• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Slab allocator functions that are independent of the allocator strategy
4  *
5  * (C) 2012 Christoph Lameter <cl@linux.com>
6  */
7 #include <linux/slab.h>
8 
9 #include <linux/mm.h>
10 #include <linux/poison.h>
11 #include <linux/interrupt.h>
12 #include <linux/memory.h>
13 #include <linux/cache.h>
14 #include <linux/compiler.h>
15 #include <linux/kfence.h>
16 #include <linux/module.h>
17 #include <linux/cpu.h>
18 #include <linux/uaccess.h>
19 #include <linux/seq_file.h>
20 #include <linux/proc_fs.h>
21 #include <linux/debugfs.h>
22 #include <linux/kasan.h>
23 #include <asm/cacheflush.h>
24 #include <asm/tlbflush.h>
25 #include <asm/page.h>
26 #include <linux/memcontrol.h>
27 
28 #define CREATE_TRACE_POINTS
29 #include <trace/events/kmem.h>
30 #undef CREATE_TRACE_POINTS
31 #include <trace/hooks/mm.h>
32 #include "internal.h"
33 
34 #include "slab.h"
35 
36 enum slab_state slab_state;
37 LIST_HEAD(slab_caches);
38 DEFINE_MUTEX(slab_mutex);
39 struct kmem_cache *kmem_cache;
40 
41 #ifdef CONFIG_HARDENED_USERCOPY
42 bool usercopy_fallback __ro_after_init =
43 		IS_ENABLED(CONFIG_HARDENED_USERCOPY_FALLBACK);
44 module_param(usercopy_fallback, bool, 0400);
45 MODULE_PARM_DESC(usercopy_fallback,
46 		"WARN instead of reject usercopy whitelist violations");
47 #endif
48 
49 static LIST_HEAD(slab_caches_to_rcu_destroy);
50 static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work);
51 static DECLARE_WORK(slab_caches_to_rcu_destroy_work,
52 		    slab_caches_to_rcu_destroy_workfn);
53 
54 /*
55  * Set of flags that will prevent slab merging
56  */
57 #define SLAB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
58 		SLAB_TRACE | SLAB_TYPESAFE_BY_RCU | SLAB_NOLEAKTRACE | \
59 		SLAB_FAILSLAB | kasan_never_merge())
60 
61 #define SLAB_MERGE_SAME (SLAB_RECLAIM_ACCOUNT | SLAB_CACHE_DMA | \
62 			 SLAB_CACHE_DMA32 | SLAB_ACCOUNT)
63 
64 /*
65  * Merge control. If this is set then no merging of slab caches will occur.
66  */
67 static bool slab_nomerge = !IS_ENABLED(CONFIG_SLAB_MERGE_DEFAULT);
68 
setup_slab_nomerge(char * str)69 static int __init setup_slab_nomerge(char *str)
70 {
71 	slab_nomerge = true;
72 	return 1;
73 }
74 
setup_slab_merge(char * str)75 static int __init setup_slab_merge(char *str)
76 {
77 	slab_nomerge = false;
78 	return 1;
79 }
80 
81 #ifdef CONFIG_SLUB
82 __setup_param("slub_nomerge", slub_nomerge, setup_slab_nomerge, 0);
83 __setup_param("slub_merge", slub_merge, setup_slab_merge, 0);
84 #endif
85 
86 __setup("slab_nomerge", setup_slab_nomerge);
87 __setup("slab_merge", setup_slab_merge);
88 
89 /*
90  * Determine the size of a slab object
91  */
kmem_cache_size(struct kmem_cache * s)92 unsigned int kmem_cache_size(struct kmem_cache *s)
93 {
94 	return s->object_size;
95 }
96 EXPORT_SYMBOL(kmem_cache_size);
97 
98 #ifdef CONFIG_DEBUG_VM
kmem_cache_sanity_check(const char * name,unsigned int size)99 static int kmem_cache_sanity_check(const char *name, unsigned int size)
100 {
101 	if (!name || in_interrupt() || size > KMALLOC_MAX_SIZE) {
102 		pr_err("kmem_cache_create(%s) integrity check failed\n", name);
103 		return -EINVAL;
104 	}
105 
106 	WARN_ON(strchr(name, ' '));	/* It confuses parsers */
107 	return 0;
108 }
109 #else
kmem_cache_sanity_check(const char * name,unsigned int size)110 static inline int kmem_cache_sanity_check(const char *name, unsigned int size)
111 {
112 	return 0;
113 }
114 #endif
115 
__kmem_cache_free_bulk(struct kmem_cache * s,size_t nr,void ** p)116 void __kmem_cache_free_bulk(struct kmem_cache *s, size_t nr, void **p)
117 {
118 	size_t i;
119 
120 	for (i = 0; i < nr; i++) {
121 		if (s)
122 			kmem_cache_free(s, p[i]);
123 		else
124 			kfree(p[i]);
125 	}
126 }
127 
__kmem_cache_alloc_bulk(struct kmem_cache * s,gfp_t flags,size_t nr,void ** p)128 int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t nr,
129 								void **p)
130 {
131 	size_t i;
132 
133 	for (i = 0; i < nr; i++) {
134 		void *x = p[i] = kmem_cache_alloc(s, flags);
135 		if (!x) {
136 			__kmem_cache_free_bulk(s, i, p);
137 			return 0;
138 		}
139 	}
140 	return i;
141 }
142 
143 /*
144  * Figure out what the alignment of the objects will be given a set of
145  * flags, a user specified alignment and the size of the objects.
146  */
calculate_alignment(slab_flags_t flags,unsigned int align,unsigned int size)147 static unsigned int calculate_alignment(slab_flags_t flags,
148 		unsigned int align, unsigned int size)
149 {
150 	/*
151 	 * If the user wants hardware cache aligned objects then follow that
152 	 * suggestion if the object is sufficiently large.
153 	 *
154 	 * The hardware cache alignment cannot override the specified
155 	 * alignment though. If that is greater then use it.
156 	 */
157 	if (flags & SLAB_HWCACHE_ALIGN) {
158 		unsigned int ralign;
159 
160 		ralign = cache_line_size();
161 		while (size <= ralign / 2)
162 			ralign /= 2;
163 		align = max(align, ralign);
164 	}
165 
166 	if (align < ARCH_SLAB_MINALIGN)
167 		align = ARCH_SLAB_MINALIGN;
168 
169 	return ALIGN(align, sizeof(void *));
170 }
171 
172 /*
173  * Find a mergeable slab cache
174  */
slab_unmergeable(struct kmem_cache * s)175 int slab_unmergeable(struct kmem_cache *s)
176 {
177 	if (slab_nomerge || (s->flags & SLAB_NEVER_MERGE))
178 		return 1;
179 
180 	if (s->ctor)
181 		return 1;
182 
183 	if (s->usersize)
184 		return 1;
185 
186 	/*
187 	 * We may have set a slab to be unmergeable during bootstrap.
