• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Based on arch/arm/kernel/ptrace.c
4  *
5  * By Ross Biro 1/23/92
6  * edited by Linus Torvalds
7  * ARM modifications Copyright (C) 2000 Russell King
8  * Copyright (C) 2012 ARM Ltd.
9  */
10 
11 #include <linux/audit.h>
12 #include <linux/compat.h>
13 #include <linux/kernel.h>
14 #include <linux/sched/signal.h>
15 #include <linux/sched/task_stack.h>
16 #include <linux/mm.h>
17 #include <linux/nospec.h>
18 #include <linux/smp.h>
19 #include <linux/ptrace.h>
20 #include <linux/user.h>
21 #include <linux/seccomp.h>
22 #include <linux/security.h>
23 #include <linux/init.h>
24 #include <linux/signal.h>
25 #include <linux/string.h>
26 #include <linux/uaccess.h>
27 #include <linux/perf_event.h>
28 #include <linux/hw_breakpoint.h>
29 #include <linux/regset.h>
30 #include <linux/tracehook.h>
31 #include <linux/elf.h>
32 
33 #include <asm/compat.h>
34 #include <asm/cpufeature.h>
35 #include <asm/debug-monitors.h>
36 #include <asm/fpsimd.h>
37 #include <asm/mte.h>
38 #include <asm/pointer_auth.h>
39 #include <asm/stacktrace.h>
40 #include <asm/syscall.h>
41 #include <asm/traps.h>
42 #include <asm/system_misc.h>
43 
44 #define CREATE_TRACE_POINTS
45 #include <trace/events/syscalls.h>
46 
47 struct pt_regs_offset {
48 	const char *name;
49 	int offset;
50 };
51 
52 #define REG_OFFSET_NAME(r) {.name = #r, .offset = offsetof(struct pt_regs, r)}
53 #define REG_OFFSET_END {.name = NULL, .offset = 0}
54 #define GPR_OFFSET_NAME(r) \
55 	{.name = "x" #r, .offset = offsetof(struct pt_regs, regs[r])}
56 
57 static const struct pt_regs_offset regoffset_table[] = {
58 	GPR_OFFSET_NAME(0),
59 	GPR_OFFSET_NAME(1),
60 	GPR_OFFSET_NAME(2),
61 	GPR_OFFSET_NAME(3),
62 	GPR_OFFSET_NAME(4),
63 	GPR_OFFSET_NAME(5),
64 	GPR_OFFSET_NAME(6),
65 	GPR_OFFSET_NAME(7),
66 	GPR_OFFSET_NAME(8),
67 	GPR_OFFSET_NAME(9),
68 	GPR_OFFSET_NAME(10),
69 	GPR_OFFSET_NAME(11),
70 	GPR_OFFSET_NAME(12),
71 	GPR_OFFSET_NAME(13),
72 	GPR_OFFSET_NAME(14),
73 	GPR_OFFSET_NAME(15),
74 	GPR_OFFSET_NAME(16),
75 	GPR_OFFSET_NAME(17),
76 	GPR_OFFSET_NAME(18),
77 	GPR_OFFSET_NAME(19),
78 	GPR_OFFSET_NAME(20),
79 	GPR_OFFSET_NAME(21),
80 	GPR_OFFSET_NAME(22),
81 	GPR_OFFSET_NAME(23),
82 	GPR_OFFSET_NAME(24),
83 	GPR_OFFSET_NAME(25),
84 	GPR_OFFSET_NAME(26),
85 	GPR_OFFSET_NAME(27),
86 	GPR_OFFSET_NAME(28),
87 	GPR_OFFSET_NAME(29),
88 	GPR_OFFSET_NAME(30),
89 	{.name = "lr", .offset = offsetof(struct pt_regs, regs[30])},
90 	REG_OFFSET_NAME(sp),
91 	REG_OFFSET_NAME(pc),
92 	REG_OFFSET_NAME(pstate),
93 	REG_OFFSET_END,
94 };
95 
96 /**
97  * regs_query_register_offset() - query register offset from its name
98  * @name:	the name of a register
99  *
100  * regs_query_register_offset() returns the offset of a register in struct
101  * pt_regs from its name. If the name is invalid, this returns -EINVAL;
102  */
regs_query_register_offset(const char * name)103 int regs_query_register_offset(const char *name)
104 {
105 	const struct pt_regs_offset *roff;
106 
107 	for (roff = regoffset_table; roff->name != NULL; roff++)
108 		if (!strcmp(roff->name, name))
109 			return roff->offset;
110 	return -EINVAL;
111 }
112 
113 /**
114  * regs_within_kernel_stack() - check the address in the stack
115  * @regs:      pt_regs which contains kernel stack pointer.
116  * @addr:      address which is checked.
117  *
118  * regs_within_kernel_stack() checks @addr is within the kernel stack page(s).
119  * If @addr is within the kernel stack, it returns true. If not, returns false.
120  */
regs_within_kernel_stack(struct pt_regs * regs,unsigned long addr)121 static bool regs_within_kernel_stack(struct pt_regs *regs, unsigned long addr)
122 {
123 	return ((addr & ~(THREAD_SIZE - 1))  ==
124 		(kernel_stack_pointer(regs) & ~(THREAD_SIZE - 1))) ||
125 		on_irq_stack(addr, sizeof(unsigned long), NULL);
126 }
127 
128 /**
129  * regs_get_kernel_stack_nth() - get Nth entry of the stack
130  * @regs:	pt_regs which contains kernel stack pointer.
131  * @n:		stack entry number.
132  *
133  * regs_get_kernel_stack_nth() returns @n th entry of the kernel stack which
134  * is specified by @regs. If the @n th entry is NOT in the kernel stack,
135  * this returns 0.
136  */
regs_get_kernel_stack_nth(struct pt_regs * regs,unsigned int n)137 unsigned long regs_get_kernel_stack_nth(struct pt_regs *regs, unsigned int n)
138 {
139 	unsigned long *addr = (unsigned long *)kernel_stack_pointer(regs);
140 
141 	addr += n;
142 	if (regs_within_kernel_stack(regs, (unsigned long)addr))
143 		return *addr;
144 	else
145 		return 0;
146 }
147 
148 /*
149  * TODO: does not yet catch signals sent when the child dies.
150  * in exit.c or in signal.c.
151  */
152 
153 /*
154  * Called by kernel/ptrace.c when detaching..
155  */
ptrace_disable(struct task_struct * child)156 void ptrace_disable(struct task_struct *child)
157 {
158 	/*
159 	 * This would be better off in core code, but PTRACE_DETACH has
160 	 * grown its fair share of arch-specific worts and changing it
161 	 * is likely to cause regressions on obscure architectures.
162 	 */
163 	user_disable_single_step(child);
164 }
165 
166 #ifdef CONFIG_HAVE_HW_BREAKPOINT
167 /*
168  * Handle hitting a HW-breakpoint.
169  */
ptrace_hbptriggered(struct perf_event * bp,struct perf_sample_data * data,struct pt_regs * regs)170 static void ptrace_hbptriggered(struct perf_event *bp,
171 				struct perf_sample_data *data,
172 				struct pt_regs *regs)
173 {
174 	struct arch_hw_breakpoint *bkpt = counter_arch_bp(bp);
175 	const char *desc = "Hardware breakpoint trap (ptrace)";
176 
177 #ifdef CONFIG_COMPAT
178 	if (is_compat_task()) {
179 		int si_errno = 0;
180 		int i;
181 
182 		for (i = 0; i < ARM_MAX_BRP; ++i) {
183 			if (current->thread.debug.hbp_break[i] == bp) {
184 				si_errno = (i << 1) + 1;
185 				break;
186 			}
187 		}
188 
189 		for (i = 0; i < ARM_MAX_WRP; ++i) {
190 			if (current->thread.debug.hbp_watch[i] == bp) {
191 				si_errno = -((i << 1) + 1);
192 				break;
193 			}
194 		}
195 		arm64_force_sig_ptrace_errno_trap(si_errno, bkpt->trigger,
196 						  desc);
197 		return;
198 	}
199 #endif
200 	arm64_force_sig_fault(SIGTRAP, TRAP_HWBKPT, bkpt->trigger, desc);
201 }
202 
203 /*
204  * Unregister breakpoints from this task and reset the pointers in
205  * the thread_struct.
206  */
flush_ptrace_hw_breakpoint(struct task_struct * tsk)207 void flush_ptrace_hw_breakpoint(struct task_struct *tsk)
208 {
209 	int i;
210 	struct thread_struct *t = &tsk->thread;
211 
212 	for (i = 0; i < ARM_MAX_BRP; i++) {
213 		if (t->debug.hbp_break[i]) {
214 			unregister_hw_breakpoint(t->debug.hbp_break[i]);
215 			t->debug.hbp_break[i] = NULL;
216 		}
217 	}
218 
219 	for (i = 0; i < ARM_MAX_WRP; i++) {
220 		if (t->debug.hbp_watch[i]) {
221 			unregister_hw_breakpoint(t->debug.hbp_watch[i]);
222 			t->debug.hbp_watch[i] = NULL;
223 		}
224 	}
225 }
226 
ptrace_hw_copy_thread(struct task_struct * tsk)227 void ptrace_hw_copy_thread(struct task_struct *tsk)
228 {
229 	memset(&tsk->thread.debug, 0, sizeof(struct debug_info));
230 }
231 
ptrace_hbp_get_event(unsigned int note_type,struct task_struct * tsk,unsigned long idx)232 static struct perf_event *ptrace_hbp_get_event(unsigned int note_type,
233 					       struct task_struct *tsk,
234 					       unsigned long idx)
235 {
236 	struct perf_event *bp = ERR_PTR(-EINVAL);
237 
238 	switch (note_type) {
239 	case NT_ARM_HW_BREAK:
240 		if (idx >= ARM_MAX_BRP)
241 			goto out;
242 		idx = array_index_nospec(idx, ARM_MAX_BRP);
243 		bp = tsk->thread.debug.hbp_break[idx];
244 		break;
245 	case NT_ARM_HW_WATCH:
246 		if (idx >= ARM_MAX_WRP)
247 			goto out;
248 		idx = array_index_nospec(idx, ARM_MAX_WRP);
249 		bp = tsk->thread.debug.hbp_watch[idx];
250 		break;
251 	}
252 
253 out:
254 	return bp;
255 }
256 
ptrace_hbp_set_event(unsigned int note_type,struct task_struct * tsk,unsigned long idx,struct perf_event * bp)257 static int ptrace_hbp_set_event(unsigned int note_type,
258 				struct task_struct *tsk,
259 				unsigned long idx,
260 				struct perf_event *bp)
261 {
262 	int err = -EINVAL;
263 
264 	switch (note_type) {
265 	case NT_ARM_HW_BREAK:
266 		if (idx >= ARM_MAX_BRP)
267 			goto out;
268 		idx = array_index_nospec(idx, ARM_MAX_BRP);
269 		tsk->thread.debug.hbp_break[idx] = bp;
270 		err = 0;
271 		break;
272 	case NT_ARM_HW_WATCH:
273 		if (idx >= ARM_MAX_WRP)
274 			goto out;
275 		idx = array_index_nospec(idx, ARM_MAX_WRP);
276 		tsk->thread.debug.hbp_watch[idx] = bp;
277 		err = 0;
278 		break;
279 	}
280 
281 out:
282 	return err;
283 }
284 
ptrace_hbp_create(unsigned int note_type,struct task_struct * tsk,unsigned long idx)285 static struct perf_event *ptrace_hbp_create(unsigned int note_type,
286 					    struct task_struct *tsk,
287 					    unsigned long idx)
288 {
289 	struct perf_event *bp;
290 	struct perf_event_attr attr;
291 	int err, type;
292 
293 	switch (note_type) {
294 	case NT_ARM_HW_BREAK:
295 		type = HW_BREAKPOINT_X;
296 		break;
297 	case NT_ARM_HW_WATCH:
298 		type = HW_BREAKPOINT_RW;
299 		break;
300 	default:
301 		return ERR_PTR(-EINVAL);
302 	}
303 
304 	ptrace_breakpoint_init(&attr);
305 
306 	/*
307 	 * Initialise fields to sane defaults
308 	 * (i.e. values that will pass validation).
