreeze(page, refcount);
1176 goto cannot_free;
1177 }
1178
1179 if (PageSwapCache(page)) {
1180 swp_entry_t swap = { .val = page_private(page) };
1181
1182 /* get a shadow entry before mem_cgroup_swapout() clears page_memcg() */
1183 if (reclaimed && !mapping_exiting(mapping))
1184 shadow = workingset_eviction(page, target_memcg);
1185 mem_cgroup_swapout(page, swap);
1186 __delete_from_swap_cache(page, swap, shadow);
1187 xa_unlock_irq(&mapping->i_pages);
1188 put_swap_page(page, swap);
1189 } else {
1190 void (*freepage)(struct page *);
1191
1192 freepage = mapping->a_ops->freepage;
1193 /*
1194 * Remember a shadow entry for reclaimed file cache in
1195 * order to detect refaults, thus thrashing, later on.
1196 *
1197 * But don't store shadows in an address space that is
1198 * already exiting. This is not just an optimization,
1199 * inode reclaim needs to empty out the radix tree or
1200 * the nodes are lost. Don't plant shadows behind its
1201 * back.
1202 *
1203 * We also don't store shadows for DAX mappings because the
1204 * only page cache pages found in these are zero pages
1205 * covering holes, and because we don't want to mix DAX
1206 * exceptional entries and shadow exceptional entries in the
1207 * same address_space.
1208 */
1209 if (reclaimed && page_is_file_lru(page) &&
1210 !mapping_exiting(mapping) && !dax_mapping(mapping))
1211 shadow = workingset_eviction(page, target_memcg);
1212 __delete_from_page_cache(page, shadow);
1213 xa_unlock_irq(&mapping->i_pages);
1214
1215 if (freepage != NULL)
1216 freepage(page);
1217 }
1218
1219 return 1;
1220
1221 cannot_free:
1222 xa_unlock_irq(&mapping->i_pages);
1223 return 0;
1224 }
1225
1226 /*
1227 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
1228 * someone else has a ref on the page, abort and return 0. If it was
1229 * successfully detached, return 1. Assumes the caller has a single ref on
1230 * this page.
1231 */
remove_mapping(struct address_space * mapping,struct page * page)1232 int remove_mapping(struct address_space *mapping, struct page *page)
1233 {
1234 if (__remove_mapping(mapping, page, false, NULL)) {
1235 /*
1236 * Unfreezing the refcount with 1 rather than 2 effectively
1237 * drops the pagecache ref for us without requiring another
1238 * atomic operation.
1239 */
1240 page_ref_unfreeze(page, 1);
1241 return 1;
1242 }
1243 return 0;
1244 }
1245
1246 /**
1247 * putback_lru_page - put previously isolated page onto appropriate LRU list
1248 * @page: page to be put back to appropriate lru list
1249 *
1250 * Add previously isolated @page to appropriate LRU list.
1251 * Page may still be unevictable for other reasons.
1252 *
1253 * lru_lock must not be held, interrupts must be enabled.
1254 */
putback_lru_page(struct page * page)1255 void putback_lru_page(struct page *page)
1256 {
1257 lru_cache_add(page);
1258 put_page(page); /* drop ref from isolate */
1259 }
1260
1261 enum page_references {
1262 PAGEREF_RECLAIM,
1263 PAGEREF_RECLAIM_CLEAN,
1264 PAGEREF_KEEP,
1265 PAGEREF_ACTIVATE,
1266 };
1267
page_check_references(struct page * page,struct scan_control * sc)1268 static enum page_references page_check_references(struct page *page,
1269 struct scan_control *sc)
1270 {
1271 int referenced_ptes, referenced_page;
1272 unsigned long vm_flags;
1273
1274 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
1275 &vm_flags);
1276 referenced_page = TestClearPageReferenced(page);
1277
1278 /*
1279 * Mlock lost the isolation race with us. Let try_to_unmap()
1280 * move the page to the unevictable list.
1281 */
1282 if (vm_flags & VM_LOCKED)
1283 return PAGEREF_RECLAIM;
1284
1285 /* rmap lock contention: rotate */
1286 if (referenced_ptes == -1)
1287 return PAGEREF_KEEP;
1288
1289 if (referenced_ptes) {
1290 /*
1291 * All mapped pages start out with page table
1292 * references from the instantiating fault, so we need
1293 * to look twice if a mapped file page is used more
1294 * than once.
1295 *
1296 * Mark it and spare it for another trip around the
1297 * inactive list. Another page table reference will
1298 * lead to its activation.
1299 *
1300 * Note: the mark is set for activated pages as well
1301 * so that recently deactivated but used pages are
1302 * quickly recovered.
1303 */
1304 SetPageReferenced(page);
1305
1306 if (referenced_page || referenced_ptes > 1)
1307 return PAGEREF_ACTIVATE;
1308
1309 /*
1310 * Activate file-backed executable pages after first usage.
1311 */
1312 if ((vm_flags & VM_EXEC) && !PageSwapBacked(page))
1313 return PAGEREF_ACTIVATE;
1314
1315 return PAGEREF_KEEP;
1316 }
1317
1318 /* Reclaim if clean, defer dirty pages to writeback */
1319 if (referenced_page && !PageSwapBacked(page))
1320 return PAGEREF_RECLAIM_CLEAN;
1321
1322 return PAGEREF_RECLAIM;
1323 }
1324
1325 /* Check if a page is dirty or under writeback */
page_check_dirty_writeback(struct page * page,bool * dirty,bool * writeback)1326 static void page_check_dirty_writeback(struct page *page,
1327 bool *dirty, bool *writeback)
1328 {
1329 struct address_space *mapping;
1330
1331 /*
1332 * Anonymous pages are not handled by flushers and must be written
1333 * from reclaim context. Do not stall reclaim based on them
1334 */
1335 if (!page_is_file_lru(page) ||
1336 (PageAnon(page) && !PageSwapBacked(page))) {
1337 *dirty = false;
1338 *writeback = false;
1339 return;
1340 }
1341
1342 /* By default assume that the page flags are accurate */
1343 *dirty = PageDirty(page);
1344 *writeback = PageWriteback(page);
1345
1346 /* Verify dirty/writeback state if the filesystem supports it */
1347 if (!page_has_private(page))
1348 return;
1349
1350 mapping = page_mapping(page);
1351 if (mapping && mapping->a_ops->is_dirty_writeback)
1352 mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
1353 }
1354
alloc_demote_page(struct page * page,unsigned long node)1355 static struct page *alloc_demote_page(struct page *page, unsigned long node)
1356 {
1357 struct migration_target_control mtc = {
1358 /*
1359 * Allocate from 'node', or fail quickly and quietly.
1360 * When this happens, 'page' will likely just be discarded
1361 * instead of migrated.
1362 */
1363 .gfp_mask = (GFP_HIGHUSER_MOVABLE & ~__GFP_RECLAIM) |
1364 __GFP_THISNODE | __GFP_NOWARN |
1365 __GFP_NOMEMALLOC | GFP_NOWAIT,
1366 .nid = node
1367 };
1368
1369 return alloc_migration_target(page, (unsigned long)&mtc);
1370 }
1371
1372 /*
1373 * Take pages on @demote_list and attempt to demote them to
1374 * another node. Pages which are not demoted are left on
1375 * @demote_pages.
1376 */
demote_page_list(struct list_head * demote_pages,struct pglist_data * pgdat)1377 static unsigned int demote_page_list(struct list_head *demote_pages,
1378 struct pglist_data *pgdat)
1379 {
1380 int target_nid = next_demotion_node(pgdat->node_id);
1381 unsigned int nr_succeeded;
1382 int err;
1383
1384 if (list_empty(demote_pages))
1385 return 0;
1386
1387 if (target_nid == NUMA_NO_NODE)
1388 return 0;
1389
1390 /* Demotion ignores all cpuset and mempolicy settings */
1391 err = migrate_pages(demote_pages, alloc_demote_page, NULL,
1392 target_nid, MIGRATE_ASYNC, MR_DEMOTION,
1393 &nr_succeeded);
1394
1395 if (current_is_kswapd())
1396 __count_vm_events(PGDEMOTE_KSWAPD, nr_succeeded);
1397 else
1398 __count_vm_events(PGDEMOTE_DIRECT, nr_succeeded);
1399
1400 return nr_succeeded;
1401 }
1402
1403 /*
1404 * shrink_page_list() returns the number of reclaimed pages
1405 */
shrink_page_list(struct list_head * page_list,struct pglist_data * pgdat,struct scan_control * sc,struct reclaim_stat * stat,bool ignore_references)1406 static unsigned int shrink_page_list(struct list_head *page_list,
1407 struct pglist_data *pgdat,
1408 struct scan_control *sc,
1409 struct reclaim_stat *stat,
1410 bool ignore_references)
1411 {
1412 LIST_HEAD(ret_pages);
1413 LIST_HEAD(free_pages);
1414 LIST_HEAD(demote_pages);
1415 unsigned int nr_reclaimed = 0;
1416 unsigned int pgactivate = 0;
1417 bool do_demote_pass;
1418
1419 memset(stat, 0, sizeof(*stat));
1420 cond_resched();
1421 do_demote_pass = can_demote(pgdat->node_id, sc);
1422
1423 retry:
1424 while (!list_empty(page_list)) {
1425 struct address_space *mapping;
1426 struct page *page;
1427 enum page_references references = PAGEREF_RECLAIM;
1428 bool dirty, writeback, may_enter_fs;
1429 unsigned int nr_pages;
1430
1431 cond_resched();
1432
1433 page = lru_to_page(page_list);
1434 list_del(&page->lru);
1435
1436 if (!trylock_page(page))
1437 goto keep;
1438
1439 VM_BUG_ON_PAGE(PageActive(page), page);
1440
1441 nr_pages = compound_nr(page);
1442
1443 /* Account the number of base pages even though THP */
1444 sc->nr_scanned += nr_pages;
1445
1446 if (unlikely(!page_evictable(page)))
1447 goto activate_locked;
1448
1449 if (!sc->may_unmap && page_mapped(page))
1450 goto keep_locked;
1451
1452 /* page_update_gen() tried to promote this page? */
1453 if (lru_gen_enabled() && !ignore_references &&
1454 page_mapped(page) && PageReferenced(page))
1455 goto keep_locked;
1456
1457 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
1458 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
1459
1460 /*
1461 * The number of dirty pages determines if a node is marked
1462 * reclaim_congested which affects wait_iff_congested. kswapd
1463 * will stall and start writing pages if the tail of the LRU
1464 * is all dirty unqueued pages.
1465 */
1466 page_check_dirty_writeback(page, &dirty, &writeback);
1467 if (dirty || writeback)
1468 stat->nr_dirty++;
1469
1470 if (dirty && !writeback)
1471 stat->nr_unqueued_dirty++;
1472
1473 /*
1474 * Treat this page as congested if the underlying BDI is or if
1475 * pages are cycling through the LRU so quickly that the
1476 * pages marked for immediate reclaim are making it to the
1477 * end of the LRU a second time.
1478 */
1479 mapping = page_mapping(page);
1480 if (((dirty || writeback) && mapping &&
1481 inode_write_congested(mapping->host)) ||
1482 (writeback && PageReclaim(page)))
1483 stat->nr_congested++;
1484
1485 /*
1486 * If a page at the tail of the LRU is under writeback, there
1487 * are three cases to consider.
1488 *
1489 * 1) If reclaim is encountering an excessive number of pages
1490 * under writeback and this page is both under writeback and
1491 * PageReclaim then it indicates that pages are being queued
1492 * for IO but are being recycled through the LRU before the
1493 * IO can complete. Waiting on the page itself risks an
1494 * indefinite stall if it is impossible to writeback the
1495 * page due to IO error or disconnected storage so instead
1496 * note that the LRU is being scanned too quickly and the
1497 * caller can stall after page list has been processed.
1498 *
1499 * 2) Global or new memcg reclaim encounters a page that is
1500 * not marked for immediate reclaim, or the caller does not
1501 * have __GFP_FS (or __GFP_IO if it's simply going to swap,
1502 * not to fs). In this case mark the page for immediate
1503 * reclaim and continue scanning.
1504 *
1505 * Require may_enter_fs because we would wait on fs, which
1506 * may not have submitted IO yet. And the loop driver might
1507 * enter reclaim, and deadlock if it waits on a page for
1508 * which it is needed to do the write (loop masks off
1509 * __GFP_IO|__GFP_FS for this reason); but more thought
1510 * would probably show more reasons.
1511 *
1512 * 3) Legacy memcg encounters a page that is already marked
1513 * PageReclaim. memcg does not have any dirty pages
1514 * throttling so we could easily OOM just because too many
1515 * pages are in writeback and there is nothing else to
1516 * reclaim. Wait for the writeback to complete.
1517 *
1518 * In cases 1) and 2) we activate the pages to get them out of
1519 * the way while we continue scanning for clean pages on the
1520 * inactive list and refilling from the active list. The
1521 * observation here is that waiting for disk writes is more
1522 * expensive than potentially causing reloads down the line.
1523 * Since they're marked for immediate reclaim, they won't put
1524 * memory pressure on the cache working set any longer than it
1525 * takes to write them to disk.
1526 */
1527 if (PageWriteback(page)) {
1528 /* Case 1 above */
1529 if (current_is_kswapd() &&
1530 PageReclaim(page) &&
1531 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1532 stat->nr_immediate++;
1533 goto activate_locked;
1534
1535 /* Case 2 above */
1536 } else if (writeback_throttling_sane(sc) ||
1537 !PageReclaim(page) || !may_enter_fs) {
1538 /*
1539 * This is slightly racy - end_page_writeback()
1540 * might have just cleared PageReclaim, then
1541 * setting PageReclaim here end up interpreted
1542 * as PageReadahead - but that does not matter
1543 * enough to care. What we do want is for this
1544 * page to have PageReclaim set next time memcg
1545 * reclaim reaches the tests above, so it will
1546 * then wait_on_page_writeback() to avoid OOM;
1547 * and it's also appropriate in global reclaim.
1548 */
1549 SetPageReclaim(page);
1550 stat->nr_writeback++;
1551 goto activate_locked;
1552
1553 /* Case 3 above */
1554 } else {
1555 unlock_page(page);
1556 wait_on_page_writeback(page);
1557 /* then go back and try same page again */
1558 list_add_tail(&page->lru, page_list);
1559 continue;
1560 }
1561 }
1562
1563 if (!ignore_references)
1564 references = page_check_references(page, sc);
1565
1566 switch (references) {
1567 case PAGEREF_ACTIVATE:
1568 goto activate_locked;
1569 case PAGEREF_KEEP:
1570 stat->nr_ref_keep += nr_pages;
1571 goto keep_locked;
1572 case PAGEREF_RECLAIM:
1573 case PAGEREF_RECLAIM_CLEAN:
1574 ; /* try to reclaim the page below */
1575 }
1576
1577 /*
1578 * Before reclaiming the page, try to relocate
1579 * its contents to another node.
1580 */
1581 if (do_demote_pass &&
1582 (thp_migration_supported() || !PageTransHuge(page))) {
1583 list_add(&page->lru, &demote_pages);
1584 unlock_page(page);
1585 continue;
1586 }
1587
1588 /*
1589 * Anonymous process memory has backing store?
1590 * Try to allocate it some swap space here.
1591 * Lazyfree page could be freed directly
1592 */
1593 if (PageAnon(page) && PageSwapBacked(page)) {
1594 if (!PageSwapCache(page)) {
1595 if (!(sc->gfp_mask & __GFP_IO))
1596 goto keep_locked;
1597 if (page_maybe_dma_pinned(page))
1598 goto keep_locked;
1599 if (PageTransHuge(page)) {
1600 /* cannot split THP, skip it */
1601 if (!can_split_huge_page(page, NULL))
1602 goto activate_locked;
1603 /*
1604 * Split pages without a PMD map right
1605 * away. Chances are some or all of the
1606 * tail pages can be freed without IO.
1607 */
1608 if (!compound_mapcount(page) &&
1609 split_huge_page_to_list(page,
1610 page_list))
1611 goto activate_locked;
1612 }
1613 if (!add_to_swap(page)) {
1614 if (!PageTransHuge(page))
1615 goto activate_locked_split;
1616 /* Fallback to swap normal pages */
1617 if (split_huge_page_to_list(page,
1618 page_list))
1619 goto activate_locked;
1620 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1621 count_vm_event(THP_SWPOUT_FALLBACK);
1622 #endif
1623 if (!add_to_swap(page))
1624 goto activate_locked_split;
1625 }
1626
1627 may_enter_fs = true;
1628
1629 /* Adding to swap updated mapping */
1630 mapping = page_mapping(page);
1631 }
1632 } else if (unlikely(PageTransHuge(page))) {
1633 /* Split file THP */
1634 if (split_huge_page_to_list(page, page_list))
1635 goto keep_locked;
1636 }
1637
1638 /*
1639 * THP may get split above, need minus tail pages and update
1640 * nr_pages to avoid accounting tail pages twice.
1641 *
1642 * The tail pages that are added into swap cache successfully
1643 * reach here.
1644 */
1645 if ((nr_pages > 1) && !PageTransHuge(page)) {
1646 sc->nr_scanned -= (nr_pages - 1);
1647 nr_pages = 1;
1648 }
1649
1650 /*
1651 * The page is mapped into the page tables of one or more
1652 * processes. Try to unmap it here.
1653 */
1654 if (page_mapped(page)) {
1655 enum ttu_flags flags = TTU_BATCH_FLUSH;
1656 bool was_swapbacked = PageSwapBacked(page);
1657
1658 if (unlikely(PageTransHuge(page)))
1659 flags |= TTU_SPLIT_HUGE_PMD;
1660
1661 try_to_unmap(page, flags);
1662 if (page_mapped(page)) {
1663 stat->nr_unmap_fail += nr_pages;
1664 if (!was_swapbacked && PageSwapBacked(page))
1665 stat->nr_lazyfree_fail += nr_pages;
1666 goto activate_locked;
1667 }
1668 }
1669
1670 if (PageDirty(page)) {
1671 /*
1672 * Only kswapd can writeback filesystem pages
1673 * to avoid risk of stack overflow. But avoid
1674 * injecting inefficient single-page IO into
1675 * flusher writeback as much as possible: only
1676 * write pages when we've encountered many
1677 * dirty pages, and when we've already scanned
1678 * the rest of the LRU for clean pages and see
1679 * the same dirty pages again (PageReclaim).
1680 */
1681 if (page_is_file_lru(page) &&
1682 (!current_is_kswapd() || !PageReclaim(page) ||
1683 !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1684 /*
1685 * Immediately reclaim when written back.
1686 * Similar in principal to deactivate_page()
1687 * except we already have the page isolated
1688 * and know it's dirty
1689 */
1690 inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
1691 SetPageReclaim(page);
1692
1693 goto activate_locked;
1694 }
1695
1696 if (references == PAGEREF_RECLAIM_CLEAN)
1697 goto keep_locked;
1698 if (!may_enter_fs)
1699 goto keep_locked;
1700 if (!sc->may_writepage)
1701 goto keep_locked;
1702
1703 /*
1704 * Page is dirty. Flush the TLB if a writable entry
1705 * potentially exists to avoid CPU writes after IO
1706 * starts and then write it out here.
1707 */
1708 try_to_unmap_flush_dirty();
1709 switch (pageout(page, mapping)) {
1710 case PAGE_KEEP:
1711 goto keep_locked;
1712 case PAGE_ACTIVATE:
1713 goto activate_locked;
1714 case PAGE_SUCCESS:
1715 stat->nr_pageout += thp_nr_pages(page);
1716
1717 if (PageWriteback(page))
1718 goto keep;
1719 if (PageDirty(page))
1720 goto keep;
1721
1722 /*
1723 * A synchronous write - probably a ramdisk. Go
1724 * ahead and try to reclaim the page.
1725 */
1726 if (!trylock_page(page))
1727 goto keep;
1728 if (PageDirty(page) || PageWriteback(page))
1729 goto keep_locked;
1730 mapping = page_mapping(page);
1731 fallthrough;
1732 case PAGE_CLEAN:
1733 ; /* try to free the page below */
1734 }
1735 }
1736
1737 /*
1738 * If the page has buffers, try to free the buffer mappings
1739 * associated with this page. If we succeed we try to free
1740 * the page as well.
1741 *
1742 * We do this even if the page is PageDirty().
1743 * try_to_release_page() does not perform I/O, but it is
1744 * possible for a page to have PageDirty set, but it is actually
1745 * clean (all its buffers are clean). This happens if the
1746 * buffers were written out directly, with submit_bh(). ext3
1747 * will do this, as well as the blockdev mapping.
1748 * try_to_release_page() will discover that cleanness and will
1749 * drop the buffers and mark the page clean - it can be freed.
1750 *
1751 * Rarely, pages can have buffers and no ->mapping. These are
1752 * the pages which were not successfully invalidated in
1753 * truncate_cleanup_page(). We try to drop those buffers here
1754 * and if that worked, and the page is no longer mapped into
1755 * process address space (page_count == 1) it can be freed.
1756 * Otherwise, leave the page on the LRU so it is swappable.
1757 */
1758 if (page_has_private(page)) {
1759 if (!try_to_release_page(page, sc->gfp_mask))
1760 goto activate_locked;
1761 if (!mapping && page_count(page) == 1) {
1762 unlock_page(page);
1763 if (put_page_testzero(page))
1764 goto free_it;
1765 else {
1766 /*
1767 * rare race with speculative reference.
1768 * the speculative reference will free
1769 * this page shortly, so we may
1770 * increment nr_reclaimed here (and
1771 * leave it off the LRU).
1772 */
1773 nr_reclaimed++;
1774 continue;
1775 }
1776 }
1777 }
1778
1779 if (PageAnon(page) && !PageSwapBacked(page)) {
1780 /* follow __remove_mapping for reference */
1781 if (!page_ref_freeze(page, 1))
1782 goto keep_locked;
1783 /*
1784 * The page has only one reference left, which is
1785 * from the isolation. After the caller puts the
1786 * page back on lru and drops the reference, the
1787 * page will be freed anyway. It doesn't matter
1788 * which lru it goes. So we don't bother checking
1789 * PageDirty here.
1790 */
1791 count_vm_event(PGLAZYFREED);
1792 count_memcg_page_event(page, PGLAZYFREED);
1793 } else if (!mapping || !__remove_mapping(mapping, page, true,
1794 sc->target_mem_cgroup))
1795 goto keep_locked;
1796
1797 unlock_page(page);
1798 free_it:
1799 /*
1800 * THP may get swapped out in a whole, need account
1801 * all base pages.
1802 */
1803 nr_reclaimed += nr_pages;
1804
1805 /*
1806 * Is there need to periodically free_page_list? It would
1807 * appear not as the counts should be low
1808 */
1809 if (unlikely(PageTransHuge(page)))
1810 destroy_compound_page(page);
1811 else
1812 list_add(&page->lru, &free_pages);
1813 continue;
1814
1815 activate_locked_split:
1816 /*
1817 * The tail pages that are failed to add into swap cache
1818 * reach here. Fixup nr_scanned and nr_pages.
1819 */
1820 if (nr_pages > 1) {
1821 sc->nr_scanned -= (nr_pages - 1);
1822 nr_pages = 1;
1823 }
1824 activate_locked:
1825 /* Not a candidate for swapping, so reclaim swap space. */
1826 if (PageSwapCache(page) && (mem_cgroup_swap_full(page) ||
1827 PageMlocked(page)))
1828 try_to_free_swap(page);
1829 VM_BUG_ON_PAGE(PageActive(page), page);
1830 if (!PageMlocked(page)) {
1831 int type = page_is_file_lru(page);
1832 SetPageActive(page);
1833 stat->nr_activate[type] += nr_pages;
1834 count_memcg_page_event(page, PGACTIVATE);
1835 }
1836 keep_locked:
1837 unlock_page(page);
1838 keep:
1839 list_add(&page->lru, &ret_pages);
1840 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1841 }
1842 /* 'page_list' is always empty here */
1843
1844 /* Migrate pages selected for demotion */
1845 nr_reclaimed += demote_page_list(&demote_pages, pgdat);
1846 /* Pages that could not be demoted are still in @demote_pages */
1847 if (!list_empty(&demote_pages)) {
1848 /* Pages which failed to demoted go back on @page_list for retry: */
1849 list_splice_init(&demote_pages, page_list);
1850 do_demote_pass = false;
1851 goto retry;
1852 }
1853
1854 pgactivate = stat->nr_activate[0] + stat->nr_activate[1];
1855
1856 mem_cgroup_uncharge_list(&free_pages);
1857 try_to_unmap_flush();
1858 free_unref_page_list(&free_pages);
1859
1860 list_splice(&ret_pages, page_list);
1861 count_vm_events(PGACTIVATE, pgactivate);
1862
1863 return nr_reclaimed;
1864 }
1865
reclaim_clean_pages_from_list(struct zone * zone,struct list_head * page_list)1866 unsigned int reclaim_clean_pages_from_list(struct zone *zone,
1867 struct list_head *page_list)
1868 {
1869 struct scan_control sc = {
1870 .gfp_mask = GFP_KERNEL,
1871 .may_unmap = 1,
1872 };
1873 struct reclaim_stat stat;
1874 unsigned int nr_reclaimed;
1875 struct page *page, *next;
1876 LIST_HEAD(clean_pages);
1877 unsigned int noreclaim_flag;
1878
1879 list_for_each_entry_safe(page, next, page_list, lru) {
1880 if (!PageHuge(page) && page_is_file_lru(page) &&
1881 !PageDirty(page) && !__PageMovable(page) &&
1882 !PageUnevictable(page)) {
1883 ClearPageActive(page);
1884 list_move(&page->lru, &clean_pages);
1885 }
1886 }
1887
1888 /*
1889 * We should be safe here since we are only dealing with file pages and
1890 * we are not kswapd and therefore cannot write dirty file pages. But
1891 * call memalloc_noreclaim_save() anyway, just in case these conditions
1892 * change in the future.
1893 */
1894 noreclaim_flag = memalloc_noreclaim_save();
1895 nr_reclaimed = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
1896 &stat, true);
1897 memalloc_noreclaim_restore(noreclaim_flag);
1898
1899 list_splice(&clean_pages, page_list);
1900 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
1901 -(long)nr_reclaimed);
1902 /*
1903 * Since lazyfree pages are isolated from file LRU from the beginning,
1904 * they will rotate back to anonymous LRU in the end if it failed to
1905 * discard so isolated count will be mismatched.
1906 * Compensate the isolated count for both LRU lists.
1907 */
1908 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON,
1909 stat.nr_lazyfree_fail);
1910 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
1911 -(long)stat.nr_lazyfree_fail);
1912 return nr_reclaimed;
1913 }
1914
1915 /*
1916 * Update LRU sizes after isolating pages. The LRU size updates must
1917 * be complete before mem_cgroup_update_lru_size due to a sanity check.
1918 */
update_lru_sizes(struct lruvec * lruvec,enum lru_list lru,unsigned long * nr_zone_taken)1919 static __always_inline void update_lru_sizes(struct lruvec *lruvec,
1920 enum lru_list lru, unsigned long *nr_zone_taken)
1921 {
1922 int zid;
1923
1924 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1925 if (!nr_zone_taken[zid])
1926 continue;
1927
1928 update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1929 }
1930
1931 }
1932
1933 #ifdef CONFIG_CMA
1934 /*
1935 * It is waste of effort to scan and reclaim CMA pages if it is not available
1936 * for current allocation context. Kswapd can not be enrolled as it can not
1937 * distinguish this scenario by using sc->gfp_mask = GFP_KERNEL
1938 */
skip_cma(struct page * page,struct scan_control * sc)1939 static bool skip_cma(struct page *page, struct scan_control *sc)
1940 {
1941 return !current_is_kswapd() &&
1942 gfp_migratetype(sc->gfp_mask) != MIGRATE_MOVABLE &&
1943 get_pageblock_migratetype(page) == MIGRATE_CMA;
1944 }
1945 #else
skip_cma(struct page * page,struct scan_control * sc)1946 static bool skip_cma(struct page *page, struct scan_control *sc)
1947 {
1948 return false;
1949 }
1950 #endif
1951
1952 /*
1953 * Isolating page from the lruvec to fill in @dst list by nr_to_scan times.
1954 *
1955 * lruvec->lru_lock is heavily contended. Some of the functions that
1956 * shrink the lists perform better by taking out a batch of pages
1957 * and working on them outside the LRU lock.
1958 *
1959 * For pagecache intensive workloads, this function is the hottest
1960 * spot in the kernel (apart from copy_*_user functions).
1961 *
1962 * Lru_lock must be held before calling this function.
1963 *
1964 * @nr_to_scan: The number of eligible pages to look through on the list.
1965 * @lruvec: The LRU vector to pull pages from.
1966 * @dst: The temp list to put pages on to.
1967 * @nr_scanned: The number of pages that were scanned.
1968 * @sc: The scan_control struct for this reclaim session
1969 * @lru: LRU list id for isolating
1970 *
1971 * returns how many pages were moved onto *@dst.
1972 */
isolate_lru_pages(unsigned long nr_to_scan,struct lruvec * lruvec,struct list_head * dst,unsigned long * nr_scanned,struct scan_control * sc,enum lru_list lru)1973 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1974 struct lruvec *lruvec, struct list_head *dst,
1975 unsigned long *nr_scanned, struct scan_control *sc,
1976 enum lru_list lru)
1977 {
1978 struct list_head *src = &lruvec->lists[lru];
1979 unsigned long nr_taken = 0;
1980 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
1981 unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
1982 unsigned long skipped = 0;
1983 unsigned long scan, total_scan, nr_pages;
1984 LIST_HEAD(pages_skipped);
1985
1986 total_scan = 0;
1987 scan = 0;
1988 while (scan < nr_to_scan && !list_empty(src)) {
1989 struct list_head *move_to = src;
1990 struct page *page;
1991
1992 page = lru_to_page(src);
1993 prefetchw_prev_lru_page(page, src, flags);
1994
1995 nr_pages = compound_nr(page);
1996 total_scan += nr_pages;
1997
1998 if (page_zonenum(page) > sc->reclaim_idx ||
1999 skip_cma(page, sc)) {
2000 nr_skipped[page_zonenum(page)] += nr_pages;
2001 move_to = &pages_skipped;
2002 goto move;
2003 }
2004
2005 /*
2006 * Do not count skipped pages because that makes the function
2007 * return with no isolated pages if the LRU mostly contains
2008 * ineligible pages. This causes the VM to not reclaim any
2009 * pages, triggering a premature OOM.
2010 * Account all tail pages of THP.
2011 */
2012 scan += nr_pages;
2013
2014 if (!PageLRU(page))
2015 goto move;
2016 if (!sc->may_unmap && page_mapped(page))
2017 goto move;
2018
2019 /*
2020 * Be careful not to clear PageLRU until after we're
2021 * sure the page is not being freed elsewhere -- the
2022 * page release code relies on it.
2023 */
2024 if (unlikely(!get_page_unless_zero(page)))
2025 goto move;
2026
2027 if (!TestClearPageLRU(page)) {
2028 /* Another thread is already isolating this page */
2029 put_page(page);
2030 goto move;
2031 }
2032
2033 nr_taken += nr_pages;
2034 nr_zone_taken[page_zonenum(page)] += nr_pages;
2035 move_to = dst;
2036 move:
2037 list_move(&page->lru, move_to);
2038 }
2039
2040 /*
2041 * Splice any skipped pages to the start of the LRU list. Note that
2042 * this disrupts the LRU order when reclaiming for lower zones but
2043 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
2044 * scanning would soon rescan the same pages to skip and put the
2045 * system at risk of premature OOM.
