1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Based on m25p80.c, by Mike Lavender (mike@steroidmicros.com), with
4 * influence from lart.c (Abraham Van Der Merwe) and mtd_dataflash.c
5 *
6 * Copyright (C) 2005, Intec Automation Inc.
7 * Copyright (C) 2014, Freescale Semiconductor, Inc.
8 */
9
10 #include <linux/err.h>
11 #include <linux/errno.h>
12 #include <linux/module.h>
13 #include <linux/device.h>
14 #include <linux/mutex.h>
15 #include <linux/math64.h>
16 #include <linux/sizes.h>
17 #include <linux/slab.h>
18
19 #include <linux/mtd/mtd.h>
20 #include <linux/of_platform.h>
21 #include <linux/sched/task_stack.h>
22 #include <linux/spi/flash.h>
23 #include <linux/mtd/spi-nor.h>
24
25 #include "core.h"
26
27 /* Define max times to check status register before we give up. */
28
29 /*
30 * For everything but full-chip erase; probably could be much smaller, but kept
31 * around for safety for now
32 */
33 #define DEFAULT_READY_WAIT_JIFFIES (40UL * HZ)
34
35 /*
36 * For full-chip erase, calibrated to a 2MB flash (M25P16); should be scaled up
37 * for larger flash
38 */
39 #define CHIP_ERASE_2MB_READY_WAIT_JIFFIES (40UL * HZ)
40
41 #define SPI_NOR_MAX_ADDR_WIDTH 4
42
43 #define SPI_NOR_SRST_SLEEP_MIN 200
44 #define SPI_NOR_SRST_SLEEP_MAX 400
45
46 /**
47 * spi_nor_get_cmd_ext() - Get the command opcode extension based on the
48 * extension type.
49 * @nor: pointer to a 'struct spi_nor'
50 * @op: pointer to the 'struct spi_mem_op' whose properties
51 * need to be initialized.
52 *
53 * Right now, only "repeat" and "invert" are supported.
54 *
55 * Return: The opcode extension.
56 */
spi_nor_get_cmd_ext(const struct spi_nor * nor,const struct spi_mem_op * op)57 static u8 spi_nor_get_cmd_ext(const struct spi_nor *nor,
58 const struct spi_mem_op *op)
59 {
60 switch (nor->cmd_ext_type) {
61 case SPI_NOR_EXT_INVERT:
62 return ~op->cmd.opcode;
63
64 case SPI_NOR_EXT_REPEAT:
65 return op->cmd.opcode;
66
67 default:
68 dev_err(nor->dev, "Unknown command extension type\n");
69 return 0;
70 }
71 }
72
73 /**
74 * spi_nor_spimem_setup_op() - Set up common properties of a spi-mem op.
75 * @nor: pointer to a 'struct spi_nor'
76 * @op: pointer to the 'struct spi_mem_op' whose properties
77 * need to be initialized.
78 * @proto: the protocol from which the properties need to be set.
79 */
spi_nor_spimem_setup_op(const struct spi_nor * nor,struct spi_mem_op * op,const enum spi_nor_protocol proto)80 void spi_nor_spimem_setup_op(const struct spi_nor *nor,
81 struct spi_mem_op *op,
82 const enum spi_nor_protocol proto)
83 {
84 u8 ext;
85
86 op->cmd.buswidth = spi_nor_get_protocol_inst_nbits(proto);
87
88 if (op->addr.nbytes)
89 op->addr.buswidth = spi_nor_get_protocol_addr_nbits(proto);
90
91 if (op->dummy.nbytes)
92 op->dummy.buswidth = spi_nor_get_protocol_addr_nbits(proto);
93
94 if (op->data.nbytes)
95 op->data.buswidth = spi_nor_get_protocol_data_nbits(proto);
96
97 if (spi_nor_protocol_is_dtr(proto)) {
98 /*
99 * SPIMEM supports mixed DTR modes, but right now we can only
100 * have all phases either DTR or STR. IOW, SPIMEM can have
101 * something like 4S-4D-4D, but SPI NOR can't. So, set all 4
102 * phases to either DTR or STR.
103 */
104 op->cmd.dtr = true;
105 op->addr.dtr = true;
106 op->dummy.dtr = true;
107 op->data.dtr = true;
108
109 /* 2 bytes per clock cycle in DTR mode. */
110 op->dummy.nbytes *= 2;
111
112 ext = spi_nor_get_cmd_ext(nor, op);
113 op->cmd.opcode = (op->cmd.opcode << 8) | ext;
114 op->cmd.nbytes = 2;
115 }
116 }
117
118 /**
119 * spi_nor_spimem_bounce() - check if a bounce buffer is needed for the data
120 * transfer
121 * @nor: pointer to 'struct spi_nor'
122 * @op: pointer to 'struct spi_mem_op' template for transfer
123 *
124 * If we have to use the bounce buffer, the data field in @op will be updated.
125 *
126 * Return: true if the bounce buffer is needed, false if not
127 */
spi_nor_spimem_bounce(struct spi_nor * nor,struct spi_mem_op * op)128 static bool spi_nor_spimem_bounce(struct spi_nor *nor, struct spi_mem_op *op)
129 {
130 /* op->data.buf.in occupies the same memory as op->data.buf.out */
131 if (object_is_on_stack(op->data.buf.in) ||
132 !virt_addr_valid(op->data.buf.in)) {
133 if (op->data.nbytes > nor->bouncebuf_size)
134 op->data.nbytes = nor->bouncebuf_size;
135 op->data.buf.in = nor->bouncebuf;
136 return true;
137 }
138
139 return false;
140 }
141
142 /**
143 * spi_nor_spimem_exec_op() - execute a memory operation
144 * @nor: pointer to 'struct spi_nor'
145 * @op: pointer to 'struct spi_mem_op' template for transfer
146 *
147 * Return: 0 on success, -error otherwise.
148 */
spi_nor_spimem_exec_op(struct spi_nor * nor,struct spi_mem_op * op)149 static int spi_nor_spimem_exec_op(struct spi_nor *nor, struct spi_mem_op *op)
150 {
151 int error;
152
153 error = spi_mem_adjust_op_size(nor->spimem, op);
154 if (error)
155 return error;
156
157 return spi_mem_exec_op(nor->spimem, op);
158 }
159
spi_nor_controller_ops_read_reg(struct spi_nor * nor,u8 opcode,u8 * buf,size_t len)160 static int spi_nor_controller_ops_read_reg(struct spi_nor *nor, u8 opcode,
161 u8 *buf, size_t len)
162 {
163 if (spi_nor_protocol_is_dtr(nor->reg_proto))
164 return -EOPNOTSUPP;
165
166 return nor->controller_ops->read_reg(nor, opcode, buf, len);
167 }
168
spi_nor_controller_ops_write_reg(struct spi_nor * nor,u8 opcode,const u8 * buf,size_t len)169 static int spi_nor_controller_ops_write_reg(struct spi_nor *nor, u8 opcode,
170 const u8 *buf, size_t len)
171 {
172 if (spi_nor_protocol_is_dtr(nor->reg_proto))
173 return -EOPNOTSUPP;
174
175 return nor->controller_ops->write_reg(nor, opcode, buf, len);
176 }
177
spi_nor_controller_ops_erase(struct spi_nor * nor,loff_t offs)178 static int spi_nor_controller_ops_erase(struct spi_nor *nor, loff_t offs)
179 {
180 if (spi_nor_protocol_is_dtr(nor->reg_proto))
181 return -EOPNOTSUPP;
182
183 return nor->controller_ops->erase(nor, offs);
184 }
185
186 /**
187 * spi_nor_spimem_read_data() - read data from flash's memory region via
188 * spi-mem
189 * @nor: pointer to 'struct spi_nor'
190 * @from: offset to read from
191 * @len: number of bytes to read
192 * @buf: pointer to dst buffer
193 *
194 * Return: number of bytes read successfully, -errno otherwise
195 */
spi_nor_spimem_read_data(struct spi_nor * nor,loff_t from,size_t len,u8 * buf)196 static ssize_t spi_nor_spimem_read_data(struct spi_nor *nor, loff_t from,
197 size_t len, u8 *buf)
198 {
199 struct spi_mem_op op =
200 SPI_MEM_OP(SPI_MEM_OP_CMD(nor->read_opcode, 0),
201 SPI_MEM_OP_ADDR(nor->addr_width, from, 0),
202 SPI_MEM_OP_DUMMY(nor->read_dummy, 0),
203 SPI_MEM_OP_DATA_IN(len, buf, 0));
204 bool usebouncebuf;
205 ssize_t nbytes;
206 int error;
207
208 spi_nor_spimem_setup_op(nor, &op, nor->read_proto);
209
210 /* convert the dummy cycles to the number of bytes */
211 op.dummy.nbytes = (nor->read_dummy * op.dummy.buswidth) / 8;
212 if (spi_nor_protocol_is_dtr(nor->read_proto))
213 op.dummy.nbytes *= 2;
214
215 usebouncebuf = spi_nor_spimem_bounce(nor, &op);
216
217 if (nor->dirmap.rdesc) {
218 nbytes = spi_mem_dirmap_read(nor->dirmap.rdesc, op.addr.val,
219 op.data.nbytes, op.data.buf.in);
220 } else {
221 error = spi_nor_spimem_exec_op(nor, &op);
222 if (error)
223 return error;
224 nbytes = op.data.nbytes;
225 }
226
227 if (usebouncebuf && nbytes > 0)
228 memcpy(buf, op.data.buf.in, nbytes);
229
230 return nbytes;
231 }
232
233 /**
234 * spi_nor_read_data() - read data from flash memory
235 * @nor: pointer to 'struct spi_nor'
236 * @from: offset to read from
237 * @len: number of bytes to read
238 * @buf: pointer to dst buffer
239 *
240 * Return: number of bytes read successfully, -errno otherwise
241 */
spi_nor_read_data(struct spi_nor * nor,loff_t from,size_t len,u8 * buf)242 ssize_t spi_nor_read_data(struct spi_nor *nor, loff_t from, size_t len, u8 *buf)
243 {
244 if (nor->spimem)
245 return spi_nor_spimem_read_data(nor, from, len, buf);
246
247 return nor->controller_ops->read(nor, from, len, buf);
248 }
249
250 /**
251 * spi_nor_spimem_write_data() - write data to flash memory via
252 * spi-mem
253 * @nor: pointer to 'struct spi_nor'
254 * @to: offset to write to
255 * @len: number of bytes to write
256 * @buf: pointer to src buffer
257 *
258 * Return: number of bytes written successfully, -errno otherwise
259 */
spi_nor_spimem_write_data(struct spi_nor * nor,loff_t to,size_t len,const u8 * buf)260 static ssize_t spi_nor_spimem_write_data(struct spi_nor *nor, loff_t to,
261 size_t len, const u8 *buf)
262 {
263 struct spi_mem_op op =
264 SPI_MEM_OP(SPI_MEM_OP_CMD(nor->program_opcode, 0),
265 SPI_MEM_OP_ADDR(nor->addr_width, to, 0),
266 SPI_MEM_OP_NO_DUMMY,
267 SPI_MEM_OP_DATA_OUT(len, buf, 0));
268 ssize_t nbytes;
269 int error;
270
271 if (nor->program_opcode == SPINOR_OP_AAI_WP && nor->sst_write_second)
272 op.addr.nbytes = 0;
273
274 spi_nor_spimem_setup_op(nor, &op, nor->write_proto);
275
276 if (spi_nor_spimem_bounce(nor, &op))
277 memcpy(nor->bouncebuf, buf, op.data.nbytes);
278
279 if (nor->dirmap.wdesc) {
280 nbytes = spi_mem_dirmap_write(nor->dirmap.wdesc, op.addr.val,
281 op.data.nbytes, op.data.buf.out);
282 } else {
283 error = spi_nor_spimem_exec_op(nor, &op);
284 if (error)
285 return error;
286 nbytes = op.data.nbytes;
287 }
288
289 return nbytes;
290 }
291
292 /**
293 * spi_nor_write_data() - write data to flash memory
294 * @nor: pointer to 'struct spi_nor'
295 * @to: offset to write to
296 * @len: number of bytes to write
297 * @buf: pointer to src buffer
298 *
299 * Return: number of bytes written successfully, -errno otherwise
300 */
spi_nor_write_data(struct spi_nor * nor,loff_t to,size_t len,const u8 * buf)301 ssize_t spi_nor_write_data(struct spi_nor *nor, loff_t to, size_t len,
302 const u8 *buf)
303 {
304 if (nor->spimem)
305 return spi_nor_spimem_write_data(nor, to, len, buf);
306
307 return nor->controller_ops->write(nor, to, len, buf);
308 }
309
310 /**
311 * spi_nor_write_enable() - Set write enable latch with Write Enable command.
312 * @nor: pointer to 'struct spi_nor'.
313 *
314 * Return: 0 on success, -errno otherwise.
315 */
spi_nor_write_enable(struct spi_nor * nor)316 int spi_nor_write_enable(struct spi_nor *nor)
317 {
318 int ret;
319
320 if (nor->spimem) {
321 struct spi_mem_op op =
322 SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_WREN, 0),
323 SPI_MEM_OP_NO_ADDR,
324 SPI_MEM_OP_NO_DUMMY,
325 SPI_MEM_OP_NO_DATA);
326
327 spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
328
329 ret = spi_mem_exec_op(nor->spimem, &op);
330 } else {
331 ret = spi_nor_controller_ops_write_reg(nor, SPINOR_OP_WREN,
332 NULL, 0);
333 }
334
335 if (ret)
336 dev_dbg(nor->dev, "error %d on Write Enable\n", ret);
337
338 return ret;
339 }
340
341 /**
342 * spi_nor_write_disable() - Send Write Disable instruction to the chip.
343 * @nor: pointer to 'struct spi_nor'.
344 *
345 * Return: 0 on success, -errno otherwise.
346 */
spi_nor_write_disable(struct spi_nor * nor)347 int spi_nor_write_disable(struct spi_nor *nor)
348 {
349 int ret;
350
351 if (nor->spimem) {
352 struct spi_mem_op op =
353 SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_WRDI, 0),
354 SPI_MEM_OP_NO_ADDR,
355 SPI_MEM_OP_NO_DUMMY,
356 SPI_MEM_OP_NO_DATA);
357
358 spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
359
360 ret = spi_mem_exec_op(nor->spimem, &op);
361 } else {
362 ret = spi_nor_controller_ops_write_reg(nor, SPINOR_OP_WRDI,
363 NULL, 0);
364 }
365
366 if (ret)
367 dev_dbg(nor->dev, "error %d on Write Disable\n", ret);
368
369 return ret;
370 }
371
372 /**
373 * spi_nor_read_sr() - Read the Status Register.
374 * @nor: pointer to 'struct spi_nor'.
375 * @sr: pointer to a DMA-able buffer where the value of the
376 * Status Register will be written. Should be at least 2 bytes.
377 *
378 * Return: 0 on success, -errno otherwise.
379 */
spi_nor_read_sr(struct spi_nor * nor,u8 * sr)380 int spi_nor_read_sr(struct spi_nor *nor, u8 *sr)
381 {
382 int ret;
383
384 if (nor->spimem) {
385 struct spi_mem_op op =
386 SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_RDSR, 0),
387 SPI_MEM_OP_NO_ADDR,
388 SPI_MEM_OP_NO_DUMMY,
389 SPI_MEM_OP_DATA_IN(1, sr, 0));
390
391 if (nor->reg_proto == SNOR_PROTO_8_8_8_DTR) {
392 op.addr.nbytes = nor->params->rdsr_addr_nbytes;
393 op.dummy.nbytes = nor->params->rdsr_dummy;
394 /*
395 * We don't want to read only one byte in DTR mode. So,
396 * read 2 and then discard the second byte.
397 */
398 op.data.nbytes = 2;
399 }
400
401 spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
402
403 ret = spi_mem_exec_op(nor->spimem, &op);
404 } else {
405 ret = spi_nor_controller_ops_read_reg(nor, SPINOR_OP_RDSR, sr,
406 1);
407 }
408
409 if (ret)
410 dev_dbg(nor->dev, "error %d reading SR\n", ret);
411
412 return ret;
413 }
414
415 /**
416 * spi_nor_read_fsr() - Read the Flag Status Register.
417 * @nor: pointer to 'struct spi_nor'
418 * @fsr: pointer to a DMA-able buffer where the value of the
419 * Flag Status Register will be written. Should be at least 2
420 * bytes.
421 *
422 * Return: 0 on success, -errno otherwise.
423 */
spi_nor_read_fsr(struct spi_nor * nor,u8 * fsr)424 static int spi_nor_read_fsr(struct spi_nor *nor, u8 *fsr)
425 {
426 int ret;
427
428 if (nor->spimem) {
429 struct spi_mem_op op =
430 SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_RDFSR, 0),
431 SPI_MEM_OP_NO_ADDR,
432 SPI_MEM_OP_NO_DUMMY,
433 SPI_MEM_OP_DATA_IN(1, fsr, 0));
434
435 if (nor->reg_proto == SNOR_PROTO_8_8_8_DTR) {
436 op.addr.nbytes = nor->params->rdsr_addr_nbytes;
437 op.dummy.nbytes = nor->params->rdsr_dummy;
438 /*
439 * We don't want to read only one byte in DTR mode. So,
440 * read 2 and then discard the second byte.
441 */
442 op.data.nbytes = 2;
443 }
444
445 spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
446
447 ret = spi_mem_exec_op(nor->spimem, &op);
448 } else {
449 ret = spi_nor_controller_ops_read_reg(nor, SPINOR_OP_RDFSR, fsr,
450 1);
451 }
452
453 if (ret)
454 dev_dbg(nor->dev, "error %d reading FSR\n", ret);
455
456 return ret;
457 }
458
459 /**
460 * spi_nor_read_cr() - Read the Configuration Register using the
461 * SPINOR_OP_RDCR (35h) command.
