1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * STMicroelectronics accelerometers driver
4 *
5 * Copyright 2012-2013 STMicroelectronics Inc.
6 *
7 * Denis Ciocca <denis.ciocca@st.com>
8 */
9
10 #include <linux/kernel.h>
11 #include <linux/module.h>
12 #include <linux/mutex.h>
13 #include <linux/sysfs.h>
14 #include <linux/slab.h>
15 #include <linux/acpi.h>
16 #include <linux/iio/iio.h>
17 #include <linux/iio/sysfs.h>
18 #include <linux/iio/trigger.h>
19
20 #include <linux/iio/common/st_sensors.h>
21 #include "st_accel.h"
22
23 #define ST_ACCEL_NUMBER_DATA_CHANNELS 3
24
25 /* DEFAULT VALUE FOR SENSORS */
26 #define ST_ACCEL_DEFAULT_OUT_X_L_ADDR 0x28
27 #define ST_ACCEL_DEFAULT_OUT_Y_L_ADDR 0x2a
28 #define ST_ACCEL_DEFAULT_OUT_Z_L_ADDR 0x2c
29
30 /* FULLSCALE */
31 #define ST_ACCEL_FS_AVL_2G 2
32 #define ST_ACCEL_FS_AVL_4G 4
33 #define ST_ACCEL_FS_AVL_6G 6
34 #define ST_ACCEL_FS_AVL_8G 8
35 #define ST_ACCEL_FS_AVL_16G 16
36 #define ST_ACCEL_FS_AVL_100G 100
37 #define ST_ACCEL_FS_AVL_200G 200
38 #define ST_ACCEL_FS_AVL_400G 400
39
40 static const struct iio_mount_matrix *
st_accel_get_mount_matrix(const struct iio_dev * indio_dev,const struct iio_chan_spec * chan)41 st_accel_get_mount_matrix(const struct iio_dev *indio_dev,
42 const struct iio_chan_spec *chan)
43 {
44 struct st_sensor_data *adata = iio_priv(indio_dev);
45
46 return &adata->mount_matrix;
47 }
48
49 static const struct iio_chan_spec_ext_info st_accel_mount_matrix_ext_info[] = {
50 IIO_MOUNT_MATRIX(IIO_SHARED_BY_ALL, st_accel_get_mount_matrix),
51 { }
52 };
53
54 static const struct iio_chan_spec st_accel_8bit_channels[] = {
55 ST_SENSORS_LSM_CHANNELS_EXT(IIO_ACCEL,
56 BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE),
57 ST_SENSORS_SCAN_X, 1, IIO_MOD_X, 's', IIO_LE, 8, 8,
58 ST_ACCEL_DEFAULT_OUT_X_L_ADDR+1,
59 st_accel_mount_matrix_ext_info),
60 ST_SENSORS_LSM_CHANNELS_EXT(IIO_ACCEL,
61 BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE),
62 ST_SENSORS_SCAN_Y, 1, IIO_MOD_Y, 's', IIO_LE, 8, 8,
63 ST_ACCEL_DEFAULT_OUT_Y_L_ADDR+1,
64 st_accel_mount_matrix_ext_info),
65 ST_SENSORS_LSM_CHANNELS_EXT(IIO_ACCEL,
66 BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE),
67 ST_SENSORS_SCAN_Z, 1, IIO_MOD_Z, 's', IIO_LE, 8, 8,
68 ST_ACCEL_DEFAULT_OUT_Z_L_ADDR+1,
69 st_accel_mount_matrix_ext_info),
70 IIO_CHAN_SOFT_TIMESTAMP(3)
71 };
72
73 static const struct iio_chan_spec st_accel_12bit_channels[] = {
74 ST_SENSORS_LSM_CHANNELS_EXT(IIO_ACCEL,
75 BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE),
76 ST_SENSORS_SCAN_X, 1, IIO_MOD_X, 's', IIO_LE, 12, 16,
77 ST_ACCEL_DEFAULT_OUT_X_L_ADDR,
78 st_accel_mount_matrix_ext_info),
79 ST_SENSORS_LSM_CHANNELS_EXT(IIO_ACCEL,
80 BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE),
81 ST_SENSORS_SCAN_Y, 1, IIO_MOD_Y, 's', IIO_LE, 12, 16,
82 ST_ACCEL_DEFAULT_OUT_Y_L_ADDR,
83 st_accel_mount_matrix_ext_info),
84 ST_SENSORS_LSM_CHANNELS_EXT(IIO_ACCEL,
85 BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE),
86 ST_SENSORS_SCAN_Z, 1, IIO_MOD_Z, 's', IIO_LE, 12, 16,
87 ST_ACCEL_DEFAULT_OUT_Z_L_ADDR,
88 st_accel_mount_matrix_ext_info),
89 IIO_CHAN_SOFT_TIMESTAMP(3)
90 };
91
92 static const struct iio_chan_spec st_accel_16bit_channels[] = {
93 ST_SENSORS_LSM_CHANNELS_EXT(IIO_ACCEL,
94 BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE),
95 ST_SENSORS_SCAN_X, 1, IIO_MOD_X, 's', IIO_LE, 16, 16,
96 ST_ACCEL_DEFAULT_OUT_X_L_ADDR,
97 st_accel_mount_matrix_ext_info),
98 ST_SENSORS_LSM_CHANNELS_EXT(IIO_ACCEL,
99 BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE),
100 ST_SENSORS_SCAN_Y, 1, IIO_MOD_Y, 's', IIO_LE, 16, 16,
101 ST_ACCEL_DEFAULT_OUT_Y_L_ADDR,
102 st_accel_mount_matrix_ext_info),
103 ST_SENSORS_LSM_CHANNELS_EXT(IIO_ACCEL,
104 BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE),
105 ST_SENSORS_SCAN_Z, 1, IIO_MOD_Z, 's', IIO_LE, 16, 16,
106 ST_ACCEL_DEFAULT_OUT_Z_L_ADDR,
107 st_accel_mount_matrix_ext_info),
108 IIO_CHAN_SOFT_TIMESTAMP(3)
109 };
110
111 static const struct st_sensor_settings st_accel_sensors_settings[] = {
112 {
113 .wai = 0x33,
114 .wai_addr = ST_SENSORS_DEFAULT_WAI_ADDRESS,
115 .sensors_supported = {