309 	 */
310 	attr.bp_addr	= 0;
311 	attr.bp_len	= HW_BREAKPOINT_LEN_4;
312 	attr.bp_type	= type;
313 	attr.disabled	= 1;
314 
315 	bp = register_user_hw_breakpoint(&attr, ptrace_hbptriggered, NULL, tsk);
316 	if (IS_ERR(bp))
317 		return bp;
318 
319 	err = ptrace_hbp_set_event(note_type, tsk, idx, bp);
320 	if (err)
321 		return ERR_PTR(err);
322 
323 	return bp;
324 }
325 
ptrace_hbp_fill_attr_ctrl(unsigned int note_type,struct arch_hw_breakpoint_ctrl ctrl,struct perf_event_attr * attr)326 static int ptrace_hbp_fill_attr_ctrl(unsigned int note_type,
327 				     struct arch_hw_breakpoint_ctrl ctrl,
328 				     struct perf_event_attr *attr)
329 {
330 	int err, len, type, offset, disabled = !ctrl.enabled;
331 
332 	attr->disabled = disabled;
333 	if (disabled)
334 		return 0;
335 
336 	err = arch_bp_generic_fields(ctrl, &len, &type, &offset);
337 	if (err)
338 		return err;
339 
340 	switch (note_type) {
341 	case NT_ARM_HW_BREAK:
342 		if ((type & HW_BREAKPOINT_X) != type)
343 			return -EINVAL;
344 		break;
345 	case NT_ARM_HW_WATCH:
346 		if ((type & HW_BREAKPOINT_RW) != type)
347 			return -EINVAL;
348 		break;
349 	default:
350 		return -EINVAL;
351 	}
352 
353 	attr->bp_len	= len;
354 	attr->bp_type	= type;
355 	attr->bp_addr	+= offset;
356 
357 	return 0;
358 }
359 
ptrace_hbp_get_resource_info(unsigned int note_type,u32 * info)360 static int ptrace_hbp_get_resource_info(unsigned int note_type, u32 *info)
361 {
362 	u8 num;
363 	u32 reg = 0;
364 
365 	switch (note_type) {
366 	case NT_ARM_HW_BREAK:
367 		num = hw_breakpoint_slots(TYPE_INST);
368 		break;
369 	case NT_ARM_HW_WATCH:
370 		num = hw_breakpoint_slots(TYPE_DATA);
371 		break;
372 	default:
373 		return -EINVAL;
374 	}
375 
376 	reg |= debug_monitors_arch();
377 	reg <<= 8;
378 	reg |= num;
379 
380 	*info = reg;
381 	return 0;
382 }
383 
ptrace_hbp_get_ctrl(unsigned int note_type,struct task_struct * tsk,unsigned long idx,u32 * ctrl)384 static int ptrace_hbp_get_ctrl(unsigned int note_type,
385 			       struct task_struct *tsk,
386 			       unsigned long idx,
387 			       u32 *ctrl)
388 {
389 	struct perf_event *bp = ptrace_hbp_get_event(note_type, tsk, idx);
390 
391 	if (IS_ERR(bp))
392 		return PTR_ERR(bp);
393 
394 	*ctrl = bp ? encode_ctrl_reg(counter_arch_bp(bp)->ctrl) : 0;
395 	return 0;
396 }
397 
ptrace_hbp_get_addr(unsigned int note_type,struct task_struct * tsk,unsigned long idx,u64 * addr)398 static int ptrace_hbp_get_addr(unsigned int note_type,
399 			       struct task_struct *tsk,
400 			       unsigned long idx,
401 			       u64 *addr)
402 {
403 	struct perf_event *bp = ptrace_hbp_get_event(note_type, tsk, idx);
404 
405 	if (IS_ERR(bp))
406 		return PTR_ERR(bp);
407 
408 	*addr = bp ? counter_arch_bp(bp)->address : 0;
409 	return 0;
410 }
411 
ptrace_hbp_get_initialised_bp(unsigned int note_type,struct task_struct * tsk,unsigned long idx)412 static struct perf_event *ptrace_hbp_get_initialised_bp(unsigned int note_type,
413 							struct task_struct *tsk,
414 							unsigned long idx)
415 {
416 	struct perf_event *bp = ptrace_hbp_get_event(note_type, tsk, idx);
417 
418 	if (!bp)
419 		bp = ptrace_hbp_create(note_type, tsk, idx);
420 
421 	return bp;
422 }
423 
ptrace_hbp_set_ctrl(unsigned int note_type,struct task_struct * tsk,unsigned long idx,u32 uctrl)424 static int ptrace_hbp_set_ctrl(unsigned int note_type,
425 			       struct task_struct *tsk,
426 			       unsigned long idx,
427 			       u32 uctrl)
428 {
429 	int err;
430 	struct perf_event *bp;
431 	struct perf_event_attr attr;
432 	struct arch_hw_breakpoint_ctrl ctrl;
433 
434 	bp = ptrace_hbp_get_initialised_bp(note_type, tsk, idx);
435 	if (IS_ERR(bp)) {
436 		err = PTR_ERR(bp);
437 		return err;
438 	}
439 
440 	attr = bp->attr;
441 	decode_ctrl_reg(uctrl, &ctrl);
442 	err = ptrace_hbp_fill_attr_ctrl(note_type, ctrl, &attr);
443 	if (err)
444 		return err;
445 
446 	return modify_user_hw_breakpoint(bp, &attr);
447 }
448 
ptrace_hbp_set_addr(unsigned int note_type,struct task_struct * tsk,unsigned long idx,u64 addr)449 static int ptrace_hbp_set_addr(unsigned int note_type,
450 			       struct task_struct *tsk,
451 			       unsigned long idx,
452 			       u64 addr)
453 {
454 	int err;
455 	struct perf_event *bp;
456 	struct perf_event_attr attr;
457 
458 	bp = ptrace_hbp_get_initialised_bp(note_type, tsk, idx);
459 	if (IS_ERR(bp)) {
460 		err = PTR_ERR(bp);
461 		return err;
462 	}
463 
464 	attr = bp->attr;
465 	attr.bp_addr = addr;
466 	err = modify_user_hw_breakpoint(bp, &attr);
467 	return err;
468 }
469 
470 #define PTRACE_HBP_ADDR_SZ	sizeof(u64)
471 #define PTRACE_HBP_CTRL_SZ	sizeof(u32)
472 #define PTRACE_HBP_PAD_SZ	sizeof(u32)
473 
hw_break_get(struct task_struct * target,const struct user_regset * regset,struct membuf to)474 static int hw_break_get(struct task_struct *target,
475 			const struct user_regset *regset,
476 			struct membuf to)
477 {
478 	unsigned int note_type = regset->core_note_type;
479 	int ret, idx = 0;
480 	u32 info, ctrl;
481 	u64 addr;
482 
483 	/* Resource info */
484 	ret = ptrace_hbp_get_resource_info(note_type, &info);
485 	if (ret)
486 		return ret;
487 
488 	membuf_write(&to, &info, sizeof(info));
489 	membuf_zero(&to, sizeof(u32));
490 	/* (address, ctrl) registers */
491 	while (to.left) {
492 		ret = ptrace_hbp_get_addr(note_type, target, idx, &addr);
493 		if (ret)
494 			return ret;
495 		ret = ptrace_hbp_get_ctrl(note_type, target, idx, &ctrl);
496 		if (ret)
497 			return ret;
498 		membuf_store(&to, addr);
499 		membuf_store(&to, ctrl);
500 		membuf_zero(&to, sizeof(u32));
501 		idx++;
502 	}
503 	return 0;
504 }
505 
hw_break_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)506 static int hw_break_set(struct task_struct *target,
507 			const struct user_regset *regset,
508 			unsigned int pos, unsigned int count,
509 			const void *kbuf, const void __user *ubuf)
510 {
511 	unsigned int note_type = regset->core_note_type;
512 	int ret, idx = 0, offset, limit;
513 	u32 ctrl;
514 	u64 addr;
515 
516 	/* Resource info and pad */
517 	offset = offsetof(struct user_hwdebug_state, dbg_regs);
518 	ret = user_regset_copyin_ignore(&pos, &count, &kbuf, &ubuf, 0, offset);
519 	if (ret)
520 		return ret;
521 
522 	/* (address, ctrl) registers */
523 	limit = regset->n * regset->size;
524 	while (count && offset < limit) {
525 		if (count < PTRACE_HBP_ADDR_SZ)
526 			return -EINVAL;
527 		ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &addr,
528 					 offset, offset + PTRACE_HBP_ADDR_SZ);
529 		if (ret)
530 			return ret;
531 		ret = ptrace_hbp_set_addr(note_type, target, idx, addr);
532 		if (ret)
533 			return ret;
534 		offset += PTRACE_HBP_ADDR_SZ;
535 
536 		if (!count)
537 			break;
538 		ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &ctrl,
539 					 offset, offset + PTRACE_HBP_CTRL_SZ);
540 		if (ret)
541 			return ret;
542 		ret = ptrace_hbp_set_ctrl(note_type, target, idx, ctrl);
543 		if (ret)
544 			return ret;
545 		offset += PTRACE_HBP_CTRL_SZ;
546 
547 		ret = user_regset_copyin_ignore(&pos, &count, &kbuf, &ubuf,
548 						offset,
549 						offset + PTRACE_HBP_PAD_SZ);
550 		if (ret)
551 			return ret;
552 		offset += PTRACE_HBP_PAD_SZ;
553 		idx++;
554 	}
555 
556 	return 0;
557 }
558 #endif	/* CONFIG_HAVE_HW_BREAKPOINT */
559 
gpr_get(struct task_struct * target,const struct user_regset * regset,struct membuf to)560 static int gpr_get(struct task_struct *target,
561 		   const struct user_regset *regset,
562 		   struct membuf to)
563 {
564 	struct user_pt_regs *uregs = &task_pt_regs(target)->user_regs;
565 	return membuf_write(&to, uregs, sizeof(*uregs));
566 }
567 
gpr_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)568 static int gpr_set(struct task_struct *target, const struct user_regset *regset,
569 		   unsigned int pos, unsigned int count,
570 		   const void *kbuf, const void __user *ubuf)
571 {
572 	int ret;
573 	struct user_pt_regs newregs = task_pt_regs(target)->user_regs;
574 
575 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &newregs, 0, -1);
576 	if (ret)
577 		return ret;
578 
579 	if (!valid_user_regs(&newregs, target))
580 		return -EINVAL;
581 
582 	task_pt_regs(target)->user_regs = newregs;
583 	return 0;
584 }
585 
fpr_active(struct task_struct * target,const struct user_regset * regset)586 static int fpr_active(struct task_struct *target, const struct user_regset *regset)
587 {
588 	if (!system_supports_fpsimd())
589 		return -ENODEV;
590 	return regset->n;
591 }
592 
593 /*
594  * TODO: update fp accessors for lazy context switching (sync/flush hwstate)
595  */
__fpr_get(struct task_struct * target,const struct user_regset * regset,struct membuf to)596 static int __fpr_get(struct task_struct *target,
597 		     const struct user_regset *regset,
598 		     struct membuf to)
599 {
600 	struct user_fpsimd_state *uregs;
601 
602 	sve_sync_to_fpsimd(target);
603 
604 	uregs = &target->thread.uw.fpsimd_state;
605 
606 	return membuf_write(&to, uregs, sizeof(*uregs));
607 }
608 
fpr_get(struct task_struct * target,const struct user_regset * regset,struct membuf to)609 static int fpr_get(struct task_struct *target, const struct user_regset *regset,
610 		   struct membuf to)
611 {
612 	if (!system_supports_fpsimd())
613 		return -EINVAL;
614 
615 	if (target == current)
616 		fpsimd_preserve_current_state();
617 
618 	return __fpr_get(target, regset, to);
619 }
620 
__fpr_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf,unsigned int start_pos)621 static int __fpr_set(struct task_struct *target,
622 		     const struct user_regset *regset,
623 		     unsigned int pos, unsigned int count,
624 		     const void *kbuf, const void __user *ubuf,
625 		     unsigned int start_pos)
626 {
627 	int ret;
628 	struct user_fpsimd_state newstate;
629 
630 	/*
631 	 * Ensure target->thread.uw.fpsimd_state is up to date, so that a
632 	 * short copyin can't resurrect stale data.