2046 */
2047 if (!list_empty(&pages_skipped)) {
2048 int zid;
2049
2050 list_splice(&pages_skipped, src);
2051 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2052 if (!nr_skipped[zid])
2053 continue;
2054
2055 __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
2056 skipped += nr_skipped[zid];
2057 }
2058 }
2059 *nr_scanned = total_scan;
2060 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
2061 total_scan, skipped, nr_taken,
2062 sc->may_unmap ? 0 : ISOLATE_UNMAPPED, lru);
2063 update_lru_sizes(lruvec, lru, nr_zone_taken);
2064 return nr_taken;
2065 }
2066
2067 /**
2068 * isolate_lru_page - tries to isolate a page from its LRU list
2069 * @page: page to isolate from its LRU list
2070 *
2071 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
2072 * vmstat statistic corresponding to whatever LRU list the page was on.
2073 *
2074 * Returns 0 if the page was removed from an LRU list.
2075 * Returns -EBUSY if the page was not on an LRU list.
2076 *
2077 * The returned page will have PageLRU() cleared. If it was found on
2078 * the active list, it will have PageActive set. If it was found on
2079 * the unevictable list, it will have the PageUnevictable bit set. That flag
2080 * may need to be cleared by the caller before letting the page go.
2081 *
2082 * The vmstat statistic corresponding to the list on which the page was
2083 * found will be decremented.
2084 *
2085 * Restrictions:
2086 *
2087 * (1) Must be called with an elevated refcount on the page. This is a
2088 * fundamental difference from isolate_lru_pages (which is called
2089 * without a stable reference).
2090 * (2) the lru_lock must not be held.
2091 * (3) interrupts must be enabled.
2092 */
isolate_lru_page(struct page * page)2093 int isolate_lru_page(struct page *page)
2094 {
2095 int ret = -EBUSY;
2096
2097 VM_BUG_ON_PAGE(!page_count(page), page);
2098 WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
2099
2100 if (TestClearPageLRU(page)) {
2101 struct lruvec *lruvec;
2102
2103 get_page(page);
2104 lruvec = lock_page_lruvec_irq(page);
2105 del_page_from_lru_list(page, lruvec);
2106 unlock_page_lruvec_irq(lruvec);
2107 ret = 0;
2108 }
2109
2110 return ret;
2111 }
2112
2113 /*
2114 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
2115 * then get rescheduled. When there are massive number of tasks doing page
2116 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
2117 * the LRU list will go small and be scanned faster than necessary, leading to
2118 * unnecessary swapping, thrashing and OOM.
2119 */
too_many_isolated(struct pglist_data * pgdat,int file,struct scan_control * sc)2120 static int too_many_isolated(struct pglist_data *pgdat, int file,
2121 struct scan_control *sc)
2122 {
2123 unsigned long inactive, isolated;
2124
2125 if (current_is_kswapd())
2126 return 0;
2127
2128 if (!writeback_throttling_sane(sc))
2129 return 0;
2130
2131 if (file) {
2132 inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
2133 isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
2134 } else {
2135 inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
2136 isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
2137 }
2138
2139 /*
2140 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
2141 * won't get blocked by normal direct-reclaimers, forming a circular
2142 * deadlock.
2143 */
2144 if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
2145 inactive >>= 3;
2146
2147 return isolated > inactive;
2148 }
2149
2150 /*
2151 * move_pages_to_lru() moves pages from private @list to appropriate LRU list.
2152 * On return, @list is reused as a list of pages to be freed by the caller.
2153 *
2154 * Returns the number of pages moved to the given lruvec.
2155 */
move_pages_to_lru(struct lruvec * lruvec,struct list_head * list)2156 static unsigned int move_pages_to_lru(struct lruvec *lruvec,
2157 struct list_head *list)
2158 {
2159 int nr_pages, nr_moved = 0;
2160 LIST_HEAD(pages_to_free);
2161 struct page *page;
2162
2163 while (!list_empty(list)) {
2164 page = lru_to_page(list);
2165 VM_BUG_ON_PAGE(PageLRU(page), page);
2166 list_del(&page->lru);
2167 if (unlikely(!page_evictable(page))) {
2168 spin_unlock_irq(&lruvec->lru_lock);
2169 putback_lru_page(page);
2170 spin_lock_irq(&lruvec->lru_lock);
2171 continue;
2172 }
2173
2174 /*
2175 * The SetPageLRU needs to be kept here for list integrity.
2176 * Otherwise:
2177 * #0 move_pages_to_lru #1 release_pages
2178 * if !put_page_testzero
2179 * if (put_page_testzero())
2180 * !PageLRU //skip lru_lock
2181 * SetPageLRU()
2182 * list_add(&page->lru,)
2183 * list_add(&page->lru,)
2184 */
2185 SetPageLRU(page);
2186
2187 if (unlikely(put_page_testzero(page))) {
2188 __clear_page_lru_flags(page);
2189
2190 if (unlikely(PageCompound(page))) {
2191 spin_unlock_irq(&lruvec->lru_lock);
2192 destroy_compound_page(page);
2193 spin_lock_irq(&lruvec->lru_lock);
2194 } else
2195 list_add(&page->lru, &pages_to_free);
2196
2197 continue;
2198 }
2199
2200 /*
2201 * All pages were isolated from the same lruvec (and isolation
2202 * inhibits memcg migration).
2203 */
2204 VM_BUG_ON_PAGE(!page_matches_lruvec(page, lruvec), page);
2205 add_page_to_lru_list(page, lruvec);
2206 nr_pages = thp_nr_pages(page);
2207 nr_moved += nr_pages;
2208 if (PageActive(page))
2209 workingset_age_nonresident(lruvec, nr_pages);
2210 }
2211
2212 /*
2213 * To save our caller's stack, now use input list for pages to free.
2214 */
2215 list_splice(&pages_to_free, list);
2216
2217 return nr_moved;
2218 }
2219
2220 /*
2221 * If a kernel thread (such as nfsd for loop-back mounts) services
2222 * a backing device by writing to the page cache it sets PF_LOCAL_THROTTLE.
2223 * In that case we should only throttle if the backing device it is
2224 * writing to is congested. In other cases it is safe to throttle.
2225 */
current_may_throttle(void)2226 static int current_may_throttle(void)
2227 {
2228 return !(current->flags & PF_LOCAL_THROTTLE) ||
2229 current->backing_dev_info == NULL ||
2230 bdi_write_congested(current->backing_dev_info);
2231 }
2232
2233 /*
2234 * shrink_inactive_list() is a helper for shrink_node(). It returns the number
2235 * of reclaimed pages
2236 */
2237 static unsigned long
shrink_inactive_list(unsigned long nr_to_scan,struct lruvec * lruvec,struct scan_control * sc,enum lru_list lru)2238 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
2239 struct scan_control *sc, enum lru_list lru)
2240 {
2241 LIST_HEAD(page_list);
2242 unsigned long nr_scanned;
2243 unsigned int nr_reclaimed = 0;
2244 unsigned long nr_taken;
2245 struct reclaim_stat stat;
2246 bool file = is_file_lru(lru);
2247 enum vm_event_item item;
2248 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2249 bool stalled = false;
2250 struct blk_plug plug;
2251 bool do_plug = false;
2252
2253 while (unlikely(too_many_isolated(pgdat, file, sc))) {
2254 if (stalled)
2255 return 0;
2256
2257 /* wait a bit for the reclaimer. */
2258 msleep(100);
2259 stalled = true;
2260
2261 /* We are about to die and free our memory. Return now. */
2262 if (fatal_signal_pending(current))
2263 return SWAP_CLUSTER_MAX;
2264 }
2265
2266 lru_add_drain();
2267
2268 spin_lock_irq(&lruvec->lru_lock);
2269
2270 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
2271 &nr_scanned, sc, lru);
2272
2273 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2274 item = current_is_kswapd() ? PGSCAN_KSWAPD : PGSCAN_DIRECT;
2275 if (!cgroup_reclaim(sc))
2276 __count_vm_events(item, nr_scanned);
2277 __count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned);
2278 __count_vm_events(PGSCAN_ANON + file, nr_scanned);
2279
2280 spin_unlock_irq(&lruvec->lru_lock);
2281
2282 if (nr_taken == 0)
2283 return 0;
2284
2285 trace_android_vh_shrink_inactive_list_blk_plug(&do_plug);
2286 if (do_plug)
2287 blk_start_plug(&plug);
2288 nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, &stat, false);
2289
2290 spin_lock_irq(&lruvec->lru_lock);
2291 move_pages_to_lru(lruvec, &page_list);
2292
2293 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2294 item = current_is_kswapd() ? PGSTEAL_KSWAPD : PGSTEAL_DIRECT;
2295 if (!cgroup_reclaim(sc))
2296 __count_vm_events(item, nr_reclaimed);
2297 __count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed);
2298 __count_vm_events(PGSTEAL_ANON + file, nr_reclaimed);
2299 spin_unlock_irq(&lruvec->lru_lock);
2300
2301 if (do_plug)
2302 blk_finish_plug(&plug);
2303
2304 lru_note_cost(lruvec, file, stat.nr_pageout);
2305 mem_cgroup_uncharge_list(&page_list);
2306 free_unref_page_list(&page_list);
2307
2308 /*
2309 * If dirty pages are scanned that are not queued for IO, it
2310 * implies that flushers are not doing their job. This can
2311 * happen when memory pressure pushes dirty pages to the end of
2312 * the LRU before the dirty limits are breached and the dirty
2313 * data has expired. It can also happen when the proportion of
2314 * dirty pages grows not through writes but through memory
2315 * pressure reclaiming all the clean cache. And in some cases,
2316 * the flushers simply cannot keep up with the allocation
2317 * rate. Nudge the flusher threads in case they are asleep.
2318 */
2319 if (stat.nr_unqueued_dirty == nr_taken)
2320 wakeup_flusher_threads(WB_REASON_VMSCAN);
2321
2322 sc->nr.dirty += stat.nr_dirty;
2323 sc->nr.congested += stat.nr_congested;
2324 sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
2325 sc->nr.writeback += stat.nr_writeback;
2326 sc->nr.immediate += stat.nr_immediate;
2327 sc->nr.taken += nr_taken;
2328 if (file)
2329 sc->nr.file_taken += nr_taken;
2330
2331 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
2332 nr_scanned, nr_reclaimed, &stat, sc->priority, file);
2333 return nr_reclaimed;
2334 }
2335
2336 /*
2337 * shrink_active_list() moves pages from the active LRU to the inactive LRU.
2338 *
2339 * We move them the other way if the page is referenced by one or more
2340 * processes.
2341 *
2342 * If the pages are mostly unmapped, the processing is fast and it is
2343 * appropriate to hold lru_lock across the whole operation. But if
2344 * the pages are mapped, the processing is slow (page_referenced()), so
2345 * we should drop lru_lock around each page. It's impossible to balance
2346 * this, so instead we remove the pages from the LRU while processing them.
2347 * It is safe to rely on PG_active against the non-LRU pages in here because
2348 * nobody will play with that bit on a non-LRU page.
2349 *
2350 * The downside is that we have to touch page->_refcount against each page.
2351 * But we had to alter page->flags anyway.
2352 */
shrink_active_list(unsigned long nr_to_scan,struct lruvec * lruvec,struct scan_control * sc,enum lru_list lru)2353 static void shrink_active_list(unsigned long nr_to_scan,
2354 struct lruvec *lruvec,
2355 struct scan_control *sc,
2356 enum lru_list lru)
2357 {
2358 unsigned long nr_taken;
2359 unsigned long nr_scanned;
2360 unsigned long vm_flags;
2361 LIST_HEAD(l_hold); /* The pages which were snipped off */
2362 LIST_HEAD(l_active);
2363 LIST_HEAD(l_inactive);
2364 struct page *page;
2365 unsigned nr_deactivate, nr_activate;
2366 unsigned nr_rotated = 0;
2367 int file = is_file_lru(lru);
2368 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2369 bool bypass = false;
2370
2371 lru_add_drain();
2372
2373 spin_lock_irq(&lruvec->lru_lock);
2374
2375 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
2376 &nr_scanned, sc, lru);
2377
2378 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2379
2380 if (!cgroup_reclaim(sc))
2381 __count_vm_events(PGREFILL, nr_scanned);
2382 __count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
2383
2384 spin_unlock_irq(&lruvec->lru_lock);
2385
2386 while (!list_empty(&l_hold)) {
2387 cond_resched();
2388 page = lru_to_page(&l_hold);
2389 list_del(&page->lru);
2390
2391 if (unlikely(!page_evictable(page))) {
2392 putback_lru_page(page);
2393 continue;
2394 }
2395
2396 if (unlikely(buffer_heads_over_limit)) {
2397 if (page_has_private(page) && trylock_page(page)) {
2398 if (page_has_private(page))
2399 try_to_release_page(page, 0);
2400 unlock_page(page);
2401 }
2402 }
2403
2404 trace_android_vh_page_referenced_check_bypass(page, nr_to_scan, lru, &bypass);
2405 if (bypass)
2406 goto skip_page_referenced;
2407
2408 /* Referenced or rmap lock contention: rotate */
2409 if (page_referenced(page, 0, sc->target_mem_cgroup,
2410 &vm_flags) != 0) {
2411 /*
2412 * Identify referenced, file-backed active pages and
2413 * give them one more trip around the active list. So
2414 * that executable code get better chances to stay in
2415 * memory under moderate memory pressure. Anon pages
2416 * are not likely to be evicted by use-once streaming
2417 * IO, plus JVM can create lots of anon VM_EXEC pages,
2418 * so we ignore them here.
2419 */
2420 if ((vm_flags & VM_EXEC) && page_is_file_lru(page)) {
2421 nr_rotated += thp_nr_pages(page);
2422 list_add(&page->lru, &l_active);
2423 continue;
2424 }
2425 }
2426 skip_page_referenced:
2427 ClearPageActive(page); /* we are de-activating */
2428 SetPageWorkingset(page);
2429 list_add(&page->lru, &l_inactive);
2430 }
2431
2432 /*
2433 * Move pages back to the lru list.
2434 */
2435 spin_lock_irq(&lruvec->lru_lock);
2436
2437 nr_activate = move_pages_to_lru(lruvec, &l_active);
2438 nr_deactivate = move_pages_to_lru(lruvec, &l_inactive);
2439 /* Keep all free pages in l_active list */
2440 list_splice(&l_inactive, &l_active);
2441
2442 __count_vm_events(PGDEACTIVATE, nr_deactivate);
2443 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate);
2444
2445 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2446 spin_unlock_irq(&lruvec->lru_lock);
2447
2448 mem_cgroup_uncharge_list(&l_active);
2449 free_unref_page_list(&l_active);
2450 trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2451 nr_deactivate, nr_rotated, sc->priority, file);
2452 }
2453
reclaim_pages(struct list_head * page_list)2454 unsigned long reclaim_pages(struct list_head *page_list)
2455 {
2456 int nid = NUMA_NO_NODE;
2457 unsigned int nr_reclaimed = 0;
2458 LIST_HEAD(node_page_list);
2459 struct reclaim_stat dummy_stat;
2460 struct page *page;
2461 struct blk_plug plug;
2462 bool do_plug = false;
2463 unsigned int noreclaim_flag;
2464 struct scan_control sc = {
2465 .gfp_mask = GFP_KERNEL,
2466 .may_writepage = 1,
2467 .may_unmap = 1,
2468 .may_swap = 1,
2469 .no_demotion = 1,
2470 };
2471
2472 noreclaim_flag = memalloc_noreclaim_save();
2473
2474 trace_android_vh_reclaim_pages_plug(&do_plug);
2475 if (do_plug)
2476 blk_start_plug(&plug);
2477
2478 while (!list_empty(page_list)) {
2479 page = lru_to_page(page_list);
2480 if (nid == NUMA_NO_NODE) {
2481 nid = page_to_nid(page);
2482 INIT_LIST_HEAD(&node_page_list);
2483 }
2484
2485 if (nid == page_to_nid(page)) {
2486 ClearPageActive(page);
2487 list_move(&page->lru, &node_page_list);
2488 continue;
2489 }
2490
2491 nr_reclaimed += shrink_page_list(&node_page_list,
2492 NODE_DATA(nid),
2493 &sc, &dummy_stat, false);
2494 while (!list_empty(&node_page_list)) {
2495 page = lru_to_page(&node_page_list);
2496 list_del(&page->lru);
2497 putback_lru_page(page);
2498 }
2499
2500 nid = NUMA_NO_NODE;
2501 }
2502
2503 if (!list_empty(&node_page_list)) {
2504 nr_reclaimed += shrink_page_list(&node_page_list,
2505 NODE_DATA(nid),
2506 &sc, &dummy_stat, false);
2507 while (!list_empty(&node_page_list)) {
2508 page = lru_to_page(&node_page_list);
2509 list_del(&page->lru);
2510 putback_lru_page(page);
2511 }
2512 }
2513
2514 memalloc_noreclaim_restore(noreclaim_flag);
2515
2516 if (do_plug)
2517 blk_finish_plug(&plug);
2518
2519 return nr_reclaimed;
2520 }
2521
shrink_list(enum lru_list lru,unsigned long nr_to_scan,struct lruvec * lruvec,struct scan_control * sc)2522 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2523 struct lruvec *lruvec, struct scan_control *sc)
2524 {
2525 if (is_active_lru(lru)) {
2526 if (sc->may_deactivate & (1 << is_file_lru(lru)))
2527 shrink_active_list(nr_to_scan, lruvec, sc, lru);
2528 else
2529 sc->skipped_deactivate = 1;
2530 return 0;
2531 }
2532
2533 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2534 }
2535
2536 /*
2537 * The inactive anon list should be small enough that the VM never has
2538 * to do too much work.
2539 *
2540 * The inactive file list should be small enough to leave most memory
2541 * to the established workingset on the scan-resistant active list,
2542 * but large enough to avoid thrashing the aggregate readahead window.
2543 *
2544 * Both inactive lists should also be large enough that each inactive
2545 * page has a chance to be referenced again before it is reclaimed.
2546 *
2547 * If that fails and refaulting is observed, the inactive list grows.
2548 *
2549 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
2550 * on this LRU, maintained by the pageout code. An inactive_ratio
2551 * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
2552 *
2553 * total target max
2554 * memory ratio inactive
2555 * -------------------------------------
2556 * 10MB 1 5MB
2557 * 100MB 1 50MB
2558 * 1GB 3 250MB
2559 * 10GB 10 0.9GB
2560 * 100GB 31 3GB
2561 * 1TB 101 10GB
2562 * 10TB 320 32GB
2563 */
inactive_is_low(struct lruvec * lruvec,enum lru_list inactive_lru)2564 static bool inactive_is_low(struct lruvec *lruvec, enum lru_list inactive_lru)
2565 {
2566 enum lru_list active_lru = inactive_lru + LRU_ACTIVE;
2567 unsigned long inactive, active;
2568 unsigned long inactive_ratio;
2569 unsigned long gb;
2570
2571 inactive = lruvec_page_state(lruvec, NR_LRU_BASE + inactive_lru);
2572 active = lruvec_page_state(lruvec, NR_LRU_BASE + active_lru);
2573
2574 gb = (inactive + active) >> (30 - PAGE_SHIFT);
2575 if (gb)
2576 inactive_ratio = int_sqrt(10 * gb);
2577 else
2578 inactive_ratio = 1;
2579
2580 return inactive * inactive_ratio < active;
2581 }
2582
2583 enum scan_balance {
2584 SCAN_EQUAL,
2585 SCAN_FRACT,
2586 SCAN_ANON,
2587 SCAN_FILE,
2588 };
2589
prepare_scan_count(pg_data_t * pgdat,struct scan_control * sc)2590 static void prepare_scan_count(pg_data_t *pgdat, struct scan_control *sc)
2591 {
2592 unsigned long file;
2593 struct lruvec *target_lruvec;
2594
2595 if (lru_gen_enabled())
2596 return;
2597
2598 target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat);
2599
2600 /*
2601 * Flush the memory cgroup stats, so that we read accurate per-memcg
2602 * lruvec stats for heuristics.
2603 */
2604 mem_cgroup_flush_stats();
2605
2606 /*
2607 * Determine the scan balance between anon and file LRUs.
2608 */
2609 spin_lock_irq(&target_lruvec->lru_lock);
2610 sc->anon_cost = target_lruvec->anon_cost;
2611 sc->file_cost = target_lruvec->file_cost;
2612 spin_unlock_irq(&target_lruvec->lru_lock);
2613
2614 /*
2615 * Target desirable inactive:active list ratios for the anon
2616 * and file LRU lists.
2617 */
2618 if (!sc->force_deactivate) {
2619 unsigned long refaults;
2620
2621 refaults = lruvec_page_state(target_lruvec,
2622 WORKINGSET_ACTIVATE_ANON);
2623 if (refaults != target_lruvec->refaults[0] ||
2624 inactive_is_low(target_lruvec, LRU_INACTIVE_ANON))
2625 sc->may_deactivate |= DEACTIVATE_ANON;
2626 else
2627 sc->may_deactivate &= ~DEACTIVATE_ANON;
2628
2629 /*
2630 * When refaults are being observed, it means a new
2631 * workingset is being established. Deactivate to get
2632 * rid of any stale active pages quickly.
2633 */
2634 refaults = lruvec_page_state(target_lruvec,
2635 WORKINGSET_ACTIVATE_FILE);
2636 if (refaults != target_lruvec->refaults[1] ||
2637 inactive_is_low(target_lruvec, LRU_INACTIVE_FILE))
2638 sc->may_deactivate |= DEACTIVATE_FILE;
2639 else
2640 sc->may_deactivate &= ~DEACTIVATE_FILE;
2641 } else
2642 sc->may_deactivate = DEACTIVATE_ANON | DEACTIVATE_FILE;
2643
2644 /*
2645 * If we have plenty of inactive file pages that aren't
2646 * thrashing, try to reclaim those first before touching
2647 * anonymous pages.
2648 */
2649 file = lruvec_page_state(target_lruvec, NR_INACTIVE_FILE);
2650 if (file >> sc->priority && !(sc->may_deactivate & DEACTIVATE_FILE))
2651 sc->cache_trim_mode = 1;
2652 else
2653 sc->cache_trim_mode = 0;
2654
2655 /*
2656 * Prevent the reclaimer from falling into the cache trap: as
2657 * cache pages start out inactive, every cache fault will tip
2658 * the scan balance towards the file LRU. And as the file LRU
2659 * shrinks, so does the window for rotation from references.
2660 * This means we have a runaway feedback loop where a tiny
2661 * thrashing file LRU becomes infinitely more attractive than
2662 * anon pages. Try to detect this based on file LRU size.
2663 */
2664 if (!cgroup_reclaim(sc)) {
2665 unsigned long total_high_wmark = 0;
2666 unsigned long free, anon;
2667 int z;
2668
2669 free = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2670 file = node_page_state(pgdat, NR_ACTIVE_FILE) +
2671 node_page_state(pgdat, NR_INACTIVE_FILE);
2672
2673 for (z = 0; z < MAX_NR_ZONES; z++) {
2674 struct zone *zone = &pgdat->node_zones[z];
2675
2676 if (!managed_zone(zone))
2677 continue;
2678
2679 total_high_wmark += high_wmark_pages(zone);
2680 }
2681
2682 /*
2683 * Consider anon: if that's low too, this isn't a
2684 * runaway file reclaim problem, but rather just
2685 * extreme pressure. Reclaim as per usual then.
2686 */
2687 anon = node_page_state(pgdat, NR_INACTIVE_ANON);
2688
2689 sc->file_is_tiny =
2690 file + free <= total_high_wmark &&
2691 !(sc->may_deactivate & DEACTIVATE_ANON) &&
2692 anon >> sc->priority;
2693 }
2694 }
2695
2696 /*
2697 * Determine how aggressively the anon and file LRU lists should be
2698 * scanned. The relative value of each set of LRU lists is determined
2699 * by looking at the fraction of the pages scanned we did rotate back
2700 * onto the active list instead of evict.
2701 *
2702 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
2703 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
2704 */
get_scan_count(struct lruvec * lruvec,struct scan_control * sc,unsigned long * nr)2705 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
2706 unsigned long *nr)
2707 {
2708 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2709 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
2710 unsigned long anon_cost, file_cost, total_cost;
2711 int swappiness = mem_cgroup_swappiness(memcg);
2712 u64 fraction[ANON_AND_FILE];
2713 u64 denominator = 0; /* gcc */
2714 enum scan_balance scan_balance;
2715 unsigned long ap, fp;
2716 enum lru_list lru;
2717 bool balance_anon_file_reclaim = false;
2718
2719 /* If we have no swap space, do not bother scanning anon pages. */
2720 if (!sc->may_swap || !can_reclaim_anon_pages(memcg, pgdat->node_id, sc)) {
2721 scan_balance = SCAN_FILE;
2722 goto out;
2723 }
2724
2725 /*
2726 * Global reclaim will swap to prevent OOM even with no
2727 * swappiness, but memcg users want to use this knob to
2728 * disable swapping for individual groups completely when
2729 * using the memory controller's swap limit feature would be
2730 * too expensive.
2731 */
2732 if (cgroup_reclaim(sc) && !swappiness) {
2733 scan_balance = SCAN_FILE;
2734 goto out;
2735 }
2736
2737 /*
2738 * Do not apply any pressure balancing cleverness when the
2739 * system is close to OOM, scan both anon and file equally
2740 * (unless the swappiness setting disagrees with swapping).
2741 */
2742 if (!sc->priority && swappiness) {
2743 scan_balance = SCAN_EQUAL;
2744 goto out;
2745 }
2746
2747 /*
2748 * If the system is almost out of file pages, force-scan anon.
2749 */
2750 if (sc->file_is_tiny) {
2751 scan_balance = SCAN_ANON;
2752 goto out;
2753 }
2754
2755 trace_android_rvh_set_balance_anon_file_reclaim(&balance_anon_file_reclaim);
2756
2757 /*
2758 * If there is enough inactive page cache, we do not reclaim
2759 * anything from the anonymous working right now. But when balancing
2760 * anon and page cache files for reclaim, allow swapping of anon pages
2761 * even if there are a number of inactive file cache pages.
2762 */
2763 if (!balance_anon_file_reclaim && sc->cache_trim_mode) {
2764 scan_balance = SCAN_FILE;
2765 goto out;
2766 }
2767
2768 scan_balance = SCAN_FRACT;
2769 /*
2770 * Calculate the pressure balance between anon and file pages.
2771 *
2772 * The amount of pressure we put on each LRU is inversely
2773 * proportional to the cost of reclaiming each list, as
2774 * determined by the share of pages that are refaulting, times
2775 * the relative IO cost of bringing back a swapped out
2776 * anonymous page vs reloading a filesystem page (swappiness).
2777 *
2778 * Although we limit that influence to ensure no list gets
2779 * left behind completely: at least a third of the pressure is
2780 * applied, before swappiness.
2781 *
2782 * With swappiness at 100, anon and file have equal IO cost.
2783 */
2784 total_cost = sc->anon_cost + sc->file_cost;
2785 anon_cost = total_cost + sc->anon_cost;
2786 file_cost = total_cost + sc->file_cost;
2787 total_cost = anon_cost + file_cost;
2788
2789 ap = swappiness * (total_cost + 1);
2790 ap /= anon_cost + 1;
2791
2792 fp = (200 - swappiness) * (total_cost + 1);
2793 fp /= file_cost + 1;
2794
2795 fraction[0] = ap;
2796 fraction[1] = fp;
2797 denominator = ap + fp;
2798 out:
2799 for_each_evictable_lru(lru) {
2800 int file = is_file_lru(lru);
2801 unsigned long lruvec_size;
2802 unsigned long low, min;
2803 unsigned long scan;
2804
2805 lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
2806 mem_cgroup_protection(sc->target_mem_cgroup, memcg,
2807 &min, &low);
2808
2809 if (min || low) {
2810 /*
2811 * Scale a cgroup's reclaim pressure by proportioning
2812 * its current usage to its memory.low or memory.min
2813 * setting.
2814 *
2815 * This is important, as otherwise scanning aggression
2816 * becomes extremely binary -- from nothing as we
2817 * approach the memory protection threshold, to totally
2818 * nominal as we exceed it. This results in requiring
2819 * setting extremely liberal protection thresholds. It
2820 * also means we simply get no protection at all if we
2821 * set it too low, which is not ideal.
2822 *
2823 * If there is any protection in place, we reduce scan
2824 * pressure by how much of the total memory used is
2825 * within protection thresholds.
2826 *
2827 * There is one special case: in the first reclaim pass,
2828 * we skip over all groups that are within their low
2829 * protection. If that fails to reclaim enough pages to
2830 * satisfy the reclaim goal, we come back and override
2831 * the best-effort low protection. However, we still
2832 * ideally want to honor how well-behaved groups are in
2833 * that case instead of simply punishing them all
2834 * equally. As such, we reclaim them based on how much
2835 * memory they are using, reducing the scan pressure
2836 * again by how much of the total memory used is under
2837 * hard protection.
2838 */
2839 unsigned long cgroup_size = mem_cgroup_size(memcg);
2840 unsigned long protection;
2841
2842 /* memory.low scaling, make sure we retry before OOM */
2843 if (!sc->memcg_low_reclaim && low > min) {
2844 protection = low;
2845 sc->memcg_low_skipped = 1;
2846 } else {
2847 protection = min;
2848 }
2849
2850 /* Avoid TOCTOU with earlier protection check */
2851 cgroup_size = max(cgroup_size, protection);
2852
2853 scan = lruvec_size - lruvec_size * protection /
2854 (cgroup_size + 1);
2855
2856 /*
2857 * Minimally target SWAP_CLUSTER_MAX pages to keep
2858 * reclaim moving forwards, avoiding decrementing
2859 * sc->priority further than desirable.
2860 */
2861 scan = max(scan, SWAP_CLUSTER_MAX);
2862 } else {
2863 scan = lruvec_size;
2864 }
2865
2866 scan >>= sc->priority;
2867
2868 /*
2869 * If the cgroup's already been deleted, make sure to
2870 * scrape out the remaining cache.
2871 */
2872 if (!scan && !mem_cgroup_online(memcg))
2873 scan = min(lruvec_size, SWAP_CLUSTER_MAX);
2874
2875 switch (scan_balance) {
2876 case SCAN_EQUAL:
2877 /* Scan lists relative to size */
2878 break;
2879 case SCAN_FRACT:
2880 /*
2881 * Scan types proportional to swappiness and
2882 * their relative recent reclaim efficiency.
2883 * Make sure we don't miss the last page on
2884 * the offlined memory cgroups because of a
2885 * round-off error.
2886 */
2887 scan = mem_cgroup_online(memcg) ?
