1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Wireless utility functions
4 *
5 * Copyright 2007-2009 Johannes Berg <johannes@sipsolutions.net>
6 * Copyright 2013-2014 Intel Mobile Communications GmbH
7 * Copyright 2017 Intel Deutschland GmbH
8 * Copyright (C) 2018-2022 Intel Corporation
9 */
10 #include <linux/export.h>
11 #include <linux/bitops.h>
12 #include <linux/etherdevice.h>
13 #include <linux/slab.h>
14 #include <linux/ieee80211.h>
15 #include <net/cfg80211.h>
16 #include <net/ip.h>
17 #include <net/dsfield.h>
18 #include <linux/if_vlan.h>
19 #include <linux/mpls.h>
20 #include <linux/gcd.h>
21 #include <linux/bitfield.h>
22 #include <linux/nospec.h>
23 #include "core.h"
24 #include "rdev-ops.h"
25
26
27 const struct ieee80211_rate *
ieee80211_get_response_rate(struct ieee80211_supported_band * sband,u32 basic_rates,int bitrate)28 ieee80211_get_response_rate(struct ieee80211_supported_band *sband,
29 u32 basic_rates, int bitrate)
30 {
31 struct ieee80211_rate *result = &sband->bitrates[0];
32 int i;
33
34 for (i = 0; i < sband->n_bitrates; i++) {
35 if (!(basic_rates & BIT(i)))
36 continue;
37 if (sband->bitrates[i].bitrate > bitrate)
38 continue;
39 result = &sband->bitrates[i];
40 }
41
42 return result;
43 }
44 EXPORT_SYMBOL(ieee80211_get_response_rate);
45
ieee80211_mandatory_rates(struct ieee80211_supported_band * sband,enum nl80211_bss_scan_width scan_width)46 u32 ieee80211_mandatory_rates(struct ieee80211_supported_band *sband,
47 enum nl80211_bss_scan_width scan_width)
48 {
49 struct ieee80211_rate *bitrates;
50 u32 mandatory_rates = 0;
51 enum ieee80211_rate_flags mandatory_flag;
52 int i;
53
54 if (WARN_ON(!sband))
55 return 1;
56
57 if (sband->band == NL80211_BAND_2GHZ) {
58 if (scan_width == NL80211_BSS_CHAN_WIDTH_5 ||
59 scan_width == NL80211_BSS_CHAN_WIDTH_10)
60 mandatory_flag = IEEE80211_RATE_MANDATORY_G;
61 else
62 mandatory_flag = IEEE80211_RATE_MANDATORY_B;
63 } else {
64 mandatory_flag = IEEE80211_RATE_MANDATORY_A;
65 }
66
67 bitrates = sband->bitrates;
68 for (i = 0; i < sband->n_bitrates; i++)
69 if (bitrates[i].flags & mandatory_flag)
70 mandatory_rates |= BIT(i);
71 return mandatory_rates;
72 }
73 EXPORT_SYMBOL(ieee80211_mandatory_rates);
74
ieee80211_channel_to_freq_khz(int chan,enum nl80211_band band)75 u32 ieee80211_channel_to_freq_khz(int chan, enum nl80211_band band)
76 {
77 /* see 802.11 17.3.8.3.2 and Annex J
78 * there are overlapping channel numbers in 5GHz and 2GHz bands */
79 if (chan <= 0)
80 return 0; /* not supported */
81 switch (band) {
82 case NL80211_BAND_2GHZ:
83 case NL80211_BAND_LC:
84 if (chan == 14)
85 return MHZ_TO_KHZ(2484);
86 else if (chan < 14)
87 return MHZ_TO_KHZ(2407 + chan * 5);
88 break;
89 case NL80211_BAND_5GHZ:
90 if (chan >= 182 && chan <= 196)
91 return MHZ_TO_KHZ(4000 + chan * 5);
92 else
93 return MHZ_TO_KHZ(5000 + chan * 5);
94 break;
95 case NL80211_BAND_6GHZ:
96 /* see 802.11ax D6.1 27.3.23.2 */
97 if (chan == 2)
98 return MHZ_TO_KHZ(5935);
99 if (chan <= 233)
100 return MHZ_TO_KHZ(5950 + chan * 5);
101 break;
102 case NL80211_BAND_60GHZ:
103 if (chan < 7)
104 return MHZ_TO_KHZ(56160 + chan * 2160);
105 break;
106 case NL80211_BAND_S1GHZ:
107 return 902000 + chan * 500;
108 default:
109 ;
110 }
111 return 0; /* not supported */
112 }
113 EXPORT_SYMBOL(ieee80211_channel_to_freq_khz);
114
115 enum nl80211_chan_width
ieee80211_s1g_channel_width(const struct ieee80211_channel * chan)116 ieee80211_s1g_channel_width(const struct ieee80211_channel *chan)
117 {
118 if (WARN_ON(!chan || chan->band != NL80211_BAND_S1GHZ))
119 return NL80211_CHAN_WIDTH_20_NOHT;
120
121 /*S1G defines a single allowed channel width per channel.
122 * Extract that width here.
123 */
124 if (chan->flags & IEEE80211_CHAN_1MHZ)
125 return NL80211_CHAN_WIDTH_1;
126 else if (chan->flags & IEEE80211_CHAN_2MHZ)
127 return NL80211_CHAN_WIDTH_2;
128 else if (chan->flags & IEEE80211_CHAN_4MHZ)
129 return NL80211_CHAN_WIDTH_4;
130 else if (chan->flags & IEEE80211_CHAN_8MHZ)
131 return NL80211_CHAN_WIDTH_8;
132 else if (chan->flags & IEEE80211_CHAN_16MHZ)
133 return NL80211_CHAN_WIDTH_16;
134
135 pr_err("unknown channel width for channel at %dKHz?\n",
136 ieee80211_channel_to_khz(chan));
137
138 return NL80211_CHAN_WIDTH_1;
139 }
140 EXPORT_SYMBOL(ieee80211_s1g_channel_width);
141
ieee80211_freq_khz_to_channel(u32 freq)142 int ieee80211_freq_khz_to_channel(u32 freq)
143 {
144 /* TODO: just handle MHz for now */
145 freq = KHZ_TO_MHZ(freq);
146
147 /* see 802.11 17.3.8.3.2 and Annex J */
148 if (freq == 2484)
149 return 14;
150 else if (freq < 2484)
151 return (freq - 2407) / 5;
152 else if (freq >= 4910 && freq <= 4980)
153 return (freq - 4000) / 5;
154 else if (freq < 5925)
155 return (freq - 5000) / 5;
156 else if (freq == 5935)
157 return 2;
158 else if (freq <= 45000) /* DMG band lower limit */
159 /* see 802.11ax D6.1 27.3.22.2 */
160 return (freq - 5950) / 5;
161 else if (freq >= 58320 && freq <= 70200)
162 return (freq - 56160) / 2160;
163 else
164 return 0;
165 }
166 EXPORT_SYMBOL(ieee80211_freq_khz_to_channel);
167
ieee80211_get_channel_khz(struct wiphy * wiphy,u32 freq)168 struct ieee80211_channel *ieee80211_get_channel_khz(struct wiphy *wiphy,
169 u32 freq)
170 {
171 enum nl80211_band band;
172 struct ieee80211_supported_band *sband;
173 int i;
174
175 for (band = 0; band < NUM_NL80211_BANDS; band++) {
176 sband = wiphy->bands[band];
177
178 if (!sband)
179 continue;
180
181 for (i = 0; i < sband->n_channels; i++) {
182 struct ieee80211_channel *chan = &sband->channels[i];
183
184 if (ieee80211_channel_to_khz(chan) == freq)
185 return chan;
186 }
187 }
188
189 return NULL;
190 }
191 EXPORT_SYMBOL(ieee80211_get_channel_khz);
192
set_mandatory_flags_band(struct ieee80211_supported_band * sband)193 static void set_mandatory_flags_band(struct ieee80211_supported_band *sband)
194 {
195 int i, want;
196
197 switch (sband->band) {
198 case NL80211_BAND_5GHZ:
199 case NL80211_BAND_6GHZ:
200 want = 3;
201 for (i = 0; i < sband->n_bitrates; i++) {
202 if (sband->bitrates[i].bitrate == 60 ||
203 sband->bitrates[i].bitrate == 120 ||
204 sband->bitrates[i].bitrate == 240) {
205 sband->bitrates[i].flags |=
206 IEEE80211_RATE_MANDATORY_A;
207 want--;
208 }
209 }
210 WARN_ON(want);
211 break;
212 case NL80211_BAND_2GHZ:
213 case NL80211_BAND_LC:
214 want = 7;
215 for (i = 0; i < sband->n_bitrates; i++) {
216 switch (sband->bitrates[i].bitrate) {
217 case 10:
218 case 20:
219 case 55:
220 case 110:
221 sband->bitrates[i].flags |=
222 IEEE80211_RATE_MANDATORY_B |
223 IEEE80211_RATE_MANDATORY_G;
224 want--;
225 break;
226 case 60:
227 case 120:
228 case 240:
229 sband->bitrates[i].flags |=
230 IEEE80211_RATE_MANDATORY_G;
231 want--;
232 fallthrough;
233 default:
234 sband->bitrates[i].flags |=
235 IEEE80211_RATE_ERP_G;
236 break;
237 }
238 }
239 WARN_ON(want != 0 && want != 3);
240 break;
241 case NL80211_BAND_60GHZ:
242 /* check for mandatory HT MCS 1..4 */
243 WARN_ON(!sband->ht_cap.ht_supported);
244 WARN_ON((sband->ht_cap.mcs.rx_mask[0] & 0x1e) != 0x1e);
245 break;
246 case NL80211_BAND_S1GHZ:
247 /* Figure 9-589bd: 3 means unsupported, so != 3 means at least
248 * mandatory is ok.
249 */
250 WARN_ON((sband->s1g_cap.nss_mcs[0] & 0x3) == 0x3);
251 break;
252 case NUM_NL80211_BANDS:
253 default:
254 WARN_ON(1);
255 break;
256 }
257 }
258
ieee80211_set_bitrate_flags(struct wiphy * wiphy)259 void ieee80211_set_bitrate_flags(struct wiphy *wiphy)
260 {
261 enum nl80211_band band;
262
263 for (band = 0; band < NUM_NL80211_BANDS; band++)
264 if (wiphy->bands[band])
265 set_mandatory_flags_band(wiphy->bands[band]);
266 }
267
cfg80211_supported_cipher_suite(struct wiphy * wiphy,u32 cipher)268 bool cfg80211_supported_cipher_suite(struct wiphy *wiphy, u32 cipher)
269 {
270 int i;
271 for (i = 0; i < wiphy->n_cipher_suites; i++)
272 if (cipher == wiphy->cipher_suites[i])
273 return true;
274 return false;
275 }
276
277 static bool
cfg80211_igtk_cipher_supported(struct cfg80211_registered_device * rdev)278 cfg80211_igtk_cipher_supported(struct cfg80211_registered_device *rdev)
279 {
280 struct wiphy *wiphy = &rdev->wiphy;
281 int i;
282
283 for (i = 0; i < wiphy->n_cipher_suites; i++) {
284 switch (wiphy->cipher_suites[i]) {
285 case WLAN_CIPHER_SUITE_AES_CMAC:
286 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
287 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
288 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
289 return true;
290 }
291 }
292
293 return false;
294 }
295
cfg80211_valid_key_idx(struct cfg80211_registered_device * rdev,int key_idx,bool pairwise)296 bool cfg80211_valid_key_idx(struct cfg80211_registered_device *rdev,
297 int key_idx, bool pairwise)
298 {
299 int max_key_idx;
300
301 if (pairwise)
302 max_key_idx = 3;
303 else if (wiphy_ext_feature_isset(&rdev->wiphy,
304 NL80211_EXT_FEATURE_BEACON_PROTECTION) ||
305 wiphy_ext_feature_isset(&rdev->wiphy,
306 NL80211_EXT_FEATURE_BEACON_PROTECTION_CLIENT))
307 max_key_idx = 7;
308 else if (cfg80211_igtk_cipher_supported(rdev))
309 max_key_idx = 5;
310 else
311 max_key_idx = 3;
312
313 if (key_idx < 0 || key_idx > max_key_idx)
314 return false;
315
316 return true;
317 }
318
cfg80211_validate_key_settings(struct cfg80211_registered_device * rdev,struct key_params * params,int key_idx,bool pairwise,const u8 * mac_addr)319 int cfg80211_validate_key_settings(struct cfg80211_registered_device *rdev,
320 struct key_params *params, int key_idx,
321 bool pairwise, const u8 *mac_addr)
322 {
323 if (!cfg80211_valid_key_idx(rdev, key_idx, pairwise))
324 return -EINVAL;
325
326 if (!pairwise && mac_addr && !(rdev->wiphy.flags & WIPHY_FLAG_IBSS_RSN))
327 return -EINVAL;
328
329 if (pairwise && !mac_addr)
330 return -EINVAL;
331
332 switch (params->cipher) {
333 case WLAN_CIPHER_SUITE_TKIP:
334 /* Extended Key ID can only be used with CCMP/GCMP ciphers */
335 if ((pairwise && key_idx) ||
336 params->mode != NL80211_KEY_RX_TX)
337 return -EINVAL;
338 break;
339 case WLAN_CIPHER_SUITE_CCMP:
340 case WLAN_CIPHER_SUITE_CCMP_256:
341 case WLAN_CIPHER_SUITE_GCMP:
342 case WLAN_CIPHER_SUITE_GCMP_256:
343 /* IEEE802.11-2016 allows only 0 and - when supporting
344 * Extended Key ID - 1 as index for pairwise keys.
