• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *	Routines having to do with the 'struct sk_buff' memory handlers.
4  *
5  *	Authors:	Alan Cox <alan@lxorguk.ukuu.org.uk>
6  *			Florian La Roche <rzsfl@rz.uni-sb.de>
7  *
8  *	Fixes:
9  *		Alan Cox	:	Fixed the worst of the load
10  *					balancer bugs.
11  *		Dave Platt	:	Interrupt stacking fix.
12  *	Richard Kooijman	:	Timestamp fixes.
13  *		Alan Cox	:	Changed buffer format.
14  *		Alan Cox	:	destructor hook for AF_UNIX etc.
15  *		Linus Torvalds	:	Better skb_clone.
16  *		Alan Cox	:	Added skb_copy.
17  *		Alan Cox	:	Added all the changed routines Linus
18  *					only put in the headers
19  *		Ray VanTassle	:	Fixed --skb->lock in free
20  *		Alan Cox	:	skb_copy copy arp field
21  *		Andi Kleen	:	slabified it.
22  *		Robert Olsson	:	Removed skb_head_pool
23  *
24  *	NOTE:
25  *		The __skb_ routines should be called with interrupts
26  *	disabled, or you better be *real* sure that the operation is atomic
27  *	with respect to whatever list is being frobbed (e.g. via lock_sock()
28  *	or via disabling bottom half handlers, etc).
29  */
30 
31 /*
32  *	The functions in this file will not compile correctly with gcc 2.4.x
33  */
34 
35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
36 
37 #include <linux/module.h>
38 #include <linux/types.h>
39 #include <linux/kernel.h>
40 #include <linux/mm.h>
41 #include <linux/interrupt.h>
42 #include <linux/in.h>
43 #include <linux/inet.h>
44 #include <linux/slab.h>
45 #include <linux/tcp.h>
46 #include <linux/udp.h>
47 #include <linux/sctp.h>
48 #include <linux/netdevice.h>
49 #ifdef CONFIG_NET_CLS_ACT
50 #include <net/pkt_sched.h>
51 #endif
52 #include <linux/string.h>
53 #include <linux/skbuff.h>
54 #include <linux/splice.h>
55 #include <linux/cache.h>
56 #include <linux/rtnetlink.h>
57 #include <linux/init.h>
58 #include <linux/scatterlist.h>
59 #include <linux/errqueue.h>
60 #include <linux/prefetch.h>
61 #include <linux/if_vlan.h>
62 #include <linux/mpls.h>
63 #include <linux/kcov.h>
64 
65 #include <net/protocol.h>
66 #include <net/dst.h>
67 #include <net/sock.h>
68 #include <net/checksum.h>
69 #include <net/ip6_checksum.h>
70 #include <net/xfrm.h>
71 #include <net/mpls.h>
72 #include <net/mptcp.h>
73 #include <net/page_pool.h>
74 
75 #include <linux/uaccess.h>
76 #include <trace/events/skb.h>
77 #include <linux/highmem.h>
78 #include <linux/capability.h>
79 #include <linux/user_namespace.h>
80 #include <linux/indirect_call_wrapper.h>
81 #include <trace/hooks/net.h>
82 
83 #include "datagram.h"
84 #include "sock_destructor.h"
85 
86 struct kmem_cache *skbuff_head_cache __ro_after_init;
87 static struct kmem_cache *skbuff_fclone_cache __ro_after_init;
88 #ifdef CONFIG_SKB_EXTENSIONS
89 static struct kmem_cache *skbuff_ext_cache __ro_after_init;
90 #endif
91 int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS;
92 EXPORT_SYMBOL(sysctl_max_skb_frags);
93 
94 /**
95  *	skb_panic - private function for out-of-line support
96  *	@skb:	buffer
97  *	@sz:	size
98  *	@addr:	address
99  *	@msg:	skb_over_panic or skb_under_panic
100  *
101  *	Out-of-line support for skb_put() and skb_push().
102  *	Called via the wrapper skb_over_panic() or skb_under_panic().
103  *	Keep out of line to prevent kernel bloat.
104  *	__builtin_return_address is not used because it is not always reliable.
105  */
skb_panic(struct sk_buff * skb,unsigned int sz,void * addr,const char msg[])106 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr,
107 		      const char msg[])
108 {
109 	pr_emerg("%s: text:%px len:%d put:%d head:%px data:%px tail:%#lx end:%#lx dev:%s\n",
110 		 msg, addr, skb->len, sz, skb->head, skb->data,
111 		 (unsigned long)skb->tail, (unsigned long)skb->end,
112 		 skb->dev ? skb->dev->name : "<NULL>");
113 	BUG();
114 }
115 
skb_over_panic(struct sk_buff * skb,unsigned int sz,void * addr)116 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr)
117 {
118 	skb_panic(skb, sz, addr, __func__);
119 }
120 
skb_under_panic(struct sk_buff * skb,unsigned int sz,void * addr)121 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr)
122 {
123 	skb_panic(skb, sz, addr, __func__);
124 }
125 
126 #define NAPI_SKB_CACHE_SIZE	64
127 #define NAPI_SKB_CACHE_BULK	16
128 #define NAPI_SKB_CACHE_HALF	(NAPI_SKB_CACHE_SIZE / 2)
129 
130 struct napi_alloc_cache {
131 	struct page_frag_cache page;
132 	unsigned int skb_count;
133 	void *skb_cache[NAPI_SKB_CACHE_SIZE];
134 };
135 
136 static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache);
137 static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache);
138 
__alloc_frag_align(unsigned int fragsz,gfp_t gfp_mask,unsigned int align_mask)139 static void *__alloc_frag_align(unsigned int fragsz, gfp_t gfp_mask,
140 				unsigned int align_mask)
141 {
142 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
143 
144 	return page_frag_alloc_align(&nc->page, fragsz, gfp_mask, align_mask);
145 }
146 
__napi_alloc_frag_align(unsigned int fragsz,unsigned int align_mask)147 void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask)
148 {
149 	fragsz = SKB_DATA_ALIGN(fragsz);
150 
151 	return __alloc_frag_align(fragsz, GFP_ATOMIC, align_mask);
152 }
153 EXPORT_SYMBOL(__napi_alloc_frag_align);
154 
__netdev_alloc_frag_align(unsigned int fragsz,unsigned int align_mask)155 void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask)
156 {
157 	struct page_frag_cache *nc;
158 	void *data;
159 
160 	fragsz = SKB_DATA_ALIGN(fragsz);
161 	if (in_hardirq() || irqs_disabled()) {
162 		nc = this_cpu_ptr(&netdev_alloc_cache);
163 		data = page_frag_alloc_align(nc, fragsz, GFP_ATOMIC, align_mask);
164 	} else {
165 		local_bh_disable();
166 		data = __alloc_frag_align(fragsz, GFP_ATOMIC, align_mask);
167 		local_bh_enable();
168 	}
169 	return data;
170 }
171 EXPORT_SYMBOL(__netdev_alloc_frag_align);
172 
napi_skb_cache_get(void)173 static struct sk_buff *napi_skb_cache_get(void)
174 {
175 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
176 	struct sk_buff *skb;
177 
178 	if (unlikely(!nc->skb_count))
179 		nc->skb_count = kmem_cache_alloc_bulk(skbuff_head_cache,
180 						      GFP_ATOMIC,
181 						      NAPI_SKB_CACHE_BULK,
182 						      nc->skb_cache);
183 	if (unlikely(!nc->skb_count))
184 		return NULL;
185 
186 	skb = nc->skb_cache[--nc->skb_count];
187 	kasan_unpoison_object_data(skbuff_head_cache, skb);
188 
189 	return skb;
190 }
191 
192 /* Caller must provide SKB that is memset cleared */
__build_skb_around(struct sk_buff * skb,void * data,unsigned int frag_size)193 static void __build_skb_around(struct sk_buff *skb, void *data,
194 			       unsigned int frag_size)
195 {
196 	struct skb_shared_info *shinfo;
197 	unsigned int size = frag_size ? : ksize(data);
198 
199 	size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
200 
201 	/* Assumes caller memset cleared SKB */
202 	skb->truesize = SKB_TRUESIZE(size);
203 	refcount_set(&skb->users, 1);
204 	skb->head = data;
205 	skb->data = data;
206 	skb_reset_tail_pointer(skb);
207 	skb_set_end_offset(skb, size);
208 	skb->mac_header = (typeof(skb->mac_header))~0U;
209 	skb->transport_header = (typeof(skb->transport_header))~0U;
210 
211 	/* make sure we initialize shinfo sequentially */
212 	shinfo = skb_shinfo(skb);
213 	memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
214 	atomic_set(&shinfo->dataref, 1);
215 
216 	skb_set_kcov_handle(skb, kcov_common_handle());
217 }
218 
219 /**
220  * __build_skb - build a network buffer
221  * @data: data buffer provided by caller
222  * @frag_size: size of data, or 0 if head was kmalloced
223  *
224  * Allocate a new &sk_buff. Caller provides space holding head and
225  * skb_shared_info. @data must have been allocated by kmalloc() only if
226  * @frag_size is 0, otherwise data should come from the page allocator
227  *  or vmalloc()
228  * The return is the new skb buffer.
229  * On a failure the return is %NULL, and @data is not freed.
230  * Notes :
231  *  Before IO, driver allocates only data buffer where NIC put incoming frame
232  *  Driver should add room at head (NET_SKB_PAD) and
233  *  MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
234  *  After IO, driver calls build_skb(), to allocate sk_buff and populate it
235  *  before giving packet to stack.
236  *  RX rings only contains data buffers, not full skbs.
237  */
__build_skb(void * data,unsigned int frag_size)238 struct sk_buff *__build_skb(void *data, unsigned int frag_size)
239 {
240 	struct sk_buff *skb;
241 
242 	skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC);
243 	if (unlikely(!skb))
244 		return NULL;
245 
246 	memset(skb, 0, offsetof(struct sk_buff, tail));
247 	__build_skb_around(skb, data, frag_size);
248 
249 	return skb;
250 }
251 
252 /* build_skb() is wrapper over __build_skb(), that specifically
253  * takes care of skb->head and skb->pfmemalloc
254  * This means that if @frag_size is not zero, then @data must be backed
255  * by a page fragment, not kmalloc() or vmalloc()
256  */
build_skb(void * data,unsigned int frag_size)257 struct sk_buff *build_skb(void *data, unsigned int frag_size)
258 {
259 	struct sk_buff *skb = __build_skb(data, frag_size);
260 
261 	if (skb && frag_size) {
262 		skb->head_frag = 1;
263 		if (page_is_pfmemalloc(virt_to_head_page(data)))
264 			skb->pfmemalloc = 1;
265 	}
266 	return skb;
267 }
268 EXPORT_SYMBOL(build_skb);
269 
270 /**
271  * build_skb_around - build a network buffer around provided skb
272  * @skb: sk_buff provide by caller, must be memset cleared
273  * @data: data buffer provided by caller
274  * @frag_size: size of data, or 0 if head was kmalloced
275  */
build_skb_around(struct sk_buff * skb,void * data,unsigned int frag_size)276 struct sk_buff *build_skb_around(struct sk_buff *skb,
277 				 void *data, unsigned int frag_size)
278 {
279 	if (unlikely(!skb))
280 		return NULL;
281 
282 	__build_skb_around(skb, data, frag_size);
283 
284 	if (frag_size) {
285 		skb->head_frag = 1;
286 		if (page_is_pfmemalloc(virt_to_head_page(data)))
287 			skb->pfmemalloc = 1;
288 	}
289 	return skb;
290 }
291 EXPORT_SYMBOL(build_skb_around);
292 
293 /**
294  * __napi_build_skb - build a network buffer
295  * @data: data buffer provided by caller
296  * @frag_size: size of data, or 0 if head was kmalloced
297  *
298  * Version of __build_skb() that uses NAPI percpu caches to obtain
299  * skbuff_head instead of inplace allocation.
300  *
301  * Returns a new &sk_buff on success, %NULL on allocation failure.
302  */
__napi_build_skb(void * data,unsigned int frag_size)303 static struct sk_buff *__napi_build_skb(void *data, unsigned int frag_size)
304 {
305 	struct sk_buff *skb;
306 
307 	skb = napi_skb_cache_get();
308 	if (unlikely(!skb))
309 		return NULL;
310 
311 	memset(skb, 0, offsetof(struct sk_buff, tail));
312 	__build_skb_around(skb, data, frag_size);
313 
314 	return skb;
315 }
316 
317 /**
318  * napi_build_skb - build a network buffer
319  * @data: data buffer provided by caller
320  * @frag_size: size of data, or 0 if head was kmalloced
321  *
322  * Version of __napi_build_skb() that takes care of skb->head_frag
323  * and skb->pfmemalloc when the data is a page or page fragment.
324  *
325  * Returns a new &sk_buff on success, %NULL on allocation failure.
326  */
napi_build_skb(void * data,unsigned int frag_size)327 struct sk_buff *napi_build_skb(void *data, unsigned int frag_size)
328 {
329 	struct sk_buff *skb = __napi_build_skb(data, frag_size);
330 
331 	if (likely(skb) && frag_size) {
332 		skb->head_frag = 1;
333 		skb_propagate_pfmemalloc(virt_to_head_page(data), skb);
334 	}
335 
336 	return skb;
337 }
338 EXPORT_SYMBOL(napi_build_skb);
339 
340 /*
341  * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
342  * the caller if emergency pfmemalloc reserves are being used. If it is and
343  * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
344  * may be used. Otherwise, the packet data may be discarded until enough
345  * memory is free
346  */
kmalloc_reserve(size_t size,gfp_t flags,int node,bool * pfmemalloc)347 static void *kmalloc_reserve(size_t size, gfp_t flags, int node,
348 			     bool *pfmemalloc)
349 {
350 	void *obj;
351 	bool ret_pfmemalloc = false;
352 
353 	/*
354 	 * Try a regular allocation, when that fails and we're not entitled
355 	 * to the reserves, fail.
356 	 */
357 	obj = kmalloc_node_track_caller(size,
358 					flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
359 					node);
360 	if (obj || !(gfp_pfmemalloc_allowed(flags)))
361 		goto out;
362 
363 	/* Try again but now we are using pfmemalloc reserves */
364 	ret_pfmemalloc = true;
365 	obj = kmalloc_node_track_caller(size, flags, node);
366 
367 out:
368 	if (pfmemalloc)
369 		*pfmemalloc = ret_pfmemalloc;
370 
371 	return obj;
372 }
373 
374 /* 	Allocate a new skbuff. We do this ourselves so we can fill in a few
375  *	'private' fields and also do memory statistics to find all the
376  *	[BEEP] leaks.
377  *
378  */
379 
380 /**
381  *	__alloc_skb	-	allocate a network buffer
382  *	@size: size to allocate
383  *	@gfp_mask: allocation mask
384  *	@flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
385  *		instead of head cache and allocate a cloned (child) skb.
386  *		If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
387  *		allocations in case the data is required for writeback
388  *	@node: numa node to allocate memory on
389  *
390  *	Allocate a new &sk_buff. The returned buffer has no headroom and a
391  *	tail room of at least size bytes. The object has a reference count
392  *	of one. The return is the buffer. On a failure the return is %NULL.
393  *
394  *	Buffers may only be allocated from interrupts using a @gfp_mask of
395  *	%GFP_ATOMIC.
396  */
__alloc_skb(unsigned int size,gfp_t gfp_mask,int flags,int node)397 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
398 			    int flags, int node)
399 {
400 	struct kmem_cache *cache;
401 	struct sk_buff *skb;
402 	u8 *data;
403 	bool pfmemalloc;
404 
405 	cache = (flags & SKB_ALLOC_FCLONE)
406 		? skbuff_fclone_cache : skbuff_head_cache;
407 
408 	if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
409 		gfp_mask |= __GFP_MEMALLOC;
410 
411 	/* Get the HEAD */
412 	if ((flags & (SKB_ALLOC_FCLONE | SKB_ALLOC_NAPI)) == SKB_ALLOC_NAPI &&
413 	    likely(node == NUMA_NO_NODE || node == numa_mem_id()))
414 		skb = napi_skb_cache_get();
415 	else
416 		skb = kmem_cache_alloc_node(cache, gfp_mask & ~GFP_DMA, node);
417 	if (unlikely(!skb))
418 		return NULL;
419 	prefetchw(skb);
420 
421 	/* We do our best to align skb_shared_info on a separate cache
422 	 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
423 	 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
424 	 * Both skb->head and skb_shared_info are cache line aligned.
425 	 */
426 	size = SKB_DATA_ALIGN(size);
427 	size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
428 	data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc);
429 	if (unlikely(!data))
430 		goto nodata;
431 	/* kmalloc(size) might give us more room than requested.
432 	 * Put skb_shared_info exactly at the end of allocated zone,
433 	 * to allow max possible filling before reallocation.
434 	 */
435 	size = SKB_WITH_OVERHEAD(ksize(data));
436 	prefetchw(data + size);
437 
438 	/*
439 	 * Only clear those fields we need to clear, not those that we will
440 	 * actually initialise below. Hence, don't put any more fields after
441 	 * the tail pointer in struct sk_buff!
442 	 */
443 	memset(skb, 0, offsetof(struct sk_buff, tail));
444 	__build_skb_around(skb, data, 0);
445 	skb->pfmemalloc = pfmemalloc;
446 
447 	if (flags & SKB_ALLOC_FCLONE) {
448 		struct sk_buff_fclones *fclones;
449 
450 		fclones = container_of(skb, struct sk_buff_fclones, skb1);
451 
452 		skb->fclone = SKB_FCLONE_ORIG;
453 		refcount_set(&fclones->fclone_ref, 1);
454 
455 		fclones->skb2.fclone = SKB_FCLONE_CLONE;
456 	}
457 
458 	return skb;
459 
460 nodata:
461 	kmem_cache_free(cache, skb);
462 	return NULL;
463 }
464 EXPORT_SYMBOL(__alloc_skb);
465 
466 /**
467  *	__netdev_alloc_skb - allocate an skbuff for rx on a specific device
468  *	@dev: network device to receive on
469  *	@len: length to allocate
470  *	@gfp_mask: get_free_pages mask, passed to alloc_skb
471  *
472  *	Allocate a new &sk_buff and assign it a usage count of one. The
473  *	buffer has NET_SKB_PAD headroom built in. Users should allocate
474  *	the headroom they think they need without accounting for the
475  *	built in space. The built in space is used for optimisations.
476  *
477  *	%NULL is returned if there is no free memory.
478  */
__netdev_alloc_skb(struct net_device * dev,unsigned int len,gfp_t gfp_mask)479 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len,
480 				   gfp_t gfp_mask)
481 {
482 	struct page_frag_cache *nc;
483 	struct sk_buff *skb;
484 	bool pfmemalloc;
485 	void *data;
486 
487 	len += NET_SKB_PAD;
488 
489 	/* If requested length is either too small or too big,
490 	 * we use kmalloc() for skb->head allocation.
491 	 */
492 	if (len <= SKB_WITH_OVERHEAD(1024) ||
493 	    len > SKB_WITH_OVERHEAD(PAGE_SIZE) ||
494 	    (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
495 		skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
496 		if (!skb)
497 			goto skb_fail;
498 		goto skb_success;
499 	}
500 
501 	len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
502 	len = SKB_DATA_ALIGN(len);
503 
504 	if (sk_memalloc_socks())
505 		gfp_mask |= __GFP_MEMALLOC;
506 
507 	if (in_hardirq() || irqs_disabled()) {
508 		nc = this_cpu_ptr(&netdev_alloc_cache);
509 		data = page_frag_alloc(nc, len, gfp_mask);
510 		pfmemalloc = nc->pfmemalloc;
511 	} else {
512 		local_bh_disable();
513 		nc = this_cpu_ptr(&napi_alloc_cache.page);
514 		data = page_frag_alloc(nc, len, gfp_mask);
515 		pfmemalloc = nc->pfmemalloc;
516 		local_bh_enable();
517 	}
518 
519 	if (unlikely(!data))
520 		return NULL;
521 
522 	skb = __build_skb(data, len);
523 	if (unlikely(!skb)) {
524 		skb_free_frag(data);
525 		return NULL;
526 	}
527 
528 	if (pfmemalloc)
529 		skb->pfmemalloc = 1;
530 	skb->head_frag = 1;
531 
532 skb_success:
533 	skb_reserve(skb, NET_SKB_PAD);
534 	skb->dev = dev;
535 
536 skb_fail:
537 	return skb;
538 }
539 EXPORT_SYMBOL(__netdev_alloc_skb);
540 
541 /**
542  *	__napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance
543  *	@napi: napi instance this buffer was allocated for
544  *	@len: length to allocate
545  *	@gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages
546  *
547  *	Allocate a new sk_buff for use in NAPI receive.  This buffer will
548  *	attempt to allocate the head from a special reserved region used
549  *	only for NAPI Rx allocation.  By doing this we can save several
550  *	CPU cycles by avoiding having to disable and re-enable IRQs.
551  *
552  *	%NULL is returned if there is no free memory.
553  */
__napi_alloc_skb(struct napi_struct * napi,unsigned int len,gfp_t gfp_mask)554 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len,
555 				 gfp_t gfp_mask)
556 {
557 	struct napi_alloc_cache *nc;
558 	struct sk_buff *skb;
559 	void *data;
560 
561 	len += NET_SKB_PAD + NET_IP_ALIGN;
562 
563 	/* If requested length is either too small or too big,
564 	 * we use kmalloc() for skb->head allocation.
565 	 */
566 	if (len <= SKB_WITH_OVERHEAD(1024) ||
567 	    len > SKB_WITH_OVERHEAD(PAGE_SIZE) ||
568 	    (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
569 		skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX | SKB_ALLOC_NAPI,
570 				  NUMA_NO_NODE);
571 		if (!skb)
572 			goto skb_fail;
573 		goto skb_success;
574 	}
575 
576 	nc = this_cpu_ptr(&napi_alloc_cache);
577 	len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
578 	len = SKB_DATA_ALIGN(len);
579 
580 	if (sk_memalloc_socks())
581 		gfp_mask |= __GFP_MEMALLOC;
582 
583 	data = page_frag_alloc(&nc->page, len, gfp_mask);
584 	if (unlikely(!data))
585 		return NULL;
586 
587 	skb = __napi_build_skb(data, len);
588 	if (unlikely(!skb)) {
589 		skb_free_frag(data);
590 		return NULL;
591 	}
592 
593 	if (nc->page.pfmemalloc)
594 		skb->pfmemalloc = 1;
595 	skb->head_frag = 1;
596 
597 skb_success:
598 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN);
599 	skb->dev = napi->dev;
600 
601 skb_fail:
602 	return skb;
603 }
604 EXPORT_SYMBOL(__napi_alloc_skb);
605 
skb_add_rx_frag(struct sk_buff * skb,int i,struct page * page,int off,int size,unsigned int truesize)606 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
607 		     int size, unsigned int truesize)
608 {
609 	skb_fill_page_desc(skb, i, page, off, size);
610 	skb->len += size;
611 	skb->data_len += size;
612 	skb->truesize += truesize;
613 }
614 EXPORT_SYMBOL(skb_add_rx_frag);
615 
skb_coalesce_rx_frag(struct sk_buff * skb,int i,int size,unsigned int truesize)616 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
617 			  unsigned int truesize)
618 {
619 	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
620 
621 	skb_frag_size_add(frag, size);
622 	skb->len += size;
623 	skb->data_len += size;
624 	skb->truesize += truesize;
625 }
626 EXPORT_SYMBOL(skb_coalesce_rx_frag);
627 
skb_drop_list(struct sk_buff ** listp)628 static void skb_drop_list(struct sk_buff **listp)
629 {
630 	kfree_skb_list(*listp);
631 	*listp = NULL;
632 }
633 
skb_drop_fraglist(struct sk_buff * skb)634 static inline void skb_drop_fraglist(struct sk_buff *skb)
635 {
636 	skb_drop_list(&skb_shinfo(skb)->frag_list);
637 }
638 
skb_clone_fraglist(struct sk_buff * skb)639 static void skb_clone_fraglist(struct sk_buff *skb)
640 {
641 	struct sk_buff *list;
642 
643 	skb_walk_frags(skb, list)
644 		skb_get(list);
645 }
646 
skb_free_head(struct sk_buff * skb)647 static void skb_free_head(struct sk_buff *skb)
648 {
649 	unsigned char *head = skb->head;
650 
651 	if (skb->head_frag) {
652 		if (skb_pp_recycle(skb, head))
653 			return;
654 		skb_free_frag(head);
655 	} else {
656 		kfree(head);
657 	}
658 }
659 
skb_release_data(struct sk_buff * skb)660 static void skb_release_data(struct sk_buff *skb)
661 {
662 	struct skb_shared_info *shinfo = skb_shinfo(skb);
663 	int i;
664 
665 	if (skb->cloned &&
666 	    atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
667 			      &shinfo->dataref))
668 		goto exit;
669 
670 	skb_zcopy_clear(skb, true);
671 
672 	for (i = 0; i < shinfo->nr_frags; i++)
673 		__skb_frag_unref(&shinfo->frags[i], skb->pp_recycle);
674 
675 	if (shinfo->frag_list)
676 		kfree_skb_list(shinfo->frag_list);
677 
678 	skb_free_head(skb);
679 exit:
680 	/* When we clone an SKB we copy the reycling bit. The pp_recycle
681 	 * bit is only set on the head though, so in order to avoid races
682 	 * while trying to recycle fragments on __skb_frag_unref() we need
683 	 * to make one SKB responsible for triggering the recycle path.
684 	 * So disable the recycling bit if an SKB is cloned and we have
685 	 * additional references to to the fragmented part of the SKB.
686 	 * Eventually the last SKB will have the recycling bit set and it's
687 	 * dataref set to 0, which will trigger the recycling
688 	 */
689 	skb->pp_recycle = 0;
690 }
691 
692 /*
693  *	Free an skbuff by memory without cleaning the state.
694  */
kfree_skbmem(struct sk_buff * skb)695 static void kfree_skbmem(struct sk_buff *skb)
696 {
697 	struct sk_buff_fclones *fclones;
698 
699 	switch (skb->fclone) {
700 	case SKB_FCLONE_UNAVAILABLE:
701 		kmem_cache_free(skbuff_head_cache, skb);
702 		return;
703 
704 	case SKB_FCLONE_ORIG:
705 		fclones = container_of(skb, struct sk_buff_fclones, skb1);
706 
707 		/* We usually free the clone (TX completion) before original skb
708 		 * This test would have no chance to be true for the clone,
709 		 * while here, branch prediction will be good.
710 		 */
711 		if (refcount_read(&fclones->fclone_ref) == 1)
712 			goto fastpath;
713 		break;
714 
715 	default: /* SKB_FCLONE_CLONE */
716 		fclones = container_of(skb, struct sk_buff_fclones, skb2);
717 		break;
718 	}
719 	if (!refcount_dec_and_test(&fclones->fclone_ref))
720 		return;
721 fastpath:
722 	kmem_cache_free(skbuff_fclone_cache, fclones);
723 }
724 
skb_release_head_state(struct sk_buff * skb)725 void skb_release_head_state(struct sk_buff *skb)
726 {
727 	skb_dst_drop(skb);
728 	if (skb->destructor) {
729 		WARN_ON(in_hardirq());
730 		skb->destructor(skb);
731 	}
732 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
733 	nf_conntrack_put(skb_nfct(skb));
734 #endif
735 	skb_ext_put(skb);
736 }
737 
738 /* Free everything but the sk_buff shell. */
skb_release_all(struct sk_buff * skb)739 static void skb_release_all(struct sk_buff *skb)
740 {
741 	skb_release_head_state(skb);
742 	if (likely(skb->head))
743 		skb_release_data(skb);
744 }
745 
746 /**
747  *	__kfree_skb - private function
748  *	@skb: buffer
749  *
750  *	Free an sk_buff. Release anything attached to the buffer.
751  *	Clean the state. This is an internal helper function. Users should
752  *	always call kfree_skb
753  */
754 
__kfree_skb(struct sk_buff * skb)755 void __kfree_skb(struct sk_buff *skb)
756 {
757 	skb_release_all(skb);
758 	kfree_skbmem(skb);
759 }
760 EXPORT_SYMBOL(__kfree_skb);
761 
762 /**
763  *	kfree_skb_reason - free an sk_buff with special reason
764  *	@skb: buffer to free
765  *	@reason: reason why this skb is dropped
766  *
767  *	Drop a reference to the buffer and free it if the usage count has
768  *	hit zero. Meanwhile, pass the drop reason to 'kfree_skb'
769  *	tracepoint.
770  */
kfree_skb_reason(struct sk_buff * skb,enum skb_drop_reason reason)771 void kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason)
772 {
773 	if (!skb_unref(skb))
774 		return;
775 
776 	trace_android_vh_kfree_skb(skb);
777 	trace_kfree_skb(skb, __builtin_return_address(0), reason);
778 	__kfree_skb(skb);
779 }
780 EXPORT_SYMBOL(kfree_skb_reason);
781 
kfree_skb_list(struct sk_buff * segs)782 void kfree_skb_list(struct sk_buff *segs)
783 {
784 	while (segs) {
785 		struct sk_buff *next = segs->next;
786 
787 		kfree_skb(segs);
788 		segs = next;
789 	}
790 }
791 EXPORT_SYMBOL(kfree_skb_list);
792 
793 /* Dump skb information and contents.
794  *
795  * Must only be called from net_ratelimit()-ed paths.
796  *
797  * Dumps whole packets if full_pkt, only headers otherwise.