116 [0] = LIS3DH_ACCEL_DEV_NAME,
117 [1] = LSM303DLHC_ACCEL_DEV_NAME,
118 [2] = LSM330D_ACCEL_DEV_NAME,
119 [3] = LSM330DL_ACCEL_DEV_NAME,
120 [4] = LSM330DLC_ACCEL_DEV_NAME,
121 [5] = LSM303AGR_ACCEL_DEV_NAME,
122 [6] = LIS2DH12_ACCEL_DEV_NAME,
123 [7] = LIS3DE_ACCEL_DEV_NAME,
124 },
125 .ch = (struct iio_chan_spec *)st_accel_12bit_channels,
126 .odr = {
127 .addr = 0x20,
128 .mask = 0xf0,
129 .odr_avl = {
130 { .hz = 1, .value = 0x01, },
131 { .hz = 10, .value = 0x02, },
132 { .hz = 25, .value = 0x03, },
133 { .hz = 50, .value = 0x04, },
134 { .hz = 100, .value = 0x05, },
135 { .hz = 200, .value = 0x06, },
136 { .hz = 400, .value = 0x07, },
137 { .hz = 1600, .value = 0x08, },
138 },
139 },
140 .pw = {
141 .addr = 0x20,
142 .mask = 0xf0,
143 .value_off = ST_SENSORS_DEFAULT_POWER_OFF_VALUE,
144 },
145 .enable_axis = {
146 .addr = ST_SENSORS_DEFAULT_AXIS_ADDR,
147 .mask = ST_SENSORS_DEFAULT_AXIS_MASK,
148 },
149 .fs = {
150 .addr = 0x23,
151 .mask = 0x30,
152 .fs_avl = {
153 [0] = {
154 .num = ST_ACCEL_FS_AVL_2G,
155 .value = 0x00,
156 .gain = IIO_G_TO_M_S_2(1000),
157 },
158 [1] = {
159 .num = ST_ACCEL_FS_AVL_4G,
160 .value = 0x01,
161 .gain = IIO_G_TO_M_S_2(2000),
162 },
163 [2] = {
164 .num = ST_ACCEL_FS_AVL_8G,
165 .value = 0x02,
166 .gain = IIO_G_TO_M_S_2(4000),
167 },
168 [3] = {
169 .num = ST_ACCEL_FS_AVL_16G,
170 .value = 0x03,
171 .gain = IIO_G_TO_M_S_2(12000),
172 },
173 },
174 },
175 .bdu = {
176 .addr = 0x23,
177 .mask = 0x80,
178 },
179 .drdy_irq = {
180 .int1 = {
181 .addr = 0x22,
182 .mask = 0x10,
183 },
184 .addr_ihl = 0x25,
185 .mask_ihl = 0x02,
186 .stat_drdy = {
187 .addr = ST_SENSORS_DEFAULT_STAT_ADDR,
188 .mask = 0x07,
189 },
190 },
191 .sim = {
192 .addr = 0x23,
193 .value = BIT(0),
194 },
195 .multi_read_bit = true,
196 .bootime = 2,
197 },
198 {
199 .wai = 0x32,
200 .wai_addr = ST_SENSORS_DEFAULT_WAI_ADDRESS,
201 .sensors_supported = {
202 [0] = LIS331DLH_ACCEL_DEV_NAME,
203 [1] = LSM303DL_ACCEL_DEV_NAME,
204 [2] = LSM303DLH_ACCEL_DEV_NAME,
205 [3] = LSM303DLM_ACCEL_DEV_NAME,
206 },
207 .ch = (struct iio_chan_spec *)st_accel_12bit_channels,
208 .odr = {
209 .addr = 0x20,
210 .mask = 0x18,
211 .odr_avl = {
212 { .hz = 50, .value = 0x00, },
213 { .hz = 100, .value = 0x01, },
214 { .hz = 400, .value = 0x02, },
215 { .hz = 1000, .value = 0x03, },
216 },
217 },
218 .pw = {
219 .addr = 0x20,
220 .mask = 0xe0,
221 .value_on = ST_SENSORS_DEFAULT_POWER_ON_VALUE,
222 .value_off = ST_SENSORS_DEFAULT_POWER_OFF_VALUE,
223 },
224 .enable_axis = {
225 .addr = ST_SENSORS_DEFAULT_AXIS_ADDR,
226 .mask = ST_SENSORS_DEFAULT_AXIS_MASK,
227 },
228 .fs = {
229 .addr = 0x23,
230 .mask = 0x30,
231 .fs_avl = {
232 [0] = {
233 .num = ST_ACCEL_FS_AVL_2G,
234 .value = 0x00,
235 .gain = IIO_G_TO_M_S_2(1000),
236 },
237 [1] = {
238 .num = ST_ACCEL_FS_AVL_4G,
239 .value = 0x01,
240 .gain = IIO_G_TO_M_S_2(2000),
241 },
242 [2] = {
243 .num = ST_ACCEL_FS_AVL_8G,
244 .value = 0x03,
245 .gain = IIO_G_TO_M_S_2(3900),
246 },
247 },
248 },
249 .bdu = {
250 .addr = 0x23,
251 .mask = 0x80,
252 },
253 .drdy_irq = {
254 .int1 = {
255 .addr = 0x22,
256 .mask = 0x02,
257 .addr_od = 0x22,
258 .mask_od = 0x40,
259 },
260 .int2 = {
261 .addr = 0x22,
262 .mask = 0x10,
263 .addr_od = 0x22,
264 .mask_od = 0x40,
265 },
266 .addr_ihl = 0x22,
267 .mask_ihl = 0x80,
268 .stat_drdy = {
269 .addr = ST_SENSORS_DEFAULT_STAT_ADDR,
270 .mask = 0x07,
271 },
272 },
273 .sim = {
274 .addr = 0x23,
275 .value = BIT(0),
276 },
277 .multi_read_bit = true,
278 .bootime = 2,
279 },
280 {
281 .wai = 0x40,
282 .wai_addr = ST_SENSORS_DEFAULT_WAI_ADDRESS,
283 .sensors_supported = {
284 [0] = LSM330_ACCEL_DEV_NAME,
285 },
286 .ch = (struct iio_chan_spec *)st_accel_16bit_channels,
287 .odr = {
288 .addr = 0x20,
289 .mask = 0xf0,
290 .odr_avl = {
291 { .hz = 3, .value = 0x01, },
292 { .hz = 6, .value = 0x02, },
293 { .hz = 12, .value = 0x03, },
294 { .hz = 25, .value = 0x04, },
295 { .hz = 50, .value = 0x05, },
296 { .hz = 100, .value = 0x06, },
297 { .hz = 200, .value = 0x07, },
298 { .hz = 400, .value = 0x08, },
299 { .hz = 800, .value = 0x09, },
300 { .hz = 1600, .value = 0x0a, },
301 },