345 * @NL80211_KEY_NO_TX is only allowed for pairwise keys when
346 * the driver supports Extended Key ID.
347 * @NL80211_KEY_SET_TX can't be set when installing and
348 * validating a key.
349 */
350 if ((params->mode == NL80211_KEY_NO_TX && !pairwise) ||
351 params->mode == NL80211_KEY_SET_TX)
352 return -EINVAL;
353 if (wiphy_ext_feature_isset(&rdev->wiphy,
354 NL80211_EXT_FEATURE_EXT_KEY_ID)) {
355 if (pairwise && (key_idx < 0 || key_idx > 1))
356 return -EINVAL;
357 } else if (pairwise && key_idx) {
358 return -EINVAL;
359 }
360 break;
361 case WLAN_CIPHER_SUITE_AES_CMAC:
362 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
363 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
364 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
365 /* Disallow BIP (group-only) cipher as pairwise cipher */
366 if (pairwise)
367 return -EINVAL;
368 if (key_idx < 4)
369 return -EINVAL;
370 break;
371 case WLAN_CIPHER_SUITE_WEP40:
372 case WLAN_CIPHER_SUITE_WEP104:
373 if (key_idx > 3)
374 return -EINVAL;
375 break;
376 default:
377 break;
378 }
379
380 switch (params->cipher) {
381 case WLAN_CIPHER_SUITE_WEP40:
382 if (params->key_len != WLAN_KEY_LEN_WEP40)
383 return -EINVAL;
384 break;
385 case WLAN_CIPHER_SUITE_TKIP:
386 if (params->key_len != WLAN_KEY_LEN_TKIP)
387 return -EINVAL;
388 break;
389 case WLAN_CIPHER_SUITE_CCMP:
390 if (params->key_len != WLAN_KEY_LEN_CCMP)
391 return -EINVAL;
392 break;
393 case WLAN_CIPHER_SUITE_CCMP_256:
394 if (params->key_len != WLAN_KEY_LEN_CCMP_256)
395 return -EINVAL;
396 break;
397 case WLAN_CIPHER_SUITE_GCMP:
398 if (params->key_len != WLAN_KEY_LEN_GCMP)
399 return -EINVAL;
400 break;
401 case WLAN_CIPHER_SUITE_GCMP_256:
402 if (params->key_len != WLAN_KEY_LEN_GCMP_256)
403 return -EINVAL;
404 break;
405 case WLAN_CIPHER_SUITE_WEP104:
406 if (params->key_len != WLAN_KEY_LEN_WEP104)
407 return -EINVAL;
408 break;
409 case WLAN_CIPHER_SUITE_AES_CMAC:
410 if (params->key_len != WLAN_KEY_LEN_AES_CMAC)
411 return -EINVAL;
412 break;
413 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
414 if (params->key_len != WLAN_KEY_LEN_BIP_CMAC_256)
415 return -EINVAL;
416 break;
417 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
418 if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_128)
419 return -EINVAL;
420 break;
421 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
422 if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_256)
423 return -EINVAL;
424 break;
425 default:
426 /*
427 * We don't know anything about this algorithm,
428 * allow using it -- but the driver must check
429 * all parameters! We still check below whether
430 * or not the driver supports this algorithm,
431 * of course.
432 */
433 break;
434 }
435
436 if (params->seq) {
437 switch (params->cipher) {
438 case WLAN_CIPHER_SUITE_WEP40:
439 case WLAN_CIPHER_SUITE_WEP104:
440 /* These ciphers do not use key sequence */
441 return -EINVAL;
442 case WLAN_CIPHER_SUITE_TKIP:
443 case WLAN_CIPHER_SUITE_CCMP:
444 case WLAN_CIPHER_SUITE_CCMP_256:
445 case WLAN_CIPHER_SUITE_GCMP:
446 case WLAN_CIPHER_SUITE_GCMP_256:
447 case WLAN_CIPHER_SUITE_AES_CMAC:
448 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
449 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
450 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
451 if (params->seq_len != 6)
452 return -EINVAL;
453 break;
454 }
455 }
456
457 if (!cfg80211_supported_cipher_suite(&rdev->wiphy, params->cipher))
458 return -EINVAL;
459
460 return 0;
461 }
462
ieee80211_hdrlen(__le16 fc)463 unsigned int __attribute_const__ ieee80211_hdrlen(__le16 fc)
464 {
465 unsigned int hdrlen = 24;
466
467 if (ieee80211_is_ext(fc)) {
468 hdrlen = 4;
469 goto out;
470 }
471
472 if (ieee80211_is_data(fc)) {
473 if (ieee80211_has_a4(fc))
474 hdrlen = 30;
475 if (ieee80211_is_data_qos(fc)) {
476 hdrlen += IEEE80211_QOS_CTL_LEN;
477 if (ieee80211_has_order(fc))
478 hdrlen += IEEE80211_HT_CTL_LEN;
479 }
480 goto out;
481 }
482
483 if (ieee80211_is_mgmt(fc)) {
484 if (ieee80211_has_order(fc))
485 hdrlen += IEEE80211_HT_CTL_LEN;
486 goto out;
487 }
488
489 if (ieee80211_is_ctl(fc)) {
490 /*
491 * ACK and CTS are 10 bytes, all others 16. To see how
492 * to get this condition consider
493 * subtype mask: 0b0000000011110000 (0x00F0)
494 * ACK subtype: 0b0000000011010000 (0x00D0)
495 * CTS subtype: 0b0000000011000000 (0x00C0)
496 * bits that matter: ^^^ (0x00E0)
497 * value of those: 0b0000000011000000 (0x00C0)
498 */
499 if ((fc & cpu_to_le16(0x00E0)) == cpu_to_le16(0x00C0))
500 hdrlen = 10;
501 else
502 hdrlen = 16;
503 }
504 out:
505 return hdrlen;
506 }
507 EXPORT_SYMBOL(ieee80211_hdrlen);
508
ieee80211_get_hdrlen_from_skb(const struct sk_buff * skb)509 unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb)
510 {
511 const struct ieee80211_hdr *hdr =
512 (const struct ieee80211_hdr *)skb->data;
513 unsigned int hdrlen;
514
515 if (unlikely(skb->len < 10))
516 return 0;
517 hdrlen = ieee80211_hdrlen(hdr->frame_control);
518 if (unlikely(hdrlen > skb->len))
519 return 0;
520 return hdrlen;
521 }
522 EXPORT_SYMBOL(ieee80211_get_hdrlen_from_skb);
523
__ieee80211_get_mesh_hdrlen(u8 flags)524 static unsigned int __ieee80211_get_mesh_hdrlen(u8 flags)
525 {
526 int ae = flags & MESH_FLAGS_AE;
527 /* 802.11-2012, 8.2.4.7.3 */
528 switch (ae) {
529 default:
530 case 0:
531 return 6;
532 case MESH_FLAGS_AE_A4:
533 return 12;
534 case MESH_FLAGS_AE_A5_A6:
535 return 18;
536 }
537 }
538
ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr * meshhdr)539 unsigned int ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr *meshhdr)
540 {
541 return __ieee80211_get_mesh_hdrlen(meshhdr->flags);
542 }
543 EXPORT_SYMBOL(ieee80211_get_mesh_hdrlen);
544
ieee80211_data_to_8023_exthdr(struct sk_buff * skb,struct ethhdr * ehdr,const u8 * addr,enum nl80211_iftype iftype,u8 data_offset,bool is_amsdu)545 int ieee80211_data_to_8023_exthdr(struct sk_buff *skb, struct ethhdr *ehdr,
546 const u8 *addr, enum nl80211_iftype iftype,
547 u8 data_offset, bool is_amsdu)
548 {
549 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
550 struct {
551 u8 hdr[ETH_ALEN] __aligned(2);
552 __be16 proto;
553 } payload;
554 struct ethhdr tmp;
555 u16 hdrlen;
556 u8 mesh_flags = 0;
557
558 if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
559 return -1;
560
561 hdrlen = ieee80211_hdrlen(hdr->frame_control) + data_offset;
562 if (skb->len < hdrlen + 8)
563 return -1;
564
565 /* convert IEEE 802.11 header + possible LLC headers into Ethernet
566 * header
567 * IEEE 802.11 address fields:
568 * ToDS FromDS Addr1 Addr2 Addr3 Addr4
569 * 0 0 DA SA BSSID n/a
570 * 0 1 DA BSSID SA n/a
571 * 1 0 BSSID SA DA n/a
572 * 1 1 RA TA DA SA
573 */
574 memcpy(tmp.h_dest, ieee80211_get_DA(hdr), ETH_ALEN);
575 memcpy(tmp.h_source, ieee80211_get_SA(hdr), ETH_ALEN);
576
577 if (iftype == NL80211_IFTYPE_MESH_POINT)
578 skb_copy_bits(skb, hdrlen, &mesh_flags, 1);
579
580 mesh_flags &= MESH_FLAGS_AE;
581
582 switch (hdr->frame_control &
583 cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) {
584 case cpu_to_le16(IEEE80211_FCTL_TODS):
585 if (unlikely(iftype != NL80211_IFTYPE_AP &&
586 iftype != NL80211_IFTYPE_AP_VLAN &&
587 iftype != NL80211_IFTYPE_P2P_GO))
588 return -1;
589 break;
590 case cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS):
591 if (unlikely(iftype != NL80211_IFTYPE_MESH_POINT &&
592 iftype != NL80211_IFTYPE_AP_VLAN &&
593 iftype != NL80211_IFTYPE_STATION))
594 return -1;
595 if (iftype == NL80211_IFTYPE_MESH_POINT) {
596 if (mesh_flags == MESH_FLAGS_AE_A4)
597 return -1;
598 if (mesh_flags == MESH_FLAGS_AE_A5_A6) {
599 skb_copy_bits(skb, hdrlen +