2888 div64_u64(scan * fraction[file], denominator) :
2889 DIV64_U64_ROUND_UP(scan * fraction[file],
2890 denominator);
2891 break;
2892 case SCAN_FILE:
2893 case SCAN_ANON:
2894 /* Scan one type exclusively */
2895 if ((scan_balance == SCAN_FILE) != file)
2896 scan = 0;
2897 break;
2898 default:
2899 /* Look ma, no brain */
2900 BUG();
2901 }
2902
2903 nr[lru] = scan;
2904 }
2905 }
2906
2907 /*
2908 * Anonymous LRU management is a waste if there is
2909 * ultimately no way to reclaim the memory.
2910 */
can_age_anon_pages(struct pglist_data * pgdat,struct scan_control * sc)2911 static bool can_age_anon_pages(struct pglist_data *pgdat,
2912 struct scan_control *sc)
2913 {
2914 /* Aging the anon LRU is valuable if swap is present: */
2915 if (total_swap_pages > 0)
2916 return true;
2917
2918 /* Also valuable if anon pages can be demoted: */
2919 return can_demote(pgdat->node_id, sc);
2920 }
2921
2922 #ifdef CONFIG_LRU_GEN
2923
2924 #ifdef CONFIG_LRU_GEN_ENABLED
2925 DEFINE_STATIC_KEY_ARRAY_TRUE(lru_gen_caps, NR_LRU_GEN_CAPS);
2926 #define get_cap(cap) static_branch_likely(&lru_gen_caps[cap])
2927 #else
2928 DEFINE_STATIC_KEY_ARRAY_FALSE(lru_gen_caps, NR_LRU_GEN_CAPS);
2929 #define get_cap(cap) static_branch_unlikely(&lru_gen_caps[cap])
2930 #endif
2931
2932 /******************************************************************************
2933 * shorthand helpers
2934 ******************************************************************************/
2935
2936 #define LRU_REFS_FLAGS (BIT(PG_referenced) | BIT(PG_workingset))
2937
2938 #define DEFINE_MAX_SEQ(lruvec) \
2939 unsigned long max_seq = READ_ONCE((lruvec)->lrugen.max_seq)
2940
2941 #define DEFINE_MIN_SEQ(lruvec) \
2942 unsigned long min_seq[ANON_AND_FILE] = { \
2943 READ_ONCE((lruvec)->lrugen.min_seq[LRU_GEN_ANON]), \
2944 READ_ONCE((lruvec)->lrugen.min_seq[LRU_GEN_FILE]), \
2945 }
2946
2947 #define for_each_gen_type_zone(gen, type, zone) \
2948 for ((gen) = 0; (gen) < MAX_NR_GENS; (gen)++) \
2949 for ((type) = 0; (type) < ANON_AND_FILE; (type)++) \
2950 for ((zone) = 0; (zone) < MAX_NR_ZONES; (zone)++)
2951
2952 #define get_memcg_gen(seq) ((seq) % MEMCG_NR_GENS)
2953 #define get_memcg_bin(bin) ((bin) % MEMCG_NR_BINS)
2954
get_lruvec(struct mem_cgroup * memcg,int nid)2955 static struct lruvec *get_lruvec(struct mem_cgroup *memcg, int nid)
2956 {
2957 struct pglist_data *pgdat = NODE_DATA(nid);
2958
2959 #ifdef CONFIG_MEMCG
2960 if (memcg) {
2961 struct lruvec *lruvec = &memcg->nodeinfo[nid]->lruvec;
2962
2963 /* for hotadd_new_pgdat() */
2964 if (!lruvec->pgdat)
2965 lruvec->pgdat = pgdat;
2966
2967 return lruvec;
2968 }
2969 #endif
2970 VM_WARN_ON_ONCE(!mem_cgroup_disabled());
2971
2972 return pgdat ? &pgdat->__lruvec : NULL;
2973 }
2974
get_swappiness(struct lruvec * lruvec,struct scan_control * sc)2975 static int get_swappiness(struct lruvec *lruvec, struct scan_control *sc)
2976 {
2977 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
2978 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2979
2980 if (!sc->may_swap)
2981 return 0;
2982
2983 if (!can_demote(pgdat->node_id, sc) &&
2984 mem_cgroup_get_nr_swap_pages(memcg) <= 0)
2985 return 0;
2986
2987 return mem_cgroup_swappiness(memcg);
2988 }
2989
get_nr_gens(struct lruvec * lruvec,int type)2990 static int get_nr_gens(struct lruvec *lruvec, int type)
2991 {
2992 return lruvec->lrugen.max_seq - lruvec->lrugen.min_seq[type] + 1;
2993 }
2994
seq_is_valid(struct lruvec * lruvec)2995 static bool __maybe_unused seq_is_valid(struct lruvec *lruvec)
2996 {
2997 /* see the comment on lru_gen_page */
2998 return get_nr_gens(lruvec, LRU_GEN_FILE) >= MIN_NR_GENS &&
2999 get_nr_gens(lruvec, LRU_GEN_FILE) <= get_nr_gens(lruvec, LRU_GEN_ANON) &&
3000 get_nr_gens(lruvec, LRU_GEN_ANON) <= MAX_NR_GENS;
3001 }
3002
3003 /******************************************************************************
3004 * mm_struct list
3005 ******************************************************************************/
3006
get_mm_list(struct mem_cgroup * memcg)3007 static struct lru_gen_mm_list *get_mm_list(struct mem_cgroup *memcg)
3008 {
3009 static struct lru_gen_mm_list mm_list = {
3010 .fifo = LIST_HEAD_INIT(mm_list.fifo),
3011 .lock = __SPIN_LOCK_UNLOCKED(mm_list.lock),
3012 };
3013
3014 #ifdef CONFIG_MEMCG
3015 if (memcg)
3016 return &memcg->mm_list;
3017 #endif
3018 VM_WARN_ON_ONCE(!mem_cgroup_disabled());
3019
3020 return &mm_list;
3021 }
3022
lru_gen_add_mm(struct mm_struct * mm)3023 void lru_gen_add_mm(struct mm_struct *mm)
3024 {
3025 int nid;
3026 struct mem_cgroup *memcg = get_mem_cgroup_from_mm(mm);
3027 struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
3028
3029 VM_WARN_ON_ONCE(!list_empty(&mm->lru_gen.list));
3030 #ifdef CONFIG_MEMCG
3031 VM_WARN_ON_ONCE(mm->lru_gen.memcg);
3032 mm->lru_gen.memcg = memcg;
3033 #endif
3034 spin_lock(&mm_list->lock);
3035
3036 for_each_node_state(nid, N_MEMORY) {
3037 struct lruvec *lruvec = get_lruvec(memcg, nid);
3038
3039 if (!lruvec)
3040 continue;
3041
3042 /* the first addition since the last iteration */
3043 if (lruvec->mm_state.tail == &mm_list->fifo)
3044 lruvec->mm_state.tail = &mm->lru_gen.list;
3045 }
3046
3047 list_add_tail(&mm->lru_gen.list, &mm_list->fifo);
3048
3049 spin_unlock(&mm_list->lock);
3050 }
3051
lru_gen_del_mm(struct mm_struct * mm)3052 void lru_gen_del_mm(struct mm_struct *mm)
3053 {
3054 int nid;
3055 struct lru_gen_mm_list *mm_list;
3056 struct mem_cgroup *memcg = NULL;
3057
3058 if (list_empty(&mm->lru_gen.list))
3059 return;
3060
3061 #ifdef CONFIG_MEMCG
3062 memcg = mm->lru_gen.memcg;
3063 #endif
3064 mm_list = get_mm_list(memcg);
3065
3066 spin_lock(&mm_list->lock);
3067
3068 for_each_node(nid) {
3069 struct lruvec *lruvec = get_lruvec(memcg, nid);
3070
3071 if (!lruvec)
3072 continue;
3073
3074 /* where the current iteration continues after */
3075 if (lruvec->mm_state.head == &mm->lru_gen.list)
3076 lruvec->mm_state.head = lruvec->mm_state.head->prev;
3077
3078 /* where the last iteration ended before */
3079 if (lruvec->mm_state.tail == &mm->lru_gen.list)
3080 lruvec->mm_state.tail = lruvec->mm_state.tail->next;
3081 }
3082
3083 list_del_init(&mm->lru_gen.list);
3084
3085 spin_unlock(&mm_list->lock);
3086
3087 #ifdef CONFIG_MEMCG
3088 mem_cgroup_put(mm->lru_gen.memcg);
3089 mm->lru_gen.memcg = NULL;
3090 #endif
3091 }
3092
3093 #ifdef CONFIG_MEMCG
lru_gen_migrate_mm(struct mm_struct * mm)3094 void lru_gen_migrate_mm(struct mm_struct *mm)
3095 {
3096 struct mem_cgroup *memcg;
3097 struct task_struct *task = rcu_dereference_protected(mm->owner, true);
3098
3099 VM_WARN_ON_ONCE(task->mm != mm);
3100 lockdep_assert_held(&task->alloc_lock);
3101
3102 /* for mm_update_next_owner() */
3103 if (mem_cgroup_disabled())
3104 return;
3105
3106 /* migration can happen before addition */
3107 if (!mm->lru_gen.memcg)
3108 return;
3109
3110 rcu_read_lock();
3111 memcg = mem_cgroup_from_task(task);
3112 rcu_read_unlock();
3113 if (memcg == mm->lru_gen.memcg)
3114 return;
3115
3116 VM_WARN_ON_ONCE(list_empty(&mm->lru_gen.list));
3117
3118 lru_gen_del_mm(mm);
3119 lru_gen_add_mm(mm);
3120 }
3121 #endif
3122
3123 /*
3124 * Bloom filters with m=1<<15, k=2 and the false positive rates of ~1/5 when
3125 * n=10,000 and ~1/2 when n=20,000, where, conventionally, m is the number of
3126 * bits in a bitmap, k is the number of hash functions and n is the number of
3127 * inserted items.
3128 *
3129 * Page table walkers use one of the two filters to reduce their search space.
3130 * To get rid of non-leaf entries that no longer have enough leaf entries, the
3131 * aging uses the double-buffering technique to flip to the other filter each
3132 * time it produces a new generation. For non-leaf entries that have enough
3133 * leaf entries, the aging carries them over to the next generation in
3134 * walk_pmd_range(); the eviction also report them when walking the rmap
3135 * in lru_gen_look_around().
3136 *
3137 * For future optimizations:
3138 * 1. It's not necessary to keep both filters all the time. The spare one can be
3139 * freed after the RCU grace period and reallocated if needed again.
3140 * 2. And when reallocating, it's worth scaling its size according to the number
3141 * of inserted entries in the other filter, to reduce the memory overhead on
3142 * small systems and false positives on large systems.
3143 * 3. Jenkins' hash function is an alternative to Knuth's.
3144 */
3145 #define BLOOM_FILTER_SHIFT 15
3146
filter_gen_from_seq(unsigned long seq)3147 static inline int filter_gen_from_seq(unsigned long seq)
3148 {
3149 return seq % NR_BLOOM_FILTERS;
3150 }
3151
get_item_key(void * item,int * key)3152 static void get_item_key(void *item, int *key)
3153 {
3154 u32 hash = hash_ptr(item, BLOOM_FILTER_SHIFT * 2);
3155
3156 BUILD_BUG_ON(BLOOM_FILTER_SHIFT * 2 > BITS_PER_TYPE(u32));
3157
3158 key[0] = hash & (BIT(BLOOM_FILTER_SHIFT) - 1);
3159 key[1] = hash >> BLOOM_FILTER_SHIFT;
3160 }
3161
reset_bloom_filter(struct lruvec * lruvec,unsigned long seq)3162 static void reset_bloom_filter(struct lruvec *lruvec, unsigned long seq)
3163 {
3164 unsigned long *filter;
3165 int gen = filter_gen_from_seq(seq);
3166
3167 filter = lruvec->mm_state.filters[gen];
3168 if (filter) {
3169 bitmap_clear(filter, 0, BIT(BLOOM_FILTER_SHIFT));
3170 return;
3171 }
3172
3173 filter = bitmap_zalloc(BIT(BLOOM_FILTER_SHIFT),
3174 __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN);
3175 WRITE_ONCE(lruvec->mm_state.filters[gen], filter);
3176 }
3177
update_bloom_filter(struct lruvec * lruvec,unsigned long seq,void * item)3178 static void update_bloom_filter(struct lruvec *lruvec, unsigned long seq, void *item)
3179 {
3180 int key[2];
3181 unsigned long *filter;
3182 int gen = filter_gen_from_seq(seq);
3183
3184 filter = READ_ONCE(lruvec->mm_state.filters[gen]);
3185 if (!filter)
3186 return;
3187
3188 get_item_key(item, key);
3189
3190 if (!test_bit(key[0], filter))
3191 set_bit(key[0], filter);
3192 if (!test_bit(key[1], filter))
3193 set_bit(key[1], filter);
3194 }
3195
test_bloom_filter(struct lruvec * lruvec,unsigned long seq,void * item)3196 static bool test_bloom_filter(struct lruvec *lruvec, unsigned long seq, void *item)
3197 {
3198 int key[2];
3199 unsigned long *filter;
3200 int gen = filter_gen_from_seq(seq);
3201
3202 filter = READ_ONCE(lruvec->mm_state.filters[gen]);
3203 if (!filter)
3204 return true;
3205
3206 get_item_key(item, key);
3207
3208 return test_bit(key[0], filter) && test_bit(key[1], filter);
3209 }
3210
reset_mm_stats(struct lruvec * lruvec,struct lru_gen_mm_walk * walk,bool last)3211 static void reset_mm_stats(struct lruvec *lruvec, struct lru_gen_mm_walk *walk, bool last)
3212 {
3213 int i;
3214 int hist;
3215
3216 lockdep_assert_held(&get_mm_list(lruvec_memcg(lruvec))->lock);
3217
3218 if (walk) {
3219 hist = lru_hist_from_seq(walk->max_seq);
3220
3221 for (i = 0; i < NR_MM_STATS; i++) {
3222 WRITE_ONCE(lruvec->mm_state.stats[hist][i],
3223 lruvec->mm_state.stats[hist][i] + walk->mm_stats[i]);
3224 walk->mm_stats[i] = 0;
3225 }
3226 }
3227
3228 if (NR_HIST_GENS > 1 && last) {
3229 hist = lru_hist_from_seq(lruvec->mm_state.seq + 1);
3230
3231 for (i = 0; i < NR_MM_STATS; i++)
3232 WRITE_ONCE(lruvec->mm_state.stats[hist][i], 0);
3233 }
3234 }
3235
should_skip_mm(struct mm_struct * mm,struct lru_gen_mm_walk * walk)3236 static bool should_skip_mm(struct mm_struct *mm, struct lru_gen_mm_walk *walk)
3237 {
3238 int type;
3239 unsigned long size = 0;
3240 struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
3241 int key = pgdat->node_id % BITS_PER_TYPE(mm->lru_gen.bitmap);
3242
3243 if (!walk->force_scan && !test_bit(key, &mm->lru_gen.bitmap))
3244 return true;
3245
3246 clear_bit(key, &mm->lru_gen.bitmap);
3247
3248 for (type = !walk->can_swap; type < ANON_AND_FILE; type++) {
3249 size += type ? get_mm_counter(mm, MM_FILEPAGES) :
3250 get_mm_counter(mm, MM_ANONPAGES) +
3251 get_mm_counter(mm, MM_SHMEMPAGES);
3252 }
3253
3254 if (size < MIN_LRU_BATCH)
3255 return true;
3256
3257 return !mmget_not_zero(mm);
3258 }
3259
iterate_mm_list(struct lruvec * lruvec,struct lru_gen_mm_walk * walk,struct mm_struct ** iter)3260 static bool iterate_mm_list(struct lruvec *lruvec, struct lru_gen_mm_walk *walk,
3261 struct mm_struct **iter)
3262 {
3263 bool first = false;
3264 bool last = false;
3265 struct mm_struct *mm = NULL;
3266 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
3267 struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
3268 struct lru_gen_mm_state *mm_state = &lruvec->mm_state;
3269
3270 /*
3271 * mm_state->seq is incremented after each iteration of mm_list. There
3272 * are three interesting cases for this page table walker:
3273 * 1. It tries to start a new iteration with a stale max_seq: there is
3274 * nothing left to do.
3275 * 2. It started the next iteration: it needs to reset the Bloom filter
3276 * so that a fresh set of PTE tables can be recorded.
3277 * 3. It ended the current iteration: it needs to reset the mm stats
3278 * counters and tell its caller to increment max_seq.
3279 */
3280 spin_lock(&mm_list->lock);
3281
3282 VM_WARN_ON_ONCE(mm_state->seq + 1 < walk->max_seq);
3283
3284 if (walk->max_seq <= mm_state->seq)
3285 goto done;
3286
3287 if (!mm_state->head)
3288 mm_state->head = &mm_list->fifo;
3289
3290 if (mm_state->head == &mm_list->fifo)
3291 first = true;
3292
3293 do {
3294 mm_state->head = mm_state->head->next;
3295 if (mm_state->head == &mm_list->fifo) {
3296 WRITE_ONCE(mm_state->seq, mm_state->seq + 1);
3297 last = true;
3298 break;
3299 }
3300
3301 /* force scan for those added after the last iteration */
3302 if (!mm_state->tail || mm_state->tail == mm_state->head) {
3303 mm_state->tail = mm_state->head->next;
3304 walk->force_scan = true;
3305 }
3306
3307 mm = list_entry(mm_state->head, struct mm_struct, lru_gen.list);
3308 if (should_skip_mm(mm, walk))
3309 mm = NULL;
3310 } while (!mm);
3311 done:
3312 if (*iter || last)
3313 reset_mm_stats(lruvec, walk, last);
3314
3315 spin_unlock(&mm_list->lock);
3316
3317 if (mm && first)
3318 reset_bloom_filter(lruvec, walk->max_seq + 1);
3319
3320 if (*iter)
3321 mmput_async(*iter);
3322
3323 *iter = mm;
3324
3325 return last;
3326 }
3327
iterate_mm_list_nowalk(struct lruvec * lruvec,unsigned long max_seq)3328 static bool iterate_mm_list_nowalk(struct lruvec *lruvec, unsigned long max_seq)
3329 {
3330 bool success = false;
3331 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
3332 struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
3333 struct lru_gen_mm_state *mm_state = &lruvec->mm_state;
3334
3335 spin_lock(&mm_list->lock);
3336
3337 VM_WARN_ON_ONCE(mm_state->seq + 1 < max_seq);
3338
3339 if (max_seq > mm_state->seq) {
3340 mm_state->head = NULL;
3341 mm_state->tail = NULL;
3342 WRITE_ONCE(mm_state->seq, mm_state->seq + 1);
3343 reset_mm_stats(lruvec, NULL, true);
3344 success = true;
3345 }
3346
3347 spin_unlock(&mm_list->lock);
3348
3349 return success;
3350 }
3351
3352 /******************************************************************************
3353 * refault feedback loop
3354 ******************************************************************************/
3355
3356 /*
3357 * A feedback loop based on Proportional-Integral-Derivative (PID) controller.
3358 *
3359 * The P term is refaulted/(evicted+protected) from a tier in the generation
3360 * currently being evicted; the I term is the exponential moving average of the
3361 * P term over the generations previously evicted, using the smoothing factor
3362 * 1/2; the D term isn't supported.
3363 *
3364 * The setpoint (SP) is always the first tier of one type; the process variable
3365 * (PV) is either any tier of the other type or any other tier of the same
3366 * type.
3367 *
3368 * The error is the difference between the SP and the PV; the correction is to
3369 * turn off protection when SP>PV or turn on protection when SP<PV.
3370 *
3371 * For future optimizations:
3372 * 1. The D term may discount the other two terms over time so that long-lived
3373 * generations can resist stale information.
3374 */
3375 struct ctrl_pos {
3376 unsigned long refaulted;
3377 unsigned long total;
3378 int gain;
3379 };
3380
read_ctrl_pos(struct lruvec * lruvec,int type,int tier,int gain,struct ctrl_pos * pos)3381 static void read_ctrl_pos(struct lruvec *lruvec, int type, int tier, int gain,
3382 struct ctrl_pos *pos)
3383 {
3384 struct lru_gen_page *lrugen = &lruvec->lrugen;
3385 int hist = lru_hist_from_seq(lrugen->min_seq[type]);
3386
3387 pos->refaulted = lrugen->avg_refaulted[type][tier] +
3388 atomic_long_read(&lrugen->refaulted[hist][type][tier]);
3389 pos->total = lrugen->avg_total[type][tier] +
3390 atomic_long_read(&lrugen->evicted[hist][type][tier]);
3391 if (tier)
3392 pos->total += lrugen->protected[hist][type][tier - 1];
3393 pos->gain = gain;
3394 }
3395
reset_ctrl_pos(struct lruvec * lruvec,int type,bool carryover)3396 static void reset_ctrl_pos(struct lruvec *lruvec, int type, bool carryover)
3397 {
3398 int hist, tier;
3399 struct lru_gen_page *lrugen = &lruvec->lrugen;
3400 bool clear = carryover ? NR_HIST_GENS == 1 : NR_HIST_GENS > 1;
3401 unsigned long seq = carryover ? lrugen->min_seq[type] : lrugen->max_seq + 1;
3402
3403 lockdep_assert_held(&lruvec->lru_lock);
3404
3405 if (!carryover && !clear)
3406 return;
3407
3408 hist = lru_hist_from_seq(seq);
3409
3410 for (tier = 0; tier < MAX_NR_TIERS; tier++) {
3411 if (carryover) {
3412 unsigned long sum;
3413
3414 sum = lrugen->avg_refaulted[type][tier] +
3415 atomic_long_read(&lrugen->refaulted[hist][type][tier]);
3416 WRITE_ONCE(lrugen->avg_refaulted[type][tier], sum / 2);
3417
3418 sum = lrugen->avg_total[type][tier] +
3419 atomic_long_read(&lrugen->evicted[hist][type][tier]);
3420 if (tier)
3421 sum += lrugen->protected[hist][type][tier - 1];
3422 WRITE_ONCE(lrugen->avg_total[type][tier], sum / 2);
3423 }
3424
3425 if (clear) {
3426 atomic_long_set(&lrugen->refaulted[hist][type][tier], 0);
3427 atomic_long_set(&lrugen->evicted[hist][type][tier], 0);
3428 if (tier)
3429 WRITE_ONCE(lrugen->protected[hist][type][tier - 1], 0);
3430 }
3431 }
3432 }
3433
positive_ctrl_err(struct ctrl_pos * sp,struct ctrl_pos * pv)3434 static bool positive_ctrl_err(struct ctrl_pos *sp, struct ctrl_pos *pv)
3435 {
3436 /*
3437 * Return true if the PV has a limited number of refaults or a lower
3438 * refaulted/total than the SP.
3439 */
3440 return pv->refaulted < MIN_LRU_BATCH ||
3441 pv->refaulted * (sp->total + MIN_LRU_BATCH) * sp->gain <=
3442 (sp->refaulted + 1) * pv->total * pv->gain;
3443 }
3444
3445 /******************************************************************************
3446 * the aging
3447 ******************************************************************************/
3448
3449 /* promote pages accessed through page tables */
page_update_gen(struct page * page,int gen)3450 static int page_update_gen(struct page *page, int gen)
3451 {
3452 unsigned long new_flags, old_flags = READ_ONCE(page->flags);
3453
3454 VM_WARN_ON_ONCE(gen >= MAX_NR_GENS);
3455 VM_WARN_ON_ONCE(!rcu_read_lock_held());
3456
3457 do {
3458 /* lru_gen_del_page() has isolated this page? */
3459 if (!(old_flags & LRU_GEN_MASK)) {
3460 /* for shrink_page_list() */
3461 new_flags = old_flags | BIT(PG_referenced);
3462 continue;
3463 }
3464
3465 new_flags = old_flags & ~(LRU_GEN_MASK | LRU_REFS_MASK | LRU_REFS_FLAGS);
3466 new_flags |= (gen + 1UL) << LRU_GEN_PGOFF;
3467 } while (!try_cmpxchg(&page->flags, &old_flags, new_flags));
3468
3469 return ((old_flags & LRU_GEN_MASK) >> LRU_GEN_PGOFF) - 1;
3470 }
3471
3472 /* protect pages accessed multiple times through file descriptors */
page_inc_gen(struct lruvec * lruvec,struct page * page,bool reclaiming)3473 static int page_inc_gen(struct lruvec *lruvec, struct page *page, bool reclaiming)
3474 {
3475 int type = page_is_file_lru(page);
3476 struct lru_gen_page *lrugen = &lruvec->lrugen;
3477 int new_gen, old_gen = lru_gen_from_seq(lrugen->min_seq[type]);
3478 unsigned long new_flags, old_flags = READ_ONCE(page->flags);
3479
3480 VM_WARN_ON_ONCE_PAGE(!(old_flags & LRU_GEN_MASK), page);
3481
3482 do {
3483 new_gen = ((old_flags & LRU_GEN_MASK) >> LRU_GEN_PGOFF) - 1;
3484 /* page_update_gen() has promoted this page? */
3485 if (new_gen >= 0 && new_gen != old_gen)
3486 return new_gen;
3487
3488 new_gen = (old_gen + 1) % MAX_NR_GENS;
3489
3490 new_flags = old_flags & ~(LRU_GEN_MASK | LRU_REFS_MASK | LRU_REFS_FLAGS);
3491 new_flags |= (new_gen + 1UL) << LRU_GEN_PGOFF;
3492 /* for end_page_writeback() */
3493 if (reclaiming)
3494 new_flags |= BIT(PG_reclaim);
3495 } while (!try_cmpxchg(&page->flags, &old_flags, new_flags));
3496
3497 lru_gen_update_size(lruvec, page, old_gen, new_gen);
3498
3499 return new_gen;
3500 }
3501
update_batch_size(struct lru_gen_mm_walk * walk,struct page * page,int old_gen,int new_gen)3502 static void update_batch_size(struct lru_gen_mm_walk *walk, struct page *page,
3503 int old_gen, int new_gen)
3504 {
3505 int type = page_is_file_lru(page);
3506 int zone = page_zonenum(page);
3507 int delta = thp_nr_pages(page);
3508
3509 VM_WARN_ON_ONCE(old_gen >= MAX_NR_GENS);
3510 VM_WARN_ON_ONCE(new_gen >= MAX_NR_GENS);
3511
3512 walk->batched++;
3513
3514 walk->nr_pages[old_gen][type][zone] -= delta;
3515 walk->nr_pages[new_gen][type][zone] += delta;
3516 }
3517
reset_batch_size(struct lruvec * lruvec,struct lru_gen_mm_walk * walk)3518 static void reset_batch_size(struct lruvec *lruvec, struct lru_gen_mm_walk *walk)
3519 {
3520 int gen, type, zone;
3521 struct lru_gen_page *lrugen = &lruvec->lrugen;
3522
3523 walk->batched = 0;
3524
3525 for_each_gen_type_zone(gen, type, zone) {
3526 enum lru_list lru = type * LRU_INACTIVE_FILE;
3527 int delta = walk->nr_pages[gen][type][zone];
3528
3529 if (!delta)
3530 continue;
3531
3532 walk->nr_pages[gen][type][zone] = 0;
3533 WRITE_ONCE(lrugen->nr_pages[gen][type][zone],
3534 lrugen->nr_pages[gen][type][zone] + delta);
3535
3536 if (lru_gen_is_active(lruvec, gen))
3537 lru += LRU_ACTIVE;
3538 __update_lru_size(lruvec, lru, zone, delta);
3539 }
3540 }
3541
should_skip_vma(unsigned long start,unsigned long end,struct mm_walk * args)3542 static int should_skip_vma(unsigned long start, unsigned long end, struct mm_walk *args)
3543 {
3544 struct address_space *mapping;
3545 struct vm_area_struct *vma = args->vma;
3546 struct lru_gen_mm_walk *walk = args->private;
3547
3548 if (!vma_is_accessible(vma))
3549 return true;
3550
3551 if (is_vm_hugetlb_page(vma))
3552 return true;
3553
3554 if (!vma_has_recency(vma))
3555 return true;
3556
3557 if (vma->vm_flags & (VM_LOCKED | VM_SPECIAL))
3558 return true;
3559
3560 if (vma == get_gate_vma(vma->vm_mm))
3561 return true;
3562
3563 if (vma_is_anonymous(vma))
3564 return !walk->can_swap;
3565
3566 if (WARN_ON_ONCE(!vma->vm_file || !vma->vm_file->f_mapping))
3567 return true;
3568
3569 mapping = vma->vm_file->f_mapping;
3570 if (mapping_unevictable(mapping))
3571 return true;
3572
3573 if (shmem_mapping(mapping))
3574 return !walk->can_swap;
3575
3576 /* to exclude special mappings like dax, etc. */
3577 return !mapping->a_ops->readpage;
3578 }
3579
3580 /*
3581 * Some userspace memory allocators map many single-page VMAs. Instead of
3582 * returning back to the PGD table for each of such VMAs, finish an entire PMD
3583 * table to reduce zigzags and improve cache performance.