633 	 */
634 	sve_sync_to_fpsimd(target);
635 
636 	newstate = target->thread.uw.fpsimd_state;
637 
638 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &newstate,
639 				 start_pos, start_pos + sizeof(newstate));
640 	if (ret)
641 		return ret;
642 
643 	target->thread.uw.fpsimd_state = newstate;
644 
645 	return ret;
646 }
647 
fpr_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)648 static int fpr_set(struct task_struct *target, const struct user_regset *regset,
649 		   unsigned int pos, unsigned int count,
650 		   const void *kbuf, const void __user *ubuf)
651 {
652 	int ret;
653 
654 	if (!system_supports_fpsimd())
655 		return -EINVAL;
656 
657 	ret = __fpr_set(target, regset, pos, count, kbuf, ubuf, 0);
658 	if (ret)
659 		return ret;
660 
661 	sve_sync_from_fpsimd_zeropad(target);
662 	fpsimd_flush_task_state(target);
663 
664 	return ret;
665 }
666 
tls_get(struct task_struct * target,const struct user_regset * regset,struct membuf to)667 static int tls_get(struct task_struct *target, const struct user_regset *regset,
668 		   struct membuf to)
669 {
670 	if (target == current)
671 		tls_preserve_current_state();
672 
673 	return membuf_store(&to, target->thread.uw.tp_value);
674 }
675 
tls_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)676 static int tls_set(struct task_struct *target, const struct user_regset *regset,
677 		   unsigned int pos, unsigned int count,
678 		   const void *kbuf, const void __user *ubuf)
679 {
680 	int ret;
681 	unsigned long tls = target->thread.uw.tp_value;
682 
683 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &tls, 0, -1);
684 	if (ret)
685 		return ret;
686 
687 	target->thread.uw.tp_value = tls;
688 	return ret;
689 }
690 
system_call_get(struct task_struct * target,const struct user_regset * regset,struct membuf to)691 static int system_call_get(struct task_struct *target,
692 			   const struct user_regset *regset,
693 			   struct membuf to)
694 {
695 	return membuf_store(&to, task_pt_regs(target)->syscallno);
696 }
697 
system_call_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)698 static int system_call_set(struct task_struct *target,
699 			   const struct user_regset *regset,
700 			   unsigned int pos, unsigned int count,
701 			   const void *kbuf, const void __user *ubuf)
702 {
703 	int syscallno = task_pt_regs(target)->syscallno;
704 	int ret;
705 
706 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &syscallno, 0, -1);
707 	if (ret)
708 		return ret;
709 
710 	task_pt_regs(target)->syscallno = syscallno;
711 	return ret;
712 }
713 
714 #ifdef CONFIG_ARM64_SVE
715 
sve_init_header_from_task(struct user_sve_header * header,struct task_struct * target,enum vec_type type)716 static void sve_init_header_from_task(struct user_sve_header *header,
717 				      struct task_struct *target,
718 				      enum vec_type type)
719 {
720 	unsigned int vq;
721 	bool active;
722 	bool fpsimd_only;
723 	enum vec_type task_type;
724 
725 	memset(header, 0, sizeof(*header));
726 
727 	/* Check if the requested registers are active for the task */
728 	if (thread_sm_enabled(&target->thread))
729 		task_type = ARM64_VEC_SME;
730 	else
731 		task_type = ARM64_VEC_SVE;
732 	active = (task_type == type);
733 
734 	switch (type) {
735 	case ARM64_VEC_SVE:
736 		if (test_tsk_thread_flag(target, TIF_SVE_VL_INHERIT))
737 			header->flags |= SVE_PT_VL_INHERIT;
738 		fpsimd_only = !test_tsk_thread_flag(target, TIF_SVE);
739 		break;
740 	case ARM64_VEC_SME:
741 		if (test_tsk_thread_flag(target, TIF_SME_VL_INHERIT))
742 			header->flags |= SVE_PT_VL_INHERIT;
743 		fpsimd_only = false;
744 		break;
745 	default:
746 		WARN_ON_ONCE(1);
747 		return;
748 	}
749 
750 	if (active) {
751 		if (fpsimd_only) {
752 			header->flags |= SVE_PT_REGS_FPSIMD;
753 		} else {
754 			header->flags |= SVE_PT_REGS_SVE;
755 		}
756 	}
757 
758 	header->vl = task_get_vl(target, type);
759 	vq = sve_vq_from_vl(header->vl);
760 
761 	header->max_vl = vec_max_vl(type);
762 	header->size = SVE_PT_SIZE(vq, header->flags);
763 	header->max_size = SVE_PT_SIZE(sve_vq_from_vl(header->max_vl),
764 				      SVE_PT_REGS_SVE);
765 }
766 
sve_size_from_header(struct user_sve_header const * header)767 static unsigned int sve_size_from_header(struct user_sve_header const *header)
768 {
769 	return ALIGN(header->size, SVE_VQ_BYTES);
770 }
771 
sve_get_common(struct task_struct * target,const struct user_regset * regset,struct membuf to,enum vec_type type)772 static int sve_get_common(struct task_struct *target,
773 			  const struct user_regset *regset,
774 			  struct membuf to,
775 			  enum vec_type type)
776 {
777 	struct user_sve_header header;
778 	unsigned int vq;
779 	unsigned long start, end;
780 
781 	/* Header */
782 	sve_init_header_from_task(&header, target, type);
783 	vq = sve_vq_from_vl(header.vl);
784 
785 	membuf_write(&to, &header, sizeof(header));
786 
787 	if (target == current)
788 		fpsimd_preserve_current_state();
789 
790 	BUILD_BUG_ON(SVE_PT_FPSIMD_OFFSET != sizeof(header));
791 	BUILD_BUG_ON(SVE_PT_SVE_OFFSET != sizeof(header));
792 
793 	switch ((header.flags & SVE_PT_REGS_MASK)) {
794 	case SVE_PT_REGS_FPSIMD:
795 		return __fpr_get(target, regset, to);
796 
797 	case SVE_PT_REGS_SVE:
798 		start = SVE_PT_SVE_OFFSET;
799 		end = SVE_PT_SVE_FFR_OFFSET(vq) + SVE_PT_SVE_FFR_SIZE(vq);
800 		membuf_write(&to, target->thread.sve_state, end - start);
801 
802 		start = end;
803 		end = SVE_PT_SVE_FPSR_OFFSET(vq);
804 		membuf_zero(&to, end - start);
805 
806 		/*
807 		 * Copy fpsr, and fpcr which must follow contiguously in
808 		 * struct fpsimd_state:
809 		 */
810 		start = end;
811 		end = SVE_PT_SVE_FPCR_OFFSET(vq) + SVE_PT_SVE_FPCR_SIZE;
812 		membuf_write(&to, &target->thread.uw.fpsimd_state.fpsr,
813 			     end - start);
814 
815 		start = end;
816 		end = sve_size_from_header(&header);
817 		return membuf_zero(&to, end - start);
818 
819 	default:
820 		return 0;
821 	}
822 }
823 
sve_get(struct task_struct * target,const struct user_regset * regset,struct membuf to)824 static int sve_get(struct task_struct *target,
825 		   const struct user_regset *regset,
826 		   struct membuf to)
827 {
828 	if (!system_supports_sve())
829 		return -EINVAL;
830 
831 	return sve_get_common(target, regset, to, ARM64_VEC_SVE);
832 }
833 
sve_set_common(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf,enum vec_type type)834 static int sve_set_common(struct task_struct *target,
835 			  const struct user_regset *regset,
836 			  unsigned int pos, unsigned int count,
837 			  const void *kbuf, const void __user *ubuf,
838 			  enum vec_type type)
839 {
840 	int ret;
841 	struct user_sve_header header;
842 	unsigned int vq;
843 	unsigned long start, end;
844 
845 	/* Header */
846 	if (count < sizeof(header))
847 		return -EINVAL;
848 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &header,
849 				 0, sizeof(header));
850 	if (ret)
851 		goto out;
852 
853 	/*
854 	 * Apart from SVE_PT_REGS_MASK, all SVE_PT_* flags are consumed by
855 	 * vec_set_vector_length(), which will also validate them for us:
856 	 */
857 	ret = vec_set_vector_length(target, type, header.vl,
858 		((unsigned long)header.flags & ~SVE_PT_REGS_MASK) << 16);
859 	if (ret)
860 		goto out;
861 
862 	/* Actual VL set may be less than the user asked for: */
863 	vq = sve_vq_from_vl(task_get_vl(target, type));
864 
865 	/* Enter/exit streaming mode */
866 	if (system_supports_sme()) {
867 		u64 old_svcr = target->thread.svcr;
868 
869 		switch (type) {
870 		case ARM64_VEC_SVE:
871 			target->thread.svcr &= ~SVCR_SM_MASK;
872 			break;
873 		case ARM64_VEC_SME:
874 			target->thread.svcr |= SVCR_SM_MASK;
875 			break;
876 		default:
877 			WARN_ON_ONCE(1);
878 			return -EINVAL;
879 		}
880 
881 		/*
882 		 * If we switched then invalidate any existing SVE
883 		 * state and ensure there's storage.