462 * @nor: pointer to 'struct spi_nor'
463 * @cr: pointer to a DMA-able buffer where the value of the
464 * Configuration Register will be written.
465 *
466 * Return: 0 on success, -errno otherwise.
467 */
spi_nor_read_cr(struct spi_nor * nor,u8 * cr)468 int spi_nor_read_cr(struct spi_nor *nor, u8 *cr)
469 {
470 int ret;
471
472 if (nor->spimem) {
473 struct spi_mem_op op =
474 SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_RDCR, 0),
475 SPI_MEM_OP_NO_ADDR,
476 SPI_MEM_OP_NO_DUMMY,
477 SPI_MEM_OP_DATA_IN(1, cr, 0));
478
479 spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
480
481 ret = spi_mem_exec_op(nor->spimem, &op);
482 } else {
483 ret = spi_nor_controller_ops_read_reg(nor, SPINOR_OP_RDCR, cr,
484 1);
485 }
486
487 if (ret)
488 dev_dbg(nor->dev, "error %d reading CR\n", ret);
489
490 return ret;
491 }
492
493 /**
494 * spi_nor_set_4byte_addr_mode() - Enter/Exit 4-byte address mode.
495 * @nor: pointer to 'struct spi_nor'.
496 * @enable: true to enter the 4-byte address mode, false to exit the 4-byte
497 * address mode.
498 *
499 * Return: 0 on success, -errno otherwise.
500 */
spi_nor_set_4byte_addr_mode(struct spi_nor * nor,bool enable)501 int spi_nor_set_4byte_addr_mode(struct spi_nor *nor, bool enable)
502 {
503 int ret;
504
505 if (nor->spimem) {
506 struct spi_mem_op op =
507 SPI_MEM_OP(SPI_MEM_OP_CMD(enable ?
508 SPINOR_OP_EN4B :
509 SPINOR_OP_EX4B,
510 0),
511 SPI_MEM_OP_NO_ADDR,
512 SPI_MEM_OP_NO_DUMMY,
513 SPI_MEM_OP_NO_DATA);
514
515 spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
516
517 ret = spi_mem_exec_op(nor->spimem, &op);
518 } else {
519 ret = spi_nor_controller_ops_write_reg(nor,
520 enable ? SPINOR_OP_EN4B :
521 SPINOR_OP_EX4B,
522 NULL, 0);
523 }
524
525 if (ret)
526 dev_dbg(nor->dev, "error %d setting 4-byte mode\n", ret);
527
528 return ret;
529 }
530
531 /**
532 * spansion_set_4byte_addr_mode() - Set 4-byte address mode for Spansion
533 * flashes.
534 * @nor: pointer to 'struct spi_nor'.
535 * @enable: true to enter the 4-byte address mode, false to exit the 4-byte
536 * address mode.
537 *
538 * Return: 0 on success, -errno otherwise.
539 */
spansion_set_4byte_addr_mode(struct spi_nor * nor,bool enable)540 static int spansion_set_4byte_addr_mode(struct spi_nor *nor, bool enable)
541 {
542 int ret;
543
544 nor->bouncebuf[0] = enable << 7;
545
546 if (nor->spimem) {
547 struct spi_mem_op op =
548 SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_BRWR, 0),
549 SPI_MEM_OP_NO_ADDR,
550 SPI_MEM_OP_NO_DUMMY,
551 SPI_MEM_OP_DATA_OUT(1, nor->bouncebuf, 0));
552
553 spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
554
555 ret = spi_mem_exec_op(nor->spimem, &op);
556 } else {
557 ret = spi_nor_controller_ops_write_reg(nor, SPINOR_OP_BRWR,
558 nor->bouncebuf, 1);
559 }
560
561 if (ret)
562 dev_dbg(nor->dev, "error %d setting 4-byte mode\n", ret);
563
564 return ret;
565 }
566
567 /**
568 * spi_nor_write_ear() - Write Extended Address Register.
569 * @nor: pointer to 'struct spi_nor'.
570 * @ear: value to write to the Extended Address Register.
571 *
572 * Return: 0 on success, -errno otherwise.
573 */
spi_nor_write_ear(struct spi_nor * nor,u8 ear)574 int spi_nor_write_ear(struct spi_nor *nor, u8 ear)
575 {
576 int ret;
577
578 nor->bouncebuf[0] = ear;
579
580 if (nor->spimem) {
581 struct spi_mem_op op =
582 SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_WREAR, 0),
583 SPI_MEM_OP_NO_ADDR,
584 SPI_MEM_OP_NO_DUMMY,
585 SPI_MEM_OP_DATA_OUT(1, nor->bouncebuf, 0));
586
587 spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
588
589 ret = spi_mem_exec_op(nor->spimem, &op);
590 } else {
591 ret = spi_nor_controller_ops_write_reg(nor, SPINOR_OP_WREAR,
592 nor->bouncebuf, 1);
593 }
594
595 if (ret)
596 dev_dbg(nor->dev, "error %d writing EAR\n", ret);
597
598 return ret;
599 }
600
601 /**
602 * spi_nor_xread_sr() - Read the Status Register on S3AN flashes.
603 * @nor: pointer to 'struct spi_nor'.
604 * @sr: pointer to a DMA-able buffer where the value of the
605 * Status Register will be written.
606 *
607 * Return: 0 on success, -errno otherwise.
608 */
spi_nor_xread_sr(struct spi_nor * nor,u8 * sr)609 int spi_nor_xread_sr(struct spi_nor *nor, u8 *sr)
610 {
611 int ret;
612
613 if (nor->spimem) {
614 struct spi_mem_op op =
615 SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_XRDSR, 0),
616 SPI_MEM_OP_NO_ADDR,
617 SPI_MEM_OP_NO_DUMMY,
618 SPI_MEM_OP_DATA_IN(1, sr, 0));
619
620 spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
621
622 ret = spi_mem_exec_op(nor->spimem, &op);
623 } else {
624 ret = spi_nor_controller_ops_read_reg(nor, SPINOR_OP_XRDSR, sr,
625 1);
626 }
627
628 if (ret)
629 dev_dbg(nor->dev, "error %d reading XRDSR\n", ret);
630
631 return ret;
632 }
633
634 /**
635 * spi_nor_xsr_ready() - Query the Status Register of the S3AN flash to see if
636 * the flash is ready for new commands.
637 * @nor: pointer to 'struct spi_nor'.
638 *
639 * Return: 1 if ready, 0 if not ready, -errno on errors.
640 */
spi_nor_xsr_ready(struct spi_nor * nor)641 static int spi_nor_xsr_ready(struct spi_nor *nor)
642 {
643 int ret;
644
645 ret = spi_nor_xread_sr(nor, nor->bouncebuf);
646 if (ret)
647 return ret;
648
649 return !!(nor->bouncebuf[0] & XSR_RDY);
650 }
651
652 /**
653 * spi_nor_clear_sr() - Clear the Status Register.
654 * @nor: pointer to 'struct spi_nor'.
655 */
spi_nor_clear_sr(struct spi_nor * nor)656 static void spi_nor_clear_sr(struct spi_nor *nor)
657 {
658 int ret;
659
660 if (nor->spimem) {
661 struct spi_mem_op op =
662 SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_CLSR, 0),
663 SPI_MEM_OP_NO_ADDR,
664 SPI_MEM_OP_NO_DUMMY,
665 SPI_MEM_OP_NO_DATA);
666
667 spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
668
669 ret = spi_mem_exec_op(nor->spimem, &op);
670 } else {
671 ret = spi_nor_controller_ops_write_reg(nor, SPINOR_OP_CLSR,
672 NULL, 0);
673 }
674
675 if (ret)
676 dev_dbg(nor->dev, "error %d clearing SR\n", ret);
677 }
678
679 /**
680 * spi_nor_sr_ready() - Query the Status Register to see if the flash is ready
681 * for new commands.
682 * @nor: pointer to 'struct spi_nor'.
683 *
684 * Return: 1 if ready, 0 if not ready, -errno on errors.
685 */
spi_nor_sr_ready(struct spi_nor * nor)686 static int spi_nor_sr_ready(struct spi_nor *nor)
687 {
688 int ret = spi_nor_read_sr(nor, nor->bouncebuf);
689
690 if (ret)
691 return ret;
692
693 if (nor->flags & SNOR_F_USE_CLSR &&
694 nor->bouncebuf[0] & (SR_E_ERR | SR_P_ERR)) {
695 if (nor->bouncebuf[0] & SR_E_ERR)
696 dev_err(nor->dev, "Erase Error occurred\n");
697 else
698 dev_err(nor->dev, "Programming Error occurred\n");
699
700 spi_nor_clear_sr(nor);
701
702 /*
703 * WEL bit remains set to one when an erase or page program
704 * error occurs. Issue a Write Disable command to protect
705 * against inadvertent writes that can possibly corrupt the
706 * contents of the memory.
707 */
708 ret = spi_nor_write_disable(nor);
709 if (ret)
710 return ret;
711
712 return -EIO;
713 }
714
715 return !(nor->bouncebuf[0] & SR_WIP);
716 }
717
718 /**
719 * spi_nor_clear_fsr() - Clear the Flag Status Register.
720 * @nor: pointer to 'struct spi_nor'.
721 */
spi_nor_clear_fsr(struct spi_nor * nor)722 static void spi_nor_clear_fsr(struct spi_nor *nor)
723 {
724 int ret;
725
726 if (nor->spimem) {
727 struct spi_mem_op op =
728 SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_CLFSR, 0),
729 SPI_MEM_OP_NO_ADDR,
730 SPI_MEM_OP_NO_DUMMY,
731 SPI_MEM_OP_NO_DATA);
732
733 spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
734
735 ret = spi_mem_exec_op(nor->spimem, &op);
736 } else {
737 ret = spi_nor_controller_ops_write_reg(nor, SPINOR_OP_CLFSR,
738 NULL, 0);
739 }
740
741 if (ret)
742 dev_dbg(nor->dev, "error %d clearing FSR\n", ret);
743 }
744
745 /**
746 * spi_nor_fsr_ready() - Query the Flag Status Register to see if the flash is
747 * ready for new commands.
748 * @nor: pointer to 'struct spi_nor'.
749 *
750 * Return: 1 if ready, 0 if not ready, -errno on errors.
751 */
spi_nor_fsr_ready(struct spi_nor * nor)752 static int spi_nor_fsr_ready(struct spi_nor *nor)
753 {
754 int ret = spi_nor_read_fsr(nor, nor->bouncebuf);
755
756 if (ret)
757 return ret;
758
759 if (nor->bouncebuf[0] & (FSR_E_ERR | FSR_P_ERR)) {
760 if (nor->bouncebuf[0] & FSR_E_ERR)
761 dev_err(nor->dev, "Erase operation failed.\n");
762 else
763 dev_err(nor->dev, "Program operation failed.\n");
764
765 if (nor->bouncebuf[0] & FSR_PT_ERR)
766 dev_err(nor->dev,
767 "Attempted to modify a protected sector.\n");
768
769 spi_nor_clear_fsr(nor);
770
771 /*
772 * WEL bit remains set to one when an erase or page program
773 * error occurs. Issue a Write Disable command to protect
774 * against inadvertent writes that can possibly corrupt the
775 * contents of the memory.
776 */
777 ret = spi_nor_write_disable(nor);
778 if (ret)
779 return ret;
780
781 return -EIO;
782 }
783
784 return !!(nor->bouncebuf[0] & FSR_READY);
785 }
786
787 /**
788 * spi_nor_ready() - Query the flash to see if it is ready for new commands.
789 * @nor: pointer to 'struct spi_nor'.
790 *
791 * Return: 1 if ready, 0 if not ready, -errno on errors.
792 */
spi_nor_ready(struct spi_nor * nor)793 static int spi_nor_ready(struct spi_nor *nor)
794 {
795 int sr, fsr;
796
797 if (nor->flags & SNOR_F_READY_XSR_RDY)
798 sr = spi_nor_xsr_ready(nor);
799 else
800 sr = spi_nor_sr_ready(nor);
801 if (sr < 0)
802 return sr;
803 fsr = nor->flags & SNOR_F_USE_FSR ? spi_nor_fsr_ready(nor) : 1;
804 if (fsr < 0)
805 return fsr;
806 return sr && fsr;
807 }
808
809 /**
810 * spi_nor_wait_till_ready_with_timeout() - Service routine to read the
811 * Status Register until ready, or timeout occurs.
812 * @nor: pointer to "struct spi_nor".
813 * @timeout_jiffies: jiffies to wait until timeout.
814 *
815 * Return: 0 on success, -errno otherwise.
816 */
spi_nor_wait_till_ready_with_timeout(struct spi_nor * nor,unsigned long timeout_jiffies)817 static int spi_nor_wait_till_ready_with_timeout(struct spi_nor *nor,
818 unsigned long timeout_jiffies)
819 {
820 unsigned long deadline;
821 int timeout = 0, ret;
822
823 deadline = jiffies + timeout_jiffies;
824
825 while (!timeout) {
826 if (time_after_eq(jiffies, deadline))
827 timeout = 1;
828
829 ret = spi_nor_ready(nor);
830 if (ret < 0)
831 return ret;
832 if (ret)
833 return 0;
834
835 cond_resched();
836 }
837
838 dev_dbg(nor->dev, "flash operation timed out\n");
839
840 return -ETIMEDOUT;
841 }
842
843 /**
844 * spi_nor_wait_till_ready() - Wait for a predefined amount of time for the
845 * flash to be ready, or timeout occurs.
846 * @nor: pointer to "struct spi_nor".
847 *
848 * Return: 0 on success, -errno otherwise.
849 */
spi_nor_wait_till_ready(struct spi_nor * nor)850 int spi_nor_wait_till_ready(struct spi_nor *nor)
851 {
852 return spi_nor_wait_till_ready_with_timeout(nor,
853 DEFAULT_READY_WAIT_JIFFIES);
854 }
855
856 /**
857 * spi_nor_global_block_unlock() - Unlock Global Block Protection.
858 * @nor: pointer to 'struct spi_nor'.
859 *
860 * Return: 0 on success, -errno otherwise.
861 */
spi_nor_global_block_unlock(struct spi_nor * nor)862 int spi_nor_global_block_unlock(struct spi_nor *nor)
863 {
864 int ret;
865
866 ret = spi_nor_write_enable(nor);
867 if (ret)
868 return ret;
869
870 if (nor->spimem) {
871 struct spi_mem_op op =
872 SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_GBULK, 0),
873 SPI_MEM_OP_NO_ADDR,
874 SPI_MEM_OP_NO_DUMMY,
875 SPI_MEM_OP_NO_DATA);
876
877 spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
878
879 ret = spi_mem_exec_op(nor->spimem, &op);
880 } else {
881 ret = spi_nor_controller_ops_write_reg(nor, SPINOR_OP_GBULK,
882 NULL, 0);
883 }
884
885 if (ret) {
886 dev_dbg(nor->dev, "error %d on Global Block Unlock\n", ret);
887 return ret;
888 }
889
890 return spi_nor_wait_till_ready(nor);
891 }
892
893 /**
894 * spi_nor_write_sr() - Write the Status Register.
895 * @nor: pointer to 'struct spi_nor'.
896 * @sr: pointer to DMA-able buffer to write to the Status Register.
897 * @len: number of bytes to write to the Status Register.
898 *
899 * Return: 0 on success, -errno otherwise.
900 */
spi_nor_write_sr(struct spi_nor * nor,const u8 * sr,size_t len)901 int spi_nor_write_sr(struct spi_nor *nor, const u8 *sr, size_t len)
902 {
903 int ret;
904
905 ret = spi_nor_write_enable(nor);
906 if (ret)
907 return ret;
908
909 if (nor->spimem) {
910 struct spi_mem_op op =
911 SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_WRSR, 0),
912 SPI_MEM_OP_NO_ADDR,
913 SPI_MEM_OP_NO_DUMMY,
914 SPI_MEM_OP_DATA_OUT(len, sr, 0));
915
916 spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
917
918 ret = spi_mem_exec_op(nor->spimem, &op);
919 } else {
920 ret = spi_nor_controller_ops_write_reg(nor, SPINOR_OP_WRSR, sr,
921 len);
922 }
923
924 if (ret) {
925 dev_dbg(nor->dev, "error %d writing SR\n", ret);
926 return ret;
927 }
928
929 return spi_nor_wait_till_ready(nor);
930 }
931
932 /**
933 * spi_nor_write_sr1_and_check() - Write one byte to the Status Register 1 and
934 * ensure that the byte written match the received value.
935 * @nor: pointer to a 'struct spi_nor'.
936 * @sr1: byte value to be written to the Status Register.
937 *
938 * Return: 0 on success, -errno otherwise.
939 */
spi_nor_write_sr1_and_check(struct spi_nor * nor,u8 sr1)940 static int spi_nor_write_sr1_and_check(struct spi_nor *nor, u8 sr1)
941 {
942 int ret;
943
944 nor->bouncebuf[0] = sr1;
945
946 ret = spi_nor_write_sr(nor, nor->bouncebuf, 1);
947 if (ret)
948 return ret;
949
950 ret = spi_nor_read_sr(nor, nor->bouncebuf);
951 if (ret)
952 return ret;
953
954 if (nor->bouncebuf[0] != sr1) {
955 dev_dbg(nor->dev, "SR1: read back test failed\n");
956 return -EIO;
957 }
958
959 return 0;
960 }
961
962 /**
963 * spi_nor_write_16bit_sr_and_check() - Write the Status Register 1 and the
964 * Status Register 2 in one shot. Ensure that the byte written in the Status
965 * Register 1 match the received value, and that the 16-bit Write did not
966 * affect what was already in the Status Register 2.
967 * @nor: pointer to a 'struct spi_nor'.
968 * @sr1: byte value to be written to the Status Register 1.
969 *
970 * Return: 0 on success, -errno otherwise.
