1 // SPDX-License-Identifier: GPL-2.0
2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
3
4 #include <linux/mm.h>
5 #include <linux/sched.h>
6 #include <linux/sched/mm.h>
7 #include <linux/sched/coredump.h>
8 #include <linux/mmu_notifier.h>
9 #include <linux/rmap.h>
10 #include <linux/swap.h>
11 #include <linux/mm_inline.h>
12 #include <linux/kthread.h>
13 #include <linux/khugepaged.h>
14 #include <linux/freezer.h>
15 #include <linux/mman.h>
16 #include <linux/hashtable.h>
17 #include <linux/userfaultfd_k.h>
18 #include <linux/page_idle.h>
19 #include <linux/swapops.h>
20 #include <linux/shmem_fs.h>
21
22 #include <asm/tlb.h>
23 #include <asm/pgalloc.h>
24 #include "internal.h"
25
26 enum scan_result {
27 SCAN_FAIL,
28 SCAN_SUCCEED,
29 SCAN_PMD_NULL,
30 SCAN_EXCEED_NONE_PTE,
31 SCAN_EXCEED_SWAP_PTE,
32 SCAN_EXCEED_SHARED_PTE,
33 SCAN_PTE_NON_PRESENT,
34 SCAN_PTE_UFFD_WP,
35 SCAN_PAGE_RO,
36 SCAN_LACK_REFERENCED_PAGE,
37 SCAN_PAGE_NULL,
38 SCAN_SCAN_ABORT,
39 SCAN_PAGE_COUNT,
40 SCAN_PAGE_LRU,
41 SCAN_PAGE_LOCK,
42 SCAN_PAGE_ANON,
43 SCAN_PAGE_COMPOUND,
44 SCAN_ANY_PROCESS,
45 SCAN_VMA_NULL,
46 SCAN_VMA_CHECK,
47 SCAN_ADDRESS_RANGE,
48 SCAN_SWAP_CACHE_PAGE,
49 SCAN_DEL_PAGE_LRU,
50 SCAN_ALLOC_HUGE_PAGE_FAIL,
51 SCAN_CGROUP_CHARGE_FAIL,
52 SCAN_TRUNCATED,
53 SCAN_PAGE_HAS_PRIVATE,
54 };
55
56 #define CREATE_TRACE_POINTS
57 #include <trace/events/huge_memory.h>
58
59 static struct task_struct *khugepaged_thread __read_mostly;
60 static DEFINE_MUTEX(khugepaged_mutex);
61
62 /* default scan 8*512 pte (or vmas) every 30 second */
63 static unsigned int khugepaged_pages_to_scan __read_mostly;
64 static unsigned int khugepaged_pages_collapsed;
65 static unsigned int khugepaged_full_scans;
66 static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
67 /* during fragmentation poll the hugepage allocator once every minute */
68 static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
69 static unsigned long khugepaged_sleep_expire;
70 static DEFINE_SPINLOCK(khugepaged_mm_lock);
71 static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
72 /*
73 * default collapse hugepages if there is at least one pte mapped like
74 * it would have happened if the vma was large enough during page
75 * fault.
76 */
77 static unsigned int khugepaged_max_ptes_none __read_mostly;
78 static unsigned int khugepaged_max_ptes_swap __read_mostly;
79 static unsigned int khugepaged_max_ptes_shared __read_mostly;
80
81 #define MM_SLOTS_HASH_BITS 10
82 static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
83
84 static struct kmem_cache *mm_slot_cache __read_mostly;
85
86 #define MAX_PTE_MAPPED_THP 8
87
88 /**
89 * struct mm_slot - hash lookup from mm to mm_slot
90 * @hash: hash collision list
91 * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
92 * @mm: the mm that this information is valid for
93 * @nr_pte_mapped_thp: number of pte mapped THP
94 * @pte_mapped_thp: address array corresponding pte mapped THP
95 */
96 struct mm_slot {
97 struct hlist_node hash;
98 struct list_head mm_node;
99 struct mm_struct *mm;
100
101 /* pte-mapped THP in this mm */
102 int nr_pte_mapped_thp;
103 unsigned long pte_mapped_thp[MAX_PTE_MAPPED_THP];
104 };
105
106 /**
107 * struct khugepaged_scan - cursor for scanning
108 * @mm_head: the head of the mm list to scan
109 * @mm_slot: the current mm_slot we are scanning
110 * @address: the next address inside that to be scanned
111 *
112 * There is only the one khugepaged_scan instance of this cursor structure.