884 		 */
885 		if (target->thread.svcr != old_svcr)
886 			sve_alloc(target, true);
887 	}
888 
889 	/* Registers: FPSIMD-only case */
890 
891 	BUILD_BUG_ON(SVE_PT_FPSIMD_OFFSET != sizeof(header));
892 	if ((header.flags & SVE_PT_REGS_MASK) == SVE_PT_REGS_FPSIMD) {
893 		ret = __fpr_set(target, regset, pos, count, kbuf, ubuf,
894 				SVE_PT_FPSIMD_OFFSET);
895 		clear_tsk_thread_flag(target, TIF_SVE);
896 		if (type == ARM64_VEC_SME)
897 			fpsimd_force_sync_to_sve(target);
898 		goto out;
899 	}
900 
901 	/*
902 	 * Otherwise: no registers or full SVE case.  For backwards
903 	 * compatibility reasons we treat empty flags as SVE registers.
904 	 */
905 
906 	/*
907 	 * If setting a different VL from the requested VL and there is
908 	 * register data, the data layout will be wrong: don't even
909 	 * try to set the registers in this case.
910 	 */
911 	if (count && vq != sve_vq_from_vl(header.vl)) {
912 		ret = -EIO;
913 		goto out;
914 	}
915 
916 	sve_alloc(target, true);
917 	if (!target->thread.sve_state) {
918 		ret = -ENOMEM;
919 		clear_tsk_thread_flag(target, TIF_SVE);
920 		goto out;
921 	}
922 
923 	/*
924 	 * Ensure target->thread.sve_state is up to date with target's
925 	 * FPSIMD regs, so that a short copyin leaves trailing
926 	 * registers unmodified.  Always enable SVE even if going into
927 	 * streaming mode.
928 	 */
929 	fpsimd_sync_to_sve(target);
930 	set_tsk_thread_flag(target, TIF_SVE);
931 
932 	BUILD_BUG_ON(SVE_PT_SVE_OFFSET != sizeof(header));
933 	start = SVE_PT_SVE_OFFSET;
934 	end = SVE_PT_SVE_FFR_OFFSET(vq) + SVE_PT_SVE_FFR_SIZE(vq);
935 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
936 				 target->thread.sve_state,
937 				 start, end);
938 	if (ret)
939 		goto out;
940 
941 	start = end;
942 	end = SVE_PT_SVE_FPSR_OFFSET(vq);
943 	ret = user_regset_copyin_ignore(&pos, &count, &kbuf, &ubuf,
944 					start, end);
945 	if (ret)
946 		goto out;
947 
948 	/*
949 	 * Copy fpsr, and fpcr which must follow contiguously in
950 	 * struct fpsimd_state:
951 	 */
952 	start = end;
953 	end = SVE_PT_SVE_FPCR_OFFSET(vq) + SVE_PT_SVE_FPCR_SIZE;
954 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
955 				 &target->thread.uw.fpsimd_state.fpsr,
956 				 start, end);
957 
958 out:
959 	fpsimd_flush_task_state(target);
960 	return ret;
961 }
962 
sve_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)963 static int sve_set(struct task_struct *target,
964 		   const struct user_regset *regset,
965 		   unsigned int pos, unsigned int count,
966 		   const void *kbuf, const void __user *ubuf)
967 {
968 	if (!system_supports_sve())
969 		return -EINVAL;
970 
971 	return sve_set_common(target, regset, pos, count, kbuf, ubuf,
972 			      ARM64_VEC_SVE);
973 }
974 
975 #endif /* CONFIG_ARM64_SVE */
976 
977 #ifdef CONFIG_ARM64_SME
978 
ssve_get(struct task_struct * target,const struct user_regset * regset,struct membuf to)979 static int ssve_get(struct task_struct *target,
980 		   const struct user_regset *regset,
981 		   struct membuf to)
982 {
983 	if (!system_supports_sme())
984 		return -EINVAL;
985 
986 	return sve_get_common(target, regset, to, ARM64_VEC_SME);
987 }
988 
ssve_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)989 static int ssve_set(struct task_struct *target,
990 		    const struct user_regset *regset,
991 		    unsigned int pos, unsigned int count,
992 		    const void *kbuf, const void __user *ubuf)
993 {
994 	if (!system_supports_sme())
995 		return -EINVAL;
996 
997 	return sve_set_common(target, regset, pos, count, kbuf, ubuf,
998 			      ARM64_VEC_SME);
999 }
1000 
za_get(struct task_struct * target,const struct user_regset * regset,struct membuf to)1001 static int za_get(struct task_struct *target,
1002 		  const struct user_regset *regset,
1003 		  struct membuf to)
1004 {
1005 	struct user_za_header header;
1006 	unsigned int vq;
1007 	unsigned long start, end;
1008 
1009 	if (!system_supports_sme())
1010 		return -EINVAL;
1011 
1012 	/* Header */
1013 	memset(&header, 0, sizeof(header));
1014 
1015 	if (test_tsk_thread_flag(target, TIF_SME_VL_INHERIT))
1016 		header.flags |= ZA_PT_VL_INHERIT;
1017 
1018 	header.vl = task_get_sme_vl(target);
1019 	vq = sve_vq_from_vl(header.vl);
1020 	header.max_vl = sme_max_vl();
1021 	header.max_size = ZA_PT_SIZE(vq);
1022 
1023 	/* If ZA is not active there is only the header */
1024 	if (thread_za_enabled(&target->thread))
1025 		header.size = ZA_PT_SIZE(vq);
1026 	else
1027 		header.size = ZA_PT_ZA_OFFSET;
1028 
1029 	membuf_write(&to, &header, sizeof(header));
1030 
1031 	BUILD_BUG_ON(ZA_PT_ZA_OFFSET != sizeof(header));
1032 	end = ZA_PT_ZA_OFFSET;
1033 
1034 	if (target == current)
1035 		fpsimd_preserve_current_state();
1036 
1037 	/* Any register data to include? */
1038 	if (thread_za_enabled(&target->thread)) {
1039 		start = end;
1040 		end = ZA_PT_SIZE(vq);
1041 		membuf_write(&to, target->thread.za_state, end - start);
1042 	}
1043 
1044 	/* Zero any trailing padding */
1045 	start = end;
1046 	end = ALIGN(header.size, SVE_VQ_BYTES);
1047 	return membuf_zero(&to, end - start);
1048 }
1049 
za_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)1050 static int za_set(struct task_struct *target,
1051 		  const struct user_regset *regset,
1052 		  unsigned int pos, unsigned int count,
1053 		  const void *kbuf, const void __user *ubuf)
1054 {
1055 	int ret;
1056 	struct user_za_header header;
1057 	unsigned int vq;
1058 	unsigned long start, end;
1059 
1060 	if (!system_supports_sme())
1061 		return -EINVAL;
1062 
1063 	/* Header */
1064 	if (count < sizeof(header))
1065 		return -EINVAL;
1066 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &header,
1067 				 0, sizeof(header));
1068 	if (ret)
1069 		goto out;
1070 
1071 	/*
1072 	 * All current ZA_PT_* flags are consumed by
1073 	 * vec_set_vector_length(), which will also validate them for
1074 	 * us:
1075 	 */
1076 	ret = vec_set_vector_length(target, ARM64_VEC_SME, header.vl,
1077 		((unsigned long)header.flags) << 16);
1078 	if (ret)
1079 		goto out;
1080 
1081 	/* Actual VL set may be less than the user asked for: */
1082 	vq = sve_vq_from_vl(task_get_sme_vl(target));
1083 
1084 	/* Ensure there is some SVE storage for streaming mode */
1085 	if (!target->thread.sve_state) {
1086 		sve_alloc(target, false);
1087 		if (!target->thread.sve_state) {
1088 			clear_thread_flag(TIF_SME);
1089 			ret = -ENOMEM;
1090 			goto out;
1091 		}
1092 	}
1093 
1094 	/* Allocate/reinit ZA storage */
1095 	sme_alloc(target);
1096 	if (!target->thread.za_state) {
1097 		ret = -ENOMEM;
1098 		clear_tsk_thread_flag(target, TIF_SME);
1099 		goto out;
1100 	}
1101 
1102 	/* If there is no data then disable ZA */
1103 	if (!count) {
1104 		target->thread.svcr &= ~SVCR_ZA_MASK;
1105 		goto out;
1106 	}
1107 
1108 	/*
1109 	 * If setting a different VL from the requested VL and there is
1110 	 * register data, the data layout will be wrong: don't even
1111 	 * try to set the registers in this case.
1112 	 */
1113 	if (vq != sve_vq_from_vl(header.vl)) {
1114 		ret = -EIO;
1115 		goto out;
1116 	}
1117 
1118 	BUILD_BUG_ON(ZA_PT_ZA_OFFSET != sizeof(header));
1119 	start = ZA_PT_ZA_OFFSET;
1120 	end = ZA_PT_SIZE(vq);
1121 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1122 				 target->thread.za_state,
1123 				 start, end);
1124 	if (ret)
1125 		goto out;
1126 
1127 	/* Mark ZA as active and let userspace use it */
1128 	set_tsk_thread_flag(target, TIF_SME);
1129 	target->thread.svcr |= SVCR_ZA_MASK;
1130 
1131 out:
1132 	fpsimd_flush_task_state(target);
1133 	return ret;
1134 }
1135 
1136 #endif /* CONFIG_ARM64_SME */
1137 
1138 #ifdef CONFIG_ARM64_PTR_AUTH
pac_mask_get(struct task_struct * target,const struct user_regset * regset,struct membuf to)1139 static int pac_mask_get(struct task_struct *target,
1140 			const struct user_regset *regset,
1141 			struct membuf to)
1142 {
1143 	/*
1144 	 * The PAC bits can differ across data and instruction pointers
1145 	 * depending on TCR_EL1.TBID*, which we may make use of in future, so
1146 	 * we expose separate masks.