600 offsetof(struct ieee80211s_hdr, eaddr1),
601 tmp.h_dest, 2 * ETH_ALEN);
602 }
603 hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags);
604 }
605 break;
606 case cpu_to_le16(IEEE80211_FCTL_FROMDS):
607 if ((iftype != NL80211_IFTYPE_STATION &&
608 iftype != NL80211_IFTYPE_P2P_CLIENT &&
609 iftype != NL80211_IFTYPE_MESH_POINT) ||
610 (is_multicast_ether_addr(tmp.h_dest) &&
611 ether_addr_equal(tmp.h_source, addr)))
612 return -1;
613 if (iftype == NL80211_IFTYPE_MESH_POINT) {
614 if (mesh_flags == MESH_FLAGS_AE_A5_A6)
615 return -1;
616 if (mesh_flags == MESH_FLAGS_AE_A4)
617 skb_copy_bits(skb, hdrlen +
618 offsetof(struct ieee80211s_hdr, eaddr1),
619 tmp.h_source, ETH_ALEN);
620 hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags);
621 }
622 break;
623 case cpu_to_le16(0):
624 if (iftype != NL80211_IFTYPE_ADHOC &&
625 iftype != NL80211_IFTYPE_STATION &&
626 iftype != NL80211_IFTYPE_OCB)
627 return -1;
628 break;
629 }
630
631 skb_copy_bits(skb, hdrlen, &payload, sizeof(payload));
632 tmp.h_proto = payload.proto;
633
634 if (likely((!is_amsdu && ether_addr_equal(payload.hdr, rfc1042_header) &&
635 tmp.h_proto != htons(ETH_P_AARP) &&
636 tmp.h_proto != htons(ETH_P_IPX)) ||
637 ether_addr_equal(payload.hdr, bridge_tunnel_header))) {
638 /* remove RFC1042 or Bridge-Tunnel encapsulation and
639 * replace EtherType */
640 hdrlen += ETH_ALEN + 2;
641 skb_postpull_rcsum(skb, &payload, ETH_ALEN + 2);
642 } else {
643 tmp.h_proto = htons(skb->len - hdrlen);
644 }
645
646 pskb_pull(skb, hdrlen);
647
648 if (!ehdr)
649 ehdr = skb_push(skb, sizeof(struct ethhdr));
650 memcpy(ehdr, &tmp, sizeof(tmp));
651
652 return 0;
653 }
654 EXPORT_SYMBOL(ieee80211_data_to_8023_exthdr);
655
656 static void
__frame_add_frag(struct sk_buff * skb,struct page * page,void * ptr,int len,int size)657 __frame_add_frag(struct sk_buff *skb, struct page *page,
658 void *ptr, int len, int size)
659 {
660 struct skb_shared_info *sh = skb_shinfo(skb);
661 int page_offset;
662
663 get_page(page);
664 page_offset = ptr - page_address(page);
665 skb_add_rx_frag(skb, sh->nr_frags, page, page_offset, len, size);
666 }
667
668 static void
__ieee80211_amsdu_copy_frag(struct sk_buff * skb,struct sk_buff * frame,int offset,int len)669 __ieee80211_amsdu_copy_frag(struct sk_buff *skb, struct sk_buff *frame,
670 int offset, int len)
671 {
672 struct skb_shared_info *sh = skb_shinfo(skb);
673 const skb_frag_t *frag = &sh->frags[0];
674 struct page *frag_page;
675 void *frag_ptr;
676 int frag_len, frag_size;
677 int head_size = skb->len - skb->data_len;
678 int cur_len;
679
680 frag_page = virt_to_head_page(skb->head);
681 frag_ptr = skb->data;
682 frag_size = head_size;
683
684 while (offset >= frag_size) {
685 offset -= frag_size;
686 frag_page = skb_frag_page(frag);
687 frag_ptr = skb_frag_address(frag);
688 frag_size = skb_frag_size(frag);
689 frag++;
690 }
691
692 frag_ptr += offset;
693 frag_len = frag_size - offset;
694
695 cur_len = min(len, frag_len);
696
697 __frame_add_frag(frame, frag_page, frag_ptr, cur_len, frag_size);
698 len -= cur_len;
699
700 while (len > 0) {
701 frag_len = skb_frag_size(frag);
702 cur_len = min(len, frag_len);
703 __frame_add_frag(frame, skb_frag_page(frag),
704 skb_frag_address(frag), cur_len, frag_len);
705 len -= cur_len;
706 frag++;
707 }
708 }
709
710 static struct sk_buff *
__ieee80211_amsdu_copy(struct sk_buff * skb,unsigned int hlen,int offset,int len,bool reuse_frag)711 __ieee80211_amsdu_copy(struct sk_buff *skb, unsigned int hlen,
712 int offset, int len, bool reuse_frag)
713 {
714 struct sk_buff *frame;
715 int cur_len = len;
716
717 if (skb->len - offset < len)
718 return NULL;
719
720 /*
721 * When reusing framents, copy some data to the head to simplify
722 * ethernet header handling and speed up protocol header processing
723 * in the stack later.
724 */
725 if (reuse_frag)
726 cur_len = min_t(int, len, 32);
727
728 /*
729 * Allocate and reserve two bytes more for payload
730 * alignment since sizeof(struct ethhdr) is 14.
731 */
732 frame = dev_alloc_skb(hlen + sizeof(struct ethhdr) + 2 + cur_len);
733 if (!frame)
734 return NULL;
735
736 skb_reserve(frame, hlen + sizeof(struct ethhdr) + 2);
737 skb_copy_bits(skb, offset, skb_put(frame, cur_len), cur_len);
738
739 len -= cur_len;
740 if (!len)
741 return frame;
742
743 offset += cur_len;
744 __ieee80211_amsdu_copy_frag(skb, frame, offset, len);
745
746 return frame;
747 }
748
ieee80211_amsdu_to_8023s(struct sk_buff * skb,struct sk_buff_head * list,const u8 * addr,enum nl80211_iftype iftype,const unsigned int extra_headroom,const u8 * check_da,const u8 * check_sa)749 void ieee80211_amsdu_to_8023s(struct sk_buff *skb, struct sk_buff_head *list,
750 const u8 *addr, enum nl80211_iftype iftype,
751 const unsigned int extra_headroom,
752 const u8 *check_da, const u8 *check_sa)
753 {
754 unsigned int hlen = ALIGN(extra_headroom, 4);
755 struct sk_buff *frame = NULL;
756 u16 ethertype;
757 u8 *payload;
758 int offset = 0, remaining;
759 struct ethhdr eth;
760 bool reuse_frag = skb->head_frag && !skb_has_frag_list(skb);
761 bool reuse_skb = false;
762 bool last = false;
763
764 while (!last) {
765 unsigned int subframe_len;
766 int len;
767 u8 padding;
768
769 skb_copy_bits(skb, offset, ð, sizeof(eth));
770 len = ntohs(eth.h_proto);
771 subframe_len = sizeof(struct ethhdr) + len;
772 padding = (4 - subframe_len) & 0x3;
773
774 /* the last MSDU has no padding */
775 remaining = skb->len - offset;
776 if (subframe_len > remaining)
777 goto purge;
778 /* mitigate A-MSDU aggregation injection attacks */
779 if (ether_addr_equal(eth.h_dest, rfc1042_header))
780 goto purge;
781
782 offset += sizeof(struct ethhdr);
783 last = remaining <= subframe_len + padding;
784
785 /* FIXME: should we really accept multicast DA? */
786 if ((check_da && !is_multicast_ether_addr(eth.h_dest) &&
787 !ether_addr_equal(check_da, eth.h_dest)) ||
788 (check_sa && !ether_addr_equal(check_sa, eth.h_source))) {
789 offset += len + padding;
790 continue;
791 }
792
793 /* reuse skb for the last subframe */
794 if (!skb_is_nonlinear(skb) && !reuse_frag && last) {
795 skb_pull(skb, offset);
796 frame = skb;
797 reuse_skb = true;
798 } else {
799 frame = __ieee80211_amsdu_copy(skb, hlen, offset, len,
800 reuse_frag);
801 if (!frame)
802 goto purge;
803
804 offset += len + padding;
805 }
806
807 skb_reset_network_header(frame);
808 frame->dev = skb->dev;
809 frame->priority = skb->priority;
810
811 payload = frame->data;
812 ethertype = (payload[6] << 8) | payload[7];
813 if (likely((ether_addr_equal(payload, rfc1042_header) &&
814 ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) ||
815 ether_addr_equal(payload, bridge_tunnel_header))) {
816 eth.h_proto = htons(ethertype);
817 skb_pull(frame, ETH_ALEN + 2);
818 }
819
820 memcpy(skb_push(frame, sizeof(eth)), ð, sizeof(eth));
821 __skb_queue_tail(list, frame);
822 }
823
824 if (!reuse_skb)
825 dev_kfree_skb(skb);
826
827 return;
828
829 purge:
830 __skb_queue_purge(list);
831 dev_kfree_skb(skb);
832 }
833 EXPORT_SYMBOL(ieee80211_amsdu_to_8023s);
834
835 /* Given a data frame determine the 802.1p/1d tag to use. */
cfg80211_classify8021d(struct sk_buff * skb,struct cfg80211_qos_map * qos_map)836 unsigned int cfg80211_classify8021d(struct sk_buff *skb,
837 struct cfg80211_qos_map *qos_map)
838 {
839 unsigned int dscp;
840 unsigned char vlan_priority;
841 unsigned int ret;
842
843 /* skb->priority values from 256->263 are magic values to
844 * directly indicate a specific 802.1d priority. This is used
845 * to allow 802.1d priority to be passed directly in from VLAN
846 * tags, etc.