302 },
303 .pw = {
304 .addr = 0x20,
305 .mask = 0xf0,
306 .value_off = ST_SENSORS_DEFAULT_POWER_OFF_VALUE,
307 },
308 .enable_axis = {
309 .addr = ST_SENSORS_DEFAULT_AXIS_ADDR,
310 .mask = ST_SENSORS_DEFAULT_AXIS_MASK,
311 },
312 .fs = {
313 .addr = 0x24,
314 .mask = 0x38,
315 .fs_avl = {
316 [0] = {
317 .num = ST_ACCEL_FS_AVL_2G,
318 .value = 0x00,
319 .gain = IIO_G_TO_M_S_2(61),
320 },
321 [1] = {
322 .num = ST_ACCEL_FS_AVL_4G,
323 .value = 0x01,
324 .gain = IIO_G_TO_M_S_2(122),
325 },
326 [2] = {
327 .num = ST_ACCEL_FS_AVL_6G,
328 .value = 0x02,
329 .gain = IIO_G_TO_M_S_2(183),
330 },
331 [3] = {
332 .num = ST_ACCEL_FS_AVL_8G,
333 .value = 0x03,
334 .gain = IIO_G_TO_M_S_2(244),
335 },
336 [4] = {
337 .num = ST_ACCEL_FS_AVL_16G,
338 .value = 0x04,
339 .gain = IIO_G_TO_M_S_2(732),
340 },
341 },
342 },
343 .bdu = {
344 .addr = 0x20,
345 .mask = 0x08,
346 },
347 .drdy_irq = {
348 .int1 = {
349 .addr = 0x23,
350 .mask = 0x80,
351 },
352 .addr_ihl = 0x23,
353 .mask_ihl = 0x40,
354 .stat_drdy = {
355 .addr = ST_SENSORS_DEFAULT_STAT_ADDR,
356 .mask = 0x07,
357 },
358 .ig1 = {
359 .en_addr = 0x23,
360 .en_mask = 0x08,
361 },
362 },
363 .sim = {
364 .addr = 0x24,
365 .value = BIT(0),
366 },
367 .multi_read_bit = false,
368 .bootime = 2,
369 },
370 {
371 .wai = 0x3a,
372 .wai_addr = ST_SENSORS_DEFAULT_WAI_ADDRESS,
373 .sensors_supported = {
374 [0] = LIS3LV02DL_ACCEL_DEV_NAME,
375 },
376 .ch = (struct iio_chan_spec *)st_accel_12bit_channels,
377 .odr = {
378 .addr = 0x20,
379 .mask = 0x30, /* DF1 and DF0 */
380 .odr_avl = {
381 { .hz = 40, .value = 0x00, },
382 { .hz = 160, .value = 0x01, },
383 { .hz = 640, .value = 0x02, },
384 { .hz = 2560, .value = 0x03, },
385 },
386 },
387 .pw = {
388 .addr = 0x20,
389 .mask = 0xc0,
390 .value_on = ST_SENSORS_DEFAULT_POWER_ON_VALUE,
391 .value_off = ST_SENSORS_DEFAULT_POWER_OFF_VALUE,
392 },
393 .enable_axis = {
394 .addr = ST_SENSORS_DEFAULT_AXIS_ADDR,
395 .mask = ST_SENSORS_DEFAULT_AXIS_MASK,
396 },
397 .fs = {
398 .addr = 0x21,
399 .mask = 0x80,
400 .fs_avl = {
401 [0] = {
402 .num = ST_ACCEL_FS_AVL_2G,
403 .value = 0x00,
404 .gain = IIO_G_TO_M_S_2(1000),
405 },
406 [1] = {
407 .num = ST_ACCEL_FS_AVL_6G,
408 .value = 0x01,
409 .gain = IIO_G_TO_M_S_2(3000),
410 },
411 },
412 },
413 .bdu = {
414 .addr = 0x21,
415 .mask = 0x40,
416 },
417 /*
418 * Data Alignment Setting - needs to be set to get
419 * left-justified data like all other sensors.
420 */
421 .das = {
422 .addr = 0x21,
423 .mask = 0x01,
424 },
425 .drdy_irq = {
426 .int1 = {
427 .addr = 0x21,
428 .mask = 0x04,
429 },
430 .stat_drdy = {
431 .addr = ST_SENSORS_DEFAULT_STAT_ADDR,
432 .mask = 0x07,
433 },
434 },
435 .sim = {
436 .addr = 0x21,
437 .value = BIT(1),
438 },
439 .multi_read_bit = true,
440 .bootime = 2, /* guess */
441 },
442 {
443 .wai = 0x3b,
444 .wai_addr = ST_SENSORS_DEFAULT_WAI_ADDRESS,
445 .sensors_supported = {
446 [0] = LIS331DL_ACCEL_DEV_NAME,
447 },
448 .ch = (struct iio_chan_spec *)st_accel_8bit_channels,
449 .odr = {
450 .addr = 0x20,
451 .mask = 0x80,
452 .odr_avl = {
453 { .hz = 100, .value = 0x00, },
454 { .hz = 400, .value = 0x01, },
455 },
456 },
457 .pw = {
458 .addr = 0x20,
459 .mask = 0x40,
460 .value_on = ST_SENSORS_DEFAULT_POWER_ON_VALUE,
461 .value_off = ST_SENSORS_DEFAULT_POWER_OFF_VALUE,
462 },
463 .enable_axis = {
464 .addr = ST_SENSORS_DEFAULT_AXIS_ADDR,
465 .mask = ST_SENSORS_DEFAULT_AXIS_MASK,
466 },
467 .fs = {
468 .addr = 0x20,
469 .mask = 0x20,
470 /*
471 * TODO: check these resulting gain settings, these are
472 * not in the datsheet
473 */
474 .fs_avl = {
475 [0] = {
476 .num = ST_ACCEL_FS_AVL_2G,
477 .value = 0x00,
478 .gain = IIO_G_TO_M_S_2(18000),
479 },
480 [1] = {
481 .num = ST_ACCEL_FS_AVL_8G,
482 .value = 0x01,
483 .gain = IIO_G_TO_M_S_2(72000),
484 },
485 },
486 },
487 .drdy_irq = {
488 .int1 = {
489 .addr = 0x22,
490 .mask = 0x04,
491 .addr_od = 0x22,
492 .mask_od = 0x40,
493 },
494 .int2 = {
495 .addr = 0x22,
496 .mask = 0x20,
497 .addr_od = 0x22,
498 .mask_od = 0x40,
499 },
500 .addr_ihl = 0x22,
501 .mask_ihl = 0x80,
502 .stat_drdy = {
503 .addr = ST_SENSORS_DEFAULT_STAT_ADDR,
504 .mask = 0x07,
505 },