188 	 */
189 	if (s->refcount < 0)
190 		return 1;
191 
192 	return 0;
193 }
194 
find_mergeable(unsigned int size,unsigned int align,slab_flags_t flags,const char * name,void (* ctor)(void *))195 struct kmem_cache *find_mergeable(unsigned int size, unsigned int align,
196 		slab_flags_t flags, const char *name, void (*ctor)(void *))
197 {
198 	struct kmem_cache *s;
199 
200 	if (slab_nomerge)
201 		return NULL;
202 
203 	if (ctor)
204 		return NULL;
205 
206 	size = ALIGN(size, sizeof(void *));
207 	align = calculate_alignment(flags, align, size);
208 	size = ALIGN(size, align);
209 	flags = kmem_cache_flags(size, flags, name);
210 
211 	if (flags & SLAB_NEVER_MERGE)
212 		return NULL;
213 
214 	list_for_each_entry_reverse(s, &slab_caches, list) {
215 		if (slab_unmergeable(s))
216 			continue;
217 
218 		if (size > s->size)
219 			continue;
220 
221 		if ((flags & SLAB_MERGE_SAME) != (s->flags & SLAB_MERGE_SAME))
222 			continue;
223 		/*
224 		 * Check if alignment is compatible.
225 		 * Courtesy of Adrian Drzewiecki
226 		 */
227 		if ((s->size & ~(align - 1)) != s->size)
228 			continue;
229 
230 		if (s->size - size >= sizeof(void *))
231 			continue;
232 
233 		if (IS_ENABLED(CONFIG_SLAB) && align &&
234 			(align > s->align || s->align % align))
235 			continue;
236 
237 		return s;
238 	}
239 	return NULL;
240 }
241 
create_cache(const char * name,unsigned int object_size,unsigned int align,slab_flags_t flags,unsigned int useroffset,unsigned int usersize,void (* ctor)(void *),struct kmem_cache * root_cache)242 static struct kmem_cache *create_cache(const char *name,
243 		unsigned int object_size, unsigned int align,
244 		slab_flags_t flags, unsigned int useroffset,
245 		unsigned int usersize, void (*ctor)(void *),
246 		struct kmem_cache *root_cache)
247 {
248 	struct kmem_cache *s;
249 	int err;
250 
251 	if (WARN_ON(useroffset + usersize > object_size))
252 		useroffset = usersize = 0;
253 
254 	err = -ENOMEM;
255 	s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL);
256 	if (!s)
257 		goto out;
258 
259 	s->name = name;
260 	s->size = s->object_size = object_size;
261 	s->align = align;
262 	s->ctor = ctor;
263 	s->useroffset = useroffset;
264 	s->usersize = usersize;
265 
266 	err = __kmem_cache_create(s, flags);
267 	if (err)
268 		goto out_free_cache;
269 
270 	s->refcount = 1;
271 	list_add(&s->list, &slab_caches);
272 out:
273 	if (err)
274 		return ERR_PTR(err);
275 	return s;
276 
277 out_free_cache:
278 	kmem_cache_free(kmem_cache, s);
279 	goto out;
280 }
281 
282 /**
283  * kmem_cache_create_usercopy - Create a cache with a region suitable
284  * for copying to userspace
285  * @name: A string which is used in /proc/slabinfo to identify this cache.
286  * @size: The size of objects to be created in this cache.
287  * @align: The required alignment for the objects.
288  * @flags: SLAB flags
289  * @useroffset: Usercopy region offset
290  * @usersize: Usercopy region size
291  * @ctor: A constructor for the objects.
292  *
293  * Cannot be called within a interrupt, but can be interrupted.
294  * The @ctor is run when new pages are allocated by the cache.
295  *
296  * The flags are
297  *
298  * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
299  * to catch references to uninitialised memory.
300  *
301  * %SLAB_RED_ZONE - Insert `Red` zones around the allocated memory to check
302  * for buffer overruns.
303  *
304  * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
305  * cacheline.  This can be beneficial if you're counting cycles as closely
306  * as davem.
307  *
308  * Return: a pointer to the cache on success, NULL on failure.
309  */
310 struct kmem_cache *
kmem_cache_create_usercopy(const char * name,unsigned int size,unsigned int align,slab_flags_t flags,unsigned int useroffset,unsigned int usersize,void (* ctor)(void *))311 kmem_cache_create_usercopy(const char *name,
312 		  unsigned int size, unsigned int align,
313 		  slab_flags_t flags,
314 		  unsigned int useroffset, unsigned int usersize,
315 		  void (*ctor)(void *))
316 {
317 	struct kmem_cache *s = NULL;
318 	const char *cache_name;
319 	int err;
320 
321 #ifdef CONFIG_SLUB_DEBUG
322 	/*
323 	 * If no slub_debug was enabled globally, the static key is not yet
324 	 * enabled by setup_slub_debug(). Enable it if the cache is being
325 	 * created with any of the debugging flags passed explicitly.
326 	 */
327 	if (flags & SLAB_DEBUG_FLAGS)
328 		static_branch_enable(&slub_debug_enabled);
329 #endif
330 
331 	mutex_lock(&slab_mutex);
332 
333 	err = kmem_cache_sanity_check(name, size);
334 	if (err) {
335 		goto out_unlock;
336 	}
337 
338 	/* Refuse requests with allocator specific flags */
339 	if (flags & ~SLAB_FLAGS_PERMITTED) {
340 		err = -EINVAL;
341 		goto out_unlock;
342 	}
343 
344 	/*
345 	 * Some allocators will constraint the set of valid flags to a subset
346 	 * of all flags. We expect them to define CACHE_CREATE_MASK in this
347 	 * case, and we'll just provide them with a sanitized version of the
348 	 * passed flags.