971 */
spi_nor_write_16bit_sr_and_check(struct spi_nor * nor,u8 sr1)972 static int spi_nor_write_16bit_sr_and_check(struct spi_nor *nor, u8 sr1)
973 {
974 int ret;
975 u8 *sr_cr = nor->bouncebuf;
976 u8 cr_written;
977
978 /* Make sure we don't overwrite the contents of Status Register 2. */
979 if (!(nor->flags & SNOR_F_NO_READ_CR)) {
980 ret = spi_nor_read_cr(nor, &sr_cr[1]);
981 if (ret)
982 return ret;
983 } else if (spi_nor_get_protocol_width(nor->read_proto) == 4 &&
984 spi_nor_get_protocol_width(nor->write_proto) == 4 &&
985 nor->params->quad_enable) {
986 /*
987 * If the Status Register 2 Read command (35h) is not
988 * supported, we should at least be sure we don't
989 * change the value of the SR2 Quad Enable bit.
990 *
991 * When the Quad Enable method is set and the buswidth is 4, we
992 * can safely assume that the value of the QE bit is one, as a
993 * consequence of the nor->params->quad_enable() call.
994 *
995 * According to the JESD216 revB standard, BFPT DWORDS[15],
996 * bits 22:20, the 16-bit Write Status (01h) command is
997 * available just for the cases in which the QE bit is
998 * described in SR2 at BIT(1).
999 */
1000 sr_cr[1] = SR2_QUAD_EN_BIT1;
1001 } else {
1002 sr_cr[1] = 0;
1003 }
1004
1005 sr_cr[0] = sr1;
1006
1007 ret = spi_nor_write_sr(nor, sr_cr, 2);
1008 if (ret)
1009 return ret;
1010
1011 ret = spi_nor_read_sr(nor, sr_cr);
1012 if (ret)
1013 return ret;
1014
1015 if (sr1 != sr_cr[0]) {
1016 dev_dbg(nor->dev, "SR: Read back test failed\n");
1017 return -EIO;
1018 }
1019
1020 if (nor->flags & SNOR_F_NO_READ_CR)
1021 return 0;
1022
1023 cr_written = sr_cr[1];
1024
1025 ret = spi_nor_read_cr(nor, &sr_cr[1]);
1026 if (ret)
1027 return ret;
1028
1029 if (cr_written != sr_cr[1]) {
1030 dev_dbg(nor->dev, "CR: read back test failed\n");
1031 return -EIO;
1032 }
1033
1034 return 0;
1035 }
1036
1037 /**
1038 * spi_nor_write_16bit_cr_and_check() - Write the Status Register 1 and the
1039 * Configuration Register in one shot. Ensure that the byte written in the
1040 * Configuration Register match the received value, and that the 16-bit Write
1041 * did not affect what was already in the Status Register 1.
1042 * @nor: pointer to a 'struct spi_nor'.
1043 * @cr: byte value to be written to the Configuration Register.
1044 *
1045 * Return: 0 on success, -errno otherwise.
1046 */
spi_nor_write_16bit_cr_and_check(struct spi_nor * nor,u8 cr)1047 int spi_nor_write_16bit_cr_and_check(struct spi_nor *nor, u8 cr)
1048 {
1049 int ret;
1050 u8 *sr_cr = nor->bouncebuf;
1051 u8 sr_written;
1052
1053 /* Keep the current value of the Status Register 1. */
1054 ret = spi_nor_read_sr(nor, sr_cr);
1055 if (ret)
1056 return ret;
1057
1058 sr_cr[1] = cr;
1059
1060 ret = spi_nor_write_sr(nor, sr_cr, 2);
1061 if (ret)
1062 return ret;
1063
1064 sr_written = sr_cr[0];
1065
1066 ret = spi_nor_read_sr(nor, sr_cr);
1067 if (ret)
1068 return ret;
1069
1070 if (sr_written != sr_cr[0]) {
1071 dev_dbg(nor->dev, "SR: Read back test failed\n");
1072 return -EIO;
1073 }
1074
1075 if (nor->flags & SNOR_F_NO_READ_CR)
1076 return 0;
1077
1078 ret = spi_nor_read_cr(nor, &sr_cr[1]);
1079 if (ret)
1080 return ret;
1081
1082 if (cr != sr_cr[1]) {
1083 dev_dbg(nor->dev, "CR: read back test failed\n");
1084 return -EIO;
1085 }
1086
1087 return 0;
1088 }
1089
1090 /**
1091 * spi_nor_write_sr_and_check() - Write the Status Register 1 and ensure that
1092 * the byte written match the received value without affecting other bits in the
1093 * Status Register 1 and 2.
1094 * @nor: pointer to a 'struct spi_nor'.
1095 * @sr1: byte value to be written to the Status Register.
1096 *
1097 * Return: 0 on success, -errno otherwise.
1098 */
spi_nor_write_sr_and_check(struct spi_nor * nor,u8 sr1)1099 int spi_nor_write_sr_and_check(struct spi_nor *nor, u8 sr1)
1100 {
1101 if (nor->flags & SNOR_F_HAS_16BIT_SR)
1102 return spi_nor_write_16bit_sr_and_check(nor, sr1);
1103
1104 return spi_nor_write_sr1_and_check(nor, sr1);
1105 }
1106
1107 /**
1108 * spi_nor_write_sr2() - Write the Status Register 2 using the
1109 * SPINOR_OP_WRSR2 (3eh) command.
1110 * @nor: pointer to 'struct spi_nor'.
1111 * @sr2: pointer to DMA-able buffer to write to the Status Register 2.
1112 *
1113 * Return: 0 on success, -errno otherwise.
1114 */
spi_nor_write_sr2(struct spi_nor * nor,const u8 * sr2)1115 static int spi_nor_write_sr2(struct spi_nor *nor, const u8 *sr2)
1116 {
1117 int ret;
1118
1119 ret = spi_nor_write_enable(nor);
1120 if (ret)
1121 return ret;
1122
1123 if (nor->spimem) {
1124 struct spi_mem_op op =
1125 SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_WRSR2, 0),
1126 SPI_MEM_OP_NO_ADDR,
1127 SPI_MEM_OP_NO_DUMMY,
1128 SPI_MEM_OP_DATA_OUT(1, sr2, 0));
1129
1130 spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
1131
1132 ret = spi_mem_exec_op(nor->spimem, &op);
1133 } else {
1134 ret = spi_nor_controller_ops_write_reg(nor, SPINOR_OP_WRSR2,
1135 sr2, 1);
1136 }
1137
1138 if (ret) {
1139 dev_dbg(nor->dev, "error %d writing SR2\n", ret);
1140 return ret;
1141 }
1142
1143 return spi_nor_wait_till_ready(nor);
1144 }
1145
1146 /**
1147 * spi_nor_read_sr2() - Read the Status Register 2 using the
1148 * SPINOR_OP_RDSR2 (3fh) command.
1149 * @nor: pointer to 'struct spi_nor'.
1150 * @sr2: pointer to DMA-able buffer where the value of the
1151 * Status Register 2 will be written.
1152 *
1153 * Return: 0 on success, -errno otherwise.
1154 */
spi_nor_read_sr2(struct spi_nor * nor,u8 * sr2)1155 static int spi_nor_read_sr2(struct spi_nor *nor, u8 *sr2)
1156 {
1157 int ret;
1158
1159 if (nor->spimem) {
1160 struct spi_mem_op op =
1161 SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_RDSR2, 0),
1162 SPI_MEM_OP_NO_ADDR,
1163 SPI_MEM_OP_NO_DUMMY,
1164 SPI_MEM_OP_DATA_IN(1, sr2, 0));
1165
1166 spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
1167
1168 ret = spi_mem_exec_op(nor->spimem, &op);
1169 } else {
1170 ret = spi_nor_controller_ops_read_reg(nor, SPINOR_OP_RDSR2, sr2,
1171 1);
1172 }
1173
1174 if (ret)
1175 dev_dbg(nor->dev, "error %d reading SR2\n", ret);
1176
1177 return ret;
1178 }
1179
1180 /**
1181 * spi_nor_erase_chip() - Erase the entire flash memory.
1182 * @nor: pointer to 'struct spi_nor'.
1183 *
1184 * Return: 0 on success, -errno otherwise.
1185 */
spi_nor_erase_chip(struct spi_nor * nor)1186 static int spi_nor_erase_chip(struct spi_nor *nor)
1187 {
1188 int ret;
1189
1190 dev_dbg(nor->dev, " %lldKiB\n", (long long)(nor->mtd.size >> 10));
1191
1192 if (nor->spimem) {
1193 struct spi_mem_op op =
1194 SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_CHIP_ERASE, 0),
1195 SPI_MEM_OP_NO_ADDR,
1196 SPI_MEM_OP_NO_DUMMY,
1197 SPI_MEM_OP_NO_DATA);
1198
1199 spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
1200
1201 ret = spi_mem_exec_op(nor->spimem, &op);
1202 } else {
1203 ret = spi_nor_controller_ops_write_reg(nor,
1204 SPINOR_OP_CHIP_ERASE,
1205 NULL, 0);
1206 }
1207
1208 if (ret)
1209 dev_dbg(nor->dev, "error %d erasing chip\n", ret);
1210
1211 return ret;
1212 }
1213
spi_nor_convert_opcode(u8 opcode,const u8 table[][2],size_t size)1214 static u8 spi_nor_convert_opcode(u8 opcode, const u8 table[][2], size_t size)
1215 {
1216 size_t i;
1217
1218 for (i = 0; i < size; i++)
1219 if (table[i][0] == opcode)
1220 return table[i][1];
1221
1222 /* No conversion found, keep input op code. */
1223 return opcode;
1224 }
1225
spi_nor_convert_3to4_read(u8 opcode)1226 u8 spi_nor_convert_3to4_read(u8 opcode)
1227 {
1228 static const u8 spi_nor_3to4_read[][2] = {
1229 { SPINOR_OP_READ, SPINOR_OP_READ_4B },
1230 { SPINOR_OP_READ_FAST, SPINOR_OP_READ_FAST_4B },
1231 { SPINOR_OP_READ_1_1_2, SPINOR_OP_READ_1_1_2_4B },
1232 { SPINOR_OP_READ_1_2_2, SPINOR_OP_READ_1_2_2_4B },
1233 { SPINOR_OP_READ_1_1_4, SPINOR_OP_READ_1_1_4_4B },
1234 { SPINOR_OP_READ_1_4_4, SPINOR_OP_READ_1_4_4_4B },
1235 { SPINOR_OP_READ_1_1_8, SPINOR_OP_READ_1_1_8_4B },
1236 { SPINOR_OP_READ_1_8_8, SPINOR_OP_READ_1_8_8_4B },
1237
1238 { SPINOR_OP_READ_1_1_1_DTR, SPINOR_OP_READ_1_1_1_DTR_4B },
1239 { SPINOR_OP_READ_1_2_2_DTR, SPINOR_OP_READ_1_2_2_DTR_4B },
1240 { SPINOR_OP_READ_1_4_4_DTR, SPINOR_OP_READ_1_4_4_DTR_4B },
1241 };
1242
1243 return spi_nor_convert_opcode(opcode, spi_nor_3to4_read,
1244 ARRAY_SIZE(spi_nor_3to4_read));
1245 }
1246
spi_nor_convert_3to4_program(u8 opcode)1247 static u8 spi_nor_convert_3to4_program(u8 opcode)
1248 {
1249 static const u8 spi_nor_3to4_program[][2] = {
1250 { SPINOR_OP_PP, SPINOR_OP_PP_4B },
1251 { SPINOR_OP_PP_1_1_4, SPINOR_OP_PP_1_1_4_4B },
1252 { SPINOR_OP_PP_1_4_4, SPINOR_OP_PP_1_4_4_4B },
1253 { SPINOR_OP_PP_1_1_8, SPINOR_OP_PP_1_1_8_4B },
1254 { SPINOR_OP_PP_1_8_8, SPINOR_OP_PP_1_8_8_4B },
1255 };
1256
1257 return spi_nor_convert_opcode(opcode, spi_nor_3to4_program,
1258 ARRAY_SIZE(spi_nor_3to4_program));
1259 }
1260
spi_nor_convert_3to4_erase(u8 opcode)1261 static u8 spi_nor_convert_3to4_erase(u8 opcode)
1262 {
1263 static const u8 spi_nor_3to4_erase[][2] = {
1264 { SPINOR_OP_BE_4K, SPINOR_OP_BE_4K_4B },
1265 { SPINOR_OP_BE_32K, SPINOR_OP_BE_32K_4B },
1266 { SPINOR_OP_SE, SPINOR_OP_SE_4B },
1267 };
1268
1269 return spi_nor_convert_opcode(opcode, spi_nor_3to4_erase,
1270 ARRAY_SIZE(spi_nor_3to4_erase));
1271 }
1272
spi_nor_has_uniform_erase(const struct spi_nor * nor)1273 static bool spi_nor_has_uniform_erase(const struct spi_nor *nor)
1274 {
1275 return !!nor->params->erase_map.uniform_erase_type;
1276 }
1277
spi_nor_set_4byte_opcodes(struct spi_nor * nor)1278 static void spi_nor_set_4byte_opcodes(struct spi_nor *nor)
1279 {
1280 nor->read_opcode = spi_nor_convert_3to4_read(nor->read_opcode);
1281 nor->program_opcode = spi_nor_convert_3to4_program(nor->program_opcode);
1282 nor->erase_opcode = spi_nor_convert_3to4_erase(nor->erase_opcode);
1283
1284 if (!spi_nor_has_uniform_erase(nor)) {
1285 struct spi_nor_erase_map *map = &nor->params->erase_map;
1286 struct spi_nor_erase_type *erase;
1287 int i;
1288
1289 for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++) {
1290 erase = &map->erase_type[i];
1291 erase->opcode =
1292 spi_nor_convert_3to4_erase(erase->opcode);
1293 }
1294 }
1295 }
1296
spi_nor_lock_and_prep(struct spi_nor * nor)1297 int spi_nor_lock_and_prep(struct spi_nor *nor)
1298 {
1299 int ret = 0;
1300
1301 mutex_lock(&nor->lock);
1302
1303 if (nor->controller_ops && nor->controller_ops->prepare) {
1304 ret = nor->controller_ops->prepare(nor);
1305 if (ret) {
1306 mutex_unlock(&nor->lock);
1307 return ret;
1308 }
1309 }
1310 return ret;
1311 }
1312
spi_nor_unlock_and_unprep(struct spi_nor * nor)1313 void spi_nor_unlock_and_unprep(struct spi_nor *nor)
1314 {
1315 if (nor->controller_ops && nor->controller_ops->unprepare)
1316 nor->controller_ops->unprepare(nor);
1317 mutex_unlock(&nor->lock);
1318 }
1319
spi_nor_convert_addr(struct spi_nor * nor,loff_t addr)1320 static u32 spi_nor_convert_addr(struct spi_nor *nor, loff_t addr)
1321 {
1322 if (!nor->params->convert_addr)
1323 return addr;
1324
1325 return nor->params->convert_addr(nor, addr);
1326 }
1327
1328 /*
1329 * Initiate the erasure of a single sector
1330 */
spi_nor_erase_sector(struct spi_nor * nor,u32 addr)1331 int spi_nor_erase_sector(struct spi_nor *nor, u32 addr)
1332 {
1333 int i;
1334
1335 addr = spi_nor_convert_addr(nor, addr);
1336
1337 if (nor->spimem) {
1338 struct spi_mem_op op =
1339 SPI_MEM_OP(SPI_MEM_OP_CMD(nor->erase_opcode, 0),
1340 SPI_MEM_OP_ADDR(nor->addr_width, addr, 0),
1341 SPI_MEM_OP_NO_DUMMY,
1342 SPI_MEM_OP_NO_DATA);
1343
1344 spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
1345
1346 return spi_mem_exec_op(nor->spimem, &op);
1347 } else if (nor->controller_ops->erase) {
1348 return spi_nor_controller_ops_erase(nor, addr);
1349 }
1350
1351 /*
1352 * Default implementation, if driver doesn't have a specialized HW
1353 * control
1354 */
1355 for (i = nor->addr_width - 1; i >= 0; i--) {
1356 nor->bouncebuf[i] = addr & 0xff;
1357 addr >>= 8;
1358 }
1359
1360 return spi_nor_controller_ops_write_reg(nor, nor->erase_opcode,
1361 nor->bouncebuf, nor->addr_width);
1362 }
1363
1364 /**
1365 * spi_nor_div_by_erase_size() - calculate remainder and update new dividend
1366 * @erase: pointer to a structure that describes a SPI NOR erase type
1367 * @dividend: dividend value
1368 * @remainder: pointer to u32 remainder (will be updated)
1369 *
1370 * Return: the result of the division
1371 */
spi_nor_div_by_erase_size(const struct spi_nor_erase_type * erase,u64 dividend,u32 * remainder)1372 static u64 spi_nor_div_by_erase_size(const struct spi_nor_erase_type *erase,
1373 u64 dividend, u32 *remainder)
1374 {
1375 /* JEDEC JESD216B Standard imposes erase sizes to be power of 2. */
1376 *remainder = (u32)dividend & erase->size_mask;
1377 return dividend >> erase->size_shift;
1378 }
1379
1380 /**
1381 * spi_nor_find_best_erase_type() - find the best erase type for the given
1382 * offset in the serial flash memory and the
1383 * number of bytes to erase. The region in
1384 * which the address fits is expected to be
1385 * provided.
1386 * @map: the erase map of the SPI NOR
1387 * @region: pointer to a structure that describes a SPI NOR erase region
1388 * @addr: offset in the serial flash memory
1389 * @len: number of bytes to erase
1390 *
1391 * Return: a pointer to the best fitted erase type, NULL otherwise.
1392 */
1393 static const struct spi_nor_erase_type *
spi_nor_find_best_erase_type(const struct spi_nor_erase_map * map,const struct spi_nor_erase_region * region,u64 addr,u32 len)1394 spi_nor_find_best_erase_type(const struct spi_nor_erase_map *map,
1395 const struct spi_nor_erase_region *region,
1396 u64 addr, u32 len)
1397 {
1398 const struct spi_nor_erase_type *erase;
1399 u32 rem;
1400 int i;
1401 u8 erase_mask = region->offset & SNOR_ERASE_TYPE_MASK;
1402
1403 /*
1404 * Erase types are ordered by size, with the smallest erase type at
1405 * index 0.