113 */
114 struct khugepaged_scan {
115 struct list_head mm_head;
116 struct mm_slot *mm_slot;
117 unsigned long address;
118 };
119
120 static struct khugepaged_scan khugepaged_scan = {
121 .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
122 };
123
124 #ifdef CONFIG_SYSFS
scan_sleep_millisecs_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)125 static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
126 struct kobj_attribute *attr,
127 char *buf)
128 {
129 return sysfs_emit(buf, "%u\n", khugepaged_scan_sleep_millisecs);
130 }
131
scan_sleep_millisecs_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)132 static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
133 struct kobj_attribute *attr,
134 const char *buf, size_t count)
135 {
136 unsigned int msecs;
137 int err;
138
139 err = kstrtouint(buf, 10, &msecs);
140 if (err)
141 return -EINVAL;
142
143 khugepaged_scan_sleep_millisecs = msecs;
144 khugepaged_sleep_expire = 0;
145 wake_up_interruptible(&khugepaged_wait);
146
147 return count;
148 }
149 static struct kobj_attribute scan_sleep_millisecs_attr =
150 __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
151 scan_sleep_millisecs_store);
152
alloc_sleep_millisecs_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)153 static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
154 struct kobj_attribute *attr,
155 char *buf)
156 {
157 return sysfs_emit(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
158 }
159
alloc_sleep_millisecs_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)160 static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
161 struct kobj_attribute *attr,
162 const char *buf, size_t count)
163 {
164 unsigned int msecs;
165 int err;
166
167 err = kstrtouint(buf, 10, &msecs);
168 if (err)
169 return -EINVAL;
170
171 khugepaged_alloc_sleep_millisecs = msecs;
172 khugepaged_sleep_expire = 0;
173 wake_up_interruptible(&khugepaged_wait);
174
175 return count;
176 }
177 static struct kobj_attribute alloc_sleep_millisecs_attr =
178 __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
179 alloc_sleep_millisecs_store);
180
pages_to_scan_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)181 static ssize_t pages_to_scan_show(struct kobject *kobj,
182 struct kobj_attribute *attr,
183 char *buf)
184 {
185 return sysfs_emit(buf, "%u\n", khugepaged_pages_to_scan);
186 }
pages_to_scan_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)187 static ssize_t pages_to_scan_store(struct kobject *kobj,
188 struct kobj_attribute *attr,
189 const char *buf, size_t count)
190 {
191 unsigned int pages;
192 int err;
193
194 err = kstrtouint(buf, 10, &pages);
195 if (err || !pages)
196 return -EINVAL;
197
198 khugepaged_pages_to_scan = pages;
199
200 return count;
201 }
202 static struct kobj_attribute pages_to_scan_attr =
203 __ATTR(pages_to_scan, 0644, pages_to_scan_show,
204 pages_to_scan_store);
205
pages_collapsed_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)206 static ssize_t pages_collapsed_show(struct kobject *kobj,
207 struct kobj_attribute *attr,
208 char *buf)
209 {
210 return sysfs_emit(buf, "%u\n", khugepaged_pages_collapsed);
211 }
212 static struct kobj_attribute pages_collapsed_attr =
213 __ATTR_RO(pages_collapsed);
214
full_scans_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)215 static ssize_t full_scans_show(struct kobject *kobj,
216 struct kobj_attribute *attr,
217 char *buf)
218 {
219 return sysfs_emit(buf, "%u\n", khugepaged_full_scans);
220 }
221 static struct kobj_attribute full_scans_attr =
222 __ATTR_RO(full_scans);
223
khugepaged_defrag_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)224 static ssize_t khugepaged_defrag_show(struct kobject *kobj,
225 struct kobj_attribute *attr, char *buf)
226 {
227 return single_hugepage_flag_show(kobj, attr, buf,
228 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
229 }
khugepaged_defrag_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)230 static ssize_t khugepaged_defrag_store(struct kobject *kobj,
231 struct kobj_attribute *attr,
232 const char *buf, size_t count)
233 {
234 return single_hugepage_flag_store(kobj, attr, buf, count,
235 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
236 }
237 static struct kobj_attribute khugepaged_defrag_attr =
238 __ATTR(defrag, 0644, khugepaged_defrag_show,
239 khugepaged_defrag_store);
240
241 /*
242 * max_ptes_none controls if khugepaged should collapse hugepages over
243 * any unmapped ptes in turn potentially increasing the memory
244 * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
245 * reduce the available free memory in the system as it
246 * runs. Increasing max_ptes_none will instead potentially reduce the
247 * free memory in the system during the khugepaged scan.