1147 	 */
1148 	unsigned long mask = ptrauth_user_pac_mask();
1149 	struct user_pac_mask uregs = {
1150 		.data_mask = mask,
1151 		.insn_mask = mask,
1152 	};
1153 
1154 	if (!system_supports_address_auth())
1155 		return -EINVAL;
1156 
1157 	return membuf_write(&to, &uregs, sizeof(uregs));
1158 }
1159 
pac_enabled_keys_get(struct task_struct * target,const struct user_regset * regset,struct membuf to)1160 static int pac_enabled_keys_get(struct task_struct *target,
1161 				const struct user_regset *regset,
1162 				struct membuf to)
1163 {
1164 	long enabled_keys = ptrauth_get_enabled_keys(target);
1165 
1166 	if (IS_ERR_VALUE(enabled_keys))
1167 		return enabled_keys;
1168 
1169 	return membuf_write(&to, &enabled_keys, sizeof(enabled_keys));
1170 }
1171 
pac_enabled_keys_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)1172 static int pac_enabled_keys_set(struct task_struct *target,
1173 				const struct user_regset *regset,
1174 				unsigned int pos, unsigned int count,
1175 				const void *kbuf, const void __user *ubuf)
1176 {
1177 	int ret;
1178 	long enabled_keys = ptrauth_get_enabled_keys(target);
1179 
1180 	if (IS_ERR_VALUE(enabled_keys))
1181 		return enabled_keys;
1182 
1183 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &enabled_keys, 0,
1184 				 sizeof(long));
1185 	if (ret)
1186 		return ret;
1187 
1188 	return ptrauth_set_enabled_keys(target, PR_PAC_ENABLED_KEYS_MASK,
1189 					enabled_keys);
1190 }
1191 
1192 #ifdef CONFIG_CHECKPOINT_RESTORE
pac_key_to_user(const struct ptrauth_key * key)1193 static __uint128_t pac_key_to_user(const struct ptrauth_key *key)
1194 {
1195 	return (__uint128_t)key->hi << 64 | key->lo;
1196 }
1197 
pac_key_from_user(__uint128_t ukey)1198 static struct ptrauth_key pac_key_from_user(__uint128_t ukey)
1199 {
1200 	struct ptrauth_key key = {
1201 		.lo = (unsigned long)ukey,
1202 		.hi = (unsigned long)(ukey >> 64),
1203 	};
1204 
1205 	return key;
1206 }
1207 
pac_address_keys_to_user(struct user_pac_address_keys * ukeys,const struct ptrauth_keys_user * keys)1208 static void pac_address_keys_to_user(struct user_pac_address_keys *ukeys,
1209 				     const struct ptrauth_keys_user *keys)
1210 {
1211 	ukeys->apiakey = pac_key_to_user(&keys->apia);
1212 	ukeys->apibkey = pac_key_to_user(&keys->apib);
1213 	ukeys->apdakey = pac_key_to_user(&keys->apda);
1214 	ukeys->apdbkey = pac_key_to_user(&keys->apdb);
1215 }
1216 
pac_address_keys_from_user(struct ptrauth_keys_user * keys,const struct user_pac_address_keys * ukeys)1217 static void pac_address_keys_from_user(struct ptrauth_keys_user *keys,
1218 				       const struct user_pac_address_keys *ukeys)
1219 {
1220 	keys->apia = pac_key_from_user(ukeys->apiakey);
1221 	keys->apib = pac_key_from_user(ukeys->apibkey);
1222 	keys->apda = pac_key_from_user(ukeys->apdakey);
1223 	keys->apdb = pac_key_from_user(ukeys->apdbkey);
1224 }
1225 
pac_address_keys_get(struct task_struct * target,const struct user_regset * regset,struct membuf to)1226 static int pac_address_keys_get(struct task_struct *target,
1227 				const struct user_regset *regset,
1228 				struct membuf to)
1229 {
1230 	struct ptrauth_keys_user *keys = &target->thread.keys_user;
1231 	struct user_pac_address_keys user_keys;
1232 
1233 	if (!system_supports_address_auth())
1234 		return -EINVAL;
1235 
1236 	pac_address_keys_to_user(&user_keys, keys);
1237 
1238 	return membuf_write(&to, &user_keys, sizeof(user_keys));
1239 }
1240 
pac_address_keys_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)1241 static int pac_address_keys_set(struct task_struct *target,
1242 				const struct user_regset *regset,
1243 				unsigned int pos, unsigned int count,
1244 				const void *kbuf, const void __user *ubuf)
1245 {
1246 	struct ptrauth_keys_user *keys = &target->thread.keys_user;
1247 	struct user_pac_address_keys user_keys;
1248 	int ret;
1249 
1250 	if (!system_supports_address_auth())
1251 		return -EINVAL;
1252 
1253 	pac_address_keys_to_user(&user_keys, keys);
1254 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1255 				 &user_keys, 0, -1);
1256 	if (ret)
1257 		return ret;
1258 	pac_address_keys_from_user(keys, &user_keys);
1259 
1260 	return 0;
1261 }
1262 
pac_generic_keys_to_user(struct user_pac_generic_keys * ukeys,const struct ptrauth_keys_user * keys)1263 static void pac_generic_keys_to_user(struct user_pac_generic_keys *ukeys,
1264 				     const struct ptrauth_keys_user *keys)
1265 {
1266 	ukeys->apgakey = pac_key_to_user(&keys->apga);
1267 }
1268 
pac_generic_keys_from_user(struct ptrauth_keys_user * keys,const struct user_pac_generic_keys * ukeys)1269 static void pac_generic_keys_from_user(struct ptrauth_keys_user *keys,
1270 				       const struct user_pac_generic_keys *ukeys)
1271 {
1272 	keys->apga = pac_key_from_user(ukeys->apgakey);
1273 }
1274 
pac_generic_keys_get(struct task_struct * target,const struct user_regset * regset,struct membuf to)1275 static int pac_generic_keys_get(struct task_struct *target,
1276 				const struct user_regset *regset,
1277 				struct membuf to)
1278 {
1279 	struct ptrauth_keys_user *keys = &target->thread.keys_user;
1280 	struct user_pac_generic_keys user_keys;
1281 
1282 	if (!system_supports_generic_auth())
1283 		return -EINVAL;
1284 
1285 	pac_generic_keys_to_user(&user_keys, keys);
1286 
1287 	return membuf_write(&to, &user_keys, sizeof(user_keys));
1288 }
1289 
pac_generic_keys_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)1290 static int pac_generic_keys_set(struct task_struct *target,
1291 				const struct user_regset *regset,
1292 				unsigned int pos, unsigned int count,
1293 				const void *kbuf, const void __user *ubuf)
1294 {
1295 	struct ptrauth_keys_user *keys = &target->thread.keys_user;
1296 	struct user_pac_generic_keys user_keys;
1297 	int ret;
1298 
1299 	if (!system_supports_generic_auth())
1300 		return -EINVAL;
1301 
1302 	pac_generic_keys_to_user(&user_keys, keys);
1303 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1304 				 &user_keys, 0, -1);
1305 	if (ret)
1306 		return ret;
1307 	pac_generic_keys_from_user(keys, &user_keys);
1308 
1309 	return 0;
1310 }
1311 #endif /* CONFIG_CHECKPOINT_RESTORE */
1312 #endif /* CONFIG_ARM64_PTR_AUTH */
1313 
1314 #ifdef CONFIG_ARM64_TAGGED_ADDR_ABI
tagged_addr_ctrl_get(struct task_struct * target,const struct user_regset * regset,struct membuf to)1315 static int tagged_addr_ctrl_get(struct task_struct *target,
1316 				const struct user_regset *regset,
1317 				struct membuf to)
1318 {
1319 	long ctrl = get_tagged_addr_ctrl(target);
1320 
1321 	if (IS_ERR_VALUE(ctrl))
1322 		return ctrl;
1323 
1324 	return membuf_write(&to, &ctrl, sizeof(ctrl));
1325 }
1326 
tagged_addr_ctrl_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)1327 static int tagged_addr_ctrl_set(struct task_struct *target, const struct
1328 				user_regset *regset, unsigned int pos,
1329 				unsigned int count, const void *kbuf, const
1330 				void __user *ubuf)
1331 {
1332 	int ret;
1333 	long ctrl;
1334 
1335 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &ctrl, 0, -1);
1336 	if (ret)
1337 		return ret;
1338 
1339 	return set_tagged_addr_ctrl(target, ctrl);
1340 }
1341 #endif
1342 
1343 enum aarch64_regset {
1344 	REGSET_GPR,
1345 	REGSET_FPR,
1346 	REGSET_TLS,
1347 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1348 	REGSET_HW_BREAK,
1349 	REGSET_HW_WATCH,
1350 #endif
1351 	REGSET_SYSTEM_CALL,
1352 #ifdef CONFIG_ARM64_SVE
1353 	REGSET_SVE,
1354 #endif
1355 #ifdef CONFIG_ARM64_SME
1356 	REGSET_SSVE,
1357 	REGSET_ZA,
1358 #endif
1359 #ifdef CONFIG_ARM64_PTR_AUTH
1360 	REGSET_PAC_MASK,
1361 	REGSET_PAC_ENABLED_KEYS,
1362 #ifdef CONFIG_CHECKPOINT_RESTORE
1363 	REGSET_PACA_KEYS,
1364 	REGSET_PACG_KEYS,
1365 #endif
1366 #endif
1367 #ifdef CONFIG_ARM64_TAGGED_ADDR_ABI
1368 	REGSET_TAGGED_ADDR_CTRL,
1369 #endif
1370 };
1371 
1372 static const struct user_regset aarch64_regsets[] = {
1373 	[REGSET_GPR] = {
1374 		.core_note_type = NT_PRSTATUS,
1375 		.n = sizeof(struct user_pt_regs) / sizeof(u64),
1376 		.size = sizeof(u64),
1377 		.align = sizeof(u64),
1378 		.regset_get = gpr_get,
1379 		.set = gpr_set
1380 	},
1381 	[REGSET_FPR] = {
1382 		.core_note_type = NT_PRFPREG,
1383 		.n = sizeof(struct user_fpsimd_state) / sizeof(u32),
1384 		/*
1385 		 * We pretend we have 32-bit registers because the fpsr and
1386 		 * fpcr are 32-bits wide.