798  */
skb_dump(const char * level,const struct sk_buff * skb,bool full_pkt)799 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt)
800 {
801 	struct skb_shared_info *sh = skb_shinfo(skb);
802 	struct net_device *dev = skb->dev;
803 	struct sock *sk = skb->sk;
804 	struct sk_buff *list_skb;
805 	bool has_mac, has_trans;
806 	int headroom, tailroom;
807 	int i, len, seg_len;
808 
809 	if (full_pkt)
810 		len = skb->len;
811 	else
812 		len = min_t(int, skb->len, MAX_HEADER + 128);
813 
814 	headroom = skb_headroom(skb);
815 	tailroom = skb_tailroom(skb);
816 
817 	has_mac = skb_mac_header_was_set(skb);
818 	has_trans = skb_transport_header_was_set(skb);
819 
820 	printk("%sskb len=%u headroom=%u headlen=%u tailroom=%u\n"
821 	       "mac=(%d,%d) net=(%d,%d) trans=%d\n"
822 	       "shinfo(txflags=%u nr_frags=%u gso(size=%hu type=%u segs=%hu))\n"
823 	       "csum(0x%x ip_summed=%u complete_sw=%u valid=%u level=%u)\n"
824 	       "hash(0x%x sw=%u l4=%u) proto=0x%04x pkttype=%u iif=%d\n",
825 	       level, skb->len, headroom, skb_headlen(skb), tailroom,
826 	       has_mac ? skb->mac_header : -1,
827 	       has_mac ? skb_mac_header_len(skb) : -1,
828 	       skb->network_header,
829 	       has_trans ? skb_network_header_len(skb) : -1,
830 	       has_trans ? skb->transport_header : -1,
831 	       sh->tx_flags, sh->nr_frags,
832 	       sh->gso_size, sh->gso_type, sh->gso_segs,
833 	       skb->csum, skb->ip_summed, skb->csum_complete_sw,
834 	       skb->csum_valid, skb->csum_level,
835 	       skb->hash, skb->sw_hash, skb->l4_hash,
836 	       ntohs(skb->protocol), skb->pkt_type, skb->skb_iif);
837 
838 	if (dev)
839 		printk("%sdev name=%s feat=%pNF\n",
840 		       level, dev->name, &dev->features);
841 	if (sk)
842 		printk("%ssk family=%hu type=%u proto=%u\n",
843 		       level, sk->sk_family, sk->sk_type, sk->sk_protocol);
844 
845 	if (full_pkt && headroom)
846 		print_hex_dump(level, "skb headroom: ", DUMP_PREFIX_OFFSET,
847 			       16, 1, skb->head, headroom, false);
848 
849 	seg_len = min_t(int, skb_headlen(skb), len);
850 	if (seg_len)
851 		print_hex_dump(level, "skb linear:   ", DUMP_PREFIX_OFFSET,
852 			       16, 1, skb->data, seg_len, false);
853 	len -= seg_len;
854 
855 	if (full_pkt && tailroom)
856 		print_hex_dump(level, "skb tailroom: ", DUMP_PREFIX_OFFSET,
857 			       16, 1, skb_tail_pointer(skb), tailroom, false);
858 
859 	for (i = 0; len && i < skb_shinfo(skb)->nr_frags; i++) {
860 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
861 		u32 p_off, p_len, copied;
862 		struct page *p;
863 		u8 *vaddr;
864 
865 		skb_frag_foreach_page(frag, skb_frag_off(frag),
866 				      skb_frag_size(frag), p, p_off, p_len,
867 				      copied) {
868 			seg_len = min_t(int, p_len, len);
869 			vaddr = kmap_atomic(p);
870 			print_hex_dump(level, "skb frag:     ",
871 				       DUMP_PREFIX_OFFSET,
872 				       16, 1, vaddr + p_off, seg_len, false);
873 			kunmap_atomic(vaddr);
874 			len -= seg_len;
875 			if (!len)
876 				break;
877 		}
878 	}
879 
880 	if (full_pkt && skb_has_frag_list(skb)) {
881 		printk("skb fraglist:\n");
882 		skb_walk_frags(skb, list_skb)
883 			skb_dump(level, list_skb, true);
884 	}
885 }
886 EXPORT_SYMBOL(skb_dump);
887 
888 /**
889  *	skb_tx_error - report an sk_buff xmit error
890  *	@skb: buffer that triggered an error
891  *
892  *	Report xmit error if a device callback is tracking this skb.
893  *	skb must be freed afterwards.
894  */
skb_tx_error(struct sk_buff * skb)895 void skb_tx_error(struct sk_buff *skb)
896 {
897 	skb_zcopy_clear(skb, true);
898 }
899 EXPORT_SYMBOL(skb_tx_error);
900 
901 #ifdef CONFIG_TRACEPOINTS
902 /**
903  *	consume_skb - free an skbuff
904  *	@skb: buffer to free
905  *
906  *	Drop a ref to the buffer and free it if the usage count has hit zero
907  *	Functions identically to kfree_skb, but kfree_skb assumes that the frame
908  *	is being dropped after a failure and notes that
909  */
consume_skb(struct sk_buff * skb)910 void consume_skb(struct sk_buff *skb)
911 {
912 	if (!skb_unref(skb))
913 		return;
914 
915 	trace_consume_skb(skb);
916 	__kfree_skb(skb);
917 }
918 EXPORT_SYMBOL(consume_skb);
919 #endif
920 
921 /**
922  *	__consume_stateless_skb - free an skbuff, assuming it is stateless
923  *	@skb: buffer to free
924  *
925  *	Alike consume_skb(), but this variant assumes that this is the last
926  *	skb reference and all the head states have been already dropped
927  */
__consume_stateless_skb(struct sk_buff * skb)928 void __consume_stateless_skb(struct sk_buff *skb)
929 {
930 	trace_consume_skb(skb);
931 	skb_release_data(skb);
932 	kfree_skbmem(skb);
933 }
934 
napi_skb_cache_put(struct sk_buff * skb)935 static void napi_skb_cache_put(struct sk_buff *skb)
936 {
937 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
938 	u32 i;
939 
940 	kasan_poison_object_data(skbuff_head_cache, skb);
941 	nc->skb_cache[nc->skb_count++] = skb;
942 
943 	if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) {
944 		for (i = NAPI_SKB_CACHE_HALF; i < NAPI_SKB_CACHE_SIZE; i++)
945 			kasan_unpoison_object_data(skbuff_head_cache,
946 						   nc->skb_cache[i]);
947 
948 		kmem_cache_free_bulk(skbuff_head_cache, NAPI_SKB_CACHE_HALF,
949 				     nc->skb_cache + NAPI_SKB_CACHE_HALF);
950 		nc->skb_count = NAPI_SKB_CACHE_HALF;
951 	}
952 }
953 
__kfree_skb_defer(struct sk_buff * skb)954 void __kfree_skb_defer(struct sk_buff *skb)
955 {
956 	skb_release_all(skb);
957 	napi_skb_cache_put(skb);
958 }
959 
napi_skb_free_stolen_head(struct sk_buff * skb)960 void napi_skb_free_stolen_head(struct sk_buff *skb)
961 {
962 	if (unlikely(skb->slow_gro)) {
963 		nf_reset_ct(skb);
964 		skb_dst_drop(skb);
965 		skb_ext_put(skb);
966 		skb_orphan(skb);
967 		skb->slow_gro = 0;
968 	}
969 	napi_skb_cache_put(skb);
970 }
971 
napi_consume_skb(struct sk_buff * skb,int budget)972 void napi_consume_skb(struct sk_buff *skb, int budget)
973 {
974 	/* Zero budget indicate non-NAPI context called us, like netpoll */
975 	if (unlikely(!budget)) {
976 		dev_consume_skb_any(skb);
977 		return;
978 	}
979 
980 	lockdep_assert_in_softirq();
981 
982 	if (!skb_unref(skb))
983 		return;
984 
985 	/* if reaching here SKB is ready to free */
986 	trace_consume_skb(skb);
987 
988 	/* if SKB is a clone, don't handle this case */
989 	if (skb->fclone != SKB_FCLONE_UNAVAILABLE) {
990 		__kfree_skb(skb);
991 		return;
992 	}
993 
994 	skb_release_all(skb);
995 	napi_skb_cache_put(skb);
996 }
997 EXPORT_SYMBOL(napi_consume_skb);
998 
999 /* Make sure a field is enclosed inside headers_start/headers_end section */
1000 #define CHECK_SKB_FIELD(field) \
1001 	BUILD_BUG_ON(offsetof(struct sk_buff, field) <		\
1002 		     offsetof(struct sk_buff, headers_start));	\
1003 	BUILD_BUG_ON(offsetof(struct sk_buff, field) >		\
1004 		     offsetof(struct sk_buff, headers_end));	\
1005 
__copy_skb_header(struct sk_buff * new,const struct sk_buff * old)1006 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
1007 {
1008 	new->tstamp		= old->tstamp;
1009 	/* We do not copy old->sk */
1010 	new->dev		= old->dev;
1011 	memcpy(new->cb, old->cb, sizeof(old->cb));
1012 	skb_dst_copy(new, old);
1013 	__skb_ext_copy(new, old);
1014 	__nf_copy(new, old, false);
1015 
1016 	/* Note : this field could be in headers_start/headers_end section
1017 	 * It is not yet because we do not want to have a 16 bit hole
1018 	 */
1019 	new->queue_mapping = old->queue_mapping;
1020 
1021 	memcpy(&new->headers_start, &old->headers_start,
1022 	       offsetof(struct sk_buff, headers_end) -
1023 	       offsetof(struct sk_buff, headers_start));
1024 	CHECK_SKB_FIELD(protocol);
1025 	CHECK_SKB_FIELD(csum);
1026 	CHECK_SKB_FIELD(hash);
1027 	CHECK_SKB_FIELD(priority);
1028 	CHECK_SKB_FIELD(skb_iif);
1029 	CHECK_SKB_FIELD(vlan_proto);
1030 	CHECK_SKB_FIELD(vlan_tci);
1031 	CHECK_SKB_FIELD(transport_header);
1032 	CHECK_SKB_FIELD(network_header);
1033 	CHECK_SKB_FIELD(mac_header);
1034 	CHECK_SKB_FIELD(inner_protocol);
1035 	CHECK_SKB_FIELD(inner_transport_header);
1036 	CHECK_SKB_FIELD(inner_network_header);
1037 	CHECK_SKB_FIELD(inner_mac_header);
1038 	CHECK_SKB_FIELD(mark);
1039 #ifdef CONFIG_NETWORK_SECMARK
1040 	CHECK_SKB_FIELD(secmark);
1041 #endif
1042 #ifdef CONFIG_NET_RX_BUSY_POLL
1043 	CHECK_SKB_FIELD(napi_id);
1044 #endif
1045 #ifdef CONFIG_XPS
1046 	CHECK_SKB_FIELD(sender_cpu);
1047 #endif
1048 #ifdef CONFIG_NET_SCHED
1049 	CHECK_SKB_FIELD(tc_index);
1050 #endif
1051 
1052 }
1053 
1054 /*
1055  * You should not add any new code to this function.  Add it to
1056  * __copy_skb_header above instead.
1057  */
__skb_clone(struct sk_buff * n,struct sk_buff * skb)1058 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
1059 {
1060 #define C(x) n->x = skb->x
1061 
1062 	n->next = n->prev = NULL;
1063 	n->sk = NULL;
1064 	__copy_skb_header(n, skb);
1065 
1066 	C(len);
1067 	C(data_len);
1068 	C(mac_len);
1069 	n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
1070 	n->cloned = 1;
1071 	n->nohdr = 0;
1072 	n->peeked = 0;
1073 	C(pfmemalloc);
1074 	C(pp_recycle);
1075 	n->destructor = NULL;
1076 	C(tail);
1077 	C(end);
1078 	C(head);
1079 	C(head_frag);
1080 	C(data);
1081 	C(truesize);
1082 	refcount_set(&n->users, 1);
1083 
1084 	atomic_inc(&(skb_shinfo(skb)->dataref));
1085 	skb->cloned = 1;
1086 
1087 	return n;
1088 #undef C
1089 }
1090 
1091 /**
1092  * alloc_skb_for_msg() - allocate sk_buff to wrap frag list forming a msg
1093  * @first: first sk_buff of the msg
1094  */
alloc_skb_for_msg(struct sk_buff * first)1095 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first)
1096 {
1097 	struct sk_buff *n;
1098 
1099 	n = alloc_skb(0, GFP_ATOMIC);
1100 	if (!n)
1101 		return NULL;
1102 
1103 	n->len = first->len;
1104 	n->data_len = first->len;
1105 	n->truesize = first->truesize;
1106 
1107 	skb_shinfo(n)->frag_list = first;
1108 
1109 	__copy_skb_header(n, first);
1110 	n->destructor = NULL;
1111 
1112 	return n;
1113 }
1114 EXPORT_SYMBOL_GPL(alloc_skb_for_msg);
1115 
1116 /**
1117  *	skb_morph	-	morph one skb into another
1118  *	@dst: the skb to receive the contents
1119  *	@src: the skb to supply the contents
1120  *
1121  *	This is identical to skb_clone except that the target skb is
1122  *	supplied by the user.
1123  *
1124  *	The target skb is returned upon exit.
1125  */
skb_morph(struct sk_buff * dst,struct sk_buff * src)1126 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
1127 {
1128 	skb_release_all(dst);
1129 	return __skb_clone(dst, src);
1130 }
1131 EXPORT_SYMBOL_GPL(skb_morph);
1132 
mm_account_pinned_pages(struct mmpin * mmp,size_t size)1133 int mm_account_pinned_pages(struct mmpin *mmp, size_t size)
1134 {
1135 	unsigned long max_pg, num_pg, new_pg, old_pg;
1136 	struct user_struct *user;
1137 
1138 	if (capable(CAP_IPC_LOCK) || !size)
1139 		return 0;
1140 
1141 	num_pg = (size >> PAGE_SHIFT) + 2;	/* worst case */
1142 	max_pg = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
1143 	user = mmp->user ? : current_user();
1144 
1145 	do {
1146 		old_pg = atomic_long_read(&user->locked_vm);
1147 		new_pg = old_pg + num_pg;
1148 		if (new_pg > max_pg)
1149 			return -ENOBUFS;
1150 	} while (atomic_long_cmpxchg(&user->locked_vm, old_pg, new_pg) !=
1151 		 old_pg);
1152 
1153 	if (!mmp->user) {
1154 		mmp->user = get_uid(user);
1155 		mmp->num_pg = num_pg;
1156 	} else {
1157 		mmp->num_pg += num_pg;
1158 	}
1159 
1160 	return 0;
1161 }
1162 EXPORT_SYMBOL_GPL(mm_account_pinned_pages);
1163 
mm_unaccount_pinned_pages(struct mmpin * mmp)1164 void mm_unaccount_pinned_pages(struct mmpin *mmp)
1165 {
1166 	if (mmp->user) {
1167 		atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm);
1168 		free_uid(mmp->user);
1169 	}
1170 }
1171 EXPORT_SYMBOL_GPL(mm_unaccount_pinned_pages);
1172 
msg_zerocopy_alloc(struct sock * sk,size_t size)1173 struct ubuf_info *msg_zerocopy_alloc(struct sock *sk, size_t size)
1174 {
1175 	struct ubuf_info *uarg;
1176 	struct sk_buff *skb;
1177 
1178 	WARN_ON_ONCE(!in_task());
1179 
1180 	skb = sock_omalloc(sk, 0, GFP_KERNEL);
1181 	if (!skb)
1182 		return NULL;
1183 
1184 	BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb));
1185 	uarg = (void *)skb->cb;
1186 	uarg->mmp.user = NULL;
1187 
1188 	if (mm_account_pinned_pages(&uarg->mmp, size)) {
1189 		kfree_skb(skb);
1190 		return NULL;
1191 	}
1192 
1193 	uarg->callback = msg_zerocopy_callback;
1194 	uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1;
1195 	uarg->len = 1;
1196 	uarg->bytelen = size;
1197 	uarg->zerocopy = 1;
1198 	uarg->flags = SKBFL_ZEROCOPY_FRAG;
1199 	refcount_set(&uarg->refcnt, 1);
1200 	sock_hold(sk);
1201 
1202 	return uarg;
1203 }
1204 EXPORT_SYMBOL_GPL(msg_zerocopy_alloc);
1205 
skb_from_uarg(struct ubuf_info * uarg)1206 static inline struct sk_buff *skb_from_uarg(struct ubuf_info *uarg)
1207 {
1208 	return container_of((void *)uarg, struct sk_buff, cb);
1209 }
1210 
msg_zerocopy_realloc(struct sock * sk,size_t size,struct ubuf_info * uarg)1211 struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size,
1212 				       struct ubuf_info *uarg)
1213 {
1214 	if (uarg) {
1215 		const u32 byte_limit = 1 << 19;		/* limit to a few TSO */
1216 		u32 bytelen, next;
1217 
1218 		/* realloc only when socket is locked (TCP, UDP cork),
1219 		 * so uarg->len and sk_zckey access is serialized
1220 		 */
1221 		if (!sock_owned_by_user(sk)) {
1222 			WARN_ON_ONCE(1);
1223 			return NULL;
1224 		}
1225 
1226 		bytelen = uarg->bytelen + size;
1227 		if (uarg->len == USHRT_MAX - 1 || bytelen > byte_limit) {
1228 			/* TCP can create new skb to attach new uarg */
1229 			if (sk->sk_type == SOCK_STREAM)
1230 				goto new_alloc;
1231 			return NULL;
1232 		}
1233 
1234 		next = (u32)atomic_read(&sk->sk_zckey);
1235 		if ((u32)(uarg->id + uarg->len) == next) {
1236 			if (mm_account_pinned_pages(&uarg->mmp, size))
1237 				return NULL;
1238 			uarg->len++;
1239 			uarg->bytelen = bytelen;
1240 			atomic_set(&sk->sk_zckey, ++next);
1241 
1242 			/* no extra ref when appending to datagram (MSG_MORE) */
1243 			if (sk->sk_type == SOCK_STREAM)
1244 				net_zcopy_get(uarg);
1245 
1246 			return uarg;
1247 		}
1248 	}
1249 
1250 new_alloc:
1251 	return msg_zerocopy_alloc(sk, size);
1252 }
1253 EXPORT_SYMBOL_GPL(msg_zerocopy_realloc);
1254 
skb_zerocopy_notify_extend(struct sk_buff * skb,u32 lo,u16 len)1255 static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len)
1256 {
1257 	struct sock_exterr_skb *serr = SKB_EXT_ERR(skb);
1258 	u32 old_lo, old_hi;
1259 	u64 sum_len;
1260 
1261 	old_lo = serr->ee.ee_info;
1262 	old_hi = serr->ee.ee_data;
1263 	sum_len = old_hi - old_lo + 1ULL + len;
1264 
1265 	if (sum_len >= (1ULL << 32))
1266 		return false;
1267 
1268 	if (lo != old_hi + 1)
1269 		return false;
1270 
1271 	serr->ee.ee_data += len;
1272 	return true;
1273 }
1274 
__msg_zerocopy_callback(struct ubuf_info * uarg)1275 static void __msg_zerocopy_callback(struct ubuf_info *uarg)
1276 {
1277 	struct sk_buff *tail, *skb = skb_from_uarg(uarg);
1278 	struct sock_exterr_skb *serr;
1279 	struct sock *sk = skb->sk;
1280 	struct sk_buff_head *q;
1281 	unsigned long flags;
1282 	bool is_zerocopy;
1283 	u32 lo, hi;
1284 	u16 len;
1285 
1286 	mm_unaccount_pinned_pages(&uarg->mmp);
1287 
1288 	/* if !len, there was only 1 call, and it was aborted
1289 	 * so do not queue a completion notification
1290 	 */
1291 	if (!uarg->len || sock_flag(sk, SOCK_DEAD))
1292 		goto release;
1293 
1294 	len = uarg->len;
1295 	lo = uarg->id;
1296 	hi = uarg->id + len - 1;
1297 	is_zerocopy = uarg->zerocopy;
1298 
1299 	serr = SKB_EXT_ERR(skb);
1300 	memset(serr, 0, sizeof(*serr));
1301 	serr->ee.ee_errno = 0;
1302 	serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY;
1303 	serr->ee.ee_data = hi;
1304 	serr->ee.ee_info = lo;
1305 	if (!is_zerocopy)
1306 		serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED;
1307 
1308 	q = &sk->sk_error_queue;
1309 	spin_lock_irqsave(&q->lock, flags);
1310 	tail = skb_peek_tail(q);
1311 	if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY ||
1312 	    !skb_zerocopy_notify_extend(tail, lo, len)) {
1313 		__skb_queue_tail(q, skb);
1314 		skb = NULL;
1315 	}
1316 	spin_unlock_irqrestore(&q->lock, flags);
1317 
1318 	sk_error_report(sk);
1319 
1320 release:
1321 	consume_skb(skb);
1322 	sock_put(sk);
1323 }
1324 
msg_zerocopy_callback(struct sk_buff * skb,struct ubuf_info * uarg,bool success)1325 void msg_zerocopy_callback(struct sk_buff *skb, struct ubuf_info *uarg,
1326 			   bool success)
1327 {
1328 	uarg->zerocopy = uarg->zerocopy & success;
1329 
1330 	if (refcount_dec_and_test(&uarg->refcnt))
1331 		__msg_zerocopy_callback(uarg);
1332 }
1333 EXPORT_SYMBOL_GPL(msg_zerocopy_callback);
1334 
msg_zerocopy_put_abort(struct ubuf_info * uarg,bool have_uref)1335 void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref)
1336 {
1337 	struct sock *sk = skb_from_uarg(uarg)->sk;
1338 
1339 	atomic_dec(&sk->sk_zckey);
1340 	uarg->len--;
1341 
1342 	if (have_uref)
1343 		msg_zerocopy_callback(NULL, uarg, true);
1344 }
1345 EXPORT_SYMBOL_GPL(msg_zerocopy_put_abort);
1346 
skb_zerocopy_iter_dgram(struct sk_buff * skb,struct msghdr * msg,int len)1347 int skb_zerocopy_iter_dgram(struct sk_buff *skb, struct msghdr *msg, int len)
1348 {
1349 	return __zerocopy_sg_from_iter(skb->sk, skb, &msg->msg_iter, len);
1350 }
1351 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_dgram);
1352 
skb_zerocopy_iter_stream(struct sock * sk,struct sk_buff * skb,struct msghdr * msg,int len,struct ubuf_info * uarg)1353 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
1354 			     struct msghdr *msg, int len,
1355 			     struct ubuf_info *uarg)
1356 {
1357 	struct ubuf_info *orig_uarg = skb_zcopy(skb);
1358 	struct iov_iter orig_iter = msg->msg_iter;
1359 	int err, orig_len = skb->len;
1360 
1361 	/* An skb can only point to one uarg. This edge case happens when
1362 	 * TCP appends to an skb, but zerocopy_realloc triggered a new alloc.
1363 	 */
1364 	if (orig_uarg && uarg != orig_uarg)
1365 		return -EEXIST;
1366 
1367 	err = __zerocopy_sg_from_iter(sk, skb, &msg->msg_iter, len);
1368 	if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) {
1369 		struct sock *save_sk = skb->sk;
1370 
1371 		/* Streams do not free skb on error. Reset to prev state. */
1372 		msg->msg_iter = orig_iter;
1373 		skb->sk = sk;
1374 		___pskb_trim(skb, orig_len);
1375 		skb->sk = save_sk;
1376 		return err;
1377 	}
1378 
1379 	skb_zcopy_set(skb, uarg, NULL);
1380 	return skb->len - orig_len;
1381 }
1382 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream);
1383 
skb_zerocopy_clone(struct sk_buff * nskb,struct sk_buff * orig,gfp_t gfp_mask)1384 static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig,
1385 			      gfp_t gfp_mask)
1386 {
1387 	if (skb_zcopy(orig)) {
1388 		if (skb_zcopy(nskb)) {
1389 			/* !gfp_mask callers are verified to !skb_zcopy(nskb) */
1390 			if (!gfp_mask) {
1391 				WARN_ON_ONCE(1);
1392 				return -ENOMEM;
1393 			}
1394 			if (skb_uarg(nskb) == skb_uarg(orig))
1395 				return 0;
1396 			if (skb_copy_ubufs(nskb, GFP_ATOMIC))
1397 				return -EIO;
1398 		}
1399 		skb_zcopy_set(nskb, skb_uarg(orig), NULL);
1400 	}
1401 	return 0;
1402 }
1403 
1404 /**
1405  *	skb_copy_ubufs	-	copy userspace skb frags buffers to kernel
1406  *	@skb: the skb to modify
1407  *	@gfp_mask: allocation priority
1408  *
1409  *	This must be called on skb with SKBFL_ZEROCOPY_ENABLE.
1410  *	It will copy all frags into kernel and drop the reference
1411  *	to userspace pages.
1412  *
1413  *	If this function is called from an interrupt gfp_mask() must be
1414  *	%GFP_ATOMIC.
1415  *
1416  *	Returns 0 on success or a negative error code on failure
1417  *	to allocate kernel memory to copy to.
1418  */
skb_copy_ubufs(struct sk_buff * skb,gfp_t gfp_mask)1419 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
1420 {
1421 	int num_frags = skb_shinfo(skb)->nr_frags;
1422 	struct page *page, *head = NULL;
1423 	int i, new_frags;
1424 	u32 d_off;
1425 
1426 	if (skb_shared(skb) || skb_unclone(skb, gfp_mask))
1427 		return -EINVAL;
1428 
1429 	if (!num_frags)
1430 		goto release;
1431 
1432 	new_frags = (__skb_pagelen(skb) + PAGE_SIZE - 1) >> PAGE_SHIFT;
1433 	for (i = 0; i < new_frags; i++) {
1434 		page = alloc_page(gfp_mask);
1435 		if (!page) {
1436 			while (head) {
1437 				struct page *next = (struct page *)page_private(head);
1438 				put_page(head);
1439 				head = next;
1440 			}
1441 			return -ENOMEM;
1442 		}
1443 		set_page_private(page, (unsigned long)head);
1444 		head = page;
1445 	}
1446 
1447 	page = head;
1448 	d_off = 0;
1449 	for (i = 0; i < num_frags; i++) {
1450 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
1451 		u32 p_off, p_len, copied;
1452 		struct page *p;
1453 		u8 *vaddr;
1454 
1455 		skb_frag_foreach_page(f, skb_frag_off(f), skb_frag_size(f),
1456 				      p, p_off, p_len, copied) {
1457 			u32 copy, done = 0;
1458 			vaddr = kmap_atomic(p);
1459 
1460 			while (done < p_len) {
1461 				if (d_off == PAGE_SIZE) {
1462 					d_off = 0;
1463 					page = (struct page *)page_private(page);
1464 				}
1465 				copy = min_t(u32, PAGE_SIZE - d_off, p_len - done);
1466 				memcpy(page_address(page) + d_off,
1467 				       vaddr + p_off + done, copy);
1468 				done += copy;
1469 				d_off += copy;
1470 			}
1471 			kunmap_atomic(vaddr);
1472 		}
1473 	}
1474 
1475 	/* skb frags release userspace buffers */
1476 	for (i = 0; i < num_frags; i++)
1477 		skb_frag_unref(skb, i);
1478 
1479 	/* skb frags point to kernel buffers */
1480 	for (i = 0; i < new_frags - 1; i++) {
1481 		__skb_fill_page_desc(skb, i, head, 0, PAGE_SIZE);
1482 		head = (struct page *)page_private(head);
1483 	}
1484 	__skb_fill_page_desc(skb, new_frags - 1, head, 0, d_off);
1485 	skb_shinfo(skb)->nr_frags = new_frags;
1486 
1487 release:
1488 	skb_zcopy_clear(skb, false);
1489 	return 0;
1490 }
1491 EXPORT_SYMBOL_GPL(skb_copy_ubufs);
1492 
1493 /**
1494  *	skb_clone	-	duplicate an sk_buff
1495  *	@skb: buffer to clone
1496  *	@gfp_mask: allocation priority
1497  *
1498  *	Duplicate an &sk_buff. The new one is not owned by a socket. Both
1499  *	copies share the same packet data but not structure. The new
1500  *	buffer has a reference count of 1. If the allocation fails the
1501  *	function returns %NULL otherwise the new buffer is returned.
1502  *
1503  *	If this function is called from an interrupt gfp_mask() must be
1504  *	%GFP_ATOMIC.
1505  */
1506 
skb_clone(struct sk_buff * skb,gfp_t gfp_mask)1507 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
1508 {
1509 	struct sk_buff_fclones *fclones = container_of(skb,
1510 						       struct sk_buff_fclones,
1511 						       skb1);
1512 	struct sk_buff *n;
1513 
1514 	if (skb_orphan_frags(skb, gfp_mask))
1515 		return NULL;
1516 
1517 	if (skb->fclone == SKB_FCLONE_ORIG &&
1518 	    refcount_read(&fclones->fclone_ref) == 1) {
1519 		n = &fclones->skb2;
1520 		refcount_set(&fclones->fclone_ref, 2);
1521 	} else {
1522 		if (skb_pfmemalloc(skb))
1523 			gfp_mask |= __GFP_MEMALLOC;
1524 
1525 		n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
1526 		if (!n)
1527 			return NULL;
1528 
1529 		n->fclone = SKB_FCLONE_UNAVAILABLE;
1530 	}
1531 
1532 	return __skb_clone(n, skb);
1533 }
1534 EXPORT_SYMBOL(skb_clone);
1535 
skb_headers_offset_update(struct sk_buff * skb,int off)1536 void skb_headers_offset_update(struct sk_buff *skb, int off)
1537 {
1538 	/* Only adjust this if it actually is csum_start rather than csum */
1539 	if (skb->ip_summed == CHECKSUM_PARTIAL)
1540 		skb->csum_start += off;
1541 	/* {transport,network,mac}_header and tail are relative to skb->head */
1542 	skb->transport_header += off;
1543 	skb->network_header   += off;
1544 	if (skb_mac_header_was_set(skb))
1545 		skb->mac_header += off;
1546 	skb->inner_transport_header += off;
1547 	skb->inner_network_header += off;
1548 	skb->inner_mac_header += off;
1549 }
1550 EXPORT_SYMBOL(skb_headers_offset_update);
1551 
skb_copy_header(struct sk_buff * new,const struct sk_buff * old)1552 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old)
1553 {
1554 	__copy_skb_header(new, old);
1555 
1556 	skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
1557 	skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
1558 	skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
1559 }
1560 EXPORT_SYMBOL(skb_copy_header);
1561 
skb_alloc_rx_flag(const struct sk_buff * skb)1562 static inline int skb_alloc_rx_flag(const struct sk_buff *skb)
1563 {
1564 	if (skb_pfmemalloc(skb))
1565 		return SKB_ALLOC_RX;
1566 	return 0;
1567 }
1568 
1569 /**
1570  *	skb_copy	-	create private copy of an sk_buff
1571  *	@skb: buffer to copy
1572  *	@gfp_mask: allocation priority
1573  *
1574  *	Make a copy of both an &sk_buff and its data. This is used when the
1575  *	caller wishes to modify the data and needs a private copy of the
1576  *	data to alter. Returns %NULL on failure or the pointer to the buffer
1577  *	on success. The returned buffer has a reference count of 1.
1578  *
1579  *	As by-product this function converts non-linear &sk_buff to linear
1580  *	one, so that &sk_buff becomes completely private and caller is allowed
1581  *	to modify all the data of returned buffer. This means that this
1582  *	function is not recommended for use in circumstances when only
1583  *	header is going to be modified. Use pskb_copy() instead.
1584  */
1585 
skb_copy(const struct sk_buff * skb,gfp_t gfp_mask)1586 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
1587 {
1588 	int headerlen = skb_headroom(skb);
1589 	unsigned int size = skb_end_offset(skb) + skb->data_len;
1590 	struct sk_buff *n = __alloc_skb(size, gfp_mask,
1591 					skb_alloc_rx_flag(skb), NUMA_NO_NODE);
1592 
1593 	if (!n)
1594 		return NULL;
1595 
1596 	/* Set the data pointer */
1597 	skb_reserve(n, headerlen);
1598 	/* Set the tail pointer and length */
1599 	skb_put(n, skb->len);
1600 
1601 	BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len));
1602 
1603 	skb_copy_header(n, skb);
1604 	return n;
1605 }
1606 EXPORT_SYMBOL(skb_copy);
1607 
1608 /**
1609  *	__pskb_copy_fclone	-  create copy of an sk_buff with private head.