1406 */
1407 for (i = SNOR_ERASE_TYPE_MAX - 1; i >= 0; i--) {
1408 /* Does the erase region support the tested erase type? */
1409 if (!(erase_mask & BIT(i)))
1410 continue;
1411
1412 erase = &map->erase_type[i];
1413 if (!erase->size)
1414 continue;
1415
1416 /* Alignment is not mandatory for overlaid regions */
1417 if (region->offset & SNOR_OVERLAID_REGION &&
1418 region->size <= len)
1419 return erase;
1420
1421 /* Don't erase more than what the user has asked for. */
1422 if (erase->size > len)
1423 continue;
1424
1425 spi_nor_div_by_erase_size(erase, addr, &rem);
1426 if (!rem)
1427 return erase;
1428 }
1429
1430 return NULL;
1431 }
1432
spi_nor_region_is_last(const struct spi_nor_erase_region * region)1433 static u64 spi_nor_region_is_last(const struct spi_nor_erase_region *region)
1434 {
1435 return region->offset & SNOR_LAST_REGION;
1436 }
1437
spi_nor_region_end(const struct spi_nor_erase_region * region)1438 static u64 spi_nor_region_end(const struct spi_nor_erase_region *region)
1439 {
1440 return (region->offset & ~SNOR_ERASE_FLAGS_MASK) + region->size;
1441 }
1442
1443 /**
1444 * spi_nor_region_next() - get the next spi nor region
1445 * @region: pointer to a structure that describes a SPI NOR erase region
1446 *
1447 * Return: the next spi nor region or NULL if last region.
1448 */
1449 struct spi_nor_erase_region *
spi_nor_region_next(struct spi_nor_erase_region * region)1450 spi_nor_region_next(struct spi_nor_erase_region *region)
1451 {
1452 if (spi_nor_region_is_last(region))
1453 return NULL;
1454 region++;
1455 return region;
1456 }
1457
1458 /**
1459 * spi_nor_find_erase_region() - find the region of the serial flash memory in
1460 * which the offset fits
1461 * @map: the erase map of the SPI NOR
1462 * @addr: offset in the serial flash memory
1463 *
1464 * Return: a pointer to the spi_nor_erase_region struct, ERR_PTR(-errno)
1465 * otherwise.
1466 */
1467 static struct spi_nor_erase_region *
spi_nor_find_erase_region(const struct spi_nor_erase_map * map,u64 addr)1468 spi_nor_find_erase_region(const struct spi_nor_erase_map *map, u64 addr)
1469 {
1470 struct spi_nor_erase_region *region = map->regions;
1471 u64 region_start = region->offset & ~SNOR_ERASE_FLAGS_MASK;
1472 u64 region_end = region_start + region->size;
1473
1474 while (addr < region_start || addr >= region_end) {
1475 region = spi_nor_region_next(region);
1476 if (!region)
1477 return ERR_PTR(-EINVAL);
1478
1479 region_start = region->offset & ~SNOR_ERASE_FLAGS_MASK;
1480 region_end = region_start + region->size;
1481 }
1482
1483 return region;
1484 }
1485
1486 /**
1487 * spi_nor_init_erase_cmd() - initialize an erase command
1488 * @region: pointer to a structure that describes a SPI NOR erase region
1489 * @erase: pointer to a structure that describes a SPI NOR erase type
1490 *
1491 * Return: the pointer to the allocated erase command, ERR_PTR(-errno)
1492 * otherwise.
1493 */
1494 static struct spi_nor_erase_command *
spi_nor_init_erase_cmd(const struct spi_nor_erase_region * region,const struct spi_nor_erase_type * erase)1495 spi_nor_init_erase_cmd(const struct spi_nor_erase_region *region,
1496 const struct spi_nor_erase_type *erase)
1497 {
1498 struct spi_nor_erase_command *cmd;
1499
1500 cmd = kmalloc(sizeof(*cmd), GFP_KERNEL);
1501 if (!cmd)
1502 return ERR_PTR(-ENOMEM);
1503
1504 INIT_LIST_HEAD(&cmd->list);
1505 cmd->opcode = erase->opcode;
1506 cmd->count = 1;
1507
1508 if (region->offset & SNOR_OVERLAID_REGION)
1509 cmd->size = region->size;
1510 else
1511 cmd->size = erase->size;
1512
1513 return cmd;
1514 }
1515
1516 /**
1517 * spi_nor_destroy_erase_cmd_list() - destroy erase command list
1518 * @erase_list: list of erase commands
1519 */
spi_nor_destroy_erase_cmd_list(struct list_head * erase_list)1520 static void spi_nor_destroy_erase_cmd_list(struct list_head *erase_list)
1521 {
1522 struct spi_nor_erase_command *cmd, *next;
1523
1524 list_for_each_entry_safe(cmd, next, erase_list, list) {
1525 list_del(&cmd->list);
1526 kfree(cmd);
1527 }
1528 }
1529
1530 /**
1531 * spi_nor_init_erase_cmd_list() - initialize erase command list
1532 * @nor: pointer to a 'struct spi_nor'
1533 * @erase_list: list of erase commands to be executed once we validate that the
1534 * erase can be performed
1535 * @addr: offset in the serial flash memory
1536 * @len: number of bytes to erase
1537 *
1538 * Builds the list of best fitted erase commands and verifies if the erase can
1539 * be performed.
1540 *
1541 * Return: 0 on success, -errno otherwise.
1542 */
spi_nor_init_erase_cmd_list(struct spi_nor * nor,struct list_head * erase_list,u64 addr,u32 len)1543 static int spi_nor_init_erase_cmd_list(struct spi_nor *nor,
1544 struct list_head *erase_list,
1545 u64 addr, u32 len)
1546 {
1547 const struct spi_nor_erase_map *map = &nor->params->erase_map;
1548 const struct spi_nor_erase_type *erase, *prev_erase = NULL;
1549 struct spi_nor_erase_region *region;
1550 struct spi_nor_erase_command *cmd = NULL;
1551 u64 region_end;
1552 int ret = -EINVAL;
1553
1554 region = spi_nor_find_erase_region(map, addr);
1555 if (IS_ERR(region))
1556 return PTR_ERR(region);
1557
1558 region_end = spi_nor_region_end(region);
1559
1560 while (len) {
1561 erase = spi_nor_find_best_erase_type(map, region, addr, len);
1562 if (!erase)
1563 goto destroy_erase_cmd_list;
1564
1565 if (prev_erase != erase ||
1566 erase->size != cmd->size ||
1567 region->offset & SNOR_OVERLAID_REGION) {
1568 cmd = spi_nor_init_erase_cmd(region, erase);
1569 if (IS_ERR(cmd)) {
1570 ret = PTR_ERR(cmd);
1571 goto destroy_erase_cmd_list;
1572 }
1573
1574 list_add_tail(&cmd->list, erase_list);
1575 } else {
1576 cmd->count++;
1577 }
1578
1579 addr += cmd->size;
1580 len -= cmd->size;
1581
1582 if (len && addr >= region_end) {
1583 region = spi_nor_region_next(region);
1584 if (!region)
1585 goto destroy_erase_cmd_list;
1586 region_end = spi_nor_region_end(region);
1587 }
1588
1589 prev_erase = erase;
1590 }
1591
1592 return 0;
1593
1594 destroy_erase_cmd_list:
1595 spi_nor_destroy_erase_cmd_list(erase_list);
1596 return ret;
1597 }
1598
1599 /**
1600 * spi_nor_erase_multi_sectors() - perform a non-uniform erase
1601 * @nor: pointer to a 'struct spi_nor'
1602 * @addr: offset in the serial flash memory
1603 * @len: number of bytes to erase
1604 *
1605 * Build a list of best fitted erase commands and execute it once we validate
1606 * that the erase can be performed.
1607 *
1608 * Return: 0 on success, -errno otherwise.
1609 */
spi_nor_erase_multi_sectors(struct spi_nor * nor,u64 addr,u32 len)1610 static int spi_nor_erase_multi_sectors(struct spi_nor *nor, u64 addr, u32 len)
1611 {
1612 LIST_HEAD(erase_list);
1613 struct spi_nor_erase_command *cmd, *next;
1614 int ret;
1615
1616 ret = spi_nor_init_erase_cmd_list(nor, &erase_list, addr, len);
1617 if (ret)
1618 return ret;
1619
1620 list_for_each_entry_safe(cmd, next, &erase_list, list) {
1621 nor->erase_opcode = cmd->opcode;
1622 while (cmd->count) {
1623 dev_vdbg(nor->dev, "erase_cmd->size = 0x%08x, erase_cmd->opcode = 0x%02x, erase_cmd->count = %u\n",
1624 cmd->size, cmd->opcode, cmd->count);
1625
1626 ret = spi_nor_write_enable(nor);
1627 if (ret)
1628 goto destroy_erase_cmd_list;
1629
1630 ret = spi_nor_erase_sector(nor, addr);
1631 if (ret)
1632 goto destroy_erase_cmd_list;
1633
1634 ret = spi_nor_wait_till_ready(nor);
1635 if (ret)
1636 goto destroy_erase_cmd_list;
1637
1638 addr += cmd->size;
1639 cmd->count--;
1640 }
1641 list_del(&cmd->list);
1642 kfree(cmd);
1643 }
1644
1645 return 0;
1646
1647 destroy_erase_cmd_list:
1648 spi_nor_destroy_erase_cmd_list(&erase_list);
1649 return ret;
1650 }
1651
1652 /*
1653 * Erase an address range on the nor chip. The address range may extend
1654 * one or more erase sectors. Return an error if there is a problem erasing.
1655 */
spi_nor_erase(struct mtd_info * mtd,struct erase_info * instr)1656 static int spi_nor_erase(struct mtd_info *mtd, struct erase_info *instr)
1657 {
1658 struct spi_nor *nor = mtd_to_spi_nor(mtd);
1659 u32 addr, len;
1660 uint32_t rem;
1661 int ret;
1662
1663 dev_dbg(nor->dev, "at 0x%llx, len %lld\n", (long long)instr->addr,
1664 (long long)instr->len);
1665
1666 if (spi_nor_has_uniform_erase(nor)) {
1667 div_u64_rem(instr->len, mtd->erasesize, &rem);
1668 if (rem)
1669 return -EINVAL;
1670 }
1671
1672 addr = instr->addr;
1673 len = instr->len;
1674
1675 ret = spi_nor_lock_and_prep(nor);
1676 if (ret)
1677 return ret;
1678
1679 /* whole-chip erase? */
1680 if (len == mtd->size && !(nor->flags & SNOR_F_NO_OP_CHIP_ERASE)) {
1681 unsigned long timeout;
1682
1683 ret = spi_nor_write_enable(nor);
1684 if (ret)
1685 goto erase_err;
1686
1687 ret = spi_nor_erase_chip(nor);
1688 if (ret)
1689 goto erase_err;
1690
1691 /*
1692 * Scale the timeout linearly with the size of the flash, with
1693 * a minimum calibrated to an old 2MB flash. We could try to
1694 * pull these from CFI/SFDP, but these values should be good
1695 * enough for now.
1696 */
1697 timeout = max(CHIP_ERASE_2MB_READY_WAIT_JIFFIES,
1698 CHIP_ERASE_2MB_READY_WAIT_JIFFIES *
1699 (unsigned long)(mtd->size / SZ_2M));
1700 ret = spi_nor_wait_till_ready_with_timeout(nor, timeout);
1701 if (ret)
1702 goto erase_err;
1703
1704 /* REVISIT in some cases we could speed up erasing large regions
1705 * by using SPINOR_OP_SE instead of SPINOR_OP_BE_4K. We may have set up
1706 * to use "small sector erase", but that's not always optimal.
1707 */
1708
1709 /* "sector"-at-a-time erase */
1710 } else if (spi_nor_has_uniform_erase(nor)) {
1711 while (len) {
1712 ret = spi_nor_write_enable(nor);
1713 if (ret)
1714 goto erase_err;
1715
1716 ret = spi_nor_erase_sector(nor, addr);
1717 if (ret)
1718 goto erase_err;
1719
1720 ret = spi_nor_wait_till_ready(nor);
1721 if (ret)
1722 goto erase_err;
1723
1724 addr += mtd->erasesize;
1725 len -= mtd->erasesize;
1726 }
1727
1728 /* erase multiple sectors */
1729 } else {
1730 ret = spi_nor_erase_multi_sectors(nor, addr, len);
1731 if (ret)
1732 goto erase_err;
1733 }
1734
1735 ret = spi_nor_write_disable(nor);
1736
1737 erase_err:
1738 spi_nor_unlock_and_unprep(nor);
1739
1740 return ret;
1741 }
1742
1743 /**
1744 * spi_nor_sr1_bit6_quad_enable() - Set the Quad Enable BIT(6) in the Status
1745 * Register 1.
1746 * @nor: pointer to a 'struct spi_nor'
1747 *
1748 * Bit 6 of the Status Register 1 is the QE bit for Macronix like QSPI memories.
1749 *
1750 * Return: 0 on success, -errno otherwise.
1751 */
spi_nor_sr1_bit6_quad_enable(struct spi_nor * nor)1752 int spi_nor_sr1_bit6_quad_enable(struct spi_nor *nor)
1753 {
1754 int ret;
1755
1756 ret = spi_nor_read_sr(nor, nor->bouncebuf);
1757 if (ret)
1758 return ret;
1759
1760 if (nor->bouncebuf[0] & SR1_QUAD_EN_BIT6)
1761 return 0;
1762
1763 nor->bouncebuf[0] |= SR1_QUAD_EN_BIT6;
1764
1765 return spi_nor_write_sr1_and_check(nor, nor->bouncebuf[0]);
1766 }
1767
1768 /**
1769 * spi_nor_sr2_bit1_quad_enable() - set the Quad Enable BIT(1) in the Status
1770 * Register 2.
1771 * @nor: pointer to a 'struct spi_nor'.
1772 *
1773 * Bit 1 of the Status Register 2 is the QE bit for Spansion like QSPI memories.
1774 *
1775 * Return: 0 on success, -errno otherwise.
1776 */
spi_nor_sr2_bit1_quad_enable(struct spi_nor * nor)1777 int spi_nor_sr2_bit1_quad_enable(struct spi_nor *nor)
1778 {
1779 int ret;
1780
1781 if (nor->flags & SNOR_F_NO_READ_CR)
1782 return spi_nor_write_16bit_cr_and_check(nor, SR2_QUAD_EN_BIT1);
1783
1784 ret = spi_nor_read_cr(nor, nor->bouncebuf);
1785 if (ret)
1786 return ret;
1787
1788 if (nor->bouncebuf[0] & SR2_QUAD_EN_BIT1)
1789 return 0;
1790
1791 nor->bouncebuf[0] |= SR2_QUAD_EN_BIT1;
1792
1793 return spi_nor_write_16bit_cr_and_check(nor, nor->bouncebuf[0]);
1794 }
1795
1796 /**
1797 * spi_nor_sr2_bit7_quad_enable() - set QE bit in Status Register 2.
1798 * @nor: pointer to a 'struct spi_nor'
1799 *
1800 * Set the Quad Enable (QE) bit in the Status Register 2.
1801 *
1802 * This is one of the procedures to set the QE bit described in the SFDP
1803 * (JESD216 rev B) specification but no manufacturer using this procedure has
1804 * been identified yet, hence the name of the function.
1805 *
1806 * Return: 0 on success, -errno otherwise.