3584 */
get_next_vma(unsigned long mask,unsigned long size,struct mm_walk * args,unsigned long * vm_start,unsigned long * vm_end)3585 static bool get_next_vma(unsigned long mask, unsigned long size, struct mm_walk *args,
3586 unsigned long *vm_start, unsigned long *vm_end)
3587 {
3588 unsigned long start = round_up(*vm_end, size);
3589 unsigned long end = (start | ~mask) + 1;
3590
3591 VM_WARN_ON_ONCE(mask & size);
3592 VM_WARN_ON_ONCE((start & mask) != (*vm_start & mask));
3593
3594 while (args->vma) {
3595 if (start >= args->vma->vm_end) {
3596 args->vma = args->vma->vm_next;
3597 continue;
3598 }
3599
3600 if (end && end <= args->vma->vm_start)
3601 return false;
3602
3603 if (should_skip_vma(args->vma->vm_start, args->vma->vm_end, args)) {
3604 args->vma = args->vma->vm_next;
3605 continue;
3606 }
3607
3608 *vm_start = max(start, args->vma->vm_start);
3609 *vm_end = min(end - 1, args->vma->vm_end - 1) + 1;
3610
3611 return true;
3612 }
3613
3614 return false;
3615 }
3616
get_pte_pfn(pte_t pte,struct vm_area_struct * vma,unsigned long addr)3617 static unsigned long get_pte_pfn(pte_t pte, struct vm_area_struct *vma, unsigned long addr)
3618 {
3619 unsigned long pfn = pte_pfn(pte);
3620
3621 VM_WARN_ON_ONCE(addr < vma->vm_start || addr >= vma->vm_end);
3622
3623 if (!pte_present(pte) || is_zero_pfn(pfn))
3624 return -1;
3625
3626 if (WARN_ON_ONCE(pte_devmap(pte) || pte_special(pte)))
3627 return -1;
3628
3629 if (WARN_ON_ONCE(!pfn_valid(pfn)))
3630 return -1;
3631
3632 return pfn;
3633 }
3634
3635 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG)
get_pmd_pfn(pmd_t pmd,struct vm_area_struct * vma,unsigned long addr)3636 static unsigned long get_pmd_pfn(pmd_t pmd, struct vm_area_struct *vma, unsigned long addr)
3637 {
3638 unsigned long pfn = pmd_pfn(pmd);
3639
3640 VM_WARN_ON_ONCE(addr < vma->vm_start || addr >= vma->vm_end);
3641
3642 if (!pmd_present(pmd) || is_huge_zero_pmd(pmd))
3643 return -1;
3644
3645 if (WARN_ON_ONCE(pmd_devmap(pmd)))
3646 return -1;
3647
3648 if (WARN_ON_ONCE(!pfn_valid(pfn)))
3649 return -1;
3650
3651 return pfn;
3652 }
3653 #endif
3654
get_pfn_page(unsigned long pfn,struct mem_cgroup * memcg,struct pglist_data * pgdat,bool can_swap)3655 static struct page *get_pfn_page(unsigned long pfn, struct mem_cgroup *memcg,
3656 struct pglist_data *pgdat, bool can_swap)
3657 {
3658 struct page *page;
3659
3660 /* try to avoid unnecessary memory loads */
3661 if (pfn < pgdat->node_start_pfn || pfn >= pgdat_end_pfn(pgdat))
3662 return NULL;
3663
3664 page = compound_head(pfn_to_page(pfn));
3665 if (page_to_nid(page) != pgdat->node_id)
3666 return NULL;
3667
3668 if (page_memcg_rcu(page) != memcg)
3669 return NULL;
3670
3671 /* file VMAs can contain anon pages from COW */
3672 if (!page_is_file_lru(page) && !can_swap)
3673 return NULL;
3674
3675 return page;
3676 }
3677
suitable_to_scan(int total,int young)3678 static bool suitable_to_scan(int total, int young)
3679 {
3680 int n = clamp_t(int, cache_line_size() / sizeof(pte_t), 2, 8);
3681
3682 /* suitable if the average number of young PTEs per cacheline is >=1 */
3683 return young * n >= total;
3684 }
3685
walk_pte_range(pmd_t * pmd,unsigned long start,unsigned long end,struct mm_walk * args)3686 static bool walk_pte_range(pmd_t *pmd, unsigned long start, unsigned long end,
3687 struct mm_walk *args)
3688 {
3689 int i;
3690 pte_t *pte;
3691 spinlock_t *ptl;
3692 unsigned long addr;
3693 int total = 0;
3694 int young = 0;
3695 struct lru_gen_mm_walk *walk = args->private;
3696 struct mem_cgroup *memcg = lruvec_memcg(walk->lruvec);
3697 struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
3698 int old_gen, new_gen = lru_gen_from_seq(walk->max_seq);
3699
3700 VM_WARN_ON_ONCE(pmd_leaf(*pmd));
3701
3702 ptl = pte_lockptr(args->mm, pmd);
3703 if (!spin_trylock(ptl))
3704 return false;
3705
3706 arch_enter_lazy_mmu_mode();
3707
3708 pte = pte_offset_map(pmd, start & PMD_MASK);
3709 restart:
3710 for (i = pte_index(start), addr = start; addr != end; i++, addr += PAGE_SIZE) {
3711 unsigned long pfn;
3712 struct page *page;
3713
3714 total++;
3715 walk->mm_stats[MM_LEAF_TOTAL]++;
3716
3717 pfn = get_pte_pfn(pte[i], args->vma, addr);
3718 if (pfn == -1)
3719 continue;
3720
3721 if (!pte_young(pte[i])) {
3722 walk->mm_stats[MM_LEAF_OLD]++;
3723 continue;
3724 }
3725
3726 page = get_pfn_page(pfn, memcg, pgdat, walk->can_swap);
3727 if (!page)
3728 continue;
3729
3730 if (!ptep_test_and_clear_young(args->vma, addr, pte + i))
3731 VM_WARN_ON_ONCE(true);
3732
3733 young++;
3734 walk->mm_stats[MM_LEAF_YOUNG]++;
3735
3736 if (pte_dirty(pte[i]) && !PageDirty(page) &&
3737 !(PageAnon(page) && PageSwapBacked(page) &&
3738 !PageSwapCache(page)))
3739 set_page_dirty(page);
3740
3741 old_gen = page_update_gen(page, new_gen);
3742 if (old_gen >= 0 && old_gen != new_gen)
3743 update_batch_size(walk, page, old_gen, new_gen);
3744 }
3745
3746 if (i < PTRS_PER_PTE && get_next_vma(PMD_MASK, PAGE_SIZE, args, &start, &end))
3747 goto restart;
3748
3749 pte_unmap(pte);
3750
3751 arch_leave_lazy_mmu_mode();
3752 spin_unlock(ptl);
3753
3754 return suitable_to_scan(total, young);
3755 }
3756
3757 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG)
walk_pmd_range_locked(pud_t * pud,unsigned long next,struct vm_area_struct * vma,struct mm_walk * args,unsigned long * bitmap,unsigned long * start)3758 static void walk_pmd_range_locked(pud_t *pud, unsigned long next, struct vm_area_struct *vma,
3759 struct mm_walk *args, unsigned long *bitmap, unsigned long *start)
3760 {
3761 int i;
3762 pmd_t *pmd;
3763 spinlock_t *ptl;
3764 struct lru_gen_mm_walk *walk = args->private;
3765 struct mem_cgroup *memcg = lruvec_memcg(walk->lruvec);
3766 struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
3767 int old_gen, new_gen = lru_gen_from_seq(walk->max_seq);
3768
3769 VM_WARN_ON_ONCE(pud_leaf(*pud));
3770
3771 /* try to batch at most 1+MIN_LRU_BATCH+1 entries */
3772 if (*start == -1) {
3773 *start = next;
3774 return;
3775 }
3776
3777 i = next == -1 ? 0 : pmd_index(next) - pmd_index(*start);
3778 if (i && i <= MIN_LRU_BATCH) {
3779 __set_bit(i - 1, bitmap);
3780 return;
3781 }
3782
3783 pmd = pmd_offset(pud, *start);
3784
3785 ptl = pmd_lockptr(args->mm, pmd);
3786 if (!spin_trylock(ptl))
3787 goto done;
3788
3789 arch_enter_lazy_mmu_mode();
3790
3791 do {
3792 unsigned long pfn;
3793 struct page *page;
3794 unsigned long addr = i ? (*start & PMD_MASK) + i * PMD_SIZE : *start;
3795
3796 pfn = get_pmd_pfn(pmd[i], vma, addr);
3797 if (pfn == -1)
3798 goto next;
3799
3800 if (!pmd_trans_huge(pmd[i])) {
3801 if (arch_has_hw_nonleaf_pmd_young() &&
3802 get_cap(LRU_GEN_NONLEAF_YOUNG))
3803 pmdp_test_and_clear_young(vma, addr, pmd + i);
3804 goto next;
3805 }
3806
3807 page = get_pfn_page(pfn, memcg, pgdat, walk->can_swap);
3808 if (!page)
3809 goto next;
3810
3811 if (!pmdp_test_and_clear_young(vma, addr, pmd + i))
3812 goto next;
3813
3814 walk->mm_stats[MM_LEAF_YOUNG]++;
3815
3816 if (pmd_dirty(pmd[i]) && !PageDirty(page) &&
3817 !(PageAnon(page) && PageSwapBacked(page) &&
3818 !PageSwapCache(page)))
3819 set_page_dirty(page);
3820
3821 old_gen = page_update_gen(page, new_gen);
3822 if (old_gen >= 0 && old_gen != new_gen)
3823 update_batch_size(walk, page, old_gen, new_gen);
3824 next:
3825 i = i > MIN_LRU_BATCH ? 0 : find_next_bit(bitmap, MIN_LRU_BATCH, i) + 1;
3826 } while (i <= MIN_LRU_BATCH);
3827
3828 arch_leave_lazy_mmu_mode();
3829 spin_unlock(ptl);
3830 done:
3831 *start = -1;
3832 bitmap_zero(bitmap, MIN_LRU_BATCH);
3833 }
3834 #else
walk_pmd_range_locked(pud_t * pud,unsigned long next,struct vm_area_struct * vma,struct mm_walk * args,unsigned long * bitmap,unsigned long * start)3835 static void walk_pmd_range_locked(pud_t *pud, unsigned long next, struct vm_area_struct *vma,
3836 struct mm_walk *args, unsigned long *bitmap, unsigned long *start)
3837 {
3838 }
3839 #endif
3840
walk_pmd_range(pud_t * pud,unsigned long start,unsigned long end,struct mm_walk * args)3841 static void walk_pmd_range(pud_t *pud, unsigned long start, unsigned long end,
3842 struct mm_walk *args)
3843 {
3844 int i;
3845 pmd_t *pmd;
3846 unsigned long next;
3847 unsigned long addr;
3848 struct vm_area_struct *vma;
3849 unsigned long pos = -1;
3850 struct lru_gen_mm_walk *walk = args->private;
3851 unsigned long bitmap[BITS_TO_LONGS(MIN_LRU_BATCH)] = {};
3852
3853 VM_WARN_ON_ONCE(pud_leaf(*pud));
3854
3855 /*
3856 * Finish an entire PMD in two passes: the first only reaches to PTE
3857 * tables to avoid taking the PMD lock; the second, if necessary, takes
3858 * the PMD lock to clear the accessed bit in PMD entries.
3859 */
3860 pmd = pmd_offset(pud, start & PUD_MASK);
3861 restart:
3862 /* walk_pte_range() may call get_next_vma() */
3863 vma = args->vma;
3864 for (i = pmd_index(start), addr = start; addr != end; i++, addr = next) {
3865 pmd_t val = pmd_read_atomic(pmd + i);
3866
3867 /* for pmd_read_atomic() */
3868 barrier();
3869
3870 next = pmd_addr_end(addr, end);
3871
3872 if (!pmd_present(val) || is_huge_zero_pmd(val)) {
3873 walk->mm_stats[MM_LEAF_TOTAL]++;
3874 continue;
3875 }
3876
3877 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3878 if (pmd_trans_huge(val)) {
3879 unsigned long pfn = pmd_pfn(val);
3880 struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
3881
3882 walk->mm_stats[MM_LEAF_TOTAL]++;
3883
3884 if (!pmd_young(val)) {
3885 walk->mm_stats[MM_LEAF_OLD]++;
3886 continue;
3887 }
3888
3889 /* try to avoid unnecessary memory loads */
3890 if (pfn < pgdat->node_start_pfn || pfn >= pgdat_end_pfn(pgdat))
3891 continue;
3892
3893 walk_pmd_range_locked(pud, addr, vma, args, bitmap, &pos);
3894 continue;
3895 }
3896 #endif
3897 walk->mm_stats[MM_NONLEAF_TOTAL]++;
3898
3899 if (arch_has_hw_nonleaf_pmd_young() &&
3900 get_cap(LRU_GEN_NONLEAF_YOUNG)) {
3901 if (!pmd_young(val))
3902 continue;
3903
3904 walk_pmd_range_locked(pud, addr, vma, args, bitmap, &pos);
3905 }
3906
3907 if (!walk->force_scan && !test_bloom_filter(walk->lruvec, walk->max_seq, pmd + i))
3908 continue;
3909
3910 walk->mm_stats[MM_NONLEAF_FOUND]++;
3911
3912 if (!walk_pte_range(&val, addr, next, args))
3913 continue;
3914
3915 walk->mm_stats[MM_NONLEAF_ADDED]++;
3916
3917 /* carry over to the next generation */
3918 update_bloom_filter(walk->lruvec, walk->max_seq + 1, pmd + i);
3919 }
3920
3921 walk_pmd_range_locked(pud, -1, vma, args, bitmap, &pos);
3922
3923 if (i < PTRS_PER_PMD && get_next_vma(PUD_MASK, PMD_SIZE, args, &start, &end))
3924 goto restart;
3925 }
3926
walk_pud_range(p4d_t * p4d,unsigned long start,unsigned long end,struct mm_walk * args)3927 static int walk_pud_range(p4d_t *p4d, unsigned long start, unsigned long end,
3928 struct mm_walk *args)
3929 {
3930 int i;
3931 pud_t *pud;
3932 unsigned long addr;
3933 unsigned long next;
3934 struct lru_gen_mm_walk *walk = args->private;
3935
3936 VM_WARN_ON_ONCE(p4d_leaf(*p4d));
3937
3938 pud = pud_offset(p4d, start & P4D_MASK);
3939 restart:
3940 for (i = pud_index(start), addr = start; addr != end; i++, addr = next) {
3941 pud_t val = READ_ONCE(pud[i]);
3942
3943 next = pud_addr_end(addr, end);
3944
3945 if (!pud_present(val) || WARN_ON_ONCE(pud_leaf(val)))
3946 continue;
3947
3948 walk_pmd_range(&val, addr, next, args);
3949
3950 if (need_resched() || walk->batched >= MAX_LRU_BATCH) {
3951 end = (addr | ~PUD_MASK) + 1;
3952 goto done;
3953 }
3954 }
3955
3956 if (i < PTRS_PER_PUD && get_next_vma(P4D_MASK, PUD_SIZE, args, &start, &end))
3957 goto restart;
3958
3959 end = round_up(end, P4D_SIZE);
3960 done:
3961 if (!end || !args->vma)
3962 return 1;
3963
3964 walk->next_addr = max(end, args->vma->vm_start);
3965
3966 return -EAGAIN;
3967 }
3968
walk_mm(struct lruvec * lruvec,struct mm_struct * mm,struct lru_gen_mm_walk * walk)3969 static void walk_mm(struct lruvec *lruvec, struct mm_struct *mm, struct lru_gen_mm_walk *walk)
3970 {
3971 static const struct mm_walk_ops mm_walk_ops = {
3972 .test_walk = should_skip_vma,
3973 .p4d_entry = walk_pud_range,
3974 };
3975
3976 int err;
3977 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
3978
3979 walk->next_addr = FIRST_USER_ADDRESS;
3980
3981 do {
3982 DEFINE_MAX_SEQ(lruvec);
3983
3984 err = -EBUSY;
3985
3986 /* another thread might have called inc_max_seq() */
3987 if (walk->max_seq != max_seq)
3988 break;
3989
3990 /* page_update_gen() requires stable page_memcg() */
3991 if (!mem_cgroup_trylock_pages(memcg))
3992 break;
3993
3994 /* the caller might be holding the lock for write */
3995 if (mmap_read_trylock(mm)) {
3996 err = walk_page_range(mm, walk->next_addr, ULONG_MAX, &mm_walk_ops, walk);
3997
3998 mmap_read_unlock(mm);
3999 }
4000
4001 mem_cgroup_unlock_pages();
4002
4003 if (walk->batched) {
4004 spin_lock_irq(&lruvec->lru_lock);
4005 reset_batch_size(lruvec, walk);
4006 spin_unlock_irq(&lruvec->lru_lock);
4007 }
4008
4009 cond_resched();
4010 } while (err == -EAGAIN);
4011 }
4012
set_mm_walk(struct pglist_data * pgdat,bool force_alloc)4013 static struct lru_gen_mm_walk *set_mm_walk(struct pglist_data *pgdat, bool force_alloc)
4014 {
4015 struct lru_gen_mm_walk *walk = current->reclaim_state->mm_walk;
4016
4017 if (pgdat && current_is_kswapd()) {
4018 VM_WARN_ON_ONCE(walk);
4019
4020 walk = &pgdat->mm_walk;
4021 } else if (!walk && force_alloc) {
4022 VM_WARN_ON_ONCE(current_is_kswapd());
4023
4024 walk = kzalloc(sizeof(*walk), __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN);
4025 }
4026
4027 current->reclaim_state->mm_walk = walk;
4028
4029 return walk;
4030 }
4031
clear_mm_walk(void)4032 static void clear_mm_walk(void)
4033 {
4034 struct lru_gen_mm_walk *walk = current->reclaim_state->mm_walk;
4035
4036 VM_WARN_ON_ONCE(walk && memchr_inv(walk->nr_pages, 0, sizeof(walk->nr_pages)));
4037 VM_WARN_ON_ONCE(walk && memchr_inv(walk->mm_stats, 0, sizeof(walk->mm_stats)));
4038
4039 current->reclaim_state->mm_walk = NULL;
4040
4041 if (!current_is_kswapd())
4042 kfree(walk);
4043 }
4044
inc_min_seq(struct lruvec * lruvec,int type,bool can_swap)4045 static bool inc_min_seq(struct lruvec *lruvec, int type, bool can_swap)
4046 {
4047 int zone;
4048 int remaining = MAX_LRU_BATCH;
4049 struct lru_gen_page *lrugen = &lruvec->lrugen;
4050 int new_gen, old_gen = lru_gen_from_seq(lrugen->min_seq[type]);
4051
4052 if (type == LRU_GEN_ANON && !can_swap)
4053 goto done;
4054
4055 /* prevent cold/hot inversion if force_scan is true */
4056 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4057 struct list_head *head = &lrugen->pages[old_gen][type][zone];
4058
4059 while (!list_empty(head)) {
4060 struct page *page = lru_to_page(head);
4061
4062 VM_WARN_ON_ONCE_PAGE(PageUnevictable(page), page);
4063 VM_WARN_ON_ONCE_PAGE(PageActive(page), page);
4064 VM_WARN_ON_ONCE_PAGE(page_is_file_lru(page) != type, page);
4065 VM_WARN_ON_ONCE_PAGE(page_zonenum(page) != zone, page);
4066
4067 new_gen = page_inc_gen(lruvec, page, false);
4068 list_move_tail(&page->lru, &lrugen->pages[new_gen][type][zone]);
4069
4070 if (!--remaining)
4071 return false;
4072 }
4073 }
4074 done:
4075 reset_ctrl_pos(lruvec, type, true);
4076 WRITE_ONCE(lrugen->min_seq[type], lrugen->min_seq[type] + 1);
4077
4078 return true;
4079 }
4080
try_to_inc_min_seq(struct lruvec * lruvec,bool can_swap)4081 static bool try_to_inc_min_seq(struct lruvec *lruvec, bool can_swap)
4082 {
4083 int gen, type, zone;
4084 bool success = false;
4085 struct lru_gen_page *lrugen = &lruvec->lrugen;
4086 DEFINE_MIN_SEQ(lruvec);
4087
4088 VM_WARN_ON_ONCE(!seq_is_valid(lruvec));
4089
4090 /* find the oldest populated generation */
4091 for (type = !can_swap; type < ANON_AND_FILE; type++) {
4092 while (min_seq[type] + MIN_NR_GENS <= lrugen->max_seq) {
4093 gen = lru_gen_from_seq(min_seq[type]);
4094
4095 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4096 if (!list_empty(&lrugen->pages[gen][type][zone]))
4097 goto next;
4098 }
4099
4100 min_seq[type]++;
4101 }
4102 next:
4103 ;
4104 }
4105
4106 /* see the comment on lru_gen_page */
4107 if (can_swap) {
4108 min_seq[LRU_GEN_ANON] = min(min_seq[LRU_GEN_ANON], min_seq[LRU_GEN_FILE]);
4109 min_seq[LRU_GEN_FILE] = max(min_seq[LRU_GEN_ANON], lrugen->min_seq[LRU_GEN_FILE]);
4110 }
4111
4112 for (type = !can_swap; type < ANON_AND_FILE; type++) {
4113 if (min_seq[type] == lrugen->min_seq[type])
4114 continue;
4115
4116 reset_ctrl_pos(lruvec, type, true);
4117 WRITE_ONCE(lrugen->min_seq[type], min_seq[type]);
4118 success = true;
4119 }
4120
4121 return success;
4122 }
4123
inc_max_seq(struct lruvec * lruvec,bool can_swap,bool force_scan)4124 static void inc_max_seq(struct lruvec *lruvec, bool can_swap, bool force_scan)
4125 {
4126 int prev, next;
4127 int type, zone;
4128 struct lru_gen_page *lrugen = &lruvec->lrugen;
4129 restart:
4130 spin_lock_irq(&lruvec->lru_lock);
4131
4132 VM_WARN_ON_ONCE(!seq_is_valid(lruvec));
4133
4134 for (type = ANON_AND_FILE - 1; type >= 0; type--) {
4135 if (get_nr_gens(lruvec, type) != MAX_NR_GENS)
4136 continue;
4137
4138 VM_WARN_ON_ONCE(!force_scan && (type == LRU_GEN_FILE || can_swap));
4139
4140 if (inc_min_seq(lruvec, type, can_swap))
4141 continue;
4142
4143 spin_unlock_irq(&lruvec->lru_lock);
4144 cond_resched();
4145 goto restart;
4146 }
4147
4148 /*
4149 * Update the active/inactive LRU sizes for compatibility. Both sides of
4150 * the current max_seq need to be covered, since max_seq+1 can overlap
4151 * with min_seq[LRU_GEN_ANON] if swapping is constrained. And if they do
4152 * overlap, cold/hot inversion happens.
4153 */
4154 prev = lru_gen_from_seq(lrugen->max_seq - 1);
4155 next = lru_gen_from_seq(lrugen->max_seq + 1);
4156
4157 for (type = 0; type < ANON_AND_FILE; type++) {
4158 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4159 enum lru_list lru = type * LRU_INACTIVE_FILE;
4160 long delta = lrugen->nr_pages[prev][type][zone] -
4161 lrugen->nr_pages[next][type][zone];
4162
4163 if (!delta)
4164 continue;
4165
4166 __update_lru_size(lruvec, lru, zone, delta);
4167 __update_lru_size(lruvec, lru + LRU_ACTIVE, zone, -delta);
4168 }
4169 }
4170
4171 for (type = 0; type < ANON_AND_FILE; type++)
4172 reset_ctrl_pos(lruvec, type, false);
4173
4174 WRITE_ONCE(lrugen->timestamps[next], jiffies);
4175 /* make sure preceding modifications appear */
4176 smp_store_release(&lrugen->max_seq, lrugen->max_seq + 1);
4177
4178 spin_unlock_irq(&lruvec->lru_lock);
4179 }
4180
try_to_inc_max_seq(struct lruvec * lruvec,unsigned long max_seq,struct scan_control * sc,bool can_swap,bool force_scan)4181 static bool try_to_inc_max_seq(struct lruvec *lruvec, unsigned long max_seq,
4182 struct scan_control *sc, bool can_swap, bool force_scan)
4183 {
4184 bool success;
4185 struct lru_gen_mm_walk *walk;
4186 struct mm_struct *mm = NULL;
4187 struct lru_gen_page *lrugen = &lruvec->lrugen;
4188
4189 VM_WARN_ON_ONCE(max_seq > READ_ONCE(lrugen->max_seq));
4190
4191 /* see the comment in iterate_mm_list() */
4192 if (max_seq <= READ_ONCE(lruvec->mm_state.seq)) {
4193 success = false;
4194 goto done;
4195 }
4196
4197 /*
4198 * If the hardware doesn't automatically set the accessed bit, fallback
4199 * to lru_gen_look_around(), which only clears the accessed bit in a
4200 * handful of PTEs. Spreading the work out over a period of time usually
4201 * is less efficient, but it avoids bursty page faults.
4202 */
4203 if (!arch_has_hw_pte_young() || !get_cap(LRU_GEN_MM_WALK)) {
4204 success = iterate_mm_list_nowalk(lruvec, max_seq);
4205 goto done;
4206 }
4207
4208 walk = set_mm_walk(NULL, true);
4209 if (!walk) {
4210 success = iterate_mm_list_nowalk(lruvec, max_seq);
4211 goto done;
4212 }
4213
4214 walk->lruvec = lruvec;
4215 walk->max_seq = max_seq;
4216 walk->can_swap = can_swap;
4217 walk->force_scan = force_scan;
4218
4219 do {
4220 success = iterate_mm_list(lruvec, walk, &mm);
4221 if (mm)
4222 walk_mm(lruvec, mm, walk);
4223 } while (mm);
4224 done:
4225 if (success)
4226 inc_max_seq(lruvec, can_swap, force_scan);
4227
4228 return success;
4229 }
4230
lruvec_is_sizable(struct lruvec * lruvec,struct scan_control * sc)4231 static bool lruvec_is_sizable(struct lruvec *lruvec, struct scan_control *sc)
4232 {
4233 int gen, type, zone;
4234 unsigned long total = 0;
4235 bool can_swap = get_swappiness(lruvec, sc);
4236 struct lru_gen_page *lrugen = &lruvec->lrugen;
4237 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4238 DEFINE_MAX_SEQ(lruvec);
4239 DEFINE_MIN_SEQ(lruvec);
4240
4241 for (type = !can_swap; type < ANON_AND_FILE; type++) {
4242 unsigned long seq;
4243
4244 for (seq = min_seq[type]; seq <= max_seq; seq++) {
4245 gen = lru_gen_from_seq(seq);
4246
4247 for (zone = 0; zone < MAX_NR_ZONES; zone++)
4248 total += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L);
4249 }
4250 }
4251
4252 /* whether the size is big enough to be helpful */
4253 return mem_cgroup_online(memcg) ? (total >> sc->priority) : total;
4254 }
4255
lruvec_is_reclaimable(struct lruvec * lruvec,struct scan_control * sc,unsigned long min_ttl)4256 static bool lruvec_is_reclaimable(struct lruvec *lruvec, struct scan_control *sc,
4257 unsigned long min_ttl)
4258 {
4259 int gen;
4260 unsigned long birth;
4261 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4262 DEFINE_MIN_SEQ(lruvec);
4263
4264 /* see the comment on lru_gen_page */
4265 gen = lru_gen_from_seq(min_seq[LRU_GEN_FILE]);
4266 birth = READ_ONCE(lruvec->lrugen.timestamps[gen]);
4267
4268 if (time_is_after_jiffies(birth + min_ttl))
4269 return false;
4270
4271 if (!lruvec_is_sizable(lruvec, sc))
4272 return false;
4273
4274 mem_cgroup_calculate_protection(NULL, memcg);
4275
4276 return !mem_cgroup_below_min(memcg);
4277 }
4278
4279 /* to protect the working set of the last N jiffies */
4280 static unsigned long lru_gen_min_ttl __read_mostly;
4281
lru_gen_age_node(struct pglist_data * pgdat,struct scan_control * sc)4282 static void lru_gen_age_node(struct pglist_data *pgdat, struct scan_control *sc)
4283 {
4284 struct mem_cgroup *memcg;
4285 unsigned long min_ttl = READ_ONCE(lru_gen_min_ttl);
4286
4287 VM_WARN_ON_ONCE(!current_is_kswapd());
4288
4289 /* check the order to exclude compaction-induced reclaim */
4290 if (!min_ttl || sc->order || sc->priority == DEF_PRIORITY)
4291 return;
4292
4293 memcg = mem_cgroup_iter(NULL, NULL, NULL);
4294 do {
4295 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
4296
4297 if (lruvec_is_reclaimable(lruvec, sc, min_ttl)) {
4298 mem_cgroup_iter_break(NULL, memcg);
4299 return;
4300 }
4301
4302 cond_resched();
4303 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)));
4304
4305 /*
4306 * The main goal is to OOM kill if every generation from all memcgs is
4307 * younger than min_ttl. However, another possibility is all memcgs are
4308 * either too small or below min.
4309 */
4310 if (mutex_trylock(&oom_lock)) {
4311 struct oom_control oc = {
4312 .gfp_mask = sc->gfp_mask,
4313 };
4314
4315 out_of_memory(&oc);
4316
4317 mutex_unlock(&oom_lock);
4318 }
4319 }
4320
4321 /*
4322 * This function exploits spatial locality when shrink_page_list() walks the
4323 * rmap. It scans the adjacent PTEs of a young PTE and promotes hot pages. If
4324 * the scan was done cacheline efficiently, it adds the PMD entry pointing to
4325 * the PTE table to the Bloom filter. This forms a feedback loop between the
4326 * eviction and the aging.