248 */
khugepaged_max_ptes_none_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)249 static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
250 struct kobj_attribute *attr,
251 char *buf)
252 {
253 return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_none);
254 }
khugepaged_max_ptes_none_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)255 static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
256 struct kobj_attribute *attr,
257 const char *buf, size_t count)
258 {
259 int err;
260 unsigned long max_ptes_none;
261
262 err = kstrtoul(buf, 10, &max_ptes_none);
263 if (err || max_ptes_none > HPAGE_PMD_NR-1)
264 return -EINVAL;
265
266 khugepaged_max_ptes_none = max_ptes_none;
267
268 return count;
269 }
270 static struct kobj_attribute khugepaged_max_ptes_none_attr =
271 __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
272 khugepaged_max_ptes_none_store);
273
khugepaged_max_ptes_swap_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)274 static ssize_t khugepaged_max_ptes_swap_show(struct kobject *kobj,
275 struct kobj_attribute *attr,
276 char *buf)
277 {
278 return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_swap);
279 }
280
khugepaged_max_ptes_swap_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)281 static ssize_t khugepaged_max_ptes_swap_store(struct kobject *kobj,
282 struct kobj_attribute *attr,
283 const char *buf, size_t count)
284 {
285 int err;
286 unsigned long max_ptes_swap;
287
288 err = kstrtoul(buf, 10, &max_ptes_swap);
289 if (err || max_ptes_swap > HPAGE_PMD_NR-1)
290 return -EINVAL;
291
292 khugepaged_max_ptes_swap = max_ptes_swap;
293
294 return count;
295 }
296
297 static struct kobj_attribute khugepaged_max_ptes_swap_attr =
298 __ATTR(max_ptes_swap, 0644, khugepaged_max_ptes_swap_show,
299 khugepaged_max_ptes_swap_store);
300
khugepaged_max_ptes_shared_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)301 static ssize_t khugepaged_max_ptes_shared_show(struct kobject *kobj,
302 struct kobj_attribute *attr,
303 char *buf)
304 {
305 return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_shared);
306 }
307
khugepaged_max_ptes_shared_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)308 static ssize_t khugepaged_max_ptes_shared_store(struct kobject *kobj,
309 struct kobj_attribute *attr,
310 const char *buf, size_t count)
311 {
312 int err;
313 unsigned long max_ptes_shared;
314
315 err = kstrtoul(buf, 10, &max_ptes_shared);
316 if (err || max_ptes_shared > HPAGE_PMD_NR-1)
317 return -EINVAL;
318
319 khugepaged_max_ptes_shared = max_ptes_shared;
320
321 return count;
322 }
323
324 static struct kobj_attribute khugepaged_max_ptes_shared_attr =
325 __ATTR(max_ptes_shared, 0644, khugepaged_max_ptes_shared_show,
326 khugepaged_max_ptes_shared_store);
327
328 static struct attribute *khugepaged_attr[] = {
329 &khugepaged_defrag_attr.attr,
330 &khugepaged_max_ptes_none_attr.attr,
331 &khugepaged_max_ptes_swap_attr.attr,
332 &khugepaged_max_ptes_shared_attr.attr,
333 &pages_to_scan_attr.attr,
334 &pages_collapsed_attr.attr,
335 &full_scans_attr.attr,
336 &scan_sleep_millisecs_attr.attr,
337 &alloc_sleep_millisecs_attr.attr,
338 NULL,
339 };
340
341 struct attribute_group khugepaged_attr_group = {
342 .attrs = khugepaged_attr,
343 .name = "khugepaged",
344 };
345 #endif /* CONFIG_SYSFS */
346
hugepage_madvise(struct vm_area_struct * vma,unsigned long * vm_flags,int advice)347 int hugepage_madvise(struct vm_area_struct *vma,
348 unsigned long *vm_flags, int advice)
349 {
350 switch (advice) {
351 case MADV_HUGEPAGE:
352 #ifdef CONFIG_S390
353 /*
354 * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390
355 * can't handle this properly after s390_enable_sie, so we simply
356 * ignore the madvise to prevent qemu from causing a SIGSEGV.