847 */
848 if (skb->priority >= 256 && skb->priority <= 263) {
849 ret = skb->priority - 256;
850 goto out;
851 }
852
853 if (skb_vlan_tag_present(skb)) {
854 vlan_priority = (skb_vlan_tag_get(skb) & VLAN_PRIO_MASK)
855 >> VLAN_PRIO_SHIFT;
856 if (vlan_priority > 0) {
857 ret = vlan_priority;
858 goto out;
859 }
860 }
861
862 switch (skb->protocol) {
863 case htons(ETH_P_IP):
864 dscp = ipv4_get_dsfield(ip_hdr(skb)) & 0xfc;
865 break;
866 case htons(ETH_P_IPV6):
867 dscp = ipv6_get_dsfield(ipv6_hdr(skb)) & 0xfc;
868 break;
869 case htons(ETH_P_MPLS_UC):
870 case htons(ETH_P_MPLS_MC): {
871 struct mpls_label mpls_tmp, *mpls;
872
873 mpls = skb_header_pointer(skb, sizeof(struct ethhdr),
874 sizeof(*mpls), &mpls_tmp);
875 if (!mpls)
876 return 0;
877
878 ret = (ntohl(mpls->entry) & MPLS_LS_TC_MASK)
879 >> MPLS_LS_TC_SHIFT;
880 goto out;
881 }
882 case htons(ETH_P_80221):
883 /* 802.21 is always network control traffic */
884 return 7;
885 default:
886 return 0;
887 }
888
889 if (qos_map) {
890 unsigned int i, tmp_dscp = dscp >> 2;
891
892 for (i = 0; i < qos_map->num_des; i++) {
893 if (tmp_dscp == qos_map->dscp_exception[i].dscp) {
894 ret = qos_map->dscp_exception[i].up;
895 goto out;
896 }
897 }
898
899 for (i = 0; i < 8; i++) {
900 if (tmp_dscp >= qos_map->up[i].low &&
901 tmp_dscp <= qos_map->up[i].high) {
902 ret = i;
903 goto out;
904 }
905 }
906 }
907
908 ret = dscp >> 5;
909 out:
910 return array_index_nospec(ret, IEEE80211_NUM_TIDS);
911 }
912 EXPORT_SYMBOL(cfg80211_classify8021d);
913
ieee80211_bss_get_elem(struct cfg80211_bss * bss,u8 id)914 const struct element *ieee80211_bss_get_elem(struct cfg80211_bss *bss, u8 id)
915 {
916 const struct cfg80211_bss_ies *ies;
917
918 ies = rcu_dereference(bss->ies);
919 if (!ies)
920 return NULL;
921
922 return cfg80211_find_elem(id, ies->data, ies->len);
923 }
924 EXPORT_SYMBOL(ieee80211_bss_get_elem);
925
cfg80211_upload_connect_keys(struct wireless_dev * wdev)926 void cfg80211_upload_connect_keys(struct wireless_dev *wdev)
927 {
928 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy);
929 struct net_device *dev = wdev->netdev;
930 int i;
931
932 if (!wdev->connect_keys)
933 return;
934
935 for (i = 0; i < CFG80211_MAX_WEP_KEYS; i++) {
936 if (!wdev->connect_keys->params[i].cipher)
937 continue;
938 if (rdev_add_key(rdev, dev, -1, i, false, NULL,
939 &wdev->connect_keys->params[i])) {
940 netdev_err(dev, "failed to set key %d\n", i);
941 continue;
942 }
943 if (wdev->connect_keys->def == i &&
944 rdev_set_default_key(rdev, dev, -1, i, true, true)) {
945 netdev_err(dev, "failed to set defkey %d\n", i);
946 continue;
947 }
948 }
949
950 kfree_sensitive(wdev->connect_keys);
951 wdev->connect_keys = NULL;
952 }
953
cfg80211_process_wdev_events(struct wireless_dev * wdev)954 void cfg80211_process_wdev_events(struct wireless_dev *wdev)
955 {
956 struct cfg80211_event *ev;
957 unsigned long flags;
958
959 spin_lock_irqsave(&wdev->event_lock, flags);
960 while (!list_empty(&wdev->event_list)) {
961 ev = list_first_entry(&wdev->event_list,
962 struct cfg80211_event, list);
963 list_del(&ev->list);
964 spin_unlock_irqrestore(&wdev->event_lock, flags);
965
966 wdev_lock(wdev);
967 switch (ev->type) {
968 case EVENT_CONNECT_RESULT:
969 __cfg80211_connect_result(
970 wdev->netdev,
971 &ev->cr,
972 ev->cr.status == WLAN_STATUS_SUCCESS);
973 break;
974 case EVENT_ROAMED:
975 __cfg80211_roamed(wdev, &ev->rm);
976 break;
977 case EVENT_DISCONNECTED:
978 __cfg80211_disconnected(wdev->netdev,
979 ev->dc.ie, ev->dc.ie_len,
980 ev->dc.reason,
981 !ev->dc.locally_generated);
982 break;
983 case EVENT_IBSS_JOINED:
984 __cfg80211_ibss_joined(wdev->netdev, ev->ij.bssid,
985 ev->ij.channel);
986 break;
987 case EVENT_STOPPED:
988 __cfg80211_leave(wiphy_to_rdev(wdev->wiphy), wdev);
989 break;
990 case EVENT_PORT_AUTHORIZED:
991 __cfg80211_port_authorized(wdev, ev->pa.bssid,
992 ev->pa.td_bitmap,
993 ev->pa.td_bitmap_len);
994 break;
995 }
996 wdev_unlock(wdev);
997
998 kfree(ev);
999
1000 spin_lock_irqsave(&wdev->event_lock, flags);
1001 }
1002 spin_unlock_irqrestore(&wdev->event_lock, flags);
1003 }
1004
cfg80211_process_rdev_events(struct cfg80211_registered_device * rdev)1005 void cfg80211_process_rdev_events(struct cfg80211_registered_device *rdev)
1006 {
1007 struct wireless_dev *wdev;
1008
1009 lockdep_assert_held(&rdev->wiphy.mtx);
1010
1011 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
1012 cfg80211_process_wdev_events(wdev);
1013 }
1014
cfg80211_change_iface(struct cfg80211_registered_device * rdev,struct net_device * dev,enum nl80211_iftype ntype,struct vif_params * params)1015 int cfg80211_change_iface(struct cfg80211_registered_device *rdev,
1016 struct net_device *dev, enum nl80211_iftype ntype,
1017 struct vif_params *params)
1018 {
1019 int err;
1020 enum nl80211_iftype otype = dev->ieee80211_ptr->iftype;
1021
1022 lockdep_assert_held(&rdev->wiphy.mtx);
1023
1024 /* don't support changing VLANs, you just re-create them */
1025 if (otype == NL80211_IFTYPE_AP_VLAN)
1026 return -EOPNOTSUPP;
1027
1028 /* cannot change into P2P device or NAN */
1029 if (ntype == NL80211_IFTYPE_P2P_DEVICE ||
1030 ntype == NL80211_IFTYPE_NAN)
1031 return -EOPNOTSUPP;
1032
1033 if (!rdev->ops->change_virtual_intf ||
1034 !(rdev->wiphy.interface_modes & (1 << ntype)))
1035 return -EOPNOTSUPP;
1036
1037 if (ntype != otype) {
1038 /* if it's part of a bridge, reject changing type to station/ibss */
1039 if (netif_is_bridge_port(dev) &&
1040 (ntype == NL80211_IFTYPE_ADHOC ||
1041 ntype == NL80211_IFTYPE_STATION ||
1042 ntype == NL80211_IFTYPE_P2P_CLIENT))
1043 return -EBUSY;
1044
1045 dev->ieee80211_ptr->use_4addr = false;
1046 wdev_lock(dev->ieee80211_ptr);
1047 rdev_set_qos_map(rdev, dev, NULL);
1048 wdev_unlock(dev->ieee80211_ptr);
1049
1050 switch (otype) {
1051 case NL80211_IFTYPE_AP:
1052 case NL80211_IFTYPE_P2P_GO:
1053 cfg80211_stop_ap(rdev, dev, -1, true);
1054 break;
1055 case NL80211_IFTYPE_ADHOC:
1056 cfg80211_leave_ibss(rdev, dev, false);
1057 break;
1058 case NL80211_IFTYPE_STATION:
1059 case NL80211_IFTYPE_P2P_CLIENT:
1060 wdev_lock(dev->ieee80211_ptr);
1061 cfg80211_disconnect(rdev, dev,
1062 WLAN_REASON_DEAUTH_LEAVING, true);
1063 wdev_unlock(dev->ieee80211_ptr);
1064 break;
1065 case NL80211_IFTYPE_MESH_POINT:
1066 /* mesh should be handled? */
1067 break;
1068 case NL80211_IFTYPE_OCB:
1069 cfg80211_leave_ocb(rdev, dev);
1070 break;
1071 default:
1072 break;
1073 }
1074
1075 cfg80211_process_rdev_events(rdev);
1076 cfg80211_mlme_purge_registrations(dev->ieee80211_ptr);
1077
1078 memset(&dev->ieee80211_ptr->u, 0,
1079 sizeof(dev->ieee80211_ptr->u));
1080 memset(&dev->ieee80211_ptr->links, 0,
1081 sizeof(dev->ieee80211_ptr->links));
1082 }
1083
1084 err = rdev_change_virtual_intf(rdev, dev, ntype, params);
1085
1086 WARN_ON(!err && dev->ieee80211_ptr->iftype != ntype);
1087
1088 if (!err && params && params->use_4addr != -1)
1089 dev->ieee80211_ptr->use_4addr = params->use_4addr;
1090
1091 if (!err) {
1092 dev->priv_flags &= ~IFF_DONT_BRIDGE;
1093 switch (ntype) {
1094 case NL80211_IFTYPE_STATION:
1095 if (dev->ieee80211_ptr->use_4addr)
1096 break;
1097 fallthrough;
1098 case NL80211_IFTYPE_OCB:
1099 case NL80211_IFTYPE_P2P_CLIENT:
1100 case NL80211_IFTYPE_ADHOC:
1101 dev->priv_flags |= IFF_DONT_BRIDGE;
1102 break;
1103 case NL80211_IFTYPE_P2P_GO:
1104 case NL80211_IFTYPE_AP:
1105 case NL80211_IFTYPE_AP_VLAN:
1106 case NL80211_IFTYPE_MESH_POINT:
1107 /* bridging OK */
1108 break;
1109 case NL80211_IFTYPE_MONITOR:
1110 /* monitor can't bridge anyway */
1111 break;
1112 case NL80211_IFTYPE_UNSPECIFIED:
1113 case NUM_NL80211_IFTYPES:
1114 /* not happening */
1115 break;
1116 case NL80211_IFTYPE_P2P_DEVICE:
1117 case NL80211_IFTYPE_WDS:
1118 case NL80211_IFTYPE_NAN:
1119 WARN_ON(1);
1120 break;
1121 }
1122 }
1123
1124 if (!err && ntype != otype && netif_running(dev)) {
1125 cfg80211_update_iface_num(rdev, ntype, 1);
1126 cfg80211_update_iface_num(rdev, otype, -1);
1127 }
1128
1129 return err;
1130 }
1131
cfg80211_calculate_bitrate_ht(struct rate_info * rate)1132 static u32 cfg80211_calculate_bitrate_ht(struct rate_info *rate)
1133 {
1134 int modulation, streams, bitrate;
1135
1136 /* the formula below does only work for MCS values smaller than 32 */
1137 if (WARN_ON_ONCE(rate->mcs >= 32))
1138 return 0;
1139
1140 modulation = rate->mcs & 7;
1141 streams = (rate->mcs >> 3) + 1;
1142
1143 bitrate = (rate->bw == RATE_INFO_BW_40) ? 13500000 : 6500000;
1144
1145 if (modulation < 4)
1146 bitrate *= (modulation + 1);
1147 else if (modulation == 4)
1148 bitrate *= (modulation + 2);
1149 else
1150 bitrate *= (modulation + 3);
1151
1152 bitrate *= streams;
1153
1154 if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1155 bitrate = (bitrate / 9) * 10;
1156
1157 /* do NOT round down here */
1158 return (bitrate + 50000) / 100000;
1159 }
1160
cfg80211_calculate_bitrate_dmg(struct rate_info * rate)1161 static u32 cfg80211_calculate_bitrate_dmg(struct rate_info *rate)
1162 {
1163 static const u32 __mcs2bitrate[] = {
1164 /* control PHY */
1165 [0] = 275,
1166 /* SC PHY */
1167 [1] = 3850,
1168 [2] = 7700,
1169 [3] = 9625,
1170 [4] = 11550,
1171 [5] = 12512, /* 1251.25 mbps */
1172 [6] = 15400,
1173 [7] = 19250,
1174 [8] = 23100,
1175 [9] = 25025,
1176 [10] = 30800,
1177 [11] = 38500,
1178 [12] = 46200,
1179 /* OFDM PHY */
1180 [13] = 6930,
1181 [14] = 8662, /* 866.25 mbps */
1182 [15] = 13860,
1183 [16] = 17325,
1184 [17] = 20790,
1185 [18] = 27720,
1186 [19] = 34650,
1187 [20] = 41580,
1188 [21] = 45045,
1189 [22] = 51975,
1190 [23] = 62370,
1191 [24] = 67568, /* 6756.75 mbps */
1192 /* LP-SC PHY */
1193 [25] = 6260,
1194 [26] = 8340,
1195 [27] = 11120,
1196 [28] = 12510,
1197 [29] = 16680,