349 	 */
350 	flags &= CACHE_CREATE_MASK;
351 
352 	/* Fail closed on bad usersize of useroffset values. */
353 	if (WARN_ON(!usersize && useroffset) ||
354 	    WARN_ON(size < usersize || size - usersize < useroffset))
355 		usersize = useroffset = 0;
356 
357 	if (!usersize)
358 		s = __kmem_cache_alias(name, size, align, flags, ctor);
359 	if (s)
360 		goto out_unlock;
361 
362 	cache_name = kstrdup_const(name, GFP_KERNEL);
363 	if (!cache_name) {
364 		err = -ENOMEM;
365 		goto out_unlock;
366 	}
367 
368 	s = create_cache(cache_name, size,
369 			 calculate_alignment(flags, align, size),
370 			 flags, useroffset, usersize, ctor, NULL);
371 	if (IS_ERR(s)) {
372 		err = PTR_ERR(s);
373 		kfree_const(cache_name);
374 	}
375 
376 out_unlock:
377 	mutex_unlock(&slab_mutex);
378 
379 	if (err) {
380 		if (flags & SLAB_PANIC)
381 			panic("%s: Failed to create slab '%s'. Error %d\n",
382 				__func__, name, err);
383 		else {
384 			pr_warn("%s(%s) failed with error %d\n",
385 				__func__, name, err);
386 			dump_stack();
387 		}
388 		return NULL;
389 	}
390 	return s;
391 }
392 EXPORT_SYMBOL(kmem_cache_create_usercopy);
393 
394 /**
395  * kmem_cache_create - Create a cache.
396  * @name: A string which is used in /proc/slabinfo to identify this cache.
397  * @size: The size of objects to be created in this cache.
398  * @align: The required alignment for the objects.
399  * @flags: SLAB flags
400  * @ctor: A constructor for the objects.
401  *
402  * Cannot be called within a interrupt, but can be interrupted.
403  * The @ctor is run when new pages are allocated by the cache.
404  *
405  * The flags are
406  *
407  * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
408  * to catch references to uninitialised memory.
409  *
410  * %SLAB_RED_ZONE - Insert `Red` zones around the allocated memory to check
411  * for buffer overruns.
412  *
413  * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
414  * cacheline.  This can be beneficial if you're counting cycles as closely
415  * as davem.
416  *
417  * Return: a pointer to the cache on success, NULL on failure.
418  */
419 struct kmem_cache *
kmem_cache_create(const char * name,unsigned int size,unsigned int align,slab_flags_t flags,void (* ctor)(void *))420 kmem_cache_create(const char *name, unsigned int size, unsigned int align,
421 		slab_flags_t flags, void (*ctor)(void *))
422 {
423 	return kmem_cache_create_usercopy(name, size, align, flags, 0, 0,
424 					  ctor);
425 }
426 EXPORT_SYMBOL(kmem_cache_create);
427 
slab_caches_to_rcu_destroy_workfn(struct work_struct * work)428 static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work)
429 {
430 	LIST_HEAD(to_destroy);
431 	struct kmem_cache *s, *s2;
432 
433 	/*
434 	 * On destruction, SLAB_TYPESAFE_BY_RCU kmem_caches are put on the
435 	 * @slab_caches_to_rcu_destroy list.  The slab pages are freed
436 	 * through RCU and the associated kmem_cache are dereferenced
437 	 * while freeing the pages, so the kmem_caches should be freed only
438 	 * after the pending RCU operations are finished.  As rcu_barrier()
439 	 * is a pretty slow operation, we batch all pending destructions
440 	 * asynchronously.
441 	 */
442 	mutex_lock(&slab_mutex);
443 	list_splice_init(&slab_caches_to_rcu_destroy, &to_destroy);
444 	mutex_unlock(&slab_mutex);
445 
446 	if (list_empty(&to_destroy))
447 		return;
448 
449 	rcu_barrier();
450 
451 	list_for_each_entry_safe(s, s2, &to_destroy, list) {
452 		debugfs_slab_release(s);
453 		kfence_shutdown_cache(s);
454 #ifdef SLAB_SUPPORTS_SYSFS
455 		sysfs_slab_release(s);
456 #else
457 		slab_kmem_cache_release(s);
458 #endif
459 	}
460 }
461 
shutdown_cache(struct kmem_cache * s)462 static int shutdown_cache(struct kmem_cache *s)
463 {
464 	/* free asan quarantined objects */
465 	kasan_cache_shutdown(s);
466 
467 	if (__kmem_cache_shutdown(s) != 0)
468 		return -EBUSY;
469 
470 	list_del(&s->list);
471 
472 	if (s->flags & SLAB_TYPESAFE_BY_RCU) {
473 #ifdef SLAB_SUPPORTS_SYSFS
474 		sysfs_slab_unlink(s);
475 #endif
476 		list_add_tail(&s->list, &slab_caches_to_rcu_destroy);
477 		schedule_work(&slab_caches_to_rcu_destroy_work);
478 	} else {
479 		kfence_shutdown_cache(s);
480 		debugfs_slab_release(s);
481 #ifdef SLAB_SUPPORTS_SYSFS
482 		sysfs_slab_unlink(s);
483 		sysfs_slab_release(s);
484 #else
485 		slab_kmem_cache_release(s);
486 #endif
487 	}
488 
489 	return 0;
490 }
491 
slab_kmem_cache_release(struct kmem_cache * s)492 void slab_kmem_cache_release(struct kmem_cache *s)
493 {
494 	__kmem_cache_release(s);
495 	kfree_const(s->name);
496 	kmem_cache_free(kmem_cache, s);
497 }
498 
kmem_cache_destroy(struct kmem_cache * s)499 void kmem_cache_destroy(struct kmem_cache *s)
500 {
501 	int err;
502 
503 	if (unlikely(!s) || !kasan_check_byte(s))
504 		return;
505 
506 	cpus_read_lock();
507 	mutex_lock(&slab_mutex);
508 
509 	s->refcount--;
510 	if (s->refcount)
511 		goto out_unlock;
512 
513 	err = shutdown_cache(s);
514 	if (err) {
515 		pr_err("%s %s: Slab cache still has objects\n",
516 		       __func__, s->name);
517 		dump_stack();
518 	}
519 out_unlock:
520 	mutex_unlock(&slab_mutex);
521 	cpus_read_unlock();
522 }
523 EXPORT_SYMBOL(kmem_cache_destroy);
524 
525 /**
526  * kmem_cache_shrink - Shrink a cache.
527  * @cachep: The cache to shrink.
528  *
529  * Releases as many slabs as possible for a cache.
530  * To help debugging, a zero exit status indicates all slabs were released.
531  *
532  * Return: %0 if all slabs were released, non-zero otherwise
533  */
kmem_cache_shrink(struct kmem_cache * cachep)534 int kmem_cache_shrink(struct kmem_cache *cachep)
535 {
536 	int ret;
537 
538 
539 	kasan_cache_shrink(cachep);
540 	ret = __kmem_cache_shrink(cachep);
541 
542 	return ret;
543 }
544 EXPORT_SYMBOL(kmem_cache_shrink);
545 
slab_is_available(void)546 bool slab_is_available(void)
547 {
548 	return slab_state >= UP;
549 }
550 
551 #ifdef CONFIG_PRINTK
552 /**
553  * kmem_valid_obj - does the pointer reference a valid slab object?