506 },
507 .sim = {
508 .addr = 0x21,
509 .value = BIT(7),
510 },
511 .multi_read_bit = false,
512 .bootime = 2, /* guess */
513 },
514 {
515 .wai = 0x32,
516 .wai_addr = ST_SENSORS_DEFAULT_WAI_ADDRESS,
517 .sensors_supported = {
518 [0] = H3LIS331DL_ACCEL_DEV_NAME,
519 },
520 .ch = (struct iio_chan_spec *)st_accel_12bit_channels,
521 .odr = {
522 .addr = 0x20,
523 .mask = 0x18,
524 .odr_avl = {
525 { .hz = 50, .value = 0x00, },
526 { .hz = 100, .value = 0x01, },
527 { .hz = 400, .value = 0x02, },
528 { .hz = 1000, .value = 0x03, },
529 },
530 },
531 .pw = {
532 .addr = 0x20,
533 .mask = 0x20,
534 .value_on = ST_SENSORS_DEFAULT_POWER_ON_VALUE,
535 .value_off = ST_SENSORS_DEFAULT_POWER_OFF_VALUE,
536 },
537 .enable_axis = {
538 .addr = ST_SENSORS_DEFAULT_AXIS_ADDR,
539 .mask = ST_SENSORS_DEFAULT_AXIS_MASK,
540 },
541 .fs = {
542 .addr = 0x23,
543 .mask = 0x30,
544 .fs_avl = {
545 [0] = {
546 .num = ST_ACCEL_FS_AVL_100G,
547 .value = 0x00,
548 .gain = IIO_G_TO_M_S_2(49000),
549 },
550 [1] = {
551 .num = ST_ACCEL_FS_AVL_200G,
552 .value = 0x01,
553 .gain = IIO_G_TO_M_S_2(98000),
554 },
555 [2] = {
556 .num = ST_ACCEL_FS_AVL_400G,
557 .value = 0x03,
558 .gain = IIO_G_TO_M_S_2(195000),
559 },
560 },
561 },
562 .bdu = {
563 .addr = 0x23,
564 .mask = 0x80,
565 },
566 .drdy_irq = {
567 .int1 = {
568 .addr = 0x22,
569 .mask = 0x02,
570 },
571 .int2 = {
572 .addr = 0x22,
573 .mask = 0x10,
574 },
575 .addr_ihl = 0x22,
576 .mask_ihl = 0x80,
577 },
578 .sim = {
579 .addr = 0x23,
580 .value = BIT(0),
581 },
582 .multi_read_bit = true,
583 .bootime = 2,
584 },
585 {
586 /* No WAI register present */
587 .sensors_supported = {
588 [0] = LIS3L02DQ_ACCEL_DEV_NAME,
589 },
590 .ch = (struct iio_chan_spec *)st_accel_12bit_channels,
591 .odr = {
592 .addr = 0x20,
593 .mask = 0x30,
594 .odr_avl = {
595 { .hz = 280, .value = 0x00, },
596 { .hz = 560, .value = 0x01, },
597 { .hz = 1120, .value = 0x02, },
598 { .hz = 4480, .value = 0x03, },
599 },
600 },
601 .pw = {
602 .addr = 0x20,
603 .mask = 0xc0,
604 .value_on = ST_SENSORS_DEFAULT_POWER_ON_VALUE,
605 .value_off = ST_SENSORS_DEFAULT_POWER_OFF_VALUE,
606 },
607 .enable_axis = {
608 .addr = ST_SENSORS_DEFAULT_AXIS_ADDR,
609 .mask = ST_SENSORS_DEFAULT_AXIS_MASK,
610 },
611 .fs = {
612 .fs_avl = {
613 [0] = {
614 .num = ST_ACCEL_FS_AVL_2G,
615 .gain = IIO_G_TO_M_S_2(488),
616 },
617 },
618 },
619 /*
620 * The part has a BDU bit but if set the data is never
621 * updated so don't set it.
622 */
623 .bdu = {
624 },
625 .drdy_irq = {
626 .int1 = {
627 .addr = 0x21,
628 .mask = 0x04,
629 },
630 .stat_drdy = {
631 .addr = ST_SENSORS_DEFAULT_STAT_ADDR,
632 .mask = 0x07,
633 },
634 },
635 .sim = {
636 .addr = 0x21,
637 .value = BIT(1),
638 },
639 .multi_read_bit = false,
640 .bootime = 2,
641 },
642 {
643 .wai = 0x33,
644 .wai_addr = ST_SENSORS_DEFAULT_WAI_ADDRESS,
645 .sensors_supported = {
646 [0] = LNG2DM_ACCEL_DEV_NAME,
647 },
648 .ch = (struct iio_chan_spec *)st_accel_8bit_channels,
649 .odr = {
650 .addr = 0x20,
651 .mask = 0xf0,
652 .odr_avl = {
653 { .hz = 1, .value = 0x01, },
654 { .hz = 10, .value = 0x02, },
655 { .hz = 25, .value = 0x03, },
656 { .hz = 50, .value = 0x04, },
657 { .hz = 100, .value = 0x05, },
658 { .hz = 200, .value = 0x06, },
659 { .hz = 400, .value = 0x07, },
660 { .hz = 1600, .value = 0x08, },
661 },
662 },
663 .pw = {
664 .addr = 0x20,
665 .mask = 0xf0,
666 .value_off = ST_SENSORS_DEFAULT_POWER_OFF_VALUE,
667 },
668 .enable_axis = {
669 .addr = ST_SENSORS_DEFAULT_AXIS_ADDR,
670 .mask = ST_SENSORS_DEFAULT_AXIS_MASK,
671 },
672 .fs = {
673 .addr = 0x23,
674 .mask = 0x30,
675 .fs_avl = {
676 [0] = {
677 .num = ST_ACCEL_FS_AVL_2G,
678 .value = 0x00,
679 .gain = IIO_G_TO_M_S_2(15600),
680 },
681 [1] = {
682 .num = ST_ACCEL_FS_AVL_4G,
683 .value = 0x01,
684 .gain = IIO_G_TO_M_S_2(31200),
685 },
686 [2] = {
687 .num = ST_ACCEL_FS_AVL_8G,
688 .value = 0x02,
689 .gain = IIO_G_TO_M_S_2(62500),
690 },
691 [3] = {
692 .num = ST_ACCEL_FS_AVL_16G,
693 .value = 0x03,
694 .gain = IIO_G_TO_M_S_2(187500),
695 },
696 },
697 },
698 .drdy_irq = {
699 .int1 = {
700 .addr = 0x22,
701 .mask = 0x10,
702 },
703 .addr_ihl = 0x25,