1198 [30] = 22240,
1199 [31] = 25030,
1200 };
1201
1202 if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate)))
1203 return 0;
1204
1205 return __mcs2bitrate[rate->mcs];
1206 }
1207
cfg80211_calculate_bitrate_extended_sc_dmg(struct rate_info * rate)1208 static u32 cfg80211_calculate_bitrate_extended_sc_dmg(struct rate_info *rate)
1209 {
1210 static const u32 __mcs2bitrate[] = {
1211 [6 - 6] = 26950, /* MCS 9.1 : 2695.0 mbps */
1212 [7 - 6] = 50050, /* MCS 12.1 */
1213 [8 - 6] = 53900,
1214 [9 - 6] = 57750,
1215 [10 - 6] = 63900,
1216 [11 - 6] = 75075,
1217 [12 - 6] = 80850,
1218 };
1219
1220 /* Extended SC MCS not defined for base MCS below 6 or above 12 */
1221 if (WARN_ON_ONCE(rate->mcs < 6 || rate->mcs > 12))
1222 return 0;
1223
1224 return __mcs2bitrate[rate->mcs - 6];
1225 }
1226
cfg80211_calculate_bitrate_edmg(struct rate_info * rate)1227 static u32 cfg80211_calculate_bitrate_edmg(struct rate_info *rate)
1228 {
1229 static const u32 __mcs2bitrate[] = {
1230 /* control PHY */
1231 [0] = 275,
1232 /* SC PHY */
1233 [1] = 3850,
1234 [2] = 7700,
1235 [3] = 9625,
1236 [4] = 11550,
1237 [5] = 12512, /* 1251.25 mbps */
1238 [6] = 13475,
1239 [7] = 15400,
1240 [8] = 19250,
1241 [9] = 23100,
1242 [10] = 25025,
1243 [11] = 26950,
1244 [12] = 30800,
1245 [13] = 38500,
1246 [14] = 46200,
1247 [15] = 50050,
1248 [16] = 53900,
1249 [17] = 57750,
1250 [18] = 69300,
1251 [19] = 75075,
1252 [20] = 80850,
1253 };
1254
1255 if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate)))
1256 return 0;
1257
1258 return __mcs2bitrate[rate->mcs] * rate->n_bonded_ch;
1259 }
1260
cfg80211_calculate_bitrate_vht(struct rate_info * rate)1261 static u32 cfg80211_calculate_bitrate_vht(struct rate_info *rate)
1262 {
1263 static const u32 base[4][12] = {
1264 { 6500000,
1265 13000000,
1266 19500000,
1267 26000000,
1268 39000000,
1269 52000000,
1270 58500000,
1271 65000000,
1272 78000000,
1273 /* not in the spec, but some devices use this: */
1274 86700000,
1275 97500000,
1276 108300000,
1277 },
1278 { 13500000,
1279 27000000,
1280 40500000,
1281 54000000,
1282 81000000,
1283 108000000,
1284 121500000,
1285 135000000,
1286 162000000,
1287 180000000,
1288 202500000,
1289 225000000,
1290 },
1291 { 29300000,
1292 58500000,
1293 87800000,
1294 117000000,
1295 175500000,
1296 234000000,
1297 263300000,
1298 292500000,
1299 351000000,
1300 390000000,
1301 438800000,
1302 487500000,
1303 },
1304 { 58500000,
1305 117000000,
1306 175500000,
1307 234000000,
1308 351000000,
1309 468000000,
1310 526500000,
1311 585000000,
1312 702000000,
1313 780000000,
1314 877500000,
1315 975000000,
1316 },
1317 };
1318 u32 bitrate;
1319 int idx;
1320
1321 if (rate->mcs > 11)
1322 goto warn;
1323
1324 switch (rate->bw) {
1325 case RATE_INFO_BW_160:
1326 idx = 3;
1327 break;
1328 case RATE_INFO_BW_80:
1329 idx = 2;
1330 break;
1331 case RATE_INFO_BW_40:
1332 idx = 1;
1333 break;
1334 case RATE_INFO_BW_5:
1335 case RATE_INFO_BW_10:
1336 default:
1337 goto warn;
1338 case RATE_INFO_BW_20:
1339 idx = 0;
1340 }
1341
1342 bitrate = base[idx][rate->mcs];
1343 bitrate *= rate->nss;
1344
1345 if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1346 bitrate = (bitrate / 9) * 10;
1347
1348 /* do NOT round down here */
1349 return (bitrate + 50000) / 100000;
1350 warn:
1351 WARN_ONCE(1, "invalid rate bw=%d, mcs=%d, nss=%d\n",
1352 rate->bw, rate->mcs, rate->nss);
1353 return 0;
1354 }
1355
cfg80211_calculate_bitrate_he(struct rate_info * rate)1356 static u32 cfg80211_calculate_bitrate_he(struct rate_info *rate)
1357 {
1358 #define SCALE 6144
1359 u32 mcs_divisors[14] = {
1360 102399, /* 16.666666... */
1361 51201, /* 8.333333... */
1362 34134, /* 5.555555... */
1363 25599, /* 4.166666... */
1364 17067, /* 2.777777... */
1365 12801, /* 2.083333... */
1366 11377, /* 1.851725... */
1367 10239, /* 1.666666... */
1368 8532, /* 1.388888... */
1369 7680, /* 1.250000... */
1370 6828, /* 1.111111... */
1371 6144, /* 1.000000... */
1372 5690, /* 0.926106... */
1373 5120, /* 0.833333... */
1374 };
1375 u32 rates_160M[3] = { 960777777, 907400000, 816666666 };
1376 u32 rates_969[3] = { 480388888, 453700000, 408333333 };
1377 u32 rates_484[3] = { 229411111, 216666666, 195000000 };
1378 u32 rates_242[3] = { 114711111, 108333333, 97500000 };
1379 u32 rates_106[3] = { 40000000, 37777777, 34000000 };
1380 u32 rates_52[3] = { 18820000, 17777777, 16000000 };
1381 u32 rates_26[3] = { 9411111, 8888888, 8000000 };
1382 u64 tmp;
1383 u32 result;
1384
1385 if (WARN_ON_ONCE(rate->mcs > 13))
1386 return 0;
1387
1388 if (WARN_ON_ONCE(rate->he_gi > NL80211_RATE_INFO_HE_GI_3_2))
1389 return 0;
1390 if (WARN_ON_ONCE(rate->he_ru_alloc >
1391 NL80211_RATE_INFO_HE_RU_ALLOC_2x996))
1392 return 0;
1393 if (WARN_ON_ONCE(rate->nss < 1 || rate->nss > 8))
1394 return 0;
1395
1396 if (rate->bw == RATE_INFO_BW_160)
1397 result = rates_160M[rate->he_gi];
1398 else if (rate->bw == RATE_INFO_BW_80 ||
1399 (rate->bw == RATE_INFO_BW_HE_RU &&
1400 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_996))
1401 result = rates_969[rate->he_gi];
1402 else if (rate->bw == RATE_INFO_BW_40 ||
1403 (rate->bw == RATE_INFO_BW_HE_RU &&
1404 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_484))
1405 result = rates_484[rate->he_gi];
1406 else if (rate->bw == RATE_INFO_BW_20 ||
1407 (rate->bw == RATE_INFO_BW_HE_RU &&
1408 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_242))
1409 result = rates_242[rate->he_gi];
1410 else if (rate->bw == RATE_INFO_BW_HE_RU &&
1411 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_106)
1412 result = rates_106[rate->he_gi];
1413 else if (rate->bw == RATE_INFO_BW_HE_RU &&
1414 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_52)
1415 result = rates_52[rate->he_gi];
1416 else if (rate->bw == RATE_INFO_BW_HE_RU &&
1417 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_26)
1418 result = rates_26[rate->he_gi];
1419 else {
1420 WARN(1, "invalid HE MCS: bw:%d, ru:%d\n",
1421 rate->bw, rate->he_ru_alloc);
1422 return 0;
1423 }
1424
1425 /* now scale to the appropriate MCS */
1426 tmp = result;
1427 tmp *= SCALE;
1428 do_div(tmp, mcs_divisors[rate->mcs]);
1429 result = tmp;
1430
1431 /* and take NSS, DCM into account */
1432 result = (result * rate->nss) / 8;
1433 if (rate->he_dcm)
1434 result /= 2;
1435
1436 return result / 10000;
1437 }
1438
cfg80211_calculate_bitrate_eht(struct rate_info * rate)1439 static u32 cfg80211_calculate_bitrate_eht(struct rate_info *rate)
1440 {
1441 #define SCALE 6144
1442 static const u32 mcs_divisors[16] = {
1443 102399, /* 16.666666... */
1444 51201, /* 8.333333... */
1445 34134, /* 5.555555... */
1446 25599, /* 4.166666... */
1447 17067, /* 2.777777... */
1448 12801, /* 2.083333... */
1449 11377, /* 1.851725... */
1450 10239, /* 1.666666... */
1451 8532, /* 1.388888... */
1452 7680, /* 1.250000... */
1453 6828, /* 1.111111... */
1454 6144, /* 1.000000... */
1455 5690, /* 0.926106... */
1456 5120, /* 0.833333... */
1457 409600, /* 66.666666... */
1458 204800, /* 33.333333... */
1459 };
1460 static const u32 rates_996[3] = { 480388888, 453700000, 408333333 };
1461 static const u32 rates_484[3] = { 229411111, 216666666, 195000000 };
1462 static const u32 rates_242[3] = { 114711111, 108333333, 97500000 };
1463 static const u32 rates_106[3] = { 40000000, 37777777, 34000000 };
1464 static const u32 rates_52[3] = { 18820000, 17777777, 16000000 };
1465 static const u32 rates_26[3] = { 9411111, 8888888, 8000000 };
1466 u64 tmp;
1467 u32 result;
1468
1469 if (WARN_ON_ONCE(rate->mcs > 15))
1470 return 0;
1471 if (WARN_ON_ONCE(rate->eht_gi > NL80211_RATE_INFO_EHT_GI_3_2))
1472 return 0;
1473 if (WARN_ON_ONCE(rate->eht_ru_alloc >
1474 NL80211_RATE_INFO_EHT_RU_ALLOC_4x996))
1475 return 0;
1476 if (WARN_ON_ONCE(rate->nss < 1 || rate->nss > 8))
1477 return 0;
1478
1479 /* Bandwidth checks for MCS 14 */
1480 if (rate->mcs == 14) {
1481 if ((rate->bw != RATE_INFO_BW_EHT_RU &&
1482 rate->bw != RATE_INFO_BW_80 &&
1483 rate->bw != RATE_INFO_BW_160 &&
1484 rate->bw != RATE_INFO_BW_320) ||
1485 (rate->bw == RATE_INFO_BW_EHT_RU &&
1486 rate->eht_ru_alloc != NL80211_RATE_INFO_EHT_RU_ALLOC_996 &&
1487 rate->eht_ru_alloc != NL80211_RATE_INFO_EHT_RU_ALLOC_2x996 &&
1488 rate->eht_ru_alloc != NL80211_RATE_INFO_EHT_RU_ALLOC_4x996)) {
1489 WARN(1, "invalid EHT BW for MCS 14: bw:%d, ru:%d\n",
1490 rate->bw, rate->eht_ru_alloc);
1491 return 0;
1492 }
1493 }
1494
1495 if (rate->bw == RATE_INFO_BW_320 ||
1496 (rate->bw == RATE_INFO_BW_EHT_RU &&
1497 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_4x996))
1498 result = 4 * rates_996[rate->eht_gi];
1499 else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1500 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_3x996P484)
1501 result = 3 * rates_996[rate->eht_gi] + rates_484[rate->eht_gi];
1502 else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1503 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_3x996)
1504 result = 3 * rates_996[rate->eht_gi];
1505 else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1506 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_2x996P484)
1507 result = 2 * rates_996[rate->eht_gi] + rates_484[rate->eht_gi];
1508 else if (rate->bw == RATE_INFO_BW_160 ||
1509 (rate->bw == RATE_INFO_BW_EHT_RU &&
1510 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_2x996))
1511 result = 2 * rates_996[rate->eht_gi];
1512 else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1513 rate->eht_ru_alloc ==
1514 NL80211_RATE_INFO_EHT_RU_ALLOC_996P484P242)
1515 result = rates_996[rate->eht_gi] + rates_484[rate->eht_gi]
1516 + rates_242[rate->eht_gi];
1517 else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1518 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_996P484)