554  * @object: pointer to query.
555  *
556  * Return: %true if the pointer is to a not-yet-freed object from
557  * kmalloc() or kmem_cache_alloc(), either %true or %false if the pointer
558  * is to an already-freed object, and %false otherwise.
559  */
kmem_valid_obj(void * object)560 bool kmem_valid_obj(void *object)
561 {
562 	struct page *page;
563 
564 	/* Some arches consider ZERO_SIZE_PTR to be a valid address. */
565 	if (object < (void *)PAGE_SIZE || !virt_addr_valid(object))
566 		return false;
567 	page = virt_to_head_page(object);
568 	return PageSlab(page);
569 }
570 EXPORT_SYMBOL_GPL(kmem_valid_obj);
571 
kmem_obj_info(struct kmem_obj_info * kpp,void * object,struct page * page)572 static void kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct page *page)
573 {
574 	if (__kfence_obj_info(kpp, object, page))
575 		return;
576 	__kmem_obj_info(kpp, object, page);
577 }
578 
579 /**
580  * kmem_dump_obj - Print available slab provenance information
581  * @object: slab object for which to find provenance information.
582  *
583  * This function uses pr_cont(), so that the caller is expected to have
584  * printed out whatever preamble is appropriate.  The provenance information
585  * depends on the type of object and on how much debugging is enabled.
586  * For a slab-cache object, the fact that it is a slab object is printed,
587  * and, if available, the slab name, return address, and stack trace from
588  * the allocation and last free path of that object.
589  *
590  * This function will splat if passed a pointer to a non-slab object.
591  * If you are not sure what type of object you have, you should instead
592  * use mem_dump_obj().
593  */
kmem_dump_obj(void * object)594 void kmem_dump_obj(void *object)
595 {
596 	char *cp = IS_ENABLED(CONFIG_MMU) ? "" : "/vmalloc";
597 	int i;
598 	struct page *page;
599 	unsigned long ptroffset;
600 	struct kmem_obj_info kp = { };
601 
602 	if (WARN_ON_ONCE(!virt_addr_valid(object)))
603 		return;
604 	page = virt_to_head_page(object);
605 	if (WARN_ON_ONCE(!PageSlab(page))) {
606 		pr_cont(" non-slab memory.\n");
607 		return;
608 	}
609 	kmem_obj_info(&kp, object, page);
610 	if (kp.kp_slab_cache)
611 		pr_cont(" slab%s %s", cp, kp.kp_slab_cache->name);
612 	else
613 		pr_cont(" slab%s", cp);
614 	if (is_kfence_address(object))
615 		pr_cont(" (kfence)");
616 	if (kp.kp_objp)
617 		pr_cont(" start %px", kp.kp_objp);
618 	if (kp.kp_data_offset)
619 		pr_cont(" data offset %lu", kp.kp_data_offset);
620 	if (kp.kp_objp) {
621 		ptroffset = ((char *)object - (char *)kp.kp_objp) - kp.kp_data_offset;
622 		pr_cont(" pointer offset %lu", ptroffset);
623 	}
624 	if (kp.kp_slab_cache && kp.kp_slab_cache->usersize)
625 		pr_cont(" size %u", kp.kp_slab_cache->usersize);
626 	if (kp.kp_ret)
627 		pr_cont(" allocated at %pS\n", kp.kp_ret);
628 	else
629 		pr_cont("\n");
630 	for (i = 0; i < ARRAY_SIZE(kp.kp_stack); i++) {
631 		if (!kp.kp_stack[i])
632 			break;
633 		pr_info("    %pS\n", kp.kp_stack[i]);
634 	}
635 
636 	if (kp.kp_free_stack[0])
637 		pr_cont(" Free path:\n");
638 
639 	for (i = 0; i < ARRAY_SIZE(kp.kp_free_stack); i++) {
640 		if (!kp.kp_free_stack[i])
641 			break;
642 		pr_info("    %pS\n", kp.kp_free_stack[i]);
643 	}
644 
645 }
646 EXPORT_SYMBOL_GPL(kmem_dump_obj);
647 #endif
648 
649 #ifndef CONFIG_SLOB
650 /* Create a cache during boot when no slab services are available yet */
create_boot_cache(struct kmem_cache * s,const char * name,unsigned int size,slab_flags_t flags,unsigned int useroffset,unsigned int usersize)651 void __init create_boot_cache(struct kmem_cache *s, const char *name,
652 		unsigned int size, slab_flags_t flags,
653 		unsigned int useroffset, unsigned int usersize)
654 {
655 	int err;
656 	unsigned int align = ARCH_KMALLOC_MINALIGN;
657 
658 	s->name = name;
659 	s->size = s->object_size = size;
660 
661 	/*
662 	 * For power of two sizes, guarantee natural alignment for kmalloc
663 	 * caches, regardless of SL*B debugging options.
664 	 */
665 	if (is_power_of_2(size))
666 		align = max(align, size);
667 	s->align = calculate_alignment(flags, align, size);
668 
669 	s->useroffset = useroffset;
670 	s->usersize = usersize;
671 
672 	err = __kmem_cache_create(s, flags);
673 
674 	if (err)
675 		panic("Creation of kmalloc slab %s size=%u failed. Reason %d\n",
676 					name, size, err);
677 
678 	s->refcount = -1;	/* Exempt from merging for now */
679 }
680 
create_kmalloc_cache(const char * name,unsigned int size,slab_flags_t flags,unsigned int useroffset,unsigned int usersize)681 struct kmem_cache *__init create_kmalloc_cache(const char *name,
682 		unsigned int size, slab_flags_t flags,
683 		unsigned int useroffset, unsigned int usersize)
684 {
685 	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
686 
687 	if (!s)
688 		panic("Out of memory when creating slab %s\n", name);
689 
690 	create_boot_cache(s, name, size, flags, useroffset, usersize);
691 	kasan_cache_create_kmalloc(s);
692 	list_add(&s->list, &slab_caches);
693 	s->refcount = 1;
694 	return s;
695 }
696 
697 struct kmem_cache *
698 kmalloc_caches[NR_KMALLOC_TYPES][KMALLOC_SHIFT_HIGH + 1] __ro_after_init =
699 { /* initialization for https://bugs.llvm.org/show_bug.cgi?id=42570 */ };
700 EXPORT_SYMBOL(kmalloc_caches);
701 
702 /*
703  * Conversion table for small slabs sizes / 8 to the index in the
704  * kmalloc array. This is necessary for slabs < 192 since we have non power
705  * of two cache sizes there. The size of larger slabs can be determined using
706  * fls.