704 .mask_ihl = 0x02,
705 .stat_drdy = {
706 .addr = ST_SENSORS_DEFAULT_STAT_ADDR,
707 .mask = 0x07,
708 },
709 },
710 .sim = {
711 .addr = 0x23,
712 .value = BIT(0),
713 },
714 .multi_read_bit = true,
715 .bootime = 2,
716 },
717 {
718 .wai = 0x44,
719 .wai_addr = ST_SENSORS_DEFAULT_WAI_ADDRESS,
720 .sensors_supported = {
721 [0] = LIS2DW12_ACCEL_DEV_NAME,
722 },
723 .ch = (struct iio_chan_spec *)st_accel_12bit_channels,
724 .odr = {
725 .addr = 0x20,
726 .mask = 0xf0,
727 .odr_avl = {
728 { .hz = 1, .value = 0x01, },
729 { .hz = 12, .value = 0x02, },
730 { .hz = 25, .value = 0x03, },
731 { .hz = 50, .value = 0x04, },
732 { .hz = 100, .value = 0x05, },
733 { .hz = 200, .value = 0x06, },
734 },
735 },
736 .pw = {
737 .addr = 0x20,
738 .mask = 0xf0,
739 .value_off = ST_SENSORS_DEFAULT_POWER_OFF_VALUE,
740 },
741 .fs = {
742 .addr = 0x25,
743 .mask = 0x30,
744 .fs_avl = {
745 [0] = {
746 .num = ST_ACCEL_FS_AVL_2G,
747 .value = 0x00,
748 .gain = IIO_G_TO_M_S_2(976),
749 },
750 [1] = {
751 .num = ST_ACCEL_FS_AVL_4G,
752 .value = 0x01,
753 .gain = IIO_G_TO_M_S_2(1952),
754 },
755 [2] = {
756 .num = ST_ACCEL_FS_AVL_8G,
757 .value = 0x02,
758 .gain = IIO_G_TO_M_S_2(3904),
759 },
760 [3] = {
761 .num = ST_ACCEL_FS_AVL_16G,
762 .value = 0x03,
763 .gain = IIO_G_TO_M_S_2(7808),
764 },
765 },
766 },
767 .bdu = {
768 .addr = 0x21,
769 .mask = 0x08,
770 },
771 .drdy_irq = {
772 .int1 = {
773 .addr = 0x23,
774 .mask = 0x01,
775 .addr_od = 0x22,
776 .mask_od = 0x20,
777 },
778 .int2 = {
779 .addr = 0x24,
780 .mask = 0x01,
781 .addr_od = 0x22,
782 .mask_od = 0x20,
783 },
784 .addr_ihl = 0x22,
785 .mask_ihl = 0x08,
786 .stat_drdy = {
787 .addr = ST_SENSORS_DEFAULT_STAT_ADDR,
788 .mask = 0x01,
789 },
790 },
791 .sim = {
792 .addr = 0x21,
793 .value = BIT(0),
794 },
795 .multi_read_bit = false,
796 .bootime = 2,
797 },
798 {
799 .wai = 0x11,
800 .wai_addr = ST_SENSORS_DEFAULT_WAI_ADDRESS,
801 .sensors_supported = {
802 [0] = LIS3DHH_ACCEL_DEV_NAME,
803 },
804 .ch = (struct iio_chan_spec *)st_accel_16bit_channels,
805 .odr = {
806 /* just ODR = 1100Hz available */
807 .odr_avl = {
808 { .hz = 1100, .value = 0x00, },
809 },
810 },
811 .pw = {
812 .addr = 0x20,
813 .mask = 0x80,
814 .value_on = ST_SENSORS_DEFAULT_POWER_ON_VALUE,
815 .value_off = ST_SENSORS_DEFAULT_POWER_OFF_VALUE,
816 },
817 .fs = {
818 .fs_avl = {
819 [0] = {
820 .num = ST_ACCEL_FS_AVL_2G,
821 .gain = IIO_G_TO_M_S_2(76),
822 },
823 },
824 },
825 .bdu = {
826 .addr = 0x20,
827 .mask = 0x01,
828 },
829 .drdy_irq = {
830 .int1 = {
831 .addr = 0x21,
832 .mask = 0x80,
833 .addr_od = 0x23,
834 .mask_od = 0x04,
835 },
836 .int2 = {
837 .addr = 0x22,
838 .mask = 0x80,
839 .addr_od = 0x23,
840 .mask_od = 0x08,
841 },
842 .stat_drdy = {
843 .addr = ST_SENSORS_DEFAULT_STAT_ADDR,
844 .mask = 0x07,
845 },
846 },
847 .multi_read_bit = false,
848 .bootime = 2,
849 },
850 {
851 .wai = 0x33,
852 .wai_addr = ST_SENSORS_DEFAULT_WAI_ADDRESS,
853 .sensors_supported = {
854 [0] = LIS2DE12_ACCEL_DEV_NAME,
855 },
856 .ch = (struct iio_chan_spec *)st_accel_8bit_channels,
857 .odr = {
858 .addr = 0x20,
859 .mask = 0xf0,
860 .odr_avl = {
861 { .hz = 1, .value = 0x01, },
862 { .hz = 10, .value = 0x02, },
863 { .hz = 25, .value = 0x03, },
864 { .hz = 50, .value = 0x04, },
865 { .hz = 100, .value = 0x05, },
866 { .hz = 200, .value = 0x06, },
867 { .hz = 400, .value = 0x07, },
868 { .hz = 1620, .value = 0x08, },
869 { .hz = 5376, .value = 0x09, },
870 },
871 },
872 .pw = {
873 .addr = 0x20,
874 .mask = 0xf0,
875 .value_off = ST_SENSORS_DEFAULT_POWER_OFF_VALUE,
876 },
877 .enable_axis = {
878 .addr = ST_SENSORS_DEFAULT_AXIS_ADDR,
879 .mask = ST_SENSORS_DEFAULT_AXIS_MASK,
880 },
881 .fs = {
882 .addr = 0x23,
883 .mask = 0x30,
884 .fs_avl = {
885 [0] = {
886 .num = ST_ACCEL_FS_AVL_2G,
887 .value = 0x00,
888 .gain = IIO_G_TO_M_S_2(15600),
889 },
890 [1] = {
891 .num = ST_ACCEL_FS_AVL_4G,
892 .value = 0x01,
893 .gain = IIO_G_TO_M_S_2(31200),
894 },
895 [2] = {
896 .num = ST_ACCEL_FS_AVL_8G,
897 .value = 0x02,
898 .gain = IIO_G_TO_M_S_2(62500),
899 },
900 [3] = {
901 .num = ST_ACCEL_FS_AVL_16G,
902 .value = 0x03,