1519 result = rates_996[rate->eht_gi] + rates_484[rate->eht_gi];
1520 else if (rate->bw == RATE_INFO_BW_80 ||
1521 (rate->bw == RATE_INFO_BW_EHT_RU &&
1522 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_996))
1523 result = rates_996[rate->eht_gi];
1524 else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1525 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_484P242)
1526 result = rates_484[rate->eht_gi] + rates_242[rate->eht_gi];
1527 else if (rate->bw == RATE_INFO_BW_40 ||
1528 (rate->bw == RATE_INFO_BW_EHT_RU &&
1529 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_484))
1530 result = rates_484[rate->eht_gi];
1531 else if (rate->bw == RATE_INFO_BW_20 ||
1532 (rate->bw == RATE_INFO_BW_EHT_RU &&
1533 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_242))
1534 result = rates_242[rate->eht_gi];
1535 else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1536 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_106P26)
1537 result = rates_106[rate->eht_gi] + rates_26[rate->eht_gi];
1538 else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1539 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_106)
1540 result = rates_106[rate->eht_gi];
1541 else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1542 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_52P26)
1543 result = rates_52[rate->eht_gi] + rates_26[rate->eht_gi];
1544 else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1545 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_52)
1546 result = rates_52[rate->eht_gi];
1547 else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1548 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_26)
1549 result = rates_26[rate->eht_gi];
1550 else {
1551 WARN(1, "invalid EHT MCS: bw:%d, ru:%d\n",
1552 rate->bw, rate->eht_ru_alloc);
1553 return 0;
1554 }
1555
1556 /* now scale to the appropriate MCS */
1557 tmp = result;
1558 tmp *= SCALE;
1559 do_div(tmp, mcs_divisors[rate->mcs]);
1560
1561 /* and take NSS */
1562 tmp *= rate->nss;
1563 do_div(tmp, 8);
1564
1565 result = tmp;
1566
1567 return result / 10000;
1568 }
1569
cfg80211_calculate_bitrate(struct rate_info * rate)1570 u32 cfg80211_calculate_bitrate(struct rate_info *rate)
1571 {
1572 if (rate->flags & RATE_INFO_FLAGS_MCS)
1573 return cfg80211_calculate_bitrate_ht(rate);
1574 if (rate->flags & RATE_INFO_FLAGS_DMG)
1575 return cfg80211_calculate_bitrate_dmg(rate);
1576 if (rate->flags & RATE_INFO_FLAGS_EXTENDED_SC_DMG)
1577 return cfg80211_calculate_bitrate_extended_sc_dmg(rate);
1578 if (rate->flags & RATE_INFO_FLAGS_EDMG)
1579 return cfg80211_calculate_bitrate_edmg(rate);
1580 if (rate->flags & RATE_INFO_FLAGS_VHT_MCS)
1581 return cfg80211_calculate_bitrate_vht(rate);
1582 if (rate->flags & RATE_INFO_FLAGS_HE_MCS)
1583 return cfg80211_calculate_bitrate_he(rate);
1584 if (rate->flags & RATE_INFO_FLAGS_EHT_MCS)
1585 return cfg80211_calculate_bitrate_eht(rate);
1586
1587 return rate->legacy;
1588 }
1589 EXPORT_SYMBOL(cfg80211_calculate_bitrate);
1590
cfg80211_get_p2p_attr(const u8 * ies,unsigned int len,enum ieee80211_p2p_attr_id attr,u8 * buf,unsigned int bufsize)1591 int cfg80211_get_p2p_attr(const u8 *ies, unsigned int len,
1592 enum ieee80211_p2p_attr_id attr,
1593 u8 *buf, unsigned int bufsize)
1594 {
1595 u8 *out = buf;
1596 u16 attr_remaining = 0;
1597 bool desired_attr = false;
1598 u16 desired_len = 0;
1599
1600 while (len > 0) {
1601 unsigned int iedatalen;
1602 unsigned int copy;
1603 const u8 *iedata;
1604
1605 if (len < 2)
1606 return -EILSEQ;
1607 iedatalen = ies[1];
1608 if (iedatalen + 2 > len)
1609 return -EILSEQ;
1610
1611 if (ies[0] != WLAN_EID_VENDOR_SPECIFIC)
1612 goto cont;
1613
1614 if (iedatalen < 4)
1615 goto cont;
1616
1617 iedata = ies + 2;
1618
1619 /* check WFA OUI, P2P subtype */
1620 if (iedata[0] != 0x50 || iedata[1] != 0x6f ||
1621 iedata[2] != 0x9a || iedata[3] != 0x09)
1622 goto cont;
1623
1624 iedatalen -= 4;
1625 iedata += 4;
1626
1627 /* check attribute continuation into this IE */
1628 copy = min_t(unsigned int, attr_remaining, iedatalen);
1629 if (copy && desired_attr) {
1630 desired_len += copy;
1631 if (out) {
1632 memcpy(out, iedata, min(bufsize, copy));
1633 out += min(bufsize, copy);
1634 bufsize -= min(bufsize, copy);
1635 }
1636
1637
1638 if (copy == attr_remaining)
1639 return desired_len;
1640 }
1641
1642 attr_remaining -= copy;
1643 if (attr_remaining)
1644 goto cont;
1645
1646 iedatalen -= copy;
1647 iedata += copy;
1648
1649 while (iedatalen > 0) {
1650 u16 attr_len;
1651
1652 /* P2P attribute ID & size must fit */
1653 if (iedatalen < 3)
1654 return -EILSEQ;
1655 desired_attr = iedata[0] == attr;
1656 attr_len = get_unaligned_le16(iedata + 1);
1657 iedatalen -= 3;
1658 iedata += 3;
1659
1660 copy = min_t(unsigned int, attr_len, iedatalen);
1661
1662 if (desired_attr) {
1663 desired_len += copy;
1664 if (out) {
1665 memcpy(out, iedata, min(bufsize, copy));
1666 out += min(bufsize, copy);
1667 bufsize -= min(bufsize, copy);
1668 }
1669
1670 if (copy == attr_len)
1671 return desired_len;
1672 }
1673
1674 iedata += copy;
1675 iedatalen -= copy;
1676 attr_remaining = attr_len - copy;
1677 }
1678
1679 cont:
1680 len -= ies[1] + 2;
1681 ies += ies[1] + 2;
1682 }
1683
1684 if (attr_remaining && desired_attr)
1685 return -EILSEQ;
1686
1687 return -ENOENT;
1688 }
1689 EXPORT_SYMBOL(cfg80211_get_p2p_attr);
1690
ieee80211_id_in_list(const u8 * ids,int n_ids,u8 id,bool id_ext)1691 static bool ieee80211_id_in_list(const u8 *ids, int n_ids, u8 id, bool id_ext)
1692 {
1693 int i;
1694
1695 /* Make sure array values are legal */
1696 if (WARN_ON(ids[n_ids - 1] == WLAN_EID_EXTENSION))
1697 return false;
1698
1699 i = 0;
1700 while (i < n_ids) {
1701 if (ids[i] == WLAN_EID_EXTENSION) {
1702 if (id_ext && (ids[i + 1] == id))
1703 return true;
1704
1705 i += 2;
1706 continue;
1707 }
1708
1709 if (ids[i] == id && !id_ext)
1710 return true;
1711
1712 i++;
1713 }
1714 return false;
1715 }
1716
skip_ie(const u8 * ies,size_t ielen,size_t pos)1717 static size_t skip_ie(const u8 *ies, size_t ielen, size_t pos)
1718 {
1719 /* we assume a validly formed IEs buffer */
1720 u8 len = ies[pos + 1];
1721
1722 pos += 2 + len;
1723
1724 /* the IE itself must have 255 bytes for fragments to follow */
1725 if (len < 255)
1726 return pos;
1727
1728 while (pos < ielen && ies[pos] == WLAN_EID_FRAGMENT) {
1729 len = ies[pos + 1];
1730 pos += 2 + len;
1731 }
1732
1733 return pos;
1734 }
1735
ieee80211_ie_split_ric(const u8 * ies,size_t ielen,const u8 * ids,int n_ids,const u8 * after_ric,int n_after_ric,size_t offset)1736 size_t ieee80211_ie_split_ric(const u8 *ies, size_t ielen,
1737 const u8 *ids, int n_ids,
1738 const u8 *after_ric, int n_after_ric,
1739 size_t offset)
1740 {
1741 size_t pos = offset;
1742
1743 while (pos < ielen) {
1744 u8 ext = 0;
1745
1746 if (ies[pos] == WLAN_EID_EXTENSION)
1747 ext = 2;
1748 if ((pos + ext) >= ielen)
1749 break;
1750
1751 if (!ieee80211_id_in_list(ids, n_ids, ies[pos + ext],
1752 ies[pos] == WLAN_EID_EXTENSION))
1753 break;
1754
1755 if (ies[pos] == WLAN_EID_RIC_DATA && n_after_ric) {
1756 pos = skip_ie(ies, ielen, pos);
1757
1758 while (pos < ielen) {
1759 if (ies[pos] == WLAN_EID_EXTENSION)
1760 ext = 2;
1761 else
1762 ext = 0;
1763
1764 if ((pos + ext) >= ielen)
1765 break;
1766
1767 if (!ieee80211_id_in_list(after_ric,
1768 n_after_ric,
1769 ies[pos + ext],
1770 ext == 2))
1771 pos = skip_ie(ies, ielen, pos);
1772 else
1773 break;
1774 }
1775 } else {
1776 pos = skip_ie(ies, ielen, pos);
1777 }
1778 }
1779
1780 return pos;
1781 }
1782 EXPORT_SYMBOL(ieee80211_ie_split_ric);
1783
ieee80211_operating_class_to_band(u8 operating_class,enum nl80211_band * band)1784 bool ieee80211_operating_class_to_band(u8 operating_class,
1785 enum nl80211_band *band)
1786 {
1787 switch (operating_class) {
1788 case 112:
1789 case 115 ... 127:
1790 case 128 ... 130:
1791 *band = NL80211_BAND_5GHZ;
1792 return true;
1793 case 131 ... 135:
1794 *band = NL80211_BAND_6GHZ;
1795 return true;
1796 case 81:
1797 case 82:
1798 case 83:
1799 case 84:
1800 *band = NL80211_BAND_2GHZ;
1801 return true;
1802 case 180:
1803 *band = NL80211_BAND_60GHZ;
1804 return true;
1805 }
1806
1807 return false;
1808 }
1809 EXPORT_SYMBOL(ieee80211_operating_class_to_band);
1810
ieee80211_chandef_to_operating_class(struct cfg80211_chan_def * chandef,u8 * op_class)1811 bool ieee80211_chandef_to_operating_class(struct cfg80211_chan_def *chandef,
1812 u8 *op_class)
1813 {
1814 u8 vht_opclass;
1815 u32 freq = chandef->center_freq1;
1816
1817 if (freq >= 2412 && freq <= 2472) {
1818 if (chandef->width > NL80211_CHAN_WIDTH_40)
1819 return false;
1820
1821 /* 2.407 GHz, channels 1..13 */
1822 if (chandef->width == NL80211_CHAN_WIDTH_40) {
1823 if (freq > chandef->chan->center_freq)
1824 *op_class = 83; /* HT40+ */
1825 else
1826 *op_class = 84; /* HT40- */
1827 } else {
1828 *op_class = 81;
1829 }
1830
1831 return true;
1832 }
1833
1834 if (freq == 2484) {
1835 /* channel 14 is only for IEEE 802.11b */
1836 if (chandef->width != NL80211_CHAN_WIDTH_20_NOHT)
1837 return false;
1838
1839 *op_class = 82; /* channel 14 */
1840 return true;
1841 }
1842
1843 switch (chandef->width) {
1844 case NL80211_CHAN_WIDTH_80:
1845 vht_opclass = 128;
1846 break;
1847 case NL80211_CHAN_WIDTH_160:
1848 vht_opclass = 129;
1849 break;
1850 case NL80211_CHAN_WIDTH_80P80:
1851 vht_opclass = 130;
1852 break;
1853 case NL80211_CHAN_WIDTH_10:
1854 case NL80211_CHAN_WIDTH_5:
1855 return false; /* unsupported for now */
1856 default:
1857 vht_opclass = 0;
1858 break;
1859 }
1860
1861 /* 5 GHz, channels 36..48 */
1862 if (freq >= 5180 && freq <= 5240) {
1863 if (vht_opclass) {
1864 *op_class = vht_opclass;
1865 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1866 if (freq > chandef->chan->center_freq)