357 */
358 if (mm_has_pgste(vma->vm_mm))
359 return 0;
360 #endif
361 *vm_flags &= ~VM_NOHUGEPAGE;
362 *vm_flags |= VM_HUGEPAGE;
363 /*
364 * If the vma become good for khugepaged to scan,
365 * register it here without waiting a page fault that
366 * may not happen any time soon.
367 */
368 if (!(*vm_flags & VM_NO_KHUGEPAGED) &&
369 khugepaged_enter_vma_merge(vma, *vm_flags))
370 return -ENOMEM;
371 break;
372 case MADV_NOHUGEPAGE:
373 *vm_flags &= ~VM_HUGEPAGE;
374 *vm_flags |= VM_NOHUGEPAGE;
375 /*
376 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
377 * this vma even if we leave the mm registered in khugepaged if
378 * it got registered before VM_NOHUGEPAGE was set.
379 */
380 break;
381 }
382
383 return 0;
384 }
385
khugepaged_init(void)386 int __init khugepaged_init(void)
387 {
388 mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
389 sizeof(struct mm_slot),
390 __alignof__(struct mm_slot), 0, NULL);
391 if (!mm_slot_cache)
392 return -ENOMEM;
393
394 khugepaged_pages_to_scan = HPAGE_PMD_NR * 8;
395 khugepaged_max_ptes_none = HPAGE_PMD_NR - 1;
396 khugepaged_max_ptes_swap = HPAGE_PMD_NR / 8;
397 khugepaged_max_ptes_shared = HPAGE_PMD_NR / 2;
398
399 return 0;
400 }
401
khugepaged_destroy(void)402 void __init khugepaged_destroy(void)
403 {
404 kmem_cache_destroy(mm_slot_cache);
405 }
406
alloc_mm_slot(void)407 static inline struct mm_slot *alloc_mm_slot(void)
408 {
409 if (!mm_slot_cache) /* initialization failed */
410 return NULL;
411 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
412 }
413
free_mm_slot(struct mm_slot * mm_slot)414 static inline void free_mm_slot(struct mm_slot *mm_slot)
415 {
416 kmem_cache_free(mm_slot_cache, mm_slot);
417 }
418
get_mm_slot(struct mm_struct * mm)419 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
420 {
421 struct mm_slot *mm_slot;
422
423 hash_for_each_possible(mm_slots_hash, mm_slot, hash, (unsigned long)mm)
424 if (mm == mm_slot->mm)
425 return mm_slot;
426
427 return NULL;
428 }
429
insert_to_mm_slots_hash(struct mm_struct * mm,struct mm_slot * mm_slot)430 static void insert_to_mm_slots_hash(struct mm_struct *mm,
431 struct mm_slot *mm_slot)
432 {
433 mm_slot->mm = mm;
434 hash_add(mm_slots_hash, &mm_slot->hash, (long)mm);
435 }
436
khugepaged_test_exit(struct mm_struct * mm)437 static inline int khugepaged_test_exit(struct mm_struct *mm)
438 {
439 return atomic_read(&mm->mm_users) == 0;
440 }
441
hugepage_vma_check(struct vm_area_struct * vma,unsigned long vm_flags)442 static bool hugepage_vma_check(struct vm_area_struct *vma,
443 unsigned long vm_flags)
444 {
445 if (!transhuge_vma_enabled(vma, vm_flags))
446 return false;
447
448 if (vma->vm_file && !IS_ALIGNED((vma->vm_start >> PAGE_SHIFT) -
449 vma->vm_pgoff, HPAGE_PMD_NR))
450 return false;
451
452 /* Enabled via shmem mount options or sysfs settings. */
453 if (shmem_file(vma->vm_file))
454 return shmem_huge_enabled(vma);
455
456 /* THP settings require madvise. */
457 if (!(vm_flags & VM_HUGEPAGE) && !khugepaged_always())
458 return false;
459
460 /* Only regular file is valid */
461 if (IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS) && vma->vm_file &&
462 (vm_flags & VM_EXEC)) {
463 struct inode *inode = vma->vm_file->f_inode;
464
465 return !inode_is_open_for_write(inode) &&
466 S_ISREG(inode->i_mode);
467 }
468
469 if (!vma->anon_vma || vma->vm_ops)
470 return false;
471 if (vma_is_temporary_stack(vma))
472 return false;
473 return !(vm_flags & VM_NO_KHUGEPAGED);
474 }
475
__khugepaged_enter(struct mm_struct * mm)476 int __khugepaged_enter(struct mm_struct *mm)
477 {
478 struct mm_slot *mm_slot;
479 int wakeup;
480
481 mm_slot = alloc_mm_slot();
482 if (!mm_slot)
483 return -ENOMEM;
484
485 /* __khugepaged_exit() must not run from under us */
486 VM_BUG_ON_MM(khugepaged_test_exit(mm), mm);
487 if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
488 free_mm_slot(mm_slot);
489 return 0;
490 }
491
492 spin_lock(&khugepaged_mm_lock);
493 insert_to_mm_slots_hash(mm, mm_slot);
494 /*
495 * Insert just behind the scanning cursor, to let the area settle
496 * down a little.