707  */
708 static u8 size_index[24] __ro_after_init = {
709 	3,	/* 8 */
710 	4,	/* 16 */
711 	5,	/* 24 */
712 	5,	/* 32 */
713 	6,	/* 40 */
714 	6,	/* 48 */
715 	6,	/* 56 */
716 	6,	/* 64 */
717 	1,	/* 72 */
718 	1,	/* 80 */
719 	1,	/* 88 */
720 	1,	/* 96 */
721 	7,	/* 104 */
722 	7,	/* 112 */
723 	7,	/* 120 */
724 	7,	/* 128 */
725 	2,	/* 136 */
726 	2,	/* 144 */
727 	2,	/* 152 */
728 	2,	/* 160 */
729 	2,	/* 168 */
730 	2,	/* 176 */
731 	2,	/* 184 */
732 	2	/* 192 */
733 };
734 
size_index_elem(unsigned int bytes)735 static inline unsigned int size_index_elem(unsigned int bytes)
736 {
737 	return (bytes - 1) / 8;
738 }
739 
740 /*
741  * Find the kmem_cache structure that serves a given size of
742  * allocation
743  */
kmalloc_slab(size_t size,gfp_t flags)744 struct kmem_cache *kmalloc_slab(size_t size, gfp_t flags)
745 {
746 	unsigned int index;
747 
748 	if (size <= 192) {
749 		if (!size)
750 			return ZERO_SIZE_PTR;
751 
752 		index = size_index[size_index_elem(size)];
753 	} else {
754 		if (WARN_ON_ONCE(size > KMALLOC_MAX_CACHE_SIZE))
755 			return NULL;
756 		index = fls(size - 1);
757 	}
758 
759 	return kmalloc_caches[kmalloc_type(flags)][index];
760 }
761 
762 #ifdef CONFIG_ZONE_DMA
763 #define KMALLOC_DMA_NAME(sz)	.name[KMALLOC_DMA] = "dma-kmalloc-" #sz,
764 #else
765 #define KMALLOC_DMA_NAME(sz)
766 #endif
767 
768 #ifdef CONFIG_MEMCG_KMEM
769 #define KMALLOC_CGROUP_NAME(sz)	.name[KMALLOC_CGROUP] = "kmalloc-cg-" #sz,
770 #else
771 #define KMALLOC_CGROUP_NAME(sz)
772 #endif
773 
774 #define INIT_KMALLOC_INFO(__size, __short_size)			\
775 {								\
776 	.name[KMALLOC_NORMAL]  = "kmalloc-" #__short_size,	\
777 	.name[KMALLOC_RECLAIM] = "kmalloc-rcl-" #__short_size,	\
778 	KMALLOC_CGROUP_NAME(__short_size)			\
779 	KMALLOC_DMA_NAME(__short_size)				\
780 	.size = __size,						\
781 }
782 
783 /*
784  * kmalloc_info[] is to make slub_debug=,kmalloc-xx option work at boot time.
785  * kmalloc_index() supports up to 2^25=32MB, so the final entry of the table is
786  * kmalloc-32M.
787  */
788 const struct kmalloc_info_struct kmalloc_info[] __initconst = {
789 	INIT_KMALLOC_INFO(0, 0),
790 	INIT_KMALLOC_INFO(96, 96),
791 	INIT_KMALLOC_INFO(192, 192),
792 	INIT_KMALLOC_INFO(8, 8),
793 	INIT_KMALLOC_INFO(16, 16),
794 	INIT_KMALLOC_INFO(32, 32),
795 	INIT_KMALLOC_INFO(64, 64),
796 	INIT_KMALLOC_INFO(128, 128),
797 	INIT_KMALLOC_INFO(256, 256),
798 	INIT_KMALLOC_INFO(512, 512),
799 	INIT_KMALLOC_INFO(1024, 1k),
800 	INIT_KMALLOC_INFO(2048, 2k),
801 	INIT_KMALLOC_INFO(4096, 4k),
802 	INIT_KMALLOC_INFO(8192, 8k),
803 	INIT_KMALLOC_INFO(16384, 16k),
804 	INIT_KMALLOC_INFO(32768, 32k),
805 	INIT_KMALLOC_INFO(65536, 64k),
806 	INIT_KMALLOC_INFO(131072, 128k),
807 	INIT_KMALLOC_INFO(262144, 256k),
808 	INIT_KMALLOC_INFO(524288, 512k),
809 	INIT_KMALLOC_INFO(1048576, 1M),
810 	INIT_KMALLOC_INFO(2097152, 2M),
811 	INIT_KMALLOC_INFO(4194304, 4M),
812 	INIT_KMALLOC_INFO(8388608, 8M),
813 	INIT_KMALLOC_INFO(16777216, 16M),
814 	INIT_KMALLOC_INFO(33554432, 32M)
815 };
816 
817 /*
818  * Patch up the size_index table if we have strange large alignment
819  * requirements for the kmalloc array. This is only the case for
820  * MIPS it seems. The standard arches will not generate any code here.
821  *
822  * Largest permitted alignment is 256 bytes due to the way we
823  * handle the index determination for the smaller caches.
824  *
825  * Make sure that nothing crazy happens if someone starts tinkering
826  * around with ARCH_KMALLOC_MINALIGN
827  */
setup_kmalloc_cache_index_table(void)828 void __init setup_kmalloc_cache_index_table(void)
829 {
830 	unsigned int i;
831 
832 	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
833 		(KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
834 
835 	for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
836 		unsigned int elem = size_index_elem(i);
837 
838 		if (elem >= ARRAY_SIZE(size_index))
839 			break;
840 		size_index[elem] = KMALLOC_SHIFT_LOW;
841 	}
842 
843 	if (KMALLOC_MIN_SIZE >= 64) {
844 		/*
845 		 * The 96 byte size cache is not used if the alignment
846 		 * is 64 byte.
847 		 */
848 		for (i = 64 + 8; i <= 96; i += 8)
849 			size_index[size_index_elem(i)] = 7;
850 
851 	}
852 
853 	if (KMALLOC_MIN_SIZE >= 128) {
854 		/*
855 		 * The 192 byte sized cache is not used if the alignment
856 		 * is 128 byte. Redirect kmalloc to use the 256 byte cache
857 		 * instead.