4327 */
lru_gen_look_around(struct page_vma_mapped_walk * pvmw)4328 void lru_gen_look_around(struct page_vma_mapped_walk *pvmw)
4329 {
4330 int i;
4331 pte_t *pte;
4332 unsigned long start;
4333 unsigned long end;
4334 unsigned long addr;
4335 struct lru_gen_mm_walk *walk;
4336 int young = 0;
4337 unsigned long bitmap[BITS_TO_LONGS(MIN_LRU_BATCH)] = {};
4338 struct page *page = pvmw->page;
4339 bool can_swap = !page_is_file_lru(page);
4340 struct mem_cgroup *memcg = page_memcg(page);
4341 struct pglist_data *pgdat = page_pgdat(page);
4342 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
4343 DEFINE_MAX_SEQ(lruvec);
4344 int old_gen, new_gen = lru_gen_from_seq(max_seq);
4345
4346 lockdep_assert_held(pvmw->ptl);
4347 VM_WARN_ON_ONCE_PAGE(PageLRU(page), page);
4348
4349 if (spin_is_contended(pvmw->ptl))
4350 return;
4351
4352 /* avoid taking the LRU lock under the PTL when possible */
4353 walk = current->reclaim_state ? current->reclaim_state->mm_walk : NULL;
4354
4355 start = max(pvmw->address & PMD_MASK, pvmw->vma->vm_start);
4356 end = min(pvmw->address | ~PMD_MASK, pvmw->vma->vm_end - 1) + 1;
4357
4358 if (end - start > MIN_LRU_BATCH * PAGE_SIZE) {
4359 if (pvmw->address - start < MIN_LRU_BATCH * PAGE_SIZE / 2)
4360 end = start + MIN_LRU_BATCH * PAGE_SIZE;
4361 else if (end - pvmw->address < MIN_LRU_BATCH * PAGE_SIZE / 2)
4362 start = end - MIN_LRU_BATCH * PAGE_SIZE;
4363 else {
4364 start = pvmw->address - MIN_LRU_BATCH * PAGE_SIZE / 2;
4365 end = pvmw->address + MIN_LRU_BATCH * PAGE_SIZE / 2;
4366 }
4367 }
4368
4369 pte = pvmw->pte - (pvmw->address - start) / PAGE_SIZE;
4370
4371 rcu_read_lock();
4372 arch_enter_lazy_mmu_mode();
4373
4374 for (i = 0, addr = start; addr != end; i++, addr += PAGE_SIZE) {
4375 unsigned long pfn;
4376
4377 pfn = get_pte_pfn(pte[i], pvmw->vma, addr);
4378 if (pfn == -1)
4379 continue;
4380
4381 if (!pte_young(pte[i]))
4382 continue;
4383
4384 page = get_pfn_page(pfn, memcg, pgdat, can_swap);
4385 if (!page)
4386 continue;
4387
4388 if (!ptep_test_and_clear_young(pvmw->vma, addr, pte + i))
4389 VM_WARN_ON_ONCE(true);
4390
4391 young++;
4392
4393 if (pte_dirty(pte[i]) && !PageDirty(page) &&
4394 !(PageAnon(page) && PageSwapBacked(page) &&
4395 !PageSwapCache(page)))
4396 set_page_dirty(page);
4397
4398 old_gen = page_lru_gen(page);
4399 if (old_gen < 0)
4400 SetPageReferenced(page);
4401 else if (old_gen != new_gen)
4402 __set_bit(i, bitmap);
4403 }
4404
4405 arch_leave_lazy_mmu_mode();
4406 rcu_read_unlock();
4407
4408 /* feedback from rmap walkers to page table walkers */
4409 if (suitable_to_scan(i, young))
4410 update_bloom_filter(lruvec, max_seq, pvmw->pmd);
4411
4412 if (!walk && bitmap_weight(bitmap, MIN_LRU_BATCH) < PAGEVEC_SIZE) {
4413 for_each_set_bit(i, bitmap, MIN_LRU_BATCH) {
4414 page = pte_page(pte[i]);
4415 activate_page(page);
4416 }
4417 return;
4418 }
4419
4420 /* page_update_gen() requires stable page_memcg() */
4421 if (!mem_cgroup_trylock_pages(memcg))
4422 return;
4423
4424 if (!walk) {
4425 spin_lock_irq(&lruvec->lru_lock);
4426 new_gen = lru_gen_from_seq(lruvec->lrugen.max_seq);
4427 }
4428
4429 for_each_set_bit(i, bitmap, MIN_LRU_BATCH) {
4430 page = compound_head(pte_page(pte[i]));
4431 if (page_memcg_rcu(page) != memcg)
4432 continue;
4433
4434 old_gen = page_update_gen(page, new_gen);
4435 if (old_gen < 0 || old_gen == new_gen)
4436 continue;
4437
4438 if (walk)
4439 update_batch_size(walk, page, old_gen, new_gen);
4440 else
4441 lru_gen_update_size(lruvec, page, old_gen, new_gen);
4442 }
4443
4444 if (!walk)
4445 spin_unlock_irq(&lruvec->lru_lock);
4446
4447 mem_cgroup_unlock_pages();
4448 }
4449
4450 /******************************************************************************
4451 * the eviction
4452 ******************************************************************************/
4453
sort_page(struct lruvec * lruvec,struct page * page,struct scan_control * sc,int tier_idx)4454 static bool sort_page(struct lruvec *lruvec, struct page *page, struct scan_control *sc,
4455 int tier_idx)
4456 {
4457 bool success;
4458 int gen = page_lru_gen(page);
4459 int type = page_is_file_lru(page);
4460 int zone = page_zonenum(page);
4461 int delta = thp_nr_pages(page);
4462 int refs = page_lru_refs(page);
4463 int tier = lru_tier_from_refs(refs);
4464 struct lru_gen_page *lrugen = &lruvec->lrugen;
4465
4466 VM_WARN_ON_ONCE_PAGE(gen >= MAX_NR_GENS, page);
4467
4468 /* unevictable */
4469 if (!page_evictable(page)) {
4470 success = lru_gen_del_page(lruvec, page, true);
4471 VM_WARN_ON_ONCE_PAGE(!success, page);
4472 SetPageUnevictable(page);
4473 add_page_to_lru_list(page, lruvec);
4474 __count_vm_events(UNEVICTABLE_PGCULLED, delta);
4475 return true;
4476 }
4477
4478 /* dirty lazyfree */
4479 if (type == LRU_GEN_FILE && PageAnon(page) && PageDirty(page)) {
4480 success = lru_gen_del_page(lruvec, page, true);
4481 VM_WARN_ON_ONCE_PAGE(!success, page);
4482 SetPageSwapBacked(page);
4483 add_page_to_lru_list_tail(page, lruvec);
4484 return true;
4485 }
4486
4487 /* promoted */
4488 if (gen != lru_gen_from_seq(lrugen->min_seq[type])) {
4489 list_move(&page->lru, &lrugen->pages[gen][type][zone]);
4490 return true;
4491 }
4492
4493 /* protected */
4494 if (tier > tier_idx) {
4495 int hist = lru_hist_from_seq(lrugen->min_seq[type]);
4496
4497 gen = page_inc_gen(lruvec, page, false);
4498 list_move_tail(&page->lru, &lrugen->pages[gen][type][zone]);
4499
4500 WRITE_ONCE(lrugen->protected[hist][type][tier - 1],
4501 lrugen->protected[hist][type][tier - 1] + delta);
4502 return true;
4503 }
4504
4505 /* ineligible */
4506 if (zone > sc->reclaim_idx || skip_cma(page, sc)) {
4507 gen = page_inc_gen(lruvec, page, false);
4508 list_move_tail(&page->lru, &lrugen->pages[gen][type][zone]);
4509 return true;
4510 }
4511
4512 /* waiting for writeback */
4513 if (PageLocked(page) || PageWriteback(page) ||
4514 (type == LRU_GEN_FILE && PageDirty(page))) {
4515 gen = page_inc_gen(lruvec, page, true);
4516 list_move(&page->lru, &lrugen->pages[gen][type][zone]);
4517 return true;
4518 }
4519
4520 return false;
4521 }
4522
isolate_page(struct lruvec * lruvec,struct page * page,struct scan_control * sc)4523 static bool isolate_page(struct lruvec *lruvec, struct page *page, struct scan_control *sc)
4524 {
4525 bool success;
4526
4527 /* swapping inhibited */
4528 if (!(sc->gfp_mask & __GFP_IO) &&
4529 (PageDirty(page) ||
4530 (PageAnon(page) && !PageSwapCache(page))))
4531 return false;
4532
4533 /* raced with release_pages() */
4534 if (!get_page_unless_zero(page))
4535 return false;
4536
4537 /* raced with another isolation */
4538 if (!TestClearPageLRU(page)) {
4539 put_page(page);
4540 return false;
4541 }
4542
4543 /* see the comment on MAX_NR_TIERS */
4544 if (!PageReferenced(page))
4545 set_mask_bits(&page->flags, LRU_REFS_MASK | LRU_REFS_FLAGS, 0);
4546
4547 /* for shrink_page_list() */
4548 ClearPageReclaim(page);
4549 ClearPageReferenced(page);
4550
4551 success = lru_gen_del_page(lruvec, page, true);
4552 VM_WARN_ON_ONCE_PAGE(!success, page);
4553
4554 return true;
4555 }
4556
scan_pages(struct lruvec * lruvec,struct scan_control * sc,int type,int tier,struct list_head * list)4557 static int scan_pages(struct lruvec *lruvec, struct scan_control *sc,
4558 int type, int tier, struct list_head *list)
4559 {
4560 int i;
4561 int gen;
4562 enum vm_event_item item;
4563 int sorted = 0;
4564 int scanned = 0;
4565 int isolated = 0;
4566 int remaining = MAX_LRU_BATCH;
4567 struct lru_gen_page *lrugen = &lruvec->lrugen;
4568 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4569
4570 VM_WARN_ON_ONCE(!list_empty(list));
4571
4572 if (get_nr_gens(lruvec, type) == MIN_NR_GENS)
4573 return 0;
4574
4575 gen = lru_gen_from_seq(lrugen->min_seq[type]);
4576
4577 for (i = MAX_NR_ZONES; i > 0; i--) {
4578 LIST_HEAD(moved);
4579 int skipped = 0;
4580 int zone = (sc->reclaim_idx + i) % MAX_NR_ZONES;
4581 struct list_head *head = &lrugen->pages[gen][type][zone];
4582
4583 while (!list_empty(head)) {
4584 struct page *page = lru_to_page(head);
4585 int delta = thp_nr_pages(page);
4586
4587 VM_WARN_ON_ONCE_PAGE(PageUnevictable(page), page);
4588 VM_WARN_ON_ONCE_PAGE(PageActive(page), page);
4589 VM_WARN_ON_ONCE_PAGE(page_is_file_lru(page) != type, page);
4590 VM_WARN_ON_ONCE_PAGE(page_zonenum(page) != zone, page);
4591
4592 scanned += delta;
4593
4594 if (sort_page(lruvec, page, sc, tier))
4595 sorted += delta;
4596 else if (isolate_page(lruvec, page, sc)) {
4597 list_add(&page->lru, list);
4598 isolated += delta;
4599 } else {
4600 list_move(&page->lru, &moved);
4601 skipped += delta;
4602 }
4603
4604 if (!--remaining || max(isolated, skipped) >= MIN_LRU_BATCH)
4605 break;
4606 }
4607
4608 if (skipped) {
4609 list_splice(&moved, head);
4610 __count_zid_vm_events(PGSCAN_SKIP, zone, skipped);
4611 }
4612
4613 if (!remaining || isolated >= MIN_LRU_BATCH)
4614 break;
4615 }
4616
4617 item = current_is_kswapd() ? PGSCAN_KSWAPD : PGSCAN_DIRECT;
4618 if (!cgroup_reclaim(sc)) {
4619 __count_vm_events(item, isolated);
4620 __count_vm_events(PGREFILL, sorted);
4621 }
4622 __count_memcg_events(memcg, item, isolated);
4623 __count_memcg_events(memcg, PGREFILL, sorted);
4624 __count_vm_events(PGSCAN_ANON + type, isolated);
4625
4626 /*
4627 * There might not be eligible pages due to reclaim_idx. Check the
4628 * remaining to prevent livelock if it's not making progress.
4629 */
4630 return isolated || !remaining ? scanned : 0;
4631 }
4632
get_tier_idx(struct lruvec * lruvec,int type)4633 static int get_tier_idx(struct lruvec *lruvec, int type)
4634 {
4635 int tier;
4636 struct ctrl_pos sp, pv;
4637
4638 /*
4639 * To leave a margin for fluctuations, use a larger gain factor (1:2).
4640 * This value is chosen because any other tier would have at least twice
4641 * as many refaults as the first tier.
4642 */
4643 read_ctrl_pos(lruvec, type, 0, 1, &sp);
4644 for (tier = 1; tier < MAX_NR_TIERS; tier++) {
4645 read_ctrl_pos(lruvec, type, tier, 2, &pv);
4646 if (!positive_ctrl_err(&sp, &pv))
4647 break;
4648 }
4649
4650 return tier - 1;
4651 }
4652
get_type_to_scan(struct lruvec * lruvec,int swappiness,int * tier_idx)4653 static int get_type_to_scan(struct lruvec *lruvec, int swappiness, int *tier_idx)
4654 {
4655 int type, tier;
4656 struct ctrl_pos sp, pv;
4657 int gain[ANON_AND_FILE] = { swappiness, 200 - swappiness };
4658
4659 /*
4660 * Compare the first tier of anon with that of file to determine which
4661 * type to scan. Also need to compare other tiers of the selected type
4662 * with the first tier of the other type to determine the last tier (of
4663 * the selected type) to evict.
4664 */
4665 read_ctrl_pos(lruvec, LRU_GEN_ANON, 0, gain[LRU_GEN_ANON], &sp);
4666 read_ctrl_pos(lruvec, LRU_GEN_FILE, 0, gain[LRU_GEN_FILE], &pv);
4667 type = positive_ctrl_err(&sp, &pv);
4668
4669 read_ctrl_pos(lruvec, !type, 0, gain[!type], &sp);
4670 for (tier = 1; tier < MAX_NR_TIERS; tier++) {
4671 read_ctrl_pos(lruvec, type, tier, gain[type], &pv);
4672 if (!positive_ctrl_err(&sp, &pv))
4673 break;
4674 }
4675
4676 *tier_idx = tier - 1;
4677
4678 return type;
4679 }
4680
isolate_pages(struct lruvec * lruvec,struct scan_control * sc,int swappiness,int * type_scanned,struct list_head * list)4681 static int isolate_pages(struct lruvec *lruvec, struct scan_control *sc, int swappiness,
4682 int *type_scanned, struct list_head *list)
4683 {
4684 int i;
4685 int type;
4686 int scanned;
4687 int tier = -1;
4688 DEFINE_MIN_SEQ(lruvec);
4689
4690 /*
4691 * Try to make the obvious choice first. When anon and file are both
4692 * available from the same generation, interpret swappiness 1 as file
4693 * first and 200 as anon first.
4694 */
4695 if (!swappiness)
4696 type = LRU_GEN_FILE;
4697 else if (min_seq[LRU_GEN_ANON] < min_seq[LRU_GEN_FILE])
4698 type = LRU_GEN_ANON;
4699 else if (swappiness == 1)
4700 type = LRU_GEN_FILE;
4701 else if (swappiness == 200)
4702 type = LRU_GEN_ANON;
4703 else
4704 type = get_type_to_scan(lruvec, swappiness, &tier);
4705
4706 for (i = !swappiness; i < ANON_AND_FILE; i++) {
4707 if (tier < 0)
4708 tier = get_tier_idx(lruvec, type);
4709
4710 scanned = scan_pages(lruvec, sc, type, tier, list);
4711 if (scanned)
4712 break;
4713
4714 type = !type;
4715 tier = -1;
4716 }
4717
4718 *type_scanned = type;
4719
4720 return scanned;
4721 }
4722
evict_pages(struct lruvec * lruvec,struct scan_control * sc,int swappiness)4723 static int evict_pages(struct lruvec *lruvec, struct scan_control *sc, int swappiness)
4724 {
4725 int type;
4726 int scanned;
4727 int reclaimed;
4728 LIST_HEAD(list);
4729 LIST_HEAD(clean);
4730 struct page *page;
4731 struct page *next;
4732 enum vm_event_item item;
4733 struct reclaim_stat stat;
4734 struct lru_gen_mm_walk *walk;
4735 bool skip_retry = false;
4736 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4737 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
4738
4739 spin_lock_irq(&lruvec->lru_lock);
4740
4741 scanned = isolate_pages(lruvec, sc, swappiness, &type, &list);
4742
4743 scanned += try_to_inc_min_seq(lruvec, swappiness);
4744
4745 if (get_nr_gens(lruvec, !swappiness) == MIN_NR_GENS)
4746 scanned = 0;
4747
4748 spin_unlock_irq(&lruvec->lru_lock);
4749
4750 if (list_empty(&list))
4751 return scanned;
4752 retry:
4753 reclaimed = shrink_page_list(&list, pgdat, sc, &stat, false);
4754 sc->nr_reclaimed += reclaimed;
4755
4756 list_for_each_entry_safe_reverse(page, next, &list, lru) {
4757 if (!page_evictable(page)) {
4758 list_del(&page->lru);
4759 putback_lru_page(page);
4760 continue;
4761 }
4762
4763 if (PageReclaim(page) &&
4764 (PageDirty(page) || PageWriteback(page))) {
4765 /* restore LRU_REFS_FLAGS cleared by isolate_page() */
4766 if (PageWorkingset(page))
4767 SetPageReferenced(page);
4768 continue;
4769 }
4770
4771 if (skip_retry || PageActive(page) || PageReferenced(page) ||
4772 page_mapped(page) || PageLocked(page) ||
4773 PageDirty(page) || PageWriteback(page)) {
4774 /* don't add rejected pages to the oldest generation */
4775 set_mask_bits(&page->flags, LRU_REFS_MASK | LRU_REFS_FLAGS,
4776 BIT(PG_active));
4777 continue;
4778 }
4779
4780 /* retry pages that may have missed rotate_reclaimable_page() */
4781 list_move(&page->lru, &clean);
4782 sc->nr_scanned -= thp_nr_pages(page);
4783 }
4784
4785 spin_lock_irq(&lruvec->lru_lock);
4786
4787 move_pages_to_lru(lruvec, &list);
4788
4789 walk = current->reclaim_state->mm_walk;
4790 if (walk && walk->batched)
4791 reset_batch_size(lruvec, walk);
4792
4793 item = current_is_kswapd() ? PGSTEAL_KSWAPD : PGSTEAL_DIRECT;
4794 if (!cgroup_reclaim(sc))
4795 __count_vm_events(item, reclaimed);
4796 __count_memcg_events(memcg, item, reclaimed);
4797 __count_vm_events(PGSTEAL_ANON + type, reclaimed);
4798
4799 spin_unlock_irq(&lruvec->lru_lock);
4800
4801 mem_cgroup_uncharge_list(&list);
4802 free_unref_page_list(&list);
4803
4804 INIT_LIST_HEAD(&list);
4805 list_splice_init(&clean, &list);
4806
4807 if (!list_empty(&list)) {
4808 skip_retry = true;
4809 goto retry;
4810 }
4811
4812 return scanned;
4813 }
4814
should_run_aging(struct lruvec * lruvec,unsigned long max_seq,struct scan_control * sc,bool can_swap,unsigned long * nr_to_scan)4815 static bool should_run_aging(struct lruvec *lruvec, unsigned long max_seq,
4816 struct scan_control *sc, bool can_swap, unsigned long *nr_to_scan)
4817 {
4818 int gen, type, zone;
4819 unsigned long old = 0;
4820 unsigned long young = 0;
4821 unsigned long total = 0;
4822 struct lru_gen_page *lrugen = &lruvec->lrugen;
4823 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4824 DEFINE_MIN_SEQ(lruvec);
4825
4826 /* whether this lruvec is completely out of cold pages */
4827 if (min_seq[!can_swap] + MIN_NR_GENS > max_seq) {
4828 *nr_to_scan = 0;
4829 return true;
4830 }
4831
4832 for (type = !can_swap; type < ANON_AND_FILE; type++) {
4833 unsigned long seq;
4834
4835 for (seq = min_seq[type]; seq <= max_seq; seq++) {
4836 unsigned long size = 0;
4837
4838 gen = lru_gen_from_seq(seq);
4839
4840 for (zone = 0; zone < MAX_NR_ZONES; zone++)
4841 size += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L);
4842
4843 total += size;
4844 if (seq == max_seq)
4845 young += size;
4846 else if (seq + MIN_NR_GENS == max_seq)
4847 old += size;
4848 }
4849 }
4850
4851 /* try to scrape all its memory if this memcg was deleted */
4852 *nr_to_scan = mem_cgroup_online(memcg) ? (total >> sc->priority) : total;
4853
4854 /*
4855 * The aging tries to be lazy to reduce the overhead, while the eviction
4856 * stalls when the number of generations reaches MIN_NR_GENS. Hence, the
4857 * ideal number of generations is MIN_NR_GENS+1.
4858 */
4859 if (min_seq[!can_swap] + MIN_NR_GENS < max_seq)
4860 return false;
4861
4862 /*
4863 * It's also ideal to spread pages out evenly, i.e., 1/(MIN_NR_GENS+1)
4864 * of the total number of pages for each generation. A reasonable range
4865 * for this average portion is [1/MIN_NR_GENS, 1/(MIN_NR_GENS+2)]. The
4866 * aging cares about the upper bound of hot pages, while the eviction
4867 * cares about the lower bound of cold pages.
4868 */
4869 if (young * MIN_NR_GENS > total)
4870 return true;
4871 if (old * (MIN_NR_GENS + 2) < total)
4872 return true;
4873
4874 return false;
4875 }
4876
4877 /*
4878 * For future optimizations:
4879 * 1. Defer try_to_inc_max_seq() to workqueues to reduce latency for memcg
4880 * reclaim.
4881 */
get_nr_to_scan(struct lruvec * lruvec,struct scan_control * sc,bool can_swap)4882 static long get_nr_to_scan(struct lruvec *lruvec, struct scan_control *sc, bool can_swap)
4883 {
4884 unsigned long nr_to_scan;
4885 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4886 DEFINE_MAX_SEQ(lruvec);
4887
4888 if (mem_cgroup_below_min(memcg))
4889 return 0;
4890
4891 if (!should_run_aging(lruvec, max_seq, sc, can_swap, &nr_to_scan))
4892 return nr_to_scan;
4893
4894 /* skip the aging path at the default priority */
4895 if (sc->priority == DEF_PRIORITY)
4896 return nr_to_scan;
4897
4898 /* skip this lruvec as it's low on cold pages */
4899 return try_to_inc_max_seq(lruvec, max_seq, sc, can_swap, false) ? -1 : 0;
4900 }
4901
get_nr_to_reclaim(struct scan_control * sc)4902 static unsigned long get_nr_to_reclaim(struct scan_control *sc)
4903 {
4904 /* don't abort memcg reclaim to ensure fairness */
4905 if (!global_reclaim(sc))
4906 return -1;
4907
4908 return max(sc->nr_to_reclaim, compact_gap(sc->order));
4909 }
4910
try_to_shrink_lruvec(struct lruvec * lruvec,struct scan_control * sc)4911 static bool try_to_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
4912 {
4913 long nr_to_scan;
4914 unsigned long scanned = 0;
4915 unsigned long nr_to_reclaim = get_nr_to_reclaim(sc);
4916 int swappiness = get_swappiness(lruvec, sc);
4917
4918 /* clean file pages are more likely to exist */
4919 if (swappiness && !(sc->gfp_mask & __GFP_IO))
4920 swappiness = 1;
4921
4922 while (true) {
4923 int delta;
4924
4925 nr_to_scan = get_nr_to_scan(lruvec, sc, swappiness);
4926 if (nr_to_scan <= 0)
4927 break;
4928
4929 delta = evict_pages(lruvec, sc, swappiness);
4930 if (!delta)
4931 break;
4932
4933 scanned += delta;
4934 if (scanned >= nr_to_scan)
4935 break;
4936
4937 if (sc->nr_reclaimed >= nr_to_reclaim)
4938 break;
4939
4940 cond_resched();
4941 }
4942
4943 /* whether try_to_inc_max_seq() was successful */
4944 return nr_to_scan < 0;
4945 }
4946
shrink_one(struct lruvec * lruvec,struct scan_control * sc)4947 static int shrink_one(struct lruvec *lruvec, struct scan_control *sc)
4948 {
4949 bool success;
4950 unsigned long scanned = sc->nr_scanned;
4951 unsigned long reclaimed = sc->nr_reclaimed;
4952 int seg = lru_gen_memcg_seg(lruvec);
4953 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4954 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
4955
4956 /* see the comment on MEMCG_NR_GENS */
4957 if (!lruvec_is_sizable(lruvec, sc))
4958 return seg != MEMCG_LRU_TAIL ? MEMCG_LRU_TAIL : MEMCG_LRU_YOUNG;
4959
4960 mem_cgroup_calculate_protection(NULL, memcg);
4961
4962 if (mem_cgroup_below_min(memcg))
4963 return MEMCG_LRU_YOUNG;
4964
4965 if (mem_cgroup_below_low(memcg)) {
4966 /* see the comment on MEMCG_NR_GENS */
4967 if (seg != MEMCG_LRU_TAIL)
4968 return MEMCG_LRU_TAIL;
4969
4970 memcg_memory_event(memcg, MEMCG_LOW);
4971 }
4972
4973 success = try_to_shrink_lruvec(lruvec, sc);
4974
4975 shrink_slab(sc->gfp_mask, pgdat->node_id, memcg, sc->priority);
4976
4977 vmpressure(sc->gfp_mask, memcg, false, sc->nr_scanned - scanned,
4978 sc->nr_reclaimed - reclaimed);
4979
4980 sc->nr_reclaimed += current->reclaim_state->reclaimed_slab;
4981 current->reclaim_state->reclaimed_slab = 0;
4982
4983 return success ? MEMCG_LRU_YOUNG : 0;
4984 }
4985
4986 #ifdef CONFIG_MEMCG
4987
shrink_many(struct pglist_data * pgdat,struct scan_control * sc)4988 static void shrink_many(struct pglist_data *pgdat, struct scan_control *sc)
4989 {
4990 int op;
4991 int gen;
4992 int bin;
4993 int first_bin;
4994 struct lruvec *lruvec;
4995 struct lru_gen_page *lrugen;
4996 struct mem_cgroup *memcg;
4997 const struct hlist_nulls_node *pos;
4998 unsigned long nr_to_reclaim = get_nr_to_reclaim(sc);
4999
5000 bin = first_bin = prandom_u32_max(MEMCG_NR_BINS);
5001 restart:
5002 op = 0;
5003 memcg = NULL;
5004 gen = get_memcg_gen(READ_ONCE(pgdat->memcg_lru.seq));
5005
5006 rcu_read_lock();
5007
5008 hlist_nulls_for_each_entry_rcu(lrugen, pos, &pgdat->memcg_lru.fifo[gen][bin], list) {
5009 if (op)
5010 lru_gen_rotate_memcg(lruvec, op);
5011
5012 mem_cgroup_put(memcg);
5013
5014 lruvec = container_of(lrugen, struct lruvec, lrugen);
5015 memcg = lruvec_memcg(lruvec);
5016
5017 if (!mem_cgroup_tryget(memcg)) {
5018 op = 0;
5019 memcg = NULL;
5020 continue;
5021 }
5022
5023 rcu_read_unlock();
5024
5025 op = shrink_one(lruvec, sc);
5026
5027 rcu_read_lock();
5028
5029 if (sc->nr_reclaimed >= nr_to_reclaim)
5030 break;
5031 }
5032
5033 rcu_read_unlock();
5034
5035 if (op)
5036 lru_gen_rotate_memcg(lruvec, op);
5037
5038 mem_cgroup_put(memcg);
5039
5040 if (sc->nr_reclaimed >= nr_to_reclaim)
5041 return;
5042
5043 /* restart if raced with lru_gen_rotate_memcg() */
5044 if (gen != get_nulls_value(pos))
5045 goto restart;
5046
5047 /* try the rest of the bins of the current generation */
5048 bin = get_memcg_bin(bin + 1);
5049 if (bin != first_bin)
5050 goto restart;
5051 }
5052
lru_gen_shrink_lruvec(struct lruvec * lruvec,struct scan_control * sc)5053 static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
5054 {
5055 struct blk_plug plug;
5056
5057 VM_WARN_ON_ONCE(global_reclaim(sc));
5058 VM_WARN_ON_ONCE(!sc->may_writepage || !sc->may_unmap);
5059
5060 lru_add_drain();
5061
5062 blk_start_plug(&plug);
5063
5064 set_mm_walk(NULL, false);
5065
5066 if (try_to_shrink_lruvec(lruvec, sc))
5067 lru_gen_rotate_memcg(lruvec, MEMCG_LRU_YOUNG);
5068
5069 clear_mm_walk();
5070
5071 blk_finish_plug(&plug);
5072 }
5073
5074 #else /* !CONFIG_MEMCG */
5075
shrink_many(struct pglist_data * pgdat,struct scan_control * sc)5076 static void shrink_many(struct pglist_data *pgdat, struct scan_control *sc)
5077 {
5078 BUILD_BUG();
5079 }
5080
lru_gen_shrink_lruvec(struct lruvec * lruvec,struct scan_control * sc)5081 static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
5082 {
5083 BUILD_BUG();
5084 }
5085
5086 #endif
5087
set_initial_priority(struct pglist_data * pgdat,struct scan_control * sc)5088 static void set_initial_priority(struct pglist_data *pgdat, struct scan_control *sc)
5089 {
5090 int priority;
5091 unsigned long reclaimable;
5092 struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat);
5093
5094 if (sc->priority != DEF_PRIORITY || sc->nr_to_reclaim < MIN_LRU_BATCH)
5095 return;
5096 /*
5097 * Determine the initial priority based on ((total / MEMCG_NR_GENS) >>
5098 * priority) * reclaimed_to_scanned_ratio = nr_to_reclaim, where the
5099 * estimated reclaimed_to_scanned_ratio = inactive / total.
5100 */
5101 reclaimable = node_page_state(pgdat, NR_INACTIVE_FILE);
5102 if (get_swappiness(lruvec, sc))
5103 reclaimable += node_page_state(pgdat, NR_INACTIVE_ANON);
5104
5105 reclaimable /= MEMCG_NR_GENS;
5106
5107 /* round down reclaimable and round up sc->nr_to_reclaim */
5108 priority = fls_long(reclaimable) - 1 - fls_long(sc->nr_to_reclaim - 1);
5109
5110 sc->priority = clamp(priority, 0, DEF_PRIORITY);
5111 }
5112
lru_gen_shrink_node(struct pglist_data * pgdat,struct scan_control * sc)5113 static void lru_gen_shrink_node(struct pglist_data *pgdat, struct scan_control *sc)
5114 {
5115 struct blk_plug plug;
5116 unsigned long reclaimed = sc->nr_reclaimed;
5117
5118 VM_WARN_ON_ONCE(!global_reclaim(sc));
5119
5120 /*
5121 * Unmapped clean pages are already prioritized. Scanning for more of
5122 * them is likely futile and can cause high reclaim latency when there
5123 * is a large number of memcgs.