1387 		 */
1388 		.size = sizeof(u32),
1389 		.align = sizeof(u32),
1390 		.active = fpr_active,
1391 		.regset_get = fpr_get,
1392 		.set = fpr_set
1393 	},
1394 	[REGSET_TLS] = {
1395 		.core_note_type = NT_ARM_TLS,
1396 		.n = 1,
1397 		.size = sizeof(void *),
1398 		.align = sizeof(void *),
1399 		.regset_get = tls_get,
1400 		.set = tls_set,
1401 	},
1402 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1403 	[REGSET_HW_BREAK] = {
1404 		.core_note_type = NT_ARM_HW_BREAK,
1405 		.n = sizeof(struct user_hwdebug_state) / sizeof(u32),
1406 		.size = sizeof(u32),
1407 		.align = sizeof(u32),
1408 		.regset_get = hw_break_get,
1409 		.set = hw_break_set,
1410 	},
1411 	[REGSET_HW_WATCH] = {
1412 		.core_note_type = NT_ARM_HW_WATCH,
1413 		.n = sizeof(struct user_hwdebug_state) / sizeof(u32),
1414 		.size = sizeof(u32),
1415 		.align = sizeof(u32),
1416 		.regset_get = hw_break_get,
1417 		.set = hw_break_set,
1418 	},
1419 #endif
1420 	[REGSET_SYSTEM_CALL] = {
1421 		.core_note_type = NT_ARM_SYSTEM_CALL,
1422 		.n = 1,
1423 		.size = sizeof(int),
1424 		.align = sizeof(int),
1425 		.regset_get = system_call_get,
1426 		.set = system_call_set,
1427 	},
1428 #ifdef CONFIG_ARM64_SVE
1429 	[REGSET_SVE] = { /* Scalable Vector Extension */
1430 		.core_note_type = NT_ARM_SVE,
1431 		.n = DIV_ROUND_UP(SVE_PT_SIZE(SVE_VQ_MAX, SVE_PT_REGS_SVE),
1432 				  SVE_VQ_BYTES),
1433 		.size = SVE_VQ_BYTES,
1434 		.align = SVE_VQ_BYTES,
1435 		.regset_get = sve_get,
1436 		.set = sve_set,
1437 	},
1438 #endif
1439 #ifdef CONFIG_ARM64_SME
1440 	[REGSET_SSVE] = { /* Streaming mode SVE */
1441 		.core_note_type = NT_ARM_SSVE,
1442 		.n = DIV_ROUND_UP(SVE_PT_SIZE(SVE_VQ_MAX, SVE_PT_REGS_SVE),
1443 				  SVE_VQ_BYTES),
1444 		.size = SVE_VQ_BYTES,
1445 		.align = SVE_VQ_BYTES,
1446 		.regset_get = ssve_get,
1447 		.set = ssve_set,
1448 	},
1449 	[REGSET_ZA] = { /* SME ZA */
1450 		.core_note_type = NT_ARM_ZA,
1451 		.n = DIV_ROUND_UP(ZA_PT_ZA_SIZE(SVE_VQ_MAX), SVE_VQ_BYTES),
1452 		.size = SVE_VQ_BYTES,
1453 		.align = SVE_VQ_BYTES,
1454 		.regset_get = za_get,
1455 		.set = za_set,
1456 	},
1457 #endif
1458 #ifdef CONFIG_ARM64_PTR_AUTH
1459 	[REGSET_PAC_MASK] = {
1460 		.core_note_type = NT_ARM_PAC_MASK,
1461 		.n = sizeof(struct user_pac_mask) / sizeof(u64),
1462 		.size = sizeof(u64),
1463 		.align = sizeof(u64),
1464 		.regset_get = pac_mask_get,
1465 		/* this cannot be set dynamically */
1466 	},
1467 	[REGSET_PAC_ENABLED_KEYS] = {
1468 		.core_note_type = NT_ARM_PAC_ENABLED_KEYS,
1469 		.n = 1,
1470 		.size = sizeof(long),
1471 		.align = sizeof(long),
1472 		.regset_get = pac_enabled_keys_get,
1473 		.set = pac_enabled_keys_set,
1474 	},
1475 #ifdef CONFIG_CHECKPOINT_RESTORE
1476 	[REGSET_PACA_KEYS] = {
1477 		.core_note_type = NT_ARM_PACA_KEYS,
1478 		.n = sizeof(struct user_pac_address_keys) / sizeof(__uint128_t),
1479 		.size = sizeof(__uint128_t),
1480 		.align = sizeof(__uint128_t),
1481 		.regset_get = pac_address_keys_get,
1482 		.set = pac_address_keys_set,
1483 	},
1484 	[REGSET_PACG_KEYS] = {
1485 		.core_note_type = NT_ARM_PACG_KEYS,
1486 		.n = sizeof(struct user_pac_generic_keys) / sizeof(__uint128_t),
1487 		.size = sizeof(__uint128_t),
1488 		.align = sizeof(__uint128_t),
1489 		.regset_get = pac_generic_keys_get,
1490 		.set = pac_generic_keys_set,
1491 	},
1492 #endif
1493 #endif
1494 #ifdef CONFIG_ARM64_TAGGED_ADDR_ABI
1495 	[REGSET_TAGGED_ADDR_CTRL] = {
1496 		.core_note_type = NT_ARM_TAGGED_ADDR_CTRL,
1497 		.n = 1,
1498 		.size = sizeof(long),
1499 		.align = sizeof(long),
1500 		.regset_get = tagged_addr_ctrl_get,
1501 		.set = tagged_addr_ctrl_set,
1502 	},
1503 #endif
1504 };
1505 
1506 static const struct user_regset_view user_aarch64_view = {
1507 	.name = "aarch64", .e_machine = EM_AARCH64,
1508 	.regsets = aarch64_regsets, .n = ARRAY_SIZE(aarch64_regsets)
1509 };
1510 
1511 #ifdef CONFIG_COMPAT
1512 enum compat_regset {
1513 	REGSET_COMPAT_GPR,
1514 	REGSET_COMPAT_VFP,
1515 };
1516 
compat_get_user_reg(struct task_struct * task,int idx)1517 static inline compat_ulong_t compat_get_user_reg(struct task_struct *task, int idx)
1518 {
1519 	struct pt_regs *regs = task_pt_regs(task);
1520 
1521 	switch (idx) {
1522 	case 15:
1523 		return regs->pc;
1524 	case 16:
1525 		return pstate_to_compat_psr(regs->pstate);
1526 	case 17:
1527 		return regs->orig_x0;
1528 	default:
1529 		return regs->regs[idx];
1530 	}
1531 }
1532 
compat_gpr_get(struct task_struct * target,const struct user_regset * regset,struct membuf to)1533 static int compat_gpr_get(struct task_struct *target,
1534 			  const struct user_regset *regset,
1535 			  struct membuf to)
1536 {
1537 	int i = 0;
1538 
1539 	while (to.left)
1540 		membuf_store(&to, compat_get_user_reg(target, i++));
1541 	return 0;
1542 }
1543 
compat_gpr_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)1544 static int compat_gpr_set(struct task_struct *target,
1545 			  const struct user_regset *regset,
1546 			  unsigned int pos, unsigned int count,
1547 			  const void *kbuf, const void __user *ubuf)
1548 {
1549 	struct pt_regs newregs;
1550 	int ret = 0;
1551 	unsigned int i, start, num_regs;
1552 
1553 	/* Calculate the number of AArch32 registers contained in count */
1554 	num_regs = count / regset->size;
1555 
1556 	/* Convert pos into an register number */
1557 	start = pos / regset->size;
1558 
1559 	if (start + num_regs > regset->n)
1560 		return -EIO;
1561 
1562 	newregs = *task_pt_regs(target);
1563 
1564 	for (i = 0; i < num_regs; ++i) {
1565 		unsigned int idx = start + i;
1566 		compat_ulong_t reg;
1567 
1568 		if (kbuf) {
1569 			memcpy(&reg, kbuf, sizeof(reg));
1570 			kbuf += sizeof(reg);
1571 		} else {
1572 			ret = copy_from_user(&reg, ubuf, sizeof(reg));
1573 			if (ret) {
1574 				ret = -EFAULT;
1575 				break;
1576 			}
1577 
1578 			ubuf += sizeof(reg);
1579 		}
1580 
1581 		switch (idx) {
1582 		case 15:
1583 			newregs.pc = reg;
1584 			break;
1585 		case 16:
1586 			reg = compat_psr_to_pstate(reg);
1587 			newregs.pstate = reg;
1588 			break;
1589 		case 17:
1590 			newregs.orig_x0 = reg;
1591 			break;
1592 		default:
1593 			newregs.regs[idx] = reg;
1594 		}
1595 
1596 	}
1597 
1598 	if (valid_user_regs(&newregs.user_regs, target))
1599 		*task_pt_regs(target) = newregs;
1600 	else
1601 		ret = -EINVAL;
1602 
1603 	return ret;
1604 }
1605 
compat_vfp_get(struct task_struct * target,const struct user_regset * regset,struct membuf to)1606 static int compat_vfp_get(struct task_struct *target,
1607 			  const struct user_regset *regset,
1608 			  struct membuf to)
1609 {
1610 	struct user_fpsimd_state *uregs;
1611 	compat_ulong_t fpscr;
1612 
1613 	if (!system_supports_fpsimd())
1614 		return -EINVAL;
1615 
1616 	uregs = &target->thread.uw.fpsimd_state;
1617 
1618 	if (target == current)
1619 		fpsimd_preserve_current_state();
1620 
1621 	/*
1622 	 * The VFP registers are packed into the fpsimd_state, so they all sit
1623 	 * nicely together for us. We just need to create the fpscr separately.
1624 	 */
1625 	membuf_write(&to, uregs, VFP_STATE_SIZE - sizeof(compat_ulong_t));
1626 	fpscr = (uregs->fpsr & VFP_FPSCR_STAT_MASK) |
1627 		(uregs->fpcr & VFP_FPSCR_CTRL_MASK);
1628 	return membuf_store(&to, fpscr);
1629 }
1630 
compat_vfp_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)1631 static int compat_vfp_set(struct task_struct *target,
1632 			  const struct user_regset *regset,
1633 			  unsigned int pos, unsigned int count,
1634 			  const void *kbuf, const void __user *ubuf)
1635 {
1636 	struct user_fpsimd_state *uregs;
1637 	compat_ulong_t fpscr;
1638 	int ret, vregs_end_pos;
1639 
1640 	if (!system_supports_fpsimd())
1641 		return -EINVAL;
1642 
1643 	uregs = &target->thread.uw.fpsimd_state;
1644 
1645 	vregs_end_pos = VFP_STATE_SIZE - sizeof(compat_ulong_t);
1646 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, uregs, 0,
1647 				 vregs_end_pos);
1648 
1649 	if (count && !ret) {
1650 		ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &fpscr,
1651 					 vregs_end_pos, VFP_STATE_SIZE);
1652 		if (!ret) {
1653 			uregs->fpsr = fpscr & VFP_FPSCR_STAT_MASK;
1654 			uregs->fpcr = fpscr & VFP_FPSCR_CTRL_MASK;
1655 		}
1656 	}
1657 
1658 	fpsimd_flush_task_state(target);
1659 	return ret;
1660 }
1661 
compat_tls_get(struct task_struct * target,const struct user_regset * regset,struct membuf to)1662 static int compat_tls_get(struct task_struct *target,
1663 			  const struct user_regset *regset,
1664 			  struct membuf to)
1665 {
1666 	return membuf_store(&to, (compat_ulong_t)target->thread.uw.tp_value);
1667 }
1668 
compat_tls_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)1669 static int compat_tls_set(struct task_struct *target,
1670 			  const struct user_regset *regset, unsigned int pos,
1671 			  unsigned int count, const void *kbuf,
1672 			  const void __user *ubuf)
1673 {
1674 	int ret;
1675 	compat_ulong_t tls = target->thread.uw.tp_value;
1676 
1677 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &tls, 0, -1);
1678 	if (ret)
1679 		return ret;
1680 
1681 	target->thread.uw.tp_value = tls;
1682 	return ret;
1683 }
1684 
1685 static const struct user_regset aarch32_regsets[] = {
1686 	[REGSET_COMPAT_GPR] = {
1687 		.core_note_type = NT_PRSTATUS,
1688 		.n = COMPAT_ELF_NGREG,
1689 		.size = sizeof(compat_elf_greg_t),
1690 		.align = sizeof(compat_elf_greg_t),
1691 		.regset_get = compat_gpr_get,
1692 		.set = compat_gpr_set
1693 	},
1694 	[REGSET_COMPAT_VFP] = {
1695 		.core_note_type = NT_ARM_VFP,
1696 		.n = VFP_STATE_SIZE / sizeof(compat_ulong_t),
1697 		.size = sizeof(compat_ulong_t),
1698 		.align = sizeof(compat_ulong_t),
1699 		.active = fpr_active,
1700 		.regset_get = compat_vfp_get,
1701 		.set = compat_vfp_set
1702 	},
1703 };
1704 
1705 static const struct user_regset_view user_aarch32_view = {
1706 	.name = "aarch32", .e_machine = EM_ARM,
1707 	.regsets = aarch32_regsets, .n = ARRAY_SIZE(aarch32_regsets)
1708 };
1709 
1710 static const struct user_regset aarch32_ptrace_regsets[] = {