1867 *op_class = 116;
1868 else
1869 *op_class = 117;
1870 } else {
1871 *op_class = 115;
1872 }
1873
1874 return true;
1875 }
1876
1877 /* 5 GHz, channels 52..64 */
1878 if (freq >= 5260 && freq <= 5320) {
1879 if (vht_opclass) {
1880 *op_class = vht_opclass;
1881 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1882 if (freq > chandef->chan->center_freq)
1883 *op_class = 119;
1884 else
1885 *op_class = 120;
1886 } else {
1887 *op_class = 118;
1888 }
1889
1890 return true;
1891 }
1892
1893 /* 5 GHz, channels 100..144 */
1894 if (freq >= 5500 && freq <= 5720) {
1895 if (vht_opclass) {
1896 *op_class = vht_opclass;
1897 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1898 if (freq > chandef->chan->center_freq)
1899 *op_class = 122;
1900 else
1901 *op_class = 123;
1902 } else {
1903 *op_class = 121;
1904 }
1905
1906 return true;
1907 }
1908
1909 /* 5 GHz, channels 149..169 */
1910 if (freq >= 5745 && freq <= 5845) {
1911 if (vht_opclass) {
1912 *op_class = vht_opclass;
1913 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1914 if (freq > chandef->chan->center_freq)
1915 *op_class = 126;
1916 else
1917 *op_class = 127;
1918 } else if (freq <= 5805) {
1919 *op_class = 124;
1920 } else {
1921 *op_class = 125;
1922 }
1923
1924 return true;
1925 }
1926
1927 /* 56.16 GHz, channel 1..4 */
1928 if (freq >= 56160 + 2160 * 1 && freq <= 56160 + 2160 * 6) {
1929 if (chandef->width >= NL80211_CHAN_WIDTH_40)
1930 return false;
1931
1932 *op_class = 180;
1933 return true;
1934 }
1935
1936 /* not supported yet */
1937 return false;
1938 }
1939 EXPORT_SYMBOL(ieee80211_chandef_to_operating_class);
1940
cfg80211_wdev_bi(struct wireless_dev * wdev)1941 static int cfg80211_wdev_bi(struct wireless_dev *wdev)
1942 {
1943 switch (wdev->iftype) {
1944 case NL80211_IFTYPE_AP:
1945 case NL80211_IFTYPE_P2P_GO:
1946 WARN_ON(wdev->valid_links);
1947 return wdev->links[0].ap.beacon_interval;
1948 case NL80211_IFTYPE_MESH_POINT:
1949 return wdev->u.mesh.beacon_interval;
1950 case NL80211_IFTYPE_ADHOC:
1951 return wdev->u.ibss.beacon_interval;
1952 default:
1953 break;
1954 }
1955
1956 return 0;
1957 }
1958
cfg80211_calculate_bi_data(struct wiphy * wiphy,u32 new_beacon_int,u32 * beacon_int_gcd,bool * beacon_int_different)1959 static void cfg80211_calculate_bi_data(struct wiphy *wiphy, u32 new_beacon_int,
1960 u32 *beacon_int_gcd,
1961 bool *beacon_int_different)
1962 {
1963 struct wireless_dev *wdev;
1964
1965 *beacon_int_gcd = 0;
1966 *beacon_int_different = false;
1967
1968 list_for_each_entry(wdev, &wiphy->wdev_list, list) {
1969 int wdev_bi;
1970
1971 /* this feature isn't supported with MLO */
1972 if (wdev->valid_links)
1973 continue;
1974
1975 wdev_bi = cfg80211_wdev_bi(wdev);
1976
1977 if (!wdev_bi)
1978 continue;
1979
1980 if (!*beacon_int_gcd) {
1981 *beacon_int_gcd = wdev_bi;
1982 continue;
1983 }
1984
1985 if (wdev_bi == *beacon_int_gcd)
1986 continue;
1987
1988 *beacon_int_different = true;
1989 *beacon_int_gcd = gcd(*beacon_int_gcd, wdev_bi);
1990 }
1991
1992 if (new_beacon_int && *beacon_int_gcd != new_beacon_int) {
1993 if (*beacon_int_gcd)
1994 *beacon_int_different = true;
1995 *beacon_int_gcd = gcd(*beacon_int_gcd, new_beacon_int);
1996 }
1997 }
1998
cfg80211_validate_beacon_int(struct cfg80211_registered_device * rdev,enum nl80211_iftype iftype,u32 beacon_int)1999 int cfg80211_validate_beacon_int(struct cfg80211_registered_device *rdev,
2000 enum nl80211_iftype iftype, u32 beacon_int)
2001 {
2002 /*
2003 * This is just a basic pre-condition check; if interface combinations
2004 * are possible the driver must already be checking those with a call
2005 * to cfg80211_check_combinations(), in which case we'll validate more
2006 * through the cfg80211_calculate_bi_data() call and code in
2007 * cfg80211_iter_combinations().
2008 */
2009
2010 if (beacon_int < 10 || beacon_int > 10000)
2011 return -EINVAL;
2012
2013 return 0;
2014 }
2015
cfg80211_iter_combinations(struct wiphy * wiphy,struct iface_combination_params * params,void (* iter)(const struct ieee80211_iface_combination * c,void * data),void * data)2016 int cfg80211_iter_combinations(struct wiphy *wiphy,
2017 struct iface_combination_params *params,
2018 void (*iter)(const struct ieee80211_iface_combination *c,
2019 void *data),
2020 void *data)
2021 {
2022 const struct ieee80211_regdomain *regdom;
2023 enum nl80211_dfs_regions region = 0;
2024 int i, j, iftype;
2025 int num_interfaces = 0;
2026 u32 used_iftypes = 0;
2027 u32 beacon_int_gcd;
2028 bool beacon_int_different;
2029
2030 /*
2031 * This is a bit strange, since the iteration used to rely only on
2032 * the data given by the driver, but here it now relies on context,
2033 * in form of the currently operating interfaces.
2034 * This is OK for all current users, and saves us from having to
2035 * push the GCD calculations into all the drivers.
2036 * In the future, this should probably rely more on data that's in
2037 * cfg80211 already - the only thing not would appear to be any new
2038 * interfaces (while being brought up) and channel/radar data.
2039 */
2040 cfg80211_calculate_bi_data(wiphy, params->new_beacon_int,
2041 &beacon_int_gcd, &beacon_int_different);
2042
2043 if (params->radar_detect) {
2044 rcu_read_lock();
2045 regdom = rcu_dereference(cfg80211_regdomain);
2046 if (regdom)
2047 region = regdom->dfs_region;
2048 rcu_read_unlock();
2049 }
2050
2051 for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
2052 num_interfaces += params->iftype_num[iftype];
2053 if (params->iftype_num[iftype] > 0 &&
2054 !cfg80211_iftype_allowed(wiphy, iftype, 0, 1))
2055 used_iftypes |= BIT(iftype);
2056 }
2057
2058 for (i = 0; i < wiphy->n_iface_combinations; i++) {
2059 const struct ieee80211_iface_combination *c;
2060 struct ieee80211_iface_limit *limits;
2061 u32 all_iftypes = 0;
2062
2063 c = &wiphy->iface_combinations[i];
2064
2065 if (num_interfaces > c->max_interfaces)
2066 continue;
2067 if (params->num_different_channels > c->num_different_channels)
2068 continue;
2069
2070 limits = kmemdup(c->limits, sizeof(limits[0]) * c->n_limits,
2071 GFP_KERNEL);
2072 if (!limits)
2073 return -ENOMEM;
2074
2075 for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
2076 if (cfg80211_iftype_allowed(wiphy, iftype, 0, 1))
2077 continue;
2078 for (j = 0; j < c->n_limits; j++) {
2079 all_iftypes |= limits[j].types;
2080 if (!(limits[j].types & BIT(iftype)))
2081 continue;
2082 if (limits[j].max < params->iftype_num[iftype])
2083 goto cont;
2084 limits[j].max -= params->iftype_num[iftype];
2085 }
2086 }
2087
2088 if (params->radar_detect !=
2089 (c->radar_detect_widths & params->radar_detect))
2090 goto cont;
2091
2092 if (params->radar_detect && c->radar_detect_regions &&
2093 !(c->radar_detect_regions & BIT(region)))
2094 goto cont;
2095
2096 /* Finally check that all iftypes that we're currently
2097 * using are actually part of this combination. If they
2098 * aren't then we can't use this combination and have
2099 * to continue to the next.
2100 */
2101 if ((all_iftypes & used_iftypes) != used_iftypes)
2102 goto cont;
2103
2104 if (beacon_int_gcd) {
2105 if (c->beacon_int_min_gcd &&
2106 beacon_int_gcd < c->beacon_int_min_gcd)
2107 goto cont;
2108 if (!c->beacon_int_min_gcd && beacon_int_different)
2109 goto cont;
2110 }
2111
2112 /* This combination covered all interface types and
2113 * supported the requested numbers, so we're good.
2114 */
2115
2116 (*iter)(c, data);
2117 cont:
2118 kfree(limits);
2119 }
2120
2121 return 0;
2122 }
2123 EXPORT_SYMBOL(cfg80211_iter_combinations);
2124
2125 static void
cfg80211_iter_sum_ifcombs(const struct ieee80211_iface_combination * c,void * data)2126 cfg80211_iter_sum_ifcombs(const struct ieee80211_iface_combination *c,
2127 void *data)
2128 {
2129 int *num = data;
2130 (*num)++;
2131 }
2132
cfg80211_check_combinations(struct wiphy * wiphy,struct iface_combination_params * params)2133 int cfg80211_check_combinations(struct wiphy *wiphy,
2134 struct iface_combination_params *params)
2135 {
2136 int err, num = 0;
2137
2138 err = cfg80211_iter_combinations(wiphy, params,
2139 cfg80211_iter_sum_ifcombs, &num);
2140 if (err)
2141 return err;
2142 if (num == 0)
2143 return -EBUSY;
2144
2145 return 0;
2146 }
2147 EXPORT_SYMBOL(cfg80211_check_combinations);
2148
ieee80211_get_ratemask(struct ieee80211_supported_band * sband,const u8 * rates,unsigned int n_rates,u32 * mask)2149 int ieee80211_get_ratemask(struct ieee80211_supported_band *sband,
2150 const u8 *rates, unsigned int n_rates,
2151 u32 *mask)
2152 {
2153 int i, j;
2154
2155 if (!sband)
2156 return -EINVAL;
2157
2158 if (n_rates == 0 || n_rates > NL80211_MAX_SUPP_RATES)
2159 return -EINVAL;
2160
2161 *mask = 0;
2162
2163 for (i = 0; i < n_rates; i++) {
2164 int rate = (rates[i] & 0x7f) * 5;
2165 bool found = false;
2166
2167 for (j = 0; j < sband->n_bitrates; j++) {
2168 if (sband->bitrates[j].bitrate == rate) {
2169 found = true;
2170 *mask |= BIT(j);
2171 break;
2172 }
2173 }
2174 if (!found)
2175 return -EINVAL;
2176 }
2177
2178 /*
2179 * mask must have at least one bit set here since we
2180 * didn't accept a 0-length rates array nor allowed
2181 * entries in the array that didn't exist
2182 */
2183
2184 return 0;
2185 }
2186
ieee80211_get_num_supported_channels(struct wiphy * wiphy)2187 unsigned int ieee80211_get_num_supported_channels(struct wiphy *wiphy)
2188 {
2189 enum nl80211_band band;
2190 unsigned int n_channels = 0;
2191
2192 for (band = 0; band < NUM_NL80211_BANDS; band++)
2193 if (wiphy->bands[band])
2194 n_channels += wiphy->bands[band]->n_channels;
2195
2196 return n_channels;
2197 }
2198 EXPORT_SYMBOL(ieee80211_get_num_supported_channels);
2199