1610  *	@skb: buffer to copy
1611  *	@headroom: headroom of new skb
1612  *	@gfp_mask: allocation priority
1613  *	@fclone: if true allocate the copy of the skb from the fclone
1614  *	cache instead of the head cache; it is recommended to set this
1615  *	to true for the cases where the copy will likely be cloned
1616  *
1617  *	Make a copy of both an &sk_buff and part of its data, located
1618  *	in header. Fragmented data remain shared. This is used when
1619  *	the caller wishes to modify only header of &sk_buff and needs
1620  *	private copy of the header to alter. Returns %NULL on failure
1621  *	or the pointer to the buffer on success.
1622  *	The returned buffer has a reference count of 1.
1623  */
1624 
__pskb_copy_fclone(struct sk_buff * skb,int headroom,gfp_t gfp_mask,bool fclone)1625 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1626 				   gfp_t gfp_mask, bool fclone)
1627 {
1628 	unsigned int size = skb_headlen(skb) + headroom;
1629 	int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0);
1630 	struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE);
1631 
1632 	if (!n)
1633 		goto out;
1634 
1635 	/* Set the data pointer */
1636 	skb_reserve(n, headroom);
1637 	/* Set the tail pointer and length */
1638 	skb_put(n, skb_headlen(skb));
1639 	/* Copy the bytes */
1640 	skb_copy_from_linear_data(skb, n->data, n->len);
1641 
1642 	n->truesize += skb->data_len;
1643 	n->data_len  = skb->data_len;
1644 	n->len	     = skb->len;
1645 
1646 	if (skb_shinfo(skb)->nr_frags) {
1647 		int i;
1648 
1649 		if (skb_orphan_frags(skb, gfp_mask) ||
1650 		    skb_zerocopy_clone(n, skb, gfp_mask)) {
1651 			kfree_skb(n);
1652 			n = NULL;
1653 			goto out;
1654 		}
1655 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1656 			skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
1657 			skb_frag_ref(skb, i);
1658 		}
1659 		skb_shinfo(n)->nr_frags = i;
1660 	}
1661 
1662 	if (skb_has_frag_list(skb)) {
1663 		skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
1664 		skb_clone_fraglist(n);
1665 	}
1666 
1667 	skb_copy_header(n, skb);
1668 out:
1669 	return n;
1670 }
1671 EXPORT_SYMBOL(__pskb_copy_fclone);
1672 
1673 /**
1674  *	pskb_expand_head - reallocate header of &sk_buff
1675  *	@skb: buffer to reallocate
1676  *	@nhead: room to add at head
1677  *	@ntail: room to add at tail
1678  *	@gfp_mask: allocation priority
1679  *
1680  *	Expands (or creates identical copy, if @nhead and @ntail are zero)
1681  *	header of @skb. &sk_buff itself is not changed. &sk_buff MUST have
1682  *	reference count of 1. Returns zero in the case of success or error,
1683  *	if expansion failed. In the last case, &sk_buff is not changed.
1684  *
1685  *	All the pointers pointing into skb header may change and must be
1686  *	reloaded after call to this function.
1687  */
1688 
pskb_expand_head(struct sk_buff * skb,int nhead,int ntail,gfp_t gfp_mask)1689 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
1690 		     gfp_t gfp_mask)
1691 {
1692 	int i, osize = skb_end_offset(skb);
1693 	int size = osize + nhead + ntail;
1694 	long off;
1695 	u8 *data;
1696 
1697 	BUG_ON(nhead < 0);
1698 
1699 	BUG_ON(skb_shared(skb));
1700 
1701 	size = SKB_DATA_ALIGN(size);
1702 
1703 	if (skb_pfmemalloc(skb))
1704 		gfp_mask |= __GFP_MEMALLOC;
1705 	data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
1706 			       gfp_mask, NUMA_NO_NODE, NULL);
1707 	if (!data)
1708 		goto nodata;
1709 	size = SKB_WITH_OVERHEAD(ksize(data));
1710 
1711 	/* Copy only real data... and, alas, header. This should be
1712 	 * optimized for the cases when header is void.
1713 	 */
1714 	memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
1715 
1716 	memcpy((struct skb_shared_info *)(data + size),
1717 	       skb_shinfo(skb),
1718 	       offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
1719 
1720 	/*
1721 	 * if shinfo is shared we must drop the old head gracefully, but if it
1722 	 * is not we can just drop the old head and let the existing refcount
1723 	 * be since all we did is relocate the values
1724 	 */
1725 	if (skb_cloned(skb)) {
1726 		if (skb_orphan_frags(skb, gfp_mask))
1727 			goto nofrags;
1728 		if (skb_zcopy(skb))
1729 			refcount_inc(&skb_uarg(skb)->refcnt);
1730 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1731 			skb_frag_ref(skb, i);
1732 
1733 		if (skb_has_frag_list(skb))
1734 			skb_clone_fraglist(skb);
1735 
1736 		skb_release_data(skb);
1737 	} else {
1738 		skb_free_head(skb);
1739 	}
1740 	off = (data + nhead) - skb->head;
1741 
1742 	skb->head     = data;
1743 	skb->head_frag = 0;
1744 	skb->data    += off;
1745 
1746 	skb_set_end_offset(skb, size);
1747 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1748 	off           = nhead;
1749 #endif
1750 	skb->tail	      += off;
1751 	skb_headers_offset_update(skb, nhead);
1752 	skb->cloned   = 0;
1753 	skb->hdr_len  = 0;
1754 	skb->nohdr    = 0;
1755 	atomic_set(&skb_shinfo(skb)->dataref, 1);
1756 
1757 	skb_metadata_clear(skb);
1758 
1759 	/* It is not generally safe to change skb->truesize.
1760 	 * For the moment, we really care of rx path, or
1761 	 * when skb is orphaned (not attached to a socket).
1762 	 */
1763 	if (!skb->sk || skb->destructor == sock_edemux)
1764 		skb->truesize += size - osize;
1765 
1766 	return 0;
1767 
1768 nofrags:
1769 	kfree(data);
1770 nodata:
1771 	return -ENOMEM;
1772 }
1773 EXPORT_SYMBOL(pskb_expand_head);
1774 
1775 /* Make private copy of skb with writable head and some headroom */
1776 
skb_realloc_headroom(struct sk_buff * skb,unsigned int headroom)1777 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
1778 {
1779 	struct sk_buff *skb2;
1780 	int delta = headroom - skb_headroom(skb);
1781 
1782 	if (delta <= 0)
1783 		skb2 = pskb_copy(skb, GFP_ATOMIC);
1784 	else {
1785 		skb2 = skb_clone(skb, GFP_ATOMIC);
1786 		if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
1787 					     GFP_ATOMIC)) {
1788 			kfree_skb(skb2);
1789 			skb2 = NULL;
1790 		}
1791 	}
1792 	return skb2;
1793 }
1794 EXPORT_SYMBOL(skb_realloc_headroom);
1795 
__skb_unclone_keeptruesize(struct sk_buff * skb,gfp_t pri)1796 int __skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri)
1797 {
1798 	unsigned int saved_end_offset, saved_truesize;
1799 	struct skb_shared_info *shinfo;
1800 	int res;
1801 
1802 	saved_end_offset = skb_end_offset(skb);
1803 	saved_truesize = skb->truesize;
1804 
1805 	res = pskb_expand_head(skb, 0, 0, pri);
1806 	if (res)
1807 		return res;
1808 
1809 	skb->truesize = saved_truesize;
1810 
1811 	if (likely(skb_end_offset(skb) == saved_end_offset))
1812 		return 0;
1813 
1814 	shinfo = skb_shinfo(skb);
1815 
1816 	/* We are about to change back skb->end,
1817 	 * we need to move skb_shinfo() to its new location.
1818 	 */
1819 	memmove(skb->head + saved_end_offset,
1820 		shinfo,
1821 		offsetof(struct skb_shared_info, frags[shinfo->nr_frags]));
1822 
1823 	skb_set_end_offset(skb, saved_end_offset);
1824 
1825 	return 0;
1826 }
1827 
1828 /**
1829  *	skb_expand_head - reallocate header of &sk_buff
1830  *	@skb: buffer to reallocate
1831  *	@headroom: needed headroom
1832  *
1833  *	Unlike skb_realloc_headroom, this one does not allocate a new skb
1834  *	if possible; copies skb->sk to new skb as needed
1835  *	and frees original skb in case of failures.
1836  *
1837  *	It expect increased headroom and generates warning otherwise.
1838  */
1839 
skb_expand_head(struct sk_buff * skb,unsigned int headroom)1840 struct sk_buff *skb_expand_head(struct sk_buff *skb, unsigned int headroom)
1841 {
1842 	int delta = headroom - skb_headroom(skb);
1843 	int osize = skb_end_offset(skb);
1844 	struct sock *sk = skb->sk;
1845 
1846 	if (WARN_ONCE(delta <= 0,
1847 		      "%s is expecting an increase in the headroom", __func__))
1848 		return skb;
1849 
1850 	delta = SKB_DATA_ALIGN(delta);
1851 	/* pskb_expand_head() might crash, if skb is shared. */
1852 	if (skb_shared(skb) || !is_skb_wmem(skb)) {
1853 		struct sk_buff *nskb = skb_clone(skb, GFP_ATOMIC);
1854 
1855 		if (unlikely(!nskb))
1856 			goto fail;
1857 
1858 		if (sk)
1859 			skb_set_owner_w(nskb, sk);
1860 		consume_skb(skb);
1861 		skb = nskb;
1862 	}
1863 	if (pskb_expand_head(skb, delta, 0, GFP_ATOMIC))
1864 		goto fail;
1865 
1866 	if (sk && is_skb_wmem(skb)) {
1867 		delta = skb_end_offset(skb) - osize;
1868 		refcount_add(delta, &sk->sk_wmem_alloc);
1869 		skb->truesize += delta;
1870 	}
1871 	return skb;
1872 
1873 fail:
1874 	kfree_skb(skb);
1875 	return NULL;
1876 }
1877 EXPORT_SYMBOL(skb_expand_head);
1878 
1879 /**
1880  *	skb_copy_expand	-	copy and expand sk_buff
1881  *	@skb: buffer to copy
1882  *	@newheadroom: new free bytes at head
1883  *	@newtailroom: new free bytes at tail
1884  *	@gfp_mask: allocation priority
1885  *
1886  *	Make a copy of both an &sk_buff and its data and while doing so
1887  *	allocate additional space.
1888  *
1889  *	This is used when the caller wishes to modify the data and needs a
1890  *	private copy of the data to alter as well as more space for new fields.
1891  *	Returns %NULL on failure or the pointer to the buffer
1892  *	on success. The returned buffer has a reference count of 1.
1893  *
1894  *	You must pass %GFP_ATOMIC as the allocation priority if this function
1895  *	is called from an interrupt.
1896  */
skb_copy_expand(const struct sk_buff * skb,int newheadroom,int newtailroom,gfp_t gfp_mask)1897 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
1898 				int newheadroom, int newtailroom,
1899 				gfp_t gfp_mask)
1900 {
1901 	/*
1902 	 *	Allocate the copy buffer
1903 	 */
1904 	struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom,
1905 					gfp_mask, skb_alloc_rx_flag(skb),
1906 					NUMA_NO_NODE);
1907 	int oldheadroom = skb_headroom(skb);
1908 	int head_copy_len, head_copy_off;
1909 
1910 	if (!n)
1911 		return NULL;
1912 
1913 	skb_reserve(n, newheadroom);
1914 
1915 	/* Set the tail pointer and length */
1916 	skb_put(n, skb->len);
1917 
1918 	head_copy_len = oldheadroom;
1919 	head_copy_off = 0;
1920 	if (newheadroom <= head_copy_len)
1921 		head_copy_len = newheadroom;
1922 	else
1923 		head_copy_off = newheadroom - head_copy_len;
1924 
1925 	/* Copy the linear header and data. */
1926 	BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
1927 			     skb->len + head_copy_len));
1928 
1929 	skb_copy_header(n, skb);
1930 
1931 	skb_headers_offset_update(n, newheadroom - oldheadroom);
1932 
1933 	return n;
1934 }
1935 EXPORT_SYMBOL(skb_copy_expand);
1936 
1937 /**
1938  *	__skb_pad		-	zero pad the tail of an skb
1939  *	@skb: buffer to pad
1940  *	@pad: space to pad
1941  *	@free_on_error: free buffer on error
1942  *
1943  *	Ensure that a buffer is followed by a padding area that is zero
1944  *	filled. Used by network drivers which may DMA or transfer data
1945  *	beyond the buffer end onto the wire.
1946  *
1947  *	May return error in out of memory cases. The skb is freed on error
1948  *	if @free_on_error is true.
1949  */
1950 
__skb_pad(struct sk_buff * skb,int pad,bool free_on_error)1951 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error)
1952 {
1953 	int err;
1954 	int ntail;
1955 
1956 	/* If the skbuff is non linear tailroom is always zero.. */
1957 	if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
1958 		memset(skb->data+skb->len, 0, pad);
1959 		return 0;
1960 	}
1961 
1962 	ntail = skb->data_len + pad - (skb->end - skb->tail);
1963 	if (likely(skb_cloned(skb) || ntail > 0)) {
1964 		err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
1965 		if (unlikely(err))
1966 			goto free_skb;
1967 	}
1968 
1969 	/* FIXME: The use of this function with non-linear skb's really needs
1970 	 * to be audited.
1971 	 */
1972 	err = skb_linearize(skb);
1973 	if (unlikely(err))
1974 		goto free_skb;
1975 
1976 	memset(skb->data + skb->len, 0, pad);
1977 	return 0;
1978 
1979 free_skb:
1980 	if (free_on_error)
1981 		kfree_skb(skb);
1982 	return err;
1983 }
1984 EXPORT_SYMBOL(__skb_pad);
1985 
1986 /**
1987  *	pskb_put - add data to the tail of a potentially fragmented buffer
1988  *	@skb: start of the buffer to use
1989  *	@tail: tail fragment of the buffer to use
1990  *	@len: amount of data to add
1991  *
1992  *	This function extends the used data area of the potentially
1993  *	fragmented buffer. @tail must be the last fragment of @skb -- or
1994  *	@skb itself. If this would exceed the total buffer size the kernel
1995  *	will panic. A pointer to the first byte of the extra data is
1996  *	returned.
1997  */
1998 
pskb_put(struct sk_buff * skb,struct sk_buff * tail,int len)1999 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len)
2000 {
2001 	if (tail != skb) {
2002 		skb->data_len += len;
2003 		skb->len += len;
2004 	}
2005 	return skb_put(tail, len);
2006 }
2007 EXPORT_SYMBOL_GPL(pskb_put);
2008 
2009 /**
2010  *	skb_put - add data to a buffer
2011  *	@skb: buffer to use
2012  *	@len: amount of data to add
2013  *
2014  *	This function extends the used data area of the buffer. If this would
2015  *	exceed the total buffer size the kernel will panic. A pointer to the
2016  *	first byte of the extra data is returned.
2017  */
skb_put(struct sk_buff * skb,unsigned int len)2018 void *skb_put(struct sk_buff *skb, unsigned int len)
2019 {
2020 	void *tmp = skb_tail_pointer(skb);
2021 	SKB_LINEAR_ASSERT(skb);
2022 	skb->tail += len;
2023 	skb->len  += len;
2024 	if (unlikely(skb->tail > skb->end))
2025 		skb_over_panic(skb, len, __builtin_return_address(0));
2026 	return tmp;
2027 }
2028 EXPORT_SYMBOL(skb_put);
2029 
2030 /**
2031  *	skb_push - add data to the start of a buffer
2032  *	@skb: buffer to use
2033  *	@len: amount of data to add
2034  *
2035  *	This function extends the used data area of the buffer at the buffer
2036  *	start. If this would exceed the total buffer headroom the kernel will
2037  *	panic. A pointer to the first byte of the extra data is returned.
2038  */
skb_push(struct sk_buff * skb,unsigned int len)2039 void *skb_push(struct sk_buff *skb, unsigned int len)
2040 {
2041 	skb->data -= len;
2042 	skb->len  += len;
2043 	if (unlikely(skb->data < skb->head))
2044 		skb_under_panic(skb, len, __builtin_return_address(0));
2045 	return skb->data;
2046 }
2047 EXPORT_SYMBOL(skb_push);
2048 
2049 /**
2050  *	skb_pull - remove data from the start of a buffer
2051  *	@skb: buffer to use
2052  *	@len: amount of data to remove
2053  *
2054  *	This function removes data from the start of a buffer, returning
2055  *	the memory to the headroom. A pointer to the next data in the buffer
2056  *	is returned. Once the data has been pulled future pushes will overwrite
2057  *	the old data.
2058  */
skb_pull(struct sk_buff * skb,unsigned int len)2059 void *skb_pull(struct sk_buff *skb, unsigned int len)
2060 {
2061 	return skb_pull_inline(skb, len);
2062 }
2063 EXPORT_SYMBOL(skb_pull);
2064 
2065 /**
2066  *	skb_trim - remove end from a buffer
2067  *	@skb: buffer to alter
2068  *	@len: new length
2069  *
2070  *	Cut the length of a buffer down by removing data from the tail. If
2071  *	the buffer is already under the length specified it is not modified.
2072  *	The skb must be linear.
2073  */
skb_trim(struct sk_buff * skb,unsigned int len)2074 void skb_trim(struct sk_buff *skb, unsigned int len)
2075 {
2076 	if (skb->len > len)
2077 		__skb_trim(skb, len);
2078 }
2079 EXPORT_SYMBOL(skb_trim);
2080 
2081 /* Trims skb to length len. It can change skb pointers.
2082  */
2083 
___pskb_trim(struct sk_buff * skb,unsigned int len)2084 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
2085 {
2086 	struct sk_buff **fragp;
2087 	struct sk_buff *frag;
2088 	int offset = skb_headlen(skb);
2089 	int nfrags = skb_shinfo(skb)->nr_frags;
2090 	int i;
2091 	int err;
2092 
2093 	if (skb_cloned(skb) &&
2094 	    unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
2095 		return err;
2096 
2097 	i = 0;
2098 	if (offset >= len)
2099 		goto drop_pages;
2100 
2101 	for (; i < nfrags; i++) {
2102 		int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2103 
2104 		if (end < len) {
2105 			offset = end;
2106 			continue;
2107 		}
2108 
2109 		skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
2110 
2111 drop_pages:
2112 		skb_shinfo(skb)->nr_frags = i;
2113 
2114 		for (; i < nfrags; i++)
2115 			skb_frag_unref(skb, i);
2116 
2117 		if (skb_has_frag_list(skb))
2118 			skb_drop_fraglist(skb);
2119 		goto done;
2120 	}
2121 
2122 	for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
2123 	     fragp = &frag->next) {
2124 		int end = offset + frag->len;
2125 
2126 		if (skb_shared(frag)) {
2127 			struct sk_buff *nfrag;
2128 
2129 			nfrag = skb_clone(frag, GFP_ATOMIC);
2130 			if (unlikely(!nfrag))
2131 				return -ENOMEM;
2132 
2133 			nfrag->next = frag->next;
2134 			consume_skb(frag);
2135 			frag = nfrag;
2136 			*fragp = frag;
2137 		}
2138 
2139 		if (end < len) {
2140 			offset = end;
2141 			continue;
2142 		}
2143 
2144 		if (end > len &&
2145 		    unlikely((err = pskb_trim(frag, len - offset))))
2146 			return err;
2147 
2148 		if (frag->next)
2149 			skb_drop_list(&frag->next);
2150 		break;
2151 	}
2152 
2153 done:
2154 	if (len > skb_headlen(skb)) {
2155 		skb->data_len -= skb->len - len;
2156 		skb->len       = len;
2157 	} else {
2158 		skb->len       = len;
2159 		skb->data_len  = 0;
2160 		skb_set_tail_pointer(skb, len);
2161 	}
2162 
2163 	if (!skb->sk || skb->destructor == sock_edemux)
2164 		skb_condense(skb);
2165 	return 0;
2166 }
2167 EXPORT_SYMBOL(___pskb_trim);
2168 
2169 /* Note : use pskb_trim_rcsum() instead of calling this directly
2170  */
pskb_trim_rcsum_slow(struct sk_buff * skb,unsigned int len)2171 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len)
2172 {
2173 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
2174 		int delta = skb->len - len;
2175 
2176 		skb->csum = csum_block_sub(skb->csum,
2177 					   skb_checksum(skb, len, delta, 0),
2178 					   len);
2179 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
2180 		int hdlen = (len > skb_headlen(skb)) ? skb_headlen(skb) : len;
2181 		int offset = skb_checksum_start_offset(skb) + skb->csum_offset;
2182 
2183 		if (offset + sizeof(__sum16) > hdlen)
2184 			return -EINVAL;
2185 	}
2186 	return __pskb_trim(skb, len);
2187 }
2188 EXPORT_SYMBOL(pskb_trim_rcsum_slow);
2189 
2190 /**
2191  *	__pskb_pull_tail - advance tail of skb header
2192  *	@skb: buffer to reallocate
2193  *	@delta: number of bytes to advance tail
2194  *
2195  *	The function makes a sense only on a fragmented &sk_buff,
2196  *	it expands header moving its tail forward and copying necessary
2197  *	data from fragmented part.
2198  *
2199  *	&sk_buff MUST have reference count of 1.
2200  *
2201  *	Returns %NULL (and &sk_buff does not change) if pull failed
2202  *	or value of new tail of skb in the case of success.
2203  *
2204  *	All the pointers pointing into skb header may change and must be
2205  *	reloaded after call to this function.
2206  */
2207 
2208 /* Moves tail of skb head forward, copying data from fragmented part,
2209  * when it is necessary.
2210  * 1. It may fail due to malloc failure.
2211  * 2. It may change skb pointers.
2212  *
2213  * It is pretty complicated. Luckily, it is called only in exceptional cases.
2214  */
__pskb_pull_tail(struct sk_buff * skb,int delta)2215 void *__pskb_pull_tail(struct sk_buff *skb, int delta)
2216 {
2217 	/* If skb has not enough free space at tail, get new one
2218 	 * plus 128 bytes for future expansions. If we have enough
2219 	 * room at tail, reallocate without expansion only if skb is cloned.
2220 	 */
2221 	int i, k, eat = (skb->tail + delta) - skb->end;
2222 
2223 	if (eat > 0 || skb_cloned(skb)) {
2224 		if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
2225 				     GFP_ATOMIC))
2226 			return NULL;
2227 	}
2228 
2229 	BUG_ON(skb_copy_bits(skb, skb_headlen(skb),
2230 			     skb_tail_pointer(skb), delta));
2231 
2232 	/* Optimization: no fragments, no reasons to preestimate
2233 	 * size of pulled pages. Superb.
2234 	 */
2235 	if (!skb_has_frag_list(skb))
2236 		goto pull_pages;
2237 
2238 	/* Estimate size of pulled pages. */
2239 	eat = delta;
2240 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2241 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2242 
2243 		if (size >= eat)
2244 			goto pull_pages;
2245 		eat -= size;
2246 	}
2247 
2248 	/* If we need update frag list, we are in troubles.
2249 	 * Certainly, it is possible to add an offset to skb data,
2250 	 * but taking into account that pulling is expected to
2251 	 * be very rare operation, it is worth to fight against
2252 	 * further bloating skb head and crucify ourselves here instead.
2253 	 * Pure masohism, indeed. 8)8)
2254 	 */
2255 	if (eat) {
2256 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
2257 		struct sk_buff *clone = NULL;
2258 		struct sk_buff *insp = NULL;
2259 
2260 		do {
2261 			if (list->len <= eat) {
2262 				/* Eaten as whole. */
2263 				eat -= list->len;
2264 				list = list->next;
2265 				insp = list;
2266 			} else {
2267 				/* Eaten partially. */
2268 				if (skb_is_gso(skb) && !list->head_frag &&
2269 				    skb_headlen(list))
2270 					skb_shinfo(skb)->gso_type |= SKB_GSO_DODGY;
2271 
2272 				if (skb_shared(list)) {
2273 					/* Sucks! We need to fork list. :-( */
2274 					clone = skb_clone(list, GFP_ATOMIC);
2275 					if (!clone)
2276 						return NULL;
2277 					insp = list->next;
2278 					list = clone;
2279 				} else {
2280 					/* This may be pulled without
2281 					 * problems. */
2282 					insp = list;
2283 				}
2284 				if (!pskb_pull(list, eat)) {
2285 					kfree_skb(clone);
2286 					return NULL;
2287 				}
2288 				break;
2289 			}
2290 		} while (eat);
2291 
2292 		/* Free pulled out fragments. */
2293 		while ((list = skb_shinfo(skb)->frag_list) != insp) {
2294 			skb_shinfo(skb)->frag_list = list->next;
2295 			consume_skb(list);
2296 		}
2297 		/* And insert new clone at head. */
2298 		if (clone) {
2299 			clone->next = list;
2300 			skb_shinfo(skb)->frag_list = clone;
2301 		}
2302 	}
2303 	/* Success! Now we may commit changes to skb data. */
2304 
2305 pull_pages:
2306 	eat = delta;
2307 	k = 0;
2308 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2309 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2310 
2311 		if (size <= eat) {
2312 			skb_frag_unref(skb, i);
2313 			eat -= size;
2314 		} else {
2315 			skb_frag_t *frag = &skb_shinfo(skb)->frags[k];
2316 
2317 			*frag = skb_shinfo(skb)->frags[i];
2318 			if (eat) {
2319 				skb_frag_off_add(frag, eat);
2320 				skb_frag_size_sub(frag, eat);
2321 				if (!i)
2322 					goto end;
2323 				eat = 0;
2324 			}
2325 			k++;
2326 		}
2327 	}
2328 	skb_shinfo(skb)->nr_frags = k;
2329 
2330 end:
2331 	skb->tail     += delta;
2332 	skb->data_len -= delta;
2333 
2334 	if (!skb->data_len)
2335 		skb_zcopy_clear(skb, false);
2336 
2337 	return skb_tail_pointer(skb);
2338 }
2339 EXPORT_SYMBOL(__pskb_pull_tail);
2340 
2341 /**
2342  *	skb_copy_bits - copy bits from skb to kernel buffer
2343  *	@skb: source skb
2344  *	@offset: offset in source
2345  *	@to: destination buffer
2346  *	@len: number of bytes to copy
2347  *
2348  *	Copy the specified number of bytes from the source skb to the
2349  *	destination buffer.
2350  *
2351  *	CAUTION ! :
2352  *		If its prototype is ever changed,
2353  *		check arch/{*}/net/{*}.S files,
2354  *		since it is called from BPF assembly code.
2355  */
skb_copy_bits(const struct sk_buff * skb,int offset,void * to,int len)2356 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
2357 {
2358 	int start = skb_headlen(skb);
2359 	struct sk_buff *frag_iter;
2360 	int i, copy;
2361 
2362 	if (offset > (int)skb->len - len)
2363 		goto fault;
2364 
2365 	/* Copy header. */
2366 	if ((copy = start - offset) > 0) {
2367 		if (copy > len)
2368 			copy = len;
2369 		skb_copy_from_linear_data_offset(skb, offset, to, copy);
2370 		if ((len -= copy) == 0)
2371 			return 0;
2372 		offset += copy;
2373 		to     += copy;
2374 	}
2375 
2376 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2377 		int end;
2378 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
2379 
2380 		WARN_ON(start > offset + len);
2381 
2382 		end = start + skb_frag_size(f);
2383 		if ((copy = end - offset) > 0) {
2384 			u32 p_off, p_len, copied;
2385 			struct page *p;
2386 			u8 *vaddr;
2387 
2388 			if (copy > len)
2389 				copy = len;
2390 
2391 			skb_frag_foreach_page(f,
2392 					      skb_frag_off(f) + offset - start,
2393 					      copy, p, p_off, p_len, copied) {
2394 				vaddr = kmap_atomic(p);
2395 				memcpy(to + copied, vaddr + p_off, p_len);
2396 				kunmap_atomic(vaddr);
2397 			}
2398 
2399 			if ((len -= copy) == 0)
2400 				return 0;
2401 			offset += copy;
2402 			to     += copy;
2403 		}
2404 		start = end;
2405 	}
2406 
2407 	skb_walk_frags(skb, frag_iter) {
2408 		int end;
2409 
2410 		WARN_ON(start > offset + len);
2411 
2412 		end = start + frag_iter->len;
2413 		if ((copy = end - offset) > 0) {
2414 			if (copy > len)
2415 				copy = len;
2416 			if (skb_copy_bits(frag_iter, offset - start, to, copy))
2417 				goto fault;
2418 			if ((len -= copy) == 0)
2419 				return 0;
2420 			offset += copy;
2421 			to     += copy;
2422 		}
2423 		start = end;
2424 	}
2425 
2426 	if (!len)
2427 		return 0;
2428 
2429 fault:
2430 	return -EFAULT;
2431 }
2432 EXPORT_SYMBOL(skb_copy_bits);
2433 
2434 /*
2435  * Callback from splice_to_pipe(), if we need to release some pages
2436  * at the end of the spd in case we error'ed out in filling the pipe.
2437  */
sock_spd_release(struct splice_pipe_desc * spd,unsigned int i)2438 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
2439 {
2440 	put_page(spd->pages[i]);
2441 }
2442 
linear_to_page(struct page * page,unsigned int * len,unsigned int * offset,struct sock * sk)2443 static struct page *linear_to_page(struct page *page, unsigned int *len,
2444 				   unsigned int *offset,
2445 				   struct sock *sk)
2446 {
2447 	struct page_frag *pfrag = sk_page_frag(sk);
2448 
2449 	if (!sk_page_frag_refill(sk, pfrag))
2450 		return NULL;
2451 
2452 	*len = min_t(unsigned int, *len, pfrag->size - pfrag->offset);
2453 
2454 	memcpy(page_address(pfrag->page) + pfrag->offset,
2455 	       page_address(page) + *offset, *len);
2456 	*offset = pfrag->offset;
2457 	pfrag->offset += *len;
2458 
2459 	return pfrag->page;
2460 }
2461 
spd_can_coalesce(const struct splice_pipe_desc * spd,struct page * page,unsigned int offset)2462 static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
2463 			     struct page *page,
2464 			     unsigned int offset)
2465 {
2466 	return	spd->nr_pages &&
2467 		spd->pages[spd->nr_pages - 1] == page &&
2468 		(spd->partial[spd->nr_pages - 1].offset +
2469 		 spd->partial[spd->nr_pages - 1].len == offset);
2470 }
2471 
2472 /*
2473  * Fill page/offset/length into spd, if it can hold more pages.