497 */
498 wakeup = list_empty(&khugepaged_scan.mm_head);
499 list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
500 spin_unlock(&khugepaged_mm_lock);
501
502 mmgrab(mm);
503 if (wakeup)
504 wake_up_interruptible(&khugepaged_wait);
505
506 return 0;
507 }
508
khugepaged_enter_vma_merge(struct vm_area_struct * vma,unsigned long vm_flags)509 int khugepaged_enter_vma_merge(struct vm_area_struct *vma,
510 unsigned long vm_flags)
511 {
512 unsigned long hstart, hend;
513
514 /*
515 * khugepaged only supports read-only files for non-shmem files.
516 * khugepaged does not yet work on special mappings. And
517 * file-private shmem THP is not supported.
518 */
519 if (!hugepage_vma_check(vma, vm_flags))
520 return 0;
521
522 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
523 hend = vma->vm_end & HPAGE_PMD_MASK;
524 if (hstart < hend)
525 return khugepaged_enter(vma, vm_flags);
526 return 0;
527 }
528
__khugepaged_exit(struct mm_struct * mm)529 void __khugepaged_exit(struct mm_struct *mm)
530 {
531 struct mm_slot *mm_slot;
532 int free = 0;
533
534 spin_lock(&khugepaged_mm_lock);
535 mm_slot = get_mm_slot(mm);
536 if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
537 hash_del(&mm_slot->hash);
538 list_del(&mm_slot->mm_node);
539 free = 1;
540 }
541 spin_unlock(&khugepaged_mm_lock);
542
543 if (free) {
544 clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
545 free_mm_slot(mm_slot);
546 mmdrop(mm);
547 } else if (mm_slot) {
548 /*
549 * This is required to serialize against
550 * khugepaged_test_exit() (which is guaranteed to run
551 * under mmap sem read mode). Stop here (after we
552 * return all pagetables will be destroyed) until
553 * khugepaged has finished working on the pagetables
554 * under the mmap_lock.
555 */
556 mmap_write_lock(mm);
557 mmap_write_unlock(mm);
558 }
559 }
560
release_pte_page(struct page * page)561 static void release_pte_page(struct page *page)
562 {
563 mod_node_page_state(page_pgdat(page),
564 NR_ISOLATED_ANON + page_is_file_lru(page),
565 -compound_nr(page));
566 unlock_page(page);
567 putback_lru_page(page);
568 }
569
release_pte_pages(pte_t * pte,pte_t * _pte,struct list_head * compound_pagelist)570 static void release_pte_pages(pte_t *pte, pte_t *_pte,
571 struct list_head *compound_pagelist)
572 {
573 struct page *page, *tmp;
574
575 while (--_pte >= pte) {
576 pte_t pteval = *_pte;
577
578 page = pte_page(pteval);
579 if (!pte_none(pteval) && !is_zero_pfn(pte_pfn(pteval)) &&
580 !PageCompound(page))
581 release_pte_page(page);
582 }
583
584 list_for_each_entry_safe(page, tmp, compound_pagelist, lru) {
585 list_del(&page->lru);
586 release_pte_page(page);
587 }
588 }
589
is_refcount_suitable(struct page * page)590 static bool is_refcount_suitable(struct page *page)
591 {
592 int expected_refcount;
593
594 expected_refcount = total_mapcount(page);
595 if (PageSwapCache(page))
596 expected_refcount += compound_nr(page);
597
598 return page_count(page) == expected_refcount;
599 }
600
__collapse_huge_page_isolate(struct vm_area_struct * vma,unsigned long address,pte_t * pte,struct list_head * compound_pagelist)601 static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
602 unsigned long address,
603 pte_t *pte,
604 struct list_head *compound_pagelist)
605 {
606 struct page *page = NULL;
607 pte_t *_pte;
608 int none_or_zero = 0, shared = 0, result = 0, referenced = 0;
609 bool writable = false;
610
611 for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
612 _pte++, address += PAGE_SIZE) {
613 pte_t pteval = *_pte;
614 if (pte_none(pteval) || (pte_present(pteval) &&
615 is_zero_pfn(pte_pfn(pteval)))) {
616 if (!userfaultfd_armed(vma) &&
617 ++none_or_zero <= khugepaged_max_ptes_none) {
618 continue;
619 } else {
620 result = SCAN_EXCEED_NONE_PTE;
621 goto out;
622 }
623 }
624 if (!pte_present(pteval)) {