5124 */
5125 if (!sc->may_writepage || !sc->may_unmap)
5126 goto done;
5127
5128 lru_add_drain();
5129
5130 blk_start_plug(&plug);
5131
5132 set_mm_walk(pgdat, false);
5133
5134 set_initial_priority(pgdat, sc);
5135
5136 if (current_is_kswapd())
5137 sc->nr_reclaimed = 0;
5138
5139 if (mem_cgroup_disabled())
5140 shrink_one(&pgdat->__lruvec, sc);
5141 else
5142 shrink_many(pgdat, sc);
5143
5144 if (current_is_kswapd())
5145 sc->nr_reclaimed += reclaimed;
5146
5147 clear_mm_walk();
5148
5149 blk_finish_plug(&plug);
5150 done:
5151 /* kswapd should never fail */
5152 pgdat->kswapd_failures = 0;
5153 }
5154
5155 #ifdef CONFIG_MEMCG
lru_gen_rotate_memcg(struct lruvec * lruvec,int op)5156 void lru_gen_rotate_memcg(struct lruvec *lruvec, int op)
5157 {
5158 int seg;
5159 int old, new;
5160 int bin = prandom_u32_max(MEMCG_NR_BINS);
5161 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
5162
5163 spin_lock(&pgdat->memcg_lru.lock);
5164
5165 VM_WARN_ON_ONCE(hlist_nulls_unhashed(&lruvec->lrugen.list));
5166
5167 seg = 0;
5168 new = old = lruvec->lrugen.gen;
5169
5170 /* see the comment on MEMCG_NR_GENS */
5171 if (op == MEMCG_LRU_HEAD)
5172 seg = MEMCG_LRU_HEAD;
5173 else if (op == MEMCG_LRU_TAIL)
5174 seg = MEMCG_LRU_TAIL;
5175 else if (op == MEMCG_LRU_OLD)
5176 new = get_memcg_gen(pgdat->memcg_lru.seq);
5177 else if (op == MEMCG_LRU_YOUNG)
5178 new = get_memcg_gen(pgdat->memcg_lru.seq + 1);
5179 else
5180 VM_WARN_ON_ONCE(true);
5181
5182 hlist_nulls_del_rcu(&lruvec->lrugen.list);
5183
5184 if (op == MEMCG_LRU_HEAD || op == MEMCG_LRU_OLD)
5185 hlist_nulls_add_head_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[new][bin]);
5186 else
5187 hlist_nulls_add_tail_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[new][bin]);
5188
5189 pgdat->memcg_lru.nr_memcgs[old]--;
5190 pgdat->memcg_lru.nr_memcgs[new]++;
5191
5192 lruvec->lrugen.gen = new;
5193 WRITE_ONCE(lruvec->lrugen.seg, seg);
5194
5195 if (!pgdat->memcg_lru.nr_memcgs[old] && old == get_memcg_gen(pgdat->memcg_lru.seq))
5196 WRITE_ONCE(pgdat->memcg_lru.seq, pgdat->memcg_lru.seq + 1);
5197
5198 spin_unlock(&pgdat->memcg_lru.lock);
5199 }
5200 #endif
5201
5202 /******************************************************************************
5203 * state change
5204 ******************************************************************************/
5205
state_is_valid(struct lruvec * lruvec)5206 static bool __maybe_unused state_is_valid(struct lruvec *lruvec)
5207 {
5208 struct lru_gen_page *lrugen = &lruvec->lrugen;
5209
5210 if (lrugen->enabled) {
5211 enum lru_list lru;
5212
5213 for_each_evictable_lru(lru) {
5214 if (!list_empty(&lruvec->lists[lru]))
5215 return false;
5216 }
5217 } else {
5218 int gen, type, zone;
5219
5220 for_each_gen_type_zone(gen, type, zone) {
5221 if (!list_empty(&lrugen->pages[gen][type][zone]))
5222 return false;
5223 }
5224 }
5225
5226 return true;
5227 }
5228
fill_evictable(struct lruvec * lruvec)5229 static bool fill_evictable(struct lruvec *lruvec)
5230 {
5231 enum lru_list lru;
5232 int remaining = MAX_LRU_BATCH;
5233
5234 for_each_evictable_lru(lru) {
5235 int type = is_file_lru(lru);
5236 bool active = is_active_lru(lru);
5237 struct list_head *head = &lruvec->lists[lru];
5238
5239 while (!list_empty(head)) {
5240 bool success;
5241 struct page *page = lru_to_page(head);
5242
5243 VM_WARN_ON_ONCE_PAGE(PageUnevictable(page), page);
5244 VM_WARN_ON_ONCE_PAGE(PageActive(page) != active, page);
5245 VM_WARN_ON_ONCE_PAGE(page_is_file_lru(page) != type, page);
5246 VM_WARN_ON_ONCE_PAGE(page_lru_gen(page) != -1, page);
5247
5248 del_page_from_lru_list(page, lruvec);
5249 success = lru_gen_add_page(lruvec, page, false);
5250 VM_WARN_ON_ONCE(!success);
5251
5252 if (!--remaining)
5253 return false;
5254 }
5255 }
5256
5257 return true;
5258 }
5259
drain_evictable(struct lruvec * lruvec)5260 static bool drain_evictable(struct lruvec *lruvec)
5261 {
5262 int gen, type, zone;
5263 int remaining = MAX_LRU_BATCH;
5264
5265 for_each_gen_type_zone(gen, type, zone) {
5266 struct list_head *head = &lruvec->lrugen.pages[gen][type][zone];
5267
5268 while (!list_empty(head)) {
5269 bool success;
5270 struct page *page = lru_to_page(head);
5271
5272 VM_WARN_ON_ONCE_PAGE(PageUnevictable(page), page);
5273 VM_WARN_ON_ONCE_PAGE(PageActive(page), page);
5274 VM_WARN_ON_ONCE_PAGE(page_is_file_lru(page) != type, page);
5275 VM_WARN_ON_ONCE_PAGE(page_zonenum(page) != zone, page);
5276
5277 success = lru_gen_del_page(lruvec, page, false);
5278 VM_WARN_ON_ONCE(!success);
5279 add_page_to_lru_list(page, lruvec);
5280
5281 if (!--remaining)
5282 return false;
5283 }
5284 }
5285
5286 return true;
5287 }
5288
lru_gen_change_state(bool enabled)5289 static void lru_gen_change_state(bool enabled)
5290 {
5291 static DEFINE_MUTEX(state_mutex);
5292
5293 struct mem_cgroup *memcg;
5294
5295 cgroup_lock();
5296 cpus_read_lock();
5297 get_online_mems();
5298 mutex_lock(&state_mutex);
5299
5300 if (enabled == lru_gen_enabled())
5301 goto unlock;
5302
5303 if (enabled)
5304 static_branch_enable_cpuslocked(&lru_gen_caps[LRU_GEN_CORE]);
5305 else
5306 static_branch_disable_cpuslocked(&lru_gen_caps[LRU_GEN_CORE]);
5307
5308 memcg = mem_cgroup_iter(NULL, NULL, NULL);
5309 do {
5310 int nid;
5311
5312 for_each_node(nid) {
5313 struct lruvec *lruvec = get_lruvec(memcg, nid);
5314
5315 if (!lruvec)
5316 continue;
5317
5318 spin_lock_irq(&lruvec->lru_lock);
5319
5320 VM_WARN_ON_ONCE(!seq_is_valid(lruvec));
5321 VM_WARN_ON_ONCE(!state_is_valid(lruvec));
5322
5323 lruvec->lrugen.enabled = enabled;
5324
5325 while (!(enabled ? fill_evictable(lruvec) : drain_evictable(lruvec))) {
5326 spin_unlock_irq(&lruvec->lru_lock);
5327 cond_resched();
5328 spin_lock_irq(&lruvec->lru_lock);
5329 }
5330
5331 spin_unlock_irq(&lruvec->lru_lock);
5332 }
5333
5334 cond_resched();
5335 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)));
5336 unlock:
5337 mutex_unlock(&state_mutex);
5338 put_online_mems();
5339 cpus_read_unlock();
5340 cgroup_unlock();
5341 }
5342
5343 /******************************************************************************
5344 * sysfs interface
5345 ******************************************************************************/
5346
show_min_ttl(struct kobject * kobj,struct kobj_attribute * attr,char * buf)5347 static ssize_t show_min_ttl(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
5348 {
5349 return sprintf(buf, "%u\n", jiffies_to_msecs(READ_ONCE(lru_gen_min_ttl)));
5350 }
5351
5352 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
store_min_ttl(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t len)5353 static ssize_t store_min_ttl(struct kobject *kobj, struct kobj_attribute *attr,
5354 const char *buf, size_t len)
5355 {
5356 unsigned int msecs;
5357
5358 if (kstrtouint(buf, 0, &msecs))
5359 return -EINVAL;
5360
5361 WRITE_ONCE(lru_gen_min_ttl, msecs_to_jiffies(msecs));
5362
5363 return len;
5364 }
5365
5366 static struct kobj_attribute lru_gen_min_ttl_attr = __ATTR(
5367 min_ttl_ms, 0644, show_min_ttl, store_min_ttl
5368 );
5369
show_enabled(struct kobject * kobj,struct kobj_attribute * attr,char * buf)5370 static ssize_t show_enabled(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
5371 {
5372 unsigned int caps = 0;
5373
5374 if (get_cap(LRU_GEN_CORE))
5375 caps |= BIT(LRU_GEN_CORE);
5376
5377 if (arch_has_hw_pte_young() && get_cap(LRU_GEN_MM_WALK))
5378 caps |= BIT(LRU_GEN_MM_WALK);
5379
5380 if (arch_has_hw_nonleaf_pmd_young() && get_cap(LRU_GEN_NONLEAF_YOUNG))
5381 caps |= BIT(LRU_GEN_NONLEAF_YOUNG);
5382
5383 return snprintf(buf, PAGE_SIZE, "0x%04x\n", caps);
5384 }
5385
5386 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
store_enabled(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t len)5387 static ssize_t store_enabled(struct kobject *kobj, struct kobj_attribute *attr,
5388 const char *buf, size_t len)
5389 {
5390 int i;
5391 unsigned int caps;
5392
5393 if (tolower(*buf) == 'n')
5394 caps = 0;
5395 else if (tolower(*buf) == 'y')
5396 caps = -1;
5397 else if (kstrtouint(buf, 0, &caps))
5398 return -EINVAL;
5399
5400 for (i = 0; i < NR_LRU_GEN_CAPS; i++) {
5401 bool enabled = caps & BIT(i);
5402
5403 if (i == LRU_GEN_CORE)
5404 lru_gen_change_state(enabled);
5405 else if (enabled)
5406 static_branch_enable(&lru_gen_caps[i]);
5407 else
5408 static_branch_disable(&lru_gen_caps[i]);
5409 }
5410
5411 return len;
5412 }
5413
5414 static struct kobj_attribute lru_gen_enabled_attr = __ATTR(
5415 enabled, 0644, show_enabled, store_enabled
5416 );
5417
5418 static struct attribute *lru_gen_attrs[] = {
5419 &lru_gen_min_ttl_attr.attr,
5420 &lru_gen_enabled_attr.attr,
5421 NULL
5422 };
5423
5424 static struct attribute_group lru_gen_attr_group = {
5425 .name = "lru_gen",
5426 .attrs = lru_gen_attrs,
5427 };
5428
5429 /******************************************************************************
5430 * debugfs interface
5431 ******************************************************************************/
5432
lru_gen_seq_start(struct seq_file * m,loff_t * pos)5433 static void *lru_gen_seq_start(struct seq_file *m, loff_t *pos)
5434 {
5435 struct mem_cgroup *memcg;
5436 loff_t nr_to_skip = *pos;
5437
5438 m->private = kvmalloc(PATH_MAX, GFP_KERNEL);
5439 if (!m->private)
5440 return ERR_PTR(-ENOMEM);
5441
5442 memcg = mem_cgroup_iter(NULL, NULL, NULL);
5443 do {
5444 int nid;
5445
5446 for_each_node_state(nid, N_MEMORY) {
5447 if (!nr_to_skip--)
5448 return get_lruvec(memcg, nid);
5449 }
5450 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)));
5451
5452 return NULL;
5453 }
5454
lru_gen_seq_stop(struct seq_file * m,void * v)5455 static void lru_gen_seq_stop(struct seq_file *m, void *v)
5456 {
5457 if (!IS_ERR_OR_NULL(v))
5458 mem_cgroup_iter_break(NULL, lruvec_memcg(v));
5459
5460 kvfree(m->private);
5461 m->private = NULL;
5462 }
5463
lru_gen_seq_next(struct seq_file * m,void * v,loff_t * pos)5464 static void *lru_gen_seq_next(struct seq_file *m, void *v, loff_t *pos)
5465 {
5466 int nid = lruvec_pgdat(v)->node_id;
5467 struct mem_cgroup *memcg = lruvec_memcg(v);
5468
5469 ++*pos;
5470
5471 nid = next_memory_node(nid);
5472 if (nid == MAX_NUMNODES) {
5473 memcg = mem_cgroup_iter(NULL, memcg, NULL);
5474 if (!memcg)
5475 return NULL;
5476
5477 nid = first_memory_node;
5478 }
5479
5480 return get_lruvec(memcg, nid);
5481 }
5482
lru_gen_seq_show_full(struct seq_file * m,struct lruvec * lruvec,unsigned long max_seq,unsigned long * min_seq,unsigned long seq)5483 static void lru_gen_seq_show_full(struct seq_file *m, struct lruvec *lruvec,
5484 unsigned long max_seq, unsigned long *min_seq,
5485 unsigned long seq)
5486 {
5487 int i;
5488 int type, tier;
5489 int hist = lru_hist_from_seq(seq);
5490 struct lru_gen_page *lrugen = &lruvec->lrugen;
5491
5492 for (tier = 0; tier < MAX_NR_TIERS; tier++) {
5493 seq_printf(m, " %10d", tier);
5494 for (type = 0; type < ANON_AND_FILE; type++) {
5495 const char *s = " ";
5496 unsigned long n[3] = {};
5497
5498 if (seq == max_seq) {
5499 s = "RT ";
5500 n[0] = READ_ONCE(lrugen->avg_refaulted[type][tier]);
5501 n[1] = READ_ONCE(lrugen->avg_total[type][tier]);
5502 } else if (seq == min_seq[type] || NR_HIST_GENS > 1) {
5503 s = "rep";
5504 n[0] = atomic_long_read(&lrugen->refaulted[hist][type][tier]);
5505 n[1] = atomic_long_read(&lrugen->evicted[hist][type][tier]);
5506 if (tier)
5507 n[2] = READ_ONCE(lrugen->protected[hist][type][tier - 1]);
5508 }
5509
5510 for (i = 0; i < 3; i++)
5511 seq_printf(m, " %10lu%c", n[i], s[i]);
5512 }
5513 seq_putc(m, '\n');
5514 }
5515
5516 seq_puts(m, " ");
5517 for (i = 0; i < NR_MM_STATS; i++) {
5518 const char *s = " ";
5519 unsigned long n = 0;
5520
5521 if (seq == max_seq && NR_HIST_GENS == 1) {
5522 s = "LOYNFA";
5523 n = READ_ONCE(lruvec->mm_state.stats[hist][i]);
5524 } else if (seq != max_seq && NR_HIST_GENS > 1) {
5525 s = "loynfa";
5526 n = READ_ONCE(lruvec->mm_state.stats[hist][i]);
5527 }
5528
5529 seq_printf(m, " %10lu%c", n, s[i]);
5530 }
5531 seq_putc(m, '\n');
5532 }
5533
5534 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
lru_gen_seq_show(struct seq_file * m,void * v)5535 static int lru_gen_seq_show(struct seq_file *m, void *v)
5536 {
5537 unsigned long seq;
5538 bool full = !debugfs_real_fops(m->file)->write;
5539 struct lruvec *lruvec = v;
5540 struct lru_gen_page *lrugen = &lruvec->lrugen;
5541 int nid = lruvec_pgdat(lruvec)->node_id;
5542 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
5543 DEFINE_MAX_SEQ(lruvec);
5544 DEFINE_MIN_SEQ(lruvec);
5545
5546 if (nid == first_memory_node) {
5547 const char *path = memcg ? m->private : "";
5548
5549 #ifdef CONFIG_MEMCG
5550 if (memcg)
5551 cgroup_path(memcg->css.cgroup, m->private, PATH_MAX);
5552 #endif
5553 seq_printf(m, "memcg %5hu %s\n", mem_cgroup_id(memcg), path);
5554 }
5555
5556 seq_printf(m, " node %5d\n", nid);
5557
5558 if (!full)
5559 seq = min_seq[LRU_GEN_ANON];
5560 else if (max_seq >= MAX_NR_GENS)
5561 seq = max_seq - MAX_NR_GENS + 1;
5562 else
5563 seq = 0;
5564
5565 for (; seq <= max_seq; seq++) {
5566 int type, zone;
5567 int gen = lru_gen_from_seq(seq);
5568 unsigned long birth = READ_ONCE(lruvec->lrugen.timestamps[gen]);
5569
5570 seq_printf(m, " %10lu %10u", seq, jiffies_to_msecs(jiffies - birth));
5571
5572 for (type = 0; type < ANON_AND_FILE; type++) {
5573 unsigned long size = 0;
5574 char mark = full && seq < min_seq[type] ? 'x' : ' ';
5575
5576 for (zone = 0; zone < MAX_NR_ZONES; zone++)
5577 size += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L);
5578
5579 seq_printf(m, " %10lu%c", size, mark);
5580 }
5581
5582 seq_putc(m, '\n');
5583
5584 if (full)
5585 lru_gen_seq_show_full(m, lruvec, max_seq, min_seq, seq);
5586 }
5587
5588 return 0;
5589 }
5590
5591 static const struct seq_operations lru_gen_seq_ops = {
5592 .start = lru_gen_seq_start,
5593 .stop = lru_gen_seq_stop,
5594 .next = lru_gen_seq_next,
5595 .show = lru_gen_seq_show,
5596 };
5597
run_aging(struct lruvec * lruvec,unsigned long seq,struct scan_control * sc,bool can_swap,bool force_scan)5598 static int run_aging(struct lruvec *lruvec, unsigned long seq, struct scan_control *sc,
5599 bool can_swap, bool force_scan)
5600 {
5601 DEFINE_MAX_SEQ(lruvec);
5602 DEFINE_MIN_SEQ(lruvec);
5603
5604 if (seq < max_seq)
5605 return 0;
5606
5607 if (seq > max_seq)
5608 return -EINVAL;
5609
5610 if (!force_scan && min_seq[!can_swap] + MAX_NR_GENS - 1 <= max_seq)
5611 return -ERANGE;
5612
5613 try_to_inc_max_seq(lruvec, max_seq, sc, can_swap, force_scan);
5614
5615 return 0;
5616 }
5617
run_eviction(struct lruvec * lruvec,unsigned long seq,struct scan_control * sc,int swappiness,unsigned long nr_to_reclaim)5618 static int run_eviction(struct lruvec *lruvec, unsigned long seq, struct scan_control *sc,
5619 int swappiness, unsigned long nr_to_reclaim)
5620 {
5621 DEFINE_MAX_SEQ(lruvec);
5622
5623 if (seq + MIN_NR_GENS > max_seq)
5624 return -EINVAL;
5625
5626 sc->nr_reclaimed = 0;
5627
5628 while (!signal_pending(current)) {
5629 DEFINE_MIN_SEQ(lruvec);
5630
5631 if (seq < min_seq[!swappiness])
5632 return 0;
5633
5634 if (sc->nr_reclaimed >= nr_to_reclaim)
5635 return 0;
5636
5637 if (!evict_pages(lruvec, sc, swappiness))
5638 return 0;
5639
5640 cond_resched();
5641 }
5642
5643 return -EINTR;
5644 }
5645
run_cmd(char cmd,int memcg_id,int nid,unsigned long seq,struct scan_control * sc,int swappiness,unsigned long opt)5646 static int run_cmd(char cmd, int memcg_id, int nid, unsigned long seq,
5647 struct scan_control *sc, int swappiness, unsigned long opt)
5648 {
5649 struct lruvec *lruvec;
5650 int err = -EINVAL;
5651 struct mem_cgroup *memcg = NULL;
5652
5653 if (nid < 0 || nid >= MAX_NUMNODES || !node_state(nid, N_MEMORY))
5654 return -EINVAL;
5655
5656 if (!mem_cgroup_disabled()) {
5657 rcu_read_lock();
5658
5659 memcg = mem_cgroup_from_id(memcg_id);
5660 if (!mem_cgroup_tryget(memcg))
5661 memcg = NULL;
5662
5663 rcu_read_unlock();
5664
5665 if (!memcg)
5666 return -EINVAL;
5667 }
5668
5669 if (memcg_id != mem_cgroup_id(memcg))
5670 goto done;
5671
5672 lruvec = get_lruvec(memcg, nid);
5673
5674 if (swappiness < 0)
5675 swappiness = get_swappiness(lruvec, sc);
5676 else if (swappiness > 200)
5677 goto done;
5678
5679 switch (cmd) {
5680 case '+':
5681 err = run_aging(lruvec, seq, sc, swappiness, opt);
5682 break;
5683 case '-':
5684 err = run_eviction(lruvec, seq, sc, swappiness, opt);
5685 break;
5686 }
5687 done:
5688 mem_cgroup_put(memcg);
5689
5690 return err;
5691 }
5692
5693 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
lru_gen_seq_write(struct file * file,const char __user * src,size_t len,loff_t * pos)5694 static ssize_t lru_gen_seq_write(struct file *file, const char __user *src,
5695 size_t len, loff_t *pos)
5696 {
5697 void *buf;
5698 char *cur, *next;
5699 unsigned int flags;
5700 struct blk_plug plug;
5701 int err = -EINVAL;
5702 struct scan_control sc = {
5703 .may_writepage = true,
5704 .may_unmap = true,
5705 .may_swap = true,
5706 .reclaim_idx = MAX_NR_ZONES - 1,
5707 .gfp_mask = GFP_KERNEL,
5708 };
5709
5710 buf = kvmalloc(len + 1, GFP_KERNEL);
5711 if (!buf)
5712 return -ENOMEM;
5713
5714 if (copy_from_user(buf, src, len)) {
5715 kvfree(buf);
5716 return -EFAULT;
5717 }
5718
5719 set_task_reclaim_state(current, &sc.reclaim_state);
5720 flags = memalloc_noreclaim_save();
5721 blk_start_plug(&plug);
5722 if (!set_mm_walk(NULL, true)) {
5723 err = -ENOMEM;
5724 goto done;
5725 }
5726
5727 next = buf;
5728 next[len] = '\0';
5729
5730 while ((cur = strsep(&next, ",;\n"))) {
5731 int n;
5732 int end;
5733 char cmd;
5734 unsigned int memcg_id;
5735 unsigned int nid;
5736 unsigned long seq;
5737 unsigned int swappiness = -1;
5738 unsigned long opt = -1;
5739
5740 cur = skip_spaces(cur);
5741 if (!*cur)
5742 continue;
5743
5744 n = sscanf(cur, "%c %u %u %lu %n %u %n %lu %n", &cmd, &memcg_id, &nid,
5745 &seq, &end, &swappiness, &end, &opt, &end);
5746 if (n < 4 || cur[end]) {
5747 err = -EINVAL;
5748 break;
5749 }
5750
5751 err = run_cmd(cmd, memcg_id, nid, seq, &sc, swappiness, opt);
5752 if (err)
5753 break;
5754 }
5755 done:
5756 clear_mm_walk();
5757 blk_finish_plug(&plug);
5758 memalloc_noreclaim_restore(flags);
5759 set_task_reclaim_state(current, NULL);
5760
5761 kvfree(buf);
5762
5763 return err ? : len;
5764 }
5765
lru_gen_seq_open(struct inode * inode,struct file * file)5766 static int lru_gen_seq_open(struct inode *inode, struct file *file)
5767 {
5768 return seq_open(file, &lru_gen_seq_ops);
5769 }
5770
5771 static const struct file_operations lru_gen_rw_fops = {
5772 .open = lru_gen_seq_open,
5773 .read = seq_read,
5774 .write = lru_gen_seq_write,
5775 .llseek = seq_lseek,
5776 .release = seq_release,
5777 };
5778
5779 static const struct file_operations lru_gen_ro_fops = {
5780 .open = lru_gen_seq_open,
5781 .read = seq_read,
5782 .llseek = seq_lseek,
5783 .release = seq_release,
5784 };
5785
5786 /******************************************************************************
5787 * initialization
5788 ******************************************************************************/
5789
lru_gen_init_lruvec(struct lruvec * lruvec)5790 void lru_gen_init_lruvec(struct lruvec *lruvec)
5791 {
5792 int i;
5793 int gen, type, zone;
5794 struct lru_gen_page *lrugen = &lruvec->lrugen;
5795
5796 lrugen->max_seq = MIN_NR_GENS + 1;
5797 lrugen->enabled = lru_gen_enabled();
5798
5799 for (i = 0; i <= MIN_NR_GENS + 1; i++)
5800 lrugen->timestamps[i] = jiffies;
5801
5802 for_each_gen_type_zone(gen, type, zone)
5803 INIT_LIST_HEAD(&lrugen->pages[gen][type][zone]);
5804
5805 lruvec->mm_state.seq = MIN_NR_GENS;
5806 }
5807
5808 #ifdef CONFIG_MEMCG
5809
lru_gen_init_pgdat(struct pglist_data * pgdat)5810 void lru_gen_init_pgdat(struct pglist_data *pgdat)
5811 {
5812 int i, j;
5813
5814 spin_lock_init(&pgdat->memcg_lru.lock);
5815
5816 for (i = 0; i < MEMCG_NR_GENS; i++) {
5817 for (j = 0; j < MEMCG_NR_BINS; j++)
5818 INIT_HLIST_NULLS_HEAD(&pgdat->memcg_lru.fifo[i][j], i);
5819 }
5820 }
5821
lru_gen_init_memcg(struct mem_cgroup * memcg)5822 void lru_gen_init_memcg(struct mem_cgroup *memcg)
5823 {
5824 INIT_LIST_HEAD(&memcg->mm_list.fifo);
5825 spin_lock_init(&memcg->mm_list.lock);
5826 }
5827
lru_gen_exit_memcg(struct mem_cgroup * memcg)5828 void lru_gen_exit_memcg(struct mem_cgroup *memcg)
5829 {
5830 int i;
5831 int nid;
5832
5833 for_each_node(nid) {
5834 struct lruvec *lruvec = get_lruvec(memcg, nid);
5835
5836 VM_WARN_ON_ONCE(memchr_inv(lruvec->lrugen.nr_pages, 0,
5837 sizeof(lruvec->lrugen.nr_pages)));
5838
5839 for (i = 0; i < NR_BLOOM_FILTERS; i++) {
5840 bitmap_free(lruvec->mm_state.filters[i]);
5841 lruvec->mm_state.filters[i] = NULL;
5842 }
5843 }
5844 }
5845
lru_gen_online_memcg(struct mem_cgroup * memcg)5846 void lru_gen_online_memcg(struct mem_cgroup *memcg)
5847 {
5848 int gen;
5849 int nid;
5850 int bin = prandom_u32_max(MEMCG_NR_BINS);
5851
5852 for_each_node(nid) {
5853 struct pglist_data *pgdat = NODE_DATA(nid);
5854 struct lruvec *lruvec = get_lruvec(memcg, nid);
5855
5856 spin_lock(&pgdat->memcg_lru.lock);
5857
5858 VM_WARN_ON_ONCE(!hlist_nulls_unhashed(&lruvec->lrugen.list));
5859
5860 gen = get_memcg_gen(pgdat->memcg_lru.seq);
5861
5862 hlist_nulls_add_tail_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[gen][bin]);
5863 pgdat->memcg_lru.nr_memcgs[gen]++;
5864
5865 lruvec->lrugen.gen = gen;
5866
5867 spin_unlock(&pgdat->memcg_lru.lock);
5868 }
5869 }
5870
lru_gen_offline_memcg(struct mem_cgroup * memcg)5871 void lru_gen_offline_memcg(struct mem_cgroup *memcg)
5872 {
5873 int nid;
5874
5875 for_each_node(nid) {
5876 struct lruvec *lruvec = get_lruvec(memcg, nid);
5877
5878 lru_gen_rotate_memcg(lruvec, MEMCG_LRU_OLD);
5879 }
5880 }
5881
lru_gen_release_memcg(struct mem_cgroup * memcg)5882 void lru_gen_release_memcg(struct mem_cgroup *memcg)
5883 {
5884 int gen;
5885 int nid;
5886
5887 for_each_node(nid) {
5888 struct pglist_data *pgdat = NODE_DATA(nid);
5889 struct lruvec *lruvec = get_lruvec(memcg, nid);
5890
5891 spin_lock(&pgdat->memcg_lru.lock);
5892
5893 VM_WARN_ON_ONCE(hlist_nulls_unhashed(&lruvec->lrugen.list));
5894
5895 gen = lruvec->lrugen.gen;
5896
5897 hlist_nulls_del_rcu(&lruvec->lrugen.list);
5898 pgdat->memcg_lru.nr_memcgs[gen]--;
5899
5900 if (!pgdat->memcg_lru.nr_memcgs[gen] && gen == get_memcg_gen(pgdat->memcg_lru.seq))
5901 WRITE_ONCE(pgdat->memcg_lru.seq, pgdat->memcg_lru.seq + 1);
5902
5903 spin_unlock(&pgdat->memcg_lru.lock);
5904 }
5905 }
5906
5907 #endif /* CONFIG_MEMCG */
5908
init_lru_gen(void)5909 static int __init init_lru_gen(void)
5910 {
5911 BUILD_BUG_ON(MIN_NR_GENS + 1 >= MAX_NR_GENS);
5912 BUILD_BUG_ON(BIT(LRU_GEN_WIDTH) <= MAX_NR_GENS);
5913
5914 if (sysfs_create_group(mm_kobj, &lru_gen_attr_group))
5915 pr_err("lru_gen: failed to create sysfs group\n");
5916
5917 debugfs_create_file("lru_gen", 0644, NULL, NULL, &lru_gen_rw_fops);
5918 debugfs_create_file("lru_gen_full", 0444, NULL, NULL, &lru_gen_ro_fops);
5919
5920 return 0;
5921 };
5922 late_initcall(init_lru_gen);
5923
5924 #else /* !CONFIG_LRU_GEN */
5925
lru_gen_age_node(struct pglist_data * pgdat,struct scan_control * sc)5926 static void lru_gen_age_node(struct pglist_data *pgdat, struct scan_control *sc)
5927 {
5928 }
5929
lru_gen_shrink_lruvec(struct lruvec * lruvec,struct scan_control * sc)5930 static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
5931 {
5932 }
5933
lru_gen_shrink_node(struct pglist_data * pgdat,struct scan_control * sc)5934 static void lru_gen_shrink_node(struct pglist_data *pgdat, struct scan_control *sc)
5935 {
5936 }
5937
5938 #endif /* CONFIG_LRU_GEN */
5939
shrink_lruvec(struct lruvec * lruvec,struct scan_control * sc)5940 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
5941 {
5942 unsigned long nr[NR_LRU_LISTS];
5943 unsigned long targets[NR_LRU_LISTS];
5944 unsigned long nr_to_scan;
5945 enum lru_list lru;
5946 unsigned long nr_reclaimed = 0;
5947 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
5948 bool proportional_reclaim;
5949 struct blk_plug plug;
5950 bool do_plug = true;
5951
5952 if (lru_gen_enabled() && !global_reclaim(sc)) {
5953 lru_gen_shrink_lruvec(lruvec, sc);
5954 return;
5955 }
5956
5957 get_scan_count(lruvec, sc, nr);
5958
5959 /* Record the original scan target for proportional adjustments later */
5960 memcpy(targets, nr, sizeof(nr));
5961
5962 /*
5963 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
5964 * event that can occur when there is little memory pressure e.g.
5965 * multiple streaming readers/writers. Hence, we do not abort scanning
5966 * when the requested number of pages are reclaimed when scanning at
5967 * DEF_PRIORITY on the assumption that the fact we are direct
5968 * reclaiming implies that kswapd is not keeping up and it is best to
5969 * do a batch of work at once. For memcg reclaim one check is made to
5970 * abort proportional reclaim if either the file or anon lru has already
5971 * dropped to zero at the first pass.
5972 */
5973 proportional_reclaim = (!cgroup_reclaim(sc) && !current_is_kswapd() &&
5974 sc->priority == DEF_PRIORITY);
5975
5976 trace_android_vh_shrink_lruvec_blk_plug(&do_plug);
5977 if (do_plug)
5978 blk_start_plug(&plug);
5979 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
5980 nr[LRU_INACTIVE_FILE]) {
5981 unsigned long nr_anon, nr_file, percentage;
5982 unsigned long nr_scanned;
5983
5984 for_each_evictable_lru(lru) {
5985 if (nr[lru]) {
5986 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
5987 nr[lru] -= nr_to_scan;
5988
5989 nr_reclaimed += shrink_list(lru, nr_to_scan,
5990 lruvec, sc);
5991 }
5992 }
5993
5994 cond_resched();
5995
5996 if (nr_reclaimed < nr_to_reclaim || proportional_reclaim)
5997 continue;
5998
5999 /*
6000 * For kswapd and memcg, reclaim at least the number of pages
6001 * requested. Ensure that the anon and file LRUs are scanned
6002 * proportionally what was requested by get_scan_count(). We
6003 * stop reclaiming one LRU and reduce the amount scanning
6004 * proportional to the original scan target.
6005 */
6006 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
6007 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
6008
6009 /*
6010 * It's just vindictive to attack the larger once the smaller
6011 * has gone to zero. And given the way we stop scanning the
6012 * smaller below, this makes sure that we only make one nudge
6013 * towards proportionality once we've got nr_to_reclaim.
6014 */
6015 if (!nr_file || !nr_anon)
6016 break;
6017
6018 if (nr_file > nr_anon) {
6019 unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
6020 targets[LRU_ACTIVE_ANON] + 1;
6021 lru = LRU_BASE;
6022 percentage = nr_anon * 100 / scan_target;
6023 } else {
6024 unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
6025 targets[LRU_ACTIVE_FILE] + 1;
6026 lru = LRU_FILE;
6027 percentage = nr_file * 100 / scan_target;
6028 }
6029
6030 /* Stop scanning the smaller of the LRU */
6031 nr[lru] = 0;
6032 nr[lru + LRU_ACTIVE] = 0;
6033
6034 /*
6035 * Recalculate the other LRU scan count based on its original
6036 * scan target and the percentage scanning already complete
6037 */
6038 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
6039 nr_scanned = targets[lru] - nr[lru];
6040 nr[lru] = targets[lru] * (100 - percentage) / 100;
6041 nr[lru] -= min(nr[lru], nr_scanned);
6042
6043 lru += LRU_ACTIVE;
6044 nr_scanned = targets[lru] - nr[lru];
6045 nr[lru] = targets[lru] * (100 - percentage) / 100;
6046 nr[lru] -= min(nr[lru], nr_scanned);
6047 }
6048 if (do_plug)
6049 blk_finish_plug(&plug);
6050 sc->nr_reclaimed += nr_reclaimed;
6051
6052 /*
6053 * Even if we did not try to evict anon pages at all, we want to
6054 * rebalance the anon lru active/inactive ratio.