903 .gain = IIO_G_TO_M_S_2(187500),
904 },
905 },
906 },
907 .drdy_irq = {
908 .int1 = {
909 .addr = 0x22,
910 .mask = 0x10,
911 },
912 .addr_ihl = 0x25,
913 .mask_ihl = 0x02,
914 .stat_drdy = {
915 .addr = ST_SENSORS_DEFAULT_STAT_ADDR,
916 .mask = 0x07,
917 },
918 },
919 .sim = {
920 .addr = 0x23,
921 .value = BIT(0),
922 },
923 .multi_read_bit = true,
924 .bootime = 2,
925 },
926 {
927 .wai = 0x41,
928 .wai_addr = ST_SENSORS_DEFAULT_WAI_ADDRESS,
929 .sensors_supported = {
930 [0] = LIS2HH12_ACCEL_DEV_NAME,
931 },
932 .ch = (struct iio_chan_spec *)st_accel_16bit_channels,
933 .odr = {
934 .addr = 0x20,
935 .mask = 0x70,
936 .odr_avl = {
937 { .hz = 10, .value = 0x01, },
938 { .hz = 50, .value = 0x02, },
939 { .hz = 100, .value = 0x03, },
940 { .hz = 200, .value = 0x04, },
941 { .hz = 400, .value = 0x05, },
942 { .hz = 800, .value = 0x06, },
943 },
944 },
945 .pw = {
946 .addr = 0x20,
947 .mask = 0x70,
948 .value_off = ST_SENSORS_DEFAULT_POWER_OFF_VALUE,
949 },
950 .enable_axis = {
951 .addr = ST_SENSORS_DEFAULT_AXIS_ADDR,
952 .mask = ST_SENSORS_DEFAULT_AXIS_MASK,
953 },
954 .fs = {
955 .addr = 0x23,
956 .mask = 0x30,
957 .fs_avl = {
958 [0] = {
959 .num = ST_ACCEL_FS_AVL_2G,
960 .value = 0x00,
961 .gain = IIO_G_TO_M_S_2(61),
962 },
963 [1] = {
964 .num = ST_ACCEL_FS_AVL_4G,
965 .value = 0x02,
966 .gain = IIO_G_TO_M_S_2(122),
967 },
968 [2] = {
969 .num = ST_ACCEL_FS_AVL_8G,
970 .value = 0x03,
971 .gain = IIO_G_TO_M_S_2(244),
972 },
973 },
974 },
975 .bdu = {
976 .addr = 0x20,
977 .mask = 0x08,
978 },
979 .drdy_irq = {
980 .int1 = {
981 .addr = 0x22,
982 .mask = 0x01,
983 },
984 .int2 = {
985 .addr = 0x25,
986 .mask = 0x01,
987 },
988 .addr_ihl = 0x24,
989 .mask_ihl = 0x02,
990 .stat_drdy = {
991 .addr = ST_SENSORS_DEFAULT_STAT_ADDR,
992 .mask = 0x07,
993 },
994 },
995 .sim = {
996 .addr = 0x23,
997 .value = BIT(0),
998 },
999 .multi_read_bit = true,
1000 .bootime = 2,
1001 },
1002 {
1003 .wai = 0x49,
1004 .wai_addr = ST_SENSORS_DEFAULT_WAI_ADDRESS,
1005 .sensors_supported = {
1006 [0] = LSM9DS0_IMU_DEV_NAME,
1007 },
1008 .ch = (struct iio_chan_spec *)st_accel_16bit_channels,
1009 .odr = {
1010 .addr = 0x20,
1011 .mask = GENMASK(7, 4),
1012 .odr_avl = {
1013 { 3, 0x01, },
1014 { 6, 0x02, },
1015 { 12, 0x03, },
1016 { 25, 0x04, },
1017 { 50, 0x05, },
1018 { 100, 0x06, },
1019 { 200, 0x07, },
1020 { 400, 0x08, },
1021 { 800, 0x09, },
1022 { 1600, 0x0a, },
1023 },
1024 },
1025 .pw = {
1026 .addr = 0x20,
1027 .mask = GENMASK(7, 4),
1028 .value_off = ST_SENSORS_DEFAULT_POWER_OFF_VALUE,
1029 },
1030 .enable_axis = {
1031 .addr = ST_SENSORS_DEFAULT_AXIS_ADDR,
1032 .mask = ST_SENSORS_DEFAULT_AXIS_MASK,
1033 },
1034 .fs = {
1035 .addr = 0x21,
1036 .mask = GENMASK(5, 3),
1037 .fs_avl = {
1038 [0] = {
1039 .num = ST_ACCEL_FS_AVL_2G,
1040 .value = 0x00,
1041 .gain = IIO_G_TO_M_S_2(61),
1042 },
1043 [1] = {
1044 .num = ST_ACCEL_FS_AVL_4G,
1045 .value = 0x01,
1046 .gain = IIO_G_TO_M_S_2(122),
1047 },
1048 [2] = {
1049 .num = ST_ACCEL_FS_AVL_6G,
1050 .value = 0x02,
1051 .gain = IIO_G_TO_M_S_2(183),
1052 },
1053 [3] = {
1054 .num = ST_ACCEL_FS_AVL_8G,
1055 .value = 0x03,
1056 .gain = IIO_G_TO_M_S_2(244),
1057 },
1058 [4] = {
1059 .num = ST_ACCEL_FS_AVL_16G,
1060 .value = 0x04,
1061 .gain = IIO_G_TO_M_S_2(732),
1062 },
1063 },
1064 },
1065 .bdu = {
1066 .addr = 0x20,
1067 .mask = BIT(3),
1068 },
1069 .drdy_irq = {
1070 .int1 = {
1071 .addr = 0x22,
1072 .mask = BIT(2),
1073 },
1074 .int2 = {
1075 .addr = 0x23,
1076 .mask = BIT(3),
1077 },
1078 .stat_drdy = {
1079 .addr = ST_SENSORS_DEFAULT_STAT_ADDR,
1080 .mask = GENMASK(2, 0),
1081 },
1082 },
1083 .sim = {
1084 .addr = 0x21,
1085 .value = BIT(0),
1086 },
1087 .multi_read_bit = true,
1088 .bootime = 2,
1089 },
1090 };
1091
1092 /* Default accel DRDY is available on INT1 pin */
1093 static const struct st_sensors_platform_data default_accel_pdata = {
1094 .drdy_int_pin = 1,
1095 };
1096
st_accel_read_raw(struct iio_dev * indio_dev,struct iio_chan_spec const * ch,int * val,int * val2,long mask)1097 static int st_accel_read_raw(struct iio_dev *indio_dev,
1098 struct iio_chan_spec const *ch, int *val,
1099 int *val2, long mask)