858 		 */
859 		for (i = 128 + 8; i <= 192; i += 8)
860 			size_index[size_index_elem(i)] = 8;
861 	}
862 }
863 
864 static void __init
new_kmalloc_cache(int idx,enum kmalloc_cache_type type,slab_flags_t flags)865 new_kmalloc_cache(int idx, enum kmalloc_cache_type type, slab_flags_t flags)
866 {
867 	if (type == KMALLOC_RECLAIM) {
868 		flags |= SLAB_RECLAIM_ACCOUNT;
869 	} else if (IS_ENABLED(CONFIG_MEMCG_KMEM) && (type == KMALLOC_CGROUP)) {
870 		if (cgroup_memory_nokmem) {
871 			kmalloc_caches[type][idx] = kmalloc_caches[KMALLOC_NORMAL][idx];
872 			return;
873 		}
874 		flags |= SLAB_ACCOUNT;
875 	}
876 
877 	kmalloc_caches[type][idx] = create_kmalloc_cache(
878 					kmalloc_info[idx].name[type],
879 					kmalloc_info[idx].size, flags, 0,
880 					kmalloc_info[idx].size);
881 
882 	/*
883 	 * If CONFIG_MEMCG_KMEM is enabled, disable cache merging for
884 	 * KMALLOC_NORMAL caches.
885 	 */
886 	if (IS_ENABLED(CONFIG_MEMCG_KMEM) && (type == KMALLOC_NORMAL))
887 		kmalloc_caches[type][idx]->refcount = -1;
888 }
889 
890 /*
891  * Create the kmalloc array. Some of the regular kmalloc arrays
892  * may already have been created because they were needed to
893  * enable allocations for slab creation.
894  */
create_kmalloc_caches(slab_flags_t flags)895 void __init create_kmalloc_caches(slab_flags_t flags)
896 {
897 	int i;
898 	enum kmalloc_cache_type type;
899 
900 	/*
901 	 * Including KMALLOC_CGROUP if CONFIG_MEMCG_KMEM defined
902 	 */
903 	for (type = KMALLOC_NORMAL; type <= KMALLOC_RECLAIM; type++) {
904 		for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) {
905 			if (!kmalloc_caches[type][i])
906 				new_kmalloc_cache(i, type, flags);
907 
908 			/*
909 			 * Caches that are not of the two-to-the-power-of size.
910 			 * These have to be created immediately after the
911 			 * earlier power of two caches
912 			 */
913 			if (KMALLOC_MIN_SIZE <= 32 && i == 6 &&
914 					!kmalloc_caches[type][1])
915 				new_kmalloc_cache(1, type, flags);
916 			if (KMALLOC_MIN_SIZE <= 64 && i == 7 &&
917 					!kmalloc_caches[type][2])
918 				new_kmalloc_cache(2, type, flags);
919 		}
920 	}
921 
922 	/* Kmalloc array is now usable */
923 	slab_state = UP;
924 
925 #ifdef CONFIG_ZONE_DMA
926 	for (i = 0; i <= KMALLOC_SHIFT_HIGH; i++) {
927 		struct kmem_cache *s = kmalloc_caches[KMALLOC_NORMAL][i];
928 
929 		if (s) {
930 			kmalloc_caches[KMALLOC_DMA][i] = create_kmalloc_cache(
931 				kmalloc_info[i].name[KMALLOC_DMA],
932 				kmalloc_info[i].size,
933 				SLAB_CACHE_DMA | flags, 0,
934 				kmalloc_info[i].size);
935 		}
936 	}
937 #endif
938 }
939 #endif /* !CONFIG_SLOB */
940 
kmalloc_fix_flags(gfp_t flags)941 gfp_t kmalloc_fix_flags(gfp_t flags)
942 {
943 	gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
944 
945 	flags &= ~GFP_SLAB_BUG_MASK;
946 	pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
947 			invalid_mask, &invalid_mask, flags, &flags);
948 	dump_stack();
949 
950 	return flags;
951 }
952 
953 /*
954  * To avoid unnecessary overhead, we pass through large allocation requests
955  * directly to the page allocator. We use __GFP_COMP, because we will need to
956  * know the allocation order to free the pages properly in kfree.
957  */
kmalloc_order(size_t size,gfp_t flags,unsigned int order)958 void *kmalloc_order(size_t size, gfp_t flags, unsigned int order)
959 {
960 	void *ret = NULL;
961 	struct page *page;
962 
963 	if (unlikely(flags & GFP_SLAB_BUG_MASK))
964 		flags = kmalloc_fix_flags(flags);
965 
966 	flags |= __GFP_COMP;
967 	page = alloc_pages(flags, order);
968 	if (likely(page)) {
969 		ret = page_address(page);
970 		mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE_B,
971 				      PAGE_SIZE << order);
972 	}
973 	ret = kasan_kmalloc_large(ret, size, flags);
974 	/* As ret might get tagged, call kmemleak hook after KASAN. */
975 	kmemleak_alloc(ret, size, 1, flags);
976 	return ret;
977 }
978 EXPORT_SYMBOL(kmalloc_order);
979 
980 #ifdef CONFIG_TRACING
kmalloc_order_trace(size_t size,gfp_t flags,unsigned int order)981 void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
982 {
983 	void *ret = kmalloc_order(size, flags, order);
984 	trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
985 	return ret;
986 }
987 EXPORT_SYMBOL(kmalloc_order_trace);
988 #endif
989 
990 #ifdef CONFIG_SLAB_FREELIST_RANDOM
991 /* Randomize a generic freelist */
freelist_randomize(struct rnd_state * state,unsigned int * list,unsigned int count)992 static void freelist_randomize(struct rnd_state *state, unsigned int *list,
993 			       unsigned int count)
994 {
995 	unsigned int rand;
996 	unsigned int i;
997 
998 	for (i = 0; i < count; i++)
999 		list[i] = i;
1000 
1001 	/* Fisher-Yates shuffle */
1002 	for (i = count - 1; i > 0; i--) {
1003 		rand = prandom_u32_state(state);
1004 		rand %= (i + 1);
1005 		swap(list[i], list[rand]);
1006 	}
1007 }
1008 
1009 /* Create a random sequence per cache */
cache_random_seq_create(struct kmem_cache * cachep,unsigned int count,gfp_t gfp)1010 int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count,
1011 				    gfp_t gfp)
1012 {
1013 	struct rnd_state state;
1014 
1015 	if (count < 2 || cachep->random_seq)
1016 		return 0;
1017 
1018 	cachep->random_seq = kcalloc(count, sizeof(unsigned int), gfp);
1019 	if (!cachep->random_seq)
1020 		return -ENOMEM;
1021 
1022 	/* Get best entropy at this stage of boot */
1023 	prandom_seed_state(&state, get_random_long());
1024 
1025 	freelist_randomize(&state, cachep->random_seq, count);
1026 	return 0;
1027 }
1028 
1029 /* Destroy the per-cache random freelist sequence */
cache_random_seq_destroy(struct kmem_cache * cachep)1030 void cache_random_seq_destroy(struct kmem_cache *cachep)
1031 {
1032 	kfree(cachep->random_seq);
1033 	cachep->random_seq = NULL;
1034 }
1035 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
1036 
1037 #if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
1038 #ifdef CONFIG_SLAB
1039 #define SLABINFO_RIGHTS (0600)
1040 #else
1041 #define SLABINFO_RIGHTS (0400)
1042 #endif
1043 
print_slabinfo_header(struct seq_file * m)1044 static void print_slabinfo_header(struct seq_file *m)
1045 {
1046 	/*
1047 	 * Output format version, so at least we can change it
1048 	 * without _too_ many complaints.