6055 */
6056 if (can_age_anon_pages(lruvec_pgdat(lruvec), sc) &&
6057 inactive_is_low(lruvec, LRU_INACTIVE_ANON))
6058 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
6059 sc, LRU_ACTIVE_ANON);
6060 }
6061
6062 /* Use reclaim/compaction for costly allocs or under memory pressure */
in_reclaim_compaction(struct scan_control * sc)6063 static bool in_reclaim_compaction(struct scan_control *sc)
6064 {
6065 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
6066 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
6067 sc->priority < DEF_PRIORITY - 2))
6068 return true;
6069
6070 return false;
6071 }
6072
6073 /*
6074 * Reclaim/compaction is used for high-order allocation requests. It reclaims
6075 * order-0 pages before compacting the zone. should_continue_reclaim() returns
6076 * true if more pages should be reclaimed such that when the page allocator
6077 * calls try_to_compact_pages() that it will have enough free pages to succeed.
6078 * It will give up earlier than that if there is difficulty reclaiming pages.
6079 */
should_continue_reclaim(struct pglist_data * pgdat,unsigned long nr_reclaimed,struct scan_control * sc)6080 static inline bool should_continue_reclaim(struct pglist_data *pgdat,
6081 unsigned long nr_reclaimed,
6082 struct scan_control *sc)
6083 {
6084 unsigned long pages_for_compaction;
6085 unsigned long inactive_lru_pages;
6086 int z;
6087
6088 /* If not in reclaim/compaction mode, stop */
6089 if (!in_reclaim_compaction(sc))
6090 return false;
6091
6092 /*
6093 * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX
6094 * number of pages that were scanned. This will return to the caller
6095 * with the risk reclaim/compaction and the resulting allocation attempt
6096 * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL
6097 * allocations through requiring that the full LRU list has been scanned
6098 * first, by assuming that zero delta of sc->nr_scanned means full LRU
6099 * scan, but that approximation was wrong, and there were corner cases
6100 * where always a non-zero amount of pages were scanned.
6101 */
6102 if (!nr_reclaimed)
6103 return false;
6104
6105 /* If compaction would go ahead or the allocation would succeed, stop */
6106 for (z = 0; z <= sc->reclaim_idx; z++) {
6107 struct zone *zone = &pgdat->node_zones[z];
6108 if (!managed_zone(zone))
6109 continue;
6110
6111 switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
6112 case COMPACT_SUCCESS:
6113 case COMPACT_CONTINUE:
6114 return false;
6115 default:
6116 /* check next zone */
6117 ;
6118 }
6119 }
6120
6121 /*
6122 * If we have not reclaimed enough pages for compaction and the
6123 * inactive lists are large enough, continue reclaiming
6124 */
6125 pages_for_compaction = compact_gap(sc->order);
6126 inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
6127 if (can_reclaim_anon_pages(NULL, pgdat->node_id, sc))
6128 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
6129
6130 return inactive_lru_pages > pages_for_compaction;
6131 }
6132
shrink_node_memcgs(pg_data_t * pgdat,struct scan_control * sc)6133 static void shrink_node_memcgs(pg_data_t *pgdat, struct scan_control *sc)
6134 {
6135 struct mem_cgroup *target_memcg = sc->target_mem_cgroup;
6136 struct mem_cgroup *memcg;
6137
6138 memcg = mem_cgroup_iter(target_memcg, NULL, NULL);
6139 do {
6140 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
6141 unsigned long reclaimed;
6142 unsigned long scanned;
6143 bool skip = false;
6144
6145 /*
6146 * This loop can become CPU-bound when target memcgs
6147 * aren't eligible for reclaim - either because they
6148 * don't have any reclaimable pages, or because their
6149 * memory is explicitly protected. Avoid soft lockups.
6150 */
6151 cond_resched();
6152
6153 trace_android_vh_shrink_node_memcgs(memcg, &skip);
6154 if (skip)
6155 continue;
6156
6157 mem_cgroup_calculate_protection(target_memcg, memcg);
6158
6159 if (mem_cgroup_below_min(memcg)) {
6160 /*
6161 * Hard protection.
6162 * If there is no reclaimable memory, OOM.
6163 */
6164 continue;
6165 } else if (mem_cgroup_below_low(memcg)) {
6166 /*
6167 * Soft protection.
6168 * Respect the protection only as long as
6169 * there is an unprotected supply
6170 * of reclaimable memory from other cgroups.
6171 */
6172 if (!sc->memcg_low_reclaim) {
6173 sc->memcg_low_skipped = 1;
6174 continue;
6175 }
6176 memcg_memory_event(memcg, MEMCG_LOW);
6177 }
6178
6179 reclaimed = sc->nr_reclaimed;
6180 scanned = sc->nr_scanned;
6181
6182 shrink_lruvec(lruvec, sc);
6183
6184 shrink_slab(sc->gfp_mask, pgdat->node_id, memcg,
6185 sc->priority);
6186
6187 /* Record the group's reclaim efficiency */
6188 if (!sc->proactive)
6189 vmpressure(sc->gfp_mask, memcg, false,
6190 sc->nr_scanned - scanned,
6191 sc->nr_reclaimed - reclaimed);
6192
6193 } while ((memcg = mem_cgroup_iter(target_memcg, memcg, NULL)));
6194 }
6195
shrink_node(pg_data_t * pgdat,struct scan_control * sc)6196 static void shrink_node(pg_data_t *pgdat, struct scan_control *sc)
6197 {
6198 struct reclaim_state *reclaim_state = current->reclaim_state;
6199 unsigned long nr_reclaimed, nr_scanned;
6200 struct lruvec *target_lruvec;
6201 bool reclaimable = false;
6202
6203 if (lru_gen_enabled() && global_reclaim(sc)) {
6204 lru_gen_shrink_node(pgdat, sc);
6205 return;
6206 }
6207
6208 target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat);
6209
6210 again:
6211 memset(&sc->nr, 0, sizeof(sc->nr));
6212
6213 nr_reclaimed = sc->nr_reclaimed;
6214 nr_scanned = sc->nr_scanned;
6215
6216 prepare_scan_count(pgdat, sc);
6217
6218 shrink_node_memcgs(pgdat, sc);
6219
6220 if (reclaim_state) {
6221 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
6222 reclaim_state->reclaimed_slab = 0;
6223 }
6224
6225 /* Record the subtree's reclaim efficiency */
6226 if (!sc->proactive)
6227 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
6228 sc->nr_scanned - nr_scanned,
6229 sc->nr_reclaimed - nr_reclaimed);
6230
6231 if (sc->nr_reclaimed - nr_reclaimed)
6232 reclaimable = true;
6233
6234 if (current_is_kswapd()) {
6235 /*
6236 * If reclaim is isolating dirty pages under writeback,
6237 * it implies that the long-lived page allocation rate
6238 * is exceeding the page laundering rate. Either the
6239 * global limits are not being effective at throttling
6240 * processes due to the page distribution throughout
6241 * zones or there is heavy usage of a slow backing
6242 * device. The only option is to throttle from reclaim
6243 * context which is not ideal as there is no guarantee
6244 * the dirtying process is throttled in the same way
6245 * balance_dirty_pages() manages.
6246 *
6247 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
6248 * count the number of pages under pages flagged for
6249 * immediate reclaim and stall if any are encountered
6250 * in the nr_immediate check below.
6251 */
6252 if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
6253 set_bit(PGDAT_WRITEBACK, &pgdat->flags);
6254
6255 /* Allow kswapd to start writing pages during reclaim.*/
6256 if (sc->nr.unqueued_dirty == sc->nr.file_taken)
6257 set_bit(PGDAT_DIRTY, &pgdat->flags);
6258
6259 /*
6260 * If kswapd scans pages marked for immediate
6261 * reclaim and under writeback (nr_immediate), it
6262 * implies that pages are cycling through the LRU
6263 * faster than they are written so also forcibly stall.
6264 */
6265 if (sc->nr.immediate)
6266 congestion_wait(BLK_RW_ASYNC, HZ/10);
6267 }
6268
6269 /*
6270 * Tag a node/memcg as congested if all the dirty pages
6271 * scanned were backed by a congested BDI and
6272 * wait_iff_congested will stall.
6273 *
6274 * Legacy memcg will stall in page writeback so avoid forcibly
6275 * stalling in wait_iff_congested().
6276 */
6277 if ((current_is_kswapd() ||
6278 (cgroup_reclaim(sc) && writeback_throttling_sane(sc))) &&
6279 sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
6280 set_bit(LRUVEC_CONGESTED, &target_lruvec->flags);
6281
6282 /*
6283 * Stall direct reclaim for IO completions if underlying BDIs
6284 * and node is congested. Allow kswapd to continue until it
6285 * starts encountering unqueued dirty pages or cycling through
6286 * the LRU too quickly.
6287 */
6288 if (!current_is_kswapd() && current_may_throttle() &&
6289 !sc->hibernation_mode &&
6290 test_bit(LRUVEC_CONGESTED, &target_lruvec->flags))
6291 wait_iff_congested(BLK_RW_ASYNC, HZ/10);
6292
6293 if (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
6294 sc))
6295 goto again;
6296
6297 /*
6298 * Kswapd gives up on balancing particular nodes after too
6299 * many failures to reclaim anything from them and goes to
6300 * sleep. On reclaim progress, reset the failure counter. A
6301 * successful direct reclaim run will revive a dormant kswapd.
6302 */
6303 if (reclaimable)
6304 pgdat->kswapd_failures = 0;
6305 }
6306
6307 /*
6308 * Returns true if compaction should go ahead for a costly-order request, or
6309 * the allocation would already succeed without compaction. Return false if we
6310 * should reclaim first.
6311 */
compaction_ready(struct zone * zone,struct scan_control * sc)6312 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
6313 {
6314 unsigned long watermark;
6315 enum compact_result suitable;
6316
6317 suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
6318 if (suitable == COMPACT_SUCCESS)
6319 /* Allocation should succeed already. Don't reclaim. */
6320 return true;
6321 if (suitable == COMPACT_SKIPPED)
6322 /* Compaction cannot yet proceed. Do reclaim. */
6323 return false;
6324
6325 /*
6326 * Compaction is already possible, but it takes time to run and there
6327 * are potentially other callers using the pages just freed. So proceed
6328 * with reclaim to make a buffer of free pages available to give
6329 * compaction a reasonable chance of completing and allocating the page.
6330 * Note that we won't actually reclaim the whole buffer in one attempt
6331 * as the target watermark in should_continue_reclaim() is lower. But if
6332 * we are already above the high+gap watermark, don't reclaim at all.
6333 */
6334 watermark = high_wmark_pages(zone) + compact_gap(sc->order);
6335
6336 return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
6337 }
6338
6339 /*
6340 * This is the direct reclaim path, for page-allocating processes. We only
6341 * try to reclaim pages from zones which will satisfy the caller's allocation
6342 * request.
6343 *
6344 * If a zone is deemed to be full of pinned pages then just give it a light
6345 * scan then give up on it.
6346 */
shrink_zones(struct zonelist * zonelist,struct scan_control * sc)6347 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
6348 {
6349 struct zoneref *z;
6350 struct zone *zone;
6351 unsigned long nr_soft_reclaimed;
6352 unsigned long nr_soft_scanned;
6353 gfp_t orig_mask;
6354 pg_data_t *last_pgdat = NULL;
6355
6356 /*
6357 * If the number of buffer_heads in the machine exceeds the maximum
6358 * allowed level, force direct reclaim to scan the highmem zone as
6359 * highmem pages could be pinning lowmem pages storing buffer_heads
6360 */
6361 orig_mask = sc->gfp_mask;
6362 if (buffer_heads_over_limit) {
6363 sc->gfp_mask |= __GFP_HIGHMEM;
6364 sc->reclaim_idx = gfp_zone(sc->gfp_mask);
6365 }
6366
6367 for_each_zone_zonelist_nodemask(zone, z, zonelist,
6368 sc->reclaim_idx, sc->nodemask) {
6369 /*
6370 * Take care memory controller reclaiming has small influence
6371 * to global LRU.
6372 */
6373 if (!cgroup_reclaim(sc)) {
6374 if (!cpuset_zone_allowed(zone,
6375 GFP_KERNEL | __GFP_HARDWALL))
6376 continue;
6377
6378 /*
6379 * If we already have plenty of memory free for
6380 * compaction in this zone, don't free any more.
6381 * Even though compaction is invoked for any
6382 * non-zero order, only frequent costly order
6383 * reclamation is disruptive enough to become a
6384 * noticeable problem, like transparent huge
6385 * page allocations.
6386 */
6387 if (IS_ENABLED(CONFIG_COMPACTION) &&
6388 sc->order > PAGE_ALLOC_COSTLY_ORDER &&
6389 compaction_ready(zone, sc)) {
6390 sc->compaction_ready = true;
6391 continue;
6392 }
6393
6394 /*
6395 * Shrink each node in the zonelist once. If the
6396 * zonelist is ordered by zone (not the default) then a
6397 * node may be shrunk multiple times but in that case
6398 * the user prefers lower zones being preserved.
6399 */
6400 if (zone->zone_pgdat == last_pgdat)
6401 continue;
6402
6403 /*
6404 * This steals pages from memory cgroups over softlimit
6405 * and returns the number of reclaimed pages and
6406 * scanned pages. This works for global memory pressure
6407 * and balancing, not for a memcg's limit.
6408 */
6409 nr_soft_scanned = 0;
6410 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
6411 sc->order, sc->gfp_mask,
6412 &nr_soft_scanned);
6413 sc->nr_reclaimed += nr_soft_reclaimed;
6414 sc->nr_scanned += nr_soft_scanned;
6415 /* need some check for avoid more shrink_zone() */
6416 }
6417
6418 /* See comment about same check for global reclaim above */
6419 if (zone->zone_pgdat == last_pgdat)
6420 continue;
6421 last_pgdat = zone->zone_pgdat;
6422 shrink_node(zone->zone_pgdat, sc);
6423 }
6424
6425 /*
6426 * Restore to original mask to avoid the impact on the caller if we
6427 * promoted it to __GFP_HIGHMEM.
6428 */
6429 sc->gfp_mask = orig_mask;
6430 }
6431
snapshot_refaults(struct mem_cgroup * target_memcg,pg_data_t * pgdat)6432 static void snapshot_refaults(struct mem_cgroup *target_memcg, pg_data_t *pgdat)
6433 {
6434 struct lruvec *target_lruvec;
6435 unsigned long refaults;
6436
6437 if (lru_gen_enabled())
6438 return;
6439
6440 target_lruvec = mem_cgroup_lruvec(target_memcg, pgdat);
6441 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_ANON);
6442 target_lruvec->refaults[0] = refaults;
6443 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_FILE);
6444 target_lruvec->refaults[1] = refaults;
6445 }
6446
6447 /*
6448 * This is the main entry point to direct page reclaim.
6449 *
6450 * If a full scan of the inactive list fails to free enough memory then we
6451 * are "out of memory" and something needs to be killed.
6452 *
6453 * If the caller is !__GFP_FS then the probability of a failure is reasonably
6454 * high - the zone may be full of dirty or under-writeback pages, which this
6455 * caller can't do much about. We kick the writeback threads and take explicit
6456 * naps in the hope that some of these pages can be written. But if the
6457 * allocating task holds filesystem locks which prevent writeout this might not
6458 * work, and the allocation attempt will fail.
6459 *
6460 * returns: 0, if no pages reclaimed
6461 * else, the number of pages reclaimed
6462 */
do_try_to_free_pages(struct zonelist * zonelist,struct scan_control * sc)6463 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
6464 struct scan_control *sc)
6465 {
6466 int initial_priority = sc->priority;
6467 pg_data_t *last_pgdat;
6468 struct zoneref *z;
6469 struct zone *zone;
6470 retry:
6471 delayacct_freepages_start();
6472
6473 if (!cgroup_reclaim(sc))
6474 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
6475
6476 do {
6477 if (!sc->proactive)
6478 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
6479 sc->priority);
6480 sc->nr_scanned = 0;
6481 shrink_zones(zonelist, sc);
6482
6483 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
6484 break;
6485
6486 if (sc->compaction_ready)
6487 break;
6488
6489 /*
6490 * If we're getting trouble reclaiming, start doing
6491 * writepage even in laptop mode.
6492 */
6493 if (sc->priority < DEF_PRIORITY - 2)
6494 sc->may_writepage = 1;
6495 } while (--sc->priority >= 0);
6496
6497 last_pgdat = NULL;
6498 for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
6499 sc->nodemask) {
6500 if (zone->zone_pgdat == last_pgdat)
6501 continue;
6502 last_pgdat = zone->zone_pgdat;
6503
6504 snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
6505
6506 if (cgroup_reclaim(sc)) {
6507 struct lruvec *lruvec;
6508
6509 lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup,
6510 zone->zone_pgdat);
6511 clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
6512 }
6513 }
6514
6515 delayacct_freepages_end();
6516
6517 if (sc->nr_reclaimed)
6518 return sc->nr_reclaimed;
6519
6520 /* Aborted reclaim to try compaction? don't OOM, then */
6521 if (sc->compaction_ready)
6522 return 1;
6523
6524 /*
6525 * We make inactive:active ratio decisions based on the node's
6526 * composition of memory, but a restrictive reclaim_idx or a
6527 * memory.low cgroup setting can exempt large amounts of
6528 * memory from reclaim. Neither of which are very common, so
6529 * instead of doing costly eligibility calculations of the
6530 * entire cgroup subtree up front, we assume the estimates are
6531 * good, and retry with forcible deactivation if that fails.
6532 */
6533 if (sc->skipped_deactivate) {
6534 sc->priority = initial_priority;
6535 sc->force_deactivate = 1;
6536 sc->skipped_deactivate = 0;
6537 goto retry;
6538 }
6539
6540 /* Untapped cgroup reserves? Don't OOM, retry. */
6541 if (sc->memcg_low_skipped) {
6542 sc->priority = initial_priority;
6543 sc->force_deactivate = 0;
6544 sc->memcg_low_reclaim = 1;
6545 sc->memcg_low_skipped = 0;
6546 goto retry;
6547 }
6548
6549 return 0;
6550 }
6551
allow_direct_reclaim(pg_data_t * pgdat)6552 static bool allow_direct_reclaim(pg_data_t *pgdat)
6553 {
6554 struct zone *zone;
6555 unsigned long pfmemalloc_reserve = 0;
6556 unsigned long free_pages = 0;
6557 int i;
6558 bool wmark_ok;
6559
6560 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
6561 return true;
6562
6563 for (i = 0; i <= ZONE_NORMAL; i++) {
6564 zone = &pgdat->node_zones[i];
6565 if (!managed_zone(zone))
6566 continue;
6567
6568 if (!zone_reclaimable_pages(zone))
6569 continue;
6570
6571 pfmemalloc_reserve += min_wmark_pages(zone);
6572 free_pages += zone_page_state(zone, NR_FREE_PAGES);
6573 }
6574
6575 /* If there are no reserves (unexpected config) then do not throttle */
6576 if (!pfmemalloc_reserve)
6577 return true;
6578
6579 wmark_ok = free_pages > pfmemalloc_reserve / 2;
6580
6581 /* kswapd must be awake if processes are being throttled */
6582 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
6583 if (READ_ONCE(pgdat->kswapd_highest_zoneidx) > ZONE_NORMAL)
6584 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, ZONE_NORMAL);
6585
6586 wake_up_interruptible(&pgdat->kswapd_wait);
6587 }
6588
6589 return wmark_ok;
6590 }
6591
6592 /*
6593 * Throttle direct reclaimers if backing storage is backed by the network
6594 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
6595 * depleted. kswapd will continue to make progress and wake the processes
6596 * when the low watermark is reached.
6597 *
6598 * Returns true if a fatal signal was delivered during throttling. If this
6599 * happens, the page allocator should not consider triggering the OOM killer.
6600 */
throttle_direct_reclaim(gfp_t gfp_mask,struct zonelist * zonelist,nodemask_t * nodemask)6601 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
6602 nodemask_t *nodemask)
6603 {
6604 struct zoneref *z;
6605 struct zone *zone;
6606 pg_data_t *pgdat = NULL;
6607
6608 /*
6609 * Kernel threads should not be throttled as they may be indirectly
6610 * responsible for cleaning pages necessary for reclaim to make forward
6611 * progress. kjournald for example may enter direct reclaim while
6612 * committing a transaction where throttling it could forcing other
6613 * processes to block on log_wait_commit().
6614 */
6615 if (current->flags & PF_KTHREAD)
6616 goto out;
6617
6618 /*
6619 * If a fatal signal is pending, this process should not throttle.
6620 * It should return quickly so it can exit and free its memory
6621 */
6622 if (fatal_signal_pending(current))
6623 goto out;
6624
6625 /*
6626 * Check if the pfmemalloc reserves are ok by finding the first node
6627 * with a usable ZONE_NORMAL or lower zone. The expectation is that
6628 * GFP_KERNEL will be required for allocating network buffers when
6629 * swapping over the network so ZONE_HIGHMEM is unusable.
6630 *
6631 * Throttling is based on the first usable node and throttled processes
6632 * wait on a queue until kswapd makes progress and wakes them. There
6633 * is an affinity then between processes waking up and where reclaim
6634 * progress has been made assuming the process wakes on the same node.
6635 * More importantly, processes running on remote nodes will not compete
6636 * for remote pfmemalloc reserves and processes on different nodes
6637 * should make reasonable progress.
6638 */
6639 for_each_zone_zonelist_nodemask(zone, z, zonelist,
6640 gfp_zone(gfp_mask), nodemask) {
6641 if (zone_idx(zone) > ZONE_NORMAL)
6642 continue;
6643
6644 /* Throttle based on the first usable node */
6645 pgdat = zone->zone_pgdat;
6646 if (allow_direct_reclaim(pgdat))
6647 goto out;
6648 break;
6649 }
6650
6651 /* If no zone was usable by the allocation flags then do not throttle */
6652 if (!pgdat)
6653 goto out;
6654
6655 /* Account for the throttling */
6656 count_vm_event(PGSCAN_DIRECT_THROTTLE);
6657
6658 /*
6659 * If the caller cannot enter the filesystem, it's possible that it
6660 * is due to the caller holding an FS lock or performing a journal
6661 * transaction in the case of a filesystem like ext[3|4]. In this case,
6662 * it is not safe to block on pfmemalloc_wait as kswapd could be
6663 * blocked waiting on the same lock. Instead, throttle for up to a
6664 * second before continuing.
6665 */
6666 if (!(gfp_mask & __GFP_FS))
6667 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
6668 allow_direct_reclaim(pgdat), HZ);
6669 else
6670 /* Throttle until kswapd wakes the process */
6671 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
6672 allow_direct_reclaim(pgdat));
6673
6674 if (fatal_signal_pending(current))
6675 return true;
6676
6677 out:
6678 return false;
6679 }
6680
try_to_free_pages(struct zonelist * zonelist,int order,gfp_t gfp_mask,nodemask_t * nodemask)6681 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
6682 gfp_t gfp_mask, nodemask_t *nodemask)
6683 {
6684 unsigned long nr_reclaimed;
6685 struct scan_control sc = {
6686 .nr_to_reclaim = SWAP_CLUSTER_MAX,
6687 .gfp_mask = current_gfp_context(gfp_mask),
6688 .reclaim_idx = gfp_zone(gfp_mask),
6689 .order = order,
6690 .nodemask = nodemask,
6691 .priority = DEF_PRIORITY,
6692 .may_writepage = !laptop_mode,
6693 .may_unmap = 1,
6694 .may_swap = 1,
6695 };
6696
6697 /*
6698 * scan_control uses s8 fields for order, priority, and reclaim_idx.
6699 * Confirm they are large enough for max values.
6700 */
6701 BUILD_BUG_ON(MAX_ORDER > S8_MAX);
6702 BUILD_BUG_ON(DEF_PRIORITY > S8_MAX);
6703 BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX);
6704
6705 /*
6706 * Do not enter reclaim if fatal signal was delivered while throttled.
6707 * 1 is returned so that the page allocator does not OOM kill at this
6708 * point.
6709 */
6710 if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
6711 return 1;
6712
6713 set_task_reclaim_state(current, &sc.reclaim_state);
6714 trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask);
6715
6716 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
6717
6718 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
6719 set_task_reclaim_state(current, NULL);
6720
6721 return nr_reclaimed;
6722 }
6723
6724 #ifdef CONFIG_MEMCG
6725
6726 /* Only used by soft limit reclaim. Do not reuse for anything else. */
mem_cgroup_shrink_node(struct mem_cgroup * memcg,gfp_t gfp_mask,bool noswap,pg_data_t * pgdat,unsigned long * nr_scanned)6727 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
6728 gfp_t gfp_mask, bool noswap,
6729 pg_data_t *pgdat,
6730 unsigned long *nr_scanned)
6731 {
6732 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
6733 struct scan_control sc = {
6734 .nr_to_reclaim = SWAP_CLUSTER_MAX,
6735 .target_mem_cgroup = memcg,
6736 .may_writepage = !laptop_mode,
6737 .may_unmap = 1,
6738 .reclaim_idx = MAX_NR_ZONES - 1,
6739 .may_swap = !noswap,
6740 };
6741
6742 WARN_ON_ONCE(!current->reclaim_state);
6743
6744 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
6745 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
6746
6747 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
6748 sc.gfp_mask);
6749
6750 /*
6751 * NOTE: Although we can get the priority field, using it
6752 * here is not a good idea, since it limits the pages we can scan.
6753 * if we don't reclaim here, the shrink_node from balance_pgdat
6754 * will pick up pages from other mem cgroup's as well. We hack
6755 * the priority and make it zero.
6756 */
6757 shrink_lruvec(lruvec, &sc);
6758
6759 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
6760
6761 *nr_scanned = sc.nr_scanned;
6762
6763 return sc.nr_reclaimed;
6764 }
6765
try_to_free_mem_cgroup_pages(struct mem_cgroup * memcg,unsigned long nr_pages,gfp_t gfp_mask,unsigned int reclaim_options)6766 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
6767 unsigned long nr_pages,
6768 gfp_t gfp_mask,
6769 unsigned int reclaim_options)
6770 {
6771 unsigned long nr_reclaimed;
6772 unsigned int noreclaim_flag;
6773 struct scan_control sc = {
6774 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
6775 .gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
6776 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
6777 .reclaim_idx = MAX_NR_ZONES - 1,
6778 .target_mem_cgroup = memcg,
6779 .priority = DEF_PRIORITY,
6780 .may_writepage = !laptop_mode,
6781 .may_unmap = 1,
6782 .may_swap = !!(reclaim_options & MEMCG_RECLAIM_MAY_SWAP),
6783 .proactive = !!(reclaim_options & MEMCG_RECLAIM_PROACTIVE),
6784 };
6785 /*
6786 * Traverse the ZONELIST_FALLBACK zonelist of the current node to put
6787 * equal pressure on all the nodes. This is based on the assumption that
6788 * the reclaim does not bail out early.
6789 */
6790 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
6791
6792 set_task_reclaim_state(current, &sc.reclaim_state);
6793 trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask);
6794 noreclaim_flag = memalloc_noreclaim_save();
6795
6796 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
6797
6798 memalloc_noreclaim_restore(noreclaim_flag);
6799 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
6800 set_task_reclaim_state(current, NULL);
6801
6802 return nr_reclaimed;
6803 }
6804 EXPORT_SYMBOL_GPL(try_to_free_mem_cgroup_pages);
6805 #endif
6806
kswapd_age_node(struct pglist_data * pgdat,struct scan_control * sc)6807 static void kswapd_age_node(struct pglist_data *pgdat, struct scan_control *sc)
6808 {
6809 struct mem_cgroup *memcg;
6810 struct lruvec *lruvec;
6811
6812 if (lru_gen_enabled()) {
6813 lru_gen_age_node(pgdat, sc);
6814 return;
6815 }
6816
6817 if (!can_age_anon_pages(pgdat, sc))
6818 return;
6819
6820 lruvec = mem_cgroup_lruvec(NULL, pgdat);
6821 if (!inactive_is_low(lruvec, LRU_INACTIVE_ANON))
6822 return;
6823
6824 memcg = mem_cgroup_iter(NULL, NULL, NULL);
6825 do {
6826 lruvec = mem_cgroup_lruvec(memcg, pgdat);
6827 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
6828 sc, LRU_ACTIVE_ANON);
6829 memcg = mem_cgroup_iter(NULL, memcg, NULL);
6830 } while (memcg);
6831 }
6832
pgdat_watermark_boosted(pg_data_t * pgdat,int highest_zoneidx)6833 static bool pgdat_watermark_boosted(pg_data_t *pgdat, int highest_zoneidx)
6834 {
6835 int i;
6836 struct zone *zone;
6837
6838 /*
6839 * Check for watermark boosts top-down as the higher zones
6840 * are more likely to be boosted. Both watermarks and boosts
6841 * should not be checked at the same time as reclaim would
6842 * start prematurely when there is no boosting and a lower
6843 * zone is balanced.
6844 */
6845 for (i = highest_zoneidx; i >= 0; i--) {
6846 zone = pgdat->node_zones + i;
6847 if (!managed_zone(zone))
6848 continue;
6849
6850 if (zone->watermark_boost)
6851 return true;
6852 }
6853
6854 return false;
6855 }
6856
6857 /*
6858 * Returns true if there is an eligible zone balanced for the request order
6859 * and highest_zoneidx
6860 */
pgdat_balanced(pg_data_t * pgdat,int order,int highest_zoneidx)6861 static bool pgdat_balanced(pg_data_t *pgdat, int order, int highest_zoneidx)
6862 {
6863 int i;
6864 unsigned long mark = -1;
6865 struct zone *zone;
6866
6867 /*
6868 * Check watermarks bottom-up as lower zones are more likely to
6869 * meet watermarks.
6870 */
6871 for (i = 0; i <= highest_zoneidx; i++) {
6872 zone = pgdat->node_zones + i;
6873
6874 if (!managed_zone(zone))
6875 continue;
6876
6877 mark = high_wmark_pages(zone);
6878 if (zone_watermark_ok_safe(zone, order, mark, highest_zoneidx))
6879 return true;
6880 }
6881
6882 /*
6883 * If a node has no populated zone within highest_zoneidx, it does not
6884 * need balancing by definition. This can happen if a zone-restricted
6885 * allocation tries to wake a remote kswapd.
6886 */
6887 if (mark == -1)
6888 return true;
6889
6890 return false;
6891 }
6892
6893 /* Clear pgdat state for congested, dirty or under writeback. */
clear_pgdat_congested(pg_data_t * pgdat)6894 static void clear_pgdat_congested(pg_data_t *pgdat)
6895 {
6896 struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat);
6897
6898 clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
6899 clear_bit(PGDAT_DIRTY, &pgdat->flags);
6900 clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
6901 }
6902
6903 /*
6904 * Prepare kswapd for sleeping. This verifies that there are no processes
6905 * waiting in throttle_direct_reclaim() and that watermarks have been met.