1711 	[REGSET_GPR] = {
1712 		.core_note_type = NT_PRSTATUS,
1713 		.n = COMPAT_ELF_NGREG,
1714 		.size = sizeof(compat_elf_greg_t),
1715 		.align = sizeof(compat_elf_greg_t),
1716 		.regset_get = compat_gpr_get,
1717 		.set = compat_gpr_set
1718 	},
1719 	[REGSET_FPR] = {
1720 		.core_note_type = NT_ARM_VFP,
1721 		.n = VFP_STATE_SIZE / sizeof(compat_ulong_t),
1722 		.size = sizeof(compat_ulong_t),
1723 		.align = sizeof(compat_ulong_t),
1724 		.regset_get = compat_vfp_get,
1725 		.set = compat_vfp_set
1726 	},
1727 	[REGSET_TLS] = {
1728 		.core_note_type = NT_ARM_TLS,
1729 		.n = 1,
1730 		.size = sizeof(compat_ulong_t),
1731 		.align = sizeof(compat_ulong_t),
1732 		.regset_get = compat_tls_get,
1733 		.set = compat_tls_set,
1734 	},
1735 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1736 	[REGSET_HW_BREAK] = {
1737 		.core_note_type = NT_ARM_HW_BREAK,
1738 		.n = sizeof(struct user_hwdebug_state) / sizeof(u32),
1739 		.size = sizeof(u32),
1740 		.align = sizeof(u32),
1741 		.regset_get = hw_break_get,
1742 		.set = hw_break_set,
1743 	},
1744 	[REGSET_HW_WATCH] = {
1745 		.core_note_type = NT_ARM_HW_WATCH,
1746 		.n = sizeof(struct user_hwdebug_state) / sizeof(u32),
1747 		.size = sizeof(u32),
1748 		.align = sizeof(u32),
1749 		.regset_get = hw_break_get,
1750 		.set = hw_break_set,
1751 	},
1752 #endif
1753 	[REGSET_SYSTEM_CALL] = {
1754 		.core_note_type = NT_ARM_SYSTEM_CALL,
1755 		.n = 1,
1756 		.size = sizeof(int),
1757 		.align = sizeof(int),
1758 		.regset_get = system_call_get,
1759 		.set = system_call_set,
1760 	},
1761 };
1762 
1763 static const struct user_regset_view user_aarch32_ptrace_view = {
1764 	.name = "aarch32", .e_machine = EM_ARM,
1765 	.regsets = aarch32_ptrace_regsets, .n = ARRAY_SIZE(aarch32_ptrace_regsets)
1766 };
1767 
compat_ptrace_read_user(struct task_struct * tsk,compat_ulong_t off,compat_ulong_t __user * ret)1768 static int compat_ptrace_read_user(struct task_struct *tsk, compat_ulong_t off,
1769 				   compat_ulong_t __user *ret)
1770 {
1771 	compat_ulong_t tmp;
1772 
1773 	if (off & 3)
1774 		return -EIO;
1775 
1776 	if (off == COMPAT_PT_TEXT_ADDR)
1777 		tmp = tsk->mm->start_code;
1778 	else if (off == COMPAT_PT_DATA_ADDR)
1779 		tmp = tsk->mm->start_data;
1780 	else if (off == COMPAT_PT_TEXT_END_ADDR)
1781 		tmp = tsk->mm->end_code;
1782 	else if (off < sizeof(compat_elf_gregset_t))
1783 		tmp = compat_get_user_reg(tsk, off >> 2);
1784 	else if (off >= COMPAT_USER_SZ)
1785 		return -EIO;
1786 	else
1787 		tmp = 0;
1788 
1789 	return put_user(tmp, ret);
1790 }
1791 
compat_ptrace_write_user(struct task_struct * tsk,compat_ulong_t off,compat_ulong_t val)1792 static int compat_ptrace_write_user(struct task_struct *tsk, compat_ulong_t off,
1793 				    compat_ulong_t val)
1794 {
1795 	struct pt_regs newregs = *task_pt_regs(tsk);
1796 	unsigned int idx = off / 4;
1797 
1798 	if (off & 3 || off >= COMPAT_USER_SZ)
1799 		return -EIO;
1800 
1801 	if (off >= sizeof(compat_elf_gregset_t))
1802 		return 0;
1803 
1804 	switch (idx) {
1805 	case 15:
1806 		newregs.pc = val;
1807 		break;
1808 	case 16:
1809 		newregs.pstate = compat_psr_to_pstate(val);
1810 		break;
1811 	case 17:
1812 		newregs.orig_x0 = val;
1813 		break;
1814 	default:
1815 		newregs.regs[idx] = val;
1816 	}
1817 
1818 	if (!valid_user_regs(&newregs.user_regs, tsk))
1819 		return -EINVAL;
1820 
1821 	*task_pt_regs(tsk) = newregs;
1822 	return 0;
1823 }
1824 
1825 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1826 
1827 /*
1828  * Convert a virtual register number into an index for a thread_info
1829  * breakpoint array. Breakpoints are identified using positive numbers
1830  * whilst watchpoints are negative. The registers are laid out as pairs
1831  * of (address, control), each pair mapping to a unique hw_breakpoint struct.
1832  * Register 0 is reserved for describing resource information.
1833  */
compat_ptrace_hbp_num_to_idx(compat_long_t num)1834 static int compat_ptrace_hbp_num_to_idx(compat_long_t num)
1835 {
1836 	return (abs(num) - 1) >> 1;
1837 }
1838 
compat_ptrace_hbp_get_resource_info(u32 * kdata)1839 static int compat_ptrace_hbp_get_resource_info(u32 *kdata)
1840 {
1841 	u8 num_brps, num_wrps, debug_arch, wp_len;
1842 	u32 reg = 0;
1843 
1844 	num_brps	= hw_breakpoint_slots(TYPE_INST);
1845 	num_wrps	= hw_breakpoint_slots(TYPE_DATA);
1846 
1847 	debug_arch	= debug_monitors_arch();
1848 	wp_len		= 8;
1849 	reg		|= debug_arch;
1850 	reg		<<= 8;
1851 	reg		|= wp_len;
1852 	reg		<<= 8;
1853 	reg		|= num_wrps;
1854 	reg		<<= 8;
1855 	reg		|= num_brps;
1856 
1857 	*kdata = reg;
1858 	return 0;
1859 }
1860 
compat_ptrace_hbp_get(unsigned int note_type,struct task_struct * tsk,compat_long_t num,u32 * kdata)1861 static int compat_ptrace_hbp_get(unsigned int note_type,
1862 				 struct task_struct *tsk,
1863 				 compat_long_t num,
1864 				 u32 *kdata)
1865 {
1866 	u64 addr = 0;
1867 	u32 ctrl = 0;
1868 
1869 	int err, idx = compat_ptrace_hbp_num_to_idx(num);
1870 
1871 	if (num & 1) {
1872 		err = ptrace_hbp_get_addr(note_type, tsk, idx, &addr);
1873 		*kdata = (u32)addr;
1874 	} else {
1875 		err = ptrace_hbp_get_ctrl(note_type, tsk, idx, &ctrl);
1876 		*kdata = ctrl;
1877 	}
1878 
1879 	return err;
1880 }
1881 
compat_ptrace_hbp_set(unsigned int note_type,struct task_struct * tsk,compat_long_t num,u32 * kdata)1882 static int compat_ptrace_hbp_set(unsigned int note_type,
1883 				 struct task_struct *tsk,
1884 				 compat_long_t num,
1885 				 u32 *kdata)
1886 {
1887 	u64 addr;
1888 	u32 ctrl;
1889 
1890 	int err, idx = compat_ptrace_hbp_num_to_idx(num);
1891 
1892 	if (num & 1) {
1893 		addr = *kdata;
1894 		err = ptrace_hbp_set_addr(note_type, tsk, idx, addr);
1895 	} else {
1896 		ctrl = *kdata;
1897 		err = ptrace_hbp_set_ctrl(note_type, tsk, idx, ctrl);
1898 	}
1899 
1900 	return err;
1901 }
1902 
compat_ptrace_gethbpregs(struct task_struct * tsk,compat_long_t num,compat_ulong_t __user * data)1903 static int compat_ptrace_gethbpregs(struct task_struct *tsk, compat_long_t num,
1904 				    compat_ulong_t __user *data)
1905 {
1906 	int ret;
1907 	u32 kdata;
1908 
1909 	/* Watchpoint */
1910 	if (num < 0) {
1911 		ret = compat_ptrace_hbp_get(NT_ARM_HW_WATCH, tsk, num, &kdata);
1912 	/* Resource info */
1913 	} else if (num == 0) {
1914 		ret = compat_ptrace_hbp_get_resource_info(&kdata);
1915 	/* Breakpoint */
1916 	} else {
1917 		ret = compat_ptrace_hbp_get(NT_ARM_HW_BREAK, tsk, num, &kdata);
1918 	}
1919 
1920 	if (!ret)
1921 		ret = put_user(kdata, data);
1922 
1923 	return ret;
1924 }
1925 
compat_ptrace_sethbpregs(struct task_struct * tsk,compat_long_t num,compat_ulong_t __user * data)1926 static int compat_ptrace_sethbpregs(struct task_struct *tsk, compat_long_t num,
1927 				    compat_ulong_t __user *data)
1928 {
1929 	int ret;
1930 	u32 kdata = 0;
1931 
1932 	if (num == 0)
1933 		return 0;
1934 
1935 	ret = get_user(kdata, data);
1936 	if (ret)
1937 		return ret;
1938 
1939 	if (num < 0)
1940 		ret = compat_ptrace_hbp_set(NT_ARM_HW_WATCH, tsk, num, &kdata);
1941 	else
1942 		ret = compat_ptrace_hbp_set(NT_ARM_HW_BREAK, tsk, num, &kdata);
1943 
1944 	return ret;
1945 }
1946 #endif	/* CONFIG_HAVE_HW_BREAKPOINT */
1947 
compat_arch_ptrace(struct task_struct * child,compat_long_t request,compat_ulong_t caddr,compat_ulong_t cdata)1948 long compat_arch_ptrace(struct task_struct *child, compat_long_t request,
1949 			compat_ulong_t caddr, compat_ulong_t cdata)
1950 {
1951 	unsigned long addr = caddr;
1952 	unsigned long data = cdata;
1953 	void __user *datap = compat_ptr(data);
1954 	int ret;
1955 
1956 	switch (request) {
1957 		case PTRACE_PEEKUSR:
1958 			ret = compat_ptrace_read_user(child, addr, datap);
1959 			break;
1960 
1961 		case PTRACE_POKEUSR:
1962 			ret = compat_ptrace_write_user(child, addr, data);
1963 			break;
1964 
1965 		case COMPAT_PTRACE_GETREGS:
1966 			ret = copy_regset_to_user(child,
1967 						  &user_aarch32_view,
1968 						  REGSET_COMPAT_GPR,
1969 						  0, sizeof(compat_elf_gregset_t),
1970 						  datap);
1971 			break;
1972 
1973 		case COMPAT_PTRACE_SETREGS:
1974 			ret = copy_regset_from_user(child,
1975 						    &user_aarch32_view,
1976 						    REGSET_COMPAT_GPR,
1977 						    0, sizeof(compat_elf_gregset_t),
1978 						    datap);
1979 			break;
1980 
1981 		case COMPAT_PTRACE_GET_THREAD_AREA:
1982 			ret = put_user((compat_ulong_t)child->thread.uw.tp_value,
1983 				       (compat_ulong_t __user *)datap);
1984 			break;
1985 
1986 		case COMPAT_PTRACE_SET_SYSCALL:
1987 			task_pt_regs(child)->syscallno = data;
1988 			ret = 0;
1989 			break;
1990 
1991 		case COMPAT_PTRACE_GETVFPREGS:
1992 			ret = copy_regset_to_user(child,
1993 						  &user_aarch32_view,
1994 						  REGSET_COMPAT_VFP,
1995 						  0, VFP_STATE_SIZE,
1996 						  datap);
1997 			break;
1998 
1999 		case COMPAT_PTRACE_SETVFPREGS:
2000 			ret = copy_regset_from_user(child,
2001 						    &user_aarch32_view,
2002 						    REGSET_COMPAT_VFP,
2003 						    0, VFP_STATE_SIZE,
2004 						    datap);
2005 			break;
2006 
2007 #ifdef CONFIG_HAVE_HW_BREAKPOINT
2008 		case COMPAT_PTRACE_GETHBPREGS:
2009 			ret = compat_ptrace_gethbpregs(child, addr, datap);
2010 			break;
2011 
2012 		case COMPAT_PTRACE_SETHBPREGS:
2013 			ret = compat_ptrace_sethbpregs(child, addr, datap);
2014 			break;
2015 #endif
2016 
2017 		default:
2018 			ret = compat_ptrace_request(child, request, addr,
2019 						    data);
2020 			break;
2021 	}
2022 
2023 	return ret;
2024 }
2025 #endif /* CONFIG_COMPAT */
2026 
task_user_regset_view(struct task_struct * task)2027 const struct user_regset_view *task_user_regset_view(struct task_struct *task)
2028 {
2029 #ifdef CONFIG_COMPAT
2030 	/*
2031 	 * Core dumping of 32-bit tasks or compat ptrace requests must use the
2032 	 * user_aarch32_view compatible with arm32. Native ptrace requests on
2033 	 * 32-bit children use an extended user_aarch32_ptrace_view to allow
2034 	 * access to the TLS register.