2474  */
spd_fill_page(struct splice_pipe_desc * spd,struct pipe_inode_info * pipe,struct page * page,unsigned int * len,unsigned int offset,bool linear,struct sock * sk)2475 static bool spd_fill_page(struct splice_pipe_desc *spd,
2476 			  struct pipe_inode_info *pipe, struct page *page,
2477 			  unsigned int *len, unsigned int offset,
2478 			  bool linear,
2479 			  struct sock *sk)
2480 {
2481 	if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
2482 		return true;
2483 
2484 	if (linear) {
2485 		page = linear_to_page(page, len, &offset, sk);
2486 		if (!page)
2487 			return true;
2488 	}
2489 	if (spd_can_coalesce(spd, page, offset)) {
2490 		spd->partial[spd->nr_pages - 1].len += *len;
2491 		return false;
2492 	}
2493 	get_page(page);
2494 	spd->pages[spd->nr_pages] = page;
2495 	spd->partial[spd->nr_pages].len = *len;
2496 	spd->partial[spd->nr_pages].offset = offset;
2497 	spd->nr_pages++;
2498 
2499 	return false;
2500 }
2501 
__splice_segment(struct page * page,unsigned int poff,unsigned int plen,unsigned int * off,unsigned int * len,struct splice_pipe_desc * spd,bool linear,struct sock * sk,struct pipe_inode_info * pipe)2502 static bool __splice_segment(struct page *page, unsigned int poff,
2503 			     unsigned int plen, unsigned int *off,
2504 			     unsigned int *len,
2505 			     struct splice_pipe_desc *spd, bool linear,
2506 			     struct sock *sk,
2507 			     struct pipe_inode_info *pipe)
2508 {
2509 	if (!*len)
2510 		return true;
2511 
2512 	/* skip this segment if already processed */
2513 	if (*off >= plen) {
2514 		*off -= plen;
2515 		return false;
2516 	}
2517 
2518 	/* ignore any bits we already processed */
2519 	poff += *off;
2520 	plen -= *off;
2521 	*off = 0;
2522 
2523 	do {
2524 		unsigned int flen = min(*len, plen);
2525 
2526 		if (spd_fill_page(spd, pipe, page, &flen, poff,
2527 				  linear, sk))
2528 			return true;
2529 		poff += flen;
2530 		plen -= flen;
2531 		*len -= flen;
2532 	} while (*len && plen);
2533 
2534 	return false;
2535 }
2536 
2537 /*
2538  * Map linear and fragment data from the skb to spd. It reports true if the
2539  * pipe is full or if we already spliced the requested length.
2540  */
__skb_splice_bits(struct sk_buff * skb,struct pipe_inode_info * pipe,unsigned int * offset,unsigned int * len,struct splice_pipe_desc * spd,struct sock * sk)2541 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
2542 			      unsigned int *offset, unsigned int *len,
2543 			      struct splice_pipe_desc *spd, struct sock *sk)
2544 {
2545 	int seg;
2546 	struct sk_buff *iter;
2547 
2548 	/* map the linear part :
2549 	 * If skb->head_frag is set, this 'linear' part is backed by a
2550 	 * fragment, and if the head is not shared with any clones then
2551 	 * we can avoid a copy since we own the head portion of this page.
2552 	 */
2553 	if (__splice_segment(virt_to_page(skb->data),
2554 			     (unsigned long) skb->data & (PAGE_SIZE - 1),
2555 			     skb_headlen(skb),
2556 			     offset, len, spd,
2557 			     skb_head_is_locked(skb),
2558 			     sk, pipe))
2559 		return true;
2560 
2561 	/*
2562 	 * then map the fragments
2563 	 */
2564 	for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
2565 		const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
2566 
2567 		if (__splice_segment(skb_frag_page(f),
2568 				     skb_frag_off(f), skb_frag_size(f),
2569 				     offset, len, spd, false, sk, pipe))
2570 			return true;
2571 	}
2572 
2573 	skb_walk_frags(skb, iter) {
2574 		if (*offset >= iter->len) {
2575 			*offset -= iter->len;
2576 			continue;
2577 		}
2578 		/* __skb_splice_bits() only fails if the output has no room
2579 		 * left, so no point in going over the frag_list for the error
2580 		 * case.
2581 		 */
2582 		if (__skb_splice_bits(iter, pipe, offset, len, spd, sk))
2583 			return true;
2584 	}
2585 
2586 	return false;
2587 }
2588 
2589 /*
2590  * Map data from the skb to a pipe. Should handle both the linear part,
2591  * the fragments, and the frag list.
2592  */
skb_splice_bits(struct sk_buff * skb,struct sock * sk,unsigned int offset,struct pipe_inode_info * pipe,unsigned int tlen,unsigned int flags)2593 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
2594 		    struct pipe_inode_info *pipe, unsigned int tlen,
2595 		    unsigned int flags)
2596 {
2597 	struct partial_page partial[MAX_SKB_FRAGS];
2598 	struct page *pages[MAX_SKB_FRAGS];
2599 	struct splice_pipe_desc spd = {
2600 		.pages = pages,
2601 		.partial = partial,
2602 		.nr_pages_max = MAX_SKB_FRAGS,
2603 		.ops = &nosteal_pipe_buf_ops,
2604 		.spd_release = sock_spd_release,
2605 	};
2606 	int ret = 0;
2607 
2608 	__skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk);
2609 
2610 	if (spd.nr_pages)
2611 		ret = splice_to_pipe(pipe, &spd);
2612 
2613 	return ret;
2614 }
2615 EXPORT_SYMBOL_GPL(skb_splice_bits);
2616 
sendmsg_unlocked(struct sock * sk,struct msghdr * msg,struct kvec * vec,size_t num,size_t size)2617 static int sendmsg_unlocked(struct sock *sk, struct msghdr *msg,
2618 			    struct kvec *vec, size_t num, size_t size)
2619 {
2620 	struct socket *sock = sk->sk_socket;
2621 
2622 	if (!sock)
2623 		return -EINVAL;
2624 	return kernel_sendmsg(sock, msg, vec, num, size);
2625 }
2626 
sendpage_unlocked(struct sock * sk,struct page * page,int offset,size_t size,int flags)2627 static int sendpage_unlocked(struct sock *sk, struct page *page, int offset,
2628 			     size_t size, int flags)
2629 {
2630 	struct socket *sock = sk->sk_socket;
2631 
2632 	if (!sock)
2633 		return -EINVAL;
2634 	return kernel_sendpage(sock, page, offset, size, flags);
2635 }
2636 
2637 typedef int (*sendmsg_func)(struct sock *sk, struct msghdr *msg,
2638 			    struct kvec *vec, size_t num, size_t size);
2639 typedef int (*sendpage_func)(struct sock *sk, struct page *page, int offset,
2640 			     size_t size, int flags);
__skb_send_sock(struct sock * sk,struct sk_buff * skb,int offset,int len,sendmsg_func sendmsg,sendpage_func sendpage)2641 static int __skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset,
2642 			   int len, sendmsg_func sendmsg, sendpage_func sendpage)
2643 {
2644 	unsigned int orig_len = len;
2645 	struct sk_buff *head = skb;
2646 	unsigned short fragidx;
2647 	int slen, ret;
2648 
2649 do_frag_list:
2650 
2651 	/* Deal with head data */
2652 	while (offset < skb_headlen(skb) && len) {
2653 		struct kvec kv;
2654 		struct msghdr msg;
2655 
2656 		slen = min_t(int, len, skb_headlen(skb) - offset);
2657 		kv.iov_base = skb->data + offset;
2658 		kv.iov_len = slen;
2659 		memset(&msg, 0, sizeof(msg));
2660 		msg.msg_flags = MSG_DONTWAIT;
2661 
2662 		ret = INDIRECT_CALL_2(sendmsg, kernel_sendmsg_locked,
2663 				      sendmsg_unlocked, sk, &msg, &kv, 1, slen);
2664 		if (ret <= 0)
2665 			goto error;
2666 
2667 		offset += ret;
2668 		len -= ret;
2669 	}
2670 
2671 	/* All the data was skb head? */
2672 	if (!len)
2673 		goto out;
2674 
2675 	/* Make offset relative to start of frags */
2676 	offset -= skb_headlen(skb);
2677 
2678 	/* Find where we are in frag list */
2679 	for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
2680 		skb_frag_t *frag  = &skb_shinfo(skb)->frags[fragidx];
2681 
2682 		if (offset < skb_frag_size(frag))
2683 			break;
2684 
2685 		offset -= skb_frag_size(frag);
2686 	}
2687 
2688 	for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
2689 		skb_frag_t *frag  = &skb_shinfo(skb)->frags[fragidx];
2690 
2691 		slen = min_t(size_t, len, skb_frag_size(frag) - offset);
2692 
2693 		while (slen) {
2694 			ret = INDIRECT_CALL_2(sendpage, kernel_sendpage_locked,
2695 					      sendpage_unlocked, sk,
2696 					      skb_frag_page(frag),
2697 					      skb_frag_off(frag) + offset,
2698 					      slen, MSG_DONTWAIT);
2699 			if (ret <= 0)
2700 				goto error;
2701 
2702 			len -= ret;
2703 			offset += ret;
2704 			slen -= ret;
2705 		}
2706 
2707 		offset = 0;
2708 	}
2709 
2710 	if (len) {
2711 		/* Process any frag lists */
2712 
2713 		if (skb == head) {
2714 			if (skb_has_frag_list(skb)) {
2715 				skb = skb_shinfo(skb)->frag_list;
2716 				goto do_frag_list;
2717 			}
2718 		} else if (skb->next) {
2719 			skb = skb->next;
2720 			goto do_frag_list;
2721 		}
2722 	}
2723 
2724 out:
2725 	return orig_len - len;
2726 
2727 error:
2728 	return orig_len == len ? ret : orig_len - len;
2729 }
2730 
2731 /* Send skb data on a socket. Socket must be locked. */
skb_send_sock_locked(struct sock * sk,struct sk_buff * skb,int offset,int len)2732 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
2733 			 int len)
2734 {
2735 	return __skb_send_sock(sk, skb, offset, len, kernel_sendmsg_locked,
2736 			       kernel_sendpage_locked);
2737 }
2738 EXPORT_SYMBOL_GPL(skb_send_sock_locked);
2739 
2740 /* Send skb data on a socket. Socket must be unlocked. */
skb_send_sock(struct sock * sk,struct sk_buff * skb,int offset,int len)2741 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len)
2742 {
2743 	return __skb_send_sock(sk, skb, offset, len, sendmsg_unlocked,
2744 			       sendpage_unlocked);
2745 }
2746 
2747 /**
2748  *	skb_store_bits - store bits from kernel buffer to skb
2749  *	@skb: destination buffer
2750  *	@offset: offset in destination
2751  *	@from: source buffer
2752  *	@len: number of bytes to copy
2753  *
2754  *	Copy the specified number of bytes from the source buffer to the
2755  *	destination skb.  This function handles all the messy bits of
2756  *	traversing fragment lists and such.
2757  */
2758 
skb_store_bits(struct sk_buff * skb,int offset,const void * from,int len)2759 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
2760 {
2761 	int start = skb_headlen(skb);
2762 	struct sk_buff *frag_iter;
2763 	int i, copy;
2764 
2765 	if (offset > (int)skb->len - len)
2766 		goto fault;
2767 
2768 	if ((copy = start - offset) > 0) {
2769 		if (copy > len)
2770 			copy = len;
2771 		skb_copy_to_linear_data_offset(skb, offset, from, copy);
2772 		if ((len -= copy) == 0)
2773 			return 0;
2774 		offset += copy;
2775 		from += copy;
2776 	}
2777 
2778 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2779 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2780 		int end;
2781 
2782 		WARN_ON(start > offset + len);
2783 
2784 		end = start + skb_frag_size(frag);
2785 		if ((copy = end - offset) > 0) {
2786 			u32 p_off, p_len, copied;
2787 			struct page *p;
2788 			u8 *vaddr;
2789 
2790 			if (copy > len)
2791 				copy = len;
2792 
2793 			skb_frag_foreach_page(frag,
2794 					      skb_frag_off(frag) + offset - start,
2795 					      copy, p, p_off, p_len, copied) {
2796 				vaddr = kmap_atomic(p);
2797 				memcpy(vaddr + p_off, from + copied, p_len);
2798 				kunmap_atomic(vaddr);
2799 			}
2800 
2801 			if ((len -= copy) == 0)
2802 				return 0;
2803 			offset += copy;
2804 			from += copy;
2805 		}
2806 		start = end;
2807 	}
2808 
2809 	skb_walk_frags(skb, frag_iter) {
2810 		int end;
2811 
2812 		WARN_ON(start > offset + len);
2813 
2814 		end = start + frag_iter->len;
2815 		if ((copy = end - offset) > 0) {
2816 			if (copy > len)
2817 				copy = len;
2818 			if (skb_store_bits(frag_iter, offset - start,
2819 					   from, copy))
2820 				goto fault;
2821 			if ((len -= copy) == 0)
2822 				return 0;
2823 			offset += copy;
2824 			from += copy;
2825 		}
2826 		start = end;
2827 	}
2828 	if (!len)
2829 		return 0;
2830 
2831 fault:
2832 	return -EFAULT;
2833 }
2834 EXPORT_SYMBOL(skb_store_bits);
2835 
2836 /* Checksum skb data. */
__skb_checksum(const struct sk_buff * skb,int offset,int len,__wsum csum,const struct skb_checksum_ops * ops)2837 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
2838 		      __wsum csum, const struct skb_checksum_ops *ops)
2839 {
2840 	int start = skb_headlen(skb);
2841 	int i, copy = start - offset;
2842 	struct sk_buff *frag_iter;
2843 	int pos = 0;
2844 
2845 	/* Checksum header. */
2846 	if (copy > 0) {
2847 		if (copy > len)
2848 			copy = len;
2849 		csum = INDIRECT_CALL_1(ops->update, csum_partial_ext,
2850 				       skb->data + offset, copy, csum);
2851 		if ((len -= copy) == 0)
2852 			return csum;
2853 		offset += copy;
2854 		pos	= copy;
2855 	}
2856 
2857 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2858 		int end;
2859 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2860 
2861 		WARN_ON(start > offset + len);
2862 
2863 		end = start + skb_frag_size(frag);
2864 		if ((copy = end - offset) > 0) {
2865 			u32 p_off, p_len, copied;
2866 			struct page *p;
2867 			__wsum csum2;
2868 			u8 *vaddr;
2869 
2870 			if (copy > len)
2871 				copy = len;
2872 
2873 			skb_frag_foreach_page(frag,
2874 					      skb_frag_off(frag) + offset - start,
2875 					      copy, p, p_off, p_len, copied) {
2876 				vaddr = kmap_atomic(p);
2877 				csum2 = INDIRECT_CALL_1(ops->update,
2878 							csum_partial_ext,
2879 							vaddr + p_off, p_len, 0);
2880 				kunmap_atomic(vaddr);
2881 				csum = INDIRECT_CALL_1(ops->combine,
2882 						       csum_block_add_ext, csum,
2883 						       csum2, pos, p_len);
2884 				pos += p_len;
2885 			}
2886 
2887 			if (!(len -= copy))
2888 				return csum;
2889 			offset += copy;
2890 		}
2891 		start = end;
2892 	}
2893 
2894 	skb_walk_frags(skb, frag_iter) {
2895 		int end;
2896 
2897 		WARN_ON(start > offset + len);
2898 
2899 		end = start + frag_iter->len;
2900 		if ((copy = end - offset) > 0) {
2901 			__wsum csum2;
2902 			if (copy > len)
2903 				copy = len;
2904 			csum2 = __skb_checksum(frag_iter, offset - start,
2905 					       copy, 0, ops);
2906 			csum = INDIRECT_CALL_1(ops->combine, csum_block_add_ext,
2907 					       csum, csum2, pos, copy);
2908 			if ((len -= copy) == 0)
2909 				return csum;
2910 			offset += copy;
2911 			pos    += copy;
2912 		}
2913 		start = end;
2914 	}
2915 	BUG_ON(len);
2916 
2917 	return csum;
2918 }
2919 EXPORT_SYMBOL(__skb_checksum);
2920 
skb_checksum(const struct sk_buff * skb,int offset,int len,__wsum csum)2921 __wsum skb_checksum(const struct sk_buff *skb, int offset,
2922 		    int len, __wsum csum)
2923 {
2924 	const struct skb_checksum_ops ops = {
2925 		.update  = csum_partial_ext,
2926 		.combine = csum_block_add_ext,
2927 	};
2928 
2929 	return __skb_checksum(skb, offset, len, csum, &ops);
2930 }
2931 EXPORT_SYMBOL(skb_checksum);
2932 
2933 /* Both of above in one bottle. */
2934 
skb_copy_and_csum_bits(const struct sk_buff * skb,int offset,u8 * to,int len)2935 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
2936 				    u8 *to, int len)
2937 {
2938 	int start = skb_headlen(skb);
2939 	int i, copy = start - offset;
2940 	struct sk_buff *frag_iter;
2941 	int pos = 0;
2942 	__wsum csum = 0;
2943 
2944 	/* Copy header. */
2945 	if (copy > 0) {
2946 		if (copy > len)
2947 			copy = len;
2948 		csum = csum_partial_copy_nocheck(skb->data + offset, to,
2949 						 copy);
2950 		if ((len -= copy) == 0)
2951 			return csum;
2952 		offset += copy;
2953 		to     += copy;
2954 		pos	= copy;
2955 	}
2956 
2957 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2958 		int end;
2959 
2960 		WARN_ON(start > offset + len);
2961 
2962 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2963 		if ((copy = end - offset) > 0) {
2964 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2965 			u32 p_off, p_len, copied;
2966 			struct page *p;
2967 			__wsum csum2;
2968 			u8 *vaddr;
2969 
2970 			if (copy > len)
2971 				copy = len;
2972 
2973 			skb_frag_foreach_page(frag,
2974 					      skb_frag_off(frag) + offset - start,
2975 					      copy, p, p_off, p_len, copied) {
2976 				vaddr = kmap_atomic(p);
2977 				csum2 = csum_partial_copy_nocheck(vaddr + p_off,
2978 								  to + copied,
2979 								  p_len);
2980 				kunmap_atomic(vaddr);
2981 				csum = csum_block_add(csum, csum2, pos);
2982 				pos += p_len;
2983 			}
2984 
2985 			if (!(len -= copy))
2986 				return csum;
2987 			offset += copy;
2988 			to     += copy;
2989 		}
2990 		start = end;
2991 	}
2992 
2993 	skb_walk_frags(skb, frag_iter) {
2994 		__wsum csum2;
2995 		int end;
2996 
2997 		WARN_ON(start > offset + len);
2998 
2999 		end = start + frag_iter->len;
3000 		if ((copy = end - offset) > 0) {
3001 			if (copy > len)
3002 				copy = len;
3003 			csum2 = skb_copy_and_csum_bits(frag_iter,
3004 						       offset - start,
3005 						       to, copy);
3006 			csum = csum_block_add(csum, csum2, pos);
3007 			if ((len -= copy) == 0)
3008 				return csum;
3009 			offset += copy;
3010 			to     += copy;
3011 			pos    += copy;
3012 		}
3013 		start = end;
3014 	}
3015 	BUG_ON(len);
3016 	return csum;
3017 }
3018 EXPORT_SYMBOL(skb_copy_and_csum_bits);
3019 
__skb_checksum_complete_head(struct sk_buff * skb,int len)3020 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len)
3021 {
3022 	__sum16 sum;
3023 
3024 	sum = csum_fold(skb_checksum(skb, 0, len, skb->csum));
3025 	/* See comments in __skb_checksum_complete(). */
3026 	if (likely(!sum)) {
3027 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
3028 		    !skb->csum_complete_sw)
3029 			netdev_rx_csum_fault(skb->dev, skb);
3030 	}
3031 	if (!skb_shared(skb))
3032 		skb->csum_valid = !sum;
3033 	return sum;
3034 }
3035 EXPORT_SYMBOL(__skb_checksum_complete_head);
3036 
3037 /* This function assumes skb->csum already holds pseudo header's checksum,
3038  * which has been changed from the hardware checksum, for example, by
3039  * __skb_checksum_validate_complete(). And, the original skb->csum must
3040  * have been validated unsuccessfully for CHECKSUM_COMPLETE case.
3041  *
3042  * It returns non-zero if the recomputed checksum is still invalid, otherwise
3043  * zero. The new checksum is stored back into skb->csum unless the skb is
3044  * shared.
3045  */
__skb_checksum_complete(struct sk_buff * skb)3046 __sum16 __skb_checksum_complete(struct sk_buff *skb)
3047 {
3048 	__wsum csum;
3049 	__sum16 sum;
3050 
3051 	csum = skb_checksum(skb, 0, skb->len, 0);
3052 
3053 	sum = csum_fold(csum_add(skb->csum, csum));
3054 	/* This check is inverted, because we already knew the hardware
3055 	 * checksum is invalid before calling this function. So, if the
3056 	 * re-computed checksum is valid instead, then we have a mismatch
3057 	 * between the original skb->csum and skb_checksum(). This means either
3058 	 * the original hardware checksum is incorrect or we screw up skb->csum
3059 	 * when moving skb->data around.
3060 	 */
3061 	if (likely(!sum)) {
3062 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
3063 		    !skb->csum_complete_sw)
3064 			netdev_rx_csum_fault(skb->dev, skb);
3065 	}
3066 
3067 	if (!skb_shared(skb)) {
3068 		/* Save full packet checksum */
3069 		skb->csum = csum;
3070 		skb->ip_summed = CHECKSUM_COMPLETE;
3071 		skb->csum_complete_sw = 1;
3072 		skb->csum_valid = !sum;
3073 	}
3074 
3075 	return sum;
3076 }
3077 EXPORT_SYMBOL(__skb_checksum_complete);
3078 
warn_crc32c_csum_update(const void * buff,int len,__wsum sum)3079 static __wsum warn_crc32c_csum_update(const void *buff, int len, __wsum sum)
3080 {
3081 	net_warn_ratelimited(
3082 		"%s: attempt to compute crc32c without libcrc32c.ko\n",
3083 		__func__);
3084 	return 0;
3085 }
3086 
warn_crc32c_csum_combine(__wsum csum,__wsum csum2,int offset,int len)3087 static __wsum warn_crc32c_csum_combine(__wsum csum, __wsum csum2,
3088 				       int offset, int len)
3089 {
3090 	net_warn_ratelimited(
3091 		"%s: attempt to compute crc32c without libcrc32c.ko\n",
3092 		__func__);
3093 	return 0;
3094 }
3095 
3096 static const struct skb_checksum_ops default_crc32c_ops = {
3097 	.update  = warn_crc32c_csum_update,
3098 	.combine = warn_crc32c_csum_combine,
3099 };
3100 
3101 const struct skb_checksum_ops *crc32c_csum_stub __read_mostly =
3102 	&default_crc32c_ops;
3103 EXPORT_SYMBOL(crc32c_csum_stub);
3104 
3105  /**
3106  *	skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy()
3107  *	@from: source buffer
3108  *
3109  *	Calculates the amount of linear headroom needed in the 'to' skb passed
3110  *	into skb_zerocopy().
3111  */
3112 unsigned int
skb_zerocopy_headlen(const struct sk_buff * from)3113 skb_zerocopy_headlen(const struct sk_buff *from)
3114 {
3115 	unsigned int hlen = 0;
3116 
3117 	if (!from->head_frag ||
3118 	    skb_headlen(from) < L1_CACHE_BYTES ||
3119 	    skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS) {
3120 		hlen = skb_headlen(from);
3121 		if (!hlen)
3122 			hlen = from->len;
3123 	}
3124 
3125 	if (skb_has_frag_list(from))
3126 		hlen = from->len;
3127 
3128 	return hlen;
3129 }
3130 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen);
3131 
3132 /**
3133  *	skb_zerocopy - Zero copy skb to skb
3134  *	@to: destination buffer
3135  *	@from: source buffer
3136  *	@len: number of bytes to copy from source buffer
3137  *	@hlen: size of linear headroom in destination buffer
3138  *
3139  *	Copies up to `len` bytes from `from` to `to` by creating references
3140  *	to the frags in the source buffer.
3141  *
3142  *	The `hlen` as calculated by skb_zerocopy_headlen() specifies the
3143  *	headroom in the `to` buffer.
3144  *
3145  *	Return value:
3146  *	0: everything is OK
3147  *	-ENOMEM: couldn't orphan frags of @from due to lack of memory
3148  *	-EFAULT: skb_copy_bits() found some problem with skb geometry
3149  */
3150 int
skb_zerocopy(struct sk_buff * to,struct sk_buff * from,int len,int hlen)3151 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen)
3152 {
3153 	int i, j = 0;
3154 	int plen = 0; /* length of skb->head fragment */
3155 	int ret;
3156 	struct page *page;
3157 	unsigned int offset;
3158 
3159 	BUG_ON(!from->head_frag && !hlen);
3160 
3161 	/* dont bother with small payloads */
3162 	if (len <= skb_tailroom(to))
3163 		return skb_copy_bits(from, 0, skb_put(to, len), len);
3164 
3165 	if (hlen) {
3166 		ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen);
3167 		if (unlikely(ret))
3168 			return ret;
3169 		len -= hlen;
3170 	} else {
3171 		plen = min_t(int, skb_headlen(from), len);
3172 		if (plen) {
3173 			page = virt_to_head_page(from->head);
3174 			offset = from->data - (unsigned char *)page_address(page);
3175 			__skb_fill_page_desc(to, 0, page, offset, plen);
3176 			get_page(page);
3177 			j = 1;
3178 			len -= plen;
3179 		}
3180 	}
3181 
3182 	to->truesize += len + plen;
3183 	to->len += len + plen;
3184 	to->data_len += len + plen;
3185 
3186 	if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) {
3187 		skb_tx_error(from);
3188 		return -ENOMEM;
3189 	}
3190 	skb_zerocopy_clone(to, from, GFP_ATOMIC);
3191 
3192 	for (i = 0; i < skb_shinfo(from)->nr_frags; i++) {
3193 		int size;
3194 
3195 		if (!len)
3196 			break;
3197 		skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i];
3198 		size = min_t(int, skb_frag_size(&skb_shinfo(to)->frags[j]),
3199 					len);
3200 		skb_frag_size_set(&skb_shinfo(to)->frags[j], size);
3201 		len -= size;
3202 		skb_frag_ref(to, j);
3203 		j++;
3204 	}
3205 	skb_shinfo(to)->nr_frags = j;
3206 
3207 	return 0;
3208 }
3209 EXPORT_SYMBOL_GPL(skb_zerocopy);
3210 
skb_copy_and_csum_dev(const struct sk_buff * skb,u8 * to)3211 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
3212 {
3213 	__wsum csum;
3214 	long csstart;
3215 
3216 	if (skb->ip_summed == CHECKSUM_PARTIAL)
3217 		csstart = skb_checksum_start_offset(skb);
3218 	else
3219 		csstart = skb_headlen(skb);
3220 
3221 	BUG_ON(csstart > skb_headlen(skb));
3222 
3223 	skb_copy_from_linear_data(skb, to, csstart);
3224 
3225 	csum = 0;
3226 	if (csstart != skb->len)
3227 		csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
3228 					      skb->len - csstart);
3229 
3230 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
3231 		long csstuff = csstart + skb->csum_offset;
3232 
3233 		*((__sum16 *)(to + csstuff)) = csum_fold(csum);
3234 	}
3235 }
3236 EXPORT_SYMBOL(skb_copy_and_csum_dev);
3237 
3238 /**
3239  *	skb_dequeue - remove from the head of the queue
3240  *	@list: list to dequeue from
3241  *
3242  *	Remove the head of the list. The list lock is taken so the function
3243  *	may be used safely with other locking list functions. The head item is
3244  *	returned or %NULL if the list is empty.
3245  */
3246 
skb_dequeue(struct sk_buff_head * list)3247 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
3248 {
3249 	unsigned long flags;
3250 	struct sk_buff *result;
3251 
3252 	spin_lock_irqsave(&list->lock, flags);
3253 	result = __skb_dequeue(list);
3254 	spin_unlock_irqrestore(&list->lock, flags);
3255 	return result;
3256 }
3257 EXPORT_SYMBOL(skb_dequeue);
3258 
3259 /**
3260  *	skb_dequeue_tail - remove from the tail of the queue
3261  *	@list: list to dequeue from
3262  *
3263  *	Remove the tail of the list. The list lock is taken so the function
3264  *	may be used safely with other locking list functions. The tail item is
3265  *	returned or %NULL if the list is empty.
3266  */
skb_dequeue_tail(struct sk_buff_head * list)3267 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
3268 {
3269 	unsigned long flags;
3270 	struct sk_buff *result;
3271 
3272 	spin_lock_irqsave(&list->lock, flags);
3273 	result = __skb_dequeue_tail(list);
3274 	spin_unlock_irqrestore(&list->lock, flags);
3275 	return result;
3276 }
3277 EXPORT_SYMBOL(skb_dequeue_tail);
3278 
3279 /**
3280  *	skb_queue_purge - empty a list
3281  *	@list: list to empty
3282  *
3283  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
3284  *	the list and one reference dropped. This function takes the list
3285  *	lock and is atomic with respect to other list locking functions.
3286  */
skb_queue_purge(struct sk_buff_head * list)3287 void skb_queue_purge(struct sk_buff_head *list)
3288 {
3289 	struct sk_buff *skb;
3290 	while ((skb = skb_dequeue(list)) != NULL)
3291 		kfree_skb(skb);
3292 }
3293 EXPORT_SYMBOL(skb_queue_purge);
3294 
3295 /**
3296  *	skb_rbtree_purge - empty a skb rbtree
3297  *	@root: root of the rbtree to empty
3298  *	Return value: the sum of truesizes of all purged skbs.
3299  *
3300  *	Delete all buffers on an &sk_buff rbtree. Each buffer is removed from
3301  *	the list and one reference dropped. This function does not take
3302  *	any lock. Synchronization should be handled by the caller (e.g., TCP
3303  *	out-of-order queue is protected by the socket lock).
3304  */
skb_rbtree_purge(struct rb_root * root)3305 unsigned int skb_rbtree_purge(struct rb_root *root)
3306 {
3307 	struct rb_node *p = rb_first(root);
3308 	unsigned int sum = 0;
3309 
3310 	while (p) {
3311 		struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode);
3312 
3313 		p = rb_next(p);
3314 		rb_erase(&skb->rbnode, root);
3315 		sum += skb->truesize;
3316 		kfree_skb(skb);
3317 	}
3318 	return sum;
3319 }
3320 
3321 /**
3322  *	skb_queue_head - queue a buffer at the list head
3323  *	@list: list to use
3324  *	@newsk: buffer to queue
3325  *
3326  *	Queue a buffer at the start of the list. This function takes the
3327  *	list lock and can be used safely with other locking &sk_buff functions
3328  *	safely.
3329  *
3330  *	A buffer cannot be placed on two lists at the same time.
3331  */
skb_queue_head(struct sk_buff_head * list,struct sk_buff * newsk)3332 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
3333 {
3334 	unsigned long flags;
3335 
3336 	spin_lock_irqsave(&list->lock, flags);
3337 	__skb_queue_head(list, newsk);
3338 	spin_unlock_irqrestore(&list->lock, flags);
3339 }
3340 EXPORT_SYMBOL(skb_queue_head);
3341 
3342 /**
3343  *	skb_queue_tail - queue a buffer at the list tail
3344  *	@list: list to use
3345  *	@newsk: buffer to queue
3346  *
3347  *	Queue a buffer at the tail of the list. This function takes the
3348  *	list lock and can be used safely with other locking &sk_buff functions
3349  *	safely.
3350  *
3351  *	A buffer cannot be placed on two lists at the same time.