cfg80211_get_station(struct net_device * dev,const u8 * mac_addr,struct station_info * sinfo)2200 int cfg80211_get_station(struct net_device *dev, const u8 *mac_addr,
2201 struct station_info *sinfo)
2202 {
2203 struct cfg80211_registered_device *rdev;
2204 struct wireless_dev *wdev;
2205
2206 wdev = dev->ieee80211_ptr;
2207 if (!wdev)
2208 return -EOPNOTSUPP;
2209
2210 rdev = wiphy_to_rdev(wdev->wiphy);
2211 if (!rdev->ops->get_station)
2212 return -EOPNOTSUPP;
2213
2214 memset(sinfo, 0, sizeof(*sinfo));
2215
2216 return rdev_get_station(rdev, dev, mac_addr, sinfo);
2217 }
2218 EXPORT_SYMBOL(cfg80211_get_station);
2219
cfg80211_free_nan_func(struct cfg80211_nan_func * f)2220 void cfg80211_free_nan_func(struct cfg80211_nan_func *f)
2221 {
2222 int i;
2223
2224 if (!f)
2225 return;
2226
2227 kfree(f->serv_spec_info);
2228 kfree(f->srf_bf);
2229 kfree(f->srf_macs);
2230 for (i = 0; i < f->num_rx_filters; i++)
2231 kfree(f->rx_filters[i].filter);
2232
2233 for (i = 0; i < f->num_tx_filters; i++)
2234 kfree(f->tx_filters[i].filter);
2235
2236 kfree(f->rx_filters);
2237 kfree(f->tx_filters);
2238 kfree(f);
2239 }
2240 EXPORT_SYMBOL(cfg80211_free_nan_func);
2241
cfg80211_does_bw_fit_range(const struct ieee80211_freq_range * freq_range,u32 center_freq_khz,u32 bw_khz)2242 bool cfg80211_does_bw_fit_range(const struct ieee80211_freq_range *freq_range,
2243 u32 center_freq_khz, u32 bw_khz)
2244 {
2245 u32 start_freq_khz, end_freq_khz;
2246
2247 start_freq_khz = center_freq_khz - (bw_khz / 2);
2248 end_freq_khz = center_freq_khz + (bw_khz / 2);
2249
2250 if (start_freq_khz >= freq_range->start_freq_khz &&
2251 end_freq_khz <= freq_range->end_freq_khz)
2252 return true;
2253
2254 return false;
2255 }
2256
cfg80211_sinfo_alloc_tid_stats(struct station_info * sinfo,gfp_t gfp)2257 int cfg80211_sinfo_alloc_tid_stats(struct station_info *sinfo, gfp_t gfp)
2258 {
2259 sinfo->pertid = kcalloc(IEEE80211_NUM_TIDS + 1,
2260 sizeof(*(sinfo->pertid)),
2261 gfp);
2262 if (!sinfo->pertid)
2263 return -ENOMEM;
2264
2265 return 0;
2266 }
2267 EXPORT_SYMBOL(cfg80211_sinfo_alloc_tid_stats);
2268
2269 /* See IEEE 802.1H for LLC/SNAP encapsulation/decapsulation */
2270 /* Ethernet-II snap header (RFC1042 for most EtherTypes) */
2271 const unsigned char rfc1042_header[] __aligned(2) =
2272 { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00 };
2273 EXPORT_SYMBOL(rfc1042_header);
2274
2275 /* Bridge-Tunnel header (for EtherTypes ETH_P_AARP and ETH_P_IPX) */
2276 const unsigned char bridge_tunnel_header[] __aligned(2) =
2277 { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0xf8 };
2278 EXPORT_SYMBOL(bridge_tunnel_header);
2279
2280 /* Layer 2 Update frame (802.2 Type 1 LLC XID Update response) */
2281 struct iapp_layer2_update {
2282 u8 da[ETH_ALEN]; /* broadcast */
2283 u8 sa[ETH_ALEN]; /* STA addr */
2284 __be16 len; /* 6 */
2285 u8 dsap; /* 0 */
2286 u8 ssap; /* 0 */
2287 u8 control;
2288 u8 xid_info[3];
2289 } __packed;
2290
cfg80211_send_layer2_update(struct net_device * dev,const u8 * addr)2291 void cfg80211_send_layer2_update(struct net_device *dev, const u8 *addr)
2292 {
2293 struct iapp_layer2_update *msg;
2294 struct sk_buff *skb;
2295
2296 /* Send Level 2 Update Frame to update forwarding tables in layer 2
2297 * bridge devices */
2298
2299 skb = dev_alloc_skb(sizeof(*msg));
2300 if (!skb)
2301 return;
2302 msg = skb_put(skb, sizeof(*msg));
2303
2304 /* 802.2 Type 1 Logical Link Control (LLC) Exchange Identifier (XID)
2305 * Update response frame; IEEE Std 802.2-1998, 5.4.1.2.1 */
2306
2307 eth_broadcast_addr(msg->da);
2308 ether_addr_copy(msg->sa, addr);
2309 msg->len = htons(6);
2310 msg->dsap = 0;
2311 msg->ssap = 0x01; /* NULL LSAP, CR Bit: Response */
2312 msg->control = 0xaf; /* XID response lsb.1111F101.
2313 * F=0 (no poll command; unsolicited frame) */
2314 msg->xid_info[0] = 0x81; /* XID format identifier */
2315 msg->xid_info[1] = 1; /* LLC types/classes: Type 1 LLC */
2316 msg->xid_info[2] = 0; /* XID sender's receive window size (RW) */
2317
2318 skb->dev = dev;
2319 skb->protocol = eth_type_trans(skb, dev);
2320 memset(skb->cb, 0, sizeof(skb->cb));
2321 netif_rx_ni(skb);
2322 }
2323 EXPORT_SYMBOL(cfg80211_send_layer2_update);
2324
ieee80211_get_vht_max_nss(struct ieee80211_vht_cap * cap,enum ieee80211_vht_chanwidth bw,int mcs,bool ext_nss_bw_capable,unsigned int max_vht_nss)2325 int ieee80211_get_vht_max_nss(struct ieee80211_vht_cap *cap,
2326 enum ieee80211_vht_chanwidth bw,
2327 int mcs, bool ext_nss_bw_capable,
2328 unsigned int max_vht_nss)
2329 {
2330 u16 map = le16_to_cpu(cap->supp_mcs.rx_mcs_map);
2331 int ext_nss_bw;
2332 int supp_width;
2333 int i, mcs_encoding;
2334
2335 if (map == 0xffff)
2336 return 0;
2337
2338 if (WARN_ON(mcs > 9 || max_vht_nss > 8))
2339 return 0;
2340 if (mcs <= 7)
2341 mcs_encoding = 0;
2342 else if (mcs == 8)
2343 mcs_encoding = 1;
2344 else
2345 mcs_encoding = 2;
2346
2347 if (!max_vht_nss) {
2348 /* find max_vht_nss for the given MCS */
2349 for (i = 7; i >= 0; i--) {
2350 int supp = (map >> (2 * i)) & 3;
2351
2352 if (supp == 3)
2353 continue;
2354
2355 if (supp >= mcs_encoding) {
2356 max_vht_nss = i + 1;
2357 break;
2358 }
2359 }
2360 }
2361
2362 if (!(cap->supp_mcs.tx_mcs_map &
2363 cpu_to_le16(IEEE80211_VHT_EXT_NSS_BW_CAPABLE)))
2364 return max_vht_nss;
2365
2366 ext_nss_bw = le32_get_bits(cap->vht_cap_info,
2367 IEEE80211_VHT_CAP_EXT_NSS_BW_MASK);
2368 supp_width = le32_get_bits(cap->vht_cap_info,
2369 IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK);
2370
2371 /* if not capable, treat ext_nss_bw as 0 */
2372 if (!ext_nss_bw_capable)
2373 ext_nss_bw = 0;
2374
2375 /* This is invalid */
2376 if (supp_width == 3)
2377 return 0;
2378
2379 /* This is an invalid combination so pretend nothing is supported */
2380 if (supp_width == 2 && (ext_nss_bw == 1 || ext_nss_bw == 2))
2381 return 0;
2382
2383 /*
2384 * Cover all the special cases according to IEEE 802.11-2016
2385 * Table 9-250. All other cases are either factor of 1 or not
2386 * valid/supported.
2387 */
2388 switch (bw) {
2389 case IEEE80211_VHT_CHANWIDTH_USE_HT:
2390 case IEEE80211_VHT_CHANWIDTH_80MHZ:
2391 if ((supp_width == 1 || supp_width == 2) &&
2392 ext_nss_bw == 3)
2393 return 2 * max_vht_nss;
2394 break;
2395 case IEEE80211_VHT_CHANWIDTH_160MHZ:
2396 if (supp_width == 0 &&
2397 (ext_nss_bw == 1 || ext_nss_bw == 2))
2398 return max_vht_nss / 2;
2399 if (supp_width == 0 &&
2400 ext_nss_bw == 3)
2401 return (3 * max_vht_nss) / 4;
2402 if (supp_width == 1 &&
2403 ext_nss_bw == 3)
2404 return 2 * max_vht_nss;
2405 break;
2406 case IEEE80211_VHT_CHANWIDTH_80P80MHZ:
2407 if (supp_width == 0 && ext_nss_bw == 1)
2408 return 0; /* not possible */
2409 if (supp_width == 0 &&
2410 ext_nss_bw == 2)
2411 return max_vht_nss / 2;
2412 if (supp_width == 0 &&
2413 ext_nss_bw == 3)
2414 return (3 * max_vht_nss) / 4;
2415 if (supp_width == 1 &&
2416 ext_nss_bw == 0)
2417 return 0; /* not possible */
2418 if (supp_width == 1 &&
2419 ext_nss_bw == 1)
2420 return max_vht_nss / 2;
2421 if (supp_width == 1 &&
2422 ext_nss_bw == 2)
2423 return (3 * max_vht_nss) / 4;
2424 break;
2425 }
2426
2427 /* not covered or invalid combination received */
2428 return max_vht_nss;
2429 }
2430 EXPORT_SYMBOL(ieee80211_get_vht_max_nss);
2431
cfg80211_iftype_allowed(struct wiphy * wiphy,enum nl80211_iftype iftype,bool is_4addr,u8 check_swif)2432 bool cfg80211_iftype_allowed(struct wiphy *wiphy, enum nl80211_iftype iftype,
2433 bool is_4addr, u8 check_swif)
2434
2435 {
2436 bool is_vlan = iftype == NL80211_IFTYPE_AP_VLAN;
2437
2438 switch (check_swif) {
2439 case 0:
2440 if (is_vlan && is_4addr)
2441 return wiphy->flags & WIPHY_FLAG_4ADDR_AP;
2442 return wiphy->interface_modes & BIT(iftype);
2443 case 1:
2444 if (!(wiphy->software_iftypes & BIT(iftype)) && is_vlan)
2445 return wiphy->flags & WIPHY_FLAG_4ADDR_AP;
2446 return wiphy->software_iftypes & BIT(iftype);
2447 default:
2448 break;
2449 }
2450
2451 return false;
2452 }
2453 EXPORT_SYMBOL(cfg80211_iftype_allowed);
2454
cfg80211_remove_link(struct wireless_dev * wdev,unsigned int link_id)2455 void cfg80211_remove_link(struct wireless_dev *wdev, unsigned int link_id)
2456 {
2457 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy);
2458
2459 ASSERT_WDEV_LOCK(wdev);
2460
2461 switch (wdev->iftype) {
2462 case NL80211_IFTYPE_AP:
2463 case NL80211_IFTYPE_P2P_GO:
2464 __cfg80211_stop_ap(rdev, wdev->netdev, link_id, true);
2465 break;
2466 default:
2467 /* per-link not relevant */
2468 break;
2469 }
2470
2471 wdev->valid_links &= ~BIT(link_id);
2472
2473 rdev_del_intf_link(rdev, wdev, link_id);
2474
2475 eth_zero_addr(wdev->links[link_id].addr);
2476 }
2477
cfg80211_remove_links(struct wireless_dev * wdev)2478 void cfg80211_remove_links(struct wireless_dev *wdev)
2479 {
2480 unsigned int link_id;
2481
2482 wdev_lock(wdev);
2483 if (wdev->valid_links) {
2484 for_each_valid_link(wdev, link_id)
2485 cfg80211_remove_link(wdev, link_id);
2486 }
2487 wdev_unlock(wdev);
2488 }
2489
cfg80211_remove_virtual_intf(struct cfg80211_registered_device * rdev,struct wireless_dev * wdev)2490 int cfg80211_remove_virtual_intf(struct cfg80211_registered_device *rdev,
2491 struct wireless_dev *wdev)
2492 {
2493 cfg80211_remove_links(wdev);
2494
2495 return rdev_del_virtual_intf(rdev, wdev);
2496 }
2497
2498 const struct wiphy_iftype_ext_capab *
cfg80211_get_iftype_ext_capa(struct wiphy * wiphy,enum nl80211_iftype type)2499 cfg80211_get_iftype_ext_capa(struct wiphy *wiphy, enum nl80211_iftype type)
2500 {
2501 int i;
2502
2503 for (i = 0; i < wiphy->num_iftype_ext_capab; i++) {
2504 if (wiphy->iftype_ext_capab[i].iftype == type)
2505 return &wiphy->iftype_ext_capab[i];
2506 }
2507
2508 return NULL;
2509 }
2510 EXPORT_SYMBOL(cfg80211_get_iftype_ext_capa);
2511