1807 */
spi_nor_sr2_bit7_quad_enable(struct spi_nor * nor)1808 int spi_nor_sr2_bit7_quad_enable(struct spi_nor *nor)
1809 {
1810 u8 *sr2 = nor->bouncebuf;
1811 int ret;
1812 u8 sr2_written;
1813
1814 /* Check current Quad Enable bit value. */
1815 ret = spi_nor_read_sr2(nor, sr2);
1816 if (ret)
1817 return ret;
1818 if (*sr2 & SR2_QUAD_EN_BIT7)
1819 return 0;
1820
1821 /* Update the Quad Enable bit. */
1822 *sr2 |= SR2_QUAD_EN_BIT7;
1823
1824 ret = spi_nor_write_sr2(nor, sr2);
1825 if (ret)
1826 return ret;
1827
1828 sr2_written = *sr2;
1829
1830 /* Read back and check it. */
1831 ret = spi_nor_read_sr2(nor, sr2);
1832 if (ret)
1833 return ret;
1834
1835 if (*sr2 != sr2_written) {
1836 dev_dbg(nor->dev, "SR2: Read back test failed\n");
1837 return -EIO;
1838 }
1839
1840 return 0;
1841 }
1842
1843 static const struct spi_nor_manufacturer *manufacturers[] = {
1844 &spi_nor_atmel,
1845 &spi_nor_catalyst,
1846 &spi_nor_eon,
1847 &spi_nor_esmt,
1848 &spi_nor_everspin,
1849 &spi_nor_fujitsu,
1850 &spi_nor_gigadevice,
1851 &spi_nor_intel,
1852 &spi_nor_issi,
1853 &spi_nor_macronix,
1854 &spi_nor_micron,
1855 &spi_nor_st,
1856 &spi_nor_spansion,
1857 &spi_nor_sst,
1858 &spi_nor_winbond,
1859 &spi_nor_xilinx,
1860 &spi_nor_xmc,
1861 };
1862
1863 static const struct flash_info *
spi_nor_search_part_by_id(const struct flash_info * parts,unsigned int nparts,const u8 * id)1864 spi_nor_search_part_by_id(const struct flash_info *parts, unsigned int nparts,
1865 const u8 *id)
1866 {
1867 unsigned int i;
1868
1869 for (i = 0; i < nparts; i++) {
1870 if (parts[i].id_len &&
1871 !memcmp(parts[i].id, id, parts[i].id_len))
1872 return &parts[i];
1873 }
1874
1875 return NULL;
1876 }
1877
spi_nor_read_id(struct spi_nor * nor)1878 static const struct flash_info *spi_nor_read_id(struct spi_nor *nor)
1879 {
1880 const struct flash_info *info;
1881 u8 *id = nor->bouncebuf;
1882 unsigned int i;
1883 int ret;
1884
1885 if (nor->spimem) {
1886 struct spi_mem_op op =
1887 SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_RDID, 1),
1888 SPI_MEM_OP_NO_ADDR,
1889 SPI_MEM_OP_NO_DUMMY,
1890 SPI_MEM_OP_DATA_IN(SPI_NOR_MAX_ID_LEN, id, 1));
1891
1892 ret = spi_mem_exec_op(nor->spimem, &op);
1893 } else {
1894 ret = nor->controller_ops->read_reg(nor, SPINOR_OP_RDID, id,
1895 SPI_NOR_MAX_ID_LEN);
1896 }
1897 if (ret) {
1898 dev_dbg(nor->dev, "error %d reading JEDEC ID\n", ret);
1899 return ERR_PTR(ret);
1900 }
1901
1902 for (i = 0; i < ARRAY_SIZE(manufacturers); i++) {
1903 info = spi_nor_search_part_by_id(manufacturers[i]->parts,
1904 manufacturers[i]->nparts,
1905 id);
1906 if (info) {
1907 nor->manufacturer = manufacturers[i];
1908 return info;
1909 }
1910 }
1911
1912 dev_err(nor->dev, "unrecognized JEDEC id bytes: %*ph\n",
1913 SPI_NOR_MAX_ID_LEN, id);
1914 return ERR_PTR(-ENODEV);
1915 }
1916
spi_nor_read(struct mtd_info * mtd,loff_t from,size_t len,size_t * retlen,u_char * buf)1917 static int spi_nor_read(struct mtd_info *mtd, loff_t from, size_t len,
1918 size_t *retlen, u_char *buf)
1919 {
1920 struct spi_nor *nor = mtd_to_spi_nor(mtd);
1921 ssize_t ret;
1922
1923 dev_dbg(nor->dev, "from 0x%08x, len %zd\n", (u32)from, len);
1924
1925 ret = spi_nor_lock_and_prep(nor);
1926 if (ret)
1927 return ret;
1928
1929 while (len) {
1930 loff_t addr = from;
1931
1932 addr = spi_nor_convert_addr(nor, addr);
1933
1934 ret = spi_nor_read_data(nor, addr, len, buf);
1935 if (ret == 0) {
1936 /* We shouldn't see 0-length reads */
1937 ret = -EIO;
1938 goto read_err;
1939 }
1940 if (ret < 0)
1941 goto read_err;
1942
1943 WARN_ON(ret > len);
1944 *retlen += ret;
1945 buf += ret;
1946 from += ret;
1947 len -= ret;
1948 }
1949 ret = 0;
1950
1951 read_err:
1952 spi_nor_unlock_and_unprep(nor);
1953 return ret;
1954 }
1955
1956 /*
1957 * Write an address range to the nor chip. Data must be written in
1958 * FLASH_PAGESIZE chunks. The address range may be any size provided
1959 * it is within the physical boundaries.
1960 */
spi_nor_write(struct mtd_info * mtd,loff_t to,size_t len,size_t * retlen,const u_char * buf)1961 static int spi_nor_write(struct mtd_info *mtd, loff_t to, size_t len,
1962 size_t *retlen, const u_char *buf)
1963 {
1964 struct spi_nor *nor = mtd_to_spi_nor(mtd);
1965 size_t page_offset, page_remain, i;
1966 ssize_t ret;
1967
1968 dev_dbg(nor->dev, "to 0x%08x, len %zd\n", (u32)to, len);
1969
1970 ret = spi_nor_lock_and_prep(nor);
1971 if (ret)
1972 return ret;
1973
1974 for (i = 0; i < len; ) {
1975 ssize_t written;
1976 loff_t addr = to + i;
1977
1978 /*
1979 * If page_size is a power of two, the offset can be quickly
1980 * calculated with an AND operation. On the other cases we
1981 * need to do a modulus operation (more expensive).
1982 */
1983 if (is_power_of_2(nor->page_size)) {
1984 page_offset = addr & (nor->page_size - 1);
1985 } else {
1986 uint64_t aux = addr;
1987
1988 page_offset = do_div(aux, nor->page_size);
1989 }
1990 /* the size of data remaining on the first page */
1991 page_remain = min_t(size_t,
1992 nor->page_size - page_offset, len - i);
1993
1994 addr = spi_nor_convert_addr(nor, addr);
1995
1996 ret = spi_nor_write_enable(nor);
1997 if (ret)
1998 goto write_err;
1999
2000 ret = spi_nor_write_data(nor, addr, page_remain, buf + i);
2001 if (ret < 0)
2002 goto write_err;
2003 written = ret;
2004
2005 ret = spi_nor_wait_till_ready(nor);
2006 if (ret)
2007 goto write_err;
2008 *retlen += written;
2009 i += written;
2010 }
2011
2012 write_err:
2013 spi_nor_unlock_and_unprep(nor);
2014 return ret;
2015 }
2016
spi_nor_check(struct spi_nor * nor)2017 static int spi_nor_check(struct spi_nor *nor)
2018 {
2019 if (!nor->dev ||
2020 (!nor->spimem && !nor->controller_ops) ||
2021 (!nor->spimem && nor->controller_ops &&
2022 (!nor->controller_ops->read ||
2023 !nor->controller_ops->write ||
2024 !nor->controller_ops->read_reg ||
2025 !nor->controller_ops->write_reg))) {
2026 pr_err("spi-nor: please fill all the necessary fields!\n");
2027 return -EINVAL;
2028 }
2029
2030 if (nor->spimem && nor->controller_ops) {
2031 dev_err(nor->dev, "nor->spimem and nor->controller_ops are mutually exclusive, please set just one of them.\n");
2032 return -EINVAL;
2033 }
2034
2035 return 0;
2036 }
2037
2038 void
spi_nor_set_read_settings(struct spi_nor_read_command * read,u8 num_mode_clocks,u8 num_wait_states,u8 opcode,enum spi_nor_protocol proto)2039 spi_nor_set_read_settings(struct spi_nor_read_command *read,
2040 u8 num_mode_clocks,
2041 u8 num_wait_states,
2042 u8 opcode,
2043 enum spi_nor_protocol proto)
2044 {
2045 read->num_mode_clocks = num_mode_clocks;
2046 read->num_wait_states = num_wait_states;
2047 read->opcode = opcode;
2048 read->proto = proto;
2049 }
2050
spi_nor_set_pp_settings(struct spi_nor_pp_command * pp,u8 opcode,enum spi_nor_protocol proto)2051 void spi_nor_set_pp_settings(struct spi_nor_pp_command *pp, u8 opcode,
2052 enum spi_nor_protocol proto)
2053 {
2054 pp->opcode = opcode;
2055 pp->proto = proto;
2056 }
2057
spi_nor_hwcaps2cmd(u32 hwcaps,const int table[][2],size_t size)2058 static int spi_nor_hwcaps2cmd(u32 hwcaps, const int table[][2], size_t size)
2059 {
2060 size_t i;
2061
2062 for (i = 0; i < size; i++)
2063 if (table[i][0] == (int)hwcaps)
2064 return table[i][1];
2065
2066 return -EINVAL;
2067 }
2068
spi_nor_hwcaps_read2cmd(u32 hwcaps)2069 int spi_nor_hwcaps_read2cmd(u32 hwcaps)
2070 {
2071 static const int hwcaps_read2cmd[][2] = {
2072 { SNOR_HWCAPS_READ, SNOR_CMD_READ },
2073 { SNOR_HWCAPS_READ_FAST, SNOR_CMD_READ_FAST },
2074 { SNOR_HWCAPS_READ_1_1_1_DTR, SNOR_CMD_READ_1_1_1_DTR },
2075 { SNOR_HWCAPS_READ_1_1_2, SNOR_CMD_READ_1_1_2 },
2076 { SNOR_HWCAPS_READ_1_2_2, SNOR_CMD_READ_1_2_2 },
2077 { SNOR_HWCAPS_READ_2_2_2, SNOR_CMD_READ_2_2_2 },
2078 { SNOR_HWCAPS_READ_1_2_2_DTR, SNOR_CMD_READ_1_2_2_DTR },
2079 { SNOR_HWCAPS_READ_1_1_4, SNOR_CMD_READ_1_1_4 },
2080 { SNOR_HWCAPS_READ_1_4_4, SNOR_CMD_READ_1_4_4 },
2081 { SNOR_HWCAPS_READ_4_4_4, SNOR_CMD_READ_4_4_4 },
2082 { SNOR_HWCAPS_READ_1_4_4_DTR, SNOR_CMD_READ_1_4_4_DTR },
2083 { SNOR_HWCAPS_READ_1_1_8, SNOR_CMD_READ_1_1_8 },
2084 { SNOR_HWCAPS_READ_1_8_8, SNOR_CMD_READ_1_8_8 },
2085 { SNOR_HWCAPS_READ_8_8_8, SNOR_CMD_READ_8_8_8 },
2086 { SNOR_HWCAPS_READ_1_8_8_DTR, SNOR_CMD_READ_1_8_8_DTR },
2087 { SNOR_HWCAPS_READ_8_8_8_DTR, SNOR_CMD_READ_8_8_8_DTR },
2088 };
2089
2090 return spi_nor_hwcaps2cmd(hwcaps, hwcaps_read2cmd,
2091 ARRAY_SIZE(hwcaps_read2cmd));
2092 }
2093
spi_nor_hwcaps_pp2cmd(u32 hwcaps)2094 static int spi_nor_hwcaps_pp2cmd(u32 hwcaps)
2095 {
2096 static const int hwcaps_pp2cmd[][2] = {
2097 { SNOR_HWCAPS_PP, SNOR_CMD_PP },
2098 { SNOR_HWCAPS_PP_1_1_4, SNOR_CMD_PP_1_1_4 },
2099 { SNOR_HWCAPS_PP_1_4_4, SNOR_CMD_PP_1_4_4 },
2100 { SNOR_HWCAPS_PP_4_4_4, SNOR_CMD_PP_4_4_4 },
2101 { SNOR_HWCAPS_PP_1_1_8, SNOR_CMD_PP_1_1_8 },
2102 { SNOR_HWCAPS_PP_1_8_8, SNOR_CMD_PP_1_8_8 },
2103 { SNOR_HWCAPS_PP_8_8_8, SNOR_CMD_PP_8_8_8 },
2104 { SNOR_HWCAPS_PP_8_8_8_DTR, SNOR_CMD_PP_8_8_8_DTR },
2105 };
2106
2107 return spi_nor_hwcaps2cmd(hwcaps, hwcaps_pp2cmd,
2108 ARRAY_SIZE(hwcaps_pp2cmd));
2109 }
2110
2111 /**
2112 * spi_nor_spimem_check_op - check if the operation is supported
2113 * by controller
2114 *@nor: pointer to a 'struct spi_nor'
2115 *@op: pointer to op template to be checked
2116 *
2117 * Returns 0 if operation is supported, -EOPNOTSUPP otherwise.
2118 */
spi_nor_spimem_check_op(struct spi_nor * nor,struct spi_mem_op * op)2119 static int spi_nor_spimem_check_op(struct spi_nor *nor,
2120 struct spi_mem_op *op)
2121 {
2122 /*
2123 * First test with 4 address bytes. The opcode itself might
2124 * be a 3B addressing opcode but we don't care, because
2125 * SPI controller implementation should not check the opcode,
2126 * but just the sequence.
2127 */
2128 op->addr.nbytes = 4;
2129 if (!spi_mem_supports_op(nor->spimem, op)) {
2130 if (nor->mtd.size > SZ_16M)
2131 return -EOPNOTSUPP;
2132
2133 /* If flash size <= 16MB, 3 address bytes are sufficient */
2134 op->addr.nbytes = 3;
2135 if (!spi_mem_supports_op(nor->spimem, op))
2136 return -EOPNOTSUPP;
2137 }
2138
2139 return 0;
2140 }
2141
2142 /**
2143 * spi_nor_spimem_check_readop - check if the read op is supported
2144 * by controller
2145 *@nor: pointer to a 'struct spi_nor'
2146 *@read: pointer to op template to be checked
2147 *
2148 * Returns 0 if operation is supported, -EOPNOTSUPP otherwise.
2149 */
spi_nor_spimem_check_readop(struct spi_nor * nor,const struct spi_nor_read_command * read)2150 static int spi_nor_spimem_check_readop(struct spi_nor *nor,
2151 const struct spi_nor_read_command *read)
2152 {
2153 struct spi_mem_op op = SPI_MEM_OP(SPI_MEM_OP_CMD(read->opcode, 0),
2154 SPI_MEM_OP_ADDR(3, 0, 0),
2155 SPI_MEM_OP_DUMMY(1, 0),
2156 SPI_MEM_OP_DATA_IN(1, NULL, 0));
2157
2158 spi_nor_spimem_setup_op(nor, &op, read->proto);
2159
2160 /* convert the dummy cycles to the number of bytes */
2161 op.dummy.nbytes = (read->num_mode_clocks + read->num_wait_states) *
2162 op.dummy.buswidth / 8;
2163 if (spi_nor_protocol_is_dtr(nor->read_proto))
2164 op.dummy.nbytes *= 2;
2165
2166 return spi_nor_spimem_check_op(nor, &op);
2167 }
2168
2169 /**
2170 * spi_nor_spimem_check_pp - check if the page program op is supported
2171 * by controller
2172 *@nor: pointer to a 'struct spi_nor'
2173 *@pp: pointer to op template to be checked
2174 *
2175 * Returns 0 if operation is supported, -EOPNOTSUPP otherwise.
2176 */
spi_nor_spimem_check_pp(struct spi_nor * nor,const struct spi_nor_pp_command * pp)2177 static int spi_nor_spimem_check_pp(struct spi_nor *nor,
2178 const struct spi_nor_pp_command *pp)
2179 {
2180 struct spi_mem_op op = SPI_MEM_OP(SPI_MEM_OP_CMD(pp->opcode, 0),
2181 SPI_MEM_OP_ADDR(3, 0, 0),
2182 SPI_MEM_OP_NO_DUMMY,
2183 SPI_MEM_OP_DATA_OUT(1, NULL, 0));
2184
2185 spi_nor_spimem_setup_op(nor, &op, pp->proto);
2186
2187 return spi_nor_spimem_check_op(nor, &op);
2188 }
2189
2190 /**
2191 * spi_nor_spimem_adjust_hwcaps - Find optimal Read/Write protocol
2192 * based on SPI controller capabilities
2193 * @nor: pointer to a 'struct spi_nor'
2194 * @hwcaps: pointer to resulting capabilities after adjusting
2195 * according to controller and flash's capability
2196 */
2197 static void
spi_nor_spimem_adjust_hwcaps(struct spi_nor * nor,u32 * hwcaps)2198 spi_nor_spimem_adjust_hwcaps(struct spi_nor *nor, u32 *hwcaps)
2199 {
2200 struct spi_nor_flash_parameter *params = nor->params;
2201 unsigned int cap;
2202
2203 /* X-X-X modes are not supported yet, mask them all. */
2204 *hwcaps &= ~SNOR_HWCAPS_X_X_X;
2205
2206 /*
2207 * If the reset line is broken, we do not want to enter a stateful
2208 * mode.