3352  */
skb_queue_tail(struct sk_buff_head * list,struct sk_buff * newsk)3353 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
3354 {
3355 	unsigned long flags;
3356 
3357 	spin_lock_irqsave(&list->lock, flags);
3358 	__skb_queue_tail(list, newsk);
3359 	spin_unlock_irqrestore(&list->lock, flags);
3360 }
3361 EXPORT_SYMBOL(skb_queue_tail);
3362 
3363 /**
3364  *	skb_unlink	-	remove a buffer from a list
3365  *	@skb: buffer to remove
3366  *	@list: list to use
3367  *
3368  *	Remove a packet from a list. The list locks are taken and this
3369  *	function is atomic with respect to other list locked calls
3370  *
3371  *	You must know what list the SKB is on.
3372  */
skb_unlink(struct sk_buff * skb,struct sk_buff_head * list)3373 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
3374 {
3375 	unsigned long flags;
3376 
3377 	spin_lock_irqsave(&list->lock, flags);
3378 	__skb_unlink(skb, list);
3379 	spin_unlock_irqrestore(&list->lock, flags);
3380 }
3381 EXPORT_SYMBOL(skb_unlink);
3382 
3383 /**
3384  *	skb_append	-	append a buffer
3385  *	@old: buffer to insert after
3386  *	@newsk: buffer to insert
3387  *	@list: list to use
3388  *
3389  *	Place a packet after a given packet in a list. The list locks are taken
3390  *	and this function is atomic with respect to other list locked calls.
3391  *	A buffer cannot be placed on two lists at the same time.
3392  */
skb_append(struct sk_buff * old,struct sk_buff * newsk,struct sk_buff_head * list)3393 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
3394 {
3395 	unsigned long flags;
3396 
3397 	spin_lock_irqsave(&list->lock, flags);
3398 	__skb_queue_after(list, old, newsk);
3399 	spin_unlock_irqrestore(&list->lock, flags);
3400 }
3401 EXPORT_SYMBOL(skb_append);
3402 
skb_split_inside_header(struct sk_buff * skb,struct sk_buff * skb1,const u32 len,const int pos)3403 static inline void skb_split_inside_header(struct sk_buff *skb,
3404 					   struct sk_buff* skb1,
3405 					   const u32 len, const int pos)
3406 {
3407 	int i;
3408 
3409 	skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
3410 					 pos - len);
3411 	/* And move data appendix as is. */
3412 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
3413 		skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
3414 
3415 	skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
3416 	skb_shinfo(skb)->nr_frags  = 0;
3417 	skb1->data_len		   = skb->data_len;
3418 	skb1->len		   += skb1->data_len;
3419 	skb->data_len		   = 0;
3420 	skb->len		   = len;
3421 	skb_set_tail_pointer(skb, len);
3422 }
3423 
skb_split_no_header(struct sk_buff * skb,struct sk_buff * skb1,const u32 len,int pos)3424 static inline void skb_split_no_header(struct sk_buff *skb,
3425 				       struct sk_buff* skb1,
3426 				       const u32 len, int pos)
3427 {
3428 	int i, k = 0;
3429 	const int nfrags = skb_shinfo(skb)->nr_frags;
3430 
3431 	skb_shinfo(skb)->nr_frags = 0;
3432 	skb1->len		  = skb1->data_len = skb->len - len;
3433 	skb->len		  = len;
3434 	skb->data_len		  = len - pos;
3435 
3436 	for (i = 0; i < nfrags; i++) {
3437 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
3438 
3439 		if (pos + size > len) {
3440 			skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
3441 
3442 			if (pos < len) {
3443 				/* Split frag.
3444 				 * We have two variants in this case:
3445 				 * 1. Move all the frag to the second
3446 				 *    part, if it is possible. F.e.
3447 				 *    this approach is mandatory for TUX,
3448 				 *    where splitting is expensive.
3449 				 * 2. Split is accurately. We make this.
3450 				 */
3451 				skb_frag_ref(skb, i);
3452 				skb_frag_off_add(&skb_shinfo(skb1)->frags[0], len - pos);
3453 				skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
3454 				skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
3455 				skb_shinfo(skb)->nr_frags++;
3456 			}
3457 			k++;
3458 		} else
3459 			skb_shinfo(skb)->nr_frags++;
3460 		pos += size;
3461 	}
3462 	skb_shinfo(skb1)->nr_frags = k;
3463 }
3464 
3465 /**
3466  * skb_split - Split fragmented skb to two parts at length len.
3467  * @skb: the buffer to split
3468  * @skb1: the buffer to receive the second part
3469  * @len: new length for skb
3470  */
skb_split(struct sk_buff * skb,struct sk_buff * skb1,const u32 len)3471 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
3472 {
3473 	int pos = skb_headlen(skb);
3474 
3475 	skb_shinfo(skb1)->flags |= skb_shinfo(skb)->flags & SKBFL_SHARED_FRAG;
3476 	skb_zerocopy_clone(skb1, skb, 0);
3477 	if (len < pos)	/* Split line is inside header. */
3478 		skb_split_inside_header(skb, skb1, len, pos);
3479 	else		/* Second chunk has no header, nothing to copy. */
3480 		skb_split_no_header(skb, skb1, len, pos);
3481 }
3482 EXPORT_SYMBOL(skb_split);
3483 
3484 /* Shifting from/to a cloned skb is a no-go.
3485  *
3486  * Caller cannot keep skb_shinfo related pointers past calling here!
3487  */
skb_prepare_for_shift(struct sk_buff * skb)3488 static int skb_prepare_for_shift(struct sk_buff *skb)
3489 {
3490 	return skb_unclone_keeptruesize(skb, GFP_ATOMIC);
3491 }
3492 
3493 /**
3494  * skb_shift - Shifts paged data partially from skb to another
3495  * @tgt: buffer into which tail data gets added
3496  * @skb: buffer from which the paged data comes from
3497  * @shiftlen: shift up to this many bytes
3498  *
3499  * Attempts to shift up to shiftlen worth of bytes, which may be less than
3500  * the length of the skb, from skb to tgt. Returns number bytes shifted.
3501  * It's up to caller to free skb if everything was shifted.
3502  *
3503  * If @tgt runs out of frags, the whole operation is aborted.
3504  *
3505  * Skb cannot include anything else but paged data while tgt is allowed
3506  * to have non-paged data as well.
3507  *
3508  * TODO: full sized shift could be optimized but that would need
3509  * specialized skb free'er to handle frags without up-to-date nr_frags.
3510  */
skb_shift(struct sk_buff * tgt,struct sk_buff * skb,int shiftlen)3511 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
3512 {
3513 	int from, to, merge, todo;
3514 	skb_frag_t *fragfrom, *fragto;
3515 
3516 	BUG_ON(shiftlen > skb->len);
3517 
3518 	if (skb_headlen(skb))
3519 		return 0;
3520 	if (skb_zcopy(tgt) || skb_zcopy(skb))
3521 		return 0;
3522 
3523 	todo = shiftlen;
3524 	from = 0;
3525 	to = skb_shinfo(tgt)->nr_frags;
3526 	fragfrom = &skb_shinfo(skb)->frags[from];
3527 
3528 	/* Actual merge is delayed until the point when we know we can
3529 	 * commit all, so that we don't have to undo partial changes
3530 	 */
3531 	if (!to ||
3532 	    !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
3533 			      skb_frag_off(fragfrom))) {
3534 		merge = -1;
3535 	} else {
3536 		merge = to - 1;
3537 
3538 		todo -= skb_frag_size(fragfrom);
3539 		if (todo < 0) {
3540 			if (skb_prepare_for_shift(skb) ||
3541 			    skb_prepare_for_shift(tgt))
3542 				return 0;
3543 
3544 			/* All previous frag pointers might be stale! */
3545 			fragfrom = &skb_shinfo(skb)->frags[from];
3546 			fragto = &skb_shinfo(tgt)->frags[merge];
3547 
3548 			skb_frag_size_add(fragto, shiftlen);
3549 			skb_frag_size_sub(fragfrom, shiftlen);
3550 			skb_frag_off_add(fragfrom, shiftlen);
3551 
3552 			goto onlymerged;
3553 		}
3554 
3555 		from++;
3556 	}
3557 
3558 	/* Skip full, not-fitting skb to avoid expensive operations */
3559 	if ((shiftlen == skb->len) &&
3560 	    (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
3561 		return 0;
3562 
3563 	if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
3564 		return 0;
3565 
3566 	while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
3567 		if (to == MAX_SKB_FRAGS)
3568 			return 0;
3569 
3570 		fragfrom = &skb_shinfo(skb)->frags[from];
3571 		fragto = &skb_shinfo(tgt)->frags[to];
3572 
3573 		if (todo >= skb_frag_size(fragfrom)) {
3574 			*fragto = *fragfrom;
3575 			todo -= skb_frag_size(fragfrom);
3576 			from++;
3577 			to++;
3578 
3579 		} else {
3580 			__skb_frag_ref(fragfrom);
3581 			skb_frag_page_copy(fragto, fragfrom);
3582 			skb_frag_off_copy(fragto, fragfrom);
3583 			skb_frag_size_set(fragto, todo);
3584 
3585 			skb_frag_off_add(fragfrom, todo);
3586 			skb_frag_size_sub(fragfrom, todo);
3587 			todo = 0;
3588 
3589 			to++;
3590 			break;
3591 		}
3592 	}
3593 
3594 	/* Ready to "commit" this state change to tgt */
3595 	skb_shinfo(tgt)->nr_frags = to;
3596 
3597 	if (merge >= 0) {
3598 		fragfrom = &skb_shinfo(skb)->frags[0];
3599 		fragto = &skb_shinfo(tgt)->frags[merge];
3600 
3601 		skb_frag_size_add(fragto, skb_frag_size(fragfrom));
3602 		__skb_frag_unref(fragfrom, skb->pp_recycle);
3603 	}
3604 
3605 	/* Reposition in the original skb */
3606 	to = 0;
3607 	while (from < skb_shinfo(skb)->nr_frags)
3608 		skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
3609 	skb_shinfo(skb)->nr_frags = to;
3610 
3611 	BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
3612 
3613 onlymerged:
3614 	/* Most likely the tgt won't ever need its checksum anymore, skb on
3615 	 * the other hand might need it if it needs to be resent
3616 	 */
3617 	tgt->ip_summed = CHECKSUM_PARTIAL;
3618 	skb->ip_summed = CHECKSUM_PARTIAL;
3619 
3620 	/* Yak, is it really working this way? Some helper please? */
3621 	skb->len -= shiftlen;
3622 	skb->data_len -= shiftlen;
3623 	skb->truesize -= shiftlen;
3624 	tgt->len += shiftlen;
3625 	tgt->data_len += shiftlen;
3626 	tgt->truesize += shiftlen;
3627 
3628 	return shiftlen;
3629 }
3630 
3631 /**
3632  * skb_prepare_seq_read - Prepare a sequential read of skb data
3633  * @skb: the buffer to read
3634  * @from: lower offset of data to be read
3635  * @to: upper offset of data to be read
3636  * @st: state variable
3637  *
3638  * Initializes the specified state variable. Must be called before
3639  * invoking skb_seq_read() for the first time.
3640  */
skb_prepare_seq_read(struct sk_buff * skb,unsigned int from,unsigned int to,struct skb_seq_state * st)3641 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
3642 			  unsigned int to, struct skb_seq_state *st)
3643 {
3644 	st->lower_offset = from;
3645 	st->upper_offset = to;
3646 	st->root_skb = st->cur_skb = skb;
3647 	st->frag_idx = st->stepped_offset = 0;
3648 	st->frag_data = NULL;
3649 	st->frag_off = 0;
3650 }
3651 EXPORT_SYMBOL(skb_prepare_seq_read);
3652 
3653 /**
3654  * skb_seq_read - Sequentially read skb data
3655  * @consumed: number of bytes consumed by the caller so far
3656  * @data: destination pointer for data to be returned
3657  * @st: state variable
3658  *
3659  * Reads a block of skb data at @consumed relative to the
3660  * lower offset specified to skb_prepare_seq_read(). Assigns
3661  * the head of the data block to @data and returns the length
3662  * of the block or 0 if the end of the skb data or the upper
3663  * offset has been reached.
3664  *
3665  * The caller is not required to consume all of the data
3666  * returned, i.e. @consumed is typically set to the number
3667  * of bytes already consumed and the next call to
3668  * skb_seq_read() will return the remaining part of the block.
3669  *
3670  * Note 1: The size of each block of data returned can be arbitrary,
3671  *       this limitation is the cost for zerocopy sequential
3672  *       reads of potentially non linear data.
3673  *
3674  * Note 2: Fragment lists within fragments are not implemented
3675  *       at the moment, state->root_skb could be replaced with
3676  *       a stack for this purpose.
3677  */
skb_seq_read(unsigned int consumed,const u8 ** data,struct skb_seq_state * st)3678 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
3679 			  struct skb_seq_state *st)
3680 {
3681 	unsigned int block_limit, abs_offset = consumed + st->lower_offset;
3682 	skb_frag_t *frag;
3683 
3684 	if (unlikely(abs_offset >= st->upper_offset)) {
3685 		if (st->frag_data) {
3686 			kunmap_atomic(st->frag_data);
3687 			st->frag_data = NULL;
3688 		}
3689 		return 0;
3690 	}
3691 
3692 next_skb:
3693 	block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
3694 
3695 	if (abs_offset < block_limit && !st->frag_data) {
3696 		*data = st->cur_skb->data + (abs_offset - st->stepped_offset);
3697 		return block_limit - abs_offset;
3698 	}
3699 
3700 	if (st->frag_idx == 0 && !st->frag_data)
3701 		st->stepped_offset += skb_headlen(st->cur_skb);
3702 
3703 	while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
3704 		unsigned int pg_idx, pg_off, pg_sz;
3705 
3706 		frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
3707 
3708 		pg_idx = 0;
3709 		pg_off = skb_frag_off(frag);
3710 		pg_sz = skb_frag_size(frag);
3711 
3712 		if (skb_frag_must_loop(skb_frag_page(frag))) {
3713 			pg_idx = (pg_off + st->frag_off) >> PAGE_SHIFT;
3714 			pg_off = offset_in_page(pg_off + st->frag_off);
3715 			pg_sz = min_t(unsigned int, pg_sz - st->frag_off,
3716 						    PAGE_SIZE - pg_off);
3717 		}
3718 
3719 		block_limit = pg_sz + st->stepped_offset;
3720 		if (abs_offset < block_limit) {
3721 			if (!st->frag_data)
3722 				st->frag_data = kmap_atomic(skb_frag_page(frag) + pg_idx);
3723 
3724 			*data = (u8 *)st->frag_data + pg_off +
3725 				(abs_offset - st->stepped_offset);
3726 
3727 			return block_limit - abs_offset;
3728 		}
3729 
3730 		if (st->frag_data) {
3731 			kunmap_atomic(st->frag_data);
3732 			st->frag_data = NULL;
3733 		}
3734 
3735 		st->stepped_offset += pg_sz;
3736 		st->frag_off += pg_sz;
3737 		if (st->frag_off == skb_frag_size(frag)) {
3738 			st->frag_off = 0;
3739 			st->frag_idx++;
3740 		}
3741 	}
3742 
3743 	if (st->frag_data) {
3744 		kunmap_atomic(st->frag_data);
3745 		st->frag_data = NULL;
3746 	}
3747 
3748 	if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
3749 		st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
3750 		st->frag_idx = 0;
3751 		goto next_skb;
3752 	} else if (st->cur_skb->next) {
3753 		st->cur_skb = st->cur_skb->next;
3754 		st->frag_idx = 0;
3755 		goto next_skb;
3756 	}
3757 
3758 	return 0;
3759 }
3760 EXPORT_SYMBOL(skb_seq_read);
3761 
3762 /**
3763  * skb_abort_seq_read - Abort a sequential read of skb data
3764  * @st: state variable
3765  *
3766  * Must be called if skb_seq_read() was not called until it
3767  * returned 0.
3768  */
skb_abort_seq_read(struct skb_seq_state * st)3769 void skb_abort_seq_read(struct skb_seq_state *st)
3770 {
3771 	if (st->frag_data)
3772 		kunmap_atomic(st->frag_data);
3773 }
3774 EXPORT_SYMBOL(skb_abort_seq_read);
3775 
3776 #define TS_SKB_CB(state)	((struct skb_seq_state *) &((state)->cb))
3777 
skb_ts_get_next_block(unsigned int offset,const u8 ** text,struct ts_config * conf,struct ts_state * state)3778 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
3779 					  struct ts_config *conf,
3780 					  struct ts_state *state)
3781 {
3782 	return skb_seq_read(offset, text, TS_SKB_CB(state));
3783 }
3784 
skb_ts_finish(struct ts_config * conf,struct ts_state * state)3785 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
3786 {
3787 	skb_abort_seq_read(TS_SKB_CB(state));
3788 }
3789 
3790 /**
3791  * skb_find_text - Find a text pattern in skb data
3792  * @skb: the buffer to look in
3793  * @from: search offset
3794  * @to: search limit
3795  * @config: textsearch configuration
3796  *
3797  * Finds a pattern in the skb data according to the specified
3798  * textsearch configuration. Use textsearch_next() to retrieve
3799  * subsequent occurrences of the pattern. Returns the offset
3800  * to the first occurrence or UINT_MAX if no match was found.
3801  */
skb_find_text(struct sk_buff * skb,unsigned int from,unsigned int to,struct ts_config * config)3802 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
3803 			   unsigned int to, struct ts_config *config)
3804 {
3805 	struct ts_state state;
3806 	unsigned int ret;
3807 
3808 	BUILD_BUG_ON(sizeof(struct skb_seq_state) > sizeof(state.cb));
3809 
3810 	config->get_next_block = skb_ts_get_next_block;
3811 	config->finish = skb_ts_finish;
3812 
3813 	skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state));
3814 
3815 	ret = textsearch_find(config, &state);
3816 	return (ret <= to - from ? ret : UINT_MAX);
3817 }
3818 EXPORT_SYMBOL(skb_find_text);
3819 
skb_append_pagefrags(struct sk_buff * skb,struct page * page,int offset,size_t size)3820 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
3821 			 int offset, size_t size)
3822 {
3823 	int i = skb_shinfo(skb)->nr_frags;
3824 
3825 	if (skb_can_coalesce(skb, i, page, offset)) {
3826 		skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size);
3827 	} else if (i < MAX_SKB_FRAGS) {
3828 		get_page(page);
3829 		skb_fill_page_desc_noacc(skb, i, page, offset, size);
3830 	} else {
3831 		return -EMSGSIZE;
3832 	}
3833 
3834 	return 0;
3835 }
3836 EXPORT_SYMBOL_GPL(skb_append_pagefrags);
3837 
3838 /**
3839  *	skb_pull_rcsum - pull skb and update receive checksum
3840  *	@skb: buffer to update
3841  *	@len: length of data pulled
3842  *
3843  *	This function performs an skb_pull on the packet and updates
3844  *	the CHECKSUM_COMPLETE checksum.  It should be used on
3845  *	receive path processing instead of skb_pull unless you know
3846  *	that the checksum difference is zero (e.g., a valid IP header)
3847  *	or you are setting ip_summed to CHECKSUM_NONE.
3848  */
skb_pull_rcsum(struct sk_buff * skb,unsigned int len)3849 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
3850 {
3851 	unsigned char *data = skb->data;
3852 
3853 	BUG_ON(len > skb->len);
3854 	__skb_pull(skb, len);
3855 	skb_postpull_rcsum(skb, data, len);
3856 	return skb->data;
3857 }
3858 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
3859 
skb_head_frag_to_page_desc(struct sk_buff * frag_skb)3860 static inline skb_frag_t skb_head_frag_to_page_desc(struct sk_buff *frag_skb)
3861 {
3862 	skb_frag_t head_frag;
3863 	struct page *page;
3864 
3865 	page = virt_to_head_page(frag_skb->head);
3866 	__skb_frag_set_page(&head_frag, page);
3867 	skb_frag_off_set(&head_frag, frag_skb->data -
3868 			 (unsigned char *)page_address(page));
3869 	skb_frag_size_set(&head_frag, skb_headlen(frag_skb));
3870 	return head_frag;
3871 }
3872 
skb_segment_list(struct sk_buff * skb,netdev_features_t features,unsigned int offset)3873 struct sk_buff *skb_segment_list(struct sk_buff *skb,
3874 				 netdev_features_t features,
3875 				 unsigned int offset)
3876 {
3877 	struct sk_buff *list_skb = skb_shinfo(skb)->frag_list;
3878 	unsigned int tnl_hlen = skb_tnl_header_len(skb);
3879 	unsigned int delta_truesize = 0;
3880 	unsigned int delta_len = 0;
3881 	struct sk_buff *tail = NULL;
3882 	struct sk_buff *nskb, *tmp;
3883 	int len_diff, err;
3884 
3885 	skb_push(skb, -skb_network_offset(skb) + offset);
3886 
3887 	/* Ensure the head is writeable before touching the shared info */
3888 	err = skb_unclone(skb, GFP_ATOMIC);
3889 	if (err)
3890 		goto err_linearize;
3891 
3892 	skb_shinfo(skb)->frag_list = NULL;
3893 
3894 	while (list_skb) {
3895 		nskb = list_skb;
3896 		list_skb = list_skb->next;
3897 
3898 		err = 0;
3899 		delta_truesize += nskb->truesize;
3900 		if (skb_shared(nskb)) {
3901 			tmp = skb_clone(nskb, GFP_ATOMIC);
3902 			if (tmp) {
3903 				consume_skb(nskb);
3904 				nskb = tmp;
3905 				err = skb_unclone(nskb, GFP_ATOMIC);
3906 			} else {
3907 				err = -ENOMEM;
3908 			}
3909 		}
3910 
3911 		if (!tail)
3912 			skb->next = nskb;
3913 		else
3914 			tail->next = nskb;
3915 
3916 		if (unlikely(err)) {
3917 			nskb->next = list_skb;
3918 			goto err_linearize;
3919 		}
3920 
3921 		tail = nskb;
3922 
3923 		delta_len += nskb->len;
3924 
3925 		skb_push(nskb, -skb_network_offset(nskb) + offset);
3926 
3927 		skb_release_head_state(nskb);
3928 		len_diff = skb_network_header_len(nskb) - skb_network_header_len(skb);
3929 		__copy_skb_header(nskb, skb);
3930 
3931 		skb_headers_offset_update(nskb, skb_headroom(nskb) - skb_headroom(skb));
3932 		nskb->transport_header += len_diff;
3933 		skb_copy_from_linear_data_offset(skb, -tnl_hlen,
3934 						 nskb->data - tnl_hlen,
3935 						 offset + tnl_hlen);
3936 
3937 		if (skb_needs_linearize(nskb, features) &&
3938 		    __skb_linearize(nskb))
3939 			goto err_linearize;
3940 	}
3941 
3942 	skb->truesize = skb->truesize - delta_truesize;
3943 	skb->data_len = skb->data_len - delta_len;
3944 	skb->len = skb->len - delta_len;
3945 
3946 	skb_gso_reset(skb);
3947 
3948 	skb->prev = tail;
3949 
3950 	if (skb_needs_linearize(skb, features) &&
3951 	    __skb_linearize(skb))
3952 		goto err_linearize;
3953 
3954 	skb_get(skb);
3955 
3956 	return skb;
3957 
3958 err_linearize:
3959 	kfree_skb_list(skb->next);
3960 	skb->next = NULL;
3961 	return ERR_PTR(-ENOMEM);
3962 }
3963 EXPORT_SYMBOL_GPL(skb_segment_list);
3964 
skb_gro_receive_list(struct sk_buff * p,struct sk_buff * skb)3965 int skb_gro_receive_list(struct sk_buff *p, struct sk_buff *skb)
3966 {
3967 	if (unlikely(p->len + skb->len >= 65536))
3968 		return -E2BIG;
3969 
3970 	if (NAPI_GRO_CB(p)->last == p)
3971 		skb_shinfo(p)->frag_list = skb;
3972 	else
3973 		NAPI_GRO_CB(p)->last->next = skb;
3974 
3975 	skb_pull(skb, skb_gro_offset(skb));
3976 
3977 	NAPI_GRO_CB(p)->last = skb;
3978 	NAPI_GRO_CB(p)->count++;
3979 	p->data_len += skb->len;
3980 
3981 	/* sk owenrship - if any - completely transferred to the aggregated packet */
3982 	skb->destructor = NULL;
3983 	p->truesize += skb->truesize;
3984 	p->len += skb->len;
3985 
3986 	NAPI_GRO_CB(skb)->same_flow = 1;
3987 
3988 	return 0;
3989 }
3990 
3991 /**
3992  *	skb_segment - Perform protocol segmentation on skb.
3993  *	@head_skb: buffer to segment
3994  *	@features: features for the output path (see dev->features)
3995  *
3996  *	This function performs segmentation on the given skb.  It returns
3997  *	a pointer to the first in a list of new skbs for the segments.
3998  *	In case of error it returns ERR_PTR(err).
3999  */
skb_segment(struct sk_buff * head_skb,netdev_features_t features)4000 struct sk_buff *skb_segment(struct sk_buff *head_skb,
4001 			    netdev_features_t features)
4002 {
4003 	struct sk_buff *segs = NULL;
4004 	struct sk_buff *tail = NULL;
4005 	struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list;
4006 	unsigned int mss = skb_shinfo(head_skb)->gso_size;
4007 	unsigned int doffset = head_skb->data - skb_mac_header(head_skb);
4008 	unsigned int offset = doffset;
4009 	unsigned int tnl_hlen = skb_tnl_header_len(head_skb);
4010 	unsigned int partial_segs = 0;
4011 	unsigned int headroom;
4012 	unsigned int len = head_skb->len;
4013 	struct sk_buff *frag_skb;
4014 	skb_frag_t *frag;
4015 	__be16 proto;
4016 	bool csum, sg;
4017 	int err = -ENOMEM;
4018 	int i = 0;
4019 	int nfrags, pos;
4020 
4021 	if ((skb_shinfo(head_skb)->gso_type & SKB_GSO_DODGY) &&
4022 	    mss != GSO_BY_FRAGS && mss != skb_headlen(head_skb)) {
4023 		struct sk_buff *check_skb;
4024 
4025 		for (check_skb = list_skb; check_skb; check_skb = check_skb->next) {
4026 			if (skb_headlen(check_skb) && !check_skb->head_frag) {
4027 				/* gso_size is untrusted, and we have a frag_list with
4028 				 * a linear non head_frag item.
4029 				 *
4030 				 * If head_skb's headlen does not fit requested gso_size,
4031 				 * it means that the frag_list members do NOT terminate
4032 				 * on exact gso_size boundaries. Hence we cannot perform
4033 				 * skb_frag_t page sharing. Therefore we must fallback to
4034 				 * copying the frag_list skbs; we do so by disabling SG.
4035 				 */
4036 				features &= ~NETIF_F_SG;
4037 				break;
4038 			}
4039 		}
4040 	}
4041 
4042 	__skb_push(head_skb, doffset);
4043 	proto = skb_network_protocol(head_skb, NULL);
4044 	if (unlikely(!proto))
4045 		return ERR_PTR(-EINVAL);
4046 
4047 	sg = !!(features & NETIF_F_SG);
4048 	csum = !!can_checksum_protocol(features, proto);
4049 
4050 	if (sg && csum && (mss != GSO_BY_FRAGS))  {
4051 		if (!(features & NETIF_F_GSO_PARTIAL)) {
4052 			struct sk_buff *iter;
4053 			unsigned int frag_len;
4054 
4055 			if (!list_skb ||
4056 			    !net_gso_ok(features, skb_shinfo(head_skb)->gso_type))
4057 				goto normal;
4058 
4059 			/* If we get here then all the required
4060 			 * GSO features except frag_list are supported.
4061 			 * Try to split the SKB to multiple GSO SKBs
4062 			 * with no frag_list.
4063 			 * Currently we can do that only when the buffers don't
4064 			 * have a linear part and all the buffers except
4065 			 * the last are of the same length.
4066 			 */
4067 			frag_len = list_skb->len;
4068 			skb_walk_frags(head_skb, iter) {
4069 				if (frag_len != iter->len && iter->next)
4070 					goto normal;
4071 				if (skb_headlen(iter) && !iter->head_frag)
4072 					goto normal;
4073 
4074 				len -= iter->len;
4075 			}
4076 
4077 			if (len != frag_len)
4078 				goto normal;
4079 		}
4080 
4081 		/* GSO partial only requires that we trim off any excess that
4082 		 * doesn't fit into an MSS sized block, so take care of that
4083 		 * now.
4084 		 * Cap len to not accidentally hit GSO_BY_FRAGS.