6906 *
6907 * Returns true if kswapd is ready to sleep
6908 */
prepare_kswapd_sleep(pg_data_t * pgdat,int order,int highest_zoneidx)6909 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order,
6910 int highest_zoneidx)
6911 {
6912 /*
6913 * The throttled processes are normally woken up in balance_pgdat() as
6914 * soon as allow_direct_reclaim() is true. But there is a potential
6915 * race between when kswapd checks the watermarks and a process gets
6916 * throttled. There is also a potential race if processes get
6917 * throttled, kswapd wakes, a large process exits thereby balancing the
6918 * zones, which causes kswapd to exit balance_pgdat() before reaching
6919 * the wake up checks. If kswapd is going to sleep, no process should
6920 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
6921 * the wake up is premature, processes will wake kswapd and get
6922 * throttled again. The difference from wake ups in balance_pgdat() is
6923 * that here we are under prepare_to_wait().
6924 */
6925 if (waitqueue_active(&pgdat->pfmemalloc_wait))
6926 wake_up_all(&pgdat->pfmemalloc_wait);
6927
6928 /* Hopeless node, leave it to direct reclaim */
6929 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
6930 return true;
6931
6932 if (pgdat_balanced(pgdat, order, highest_zoneidx)) {
6933 clear_pgdat_congested(pgdat);
6934 return true;
6935 }
6936
6937 return false;
6938 }
6939
6940 /*
6941 * kswapd shrinks a node of pages that are at or below the highest usable
6942 * zone that is currently unbalanced.
6943 *
6944 * Returns true if kswapd scanned at least the requested number of pages to
6945 * reclaim or if the lack of progress was due to pages under writeback.
6946 * This is used to determine if the scanning priority needs to be raised.
6947 */
kswapd_shrink_node(pg_data_t * pgdat,struct scan_control * sc)6948 static bool kswapd_shrink_node(pg_data_t *pgdat,
6949 struct scan_control *sc)
6950 {
6951 struct zone *zone;
6952 int z;
6953
6954 /* Reclaim a number of pages proportional to the number of zones */
6955 sc->nr_to_reclaim = 0;
6956 for (z = 0; z <= sc->reclaim_idx; z++) {
6957 zone = pgdat->node_zones + z;
6958 if (!managed_zone(zone))
6959 continue;
6960
6961 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
6962 }
6963
6964 /*
6965 * Historically care was taken to put equal pressure on all zones but
6966 * now pressure is applied based on node LRU order.
6967 */
6968 shrink_node(pgdat, sc);
6969
6970 /*
6971 * Fragmentation may mean that the system cannot be rebalanced for
6972 * high-order allocations. If twice the allocation size has been
6973 * reclaimed then recheck watermarks only at order-0 to prevent
6974 * excessive reclaim. Assume that a process requested a high-order
6975 * can direct reclaim/compact.
6976 */
6977 if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
6978 sc->order = 0;
6979
6980 return sc->nr_scanned >= sc->nr_to_reclaim;
6981 }
6982
6983 /* Page allocator PCP high watermark is lowered if reclaim is active. */
6984 static inline void
update_reclaim_active(pg_data_t * pgdat,int highest_zoneidx,bool active)6985 update_reclaim_active(pg_data_t *pgdat, int highest_zoneidx, bool active)
6986 {
6987 int i;
6988 struct zone *zone;
6989
6990 for (i = 0; i <= highest_zoneidx; i++) {
6991 zone = pgdat->node_zones + i;
6992
6993 if (!managed_zone(zone))
6994 continue;
6995
6996 if (active)
6997 set_bit(ZONE_RECLAIM_ACTIVE, &zone->flags);
6998 else
6999 clear_bit(ZONE_RECLAIM_ACTIVE, &zone->flags);
7000 }
7001 }
7002
7003 static inline void
set_reclaim_active(pg_data_t * pgdat,int highest_zoneidx)7004 set_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
7005 {
7006 update_reclaim_active(pgdat, highest_zoneidx, true);
7007 }
7008
7009 static inline void
clear_reclaim_active(pg_data_t * pgdat,int highest_zoneidx)7010 clear_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
7011 {
7012 update_reclaim_active(pgdat, highest_zoneidx, false);
7013 }
7014
7015 /*
7016 * For kswapd, balance_pgdat() will reclaim pages across a node from zones
7017 * that are eligible for use by the caller until at least one zone is
7018 * balanced.
7019 *
7020 * Returns the order kswapd finished reclaiming at.
7021 *
7022 * kswapd scans the zones in the highmem->normal->dma direction. It skips
7023 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
7024 * found to have free_pages <= high_wmark_pages(zone), any page in that zone
7025 * or lower is eligible for reclaim until at least one usable zone is
7026 * balanced.
7027 */
balance_pgdat(pg_data_t * pgdat,int order,int highest_zoneidx)7028 static int balance_pgdat(pg_data_t *pgdat, int order, int highest_zoneidx)
7029 {
7030 int i;
7031 unsigned long nr_soft_reclaimed;
7032 unsigned long nr_soft_scanned;
7033 unsigned long pflags;
7034 unsigned long nr_boost_reclaim;
7035 unsigned long zone_boosts[MAX_NR_ZONES] = { 0, };
7036 bool boosted;
7037 struct zone *zone;
7038 struct scan_control sc = {
7039 .gfp_mask = GFP_KERNEL,
7040 .order = order,
7041 .may_unmap = 1,
7042 };
7043
7044 set_task_reclaim_state(current, &sc.reclaim_state);
7045 psi_memstall_enter(&pflags);
7046 __fs_reclaim_acquire(_THIS_IP_);
7047
7048 count_vm_event(PAGEOUTRUN);
7049
7050 /*
7051 * Account for the reclaim boost. Note that the zone boost is left in
7052 * place so that parallel allocations that are near the watermark will
7053 * stall or direct reclaim until kswapd is finished.
7054 */
7055 nr_boost_reclaim = 0;
7056 for (i = 0; i <= highest_zoneidx; i++) {
7057 zone = pgdat->node_zones + i;
7058 if (!managed_zone(zone))
7059 continue;
7060
7061 nr_boost_reclaim += zone->watermark_boost;
7062 zone_boosts[i] = zone->watermark_boost;
7063 }
7064 boosted = nr_boost_reclaim;
7065
7066 restart:
7067 set_reclaim_active(pgdat, highest_zoneidx);
7068 sc.priority = DEF_PRIORITY;
7069 do {
7070 unsigned long nr_reclaimed = sc.nr_reclaimed;
7071 bool raise_priority = true;
7072 bool balanced;
7073 bool ret;
7074
7075 sc.reclaim_idx = highest_zoneidx;
7076
7077 /*
7078 * If the number of buffer_heads exceeds the maximum allowed
7079 * then consider reclaiming from all zones. This has a dual
7080 * purpose -- on 64-bit systems it is expected that
7081 * buffer_heads are stripped during active rotation. On 32-bit
7082 * systems, highmem pages can pin lowmem memory and shrinking
7083 * buffers can relieve lowmem pressure. Reclaim may still not
7084 * go ahead if all eligible zones for the original allocation
7085 * request are balanced to avoid excessive reclaim from kswapd.
7086 */
7087 if (buffer_heads_over_limit) {
7088 for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
7089 zone = pgdat->node_zones + i;
7090 if (!managed_zone(zone))
7091 continue;
7092
7093 sc.reclaim_idx = i;
7094 break;
7095 }
7096 }
7097
7098 /*
7099 * If the pgdat is imbalanced then ignore boosting and preserve
7100 * the watermarks for a later time and restart. Note that the
7101 * zone watermarks will be still reset at the end of balancing
7102 * on the grounds that the normal reclaim should be enough to
7103 * re-evaluate if boosting is required when kswapd next wakes.
7104 */
7105 balanced = pgdat_balanced(pgdat, sc.order, highest_zoneidx);
7106 if (!balanced && nr_boost_reclaim) {
7107 nr_boost_reclaim = 0;
7108 goto restart;
7109 }
7110
7111 /*
7112 * If boosting is not active then only reclaim if there are no
7113 * eligible zones. Note that sc.reclaim_idx is not used as
7114 * buffer_heads_over_limit may have adjusted it.
7115 */
7116 if (!nr_boost_reclaim && balanced)
7117 goto out;
7118
7119 /* Limit the priority of boosting to avoid reclaim writeback */
7120 if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2)
7121 raise_priority = false;
7122
7123 /*
7124 * Do not writeback or swap pages for boosted reclaim. The
7125 * intent is to relieve pressure not issue sub-optimal IO
7126 * from reclaim context. If no pages are reclaimed, the
7127 * reclaim will be aborted.
7128 */
7129 sc.may_writepage = !laptop_mode && !nr_boost_reclaim;
7130 sc.may_swap = !nr_boost_reclaim;
7131
7132 /*
7133 * Do some background aging, to give pages a chance to be
7134 * referenced before reclaiming. All pages are rotated
7135 * regardless of classzone as this is about consistent aging.
7136 */
7137 kswapd_age_node(pgdat, &sc);
7138
7139 /*
7140 * If we're getting trouble reclaiming, start doing writepage
7141 * even in laptop mode.
7142 */
7143 if (sc.priority < DEF_PRIORITY - 2)
7144 sc.may_writepage = 1;
7145
7146 /* Call soft limit reclaim before calling shrink_node. */
7147 sc.nr_scanned = 0;
7148 nr_soft_scanned = 0;
7149 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
7150 sc.gfp_mask, &nr_soft_scanned);
7151 sc.nr_reclaimed += nr_soft_reclaimed;
7152
7153 /*
7154 * There should be no need to raise the scanning priority if
7155 * enough pages are already being scanned that that high
7156 * watermark would be met at 100% efficiency.
7157 */
7158 if (kswapd_shrink_node(pgdat, &sc))
7159 raise_priority = false;
7160
7161 /*
7162 * If the low watermark is met there is no need for processes
7163 * to be throttled on pfmemalloc_wait as they should not be
7164 * able to safely make forward progress. Wake them
7165 */
7166 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
7167 allow_direct_reclaim(pgdat))
7168 wake_up_all(&pgdat->pfmemalloc_wait);
7169
7170 /* Check if kswapd should be suspending */
7171 __fs_reclaim_release(_THIS_IP_);
7172 ret = try_to_freeze();
7173 __fs_reclaim_acquire(_THIS_IP_);
7174 if (ret || kthread_should_stop())
7175 break;
7176
7177 /*
7178 * Raise priority if scanning rate is too low or there was no
7179 * progress in reclaiming pages
7180 */
7181 nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
7182 nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed);
7183
7184 /*
7185 * If reclaim made no progress for a boost, stop reclaim as
7186 * IO cannot be queued and it could be an infinite loop in
7187 * extreme circumstances.
7188 */
7189 if (nr_boost_reclaim && !nr_reclaimed)
7190 break;
7191
7192 if (raise_priority || !nr_reclaimed)
7193 sc.priority--;
7194 } while (sc.priority >= 1);
7195
7196 if (!sc.nr_reclaimed)
7197 pgdat->kswapd_failures++;
7198
7199 out:
7200 clear_reclaim_active(pgdat, highest_zoneidx);
7201
7202 /* If reclaim was boosted, account for the reclaim done in this pass */
7203 if (boosted) {
7204 unsigned long flags;
7205
7206 for (i = 0; i <= highest_zoneidx; i++) {
7207 if (!zone_boosts[i])
7208 continue;
7209
7210 /* Increments are under the zone lock */
7211 zone = pgdat->node_zones + i;
7212 spin_lock_irqsave(&zone->lock, flags);
7213 zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]);
7214 spin_unlock_irqrestore(&zone->lock, flags);
7215 }
7216
7217 /*
7218 * As there is now likely space, wakeup kcompact to defragment
7219 * pageblocks.
7220 */
7221 wakeup_kcompactd(pgdat, pageblock_order, highest_zoneidx);
7222 }
7223
7224 snapshot_refaults(NULL, pgdat);
7225 __fs_reclaim_release(_THIS_IP_);
7226 psi_memstall_leave(&pflags);
7227 set_task_reclaim_state(current, NULL);
7228
7229 /*
7230 * Return the order kswapd stopped reclaiming at as
7231 * prepare_kswapd_sleep() takes it into account. If another caller
7232 * entered the allocator slow path while kswapd was awake, order will
7233 * remain at the higher level.
7234 */
7235 return sc.order;
7236 }
7237
7238 /*
7239 * The pgdat->kswapd_highest_zoneidx is used to pass the highest zone index to
7240 * be reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is
7241 * not a valid index then either kswapd runs for first time or kswapd couldn't
7242 * sleep after previous reclaim attempt (node is still unbalanced). In that
7243 * case return the zone index of the previous kswapd reclaim cycle.
7244 */
kswapd_highest_zoneidx(pg_data_t * pgdat,enum zone_type prev_highest_zoneidx)7245 static enum zone_type kswapd_highest_zoneidx(pg_data_t *pgdat,
7246 enum zone_type prev_highest_zoneidx)
7247 {
7248 enum zone_type curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
7249
7250 return curr_idx == MAX_NR_ZONES ? prev_highest_zoneidx : curr_idx;
7251 }
7252
kswapd_try_to_sleep(pg_data_t * pgdat,int alloc_order,int reclaim_order,unsigned int highest_zoneidx)7253 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
7254 unsigned int highest_zoneidx)
7255 {
7256 long remaining = 0;
7257 DEFINE_WAIT(wait);
7258
7259 if (freezing(current) || kthread_should_stop())
7260 return;
7261
7262 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
7263
7264 /*
7265 * Try to sleep for a short interval. Note that kcompactd will only be
7266 * woken if it is possible to sleep for a short interval. This is
7267 * deliberate on the assumption that if reclaim cannot keep an
7268 * eligible zone balanced that it's also unlikely that compaction will
7269 * succeed.
7270 */
7271 if (prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
7272 /*
7273 * Compaction records what page blocks it recently failed to
7274 * isolate pages from and skips them in the future scanning.
7275 * When kswapd is going to sleep, it is reasonable to assume
7276 * that pages and compaction may succeed so reset the cache.
7277 */
7278 reset_isolation_suitable(pgdat);
7279
7280 /*
7281 * We have freed the memory, now we should compact it to make
7282 * allocation of the requested order possible.
7283 */
7284 wakeup_kcompactd(pgdat, alloc_order, highest_zoneidx);
7285
7286 remaining = schedule_timeout(HZ/10);
7287
7288 /*
7289 * If woken prematurely then reset kswapd_highest_zoneidx and
7290 * order. The values will either be from a wakeup request or
7291 * the previous request that slept prematurely.
7292 */
7293 if (remaining) {
7294 WRITE_ONCE(pgdat->kswapd_highest_zoneidx,
7295 kswapd_highest_zoneidx(pgdat,
7296 highest_zoneidx));
7297
7298 if (READ_ONCE(pgdat->kswapd_order) < reclaim_order)
7299 WRITE_ONCE(pgdat->kswapd_order, reclaim_order);
7300 }
7301
7302 finish_wait(&pgdat->kswapd_wait, &wait);
7303 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
7304 }
7305
7306 /*
7307 * After a short sleep, check if it was a premature sleep. If not, then
7308 * go fully to sleep until explicitly woken up.
7309 */
7310 if (!remaining &&
7311 prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
7312 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
7313
7314 /*
7315 * vmstat counters are not perfectly accurate and the estimated
7316 * value for counters such as NR_FREE_PAGES can deviate from the
7317 * true value by nr_online_cpus * threshold. To avoid the zone
7318 * watermarks being breached while under pressure, we reduce the
7319 * per-cpu vmstat threshold while kswapd is awake and restore
7320 * them before going back to sleep.
7321 */
7322 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
7323
7324 if (!kthread_should_stop())
7325 schedule();
7326
7327 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
7328 } else {
7329 if (remaining)
7330 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
7331 else
7332 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
7333 }
7334 finish_wait(&pgdat->kswapd_wait, &wait);
7335 }
7336
7337 /*
7338 * The background pageout daemon, started as a kernel thread
7339 * from the init process.
7340 *
7341 * This basically trickles out pages so that we have _some_
7342 * free memory available even if there is no other activity
7343 * that frees anything up. This is needed for things like routing
7344 * etc, where we otherwise might have all activity going on in
7345 * asynchronous contexts that cannot page things out.
7346 *
7347 * If there are applications that are active memory-allocators
7348 * (most normal use), this basically shouldn't matter.
7349 */
kswapd(void * p)7350 int kswapd(void *p)
7351 {
7352 unsigned int alloc_order, reclaim_order;
7353 unsigned int highest_zoneidx = MAX_NR_ZONES - 1;
7354 pg_data_t *pgdat = (pg_data_t *)p;
7355 struct task_struct *tsk = current;
7356 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
7357
7358 if (!cpumask_empty(cpumask))
7359 set_cpus_allowed_ptr(tsk, cpumask);
7360
7361 /*
7362 * Tell the memory management that we're a "memory allocator",
7363 * and that if we need more memory we should get access to it
7364 * regardless (see "__alloc_pages()"). "kswapd" should
7365 * never get caught in the normal page freeing logic.
7366 *
7367 * (Kswapd normally doesn't need memory anyway, but sometimes
7368 * you need a small amount of memory in order to be able to
7369 * page out something else, and this flag essentially protects
7370 * us from recursively trying to free more memory as we're
7371 * trying to free the first piece of memory in the first place).
7372 */
7373 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
7374 set_freezable();
7375
7376 WRITE_ONCE(pgdat->kswapd_order, 0);
7377 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
7378 for ( ; ; ) {
7379 bool ret;
7380
7381 alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order);
7382 highest_zoneidx = kswapd_highest_zoneidx(pgdat,
7383 highest_zoneidx);
7384
7385 kswapd_try_sleep:
7386 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
7387 highest_zoneidx);
7388
7389 /* Read the new order and highest_zoneidx */
7390 alloc_order = READ_ONCE(pgdat->kswapd_order);
7391 highest_zoneidx = kswapd_highest_zoneidx(pgdat,
7392 highest_zoneidx);
7393 WRITE_ONCE(pgdat->kswapd_order, 0);
7394 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
7395
7396 ret = try_to_freeze();
7397 if (kthread_should_stop())
7398 break;
7399
7400 /*
7401 * We can speed up thawing tasks if we don't call balance_pgdat
7402 * after returning from the refrigerator
7403 */
7404 if (ret)
7405 continue;
7406
7407 /*
7408 * Reclaim begins at the requested order but if a high-order
7409 * reclaim fails then kswapd falls back to reclaiming for
7410 * order-0. If that happens, kswapd will consider sleeping
7411 * for the order it finished reclaiming at (reclaim_order)
7412 * but kcompactd is woken to compact for the original
7413 * request (alloc_order).
7414 */
7415 trace_mm_vmscan_kswapd_wake(pgdat->node_id, highest_zoneidx,
7416 alloc_order);
7417 reclaim_order = balance_pgdat(pgdat, alloc_order,
7418 highest_zoneidx);
7419 if (reclaim_order < alloc_order)
7420 goto kswapd_try_sleep;
7421 }
7422
7423 tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
7424
7425 return 0;
7426 }
7427 EXPORT_SYMBOL_GPL(kswapd);
7428
7429 /*
7430 * A zone is low on free memory or too fragmented for high-order memory. If
7431 * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
7432 * pgdat. It will wake up kcompactd after reclaiming memory. If kswapd reclaim
7433 * has failed or is not needed, still wake up kcompactd if only compaction is
7434 * needed.
7435 */
wakeup_kswapd(struct zone * zone,gfp_t gfp_flags,int order,enum zone_type highest_zoneidx)7436 void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
7437 enum zone_type highest_zoneidx)
7438 {
7439 pg_data_t *pgdat;
7440 enum zone_type curr_idx;
7441
7442 if (!managed_zone(zone))
7443 return;
7444
7445 if (!cpuset_zone_allowed(zone, gfp_flags))
7446 return;
7447
7448 pgdat = zone->zone_pgdat;
7449 curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
7450
7451 if (curr_idx == MAX_NR_ZONES || curr_idx < highest_zoneidx)
7452 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, highest_zoneidx);
7453
7454 if (READ_ONCE(pgdat->kswapd_order) < order)
7455 WRITE_ONCE(pgdat->kswapd_order, order);
7456
7457 if (!waitqueue_active(&pgdat->kswapd_wait))
7458 return;
7459
7460 /* Hopeless node, leave it to direct reclaim if possible */
7461 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
7462 (pgdat_balanced(pgdat, order, highest_zoneidx) &&
7463 !pgdat_watermark_boosted(pgdat, highest_zoneidx))) {
7464 /*
7465 * There may be plenty of free memory available, but it's too
7466 * fragmented for high-order allocations. Wake up kcompactd
7467 * and rely on compaction_suitable() to determine if it's
7468 * needed. If it fails, it will defer subsequent attempts to
7469 * ratelimit its work.
7470 */
7471 if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
7472 wakeup_kcompactd(pgdat, order, highest_zoneidx);
7473 return;
7474 }
7475
7476 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, highest_zoneidx, order,
7477 gfp_flags);
7478 wake_up_interruptible(&pgdat->kswapd_wait);
7479 }
7480
7481 #ifdef CONFIG_HIBERNATION
7482 /*
7483 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
7484 * freed pages.
7485 *
7486 * Rather than trying to age LRUs the aim is to preserve the overall
7487 * LRU order by reclaiming preferentially
7488 * inactive > active > active referenced > active mapped
7489 */
shrink_all_memory(unsigned long nr_to_reclaim)7490 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
7491 {
7492 struct scan_control sc = {
7493 .nr_to_reclaim = nr_to_reclaim,
7494 .gfp_mask = GFP_HIGHUSER_MOVABLE,
7495 .reclaim_idx = MAX_NR_ZONES - 1,
7496 .priority = DEF_PRIORITY,
7497 .may_writepage = 1,
7498 .may_unmap = 1,
7499 .may_swap = 1,
7500 .hibernation_mode = 1,
7501 };
7502 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
7503 unsigned long nr_reclaimed;
7504 unsigned int noreclaim_flag;
7505
7506 fs_reclaim_acquire(sc.gfp_mask);
7507 noreclaim_flag = memalloc_noreclaim_save();
7508 set_task_reclaim_state(current, &sc.reclaim_state);
7509
7510 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
7511
7512 set_task_reclaim_state(current, NULL);
7513 memalloc_noreclaim_restore(noreclaim_flag);
7514 fs_reclaim_release(sc.gfp_mask);
7515
7516 return nr_reclaimed;
7517 }
7518 #endif /* CONFIG_HIBERNATION */
7519
7520 /*
7521 * This kswapd start function will be called by init and node-hot-add.
7522 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
7523 */
kswapd_run(int nid)7524 void kswapd_run(int nid)
7525 {
7526 pg_data_t *pgdat = NODE_DATA(nid);
7527 bool skip = false;
7528
7529 if (pgdat->kswapd)
7530 return;
7531
7532 trace_android_vh_kswapd_per_node(nid, &skip, true);
7533 if (skip)
7534 return;
7535 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
7536 if (IS_ERR(pgdat->kswapd)) {
7537 /* failure at boot is fatal */
7538 BUG_ON(system_state < SYSTEM_RUNNING);
7539 pr_err("Failed to start kswapd on node %d\n", nid);
7540 pgdat->kswapd = NULL;
7541 }
7542 }
7543
7544 /*
7545 * Called by memory hotplug when all memory in a node is offlined. Caller must
7546 * hold mem_hotplug_begin/end().
7547 */
kswapd_stop(int nid)7548 void kswapd_stop(int nid)
7549 {
7550 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
7551 bool skip = false;
7552
7553 trace_android_vh_kswapd_per_node(nid, &skip, false);
7554 if (skip)
7555 return;
7556 if (kswapd) {
7557 kthread_stop(kswapd);
7558 NODE_DATA(nid)->kswapd = NULL;
7559 }
7560 }
7561
kswapd_init(void)7562 static int __init kswapd_init(void)
7563 {
7564 int nid;
7565
7566 swap_setup();
7567 for_each_node_state(nid, N_MEMORY)
7568 kswapd_run(nid);
7569 return 0;
7570 }
7571
7572 module_init(kswapd_init)
7573
7574 #ifdef CONFIG_NUMA
7575 /*
7576 * Node reclaim mode
7577 *
7578 * If non-zero call node_reclaim when the number of free pages falls below
7579 * the watermarks.
7580 */
7581 int node_reclaim_mode __read_mostly;
7582
7583 /*
7584 * Priority for NODE_RECLAIM. This determines the fraction of pages
7585 * of a node considered for each zone_reclaim. 4 scans 1/16th of
7586 * a zone.
7587 */
7588 #define NODE_RECLAIM_PRIORITY 4
7589
7590 /*
7591 * Percentage of pages in a zone that must be unmapped for node_reclaim to
7592 * occur.
7593 */
7594 int sysctl_min_unmapped_ratio = 1;
7595
7596 /*
7597 * If the number of slab pages in a zone grows beyond this percentage then
7598 * slab reclaim needs to occur.
7599 */
7600 int sysctl_min_slab_ratio = 5;
7601
node_unmapped_file_pages(struct pglist_data * pgdat)7602 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
7603 {
7604 unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
7605 unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
7606 node_page_state(pgdat, NR_ACTIVE_FILE);
7607
7608 /*
7609 * It's possible for there to be more file mapped pages than
7610 * accounted for by the pages on the file LRU lists because
7611 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
7612 */
7613 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
7614 }
7615
7616 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
node_pagecache_reclaimable(struct pglist_data * pgdat)7617 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
7618 {
7619 unsigned long nr_pagecache_reclaimable;
7620 unsigned long delta = 0;
7621
7622 /*
7623 * If RECLAIM_UNMAP is set, then all file pages are considered
7624 * potentially reclaimable. Otherwise, we have to worry about
7625 * pages like swapcache and node_unmapped_file_pages() provides
7626 * a better estimate
7627 */
7628 if (node_reclaim_mode & RECLAIM_UNMAP)
7629 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
7630 else
7631 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
7632
7633 /* If we can't clean pages, remove dirty pages from consideration */
7634 if (!(node_reclaim_mode & RECLAIM_WRITE))
7635 delta += node_page_state(pgdat, NR_FILE_DIRTY);
7636
7637 /* Watch for any possible underflows due to delta */
7638 if (unlikely(delta > nr_pagecache_reclaimable))
7639 delta = nr_pagecache_reclaimable;
7640
7641 return nr_pagecache_reclaimable - delta;
7642 }
7643
7644 /*
7645 * Try to free up some pages from this node through reclaim.
7646 */
__node_reclaim(struct pglist_data * pgdat,gfp_t gfp_mask,unsigned int order)7647 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
7648 {
7649 /* Minimum pages needed in order to stay on node */
7650 const unsigned long nr_pages = 1 << order;
7651 struct task_struct *p = current;
7652 unsigned int noreclaim_flag;
7653 struct scan_control sc = {
7654 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
7655 .gfp_mask = current_gfp_context(gfp_mask),
7656 .order = order,
7657 .priority = NODE_RECLAIM_PRIORITY,
7658 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
7659 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
7660 .may_swap = 1,
7661 .reclaim_idx = gfp_zone(gfp_mask),
7662 };
7663 unsigned long pflags;
7664
7665 trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order,
7666 sc.gfp_mask);
7667
7668 cond_resched();
7669 psi_memstall_enter(&pflags);
7670 fs_reclaim_acquire(sc.gfp_mask);
7671 /*
7672 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
7673 * and we also need to be able to write out pages for RECLAIM_WRITE
7674 * and RECLAIM_UNMAP.
7675 */
7676 noreclaim_flag = memalloc_noreclaim_save();
7677 p->flags |= PF_SWAPWRITE;
7678 set_task_reclaim_state(p, &sc.reclaim_state);
7679
7680 if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
7681 /*
7682 * Free memory by calling shrink node with increasing
7683 * priorities until we have enough memory freed.
7684 */
7685 do {
7686 shrink_node(pgdat, &sc);
7687 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
7688 }
7689
7690 set_task_reclaim_state(p, NULL);
7691 current->flags &= ~PF_SWAPWRITE;
7692 memalloc_noreclaim_restore(noreclaim_flag);
7693 fs_reclaim_release(sc.gfp_mask);
7694 psi_memstall_leave(&pflags);
7695
7696 trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed);
7697
7698 return sc.nr_reclaimed >= nr_pages;
7699 }
7700
node_reclaim(struct pglist_data * pgdat,gfp_t gfp_mask,unsigned int order)7701 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
7702 {
7703 int ret;
7704
7705 /*
7706 * Node reclaim reclaims unmapped file backed pages and
7707 * slab pages if we are over the defined limits.
7708 *
7709 * A small portion of unmapped file backed pages is needed for
7710 * file I/O otherwise pages read by file I/O will be immediately
7711 * thrown out if the node is overallocated. So we do not reclaim
7712 * if less than a specified percentage of the node is used by
7713 * unmapped file backed pages.
7714 */
7715 if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
7716 node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) <=
7717 pgdat->min_slab_pages)
7718 return NODE_RECLAIM_FULL;
7719
7720 /*
7721 * Do not scan if the allocation should not be delayed.
7722 */
7723 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
7724 return NODE_RECLAIM_NOSCAN;
7725
7726 /*
7727 * Only run node reclaim on the local node or on nodes that do not
7728 * have associated processors. This will favor the local processor
7729 * over remote processors and spread off node memory allocations
7730 * as wide as possible.
7731 */
7732 if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
7733 return NODE_RECLAIM_NOSCAN;
7734
7735 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
7736 return NODE_RECLAIM_NOSCAN;
7737
7738 ret = __node_reclaim(pgdat, gfp_mask, order);
7739 clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
7740
7741 if (!ret)
7742 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
7743
7744 return ret;
7745 }
7746 #endif
7747
7748 /**
7749 * check_move_unevictable_pages - check pages for evictability and move to
7750 * appropriate zone lru list
7751 * @pvec: pagevec with lru pages to check
7752 *
7753 * Checks pages for evictability, if an evictable page is in the unevictable
7754 * lru list, moves it to the appropriate evictable lru list. This function
7755 * should be only used for lru pages.
7756 */
check_move_unevictable_pages(struct pagevec * pvec)7757 void check_move_unevictable_pages(struct pagevec *pvec)
7758 {
7759 struct lruvec *lruvec = NULL;
7760 int pgscanned = 0;
7761 int pgrescued = 0;
7762 int i;
7763
7764 for (i = 0; i < pvec->nr; i++) {
7765 struct page *page = pvec->pages[i];
7766 int nr_pages;
7767
7768 if (PageTransTail(page))
7769 continue;
7770
7771 nr_pages = thp_nr_pages(page);
7772 pgscanned += nr_pages;
7773
7774 /* block memcg migration during page moving between lru */
7775 if (!TestClearPageLRU(page))
7776 continue;
7777
7778 lruvec = relock_page_lruvec_irq(page, lruvec);
7779 if (page_evictable(page) && PageUnevictable(page)) {
7780 del_page_from_lru_list(page, lruvec);
7781 ClearPageUnevictable(page);
7782 add_page_to_lru_list(page, lruvec);
7783 pgrescued += nr_pages;
7784 }
7785 SetPageLRU(page);
7786 }
7787
7788 if (lruvec) {
7789 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
7790 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
7791 unlock_page_lruvec_irq(lruvec);
7792 } else if (pgscanned) {
7793 count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
7794 }
7795 }
7796 EXPORT_SYMBOL_GPL(check_move_unevictable_pages);
7797