1100 {
1101 int err;
1102 struct st_sensor_data *adata = iio_priv(indio_dev);
1103
1104 switch (mask) {
1105 case IIO_CHAN_INFO_RAW:
1106 err = st_sensors_read_info_raw(indio_dev, ch, val);
1107 if (err < 0)
1108 goto read_error;
1109
1110 return IIO_VAL_INT;
1111 case IIO_CHAN_INFO_SCALE:
1112 *val = adata->current_fullscale->gain / 1000000;
1113 *val2 = adata->current_fullscale->gain % 1000000;
1114 return IIO_VAL_INT_PLUS_MICRO;
1115 case IIO_CHAN_INFO_SAMP_FREQ:
1116 *val = adata->odr;
1117 return IIO_VAL_INT;
1118 default:
1119 return -EINVAL;
1120 }
1121
1122 read_error:
1123 return err;
1124 }
1125
st_accel_write_raw(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,int val,int val2,long mask)1126 static int st_accel_write_raw(struct iio_dev *indio_dev,
1127 struct iio_chan_spec const *chan, int val, int val2, long mask)
1128 {
1129 int err;
1130
1131 switch (mask) {
1132 case IIO_CHAN_INFO_SCALE: {
1133 int gain;
1134
1135 gain = val * 1000000 + val2;
1136 err = st_sensors_set_fullscale_by_gain(indio_dev, gain);
1137 break;
1138 }
1139 case IIO_CHAN_INFO_SAMP_FREQ:
1140 if (val2)
1141 return -EINVAL;
1142 mutex_lock(&indio_dev->mlock);
1143 err = st_sensors_set_odr(indio_dev, val);
1144 mutex_unlock(&indio_dev->mlock);
1145 return err;
1146 default:
1147 return -EINVAL;
1148 }
1149
1150 return err;
1151 }
1152
1153 static ST_SENSORS_DEV_ATTR_SAMP_FREQ_AVAIL();
1154 static ST_SENSORS_DEV_ATTR_SCALE_AVAIL(in_accel_scale_available);
1155
1156 static struct attribute *st_accel_attributes[] = {
1157 &iio_dev_attr_sampling_frequency_available.dev_attr.attr,
1158 &iio_dev_attr_in_accel_scale_available.dev_attr.attr,
1159 NULL,
1160 };
1161
1162 static const struct attribute_group st_accel_attribute_group = {
1163 .attrs = st_accel_attributes,
1164 };
1165
1166 static const struct iio_info accel_info = {
1167 .attrs = &st_accel_attribute_group,
1168 .read_raw = &st_accel_read_raw,
1169 .write_raw = &st_accel_write_raw,
1170 .debugfs_reg_access = &st_sensors_debugfs_reg_access,
1171 };
1172
1173 #ifdef CONFIG_IIO_TRIGGER
1174 static const struct iio_trigger_ops st_accel_trigger_ops = {
1175 .set_trigger_state = ST_ACCEL_TRIGGER_SET_STATE,
1176 .validate_device = st_sensors_validate_device,
1177 };
1178 #define ST_ACCEL_TRIGGER_OPS (&st_accel_trigger_ops)
1179 #else
1180 #define ST_ACCEL_TRIGGER_OPS NULL
1181 #endif
1182
1183 #ifdef CONFIG_ACPI
1184 /* Read ST-specific _ONT orientation data from ACPI and generate an
1185 * appropriate mount matrix.
1186 */
apply_acpi_orientation(struct iio_dev * indio_dev)1187 static int apply_acpi_orientation(struct iio_dev *indio_dev)
1188 {
1189 struct st_sensor_data *adata = iio_priv(indio_dev);
1190 struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL};
1191 struct acpi_device *adev;
1192 union acpi_object *ont;
1193 union acpi_object *elements;
1194 acpi_status status;
1195 int ret = -EINVAL;
1196 unsigned int val;
1197 int i, j;
1198 int final_ont[3][3] = { { 0 }, };
1199
1200 /* For some reason, ST's _ONT translation does not apply directly
1201 * to the data read from the sensor. Another translation must be
1202 * performed first, as described by the matrix below. Perhaps
1203 * ST required this specific translation for the first product
1204 * where the device was mounted?
1205 */
1206 const int default_ont[3][3] = {
1207 { 0, 1, 0 },
1208 { -1, 0, 0 },
1209 { 0, 0, -1 },
1210 };
1211
1212
1213 adev = ACPI_COMPANION(adata->dev);
1214 if (!adev)
1215 return -ENXIO;
1216
1217 /* Read _ONT data, which should be a package of 6 integers. */
1218 status = acpi_evaluate_object(adev->handle, "_ONT", NULL, &buffer);
1219 if (status == AE_NOT_FOUND) {
1220 return -ENXIO;
1221 } else if (ACPI_FAILURE(status)) {
1222 dev_warn(&indio_dev->dev, "failed to execute _ONT: %d\n",
1223 status);
1224 return status;
1225 }
1226
1227 ont = buffer.pointer;
1228 if (ont->type != ACPI_TYPE_PACKAGE || ont->package.count != 6)
1229 goto out;
1230
1231 /* The first 3 integers provide axis order information.
1232 * e.g. 0 1 2 would indicate normal X,Y,Z ordering.
1233 * e.g. 1 0 2 indicates that data arrives in order Y,X,Z.