4085 		 */
4086 		partial_segs = min(len, GSO_BY_FRAGS - 1U) / mss;
4087 		if (partial_segs > 1)
4088 			mss *= partial_segs;
4089 		else
4090 			partial_segs = 0;
4091 	}
4092 
4093 normal:
4094 	headroom = skb_headroom(head_skb);
4095 	pos = skb_headlen(head_skb);
4096 
4097 	if (skb_orphan_frags(head_skb, GFP_ATOMIC))
4098 		return ERR_PTR(-ENOMEM);
4099 
4100 	nfrags = skb_shinfo(head_skb)->nr_frags;
4101 	frag = skb_shinfo(head_skb)->frags;
4102 	frag_skb = head_skb;
4103 
4104 	do {
4105 		struct sk_buff *nskb;
4106 		skb_frag_t *nskb_frag;
4107 		int hsize;
4108 		int size;
4109 
4110 		if (unlikely(mss == GSO_BY_FRAGS)) {
4111 			len = list_skb->len;
4112 		} else {
4113 			len = head_skb->len - offset;
4114 			if (len > mss)
4115 				len = mss;
4116 		}
4117 
4118 		hsize = skb_headlen(head_skb) - offset;
4119 
4120 		if (hsize <= 0 && i >= nfrags && skb_headlen(list_skb) &&
4121 		    (skb_headlen(list_skb) == len || sg)) {
4122 			BUG_ON(skb_headlen(list_skb) > len);
4123 
4124 			nskb = skb_clone(list_skb, GFP_ATOMIC);
4125 			if (unlikely(!nskb))
4126 				goto err;
4127 
4128 			i = 0;
4129 			nfrags = skb_shinfo(list_skb)->nr_frags;
4130 			frag = skb_shinfo(list_skb)->frags;
4131 			frag_skb = list_skb;
4132 			pos += skb_headlen(list_skb);
4133 
4134 			while (pos < offset + len) {
4135 				BUG_ON(i >= nfrags);
4136 
4137 				size = skb_frag_size(frag);
4138 				if (pos + size > offset + len)
4139 					break;
4140 
4141 				i++;
4142 				pos += size;
4143 				frag++;
4144 			}
4145 
4146 			list_skb = list_skb->next;
4147 
4148 			if (unlikely(pskb_trim(nskb, len))) {
4149 				kfree_skb(nskb);
4150 				goto err;
4151 			}
4152 
4153 			hsize = skb_end_offset(nskb);
4154 			if (skb_cow_head(nskb, doffset + headroom)) {
4155 				kfree_skb(nskb);
4156 				goto err;
4157 			}
4158 
4159 			nskb->truesize += skb_end_offset(nskb) - hsize;
4160 			skb_release_head_state(nskb);
4161 			__skb_push(nskb, doffset);
4162 		} else {
4163 			if (hsize < 0)
4164 				hsize = 0;
4165 			if (hsize > len || !sg)
4166 				hsize = len;
4167 
4168 			nskb = __alloc_skb(hsize + doffset + headroom,
4169 					   GFP_ATOMIC, skb_alloc_rx_flag(head_skb),
4170 					   NUMA_NO_NODE);
4171 
4172 			if (unlikely(!nskb))
4173 				goto err;
4174 
4175 			skb_reserve(nskb, headroom);
4176 			__skb_put(nskb, doffset);
4177 		}
4178 
4179 		if (segs)
4180 			tail->next = nskb;
4181 		else
4182 			segs = nskb;
4183 		tail = nskb;
4184 
4185 		__copy_skb_header(nskb, head_skb);
4186 
4187 		skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom);
4188 		skb_reset_mac_len(nskb);
4189 
4190 		skb_copy_from_linear_data_offset(head_skb, -tnl_hlen,
4191 						 nskb->data - tnl_hlen,
4192 						 doffset + tnl_hlen);
4193 
4194 		if (nskb->len == len + doffset)
4195 			goto perform_csum_check;
4196 
4197 		if (!sg) {
4198 			if (!csum) {
4199 				if (!nskb->remcsum_offload)
4200 					nskb->ip_summed = CHECKSUM_NONE;
4201 				SKB_GSO_CB(nskb)->csum =
4202 					skb_copy_and_csum_bits(head_skb, offset,
4203 							       skb_put(nskb,
4204 								       len),
4205 							       len);
4206 				SKB_GSO_CB(nskb)->csum_start =
4207 					skb_headroom(nskb) + doffset;
4208 			} else {
4209 				if (skb_copy_bits(head_skb, offset, skb_put(nskb, len), len))
4210 					goto err;
4211 			}
4212 			continue;
4213 		}
4214 
4215 		nskb_frag = skb_shinfo(nskb)->frags;
4216 
4217 		skb_copy_from_linear_data_offset(head_skb, offset,
4218 						 skb_put(nskb, hsize), hsize);
4219 
4220 		skb_shinfo(nskb)->flags |= skb_shinfo(head_skb)->flags &
4221 					   SKBFL_SHARED_FRAG;
4222 
4223 		if (skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC))
4224 			goto err;
4225 
4226 		while (pos < offset + len) {
4227 			if (i >= nfrags) {
4228 				if (skb_orphan_frags(list_skb, GFP_ATOMIC) ||
4229 				    skb_zerocopy_clone(nskb, list_skb,
4230 						       GFP_ATOMIC))
4231 					goto err;
4232 
4233 				i = 0;
4234 				nfrags = skb_shinfo(list_skb)->nr_frags;
4235 				frag = skb_shinfo(list_skb)->frags;
4236 				frag_skb = list_skb;
4237 				if (!skb_headlen(list_skb)) {
4238 					BUG_ON(!nfrags);
4239 				} else {
4240 					BUG_ON(!list_skb->head_frag);
4241 
4242 					/* to make room for head_frag. */
4243 					i--;
4244 					frag--;
4245 				}
4246 
4247 				list_skb = list_skb->next;
4248 			}
4249 
4250 			if (unlikely(skb_shinfo(nskb)->nr_frags >=
4251 				     MAX_SKB_FRAGS)) {
4252 				net_warn_ratelimited(
4253 					"skb_segment: too many frags: %u %u\n",
4254 					pos, mss);
4255 				err = -EINVAL;
4256 				goto err;
4257 			}
4258 
4259 			*nskb_frag = (i < 0) ? skb_head_frag_to_page_desc(frag_skb) : *frag;
4260 			__skb_frag_ref(nskb_frag);
4261 			size = skb_frag_size(nskb_frag);
4262 
4263 			if (pos < offset) {
4264 				skb_frag_off_add(nskb_frag, offset - pos);
4265 				skb_frag_size_sub(nskb_frag, offset - pos);
4266 			}
4267 
4268 			skb_shinfo(nskb)->nr_frags++;
4269 
4270 			if (pos + size <= offset + len) {
4271 				i++;
4272 				frag++;
4273 				pos += size;
4274 			} else {
4275 				skb_frag_size_sub(nskb_frag, pos + size - (offset + len));
4276 				goto skip_fraglist;
4277 			}
4278 
4279 			nskb_frag++;
4280 		}
4281 
4282 skip_fraglist:
4283 		nskb->data_len = len - hsize;
4284 		nskb->len += nskb->data_len;
4285 		nskb->truesize += nskb->data_len;
4286 
4287 perform_csum_check:
4288 		if (!csum) {
4289 			if (skb_has_shared_frag(nskb) &&
4290 			    __skb_linearize(nskb))
4291 				goto err;
4292 
4293 			if (!nskb->remcsum_offload)
4294 				nskb->ip_summed = CHECKSUM_NONE;
4295 			SKB_GSO_CB(nskb)->csum =
4296 				skb_checksum(nskb, doffset,
4297 					     nskb->len - doffset, 0);
4298 			SKB_GSO_CB(nskb)->csum_start =
4299 				skb_headroom(nskb) + doffset;
4300 		}
4301 	} while ((offset += len) < head_skb->len);
4302 
4303 	/* Some callers want to get the end of the list.
4304 	 * Put it in segs->prev to avoid walking the list.
4305 	 * (see validate_xmit_skb_list() for example)
4306 	 */
4307 	segs->prev = tail;
4308 
4309 	if (partial_segs) {
4310 		struct sk_buff *iter;
4311 		int type = skb_shinfo(head_skb)->gso_type;
4312 		unsigned short gso_size = skb_shinfo(head_skb)->gso_size;
4313 
4314 		/* Update type to add partial and then remove dodgy if set */
4315 		type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL;
4316 		type &= ~SKB_GSO_DODGY;
4317 
4318 		/* Update GSO info and prepare to start updating headers on
4319 		 * our way back down the stack of protocols.
4320 		 */
4321 		for (iter = segs; iter; iter = iter->next) {
4322 			skb_shinfo(iter)->gso_size = gso_size;
4323 			skb_shinfo(iter)->gso_segs = partial_segs;
4324 			skb_shinfo(iter)->gso_type = type;
4325 			SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset;
4326 		}
4327 
4328 		if (tail->len - doffset <= gso_size)
4329 			skb_shinfo(tail)->gso_size = 0;
4330 		else if (tail != segs)
4331 			skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size);
4332 	}
4333 
4334 	/* Following permits correct backpressure, for protocols
4335 	 * using skb_set_owner_w().
4336 	 * Idea is to tranfert ownership from head_skb to last segment.
4337 	 */
4338 	if (head_skb->destructor == sock_wfree) {
4339 		swap(tail->truesize, head_skb->truesize);
4340 		swap(tail->destructor, head_skb->destructor);
4341 		swap(tail->sk, head_skb->sk);
4342 	}
4343 	return segs;
4344 
4345 err:
4346 	kfree_skb_list(segs);
4347 	return ERR_PTR(err);
4348 }
4349 EXPORT_SYMBOL_GPL(skb_segment);
4350 
skb_gro_receive(struct sk_buff * p,struct sk_buff * skb)4351 int skb_gro_receive(struct sk_buff *p, struct sk_buff *skb)
4352 {
4353 	struct skb_shared_info *pinfo, *skbinfo = skb_shinfo(skb);
4354 	unsigned int offset = skb_gro_offset(skb);
4355 	unsigned int headlen = skb_headlen(skb);
4356 	unsigned int len = skb_gro_len(skb);
4357 	unsigned int delta_truesize;
4358 	unsigned int new_truesize;
4359 	struct sk_buff *lp;
4360 
4361 	if (unlikely(p->len + len >= 65536 || NAPI_GRO_CB(skb)->flush))
4362 		return -E2BIG;
4363 
4364 	lp = NAPI_GRO_CB(p)->last;
4365 	pinfo = skb_shinfo(lp);
4366 
4367 	if (headlen <= offset) {
4368 		skb_frag_t *frag;
4369 		skb_frag_t *frag2;
4370 		int i = skbinfo->nr_frags;
4371 		int nr_frags = pinfo->nr_frags + i;
4372 
4373 		if (nr_frags > MAX_SKB_FRAGS)
4374 			goto merge;
4375 
4376 		offset -= headlen;
4377 		pinfo->nr_frags = nr_frags;
4378 		skbinfo->nr_frags = 0;
4379 
4380 		frag = pinfo->frags + nr_frags;
4381 		frag2 = skbinfo->frags + i;
4382 		do {
4383 			*--frag = *--frag2;
4384 		} while (--i);
4385 
4386 		skb_frag_off_add(frag, offset);
4387 		skb_frag_size_sub(frag, offset);
4388 
4389 		/* all fragments truesize : remove (head size + sk_buff) */
4390 		new_truesize = SKB_TRUESIZE(skb_end_offset(skb));
4391 		delta_truesize = skb->truesize - new_truesize;
4392 
4393 		skb->truesize = new_truesize;
4394 		skb->len -= skb->data_len;
4395 		skb->data_len = 0;
4396 
4397 		NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE;
4398 		goto done;
4399 	} else if (skb->head_frag) {
4400 		int nr_frags = pinfo->nr_frags;
4401 		skb_frag_t *frag = pinfo->frags + nr_frags;
4402 		struct page *page = virt_to_head_page(skb->head);
4403 		unsigned int first_size = headlen - offset;
4404 		unsigned int first_offset;
4405 
4406 		if (nr_frags + 1 + skbinfo->nr_frags > MAX_SKB_FRAGS)
4407 			goto merge;
4408 
4409 		first_offset = skb->data -
4410 			       (unsigned char *)page_address(page) +
4411 			       offset;
4412 
4413 		pinfo->nr_frags = nr_frags + 1 + skbinfo->nr_frags;
4414 
4415 		__skb_frag_set_page(frag, page);
4416 		skb_frag_off_set(frag, first_offset);
4417 		skb_frag_size_set(frag, first_size);
4418 
4419 		memcpy(frag + 1, skbinfo->frags, sizeof(*frag) * skbinfo->nr_frags);
4420 		/* We dont need to clear skbinfo->nr_frags here */
4421 
4422 		new_truesize = SKB_DATA_ALIGN(sizeof(struct sk_buff));
4423 		delta_truesize = skb->truesize - new_truesize;
4424 		skb->truesize = new_truesize;
4425 		NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE_STOLEN_HEAD;
4426 		goto done;
4427 	}
4428 
4429 merge:
4430 	/* sk owenrship - if any - completely transferred to the aggregated packet */
4431 	skb->destructor = NULL;
4432 	delta_truesize = skb->truesize;
4433 	if (offset > headlen) {
4434 		unsigned int eat = offset - headlen;
4435 
4436 		skb_frag_off_add(&skbinfo->frags[0], eat);
4437 		skb_frag_size_sub(&skbinfo->frags[0], eat);
4438 		skb->data_len -= eat;
4439 		skb->len -= eat;
4440 		offset = headlen;
4441 	}
4442 
4443 	__skb_pull(skb, offset);
4444 
4445 	if (NAPI_GRO_CB(p)->last == p)
4446 		skb_shinfo(p)->frag_list = skb;
4447 	else
4448 		NAPI_GRO_CB(p)->last->next = skb;
4449 	NAPI_GRO_CB(p)->last = skb;
4450 	__skb_header_release(skb);
4451 	lp = p;
4452 
4453 done:
4454 	NAPI_GRO_CB(p)->count++;
4455 	p->data_len += len;
4456 	p->truesize += delta_truesize;
4457 	p->len += len;
4458 	if (lp != p) {
4459 		lp->data_len += len;
4460 		lp->truesize += delta_truesize;
4461 		lp->len += len;
4462 	}
4463 	NAPI_GRO_CB(skb)->same_flow = 1;
4464 	return 0;
4465 }
4466 
4467 #ifdef CONFIG_SKB_EXTENSIONS
4468 #define SKB_EXT_ALIGN_VALUE	8
4469 #define SKB_EXT_CHUNKSIZEOF(x)	(ALIGN((sizeof(x)), SKB_EXT_ALIGN_VALUE) / SKB_EXT_ALIGN_VALUE)
4470 
4471 static const u8 skb_ext_type_len[] = {
4472 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4473 	[SKB_EXT_BRIDGE_NF] = SKB_EXT_CHUNKSIZEOF(struct nf_bridge_info),
4474 #endif
4475 #ifdef CONFIG_XFRM
4476 	[SKB_EXT_SEC_PATH] = SKB_EXT_CHUNKSIZEOF(struct sec_path),
4477 #endif
4478 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4479 	[TC_SKB_EXT] = SKB_EXT_CHUNKSIZEOF(struct tc_skb_ext),
4480 #endif
4481 #if IS_ENABLED(CONFIG_MPTCP)
4482 	[SKB_EXT_MPTCP] = SKB_EXT_CHUNKSIZEOF(struct mptcp_ext),
4483 #endif
4484 };
4485 
skb_ext_total_length(void)4486 static __always_inline unsigned int skb_ext_total_length(void)
4487 {
4488 	return SKB_EXT_CHUNKSIZEOF(struct skb_ext) +
4489 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4490 		skb_ext_type_len[SKB_EXT_BRIDGE_NF] +
4491 #endif
4492 #ifdef CONFIG_XFRM
4493 		skb_ext_type_len[SKB_EXT_SEC_PATH] +
4494 #endif
4495 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4496 		skb_ext_type_len[TC_SKB_EXT] +
4497 #endif
4498 #if IS_ENABLED(CONFIG_MPTCP)
4499 		skb_ext_type_len[SKB_EXT_MPTCP] +
4500 #endif
4501 		0;
4502 }
4503 
skb_extensions_init(void)4504 static void skb_extensions_init(void)
4505 {
4506 	BUILD_BUG_ON(SKB_EXT_NUM >= 8);
4507 	BUILD_BUG_ON(skb_ext_total_length() > 255);
4508 
4509 	skbuff_ext_cache = kmem_cache_create("skbuff_ext_cache",
4510 					     SKB_EXT_ALIGN_VALUE * skb_ext_total_length(),
4511 					     0,
4512 					     SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4513 					     NULL);
4514 }
4515 #else
skb_extensions_init(void)4516 static void skb_extensions_init(void) {}
4517 #endif
4518 
skb_init(void)4519 void __init skb_init(void)
4520 {
4521 	skbuff_head_cache = kmem_cache_create_usercopy("skbuff_head_cache",
4522 					      sizeof(struct sk_buff),
4523 					      0,
4524 					      SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4525 					      offsetof(struct sk_buff, cb),
4526 					      sizeof_field(struct sk_buff, cb),
4527 					      NULL);
4528 	skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
4529 						sizeof(struct sk_buff_fclones),
4530 						0,
4531 						SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4532 						NULL);
4533 	skb_extensions_init();
4534 }
4535 
4536 static int
__skb_to_sgvec(struct sk_buff * skb,struct scatterlist * sg,int offset,int len,unsigned int recursion_level)4537 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len,
4538 	       unsigned int recursion_level)
4539 {
4540 	int start = skb_headlen(skb);
4541 	int i, copy = start - offset;
4542 	struct sk_buff *frag_iter;
4543 	int elt = 0;
4544 
4545 	if (unlikely(recursion_level >= 24))
4546 		return -EMSGSIZE;
4547 
4548 	if (copy > 0) {
4549 		if (copy > len)
4550 			copy = len;
4551 		sg_set_buf(sg, skb->data + offset, copy);
4552 		elt++;
4553 		if ((len -= copy) == 0)
4554 			return elt;
4555 		offset += copy;
4556 	}
4557 
4558 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
4559 		int end;
4560 
4561 		WARN_ON(start > offset + len);
4562 
4563 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
4564 		if ((copy = end - offset) > 0) {
4565 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4566 			if (unlikely(elt && sg_is_last(&sg[elt - 1])))
4567 				return -EMSGSIZE;
4568 
4569 			if (copy > len)
4570 				copy = len;
4571 			sg_set_page(&sg[elt], skb_frag_page(frag), copy,
4572 				    skb_frag_off(frag) + offset - start);
4573 			elt++;
4574 			if (!(len -= copy))
4575 				return elt;
4576 			offset += copy;
4577 		}
4578 		start = end;
4579 	}
4580 
4581 	skb_walk_frags(skb, frag_iter) {
4582 		int end, ret;
4583 
4584 		WARN_ON(start > offset + len);
4585 
4586 		end = start + frag_iter->len;
4587 		if ((copy = end - offset) > 0) {
4588 			if (unlikely(elt && sg_is_last(&sg[elt - 1])))
4589 				return -EMSGSIZE;
4590 
4591 			if (copy > len)
4592 				copy = len;
4593 			ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start,
4594 					      copy, recursion_level + 1);
4595 			if (unlikely(ret < 0))
4596 				return ret;
4597 			elt += ret;
4598 			if ((len -= copy) == 0)
4599 				return elt;
4600 			offset += copy;
4601 		}
4602 		start = end;
4603 	}
4604 	BUG_ON(len);
4605 	return elt;
4606 }
4607 
4608 /**
4609  *	skb_to_sgvec - Fill a scatter-gather list from a socket buffer
4610  *	@skb: Socket buffer containing the buffers to be mapped
4611  *	@sg: The scatter-gather list to map into
4612  *	@offset: The offset into the buffer's contents to start mapping
4613  *	@len: Length of buffer space to be mapped
4614  *
4615  *	Fill the specified scatter-gather list with mappings/pointers into a
4616  *	region of the buffer space attached to a socket buffer. Returns either
4617  *	the number of scatterlist items used, or -EMSGSIZE if the contents
4618  *	could not fit.
4619  */
skb_to_sgvec(struct sk_buff * skb,struct scatterlist * sg,int offset,int len)4620 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
4621 {
4622 	int nsg = __skb_to_sgvec(skb, sg, offset, len, 0);
4623 
4624 	if (nsg <= 0)
4625 		return nsg;
4626 
4627 	sg_mark_end(&sg[nsg - 1]);
4628 
4629 	return nsg;
4630 }
4631 EXPORT_SYMBOL_GPL(skb_to_sgvec);
4632 
4633 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given
4634  * sglist without mark the sg which contain last skb data as the end.
4635  * So the caller can mannipulate sg list as will when padding new data after
4636  * the first call without calling sg_unmark_end to expend sg list.
4637  *
4638  * Scenario to use skb_to_sgvec_nomark:
4639  * 1. sg_init_table
4640  * 2. skb_to_sgvec_nomark(payload1)
4641  * 3. skb_to_sgvec_nomark(payload2)
4642  *
4643  * This is equivalent to:
4644  * 1. sg_init_table
4645  * 2. skb_to_sgvec(payload1)
4646  * 3. sg_unmark_end
4647  * 4. skb_to_sgvec(payload2)
4648  *
4649  * When mapping mutilple payload conditionally, skb_to_sgvec_nomark
4650  * is more preferable.
4651  */
skb_to_sgvec_nomark(struct sk_buff * skb,struct scatterlist * sg,int offset,int len)4652 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
4653 			int offset, int len)
4654 {
4655 	return __skb_to_sgvec(skb, sg, offset, len, 0);
4656 }
4657 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark);
4658 
4659 
4660 
4661 /**
4662  *	skb_cow_data - Check that a socket buffer's data buffers are writable
4663  *	@skb: The socket buffer to check.
4664  *	@tailbits: Amount of trailing space to be added
4665  *	@trailer: Returned pointer to the skb where the @tailbits space begins
4666  *
4667  *	Make sure that the data buffers attached to a socket buffer are
4668  *	writable. If they are not, private copies are made of the data buffers
4669  *	and the socket buffer is set to use these instead.
4670  *
4671  *	If @tailbits is given, make sure that there is space to write @tailbits
4672  *	bytes of data beyond current end of socket buffer.  @trailer will be
4673  *	set to point to the skb in which this space begins.
4674  *
4675  *	The number of scatterlist elements required to completely map the
4676  *	COW'd and extended socket buffer will be returned.
4677  */
skb_cow_data(struct sk_buff * skb,int tailbits,struct sk_buff ** trailer)4678 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
4679 {
4680 	int copyflag;
4681 	int elt;
4682 	struct sk_buff *skb1, **skb_p;
4683 
4684 	/* If skb is cloned or its head is paged, reallocate
4685 	 * head pulling out all the pages (pages are considered not writable
4686 	 * at the moment even if they are anonymous).
4687 	 */
4688 	if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
4689 	    !__pskb_pull_tail(skb, __skb_pagelen(skb)))
4690 		return -ENOMEM;
4691 
4692 	/* Easy case. Most of packets will go this way. */
4693 	if (!skb_has_frag_list(skb)) {
4694 		/* A little of trouble, not enough of space for trailer.
4695 		 * This should not happen, when stack is tuned to generate
4696 		 * good frames. OK, on miss we reallocate and reserve even more
4697 		 * space, 128 bytes is fair. */
4698 
4699 		if (skb_tailroom(skb) < tailbits &&
4700 		    pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
4701 			return -ENOMEM;
4702 
4703 		/* Voila! */
4704 		*trailer = skb;
4705 		return 1;
4706 	}
4707 
4708 	/* Misery. We are in troubles, going to mincer fragments... */
4709 
4710 	elt = 1;
4711 	skb_p = &skb_shinfo(skb)->frag_list;
4712 	copyflag = 0;
4713 
4714 	while ((skb1 = *skb_p) != NULL) {
4715 		int ntail = 0;
4716 
4717 		/* The fragment is partially pulled by someone,
4718 		 * this can happen on input. Copy it and everything
4719 		 * after it. */
4720 
4721 		if (skb_shared(skb1))
4722 			copyflag = 1;
4723 
4724 		/* If the skb is the last, worry about trailer. */
4725 
4726 		if (skb1->next == NULL && tailbits) {
4727 			if (skb_shinfo(skb1)->nr_frags ||
4728 			    skb_has_frag_list(skb1) ||
4729 			    skb_tailroom(skb1) < tailbits)
4730 				ntail = tailbits + 128;
4731 		}
4732 
4733 		if (copyflag ||
4734 		    skb_cloned(skb1) ||
4735 		    ntail ||
4736 		    skb_shinfo(skb1)->nr_frags ||
4737 		    skb_has_frag_list(skb1)) {
4738 			struct sk_buff *skb2;
4739 
4740 			/* Fuck, we are miserable poor guys... */
4741 			if (ntail == 0)
4742 				skb2 = skb_copy(skb1, GFP_ATOMIC);
4743 			else
4744 				skb2 = skb_copy_expand(skb1,
4745 						       skb_headroom(skb1),
4746 						       ntail,
4747 						       GFP_ATOMIC);
4748 			if (unlikely(skb2 == NULL))
4749 				return -ENOMEM;
4750 
4751 			if (skb1->sk)
4752 				skb_set_owner_w(skb2, skb1->sk);
4753 
4754 			/* Looking around. Are we still alive?
4755 			 * OK, link new skb, drop old one */
4756 
4757 			skb2->next = skb1->next;
4758 			*skb_p = skb2;
4759 			kfree_skb(skb1);
4760 			skb1 = skb2;
4761 		}
4762 		elt++;
4763 		*trailer = skb1;
4764 		skb_p = &skb1->next;
4765 	}
4766 
4767 	return elt;
4768 }
4769 EXPORT_SYMBOL_GPL(skb_cow_data);
4770 
sock_rmem_free(struct sk_buff * skb)4771 static void sock_rmem_free(struct sk_buff *skb)
4772 {
4773 	struct sock *sk = skb->sk;
4774 
4775 	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
4776 }
4777 
skb_set_err_queue(struct sk_buff * skb)4778 static void skb_set_err_queue(struct sk_buff *skb)
4779 {
4780 	/* pkt_type of skbs received on local sockets is never PACKET_OUTGOING.
4781 	 * So, it is safe to (mis)use it to mark skbs on the error queue.
4782 	 */
4783 	skb->pkt_type = PACKET_OUTGOING;
4784 	BUILD_BUG_ON(PACKET_OUTGOING == 0);
4785 }
4786 
4787 /*
4788  * Note: We dont mem charge error packets (no sk_forward_alloc changes)
4789  */
sock_queue_err_skb(struct sock * sk,struct sk_buff * skb)4790 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
4791 {
4792 	if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
4793 	    (unsigned int)READ_ONCE(sk->sk_rcvbuf))
4794 		return -ENOMEM;
4795 
4796 	skb_orphan(skb);
4797 	skb->sk = sk;
4798 	skb->destructor = sock_rmem_free;
4799 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
4800 	skb_set_err_queue(skb);
4801 
4802 	/* before exiting rcu section, make sure dst is refcounted */
4803 	skb_dst_force(skb);
4804 
4805 	skb_queue_tail(&sk->sk_error_queue, skb);
4806 	if (!sock_flag(sk, SOCK_DEAD))
4807 		sk_error_report(sk);
4808 	return 0;
4809 }
4810 EXPORT_SYMBOL(sock_queue_err_skb);
4811 
is_icmp_err_skb(const struct sk_buff * skb)4812 static bool is_icmp_err_skb(const struct sk_buff *skb)
4813 {
4814 	return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP ||
4815 		       SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6);
4816 }
4817 
sock_dequeue_err_skb(struct sock * sk)4818 struct sk_buff *sock_dequeue_err_skb(struct sock *sk)
4819 {
4820 	struct sk_buff_head *q = &sk->sk_error_queue;
4821 	struct sk_buff *skb, *skb_next = NULL;
4822 	bool icmp_next = false;
4823 	unsigned long flags;
4824 
4825 	spin_lock_irqsave(&q->lock, flags);
4826 	skb = __skb_dequeue(q);
4827 	if (skb && (skb_next = skb_peek(q))) {
4828 		icmp_next = is_icmp_err_skb(skb_next);
4829 		if (icmp_next)
4830 			sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_errno;
4831 	}
4832 	spin_unlock_irqrestore(&q->lock, flags);
4833 
4834 	if (is_icmp_err_skb(skb) && !icmp_next)
4835 		sk->sk_err = 0;
4836 
4837 	if (skb_next)
4838 		sk_error_report(sk);
4839 
4840 	return skb;
4841 }
4842 EXPORT_SYMBOL(sock_dequeue_err_skb);
4843 
4844 /**
4845  * skb_clone_sk - create clone of skb, and take reference to socket
4846  * @skb: the skb to clone
4847  *
4848  * This function creates a clone of a buffer that holds a reference on
4849  * sk_refcnt.  Buffers created via this function are meant to be
4850  * returned using sock_queue_err_skb, or free via kfree_skb.
4851  *
4852  * When passing buffers allocated with this function to sock_queue_err_skb
4853  * it is necessary to wrap the call with sock_hold/sock_put in order to
4854  * prevent the socket from being released prior to being enqueued on
4855  * the sk_error_queue.
4856  */
skb_clone_sk(struct sk_buff * skb)4857 struct sk_buff *skb_clone_sk(struct sk_buff *skb)
4858 {
4859 	struct sock *sk = skb->sk;
4860 	struct sk_buff *clone;
4861 
4862 	if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
4863 		return NULL;
4864 
4865 	clone = skb_clone(skb, GFP_ATOMIC);
4866 	if (!clone) {
4867 		sock_put(sk);
4868 		return NULL;
4869 	}
4870 
4871 	clone->sk = sk;
4872 	clone->destructor = sock_efree;
4873 
4874 	return clone;
4875 }
4876 EXPORT_SYMBOL(skb_clone_sk);
4877 
__skb_complete_tx_timestamp(struct sk_buff * skb,struct sock * sk,int tstype,bool opt_stats)4878 static void __skb_complete_tx_timestamp(struct sk_buff *skb,
4879 					struct sock *sk,
4880 					int tstype,
4881 					bool opt_stats)
4882 {
4883 	struct sock_exterr_skb *serr;
4884 	int err;
4885 
4886 	BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb));
4887 
4888 	serr = SKB_EXT_ERR(skb);
4889 	memset(serr, 0, sizeof(*serr));
4890 	serr->ee.ee_errno = ENOMSG;
4891 	serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
4892 	serr->ee.ee_info = tstype;
4893 	serr->opt_stats = opt_stats;
4894 	serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0;
4895 	if (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) {
4896 		serr->ee.ee_data = skb_shinfo(skb)->tskey;
4897 		if (sk->sk_protocol == IPPROTO_TCP &&
4898 		    sk->sk_type == SOCK_STREAM)
4899 			serr->ee.ee_data -= atomic_read(&sk->sk_tskey);
4900 	}
4901 
4902 	err = sock_queue_err_skb(sk, skb);
4903 
4904 	if (err)
4905 		kfree_skb(skb);
4906 }
4907 
skb_may_tx_timestamp(struct sock * sk,bool tsonly)4908 static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly)
4909 {
4910 	bool ret;
4911 
4912 	if (likely(READ_ONCE(sysctl_tstamp_allow_data) || tsonly))
4913 		return true;
4914 
4915 	read_lock_bh(&sk->sk_callback_lock);
4916 	ret = sk->sk_socket && sk->sk_socket->file &&
4917 	      file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW);
4918 	read_unlock_bh(&sk->sk_callback_lock);
4919 	return ret;
4920 }
4921 
skb_complete_tx_timestamp(struct sk_buff * skb,struct skb_shared_hwtstamps * hwtstamps)4922 void skb_complete_tx_timestamp(struct sk_buff *skb,
4923 			       struct skb_shared_hwtstamps *hwtstamps)
4924 {
4925 	struct sock *sk = skb->sk;
4926 
4927 	if (!skb_may_tx_timestamp(sk, false))
4928 		goto err;
4929 
4930 	/* Take a reference to prevent skb_orphan() from freeing the socket,
4931 	 * but only if the socket refcount is not zero.