2035 	 */
2036 	if (is_compat_task())
2037 		return &user_aarch32_view;
2038 	else if (is_compat_thread(task_thread_info(task)))
2039 		return &user_aarch32_ptrace_view;
2040 #endif
2041 	return &user_aarch64_view;
2042 }
2043 
arch_ptrace(struct task_struct * child,long request,unsigned long addr,unsigned long data)2044 long arch_ptrace(struct task_struct *child, long request,
2045 		 unsigned long addr, unsigned long data)
2046 {
2047 	switch (request) {
2048 	case PTRACE_PEEKMTETAGS:
2049 	case PTRACE_POKEMTETAGS:
2050 		return mte_ptrace_copy_tags(child, request, addr, data);
2051 	}
2052 
2053 	return ptrace_request(child, request, addr, data);
2054 }
2055 
2056 enum ptrace_syscall_dir {
2057 	PTRACE_SYSCALL_ENTER = 0,
2058 	PTRACE_SYSCALL_EXIT,
2059 };
2060 
tracehook_report_syscall(struct pt_regs * regs,enum ptrace_syscall_dir dir)2061 static void tracehook_report_syscall(struct pt_regs *regs,
2062 				     enum ptrace_syscall_dir dir)
2063 {
2064 	int regno;
2065 	unsigned long saved_reg;
2066 
2067 	/*
2068 	 * We have some ABI weirdness here in the way that we handle syscall
2069 	 * exit stops because we indicate whether or not the stop has been
2070 	 * signalled from syscall entry or syscall exit by clobbering a general
2071 	 * purpose register (ip/r12 for AArch32, x7 for AArch64) in the tracee
2072 	 * and restoring its old value after the stop. This means that:
2073 	 *
2074 	 * - Any writes by the tracer to this register during the stop are
2075 	 *   ignored/discarded.
2076 	 *
2077 	 * - The actual value of the register is not available during the stop,
2078 	 *   so the tracer cannot save it and restore it later.
2079 	 *
2080 	 * - Syscall stops behave differently to seccomp and pseudo-step traps
2081 	 *   (the latter do not nobble any registers).
2082 	 */
2083 	regno = (is_compat_task() ? 12 : 7);
2084 	saved_reg = regs->regs[regno];
2085 	regs->regs[regno] = dir;
2086 
2087 	if (dir == PTRACE_SYSCALL_ENTER) {
2088 		if (tracehook_report_syscall_entry(regs))
2089 			forget_syscall(regs);
2090 		regs->regs[regno] = saved_reg;
2091 	} else if (!test_thread_flag(TIF_SINGLESTEP)) {
2092 		tracehook_report_syscall_exit(regs, 0);
2093 		regs->regs[regno] = saved_reg;
2094 	} else {
2095 		regs->regs[regno] = saved_reg;
2096 
2097 		/*
2098 		 * Signal a pseudo-step exception since we are stepping but
2099 		 * tracer modifications to the registers may have rewound the
2100 		 * state machine.
2101 		 */
2102 		tracehook_report_syscall_exit(regs, 1);
2103 	}
2104 }
2105 
syscall_trace_enter(struct pt_regs * regs)2106 int syscall_trace_enter(struct pt_regs *regs)
2107 {
2108 	unsigned long flags = READ_ONCE(current_thread_info()->flags);
2109 
2110 	if (flags & (_TIF_SYSCALL_EMU | _TIF_SYSCALL_TRACE)) {
2111 		tracehook_report_syscall(regs, PTRACE_SYSCALL_ENTER);
2112 		if (flags & _TIF_SYSCALL_EMU)
2113 			return NO_SYSCALL;
2114 	}
2115 
2116 	/* Do the secure computing after ptrace; failures should be fast. */
2117 	if (secure_computing() == -1)
2118 		return NO_SYSCALL;
2119 
2120 	if (test_thread_flag(TIF_SYSCALL_TRACEPOINT))
2121 		trace_sys_enter(regs, regs->syscallno);
2122 
2123 	audit_syscall_entry(regs->syscallno, regs->orig_x0, regs->regs[1],
2124 			    regs->regs[2], regs->regs[3]);
2125 
2126 	return regs->syscallno;
2127 }
2128 
syscall_trace_exit(struct pt_regs * regs)2129 void syscall_trace_exit(struct pt_regs *regs)
2130 {
2131 	unsigned long flags = READ_ONCE(current_thread_info()->flags);
2132 
2133 	audit_syscall_exit(regs);
2134 
2135 	if (flags & _TIF_SYSCALL_TRACEPOINT)
2136 		trace_sys_exit(regs, syscall_get_return_value(current, regs));
2137 
2138 	if (flags & (_TIF_SYSCALL_TRACE | _TIF_SINGLESTEP))
2139 		tracehook_report_syscall(regs, PTRACE_SYSCALL_EXIT);
2140 
2141 	rseq_syscall(regs);
2142 }
2143 
2144 /*
2145  * SPSR_ELx bits which are always architecturally RES0 per ARM DDI 0487D.a.
2146  * We permit userspace to set SSBS (AArch64 bit 12, AArch32 bit 23) which is
2147  * not described in ARM DDI 0487D.a.
2148  * We treat PAN and UAO as RES0 bits, as they are meaningless at EL0, and may
2149  * be allocated an EL0 meaning in future.
2150  * Userspace cannot use these until they have an architectural meaning.
2151  * Note that this follows the SPSR_ELx format, not the AArch32 PSR format.
2152  * We also reserve IL for the kernel; SS is handled dynamically.
2153  */
2154 #define SPSR_EL1_AARCH64_RES0_BITS \
2155 	(GENMASK_ULL(63, 32) | GENMASK_ULL(27, 26) | GENMASK_ULL(23, 22) | \
2156 	 GENMASK_ULL(20, 13) | GENMASK_ULL(5, 5))
2157 #define SPSR_EL1_AARCH32_RES0_BITS \
2158 	(GENMASK_ULL(63, 32) | GENMASK_ULL(22, 22) | GENMASK_ULL(20, 20))
2159 
valid_compat_regs(struct user_pt_regs * regs)2160 static int valid_compat_regs(struct user_pt_regs *regs)
2161 {
2162 	regs->pstate &= ~SPSR_EL1_AARCH32_RES0_BITS;
2163 
2164 	if (!system_supports_mixed_endian_el0()) {
2165 		if (IS_ENABLED(CONFIG_CPU_BIG_ENDIAN))
2166 			regs->pstate |= PSR_AA32_E_BIT;
2167 		else
2168 			regs->pstate &= ~PSR_AA32_E_BIT;
2169 	}
2170 
2171 	if (user_mode(regs) && (regs->pstate & PSR_MODE32_BIT) &&
2172 	    (regs->pstate & PSR_AA32_A_BIT) == 0 &&
2173 	    (regs->pstate & PSR_AA32_I_BIT) == 0 &&
2174 	    (regs->pstate & PSR_AA32_F_BIT) == 0) {
2175 		return 1;
2176 	}
2177 
2178 	/*
2179 	 * Force PSR to a valid 32-bit EL0t, preserving the same bits as
2180 	 * arch/arm.
2181 	 */
2182 	regs->pstate &= PSR_AA32_N_BIT | PSR_AA32_Z_BIT |
2183 			PSR_AA32_C_BIT | PSR_AA32_V_BIT |
2184 			PSR_AA32_Q_BIT | PSR_AA32_IT_MASK |
2185 			PSR_AA32_GE_MASK | PSR_AA32_E_BIT |
2186 			PSR_AA32_T_BIT;
2187 	regs->pstate |= PSR_MODE32_BIT;
2188 
2189 	return 0;
2190 }
2191 
valid_native_regs(struct user_pt_regs * regs)2192 static int valid_native_regs(struct user_pt_regs *regs)
2193 {
2194 	regs->pstate &= ~SPSR_EL1_AARCH64_RES0_BITS;
2195 
2196 	if (user_mode(regs) && !(regs->pstate & PSR_MODE32_BIT) &&
2197 	    (regs->pstate & PSR_D_BIT) == 0 &&
2198 	    (regs->pstate & PSR_A_BIT) == 0 &&
2199 	    (regs->pstate & PSR_I_BIT) == 0 &&
2200 	    (regs->pstate & PSR_F_BIT) == 0) {
2201 		return 1;
2202 	}
2203 
2204 	/* Force PSR to a valid 64-bit EL0t */
2205 	regs->pstate &= PSR_N_BIT | PSR_Z_BIT | PSR_C_BIT | PSR_V_BIT;
2206 
2207 	return 0;
2208 }
2209 
2210 /*
2211  * Are the current registers suitable for user mode? (used to maintain
2212  * security in signal handlers)
2213  */
valid_user_regs(struct user_pt_regs * regs,struct task_struct * task)2214 int valid_user_regs(struct user_pt_regs *regs, struct task_struct *task)
2215 {
2216 	/* https://lore.kernel.org/lkml/20191118131525.GA4180@willie-the-truck */
2217 	user_regs_reset_single_step(regs, task);
2218 
2219 	if (is_compat_thread(task_thread_info(task)))
2220 		return valid_compat_regs(regs);
2221 	else
2222 		return valid_native_regs(regs);
2223 }
2224