2209 */
2210 if (nor->flags & SNOR_F_BROKEN_RESET)
2211 *hwcaps &= ~(SNOR_HWCAPS_X_X_X | SNOR_HWCAPS_X_X_X_DTR);
2212
2213 for (cap = 0; cap < sizeof(*hwcaps) * BITS_PER_BYTE; cap++) {
2214 int rdidx, ppidx;
2215
2216 if (!(*hwcaps & BIT(cap)))
2217 continue;
2218
2219 rdidx = spi_nor_hwcaps_read2cmd(BIT(cap));
2220 if (rdidx >= 0 &&
2221 spi_nor_spimem_check_readop(nor, ¶ms->reads[rdidx]))
2222 *hwcaps &= ~BIT(cap);
2223
2224 ppidx = spi_nor_hwcaps_pp2cmd(BIT(cap));
2225 if (ppidx < 0)
2226 continue;
2227
2228 if (spi_nor_spimem_check_pp(nor,
2229 ¶ms->page_programs[ppidx]))
2230 *hwcaps &= ~BIT(cap);
2231 }
2232 }
2233
2234 /**
2235 * spi_nor_set_erase_type() - set a SPI NOR erase type
2236 * @erase: pointer to a structure that describes a SPI NOR erase type
2237 * @size: the size of the sector/block erased by the erase type
2238 * @opcode: the SPI command op code to erase the sector/block
2239 */
spi_nor_set_erase_type(struct spi_nor_erase_type * erase,u32 size,u8 opcode)2240 void spi_nor_set_erase_type(struct spi_nor_erase_type *erase, u32 size,
2241 u8 opcode)
2242 {
2243 erase->size = size;
2244 erase->opcode = opcode;
2245 /* JEDEC JESD216B Standard imposes erase sizes to be power of 2. */
2246 erase->size_shift = ffs(erase->size) - 1;
2247 erase->size_mask = (1 << erase->size_shift) - 1;
2248 }
2249
2250 /**
2251 * spi_nor_mask_erase_type() - mask out a SPI NOR erase type
2252 * @erase: pointer to a structure that describes a SPI NOR erase type
2253 */
spi_nor_mask_erase_type(struct spi_nor_erase_type * erase)2254 void spi_nor_mask_erase_type(struct spi_nor_erase_type *erase)
2255 {
2256 erase->size = 0;
2257 }
2258
2259 /**
2260 * spi_nor_init_uniform_erase_map() - Initialize uniform erase map
2261 * @map: the erase map of the SPI NOR
2262 * @erase_mask: bitmask encoding erase types that can erase the entire
2263 * flash memory
2264 * @flash_size: the spi nor flash memory size
2265 */
spi_nor_init_uniform_erase_map(struct spi_nor_erase_map * map,u8 erase_mask,u64 flash_size)2266 void spi_nor_init_uniform_erase_map(struct spi_nor_erase_map *map,
2267 u8 erase_mask, u64 flash_size)
2268 {
2269 /* Offset 0 with erase_mask and SNOR_LAST_REGION bit set */
2270 map->uniform_region.offset = (erase_mask & SNOR_ERASE_TYPE_MASK) |
2271 SNOR_LAST_REGION;
2272 map->uniform_region.size = flash_size;
2273 map->regions = &map->uniform_region;
2274 map->uniform_erase_type = erase_mask;
2275 }
2276
spi_nor_post_bfpt_fixups(struct spi_nor * nor,const struct sfdp_parameter_header * bfpt_header,const struct sfdp_bfpt * bfpt)2277 int spi_nor_post_bfpt_fixups(struct spi_nor *nor,
2278 const struct sfdp_parameter_header *bfpt_header,
2279 const struct sfdp_bfpt *bfpt)
2280 {
2281 int ret;
2282
2283 if (nor->manufacturer && nor->manufacturer->fixups &&
2284 nor->manufacturer->fixups->post_bfpt) {
2285 ret = nor->manufacturer->fixups->post_bfpt(nor, bfpt_header,
2286 bfpt);
2287 if (ret)
2288 return ret;
2289 }
2290
2291 if (nor->info->fixups && nor->info->fixups->post_bfpt)
2292 return nor->info->fixups->post_bfpt(nor, bfpt_header, bfpt);
2293
2294 return 0;
2295 }
2296
spi_nor_select_read(struct spi_nor * nor,u32 shared_hwcaps)2297 static int spi_nor_select_read(struct spi_nor *nor,
2298 u32 shared_hwcaps)
2299 {
2300 int cmd, best_match = fls(shared_hwcaps & SNOR_HWCAPS_READ_MASK) - 1;
2301 const struct spi_nor_read_command *read;
2302
2303 if (best_match < 0)
2304 return -EINVAL;
2305
2306 cmd = spi_nor_hwcaps_read2cmd(BIT(best_match));
2307 if (cmd < 0)
2308 return -EINVAL;
2309
2310 read = &nor->params->reads[cmd];
2311 nor->read_opcode = read->opcode;
2312 nor->read_proto = read->proto;
2313
2314 /*
2315 * In the SPI NOR framework, we don't need to make the difference
2316 * between mode clock cycles and wait state clock cycles.
2317 * Indeed, the value of the mode clock cycles is used by a QSPI
2318 * flash memory to know whether it should enter or leave its 0-4-4
2319 * (Continuous Read / XIP) mode.
2320 * eXecution In Place is out of the scope of the mtd sub-system.
2321 * Hence we choose to merge both mode and wait state clock cycles
2322 * into the so called dummy clock cycles.
2323 */
2324 nor->read_dummy = read->num_mode_clocks + read->num_wait_states;
2325 return 0;
2326 }
2327
spi_nor_select_pp(struct spi_nor * nor,u32 shared_hwcaps)2328 static int spi_nor_select_pp(struct spi_nor *nor,
2329 u32 shared_hwcaps)
2330 {
2331 int cmd, best_match = fls(shared_hwcaps & SNOR_HWCAPS_PP_MASK) - 1;
2332 const struct spi_nor_pp_command *pp;
2333
2334 if (best_match < 0)
2335 return -EINVAL;
2336
2337 cmd = spi_nor_hwcaps_pp2cmd(BIT(best_match));
2338 if (cmd < 0)
2339 return -EINVAL;
2340
2341 pp = &nor->params->page_programs[cmd];
2342 nor->program_opcode = pp->opcode;
2343 nor->write_proto = pp->proto;
2344 return 0;
2345 }
2346
2347 /**
2348 * spi_nor_select_uniform_erase() - select optimum uniform erase type
2349 * @map: the erase map of the SPI NOR
2350 * @wanted_size: the erase type size to search for. Contains the value of
2351 * info->sector_size or of the "small sector" size in case
2352 * CONFIG_MTD_SPI_NOR_USE_4K_SECTORS is defined.
2353 *
2354 * Once the optimum uniform sector erase command is found, disable all the
2355 * other.
2356 *
2357 * Return: pointer to erase type on success, NULL otherwise.
2358 */
2359 static const struct spi_nor_erase_type *
spi_nor_select_uniform_erase(struct spi_nor_erase_map * map,const u32 wanted_size)2360 spi_nor_select_uniform_erase(struct spi_nor_erase_map *map,
2361 const u32 wanted_size)
2362 {
2363 const struct spi_nor_erase_type *tested_erase, *erase = NULL;
2364 int i;
2365 u8 uniform_erase_type = map->uniform_erase_type;
2366
2367 for (i = SNOR_ERASE_TYPE_MAX - 1; i >= 0; i--) {
2368 if (!(uniform_erase_type & BIT(i)))
2369 continue;
2370
2371 tested_erase = &map->erase_type[i];
2372
2373 /*
2374 * If the current erase size is the one, stop here:
2375 * we have found the right uniform Sector Erase command.
2376 */
2377 if (tested_erase->size == wanted_size) {
2378 erase = tested_erase;
2379 break;
2380 }
2381
2382 /*
2383 * Otherwise, the current erase size is still a valid candidate.
2384 * Select the biggest valid candidate.
2385 */
2386 if (!erase && tested_erase->size)
2387 erase = tested_erase;
2388 /* keep iterating to find the wanted_size */
2389 }
2390
2391 if (!erase)
2392 return NULL;
2393
2394 /* Disable all other Sector Erase commands. */
2395 map->uniform_erase_type &= ~SNOR_ERASE_TYPE_MASK;
2396 map->uniform_erase_type |= BIT(erase - map->erase_type);
2397 return erase;
2398 }
2399
spi_nor_select_erase(struct spi_nor * nor)2400 static int spi_nor_select_erase(struct spi_nor *nor)
2401 {
2402 struct spi_nor_erase_map *map = &nor->params->erase_map;
2403 const struct spi_nor_erase_type *erase = NULL;
2404 struct mtd_info *mtd = &nor->mtd;
2405 u32 wanted_size = nor->info->sector_size;
2406 int i;
2407
2408 /*
2409 * The previous implementation handling Sector Erase commands assumed
2410 * that the SPI flash memory has an uniform layout then used only one
2411 * of the supported erase sizes for all Sector Erase commands.
2412 * So to be backward compatible, the new implementation also tries to
2413 * manage the SPI flash memory as uniform with a single erase sector
2414 * size, when possible.
2415 */
2416 #ifdef CONFIG_MTD_SPI_NOR_USE_4K_SECTORS
2417 /* prefer "small sector" erase if possible */
2418 wanted_size = 4096u;
2419 #endif
2420
2421 if (spi_nor_has_uniform_erase(nor)) {
2422 erase = spi_nor_select_uniform_erase(map, wanted_size);
2423 if (!erase)
2424 return -EINVAL;
2425 nor->erase_opcode = erase->opcode;
2426 mtd->erasesize = erase->size;
2427 return 0;
2428 }
2429
2430 /*
2431 * For non-uniform SPI flash memory, set mtd->erasesize to the
2432 * maximum erase sector size. No need to set nor->erase_opcode.
2433 */
2434 for (i = SNOR_ERASE_TYPE_MAX - 1; i >= 0; i--) {
2435 if (map->erase_type[i].size) {
2436 erase = &map->erase_type[i];
2437 break;
2438 }
2439 }
2440
2441 if (!erase)
2442 return -EINVAL;
2443
2444 mtd->erasesize = erase->size;
2445 return 0;
2446 }
2447
spi_nor_default_setup(struct spi_nor * nor,const struct spi_nor_hwcaps * hwcaps)2448 static int spi_nor_default_setup(struct spi_nor *nor,
2449 const struct spi_nor_hwcaps *hwcaps)
2450 {
2451 struct spi_nor_flash_parameter *params = nor->params;
2452 u32 ignored_mask, shared_mask;
2453 int err;
2454
2455 /*
2456 * Keep only the hardware capabilities supported by both the SPI
2457 * controller and the SPI flash memory.
2458 */
2459 shared_mask = hwcaps->mask & params->hwcaps.mask;
2460
2461 if (nor->spimem) {
2462 /*
2463 * When called from spi_nor_probe(), all caps are set and we
2464 * need to discard some of them based on what the SPI
2465 * controller actually supports (using spi_mem_supports_op()).
2466 */
2467 spi_nor_spimem_adjust_hwcaps(nor, &shared_mask);
2468 } else {
2469 /*
2470 * SPI n-n-n protocols are not supported when the SPI
2471 * controller directly implements the spi_nor interface.
2472 * Yet another reason to switch to spi-mem.
2473 */
2474 ignored_mask = SNOR_HWCAPS_X_X_X | SNOR_HWCAPS_X_X_X_DTR;
2475 if (shared_mask & ignored_mask) {
2476 dev_dbg(nor->dev,
2477 "SPI n-n-n protocols are not supported.\n");
2478 shared_mask &= ~ignored_mask;
2479 }
2480 }
2481
2482 /* Select the (Fast) Read command. */
2483 err = spi_nor_select_read(nor, shared_mask);
2484 if (err) {
2485 dev_dbg(nor->dev,
2486 "can't select read settings supported by both the SPI controller and memory.\n");
2487 return err;
2488 }
2489
2490 /* Select the Page Program command. */
2491 err = spi_nor_select_pp(nor, shared_mask);
2492 if (err) {
2493 dev_dbg(nor->dev,
2494 "can't select write settings supported by both the SPI controller and memory.\n");
2495 return err;
2496 }
2497
2498 /* Select the Sector Erase command. */
2499 err = spi_nor_select_erase(nor);
2500 if (err) {
2501 dev_dbg(nor->dev,
2502 "can't select erase settings supported by both the SPI controller and memory.\n");
2503 return err;
2504 }
2505
2506 return 0;
2507 }
2508
spi_nor_setup(struct spi_nor * nor,const struct spi_nor_hwcaps * hwcaps)2509 static int spi_nor_setup(struct spi_nor *nor,
2510 const struct spi_nor_hwcaps *hwcaps)
2511 {
2512 if (!nor->params->setup)
2513 return 0;
2514
2515 return nor->params->setup(nor, hwcaps);
2516 }
2517
2518 /**
2519 * spi_nor_manufacturer_init_params() - Initialize the flash's parameters and
2520 * settings based on MFR register and ->default_init() hook.
2521 * @nor: pointer to a 'struct spi_nor'.
2522 */
spi_nor_manufacturer_init_params(struct spi_nor * nor)2523 static void spi_nor_manufacturer_init_params(struct spi_nor *nor)
2524 {
2525 if (nor->manufacturer && nor->manufacturer->fixups &&
2526 nor->manufacturer->fixups->default_init)
2527 nor->manufacturer->fixups->default_init(nor);
2528
2529 if (nor->info->fixups && nor->info->fixups->default_init)
2530 nor->info->fixups->default_init(nor);
2531 }
2532
2533 /**
2534 * spi_nor_sfdp_init_params() - Initialize the flash's parameters and settings
2535 * based on JESD216 SFDP standard.
2536 * @nor: pointer to a 'struct spi_nor'.
2537 *
2538 * The method has a roll-back mechanism: in case the SFDP parsing fails, the
2539 * legacy flash parameters and settings will be restored.
2540 */
spi_nor_sfdp_init_params(struct spi_nor * nor)2541 static void spi_nor_sfdp_init_params(struct spi_nor *nor)
2542 {
2543 struct spi_nor_flash_parameter sfdp_params;
2544
2545 memcpy(&sfdp_params, nor->params, sizeof(sfdp_params));
2546
2547 if (spi_nor_parse_sfdp(nor)) {
2548 memcpy(nor->params, &sfdp_params, sizeof(*nor->params));
2549 nor->addr_width = 0;
2550 nor->flags &= ~SNOR_F_4B_OPCODES;
2551 }
2552 }
2553
2554 /**
2555 * spi_nor_info_init_params() - Initialize the flash's parameters and settings
2556 * based on nor->info data.
2557 * @nor: pointer to a 'struct spi_nor'.
2558 */
spi_nor_info_init_params(struct spi_nor * nor)2559 static void spi_nor_info_init_params(struct spi_nor *nor)
2560 {
2561 struct spi_nor_flash_parameter *params = nor->params;
2562 struct spi_nor_erase_map *map = ¶ms->erase_map;
2563 const struct flash_info *info = nor->info;
2564 struct device_node *np = spi_nor_get_flash_node(nor);
2565 u8 i, erase_mask;
2566
2567 /* Initialize default flash parameters and settings. */
2568 params->quad_enable = spi_nor_sr2_bit1_quad_enable;
2569 params->set_4byte_addr_mode = spansion_set_4byte_addr_mode;
2570 params->setup = spi_nor_default_setup;
2571 params->otp.org = &info->otp_org;
2572
2573 /* Default to 16-bit Write Status (01h) Command */
2574 nor->flags |= SNOR_F_HAS_16BIT_SR;
2575
2576 /* Set SPI NOR sizes. */
2577 params->writesize = 1;
2578 params->size = (u64)info->sector_size * info->n_sectors;
2579 params->page_size = info->page_size;
2580
2581 if (!(info->flags & SPI_NOR_NO_FR)) {
2582 /* Default to Fast Read for DT and non-DT platform devices. */
2583 params->hwcaps.mask |= SNOR_HWCAPS_READ_FAST;
2584
2585 /* Mask out Fast Read if not requested at DT instantiation. */
2586 if (np && !of_property_read_bool(np, "m25p,fast-read"))
2587 params->hwcaps.mask &= ~SNOR_HWCAPS_READ_FAST;
2588 }
2589
2590 /* (Fast) Read settings. */
2591 params->hwcaps.mask |= SNOR_HWCAPS_READ;
2592 spi_nor_set_read_settings(¶ms->reads[SNOR_CMD_READ],
2593 0, 0, SPINOR_OP_READ,
2594 SNOR_PROTO_1_1_1);
2595
2596 if (params->hwcaps.mask & SNOR_HWCAPS_READ_FAST)
2597 spi_nor_set_read_settings(¶ms->reads[SNOR_CMD_READ_FAST],
2598 0, 8, SPINOR_OP_READ_FAST,
2599 SNOR_PROTO_1_1_1);
2600
2601 if (info->flags & SPI_NOR_DUAL_READ) {
2602 params->hwcaps.mask |= SNOR_HWCAPS_READ_1_1_2;
2603 spi_nor_set_read_settings(¶ms->reads[SNOR_CMD_READ_1_1_2],
2604 0, 8, SPINOR_OP_READ_1_1_2,
2605 SNOR_PROTO_1_1_2);
2606 }
2607
2608 if (info->flags & SPI_NOR_QUAD_READ) {
2609 params->hwcaps.mask |= SNOR_HWCAPS_READ_1_1_4;
2610 spi_nor_set_read_settings(¶ms->reads[SNOR_CMD_READ_1_1_4],
2611 0, 8, SPINOR_OP_READ_1_1_4,
2612 SNOR_PROTO_1_1_4);
2613 }
2614
2615 if (info->flags & SPI_NOR_OCTAL_READ) {
2616 params->hwcaps.mask |= SNOR_HWCAPS_READ_1_1_8;
2617 spi_nor_set_read_settings(¶ms->reads[SNOR_CMD_READ_1_1_8],
2618 0, 8, SPINOR_OP_READ_1_1_8,
2619 SNOR_PROTO_1_1_8);
2620 }
2621
2622 if (info->flags & SPI_NOR_OCTAL_DTR_READ) {
2623 params->hwcaps.mask |= SNOR_HWCAPS_READ_8_8_8_DTR;
2624 spi_nor_set_read_settings(¶ms->reads[SNOR_CMD_READ_8_8_8_DTR],
2625 0, 20, SPINOR_OP_READ_FAST,
2626 SNOR_PROTO_8_8_8_DTR);
2627 }
2628
2629 /* Page Program settings. */
2630 params->hwcaps.mask |= SNOR_HWCAPS_PP;
2631 spi_nor_set_pp_settings(¶ms->page_programs[SNOR_CMD_PP],
2632 SPINOR_OP_PP, SNOR_PROTO_1_1_1);
2633
2634 if (info->flags & SPI_NOR_OCTAL_DTR_PP) {
2635 params->hwcaps.mask |= SNOR_HWCAPS_PP_8_8_8_DTR;
2636 /*
2637 * Since xSPI Page Program opcode is backward compatible with
2638 * Legacy SPI, use Legacy SPI opcode there as well.
2639 */
2640 spi_nor_set_pp_settings(¶ms->page_programs[SNOR_CMD_PP_8_8_8_DTR],
2641 SPINOR_OP_PP, SNOR_PROTO_8_8_8_DTR);
2642 }
2643
2644 /*
2645 * Sector Erase settings. Sort Erase Types in ascending order, with the
2646 * smallest erase size starting at BIT(0).
2647 */
2648 erase_mask = 0;
2649 i = 0;
2650 if (info->flags & SECT_4K_PMC) {
2651 erase_mask |= BIT(i);
2652 spi_nor_set_erase_type(&map->erase_type[i], 4096u,
2653 SPINOR_OP_BE_4K_PMC);
2654 i++;
2655 } else if (info->flags & SECT_4K) {
2656 erase_mask |= BIT(i);
2657 spi_nor_set_erase_type(&map->erase_type[i], 4096u,
2658 SPINOR_OP_BE_4K);
2659 i++;
2660 }
2661 erase_mask |= BIT(i);
2662 spi_nor_set_erase_type(&map->erase_type[i], info->sector_size,
2663 SPINOR_OP_SE);
2664 spi_nor_init_uniform_erase_map(map, erase_mask, params->size);
2665 }
2666
2667 /**
2668 * spi_nor_post_sfdp_fixups() - Updates the flash's parameters and settings
2669 * after SFDP has been parsed (is also called for SPI NORs that do not
2670 * support RDSFDP).