1234 */
1235 elements = ont->package.elements;
1236 for (i = 0; i < 3; i++) {
1237 if (elements[i].type != ACPI_TYPE_INTEGER)
1238 goto out;
1239
1240 val = elements[i].integer.value;
1241 if (val > 2)
1242 goto out;
1243
1244 /* Avoiding full matrix multiplication, we simply reorder the
1245 * columns in the default_ont matrix according to the
1246 * ordering provided by _ONT.
1247 */
1248 final_ont[0][i] = default_ont[0][val];
1249 final_ont[1][i] = default_ont[1][val];
1250 final_ont[2][i] = default_ont[2][val];
1251 }
1252
1253 /* The final 3 integers provide sign flip information.
1254 * 0 means no change, 1 means flip.
1255 * e.g. 0 0 1 means that Z data should be sign-flipped.
1256 * This is applied after the axis reordering from above.
1257 */
1258 elements += 3;
1259 for (i = 0; i < 3; i++) {
1260 if (elements[i].type != ACPI_TYPE_INTEGER)
1261 goto out;
1262
1263 val = elements[i].integer.value;
1264 if (val != 0 && val != 1)
1265 goto out;
1266 if (!val)
1267 continue;
1268
1269 /* Flip the values in the indicated column */
1270 final_ont[0][i] *= -1;
1271 final_ont[1][i] *= -1;
1272 final_ont[2][i] *= -1;
1273 }
1274
1275 /* Convert our integer matrix to a string-based iio_mount_matrix */
1276 for (i = 0; i < 3; i++) {
1277 for (j = 0; j < 3; j++) {
1278 int matrix_val = final_ont[i][j];
1279 char *str_value;
1280
1281 switch (matrix_val) {
1282 case -1:
1283 str_value = "-1";
1284 break;
1285 case 0:
1286 str_value = "0";
1287 break;
1288 case 1:
1289 str_value = "1";
1290 break;
1291 default:
1292 goto out;
1293 }
1294 adata->mount_matrix.rotation[i * 3 + j] = str_value;
1295 }
1296 }
1297
1298 ret = 0;
1299 dev_info(&indio_dev->dev, "computed mount matrix from ACPI\n");
1300
1301 out:
1302 kfree(buffer.pointer);
1303 if (ret)
1304 dev_dbg(&indio_dev->dev,
1305 "failed to apply ACPI orientation data: %d\n", ret);
1306
1307 return ret;
1308 }
1309 #else /* !CONFIG_ACPI */
apply_acpi_orientation(struct iio_dev * indio_dev)1310 static int apply_acpi_orientation(struct iio_dev *indio_dev)
1311 {
1312 return -EINVAL;
1313 }
1314 #endif
1315
1316 /*
1317 * st_accel_get_settings() - get sensor settings from device name
1318 * @name: device name buffer reference.
1319 *
1320 * Return: valid reference on success, NULL otherwise.
1321 */
st_accel_get_settings(const char * name)1322 const struct st_sensor_settings *st_accel_get_settings(const char *name)
1323 {
1324 int index = st_sensors_get_settings_index(name,
1325 st_accel_sensors_settings,
1326 ARRAY_SIZE(st_accel_sensors_settings));
1327 if (index < 0)
1328 return NULL;
1329
1330 return &st_accel_sensors_settings[index];
1331 }
1332 EXPORT_SYMBOL(st_accel_get_settings);
1333
st_accel_common_probe(struct iio_dev * indio_dev)1334 int st_accel_common_probe(struct iio_dev *indio_dev)
1335 {
1336 struct st_sensor_data *adata = iio_priv(indio_dev);
1337 struct st_sensors_platform_data *pdata = dev_get_platdata(adata->dev);
1338 int err;
1339
1340 indio_dev->modes = INDIO_DIRECT_MODE;
1341 indio_dev->info = &accel_info;
1342
1343 err = st_sensors_verify_id(indio_dev);
1344 if (err < 0)
1345 return err;
1346
1347 adata->num_data_channels = ST_ACCEL_NUMBER_DATA_CHANNELS;
1348 indio_dev->channels = adata->sensor_settings->ch;
1349 indio_dev->num_channels = ST_SENSORS_NUMBER_ALL_CHANNELS;
1350
1351 /*
1352 * First try specific ACPI methods to retrieve orientation then try the
1353 * generic function.
1354 */
1355 err = apply_acpi_orientation(indio_dev);
1356 if (err) {
1357 err = iio_read_mount_matrix(adata->dev, &adata->mount_matrix);
1358 if (err)
1359 return err;
1360 }
1361
1362 adata->current_fullscale = &adata->sensor_settings->fs.fs_avl[0];
1363 adata->odr = adata->sensor_settings->odr.odr_avl[0].hz;
1364
1365 if (!pdata)
1366 pdata = (struct st_sensors_platform_data *)&default_accel_pdata;
1367
1368 err = st_sensors_init_sensor(indio_dev, pdata);
1369 if (err < 0)
1370 return err;
1371
1372 err = st_accel_allocate_ring(indio_dev);
1373 if (err < 0)
1374 return err;
1375
1376 if (adata->irq > 0) {
1377 err = st_sensors_allocate_trigger(indio_dev,
1378 ST_ACCEL_TRIGGER_OPS);
1379 if (err < 0)
1380 return err;
1381 }
1382
1383 err = iio_device_register(indio_dev);
1384 if (err)
1385 goto st_accel_device_register_error;
1386
1387 dev_info(&indio_dev->dev, "registered accelerometer %s\n",
1388 indio_dev->name);
1389
1390 return 0;
1391
1392 st_accel_device_register_error:
1393 if (adata->irq > 0)
1394 st_sensors_deallocate_trigger(indio_dev);
1395 return err;
1396 }
1397 EXPORT_SYMBOL(st_accel_common_probe);
1398
st_accel_common_remove(struct iio_dev * indio_dev)1399 void st_accel_common_remove(struct iio_dev *indio_dev)
1400 {
1401 struct st_sensor_data *adata = iio_priv(indio_dev);
1402
1403 iio_device_unregister(indio_dev);
1404 if (adata->irq > 0)
1405 st_sensors_deallocate_trigger(indio_dev);
1406 }
1407 EXPORT_SYMBOL(st_accel_common_remove);
1408
1409 MODULE_AUTHOR("Denis Ciocca <denis.ciocca@st.com>");
1410 MODULE_DESCRIPTION("STMicroelectronics accelerometers driver");
1411 MODULE_LICENSE("GPL v2");
1412