4932 	 */
4933 	if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
4934 		*skb_hwtstamps(skb) = *hwtstamps;
4935 		__skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false);
4936 		sock_put(sk);
4937 		return;
4938 	}
4939 
4940 err:
4941 	kfree_skb(skb);
4942 }
4943 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp);
4944 
__skb_tstamp_tx(struct sk_buff * orig_skb,const struct sk_buff * ack_skb,struct skb_shared_hwtstamps * hwtstamps,struct sock * sk,int tstype)4945 void __skb_tstamp_tx(struct sk_buff *orig_skb,
4946 		     const struct sk_buff *ack_skb,
4947 		     struct skb_shared_hwtstamps *hwtstamps,
4948 		     struct sock *sk, int tstype)
4949 {
4950 	struct sk_buff *skb;
4951 	bool tsonly, opt_stats = false;
4952 
4953 	if (!sk)
4954 		return;
4955 
4956 	if (!hwtstamps && !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) &&
4957 	    skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS)
4958 		return;
4959 
4960 	tsonly = sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TSONLY;
4961 	if (!skb_may_tx_timestamp(sk, tsonly))
4962 		return;
4963 
4964 	if (tsonly) {
4965 #ifdef CONFIG_INET
4966 		if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_STATS) &&
4967 		    sk->sk_protocol == IPPROTO_TCP &&
4968 		    sk->sk_type == SOCK_STREAM) {
4969 			skb = tcp_get_timestamping_opt_stats(sk, orig_skb,
4970 							     ack_skb);
4971 			opt_stats = true;
4972 		} else
4973 #endif
4974 			skb = alloc_skb(0, GFP_ATOMIC);
4975 	} else {
4976 		skb = skb_clone(orig_skb, GFP_ATOMIC);
4977 
4978 		if (skb_orphan_frags_rx(skb, GFP_ATOMIC)) {
4979 			kfree_skb(skb);
4980 			return;
4981 		}
4982 	}
4983 	if (!skb)
4984 		return;
4985 
4986 	if (tsonly) {
4987 		skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags &
4988 					     SKBTX_ANY_TSTAMP;
4989 		skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey;
4990 	}
4991 
4992 	if (hwtstamps)
4993 		*skb_hwtstamps(skb) = *hwtstamps;
4994 	else
4995 		skb->tstamp = ktime_get_real();
4996 
4997 	__skb_complete_tx_timestamp(skb, sk, tstype, opt_stats);
4998 }
4999 EXPORT_SYMBOL_GPL(__skb_tstamp_tx);
5000 
skb_tstamp_tx(struct sk_buff * orig_skb,struct skb_shared_hwtstamps * hwtstamps)5001 void skb_tstamp_tx(struct sk_buff *orig_skb,
5002 		   struct skb_shared_hwtstamps *hwtstamps)
5003 {
5004 	return __skb_tstamp_tx(orig_skb, NULL, hwtstamps, orig_skb->sk,
5005 			       SCM_TSTAMP_SND);
5006 }
5007 EXPORT_SYMBOL_GPL(skb_tstamp_tx);
5008 
skb_complete_wifi_ack(struct sk_buff * skb,bool acked)5009 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
5010 {
5011 	struct sock *sk = skb->sk;
5012 	struct sock_exterr_skb *serr;
5013 	int err = 1;
5014 
5015 	skb->wifi_acked_valid = 1;
5016 	skb->wifi_acked = acked;
5017 
5018 	serr = SKB_EXT_ERR(skb);
5019 	memset(serr, 0, sizeof(*serr));
5020 	serr->ee.ee_errno = ENOMSG;
5021 	serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
5022 
5023 	/* Take a reference to prevent skb_orphan() from freeing the socket,
5024 	 * but only if the socket refcount is not zero.
5025 	 */
5026 	if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
5027 		err = sock_queue_err_skb(sk, skb);
5028 		sock_put(sk);
5029 	}
5030 	if (err)
5031 		kfree_skb(skb);
5032 }
5033 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
5034 
5035 /**
5036  * skb_partial_csum_set - set up and verify partial csum values for packet
5037  * @skb: the skb to set
5038  * @start: the number of bytes after skb->data to start checksumming.
5039  * @off: the offset from start to place the checksum.
5040  *
5041  * For untrusted partially-checksummed packets, we need to make sure the values
5042  * for skb->csum_start and skb->csum_offset are valid so we don't oops.
5043  *
5044  * This function checks and sets those values and skb->ip_summed: if this
5045  * returns false you should drop the packet.
5046  */
skb_partial_csum_set(struct sk_buff * skb,u16 start,u16 off)5047 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
5048 {
5049 	u32 csum_end = (u32)start + (u32)off + sizeof(__sum16);
5050 	u32 csum_start = skb_headroom(skb) + (u32)start;
5051 
5052 	if (unlikely(csum_start > U16_MAX || csum_end > skb_headlen(skb))) {
5053 		net_warn_ratelimited("bad partial csum: csum=%u/%u headroom=%u headlen=%u\n",
5054 				     start, off, skb_headroom(skb), skb_headlen(skb));
5055 		return false;
5056 	}
5057 	skb->ip_summed = CHECKSUM_PARTIAL;
5058 	skb->csum_start = csum_start;
5059 	skb->csum_offset = off;
5060 	skb_set_transport_header(skb, start);
5061 	return true;
5062 }
5063 EXPORT_SYMBOL_GPL(skb_partial_csum_set);
5064 
skb_maybe_pull_tail(struct sk_buff * skb,unsigned int len,unsigned int max)5065 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len,
5066 			       unsigned int max)
5067 {
5068 	if (skb_headlen(skb) >= len)
5069 		return 0;
5070 
5071 	/* If we need to pullup then pullup to the max, so we
5072 	 * won't need to do it again.
5073 	 */
5074 	if (max > skb->len)
5075 		max = skb->len;
5076 
5077 	if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL)
5078 		return -ENOMEM;
5079 
5080 	if (skb_headlen(skb) < len)
5081 		return -EPROTO;
5082 
5083 	return 0;
5084 }
5085 
5086 #define MAX_TCP_HDR_LEN (15 * 4)
5087 
skb_checksum_setup_ip(struct sk_buff * skb,typeof(IPPROTO_IP) proto,unsigned int off)5088 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb,
5089 				      typeof(IPPROTO_IP) proto,
5090 				      unsigned int off)
5091 {
5092 	int err;
5093 
5094 	switch (proto) {
5095 	case IPPROTO_TCP:
5096 		err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr),
5097 					  off + MAX_TCP_HDR_LEN);
5098 		if (!err && !skb_partial_csum_set(skb, off,
5099 						  offsetof(struct tcphdr,
5100 							   check)))
5101 			err = -EPROTO;
5102 		return err ? ERR_PTR(err) : &tcp_hdr(skb)->check;
5103 
5104 	case IPPROTO_UDP:
5105 		err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr),
5106 					  off + sizeof(struct udphdr));
5107 		if (!err && !skb_partial_csum_set(skb, off,
5108 						  offsetof(struct udphdr,
5109 							   check)))
5110 			err = -EPROTO;
5111 		return err ? ERR_PTR(err) : &udp_hdr(skb)->check;
5112 	}
5113 
5114 	return ERR_PTR(-EPROTO);
5115 }
5116 
5117 /* This value should be large enough to cover a tagged ethernet header plus
5118  * maximally sized IP and TCP or UDP headers.
5119  */
5120 #define MAX_IP_HDR_LEN 128
5121 
skb_checksum_setup_ipv4(struct sk_buff * skb,bool recalculate)5122 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate)
5123 {
5124 	unsigned int off;
5125 	bool fragment;
5126 	__sum16 *csum;
5127 	int err;
5128 
5129 	fragment = false;
5130 
5131 	err = skb_maybe_pull_tail(skb,
5132 				  sizeof(struct iphdr),
5133 				  MAX_IP_HDR_LEN);
5134 	if (err < 0)
5135 		goto out;
5136 
5137 	if (ip_is_fragment(ip_hdr(skb)))
5138 		fragment = true;
5139 
5140 	off = ip_hdrlen(skb);
5141 
5142 	err = -EPROTO;
5143 
5144 	if (fragment)
5145 		goto out;
5146 
5147 	csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off);
5148 	if (IS_ERR(csum))
5149 		return PTR_ERR(csum);
5150 
5151 	if (recalculate)
5152 		*csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
5153 					   ip_hdr(skb)->daddr,
5154 					   skb->len - off,
5155 					   ip_hdr(skb)->protocol, 0);
5156 	err = 0;
5157 
5158 out:
5159 	return err;
5160 }
5161 
5162 /* This value should be large enough to cover a tagged ethernet header plus
5163  * an IPv6 header, all options, and a maximal TCP or UDP header.
5164  */
5165 #define MAX_IPV6_HDR_LEN 256
5166 
5167 #define OPT_HDR(type, skb, off) \
5168 	(type *)(skb_network_header(skb) + (off))
5169 
skb_checksum_setup_ipv6(struct sk_buff * skb,bool recalculate)5170 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate)
5171 {
5172 	int err;
5173 	u8 nexthdr;
5174 	unsigned int off;
5175 	unsigned int len;
5176 	bool fragment;
5177 	bool done;
5178 	__sum16 *csum;
5179 
5180 	fragment = false;
5181 	done = false;
5182 
5183 	off = sizeof(struct ipv6hdr);
5184 
5185 	err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN);
5186 	if (err < 0)
5187 		goto out;
5188 
5189 	nexthdr = ipv6_hdr(skb)->nexthdr;
5190 
5191 	len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len);
5192 	while (off <= len && !done) {
5193 		switch (nexthdr) {
5194 		case IPPROTO_DSTOPTS:
5195 		case IPPROTO_HOPOPTS:
5196 		case IPPROTO_ROUTING: {
5197 			struct ipv6_opt_hdr *hp;
5198 
5199 			err = skb_maybe_pull_tail(skb,
5200 						  off +
5201 						  sizeof(struct ipv6_opt_hdr),
5202 						  MAX_IPV6_HDR_LEN);
5203 			if (err < 0)
5204 				goto out;
5205 
5206 			hp = OPT_HDR(struct ipv6_opt_hdr, skb, off);
5207 			nexthdr = hp->nexthdr;
5208 			off += ipv6_optlen(hp);
5209 			break;
5210 		}
5211 		case IPPROTO_AH: {
5212 			struct ip_auth_hdr *hp;
5213 
5214 			err = skb_maybe_pull_tail(skb,
5215 						  off +
5216 						  sizeof(struct ip_auth_hdr),
5217 						  MAX_IPV6_HDR_LEN);
5218 			if (err < 0)
5219 				goto out;
5220 
5221 			hp = OPT_HDR(struct ip_auth_hdr, skb, off);
5222 			nexthdr = hp->nexthdr;
5223 			off += ipv6_authlen(hp);
5224 			break;
5225 		}
5226 		case IPPROTO_FRAGMENT: {
5227 			struct frag_hdr *hp;
5228 
5229 			err = skb_maybe_pull_tail(skb,
5230 						  off +
5231 						  sizeof(struct frag_hdr),
5232 						  MAX_IPV6_HDR_LEN);
5233 			if (err < 0)
5234 				goto out;
5235 
5236 			hp = OPT_HDR(struct frag_hdr, skb, off);
5237 
5238 			if (hp->frag_off & htons(IP6_OFFSET | IP6_MF))
5239 				fragment = true;
5240 
5241 			nexthdr = hp->nexthdr;
5242 			off += sizeof(struct frag_hdr);
5243 			break;
5244 		}
5245 		default:
5246 			done = true;
5247 			break;
5248 		}
5249 	}
5250 
5251 	err = -EPROTO;
5252 
5253 	if (!done || fragment)
5254 		goto out;
5255 
5256 	csum = skb_checksum_setup_ip(skb, nexthdr, off);
5257 	if (IS_ERR(csum))
5258 		return PTR_ERR(csum);
5259 
5260 	if (recalculate)
5261 		*csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
5262 					 &ipv6_hdr(skb)->daddr,
5263 					 skb->len - off, nexthdr, 0);
5264 	err = 0;
5265 
5266 out:
5267 	return err;
5268 }
5269 
5270 /**
5271  * skb_checksum_setup - set up partial checksum offset
5272  * @skb: the skb to set up
5273  * @recalculate: if true the pseudo-header checksum will be recalculated
5274  */
skb_checksum_setup(struct sk_buff * skb,bool recalculate)5275 int skb_checksum_setup(struct sk_buff *skb, bool recalculate)
5276 {
5277 	int err;
5278 
5279 	switch (skb->protocol) {
5280 	case htons(ETH_P_IP):
5281 		err = skb_checksum_setup_ipv4(skb, recalculate);
5282 		break;
5283 
5284 	case htons(ETH_P_IPV6):
5285 		err = skb_checksum_setup_ipv6(skb, recalculate);
5286 		break;
5287 
5288 	default:
5289 		err = -EPROTO;
5290 		break;
5291 	}
5292 
5293 	return err;
5294 }
5295 EXPORT_SYMBOL(skb_checksum_setup);
5296 
5297 /**
5298  * skb_checksum_maybe_trim - maybe trims the given skb
5299  * @skb: the skb to check
5300  * @transport_len: the data length beyond the network header
5301  *
5302  * Checks whether the given skb has data beyond the given transport length.
5303  * If so, returns a cloned skb trimmed to this transport length.
5304  * Otherwise returns the provided skb. Returns NULL in error cases
5305  * (e.g. transport_len exceeds skb length or out-of-memory).
5306  *
5307  * Caller needs to set the skb transport header and free any returned skb if it
5308  * differs from the provided skb.
5309  */
skb_checksum_maybe_trim(struct sk_buff * skb,unsigned int transport_len)5310 static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb,
5311 					       unsigned int transport_len)
5312 {
5313 	struct sk_buff *skb_chk;
5314 	unsigned int len = skb_transport_offset(skb) + transport_len;
5315 	int ret;
5316 
5317 	if (skb->len < len)
5318 		return NULL;
5319 	else if (skb->len == len)
5320 		return skb;
5321 
5322 	skb_chk = skb_clone(skb, GFP_ATOMIC);
5323 	if (!skb_chk)
5324 		return NULL;
5325 
5326 	ret = pskb_trim_rcsum(skb_chk, len);
5327 	if (ret) {
5328 		kfree_skb(skb_chk);
5329 		return NULL;
5330 	}
5331 
5332 	return skb_chk;
5333 }
5334 
5335 /**
5336  * skb_checksum_trimmed - validate checksum of an skb
5337  * @skb: the skb to check
5338  * @transport_len: the data length beyond the network header
5339  * @skb_chkf: checksum function to use
5340  *
5341  * Applies the given checksum function skb_chkf to the provided skb.
5342  * Returns a checked and maybe trimmed skb. Returns NULL on error.
5343  *
5344  * If the skb has data beyond the given transport length, then a
5345  * trimmed & cloned skb is checked and returned.
5346  *
5347  * Caller needs to set the skb transport header and free any returned skb if it
5348  * differs from the provided skb.
5349  */
skb_checksum_trimmed(struct sk_buff * skb,unsigned int transport_len,__sum16 (* skb_chkf)(struct sk_buff * skb))5350 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
5351 				     unsigned int transport_len,
5352 				     __sum16(*skb_chkf)(struct sk_buff *skb))
5353 {
5354 	struct sk_buff *skb_chk;
5355 	unsigned int offset = skb_transport_offset(skb);
5356 	__sum16 ret;
5357 
5358 	skb_chk = skb_checksum_maybe_trim(skb, transport_len);
5359 	if (!skb_chk)
5360 		goto err;
5361 
5362 	if (!pskb_may_pull(skb_chk, offset))
5363 		goto err;
5364 
5365 	skb_pull_rcsum(skb_chk, offset);
5366 	ret = skb_chkf(skb_chk);
5367 	skb_push_rcsum(skb_chk, offset);
5368 
5369 	if (ret)
5370 		goto err;
5371 
5372 	return skb_chk;
5373 
5374 err:
5375 	if (skb_chk && skb_chk != skb)
5376 		kfree_skb(skb_chk);
5377 
5378 	return NULL;
5379 
5380 }
5381 EXPORT_SYMBOL(skb_checksum_trimmed);
5382 
__skb_warn_lro_forwarding(const struct sk_buff * skb)5383 void __skb_warn_lro_forwarding(const struct sk_buff *skb)
5384 {
5385 	net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
5386 			     skb->dev->name);
5387 }
5388 EXPORT_SYMBOL(__skb_warn_lro_forwarding);
5389 
kfree_skb_partial(struct sk_buff * skb,bool head_stolen)5390 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
5391 {
5392 	if (head_stolen) {
5393 		skb_release_head_state(skb);
5394 		kmem_cache_free(skbuff_head_cache, skb);
5395 	} else {
5396 		__kfree_skb(skb);
5397 	}
5398 }
5399 EXPORT_SYMBOL(kfree_skb_partial);
5400 
5401 /**
5402  * skb_try_coalesce - try to merge skb to prior one
5403  * @to: prior buffer
5404  * @from: buffer to add
5405  * @fragstolen: pointer to boolean
5406  * @delta_truesize: how much more was allocated than was requested
5407  */
skb_try_coalesce(struct sk_buff * to,struct sk_buff * from,bool * fragstolen,int * delta_truesize)5408 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
5409 		      bool *fragstolen, int *delta_truesize)
5410 {
5411 	struct skb_shared_info *to_shinfo, *from_shinfo;
5412 	int i, delta, len = from->len;
5413 
5414 	*fragstolen = false;
5415 
5416 	if (skb_cloned(to))
5417 		return false;
5418 
5419 	/* In general, avoid mixing page_pool and non-page_pool allocated
5420 	 * pages within the same SKB. Additionally avoid dealing with clones
5421 	 * with page_pool pages, in case the SKB is using page_pool fragment
5422 	 * references (PP_FLAG_PAGE_FRAG). Since we only take full page
5423 	 * references for cloned SKBs at the moment that would result in
5424 	 * inconsistent reference counts.
5425 	 * In theory we could take full references if @from is cloned and
5426 	 * !@to->pp_recycle but its tricky (due to potential race with
5427 	 * the clone disappearing) and rare, so not worth dealing with.
5428 	 */
5429 	if (to->pp_recycle != from->pp_recycle ||
5430 	    (from->pp_recycle && skb_cloned(from)))
5431 		return false;
5432 
5433 	if (len <= skb_tailroom(to)) {
5434 		if (len)
5435 			BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
5436 		*delta_truesize = 0;
5437 		return true;
5438 	}
5439 
5440 	to_shinfo = skb_shinfo(to);
5441 	from_shinfo = skb_shinfo(from);
5442 	if (to_shinfo->frag_list || from_shinfo->frag_list)
5443 		return false;
5444 	if (skb_zcopy(to) || skb_zcopy(from))
5445 		return false;
5446 
5447 	if (skb_headlen(from) != 0) {
5448 		struct page *page;
5449 		unsigned int offset;
5450 
5451 		if (to_shinfo->nr_frags +
5452 		    from_shinfo->nr_frags >= MAX_SKB_FRAGS)
5453 			return false;
5454 
5455 		if (skb_head_is_locked(from))
5456 			return false;
5457 
5458 		delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
5459 
5460 		page = virt_to_head_page(from->head);
5461 		offset = from->data - (unsigned char *)page_address(page);
5462 
5463 		skb_fill_page_desc(to, to_shinfo->nr_frags,
5464 				   page, offset, skb_headlen(from));
5465 		*fragstolen = true;
5466 	} else {
5467 		if (to_shinfo->nr_frags +
5468 		    from_shinfo->nr_frags > MAX_SKB_FRAGS)
5469 			return false;
5470 
5471 		delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from));
5472 	}
5473 
5474 	WARN_ON_ONCE(delta < len);
5475 
5476 	memcpy(to_shinfo->frags + to_shinfo->nr_frags,
5477 	       from_shinfo->frags,
5478 	       from_shinfo->nr_frags * sizeof(skb_frag_t));
5479 	to_shinfo->nr_frags += from_shinfo->nr_frags;
5480 
5481 	if (!skb_cloned(from))
5482 		from_shinfo->nr_frags = 0;
5483 
5484 	/* if the skb is not cloned this does nothing
5485 	 * since we set nr_frags to 0.
5486 	 */
5487 	for (i = 0; i < from_shinfo->nr_frags; i++)
5488 		__skb_frag_ref(&from_shinfo->frags[i]);
5489 
5490 	to->truesize += delta;
5491 	to->len += len;
5492 	to->data_len += len;
5493 
5494 	*delta_truesize = delta;
5495 	return true;
5496 }
5497 EXPORT_SYMBOL(skb_try_coalesce);
5498 
5499 /**
5500  * skb_scrub_packet - scrub an skb
5501  *
5502  * @skb: buffer to clean
5503  * @xnet: packet is crossing netns
5504  *
5505  * skb_scrub_packet can be used after encapsulating or decapsulting a packet
5506  * into/from a tunnel. Some information have to be cleared during these
5507  * operations.
5508  * skb_scrub_packet can also be used to clean a skb before injecting it in
5509  * another namespace (@xnet == true). We have to clear all information in the
5510  * skb that could impact namespace isolation.
5511  */
skb_scrub_packet(struct sk_buff * skb,bool xnet)5512 void skb_scrub_packet(struct sk_buff *skb, bool xnet)
5513 {
5514 	skb->pkt_type = PACKET_HOST;
5515 	skb->skb_iif = 0;
5516 	skb->ignore_df = 0;
5517 	skb_dst_drop(skb);
5518 	skb_ext_reset(skb);
5519 	nf_reset_ct(skb);
5520 	nf_reset_trace(skb);
5521 
5522 #ifdef CONFIG_NET_SWITCHDEV
5523 	skb->offload_fwd_mark = 0;
5524 	skb->offload_l3_fwd_mark = 0;
5525 #endif
5526 
5527 	if (!xnet)
5528 		return;
5529 
5530 	ipvs_reset(skb);
5531 	skb->mark = 0;
5532 	skb->tstamp = 0;
5533 }
5534 EXPORT_SYMBOL_GPL(skb_scrub_packet);
5535 
5536 /**
5537  * skb_gso_transport_seglen - Return length of individual segments of a gso packet
5538  *
5539  * @skb: GSO skb
5540  *
5541  * skb_gso_transport_seglen is used to determine the real size of the
5542  * individual segments, including Layer4 headers (TCP/UDP).
5543  *
5544  * The MAC/L2 or network (IP, IPv6) headers are not accounted for.
5545  */
skb_gso_transport_seglen(const struct sk_buff * skb)5546 static unsigned int skb_gso_transport_seglen(const struct sk_buff *skb)
5547 {
5548 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
5549 	unsigned int thlen = 0;
5550 
5551 	if (skb->encapsulation) {
5552 		thlen = skb_inner_transport_header(skb) -
5553 			skb_transport_header(skb);
5554 
5555 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
5556 			thlen += inner_tcp_hdrlen(skb);
5557 	} else if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
5558 		thlen = tcp_hdrlen(skb);
5559 	} else if (unlikely(skb_is_gso_sctp(skb))) {
5560 		thlen = sizeof(struct sctphdr);
5561 	} else if (shinfo->gso_type & SKB_GSO_UDP_L4) {
5562 		thlen = sizeof(struct udphdr);
5563 	}
5564 	/* UFO sets gso_size to the size of the fragmentation
5565 	 * payload, i.e. the size of the L4 (UDP) header is already
5566 	 * accounted for.
5567 	 */
5568 	return thlen + shinfo->gso_size;
5569 }
5570 
5571 /**
5572  * skb_gso_network_seglen - Return length of individual segments of a gso packet
5573  *
5574  * @skb: GSO skb
5575  *
5576  * skb_gso_network_seglen is used to determine the real size of the
5577  * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP).
5578  *
5579  * The MAC/L2 header is not accounted for.
5580  */
skb_gso_network_seglen(const struct sk_buff * skb)5581 static unsigned int skb_gso_network_seglen(const struct sk_buff *skb)
5582 {
5583 	unsigned int hdr_len = skb_transport_header(skb) -
5584 			       skb_network_header(skb);
5585 
5586 	return hdr_len + skb_gso_transport_seglen(skb);
5587 }
5588 
5589 /**
5590  * skb_gso_mac_seglen - Return length of individual segments of a gso packet
5591  *
5592  * @skb: GSO skb
5593  *
5594  * skb_gso_mac_seglen is used to determine the real size of the
5595  * individual segments, including MAC/L2, Layer3 (IP, IPv6) and L4
5596  * headers (TCP/UDP).
5597  */
skb_gso_mac_seglen(const struct sk_buff * skb)5598 static unsigned int skb_gso_mac_seglen(const struct sk_buff *skb)
5599 {
5600 	unsigned int hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
5601 
5602 	return hdr_len + skb_gso_transport_seglen(skb);
5603 }
5604 
5605 /**
5606  * skb_gso_size_check - check the skb size, considering GSO_BY_FRAGS
5607  *
5608  * There are a couple of instances where we have a GSO skb, and we
5609  * want to determine what size it would be after it is segmented.
5610  *
5611  * We might want to check:
5612  * -    L3+L4+payload size (e.g. IP forwarding)
5613  * - L2+L3+L4+payload size (e.g. sanity check before passing to driver)
5614  *
5615  * This is a helper to do that correctly considering GSO_BY_FRAGS.
5616  *
5617  * @skb: GSO skb
5618  *
5619  * @seg_len: The segmented length (from skb_gso_*_seglen). In the
5620  *           GSO_BY_FRAGS case this will be [header sizes + GSO_BY_FRAGS].
5621  *
5622  * @max_len: The maximum permissible length.
5623  *
5624  * Returns true if the segmented length <= max length.
5625  */
skb_gso_size_check(const struct sk_buff * skb,unsigned int seg_len,unsigned int max_len)5626 static inline bool skb_gso_size_check(const struct sk_buff *skb,
5627 				      unsigned int seg_len,
5628 				      unsigned int max_len) {
5629 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
5630 	const struct sk_buff *iter;
5631 
5632 	if (shinfo->gso_size != GSO_BY_FRAGS)
5633 		return seg_len <= max_len;
5634 
5635 	/* Undo this so we can re-use header sizes */
5636 	seg_len -= GSO_BY_FRAGS;
5637 
5638 	skb_walk_frags(skb, iter) {
5639 		if (seg_len + skb_headlen(iter) > max_len)
5640 			return false;
5641 	}
5642 
5643 	return true;
5644 }
5645 
5646 /**
5647  * skb_gso_validate_network_len - Will a split GSO skb fit into a given MTU?
5648  *
5649  * @skb: GSO skb
5650  * @mtu: MTU to validate against
5651  *
5652  * skb_gso_validate_network_len validates if a given skb will fit a
5653  * wanted MTU once split. It considers L3 headers, L4 headers, and the
5654  * payload.
5655  */
skb_gso_validate_network_len(const struct sk_buff * skb,unsigned int mtu)5656 bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu)
5657 {
5658 	return skb_gso_size_check(skb, skb_gso_network_seglen(skb), mtu);
5659 }
5660 EXPORT_SYMBOL_GPL(skb_gso_validate_network_len);
5661 
5662 /**
5663  * skb_gso_validate_mac_len - Will a split GSO skb fit in a given length?
5664  *
5665  * @skb: GSO skb
5666  * @len: length to validate against
5667  *
5668  * skb_gso_validate_mac_len validates if a given skb will fit a wanted
5669  * length once split, including L2, L3 and L4 headers and the payload.
5670  */
skb_gso_validate_mac_len(const struct sk_buff * skb,unsigned int len)5671 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len)
5672 {
5673 	return skb_gso_size_check(skb, skb_gso_mac_seglen(skb), len);
5674 }
5675 EXPORT_SYMBOL_GPL(skb_gso_validate_mac_len);
5676 
skb_reorder_vlan_header(struct sk_buff * skb)5677 static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb)
5678 {
5679 	int mac_len, meta_len;
5680 	void *meta;
5681 
5682 	if (skb_cow(skb, skb_headroom(skb)) < 0) {
5683 		kfree_skb(skb);
5684 		return NULL;
5685 	}
5686 
5687 	mac_len = skb->data - skb_mac_header(skb);
5688 	if (likely(mac_len > VLAN_HLEN + ETH_TLEN)) {
5689 		memmove(skb_mac_header(skb) + VLAN_HLEN, skb_mac_header(skb),
5690 			mac_len - VLAN_HLEN - ETH_TLEN);
5691 	}
5692 
5693 	meta_len = skb_metadata_len(skb);
5694 	if (meta_len) {
5695 		meta = skb_metadata_end(skb) - meta_len;
5696 		memmove(meta + VLAN_HLEN, meta, meta_len);
5697 	}
5698 
5699 	skb->mac_header += VLAN_HLEN;
5700 	return skb;
5701 }
5702 
skb_vlan_untag(struct sk_buff * skb)5703 struct sk_buff *skb_vlan_untag(struct sk_buff *skb)
5704 {
5705 	struct vlan_hdr *vhdr;
5706 	u16 vlan_tci;
5707 
5708 	if (unlikely(skb_vlan_tag_present(skb))) {
5709 		/* vlan_tci is already set-up so leave this for another time */
5710 		return skb;
5711 	}
5712 
5713 	skb = skb_share_check(skb, GFP_ATOMIC);
5714 	if (unlikely(!skb))
5715 		goto err_free;
5716 	/* We may access the two bytes after vlan_hdr in vlan_set_encap_proto(). */
5717 	if (unlikely(!pskb_may_pull(skb, VLAN_HLEN + sizeof(unsigned short))))
5718 		goto err_free;
5719 
5720 	vhdr = (struct vlan_hdr *)skb->data;
5721 	vlan_tci = ntohs(vhdr->h_vlan_TCI);
5722 	__vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci);
5723 
5724 	skb_pull_rcsum(skb, VLAN_HLEN);
5725 	vlan_set_encap_proto(skb, vhdr);
5726 
5727 	skb = skb_reorder_vlan_header(skb);
5728 	if (unlikely(!skb))
5729 		goto err_free;
5730 
5731 	skb_reset_network_header(skb);
5732 	if (!skb_transport_header_was_set(skb))
5733 		skb_reset_transport_header(skb);
5734 	skb_reset_mac_len(skb);
5735 
5736 	return skb;
5737 
5738 err_free:
5739 	kfree_skb(skb);
5740 	return NULL;
5741 }
5742 EXPORT_SYMBOL(skb_vlan_untag);
5743 
skb_ensure_writable(struct sk_buff * skb,int write_len)5744 int skb_ensure_writable(struct sk_buff *skb, int write_len)
5745 {
5746 	if (!pskb_may_pull(skb, write_len))
5747 		return -ENOMEM;
5748 
5749 	if (!skb_cloned(skb) || skb_clone_writable(skb, write_len))
5750 		return 0;
5751 
5752 	return pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
5753 }
5754 EXPORT_SYMBOL(skb_ensure_writable);
5755 
5756 /* remove VLAN header from packet and update csum accordingly.
5757  * expects a non skb_vlan_tag_present skb with a vlan tag payload
5758  */
__skb_vlan_pop(struct sk_buff * skb,u16 * vlan_tci)5759 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci)
5760 {
5761 	struct vlan_hdr *vhdr;
5762 	int offset = skb->data - skb_mac_header(skb);
5763 	int err;
5764 
5765 	if (WARN_ONCE(offset,
5766 		      "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n",
5767 		      offset)) {
5768 		return -EINVAL;
5769 	}
5770 
5771 	err = skb_ensure_writable(skb, VLAN_ETH_HLEN);
5772 	if (unlikely(err))
5773 		return err;
5774 
5775 	skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
5776 
5777 	vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN);
5778 	*vlan_tci = ntohs(vhdr->h_vlan_TCI);
5779 
5780 	memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN);
5781 	__skb_pull(skb, VLAN_HLEN);
5782 
5783 	vlan_set_encap_proto(skb, vhdr);
5784 	skb->mac_header += VLAN_HLEN;
5785 
5786 	if (skb_network_offset(skb) < ETH_HLEN)
5787 		skb_set_network_header(skb, ETH_HLEN);
5788 
5789 	skb_reset_mac_len(skb);
5790 
5791 	return err;
5792 }
5793 EXPORT_SYMBOL(__skb_vlan_pop);
5794 
5795 /* Pop a vlan tag either from hwaccel or from payload.
5796  * Expects skb->data at mac header.