2671 * @nor: pointer to a 'struct spi_nor'
2672 *
2673 * Typically used to tweak various parameters that could not be extracted by
2674 * other means (i.e. when information provided by the SFDP/flash_info tables
2675 * are incomplete or wrong).
2676 */
spi_nor_post_sfdp_fixups(struct spi_nor * nor)2677 static void spi_nor_post_sfdp_fixups(struct spi_nor *nor)
2678 {
2679 if (nor->manufacturer && nor->manufacturer->fixups &&
2680 nor->manufacturer->fixups->post_sfdp)
2681 nor->manufacturer->fixups->post_sfdp(nor);
2682
2683 if (nor->info->fixups && nor->info->fixups->post_sfdp)
2684 nor->info->fixups->post_sfdp(nor);
2685 }
2686
2687 /**
2688 * spi_nor_late_init_params() - Late initialization of default flash parameters.
2689 * @nor: pointer to a 'struct spi_nor'
2690 *
2691 * Used to set default flash parameters and settings when the ->default_init()
2692 * hook or the SFDP parser let voids.
2693 */
spi_nor_late_init_params(struct spi_nor * nor)2694 static void spi_nor_late_init_params(struct spi_nor *nor)
2695 {
2696 /*
2697 * NOR protection support. When locking_ops are not provided, we pick
2698 * the default ones.
2699 */
2700 if (nor->flags & SNOR_F_HAS_LOCK && !nor->params->locking_ops)
2701 spi_nor_init_default_locking_ops(nor);
2702 }
2703
2704 /**
2705 * spi_nor_init_params() - Initialize the flash's parameters and settings.
2706 * @nor: pointer to a 'struct spi_nor'.
2707 *
2708 * The flash parameters and settings are initialized based on a sequence of
2709 * calls that are ordered by priority:
2710 *
2711 * 1/ Default flash parameters initialization. The initializations are done
2712 * based on nor->info data:
2713 * spi_nor_info_init_params()
2714 *
2715 * which can be overwritten by:
2716 * 2/ Manufacturer flash parameters initialization. The initializations are
2717 * done based on MFR register, or when the decisions can not be done solely
2718 * based on MFR, by using specific flash_info tweeks, ->default_init():
2719 * spi_nor_manufacturer_init_params()
2720 *
2721 * which can be overwritten by:
2722 * 3/ SFDP flash parameters initialization. JESD216 SFDP is a standard and
2723 * should be more accurate that the above.
2724 * spi_nor_sfdp_init_params()
2725 *
2726 * Please note that there is a ->post_bfpt() fixup hook that can overwrite
2727 * the flash parameters and settings immediately after parsing the Basic
2728 * Flash Parameter Table.
2729 *
2730 * which can be overwritten by:
2731 * 4/ Post SFDP flash parameters initialization. Used to tweak various
2732 * parameters that could not be extracted by other means (i.e. when
2733 * information provided by the SFDP/flash_info tables are incomplete or
2734 * wrong).
2735 * spi_nor_post_sfdp_fixups()
2736 *
2737 * 5/ Late default flash parameters initialization, used when the
2738 * ->default_init() hook or the SFDP parser do not set specific params.
2739 * spi_nor_late_init_params()
2740 */
spi_nor_init_params(struct spi_nor * nor)2741 static int spi_nor_init_params(struct spi_nor *nor)
2742 {
2743 nor->params = devm_kzalloc(nor->dev, sizeof(*nor->params), GFP_KERNEL);
2744 if (!nor->params)
2745 return -ENOMEM;
2746
2747 spi_nor_info_init_params(nor);
2748
2749 spi_nor_manufacturer_init_params(nor);
2750
2751 if ((nor->info->flags & (SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
2752 SPI_NOR_OCTAL_READ | SPI_NOR_OCTAL_DTR_READ)) &&
2753 !(nor->info->flags & SPI_NOR_SKIP_SFDP))
2754 spi_nor_sfdp_init_params(nor);
2755
2756 spi_nor_post_sfdp_fixups(nor);
2757
2758 spi_nor_late_init_params(nor);
2759
2760 return 0;
2761 }
2762
2763 /** spi_nor_octal_dtr_enable() - enable Octal DTR I/O if needed
2764 * @nor: pointer to a 'struct spi_nor'
2765 * @enable: whether to enable or disable Octal DTR
2766 *
2767 * Return: 0 on success, -errno otherwise.
2768 */
spi_nor_octal_dtr_enable(struct spi_nor * nor,bool enable)2769 static int spi_nor_octal_dtr_enable(struct spi_nor *nor, bool enable)
2770 {
2771 int ret;
2772
2773 if (!nor->params->octal_dtr_enable)
2774 return 0;
2775
2776 if (!(nor->read_proto == SNOR_PROTO_8_8_8_DTR &&
2777 nor->write_proto == SNOR_PROTO_8_8_8_DTR))
2778 return 0;
2779
2780 if (!(nor->flags & SNOR_F_IO_MODE_EN_VOLATILE))
2781 return 0;
2782
2783 ret = nor->params->octal_dtr_enable(nor, enable);
2784 if (ret)
2785 return ret;
2786
2787 if (enable)
2788 nor->reg_proto = SNOR_PROTO_8_8_8_DTR;
2789 else
2790 nor->reg_proto = SNOR_PROTO_1_1_1;
2791
2792 return 0;
2793 }
2794
2795 /**
2796 * spi_nor_quad_enable() - enable Quad I/O if needed.
2797 * @nor: pointer to a 'struct spi_nor'
2798 *
2799 * Return: 0 on success, -errno otherwise.
2800 */
spi_nor_quad_enable(struct spi_nor * nor)2801 static int spi_nor_quad_enable(struct spi_nor *nor)
2802 {
2803 if (!nor->params->quad_enable)
2804 return 0;
2805
2806 if (!(spi_nor_get_protocol_width(nor->read_proto) == 4 ||
2807 spi_nor_get_protocol_width(nor->write_proto) == 4))
2808 return 0;
2809
2810 return nor->params->quad_enable(nor);
2811 }
2812
spi_nor_init(struct spi_nor * nor)2813 static int spi_nor_init(struct spi_nor *nor)
2814 {
2815 int err;
2816
2817 err = spi_nor_octal_dtr_enable(nor, true);
2818 if (err) {
2819 dev_dbg(nor->dev, "octal mode not supported\n");
2820 return err;
2821 }
2822
2823 err = spi_nor_quad_enable(nor);
2824 if (err) {
2825 dev_dbg(nor->dev, "quad mode not supported\n");
2826 return err;
2827 }
2828
2829 /*
2830 * Some SPI NOR flashes are write protected by default after a power-on
2831 * reset cycle, in order to avoid inadvertent writes during power-up.
2832 * Backward compatibility imposes to unlock the entire flash memory
2833 * array at power-up by default. Depending on the kernel configuration
2834 * (1) do nothing, (2) always unlock the entire flash array or (3)
2835 * unlock the entire flash array only when the software write
2836 * protection bits are volatile. The latter is indicated by
2837 * SNOR_F_SWP_IS_VOLATILE.
2838 */
2839 if (IS_ENABLED(CONFIG_MTD_SPI_NOR_SWP_DISABLE) ||
2840 (IS_ENABLED(CONFIG_MTD_SPI_NOR_SWP_DISABLE_ON_VOLATILE) &&
2841 nor->flags & SNOR_F_SWP_IS_VOLATILE))
2842 spi_nor_try_unlock_all(nor);
2843
2844 if (nor->addr_width == 4 &&
2845 nor->read_proto != SNOR_PROTO_8_8_8_DTR &&
2846 !(nor->flags & SNOR_F_4B_OPCODES)) {
2847 /*
2848 * If the RESET# pin isn't hooked up properly, or the system
2849 * otherwise doesn't perform a reset command in the boot
2850 * sequence, it's impossible to 100% protect against unexpected
2851 * reboots (e.g., crashes). Warn the user (or hopefully, system
2852 * designer) that this is bad.
2853 */
2854 WARN_ONCE(nor->flags & SNOR_F_BROKEN_RESET,
2855 "enabling reset hack; may not recover from unexpected reboots\n");
2856 nor->params->set_4byte_addr_mode(nor, true);
2857 }
2858
2859 return 0;
2860 }
2861
2862 /**
2863 * spi_nor_soft_reset() - Perform a software reset
2864 * @nor: pointer to 'struct spi_nor'
2865 *
2866 * Performs a "Soft Reset and Enter Default Protocol Mode" sequence which resets
2867 * the device to its power-on-reset state. This is useful when the software has
2868 * made some changes to device (volatile) registers and needs to reset it before
2869 * shutting down, for example.
2870 *
2871 * Not every flash supports this sequence. The same set of opcodes might be used
2872 * for some other operation on a flash that does not support this. Support for
2873 * this sequence can be discovered via SFDP in the BFPT table.
2874 *
2875 * Return: 0 on success, -errno otherwise.
2876 */
spi_nor_soft_reset(struct spi_nor * nor)2877 static void spi_nor_soft_reset(struct spi_nor *nor)
2878 {
2879 struct spi_mem_op op;
2880 int ret;
2881
2882 op = (struct spi_mem_op)SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_SRSTEN, 0),
2883 SPI_MEM_OP_NO_DUMMY,
2884 SPI_MEM_OP_NO_ADDR,
2885 SPI_MEM_OP_NO_DATA);
2886
2887 spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
2888
2889 ret = spi_mem_exec_op(nor->spimem, &op);
2890 if (ret) {
2891 dev_warn(nor->dev, "Software reset failed: %d\n", ret);
2892 return;
2893 }
2894
2895 op = (struct spi_mem_op)SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_SRST, 0),
2896 SPI_MEM_OP_NO_DUMMY,
2897 SPI_MEM_OP_NO_ADDR,
2898 SPI_MEM_OP_NO_DATA);
2899
2900 spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
2901
2902 ret = spi_mem_exec_op(nor->spimem, &op);
2903 if (ret) {
2904 dev_warn(nor->dev, "Software reset failed: %d\n", ret);
2905 return;
2906 }
2907
2908 /*
2909 * Software Reset is not instant, and the delay varies from flash to
2910 * flash. Looking at a few flashes, most range somewhere below 100
2911 * microseconds. So, sleep for a range of 200-400 us.
2912 */
2913 usleep_range(SPI_NOR_SRST_SLEEP_MIN, SPI_NOR_SRST_SLEEP_MAX);
2914 }
2915
2916 /* mtd suspend handler */
spi_nor_suspend(struct mtd_info * mtd)2917 static int spi_nor_suspend(struct mtd_info *mtd)
2918 {
2919 struct spi_nor *nor = mtd_to_spi_nor(mtd);
2920 int ret;
2921
2922 /* Disable octal DTR mode if we enabled it. */
2923 ret = spi_nor_octal_dtr_enable(nor, false);
2924 if (ret)
2925 dev_err(nor->dev, "suspend() failed\n");
2926
2927 return ret;
2928 }
2929
2930 /* mtd resume handler */
spi_nor_resume(struct mtd_info * mtd)2931 static void spi_nor_resume(struct mtd_info *mtd)
2932 {
2933 struct spi_nor *nor = mtd_to_spi_nor(mtd);
2934 struct device *dev = nor->dev;
2935 int ret;
2936
2937 /* re-initialize the nor chip */
2938 ret = spi_nor_init(nor);
2939 if (ret)
2940 dev_err(dev, "resume() failed\n");
2941 }
2942
spi_nor_get_device(struct mtd_info * mtd)2943 static int spi_nor_get_device(struct mtd_info *mtd)
2944 {
2945 struct mtd_info *master = mtd_get_master(mtd);
2946 struct spi_nor *nor = mtd_to_spi_nor(master);
2947 struct device *dev;
2948
2949 if (nor->spimem)
2950 dev = nor->spimem->spi->controller->dev.parent;
2951 else
2952 dev = nor->dev;
2953
2954 if (!try_module_get(dev->driver->owner))
2955 return -ENODEV;
2956
2957 return 0;
2958 }
2959
spi_nor_put_device(struct mtd_info * mtd)2960 static void spi_nor_put_device(struct mtd_info *mtd)
2961 {
2962 struct mtd_info *master = mtd_get_master(mtd);
2963 struct spi_nor *nor = mtd_to_spi_nor(master);
2964 struct device *dev;
2965
2966 if (nor->spimem)
2967 dev = nor->spimem->spi->controller->dev.parent;
2968 else
2969 dev = nor->dev;
2970
2971 module_put(dev->driver->owner);
2972 }
2973
spi_nor_restore(struct spi_nor * nor)2974 void spi_nor_restore(struct spi_nor *nor)
2975 {
2976 /* restore the addressing mode */
2977 if (nor->addr_width == 4 && !(nor->flags & SNOR_F_4B_OPCODES) &&
2978 nor->flags & SNOR_F_BROKEN_RESET)
2979 nor->params->set_4byte_addr_mode(nor, false);
2980
2981 if (nor->flags & SNOR_F_SOFT_RESET)
2982 spi_nor_soft_reset(nor);
2983 }
2984 EXPORT_SYMBOL_GPL(spi_nor_restore);
2985
spi_nor_match_id(struct spi_nor * nor,const char * name)2986 static const struct flash_info *spi_nor_match_id(struct spi_nor *nor,
2987 const char *name)
2988 {
2989 unsigned int i, j;
2990
2991 for (i = 0; i < ARRAY_SIZE(manufacturers); i++) {
2992 for (j = 0; j < manufacturers[i]->nparts; j++) {
2993 if (!strcmp(name, manufacturers[i]->parts[j].name)) {
2994 nor->manufacturer = manufacturers[i];
2995 return &manufacturers[i]->parts[j];
2996 }
2997 }
2998 }
2999
3000 return NULL;
3001 }
3002
spi_nor_set_addr_width(struct spi_nor * nor)3003 static int spi_nor_set_addr_width(struct spi_nor *nor)
3004 {
3005 if (nor->addr_width) {
3006 /* already configured from SFDP */
3007 } else if (nor->read_proto == SNOR_PROTO_8_8_8_DTR) {
3008 /*
3009 * In 8D-8D-8D mode, one byte takes half a cycle to transfer. So
3010 * in this protocol an odd address width cannot be used because
3011 * then the address phase would only span a cycle and a half.
3012 * Half a cycle would be left over. We would then have to start
3013 * the dummy phase in the middle of a cycle and so too the data
3014 * phase, and we will end the transaction with half a cycle left
3015 * over.
3016 *
3017 * Force all 8D-8D-8D flashes to use an address width of 4 to
3018 * avoid this situation.
3019 */
3020 nor->addr_width = 4;
3021 } else if (nor->info->addr_width) {
3022 nor->addr_width = nor->info->addr_width;
3023 } else {
3024 nor->addr_width = 3;
3025 }
3026
3027 if (nor->addr_width == 3 && nor->mtd.size > 0x1000000) {
3028 /* enable 4-byte addressing if the device exceeds 16MiB */
3029 nor->addr_width = 4;
3030 }
3031
3032 if (nor->addr_width > SPI_NOR_MAX_ADDR_WIDTH) {
3033 dev_dbg(nor->dev, "address width is too large: %u\n",
3034 nor->addr_width);
3035 return -EINVAL;
3036 }
3037
3038 /* Set 4byte opcodes when possible. */
3039 if (nor->addr_width == 4 && nor->flags & SNOR_F_4B_OPCODES &&
3040 !(nor->flags & SNOR_F_HAS_4BAIT))
3041 spi_nor_set_4byte_opcodes(nor);
3042
3043 return 0;
3044 }
3045
spi_nor_debugfs_init(struct spi_nor * nor,const struct flash_info * info)3046 static void spi_nor_debugfs_init(struct spi_nor *nor,
3047 const struct flash_info *info)
3048 {
3049 struct mtd_info *mtd = &nor->mtd;
3050
3051 mtd->dbg.partname = info->name;
3052 mtd->dbg.partid = devm_kasprintf(nor->dev, GFP_KERNEL, "spi-nor:%*phN",
3053 info->id_len, info->id);
3054 }
3055
spi_nor_get_flash_info(struct spi_nor * nor,const char * name)3056 static const struct flash_info *spi_nor_get_flash_info(struct spi_nor *nor,
3057 const char *name)
3058 {
3059 const struct flash_info *info = NULL;
3060
3061 if (name)
3062 info = spi_nor_match_id(nor, name);
3063 /* Try to auto-detect if chip name wasn't specified or not found */
3064 if (!info)
3065 info = spi_nor_read_id(nor);
3066 if (IS_ERR_OR_NULL(info))
3067 return ERR_PTR(-ENOENT);
3068
3069 /*
3070 * If caller has specified name of flash model that can normally be
3071 * detected using JEDEC, let's verify it.
3072 */
3073 if (name && info->id_len) {
3074 const struct flash_info *jinfo;
3075
3076 jinfo = spi_nor_read_id(nor);
3077 if (IS_ERR(jinfo)) {
3078 return jinfo;
3079 } else if (jinfo != info) {
3080 /*
3081 * JEDEC knows better, so overwrite platform ID. We
3082 * can't trust partitions any longer, but we'll let
3083 * mtd apply them anyway, since some partitions may be
3084 * marked read-only, and we don't want to lose that
3085 * information, even if it's not 100% accurate.