625 result = SCAN_PTE_NON_PRESENT;
626 goto out;
627 }
628 if (pte_uffd_wp(pteval)) {
629 result = SCAN_PTE_UFFD_WP;
630 goto out;
631 }
632 page = vm_normal_page(vma, address, pteval);
633 if (unlikely(!page)) {
634 result = SCAN_PAGE_NULL;
635 goto out;
636 }
637
638 VM_BUG_ON_PAGE(!PageAnon(page), page);
639
640 if (page_mapcount(page) > 1 &&
641 ++shared > khugepaged_max_ptes_shared) {
642 result = SCAN_EXCEED_SHARED_PTE;
643 goto out;
644 }
645
646 if (PageCompound(page)) {
647 struct page *p;
648 page = compound_head(page);
649
650 /*
651 * Check if we have dealt with the compound page
652 * already
653 */
654 list_for_each_entry(p, compound_pagelist, lru) {
655 if (page == p)
656 goto next;
657 }
658 }
659
660 /*
661 * We can do it before isolate_lru_page because the
662 * page can't be freed from under us. NOTE: PG_lock
663 * is needed to serialize against split_huge_page
664 * when invoked from the VM.
665 */
666 if (!trylock_page(page)) {
667 result = SCAN_PAGE_LOCK;
668 goto out;
669 }
670
671 /*
672 * Check if the page has any GUP (or other external) pins.
673 *
674 * The page table that maps the page has been already unlinked
675 * from the page table tree and this process cannot get
676 * an additional pin on the page.
677 *
678 * New pins can come later if the page is shared across fork,
679 * but not from this process. The other process cannot write to
680 * the page, only trigger CoW.
681 */
682 if (!is_refcount_suitable(page)) {
683 unlock_page(page);
684 result = SCAN_PAGE_COUNT;
685 goto out;
686 }
687 if (!pte_write(pteval) && PageSwapCache(page) &&
688 !reuse_swap_page(page, NULL)) {
689 /*
690 * Page is in the swap cache and cannot be re-used.
691 * It cannot be collapsed into a THP.
692 */
693 unlock_page(page);
694 result = SCAN_SWAP_CACHE_PAGE;
695 goto out;
696 }
697
698 /*
699 * Isolate the page to avoid collapsing an hugepage
700 * currently in use by the VM.
701 */
702 if (isolate_lru_page(page)) {
703 unlock_page(page);
704 result = SCAN_DEL_PAGE_LRU;
705 goto out;
706 }
707 mod_node_page_state(page_pgdat(page),
708 NR_ISOLATED_ANON + page_is_file_lru(page),
709 compound_nr(page));
710 VM_BUG_ON_PAGE(!PageLocked(page), page);
711 VM_BUG_ON_PAGE(PageLRU(page), page);
712
713 if (PageCompound(page))
714 list_add_tail(&page->lru, compound_pagelist);
715 next:
716 /* There should be enough young pte to collapse the page */
717 if (pte_young(pteval) ||
718 page_is_young(page) || PageReferenced(page) ||
719 mmu_notifier_test_young(vma->vm_mm, address))
720 referenced++;
721
722 if (pte_write(pteval))
723 writable = true;
724 }
725
726 if (unlikely(!writable)) {
727 result = SCAN_PAGE_RO;
728 } else if (unlikely(!referenced)) {
729 result = SCAN_LACK_REFERENCED_PAGE;
730 } else {
731 result = SCAN_SUCCEED;
732 trace_mm_collapse_huge_page_isolate(page, none_or_zero,
733 referenced, writable, result);
734 return 1;
735 }
736 out:
737 release_pte_pages(pte, _pte, compound_pagelist);
738 trace_mm_collapse_huge_page_isolate(page, none_or_zero,
739 referenced, writable, result);
740 return 0;
741 }
742
__collapse_huge_page_copy(pte_t * pte,struct page * page,struct vm_area_struct * vma,unsigned long address,spinlock_t * ptl,struct list_head * compound_pagelist)743 static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
744 struct vm_area_struct *vma,
745 unsigned long address,
746 spinlock_t *ptl,
747 struct list_head *compound_pagelist)
748 {
749 struct page *src_page, *tmp;
750 pte_t *_pte;
751 for (_pte = pte; _pte < pte + HPAGE_PMD_NR;
752 _pte++, page++, address += PAGE_SIZE) {
753 pte_t pteval = *_pte;
754
755 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
756 clear_user_highpage(page, address);
757 add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
758 if (is_zero_pfn(pte_pfn(pteval))) {
759 /*
760 * ptl mostly unnecessary.