1049 	 */
1050 #ifdef CONFIG_DEBUG_SLAB
1051 	seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
1052 #else
1053 	seq_puts(m, "slabinfo - version: 2.1\n");
1054 #endif
1055 	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab>");
1056 	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
1057 	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
1058 #ifdef CONFIG_DEBUG_SLAB
1059 	seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> <error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
1060 	seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
1061 #endif
1062 	trace_android_vh_print_slabinfo_header(m);
1063 	seq_putc(m, '\n');
1064 }
1065 
slab_start(struct seq_file * m,loff_t * pos)1066 void *slab_start(struct seq_file *m, loff_t *pos)
1067 {
1068 	mutex_lock(&slab_mutex);
1069 	return seq_list_start(&slab_caches, *pos);
1070 }
1071 
slab_next(struct seq_file * m,void * p,loff_t * pos)1072 void *slab_next(struct seq_file *m, void *p, loff_t *pos)
1073 {
1074 	return seq_list_next(p, &slab_caches, pos);
1075 }
1076 
slab_stop(struct seq_file * m,void * p)1077 void slab_stop(struct seq_file *m, void *p)
1078 {
1079 	mutex_unlock(&slab_mutex);
1080 }
1081 
cache_show(struct kmem_cache * s,struct seq_file * m)1082 static void cache_show(struct kmem_cache *s, struct seq_file *m)
1083 {
1084 	struct slabinfo sinfo;
1085 
1086 	memset(&sinfo, 0, sizeof(sinfo));
1087 	get_slabinfo(s, &sinfo);
1088 
1089 	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
1090 		   s->name, sinfo.active_objs, sinfo.num_objs, s->size,
1091 		   sinfo.objects_per_slab, (1 << sinfo.cache_order));
1092 
1093 	seq_printf(m, " : tunables %4u %4u %4u",
1094 		   sinfo.limit, sinfo.batchcount, sinfo.shared);
1095 	seq_printf(m, " : slabdata %6lu %6lu %6lu",
1096 		   sinfo.active_slabs, sinfo.num_slabs, sinfo.shared_avail);
1097 	slabinfo_show_stats(m, s);
1098 	trace_android_vh_cache_show(m, &sinfo, s);
1099 	seq_putc(m, '\n');
1100 }
1101 
slab_show(struct seq_file * m,void * p)1102 static int slab_show(struct seq_file *m, void *p)
1103 {
1104 	struct kmem_cache *s = list_entry(p, struct kmem_cache, list);
1105 
1106 	if (p == slab_caches.next)
1107 		print_slabinfo_header(m);
1108 	cache_show(s, m);
1109 	return 0;
1110 }
1111 
dump_unreclaimable_slab(void)1112 void dump_unreclaimable_slab(void)
1113 {
1114 	struct kmem_cache *s;
1115 	struct slabinfo sinfo;
1116 
1117 	/*
1118 	 * Here acquiring slab_mutex is risky since we don't prefer to get
1119 	 * sleep in oom path. But, without mutex hold, it may introduce a
1120 	 * risk of crash.
1121 	 * Use mutex_trylock to protect the list traverse, dump nothing
1122 	 * without acquiring the mutex.
1123 	 */
1124 	if (!mutex_trylock(&slab_mutex)) {
1125 		pr_warn("excessive unreclaimable slab but cannot dump stats\n");
1126 		return;
1127 	}
1128 
1129 	pr_info("Unreclaimable slab info:\n");
1130 	pr_info("Name                      Used          Total\n");
1131 
1132 	list_for_each_entry(s, &slab_caches, list) {
1133 		if (s->flags & SLAB_RECLAIM_ACCOUNT)
1134 			continue;
1135 
1136 		get_slabinfo(s, &sinfo);
1137 
1138 		if (sinfo.num_objs > 0)
1139 			pr_info("%-17s %10luKB %10luKB\n", s->name,
1140 				(sinfo.active_objs * s->size) / 1024,
1141 				(sinfo.num_objs * s->size) / 1024);
1142 	}
1143 	mutex_unlock(&slab_mutex);
1144 }
1145 
1146 #if defined(CONFIG_MEMCG_KMEM)
memcg_slab_show(struct seq_file * m,void * p)1147 int memcg_slab_show(struct seq_file *m, void *p)
1148 {
1149 	/*
1150 	 * Deprecated.
1151 	 * Please, take a look at tools/cgroup/slabinfo.py .