3086 */
3087 dev_warn(nor->dev, "found %s, expected %s\n",
3088 jinfo->name, info->name);
3089 info = jinfo;
3090 }
3091 }
3092
3093 return info;
3094 }
3095
spi_nor_scan(struct spi_nor * nor,const char * name,const struct spi_nor_hwcaps * hwcaps)3096 int spi_nor_scan(struct spi_nor *nor, const char *name,
3097 const struct spi_nor_hwcaps *hwcaps)
3098 {
3099 const struct flash_info *info;
3100 struct device *dev = nor->dev;
3101 struct mtd_info *mtd = &nor->mtd;
3102 struct device_node *np = spi_nor_get_flash_node(nor);
3103 int ret;
3104 int i;
3105
3106 ret = spi_nor_check(nor);
3107 if (ret)
3108 return ret;
3109
3110 /* Reset SPI protocol for all commands. */
3111 nor->reg_proto = SNOR_PROTO_1_1_1;
3112 nor->read_proto = SNOR_PROTO_1_1_1;
3113 nor->write_proto = SNOR_PROTO_1_1_1;
3114
3115 /*
3116 * We need the bounce buffer early to read/write registers when going
3117 * through the spi-mem layer (buffers have to be DMA-able).
3118 * For spi-mem drivers, we'll reallocate a new buffer if
3119 * nor->page_size turns out to be greater than PAGE_SIZE (which
3120 * shouldn't happen before long since NOR pages are usually less
3121 * than 1KB) after spi_nor_scan() returns.
3122 */
3123 nor->bouncebuf_size = PAGE_SIZE;
3124 nor->bouncebuf = devm_kmalloc(dev, nor->bouncebuf_size,
3125 GFP_KERNEL);
3126 if (!nor->bouncebuf)
3127 return -ENOMEM;
3128
3129 info = spi_nor_get_flash_info(nor, name);
3130 if (IS_ERR(info))
3131 return PTR_ERR(info);
3132
3133 nor->info = info;
3134
3135 spi_nor_debugfs_init(nor, info);
3136
3137 mutex_init(&nor->lock);
3138
3139 /*
3140 * Make sure the XSR_RDY flag is set before calling
3141 * spi_nor_wait_till_ready(). Xilinx S3AN share MFR
3142 * with Atmel SPI NOR.
3143 */
3144 if (info->flags & SPI_NOR_XSR_RDY)
3145 nor->flags |= SNOR_F_READY_XSR_RDY;
3146
3147 if (info->flags & SPI_NOR_HAS_LOCK)
3148 nor->flags |= SNOR_F_HAS_LOCK;
3149
3150 mtd->_write = spi_nor_write;
3151
3152 /* Init flash parameters based on flash_info struct and SFDP */
3153 ret = spi_nor_init_params(nor);
3154 if (ret)
3155 return ret;
3156
3157 if (!mtd->name)
3158 mtd->name = dev_name(dev);
3159 mtd->priv = nor;
3160 mtd->type = MTD_NORFLASH;
3161 mtd->writesize = nor->params->writesize;
3162 mtd->flags = MTD_CAP_NORFLASH;
3163 mtd->size = nor->params->size;
3164 mtd->_read = spi_nor_read;
3165 mtd->_suspend = spi_nor_suspend;
3166 mtd->_resume = spi_nor_resume;
3167 mtd->_get_device = spi_nor_get_device;
3168 mtd->_put_device = spi_nor_put_device;
3169
3170 if (info->flags & USE_FSR)
3171 nor->flags |= SNOR_F_USE_FSR;
3172 if (info->flags & SPI_NOR_HAS_TB) {
3173 nor->flags |= SNOR_F_HAS_SR_TB;
3174 if (info->flags & SPI_NOR_TB_SR_BIT6)
3175 nor->flags |= SNOR_F_HAS_SR_TB_BIT6;
3176 }
3177
3178 if (info->flags & NO_CHIP_ERASE)
3179 nor->flags |= SNOR_F_NO_OP_CHIP_ERASE;
3180 if (info->flags & USE_CLSR)
3181 nor->flags |= SNOR_F_USE_CLSR;
3182 if (info->flags & SPI_NOR_SWP_IS_VOLATILE)
3183 nor->flags |= SNOR_F_SWP_IS_VOLATILE;
3184
3185 if (info->flags & SPI_NOR_4BIT_BP) {
3186 nor->flags |= SNOR_F_HAS_4BIT_BP;
3187 if (info->flags & SPI_NOR_BP3_SR_BIT6)
3188 nor->flags |= SNOR_F_HAS_SR_BP3_BIT6;
3189 }
3190
3191 if (info->flags & SPI_NOR_NO_ERASE)
3192 mtd->flags |= MTD_NO_ERASE;
3193 else
3194 mtd->_erase = spi_nor_erase;
3195
3196 mtd->dev.parent = dev;
3197 nor->page_size = nor->params->page_size;
3198 mtd->writebufsize = nor->page_size;
3199
3200 if (of_property_read_bool(np, "broken-flash-reset"))
3201 nor->flags |= SNOR_F_BROKEN_RESET;
3202
3203 /*
3204 * Configure the SPI memory:
3205 * - select op codes for (Fast) Read, Page Program and Sector Erase.
3206 * - set the number of dummy cycles (mode cycles + wait states).
3207 * - set the SPI protocols for register and memory accesses.
3208 */
3209 ret = spi_nor_setup(nor, hwcaps);
3210 if (ret)
3211 return ret;
3212
3213 if (info->flags & SPI_NOR_4B_OPCODES)
3214 nor->flags |= SNOR_F_4B_OPCODES;
3215
3216 if (info->flags & SPI_NOR_IO_MODE_EN_VOLATILE)
3217 nor->flags |= SNOR_F_IO_MODE_EN_VOLATILE;
3218
3219 ret = spi_nor_set_addr_width(nor);
3220 if (ret)
3221 return ret;
3222
3223 spi_nor_register_locking_ops(nor);
3224
3225 /* Send all the required SPI flash commands to initialize device */
3226 ret = spi_nor_init(nor);
3227 if (ret)
3228 return ret;
3229
3230 /* Configure OTP parameters and ops */
3231 spi_nor_otp_init(nor);
3232
3233 dev_info(dev, "%s (%lld Kbytes)\n", info->name,
3234 (long long)mtd->size >> 10);
3235
3236 dev_dbg(dev,
3237 "mtd .name = %s, .size = 0x%llx (%lldMiB), "
3238 ".erasesize = 0x%.8x (%uKiB) .numeraseregions = %d\n",
3239 mtd->name, (long long)mtd->size, (long long)(mtd->size >> 20),
3240 mtd->erasesize, mtd->erasesize / 1024, mtd->numeraseregions);
3241
3242 if (mtd->numeraseregions)
3243 for (i = 0; i < mtd->numeraseregions; i++)
3244 dev_dbg(dev,
3245 "mtd.eraseregions[%d] = { .offset = 0x%llx, "
3246 ".erasesize = 0x%.8x (%uKiB), "
3247 ".numblocks = %d }\n",
3248 i, (long long)mtd->eraseregions[i].offset,
3249 mtd->eraseregions[i].erasesize,
3250 mtd->eraseregions[i].erasesize / 1024,
3251 mtd->eraseregions[i].numblocks);
3252 return 0;
3253 }
3254 EXPORT_SYMBOL_GPL(spi_nor_scan);
3255
spi_nor_create_read_dirmap(struct spi_nor * nor)3256 static int spi_nor_create_read_dirmap(struct spi_nor *nor)
3257 {
3258 struct spi_mem_dirmap_info info = {
3259 .op_tmpl = SPI_MEM_OP(SPI_MEM_OP_CMD(nor->read_opcode, 0),
3260 SPI_MEM_OP_ADDR(nor->addr_width, 0, 0),
3261 SPI_MEM_OP_DUMMY(nor->read_dummy, 0),
3262 SPI_MEM_OP_DATA_IN(0, NULL, 0)),
3263 .offset = 0,
3264 .length = nor->mtd.size,
3265 };
3266 struct spi_mem_op *op = &info.op_tmpl;
3267
3268 spi_nor_spimem_setup_op(nor, op, nor->read_proto);
3269
3270 /* convert the dummy cycles to the number of bytes */
3271 op->dummy.nbytes = (nor->read_dummy * op->dummy.buswidth) / 8;
3272 if (spi_nor_protocol_is_dtr(nor->read_proto))
3273 op->dummy.nbytes *= 2;
3274
3275 /*
3276 * Since spi_nor_spimem_setup_op() only sets buswidth when the number
3277 * of data bytes is non-zero, the data buswidth won't be set here. So,
3278 * do it explicitly.
3279 */
3280 op->data.buswidth = spi_nor_get_protocol_data_nbits(nor->read_proto);
3281
3282 nor->dirmap.rdesc = devm_spi_mem_dirmap_create(nor->dev, nor->spimem,
3283 &info);
3284 return PTR_ERR_OR_ZERO(nor->dirmap.rdesc);
3285 }
3286
spi_nor_create_write_dirmap(struct spi_nor * nor)3287 static int spi_nor_create_write_dirmap(struct spi_nor *nor)
3288 {
3289 struct spi_mem_dirmap_info info = {
3290 .op_tmpl = SPI_MEM_OP(SPI_MEM_OP_CMD(nor->program_opcode, 0),
3291 SPI_MEM_OP_ADDR(nor->addr_width, 0, 0),
3292 SPI_MEM_OP_NO_DUMMY,
3293 SPI_MEM_OP_DATA_OUT(0, NULL, 0)),
3294 .offset = 0,
3295 .length = nor->mtd.size,
3296 };
3297 struct spi_mem_op *op = &info.op_tmpl;
3298
3299 if (nor->program_opcode == SPINOR_OP_AAI_WP && nor->sst_write_second)
3300 op->addr.nbytes = 0;
3301
3302 spi_nor_spimem_setup_op(nor, op, nor->write_proto);
3303
3304 /*
3305 * Since spi_nor_spimem_setup_op() only sets buswidth when the number
3306 * of data bytes is non-zero, the data buswidth won't be set here. So,
3307 * do it explicitly.
3308 */
3309 op->data.buswidth = spi_nor_get_protocol_data_nbits(nor->write_proto);
3310
3311 nor->dirmap.wdesc = devm_spi_mem_dirmap_create(nor->dev, nor->spimem,
3312 &info);
3313 return PTR_ERR_OR_ZERO(nor->dirmap.wdesc);
3314 }
3315
spi_nor_probe(struct spi_mem * spimem)3316 static int spi_nor_probe(struct spi_mem *spimem)
3317 {
3318 struct spi_device *spi = spimem->spi;
3319 struct flash_platform_data *data = dev_get_platdata(&spi->dev);
3320 struct spi_nor *nor;
3321 /*
3322 * Enable all caps by default. The core will mask them after
3323 * checking what's really supported using spi_mem_supports_op().
3324 */
3325 const struct spi_nor_hwcaps hwcaps = { .mask = SNOR_HWCAPS_ALL };
3326 char *flash_name;
3327 int ret;
3328
3329 nor = devm_kzalloc(&spi->dev, sizeof(*nor), GFP_KERNEL);
3330 if (!nor)
3331 return -ENOMEM;
3332
3333 nor->spimem = spimem;
3334 nor->dev = &spi->dev;
3335 spi_nor_set_flash_node(nor, spi->dev.of_node);
3336
3337 spi_mem_set_drvdata(spimem, nor);
3338
3339 if (data && data->name)
3340 nor->mtd.name = data->name;
3341
3342 if (!nor->mtd.name)
3343 nor->mtd.name = spi_mem_get_name(spimem);
3344
3345 /*
3346 * For some (historical?) reason many platforms provide two different
3347 * names in flash_platform_data: "name" and "type". Quite often name is
3348 * set to "m25p80" and then "type" provides a real chip name.
3349 * If that's the case, respect "type" and ignore a "name".
3350 */
3351 if (data && data->type)
3352 flash_name = data->type;
3353 else if (!strcmp(spi->modalias, "spi-nor"))
3354 flash_name = NULL; /* auto-detect */
3355 else
3356 flash_name = spi->modalias;
3357
3358 ret = spi_nor_scan(nor, flash_name, &hwcaps);
3359 if (ret)
3360 return ret;
3361
3362 /*
3363 * None of the existing parts have > 512B pages, but let's play safe
3364 * and add this logic so that if anyone ever adds support for such
3365 * a NOR we don't end up with buffer overflows.
3366 */
3367 if (nor->page_size > PAGE_SIZE) {
3368 nor->bouncebuf_size = nor->page_size;
3369 devm_kfree(nor->dev, nor->bouncebuf);
3370 nor->bouncebuf = devm_kmalloc(nor->dev,
3371 nor->bouncebuf_size,
3372 GFP_KERNEL);
3373 if (!nor->bouncebuf)
3374 return -ENOMEM;
3375 }
3376
3377 ret = spi_nor_create_read_dirmap(nor);
3378 if (ret)
3379 return ret;
3380
3381 ret = spi_nor_create_write_dirmap(nor);
3382 if (ret)
3383 return ret;
3384
3385 return mtd_device_register(&nor->mtd, data ? data->parts : NULL,
3386 data ? data->nr_parts : 0);
3387 }
3388
spi_nor_remove(struct spi_mem * spimem)3389 static int spi_nor_remove(struct spi_mem *spimem)
3390 {
3391 struct spi_nor *nor = spi_mem_get_drvdata(spimem);
3392
3393 spi_nor_restore(nor);
3394
3395 /* Clean up MTD stuff. */
3396 return mtd_device_unregister(&nor->mtd);
3397 }
3398
spi_nor_shutdown(struct spi_mem * spimem)3399 static void spi_nor_shutdown(struct spi_mem *spimem)
3400 {
3401 struct spi_nor *nor = spi_mem_get_drvdata(spimem);
3402
3403 spi_nor_restore(nor);
3404 }
3405
3406 /*
3407 * Do NOT add to this array without reading the following:
3408 *
3409 * Historically, many flash devices are bound to this driver by their name. But
3410 * since most of these flash are compatible to some extent, and their
3411 * differences can often be differentiated by the JEDEC read-ID command, we
3412 * encourage new users to add support to the spi-nor library, and simply bind
3413 * against a generic string here (e.g., "jedec,spi-nor").
3414 *
3415 * Many flash names are kept here in this list (as well as in spi-nor.c) to
3416 * keep them available as module aliases for existing platforms.
3417 */
3418 static const struct spi_device_id spi_nor_dev_ids[] = {
3419 /*
3420 * Allow non-DT platform devices to bind to the "spi-nor" modalias, and
3421 * hack around the fact that the SPI core does not provide uevent
3422 * matching for .of_match_table
3423 */
3424 {"spi-nor"},
3425
3426 /*
3427 * Entries not used in DTs that should be safe to drop after replacing
3428 * them with "spi-nor" in platform data.
3429 */
3430 {"s25sl064a"}, {"w25x16"}, {"m25p10"}, {"m25px64"},
3431
3432 /*
3433 * Entries that were used in DTs without "jedec,spi-nor" fallback and
3434 * should be kept for backward compatibility.
3435 */
3436 {"at25df321a"}, {"at25df641"}, {"at26df081a"},
3437 {"mx25l4005a"}, {"mx25l1606e"}, {"mx25l6405d"}, {"mx25l12805d"},
3438 {"mx25l25635e"},{"mx66l51235l"},
3439 {"n25q064"}, {"n25q128a11"}, {"n25q128a13"}, {"n25q512a"},
3440 {"s25fl256s1"}, {"s25fl512s"}, {"s25sl12801"}, {"s25fl008k"},
3441 {"s25fl064k"},
3442 {"sst25vf040b"},{"sst25vf016b"},{"sst25vf032b"},{"sst25wf040"},
3443 {"m25p40"}, {"m25p80"}, {"m25p16"}, {"m25p32"},
3444 {"m25p64"}, {"m25p128"},
3445 {"w25x80"}, {"w25x32"}, {"w25q32"}, {"w25q32dw"},
3446 {"w25q80bl"}, {"w25q128"}, {"w25q256"},
3447
3448 /* Flashes that can't be detected using JEDEC */
3449 {"m25p05-nonjedec"}, {"m25p10-nonjedec"}, {"m25p20-nonjedec"},
3450 {"m25p40-nonjedec"}, {"m25p80-nonjedec"}, {"m25p16-nonjedec"},
3451 {"m25p32-nonjedec"}, {"m25p64-nonjedec"}, {"m25p128-nonjedec"},
3452
3453 /* Everspin MRAMs (non-JEDEC) */
3454 { "mr25h128" }, /* 128 Kib, 40 MHz */
3455 { "mr25h256" }, /* 256 Kib, 40 MHz */
3456 { "mr25h10" }, /* 1 Mib, 40 MHz */
3457 { "mr25h40" }, /* 4 Mib, 40 MHz */
3458
3459 { },
3460 };
3461 MODULE_DEVICE_TABLE(spi, spi_nor_dev_ids);
3462
3463 static const struct of_device_id spi_nor_of_table[] = {
3464 /*
3465 * Generic compatibility for SPI NOR that can be identified by the
3466 * JEDEC READ ID opcode (0x9F). Use this, if possible.
3467 */
3468 { .compatible = "jedec,spi-nor" },
3469 { /* sentinel */ },
3470 };
3471 MODULE_DEVICE_TABLE(of, spi_nor_of_table);
3472
3473 /*
3474 * REVISIT: many of these chips have deep power-down modes, which
3475 * should clearly be entered on suspend() to minimize power use.
3476 * And also when they're otherwise idle...
3477 */
3478 static struct spi_mem_driver spi_nor_driver = {
3479 .spidrv = {
3480 .driver = {
3481 .name = "spi-nor",
3482 .of_match_table = spi_nor_of_table,
3483 .dev_groups = spi_nor_sysfs_groups,
3484 },
3485 .id_table = spi_nor_dev_ids,
3486 },
3487 .probe = spi_nor_probe,
3488 .remove = spi_nor_remove,
3489 .shutdown = spi_nor_shutdown,
3490 };
3491 module_spi_mem_driver(spi_nor_driver);
3492
3493 MODULE_LICENSE("GPL v2");
3494 MODULE_AUTHOR("Huang Shijie <shijie8@gmail.com>");
3495 MODULE_AUTHOR("Mike Lavender");
3496 MODULE_DESCRIPTION("framework for SPI NOR");
3497