761 */
762 spin_lock(ptl);
763 /*
764 * paravirt calls inside pte_clear here are
765 * superfluous.
766 */
767 pte_clear(vma->vm_mm, address, _pte);
768 spin_unlock(ptl);
769 }
770 } else {
771 src_page = pte_page(pteval);
772 copy_user_highpage(page, src_page, address, vma);
773 if (!PageCompound(src_page))
774 release_pte_page(src_page);
775 /*
776 * ptl mostly unnecessary, but preempt has to
777 * be disabled to update the per-cpu stats
778 * inside page_remove_rmap().
779 */
780 spin_lock(ptl);
781 /*
782 * paravirt calls inside pte_clear here are
783 * superfluous.
784 */
785 pte_clear(vma->vm_mm, address, _pte);
786 page_remove_rmap(src_page, false);
787 spin_unlock(ptl);
788 free_page_and_swap_cache(src_page);
789 }
790 }
791
792 list_for_each_entry_safe(src_page, tmp, compound_pagelist, lru) {
793 list_del(&src_page->lru);
794 release_pte_page(src_page);
795 }
796 }
797
khugepaged_alloc_sleep(void)798 static void khugepaged_alloc_sleep(void)
799 {
800 DEFINE_WAIT(wait);
801
802 add_wait_queue(&khugepaged_wait, &wait);
803 freezable_schedule_timeout_interruptible(
804 msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
805 remove_wait_queue(&khugepaged_wait, &wait);
806 }
807
808 static int khugepaged_node_load[MAX_NUMNODES];
809
khugepaged_scan_abort(int nid)810 static bool khugepaged_scan_abort(int nid)
811 {
812 int i;
813
814 /*
815 * If node_reclaim_mode is disabled, then no extra effort is made to
816 * allocate memory locally.
817 */
818 if (!node_reclaim_enabled())
819 return false;
820
821 /* If there is a count for this node already, it must be acceptable */
822 if (khugepaged_node_load[nid])
823 return false;
824
825 for (i = 0; i < MAX_NUMNODES; i++) {
826 if (!khugepaged_node_load[i])
827 continue;
828 if (node_distance(nid, i) > node_reclaim_distance)
829 return true;
830 }
831 return false;
832 }
833
834 /* Defrag for khugepaged will enter direct reclaim/compaction if necessary */
alloc_hugepage_khugepaged_gfpmask(void)835 static inline gfp_t alloc_hugepage_khugepaged_gfpmask(void)
836 {
837 return khugepaged_defrag() ? GFP_TRANSHUGE : GFP_TRANSHUGE_LIGHT;
838 }
839
840 #ifdef CONFIG_NUMA
khugepaged_find_target_node(void)841 static int khugepaged_find_target_node(void)
842 {
843 static int last_khugepaged_target_node = NUMA_NO_NODE;
844 int nid, target_node = 0, max_value = 0;
845
846 /* find first node with max normal pages hit */
847 for (nid = 0; nid < MAX_NUMNODES; nid++)
848 if (khugepaged_node_load[nid] > max_value) {
849 max_value = khugepaged_node_load[nid];
850 target_node = nid;
851 }
852
853 /* do some balance if several nodes have the same hit record */
854 if (target_node <= last_khugepaged_target_node)
855 for (nid = last_khugepaged_target_node + 1; nid < MAX_NUMNODES;
856 nid++)
857 if (max_value == khugepaged_node_load[nid]) {
858 target_node = nid;
859 break;
860 }
861
862 last_khugepaged_target_node = target_node;
863 return target_node;
864 }
865
khugepaged_prealloc_page(struct page ** hpage,bool * wait)866 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
867 {
868 if (IS_ERR(*hpage)) {
869 if (!*wait)
870 return false;
871
872 *wait = false;
873 *hpage = NULL;
874 khugepaged_alloc_sleep();
875 } else if (*hpage) {
876 put_page(*hpage);
877 *hpage = NULL;
878 }
879
880 return true;
881 }
882
883 static struct page *