1152 	 */
1153 	return 0;
1154 }
1155 #endif
1156 
1157 /*
1158  * slabinfo_op - iterator that generates /proc/slabinfo
1159  *
1160  * Output layout:
1161  * cache-name
1162  * num-active-objs
1163  * total-objs
1164  * object size
1165  * num-active-slabs
1166  * total-slabs
1167  * num-pages-per-slab
1168  * + further values on SMP and with statistics enabled
1169  */
1170 static const struct seq_operations slabinfo_op = {
1171 	.start = slab_start,
1172 	.next = slab_next,
1173 	.stop = slab_stop,
1174 	.show = slab_show,
1175 };
1176 
slabinfo_open(struct inode * inode,struct file * file)1177 static int slabinfo_open(struct inode *inode, struct file *file)
1178 {
1179 	return seq_open(file, &slabinfo_op);
1180 }
1181 
1182 static const struct proc_ops slabinfo_proc_ops = {
1183 	.proc_flags	= PROC_ENTRY_PERMANENT,
1184 	.proc_open	= slabinfo_open,
1185 	.proc_read	= seq_read,
1186 	.proc_write	= slabinfo_write,
1187 	.proc_lseek	= seq_lseek,
1188 	.proc_release	= seq_release,
1189 };
1190 
slab_proc_init(void)1191 static int __init slab_proc_init(void)
1192 {
1193 	proc_create("slabinfo", SLABINFO_RIGHTS, NULL, &slabinfo_proc_ops);
1194 	return 0;
1195 }
1196 module_init(slab_proc_init);
1197 
1198 #endif /* CONFIG_SLAB || CONFIG_SLUB_DEBUG */
1199 
__do_krealloc(const void * p,size_t new_size,gfp_t flags)1200 static __always_inline void *__do_krealloc(const void *p, size_t new_size,
1201 					   gfp_t flags)
1202 {
1203 	void *ret;
1204 	size_t ks;
1205 
1206 	/* Don't use instrumented ksize to allow precise KASAN poisoning. */
1207 	if (likely(!ZERO_OR_NULL_PTR(p))) {
1208 		if (!kasan_check_byte(p))
1209 			return NULL;
1210 		ks = kfence_ksize(p) ?: __ksize(p);
1211 	} else
1212 		ks = 0;
1213 
1214 	/* If the object still fits, repoison it precisely. */
1215 	if (ks >= new_size) {
1216 		p = kasan_krealloc((void *)p, new_size, flags);
1217 		return (void *)p;
1218 	}
1219 
1220 	ret = kmalloc_track_caller(new_size, flags);
1221 	if (ret && p) {
1222 		/* Disable KASAN checks as the object's redzone is accessed. */
1223 		kasan_disable_current();
1224 		memcpy(ret, kasan_reset_tag(p), ks);
1225 		kasan_enable_current();
1226 	}
1227 
1228 	return ret;
1229 }
1230 
1231 /**
1232  * krealloc - reallocate memory. The contents will remain unchanged.
1233  * @p: object to reallocate memory for.
1234  * @new_size: how many bytes of memory are required.
1235  * @flags: the type of memory to allocate.
1236  *
1237  * The contents of the object pointed to are preserved up to the
1238  * lesser of the new and old sizes (__GFP_ZERO flag is effectively ignored).
1239  * If @p is %NULL, krealloc() behaves exactly like kmalloc().  If @new_size
1240  * is 0 and @p is not a %NULL pointer, the object pointed to is freed.
1241  *
1242  * Return: pointer to the allocated memory or %NULL in case of error
1243  */
krealloc(const void * p,size_t new_size,gfp_t flags)1244 void *krealloc(const void *p, size_t new_size, gfp_t flags)
1245 {
1246 	void *ret;
1247 
1248 	if (unlikely(!new_size)) {
1249 		kfree(p);
1250 		return ZERO_SIZE_PTR;
1251 	}
1252 
1253 	ret = __do_krealloc(p, new_size, flags);
1254 	if (ret && kasan_reset_tag(p) != kasan_reset_tag(ret))
1255 		kfree(p);
1256 
1257 	return ret;
1258 }
1259 EXPORT_SYMBOL(krealloc);
1260 
1261 /**
1262  * kfree_sensitive - Clear sensitive information in memory before freeing
1263  * @p: object to free memory of
1264  *
1265  * The memory of the object @p points to is zeroed before freed.
1266  * If @p is %NULL, kfree_sensitive() does nothing.
1267  *
1268  * Note: this function zeroes the whole allocated buffer which can be a good
1269  * deal bigger than the requested buffer size passed to kmalloc(). So be
1270  * careful when using this function in performance sensitive code.
1271  */
kfree_sensitive(const void * p)1272 void kfree_sensitive(const void *p)
1273 {
1274 	size_t ks;
1275 	void *mem = (void *)p;
1276 
1277 	ks = ksize(mem);
1278 	if (ks)
1279 		memzero_explicit(mem, ks);
1280 	kfree(mem);
1281 }
1282 EXPORT_SYMBOL(kfree_sensitive);
1283 
1284 /**
1285  * ksize - get the actual amount of memory allocated for a given object
1286  * @objp: Pointer to the object
1287  *
1288  * kmalloc may internally round up allocations and return more memory
1289  * than requested. ksize() can be used to determine the actual amount of
1290  * memory allocated. The caller may use this additional memory, even though
1291  * a smaller amount of memory was initially specified with the kmalloc call.
1292  * The caller must guarantee that objp points to a valid object previously
1293  * allocated with either kmalloc() or kmem_cache_alloc(). The object
1294  * must not be freed during the duration of the call.
1295  *
1296  * Return: size of the actual memory used by @objp in bytes
1297  */
ksize(const void * objp)1298 size_t ksize(const void *objp)
1299 {
1300 	size_t size;
1301 
1302 	/*
1303 	 * We need to first check that the pointer to the object is valid, and
1304 	 * only then unpoison the memory. The report printed from ksize() is
1305 	 * more useful, then when it's printed later when the behaviour could
1306 	 * be undefined due to a potential use-after-free or double-free.
1307 	 *
1308 	 * We use kasan_check_byte(), which is supported for the hardware
1309 	 * tag-based KASAN mode, unlike kasan_check_read/write().
1310 	 *
1311 	 * If the pointed to memory is invalid, we return 0 to avoid users of
1312 	 * ksize() writing to and potentially corrupting the memory region.
1313 	 *
1314 	 * We want to perform the check before __ksize(), to avoid potentially
1315 	 * crashing in __ksize() due to accessing invalid metadata.
1316 	 */
1317 	if (unlikely(ZERO_OR_NULL_PTR(objp)) || !kasan_check_byte(objp))
1318 		return 0;
1319 
1320 	size = kfence_ksize(objp) ?: __ksize(objp);
1321 	/*
1322 	 * We assume that ksize callers could use whole allocated area,
1323 	 * so we need to unpoison this area.
1324 	 */
1325 	kasan_unpoison_range(objp, size);
1326 	return size;
1327 }
1328 EXPORT_SYMBOL(ksize);
1329 
1330 /* Tracepoints definitions. */
1331 EXPORT_TRACEPOINT_SYMBOL(kmalloc);
1332 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc);
1333 EXPORT_TRACEPOINT_SYMBOL(kmalloc_node);
1334 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc_node);
1335 EXPORT_TRACEPOINT_SYMBOL(kfree);
1336 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_free);
1337 
should_failslab(struct kmem_cache * s,gfp_t gfpflags)1338 int should_failslab(struct kmem_cache *s, gfp_t gfpflags)
1339 {
1340 	if (__should_failslab(s, gfpflags))
1341 		return -ENOMEM;
1342 	return 0;
1343 }
1344 ALLOW_ERROR_INJECTION(should_failslab, ERRNO);
1345