5797  */
skb_vlan_pop(struct sk_buff * skb)5798 int skb_vlan_pop(struct sk_buff *skb)
5799 {
5800 	u16 vlan_tci;
5801 	__be16 vlan_proto;
5802 	int err;
5803 
5804 	if (likely(skb_vlan_tag_present(skb))) {
5805 		__vlan_hwaccel_clear_tag(skb);
5806 	} else {
5807 		if (unlikely(!eth_type_vlan(skb->protocol)))
5808 			return 0;
5809 
5810 		err = __skb_vlan_pop(skb, &vlan_tci);
5811 		if (err)
5812 			return err;
5813 	}
5814 	/* move next vlan tag to hw accel tag */
5815 	if (likely(!eth_type_vlan(skb->protocol)))
5816 		return 0;
5817 
5818 	vlan_proto = skb->protocol;
5819 	err = __skb_vlan_pop(skb, &vlan_tci);
5820 	if (unlikely(err))
5821 		return err;
5822 
5823 	__vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
5824 	return 0;
5825 }
5826 EXPORT_SYMBOL(skb_vlan_pop);
5827 
5828 /* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present).
5829  * Expects skb->data at mac header.
5830  */
skb_vlan_push(struct sk_buff * skb,__be16 vlan_proto,u16 vlan_tci)5831 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci)
5832 {
5833 	if (skb_vlan_tag_present(skb)) {
5834 		int offset = skb->data - skb_mac_header(skb);
5835 		int err;
5836 
5837 		if (WARN_ONCE(offset,
5838 			      "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n",
5839 			      offset)) {
5840 			return -EINVAL;
5841 		}
5842 
5843 		err = __vlan_insert_tag(skb, skb->vlan_proto,
5844 					skb_vlan_tag_get(skb));
5845 		if (err)
5846 			return err;
5847 
5848 		skb->protocol = skb->vlan_proto;
5849 		skb->mac_len += VLAN_HLEN;
5850 
5851 		skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
5852 	}
5853 	__vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
5854 	return 0;
5855 }
5856 EXPORT_SYMBOL(skb_vlan_push);
5857 
5858 /**
5859  * skb_eth_pop() - Drop the Ethernet header at the head of a packet
5860  *
5861  * @skb: Socket buffer to modify
5862  *
5863  * Drop the Ethernet header of @skb.
5864  *
5865  * Expects that skb->data points to the mac header and that no VLAN tags are
5866  * present.
5867  *
5868  * Returns 0 on success, -errno otherwise.
5869  */
skb_eth_pop(struct sk_buff * skb)5870 int skb_eth_pop(struct sk_buff *skb)
5871 {
5872 	if (!pskb_may_pull(skb, ETH_HLEN) || skb_vlan_tagged(skb) ||
5873 	    skb_network_offset(skb) < ETH_HLEN)
5874 		return -EPROTO;
5875 
5876 	skb_pull_rcsum(skb, ETH_HLEN);
5877 	skb_reset_mac_header(skb);
5878 	skb_reset_mac_len(skb);
5879 
5880 	return 0;
5881 }
5882 EXPORT_SYMBOL(skb_eth_pop);
5883 
5884 /**
5885  * skb_eth_push() - Add a new Ethernet header at the head of a packet
5886  *
5887  * @skb: Socket buffer to modify
5888  * @dst: Destination MAC address of the new header
5889  * @src: Source MAC address of the new header
5890  *
5891  * Prepend @skb with a new Ethernet header.
5892  *
5893  * Expects that skb->data points to the mac header, which must be empty.
5894  *
5895  * Returns 0 on success, -errno otherwise.
5896  */
skb_eth_push(struct sk_buff * skb,const unsigned char * dst,const unsigned char * src)5897 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst,
5898 		 const unsigned char *src)
5899 {
5900 	struct ethhdr *eth;
5901 	int err;
5902 
5903 	if (skb_network_offset(skb) || skb_vlan_tag_present(skb))
5904 		return -EPROTO;
5905 
5906 	err = skb_cow_head(skb, sizeof(*eth));
5907 	if (err < 0)
5908 		return err;
5909 
5910 	skb_push(skb, sizeof(*eth));
5911 	skb_reset_mac_header(skb);
5912 	skb_reset_mac_len(skb);
5913 
5914 	eth = eth_hdr(skb);
5915 	ether_addr_copy(eth->h_dest, dst);
5916 	ether_addr_copy(eth->h_source, src);
5917 	eth->h_proto = skb->protocol;
5918 
5919 	skb_postpush_rcsum(skb, eth, sizeof(*eth));
5920 
5921 	return 0;
5922 }
5923 EXPORT_SYMBOL(skb_eth_push);
5924 
5925 /* Update the ethertype of hdr and the skb csum value if required. */
skb_mod_eth_type(struct sk_buff * skb,struct ethhdr * hdr,__be16 ethertype)5926 static void skb_mod_eth_type(struct sk_buff *skb, struct ethhdr *hdr,
5927 			     __be16 ethertype)
5928 {
5929 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
5930 		__be16 diff[] = { ~hdr->h_proto, ethertype };
5931 
5932 		skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
5933 	}
5934 
5935 	hdr->h_proto = ethertype;
5936 }
5937 
5938 /**
5939  * skb_mpls_push() - push a new MPLS header after mac_len bytes from start of
5940  *                   the packet
5941  *
5942  * @skb: buffer
5943  * @mpls_lse: MPLS label stack entry to push
5944  * @mpls_proto: ethertype of the new MPLS header (expects 0x8847 or 0x8848)
5945  * @mac_len: length of the MAC header
5946  * @ethernet: flag to indicate if the resulting packet after skb_mpls_push is
5947  *            ethernet
5948  *
5949  * Expects skb->data at mac header.
5950  *
5951  * Returns 0 on success, -errno otherwise.
5952  */
skb_mpls_push(struct sk_buff * skb,__be32 mpls_lse,__be16 mpls_proto,int mac_len,bool ethernet)5953 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto,
5954 		  int mac_len, bool ethernet)
5955 {
5956 	struct mpls_shim_hdr *lse;
5957 	int err;
5958 
5959 	if (unlikely(!eth_p_mpls(mpls_proto)))
5960 		return -EINVAL;
5961 
5962 	/* Networking stack does not allow simultaneous Tunnel and MPLS GSO. */
5963 	if (skb->encapsulation)
5964 		return -EINVAL;
5965 
5966 	err = skb_cow_head(skb, MPLS_HLEN);
5967 	if (unlikely(err))
5968 		return err;
5969 
5970 	if (!skb->inner_protocol) {
5971 		skb_set_inner_network_header(skb, skb_network_offset(skb));
5972 		skb_set_inner_protocol(skb, skb->protocol);
5973 	}
5974 
5975 	skb_push(skb, MPLS_HLEN);
5976 	memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb),
5977 		mac_len);
5978 	skb_reset_mac_header(skb);
5979 	skb_set_network_header(skb, mac_len);
5980 	skb_reset_mac_len(skb);
5981 
5982 	lse = mpls_hdr(skb);
5983 	lse->label_stack_entry = mpls_lse;
5984 	skb_postpush_rcsum(skb, lse, MPLS_HLEN);
5985 
5986 	if (ethernet && mac_len >= ETH_HLEN)
5987 		skb_mod_eth_type(skb, eth_hdr(skb), mpls_proto);
5988 	skb->protocol = mpls_proto;
5989 
5990 	return 0;
5991 }
5992 EXPORT_SYMBOL_GPL(skb_mpls_push);
5993 
5994 /**
5995  * skb_mpls_pop() - pop the outermost MPLS header
5996  *
5997  * @skb: buffer
5998  * @next_proto: ethertype of header after popped MPLS header
5999  * @mac_len: length of the MAC header
6000  * @ethernet: flag to indicate if the packet is ethernet
6001  *
6002  * Expects skb->data at mac header.
6003  *
6004  * Returns 0 on success, -errno otherwise.
6005  */
skb_mpls_pop(struct sk_buff * skb,__be16 next_proto,int mac_len,bool ethernet)6006 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len,
6007 		 bool ethernet)
6008 {
6009 	int err;
6010 
6011 	if (unlikely(!eth_p_mpls(skb->protocol)))
6012 		return 0;
6013 
6014 	err = skb_ensure_writable(skb, mac_len + MPLS_HLEN);
6015 	if (unlikely(err))
6016 		return err;
6017 
6018 	skb_postpull_rcsum(skb, mpls_hdr(skb), MPLS_HLEN);
6019 	memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb),
6020 		mac_len);
6021 
6022 	__skb_pull(skb, MPLS_HLEN);
6023 	skb_reset_mac_header(skb);
6024 	skb_set_network_header(skb, mac_len);
6025 
6026 	if (ethernet && mac_len >= ETH_HLEN) {
6027 		struct ethhdr *hdr;
6028 
6029 		/* use mpls_hdr() to get ethertype to account for VLANs. */
6030 		hdr = (struct ethhdr *)((void *)mpls_hdr(skb) - ETH_HLEN);
6031 		skb_mod_eth_type(skb, hdr, next_proto);
6032 	}
6033 	skb->protocol = next_proto;
6034 
6035 	return 0;
6036 }
6037 EXPORT_SYMBOL_GPL(skb_mpls_pop);
6038 
6039 /**
6040  * skb_mpls_update_lse() - modify outermost MPLS header and update csum
6041  *
6042  * @skb: buffer
6043  * @mpls_lse: new MPLS label stack entry to update to
6044  *
6045  * Expects skb->data at mac header.
6046  *
6047  * Returns 0 on success, -errno otherwise.
6048  */
skb_mpls_update_lse(struct sk_buff * skb,__be32 mpls_lse)6049 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse)
6050 {
6051 	int err;
6052 
6053 	if (unlikely(!eth_p_mpls(skb->protocol)))
6054 		return -EINVAL;
6055 
6056 	err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN);
6057 	if (unlikely(err))
6058 		return err;
6059 
6060 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
6061 		__be32 diff[] = { ~mpls_hdr(skb)->label_stack_entry, mpls_lse };
6062 
6063 		skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
6064 	}
6065 
6066 	mpls_hdr(skb)->label_stack_entry = mpls_lse;
6067 
6068 	return 0;
6069 }
6070 EXPORT_SYMBOL_GPL(skb_mpls_update_lse);
6071 
6072 /**
6073  * skb_mpls_dec_ttl() - decrement the TTL of the outermost MPLS header
6074  *
6075  * @skb: buffer
6076  *
6077  * Expects skb->data at mac header.
6078  *
6079  * Returns 0 on success, -errno otherwise.
6080  */
skb_mpls_dec_ttl(struct sk_buff * skb)6081 int skb_mpls_dec_ttl(struct sk_buff *skb)
6082 {
6083 	u32 lse;
6084 	u8 ttl;
6085 
6086 	if (unlikely(!eth_p_mpls(skb->protocol)))
6087 		return -EINVAL;
6088 
6089 	if (!pskb_may_pull(skb, skb_network_offset(skb) + MPLS_HLEN))
6090 		return -ENOMEM;
6091 
6092 	lse = be32_to_cpu(mpls_hdr(skb)->label_stack_entry);
6093 	ttl = (lse & MPLS_LS_TTL_MASK) >> MPLS_LS_TTL_SHIFT;
6094 	if (!--ttl)
6095 		return -EINVAL;
6096 
6097 	lse &= ~MPLS_LS_TTL_MASK;
6098 	lse |= ttl << MPLS_LS_TTL_SHIFT;
6099 
6100 	return skb_mpls_update_lse(skb, cpu_to_be32(lse));
6101 }
6102 EXPORT_SYMBOL_GPL(skb_mpls_dec_ttl);
6103 
6104 /**
6105  * alloc_skb_with_frags - allocate skb with page frags
6106  *
6107  * @header_len: size of linear part
6108  * @data_len: needed length in frags
6109  * @max_page_order: max page order desired.
6110  * @errcode: pointer to error code if any
6111  * @gfp_mask: allocation mask
6112  *
6113  * This can be used to allocate a paged skb, given a maximal order for frags.
6114  */
alloc_skb_with_frags(unsigned long header_len,unsigned long data_len,int max_page_order,int * errcode,gfp_t gfp_mask)6115 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
6116 				     unsigned long data_len,
6117 				     int max_page_order,
6118 				     int *errcode,
6119 				     gfp_t gfp_mask)
6120 {
6121 	int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
6122 	unsigned long chunk;
6123 	struct sk_buff *skb;
6124 	struct page *page;
6125 	int i;
6126 
6127 	*errcode = -EMSGSIZE;
6128 	/* Note this test could be relaxed, if we succeed to allocate
6129 	 * high order pages...
6130 	 */
6131 	if (npages > MAX_SKB_FRAGS)
6132 		return NULL;
6133 
6134 	*errcode = -ENOBUFS;
6135 	skb = alloc_skb(header_len, gfp_mask);
6136 	if (!skb)
6137 		return NULL;
6138 
6139 	skb->truesize += npages << PAGE_SHIFT;
6140 
6141 	for (i = 0; npages > 0; i++) {
6142 		int order = max_page_order;
6143 
6144 		while (order) {
6145 			if (npages >= 1 << order) {
6146 				page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) |
6147 						   __GFP_COMP |
6148 						   __GFP_NOWARN,
6149 						   order);
6150 				if (page)
6151 					goto fill_page;
6152 				/* Do not retry other high order allocations */
6153 				order = 1;
6154 				max_page_order = 0;
6155 			}
6156 			order--;
6157 		}
6158 		page = alloc_page(gfp_mask);
6159 		if (!page)
6160 			goto failure;
6161 fill_page:
6162 		chunk = min_t(unsigned long, data_len,
6163 			      PAGE_SIZE << order);
6164 		skb_fill_page_desc(skb, i, page, 0, chunk);
6165 		data_len -= chunk;
6166 		npages -= 1 << order;
6167 	}
6168 	return skb;
6169 
6170 failure:
6171 	kfree_skb(skb);
6172 	return NULL;
6173 }
6174 EXPORT_SYMBOL(alloc_skb_with_frags);
6175 
6176 /* carve out the first off bytes from skb when off < headlen */
pskb_carve_inside_header(struct sk_buff * skb,const u32 off,const int headlen,gfp_t gfp_mask)6177 static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off,
6178 				    const int headlen, gfp_t gfp_mask)
6179 {
6180 	int i;
6181 	int size = skb_end_offset(skb);
6182 	int new_hlen = headlen - off;
6183 	u8 *data;
6184 
6185 	size = SKB_DATA_ALIGN(size);
6186 
6187 	if (skb_pfmemalloc(skb))
6188 		gfp_mask |= __GFP_MEMALLOC;
6189 	data = kmalloc_reserve(size +
6190 			       SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
6191 			       gfp_mask, NUMA_NO_NODE, NULL);
6192 	if (!data)
6193 		return -ENOMEM;
6194 
6195 	size = SKB_WITH_OVERHEAD(ksize(data));
6196 
6197 	/* Copy real data, and all frags */
6198 	skb_copy_from_linear_data_offset(skb, off, data, new_hlen);
6199 	skb->len -= off;
6200 
6201 	memcpy((struct skb_shared_info *)(data + size),
6202 	       skb_shinfo(skb),
6203 	       offsetof(struct skb_shared_info,
6204 			frags[skb_shinfo(skb)->nr_frags]));
6205 	if (skb_cloned(skb)) {
6206 		/* drop the old head gracefully */
6207 		if (skb_orphan_frags(skb, gfp_mask)) {
6208 			kfree(data);
6209 			return -ENOMEM;
6210 		}
6211 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
6212 			skb_frag_ref(skb, i);
6213 		if (skb_has_frag_list(skb))
6214 			skb_clone_fraglist(skb);
6215 		skb_release_data(skb);
6216 	} else {
6217 		/* we can reuse existing recount- all we did was
6218 		 * relocate values
6219 		 */
6220 		skb_free_head(skb);
6221 	}
6222 
6223 	skb->head = data;
6224 	skb->data = data;
6225 	skb->head_frag = 0;
6226 	skb_set_end_offset(skb, size);
6227 	skb_set_tail_pointer(skb, skb_headlen(skb));
6228 	skb_headers_offset_update(skb, 0);
6229 	skb->cloned = 0;
6230 	skb->hdr_len = 0;
6231 	skb->nohdr = 0;
6232 	atomic_set(&skb_shinfo(skb)->dataref, 1);
6233 
6234 	return 0;
6235 }
6236 
6237 static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp);
6238 
6239 /* carve out the first eat bytes from skb's frag_list. May recurse into
6240  * pskb_carve()
6241  */
pskb_carve_frag_list(struct sk_buff * skb,struct skb_shared_info * shinfo,int eat,gfp_t gfp_mask)6242 static int pskb_carve_frag_list(struct sk_buff *skb,
6243 				struct skb_shared_info *shinfo, int eat,
6244 				gfp_t gfp_mask)
6245 {
6246 	struct sk_buff *list = shinfo->frag_list;
6247 	struct sk_buff *clone = NULL;
6248 	struct sk_buff *insp = NULL;
6249 
6250 	do {
6251 		if (!list) {
6252 			pr_err("Not enough bytes to eat. Want %d\n", eat);
6253 			return -EFAULT;
6254 		}
6255 		if (list->len <= eat) {
6256 			/* Eaten as whole. */
6257 			eat -= list->len;
6258 			list = list->next;
6259 			insp = list;
6260 		} else {
6261 			/* Eaten partially. */
6262 			if (skb_shared(list)) {
6263 				clone = skb_clone(list, gfp_mask);
6264 				if (!clone)
6265 					return -ENOMEM;
6266 				insp = list->next;
6267 				list = clone;
6268 			} else {
6269 				/* This may be pulled without problems. */
6270 				insp = list;
6271 			}
6272 			if (pskb_carve(list, eat, gfp_mask) < 0) {
6273 				kfree_skb(clone);
6274 				return -ENOMEM;
6275 			}
6276 			break;
6277 		}
6278 	} while (eat);
6279 
6280 	/* Free pulled out fragments. */
6281 	while ((list = shinfo->frag_list) != insp) {
6282 		shinfo->frag_list = list->next;
6283 		consume_skb(list);
6284 	}
6285 	/* And insert new clone at head. */
6286 	if (clone) {
6287 		clone->next = list;
6288 		shinfo->frag_list = clone;
6289 	}
6290 	return 0;
6291 }
6292 
6293 /* carve off first len bytes from skb. Split line (off) is in the
6294  * non-linear part of skb
6295  */
pskb_carve_inside_nonlinear(struct sk_buff * skb,const u32 off,int pos,gfp_t gfp_mask)6296 static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off,
6297 				       int pos, gfp_t gfp_mask)
6298 {
6299 	int i, k = 0;
6300 	int size = skb_end_offset(skb);
6301 	u8 *data;
6302 	const int nfrags = skb_shinfo(skb)->nr_frags;
6303 	struct skb_shared_info *shinfo;
6304 
6305 	size = SKB_DATA_ALIGN(size);
6306 
6307 	if (skb_pfmemalloc(skb))
6308 		gfp_mask |= __GFP_MEMALLOC;
6309 	data = kmalloc_reserve(size +
6310 			       SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
6311 			       gfp_mask, NUMA_NO_NODE, NULL);
6312 	if (!data)
6313 		return -ENOMEM;
6314 
6315 	size = SKB_WITH_OVERHEAD(ksize(data));
6316 
6317 	memcpy((struct skb_shared_info *)(data + size),
6318 	       skb_shinfo(skb), offsetof(struct skb_shared_info, frags[0]));
6319 	if (skb_orphan_frags(skb, gfp_mask)) {
6320 		kfree(data);
6321 		return -ENOMEM;
6322 	}
6323 	shinfo = (struct skb_shared_info *)(data + size);
6324 	for (i = 0; i < nfrags; i++) {
6325 		int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]);
6326 
6327 		if (pos + fsize > off) {
6328 			shinfo->frags[k] = skb_shinfo(skb)->frags[i];
6329 
6330 			if (pos < off) {
6331 				/* Split frag.
6332 				 * We have two variants in this case:
6333 				 * 1. Move all the frag to the second
6334 				 *    part, if it is possible. F.e.
6335 				 *    this approach is mandatory for TUX,
6336 				 *    where splitting is expensive.
6337 				 * 2. Split is accurately. We make this.
6338 				 */
6339 				skb_frag_off_add(&shinfo->frags[0], off - pos);
6340 				skb_frag_size_sub(&shinfo->frags[0], off - pos);
6341 			}
6342 			skb_frag_ref(skb, i);
6343 			k++;
6344 		}
6345 		pos += fsize;
6346 	}
6347 	shinfo->nr_frags = k;
6348 	if (skb_has_frag_list(skb))
6349 		skb_clone_fraglist(skb);
6350 
6351 	/* split line is in frag list */
6352 	if (k == 0 && pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask)) {
6353 		/* skb_frag_unref() is not needed here as shinfo->nr_frags = 0. */
6354 		if (skb_has_frag_list(skb))
6355 			kfree_skb_list(skb_shinfo(skb)->frag_list);
6356 		kfree(data);
6357 		return -ENOMEM;
6358 	}
6359 	skb_release_data(skb);
6360 
6361 	skb->head = data;
6362 	skb->head_frag = 0;
6363 	skb->data = data;
6364 	skb_set_end_offset(skb, size);
6365 	skb_reset_tail_pointer(skb);
6366 	skb_headers_offset_update(skb, 0);
6367 	skb->cloned   = 0;
6368 	skb->hdr_len  = 0;
6369 	skb->nohdr    = 0;
6370 	skb->len -= off;
6371 	skb->data_len = skb->len;
6372 	atomic_set(&skb_shinfo(skb)->dataref, 1);
6373 	return 0;
6374 }
6375 
6376 /* remove len bytes from the beginning of the skb */
pskb_carve(struct sk_buff * skb,const u32 len,gfp_t gfp)6377 static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp)
6378 {
6379 	int headlen = skb_headlen(skb);
6380 
6381 	if (len < headlen)
6382 		return pskb_carve_inside_header(skb, len, headlen, gfp);
6383 	else
6384 		return pskb_carve_inside_nonlinear(skb, len, headlen, gfp);
6385 }
6386 
6387 /* Extract to_copy bytes starting at off from skb, and return this in
6388  * a new skb
6389  */
pskb_extract(struct sk_buff * skb,int off,int to_copy,gfp_t gfp)6390 struct sk_buff *pskb_extract(struct sk_buff *skb, int off,
6391 			     int to_copy, gfp_t gfp)
6392 {
6393 	struct sk_buff  *clone = skb_clone(skb, gfp);
6394 
6395 	if (!clone)
6396 		return NULL;
6397 
6398 	if (pskb_carve(clone, off, gfp) < 0 ||
6399 	    pskb_trim(clone, to_copy)) {
6400 		kfree_skb(clone);
6401 		return NULL;
6402 	}
6403 	return clone;
6404 }
6405 EXPORT_SYMBOL(pskb_extract);
6406 
6407 /**
6408  * skb_condense - try to get rid of fragments/frag_list if possible
6409  * @skb: buffer
6410  *
6411  * Can be used to save memory before skb is added to a busy queue.
6412  * If packet has bytes in frags and enough tail room in skb->head,
6413  * pull all of them, so that we can free the frags right now and adjust
6414  * truesize.
6415  * Notes:
6416  *	We do not reallocate skb->head thus can not fail.
6417  *	Caller must re-evaluate skb->truesize if needed.
6418  */
skb_condense(struct sk_buff * skb)6419 void skb_condense(struct sk_buff *skb)
6420 {
6421 	if (skb->data_len) {
6422 		if (skb->data_len > skb->end - skb->tail ||
6423 		    skb_cloned(skb))
6424 			return;
6425 
6426 		/* Nice, we can free page frag(s) right now */
6427 		__pskb_pull_tail(skb, skb->data_len);
6428 	}
6429 	/* At this point, skb->truesize might be over estimated,
6430 	 * because skb had a fragment, and fragments do not tell
6431 	 * their truesize.
6432 	 * When we pulled its content into skb->head, fragment
6433 	 * was freed, but __pskb_pull_tail() could not possibly
6434 	 * adjust skb->truesize, not knowing the frag truesize.
6435 	 */
6436 	skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
6437 }
6438 
6439 #ifdef CONFIG_SKB_EXTENSIONS
skb_ext_get_ptr(struct skb_ext * ext,enum skb_ext_id id)6440 static void *skb_ext_get_ptr(struct skb_ext *ext, enum skb_ext_id id)
6441 {
6442 	return (void *)ext + (ext->offset[id] * SKB_EXT_ALIGN_VALUE);
6443 }
6444 
6445 /**
6446  * __skb_ext_alloc - allocate a new skb extensions storage
6447  *
6448  * @flags: See kmalloc().
6449  *
6450  * Returns the newly allocated pointer. The pointer can later attached to a
6451  * skb via __skb_ext_set().
6452  * Note: caller must handle the skb_ext as an opaque data.
6453  */
__skb_ext_alloc(gfp_t flags)6454 struct skb_ext *__skb_ext_alloc(gfp_t flags)
6455 {
6456 	struct skb_ext *new = kmem_cache_alloc(skbuff_ext_cache, flags);
6457 
6458 	if (new) {
6459 		memset(new->offset, 0, sizeof(new->offset));
6460 		refcount_set(&new->refcnt, 1);
6461 	}
6462 
6463 	return new;
6464 }
6465 
skb_ext_maybe_cow(struct skb_ext * old,unsigned int old_active)6466 static struct skb_ext *skb_ext_maybe_cow(struct skb_ext *old,
6467 					 unsigned int old_active)
6468 {
6469 	struct skb_ext *new;
6470 
6471 	if (refcount_read(&old->refcnt) == 1)
6472 		return old;
6473 
6474 	new = kmem_cache_alloc(skbuff_ext_cache, GFP_ATOMIC);
6475 	if (!new)
6476 		return NULL;
6477 
6478 	memcpy(new, old, old->chunks * SKB_EXT_ALIGN_VALUE);
6479 	refcount_set(&new->refcnt, 1);
6480 
6481 #ifdef CONFIG_XFRM
6482 	if (old_active & (1 << SKB_EXT_SEC_PATH)) {
6483 		struct sec_path *sp = skb_ext_get_ptr(old, SKB_EXT_SEC_PATH);
6484 		unsigned int i;
6485 
6486 		for (i = 0; i < sp->len; i++)
6487 			xfrm_state_hold(sp->xvec[i]);
6488 	}
6489 #endif
6490 	__skb_ext_put(old);
6491 	return new;
6492 }
6493 
6494 /**
6495  * __skb_ext_set - attach the specified extension storage to this skb
6496  * @skb: buffer
6497  * @id: extension id
6498  * @ext: extension storage previously allocated via __skb_ext_alloc()
6499  *
6500  * Existing extensions, if any, are cleared.
6501  *
6502  * Returns the pointer to the extension.
6503  */
__skb_ext_set(struct sk_buff * skb,enum skb_ext_id id,struct skb_ext * ext)6504 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id,
6505 		    struct skb_ext *ext)
6506 {
6507 	unsigned int newlen, newoff = SKB_EXT_CHUNKSIZEOF(*ext);
6508 
6509 	skb_ext_put(skb);
6510 	newlen = newoff + skb_ext_type_len[id];
6511 	ext->chunks = newlen;
6512 	ext->offset[id] = newoff;
6513 	skb->extensions = ext;
6514 	skb->active_extensions = 1 << id;
6515 	return skb_ext_get_ptr(ext, id);
6516 }
6517 
6518 /**
6519  * skb_ext_add - allocate space for given extension, COW if needed
6520  * @skb: buffer
6521  * @id: extension to allocate space for
6522  *
6523  * Allocates enough space for the given extension.
6524  * If the extension is already present, a pointer to that extension
6525  * is returned.
6526  *
6527  * If the skb was cloned, COW applies and the returned memory can be
6528  * modified without changing the extension space of clones buffers.
6529  *
6530  * Returns pointer to the extension or NULL on allocation failure.
6531  */
skb_ext_add(struct sk_buff * skb,enum skb_ext_id id)6532 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id)
6533 {
6534 	struct skb_ext *new, *old = NULL;
6535 	unsigned int newlen, newoff;
6536 
6537 	if (skb->active_extensions) {
6538 		old = skb->extensions;
6539 
6540 		new = skb_ext_maybe_cow(old, skb->active_extensions);
6541 		if (!new)
6542 			return NULL;
6543 
6544 		if (__skb_ext_exist(new, id))
6545 			goto set_active;
6546 
6547 		newoff = new->chunks;
6548 	} else {
6549 		newoff = SKB_EXT_CHUNKSIZEOF(*new);
6550 
6551 		new = __skb_ext_alloc(GFP_ATOMIC);
6552 		if (!new)
6553 			return NULL;
6554 	}
6555 
6556 	newlen = newoff + skb_ext_type_len[id];
6557 	new->chunks = newlen;
6558 	new->offset[id] = newoff;
6559 set_active:
6560 	skb->slow_gro = 1;
6561 	skb->extensions = new;
6562 	skb->active_extensions |= 1 << id;
6563 	return skb_ext_get_ptr(new, id);
6564 }
6565 EXPORT_SYMBOL(skb_ext_add);
6566 
6567 #ifdef CONFIG_XFRM
skb_ext_put_sp(struct sec_path * sp)6568 static void skb_ext_put_sp(struct sec_path *sp)
6569 {
6570 	unsigned int i;
6571 
6572 	for (i = 0; i < sp->len; i++)
6573 		xfrm_state_put(sp->xvec[i]);
6574 }
6575 #endif
6576 
__skb_ext_del(struct sk_buff * skb,enum skb_ext_id id)6577 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
6578 {
6579 	struct skb_ext *ext = skb->extensions;
6580 
6581 	skb->active_extensions &= ~(1 << id);
6582 	if (skb->active_extensions == 0) {
6583 		skb->extensions = NULL;
6584 		__skb_ext_put(ext);
6585 #ifdef CONFIG_XFRM
6586 	} else if (id == SKB_EXT_SEC_PATH &&
6587 		   refcount_read(&ext->refcnt) == 1) {
6588 		struct sec_path *sp = skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH);
6589 
6590 		skb_ext_put_sp(sp);
6591 		sp->len = 0;
6592 #endif
6593 	}
6594 }
6595 EXPORT_SYMBOL(__skb_ext_del);
6596 
__skb_ext_put(struct skb_ext * ext)6597 void __skb_ext_put(struct skb_ext *ext)
6598 {
6599 	/* If this is last clone, nothing can increment
6600 	 * it after check passes.  Avoids one atomic op.
6601 	 */
6602 	if (refcount_read(&ext->refcnt) == 1)
6603 		goto free_now;
6604 
6605 	if (!refcount_dec_and_test(&ext->refcnt))
6606 		return;
6607 free_now:
6608 #ifdef CONFIG_XFRM
6609 	if (__skb_ext_exist(ext, SKB_EXT_SEC_PATH))
6610 		skb_ext_put_sp(skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH));
6611 #endif
6612 
6613 	kmem_cache_free(skbuff_ext_cache, ext);
6614 }
6615 EXPORT_SYMBOL(__skb_ext_put);
6616 #endif /* CONFIG_SKB_EXTENSIONS */
6617