khugepaged_alloc_page(struct page ** hpage,gfp_t gfp,int node)884 khugepaged_alloc_page(struct page **hpage, gfp_t gfp, int node)
885 {
886 VM_BUG_ON_PAGE(*hpage, *hpage);
887
888 *hpage = __alloc_pages_node(node, gfp, HPAGE_PMD_ORDER);
889 if (unlikely(!*hpage)) {
890 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
891 *hpage = ERR_PTR(-ENOMEM);
892 return NULL;
893 }
894
895 prep_transhuge_page(*hpage);
896 count_vm_event(THP_COLLAPSE_ALLOC);
897 return *hpage;
898 }
899 #else
khugepaged_find_target_node(void)900 static int khugepaged_find_target_node(void)
901 {
902 return 0;
903 }
904
alloc_khugepaged_hugepage(void)905 static inline struct page *alloc_khugepaged_hugepage(void)
906 {
907 struct page *page;
908
909 page = alloc_pages(alloc_hugepage_khugepaged_gfpmask(),
910 HPAGE_PMD_ORDER);
911 if (page)
912 prep_transhuge_page(page);
913 return page;
914 }
915
khugepaged_alloc_hugepage(bool * wait)916 static struct page *khugepaged_alloc_hugepage(bool *wait)
917 {
918 struct page *hpage;
919
920 do {
921 hpage = alloc_khugepaged_hugepage();
922 if (!hpage) {
923 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
924 if (!*wait)
925 return NULL;
926
927 *wait = false;
928 khugepaged_alloc_sleep();
929 } else
930 count_vm_event(THP_COLLAPSE_ALLOC);
931 } while (unlikely(!hpage) && likely(khugepaged_enabled()));
932
933 return hpage;
934 }
935
khugepaged_prealloc_page(struct page ** hpage,bool * wait)936 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
937 {
938 /*
939 * If the hpage allocated earlier was briefly exposed in page cache
940 * before collapse_file() failed, it is possible that racing lookups
941 * have not yet completed, and would then be unpleasantly surprised by
942 * finding the hpage reused for the same mapping at a different offset.
943 * Just release the previous allocation if there is any danger of that.
944 */
945 if (*hpage && page_count(*hpage) > 1) {
946 put_page(*hpage);
947 *hpage = NULL;
948 }
949
950 if (!*hpage)
951 *hpage = khugepaged_alloc_hugepage(wait);
952
953 if (unlikely(!*hpage))
954 return false;
955
956 return true;
957 }
958
959 static struct page *
khugepaged_alloc_page(struct page ** hpage,gfp_t gfp,int node)960 khugepaged_alloc_page(struct page **hpage, gfp_t gfp, int node)
961 {
962 VM_BUG_ON(!*hpage);
963
964 return *hpage;
965 }
966 #endif
967
968 /*
969 * If mmap_lock temporarily dropped, revalidate vma
970 * before taking mmap_lock.
971 * Return 0 if succeeds, otherwise return none-zero
972 * value (scan code).
973 */
974
hugepage_vma_revalidate(struct mm_struct * mm,unsigned long address,struct vm_area_struct ** vmap)975 static int hugepage_vma_revalidate(struct mm_struct *mm, unsigned long address,
976 struct vm_area_struct **vmap)
977 {
978 struct vm_area_struct *vma;
979 unsigned long hstart, hend;
980
981 if (unlikely(khugepaged_test_exit(mm)))
982 return SCAN_ANY_PROCESS;
983
984 *vmap = vma = find_vma(mm, address);
985 if (!vma)
986 return SCAN_VMA_NULL;
987
988 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
989 hend = vma->vm_end & HPAGE_PMD_MASK;
990 if (address < hstart || address + HPAGE_PMD_SIZE > hend)
991 return SCAN_ADDRESS_RANGE;
992 if (!hugepage_vma_check(vma, vma->vm_flags))
993 return SCAN_VMA_CHECK;
994 /* Anon VMA expected */
995 if (!vma->anon_vma || vma->vm_ops)
996 return SCAN_VMA_CHECK;
997 return 0;
998 }
999
1000 /*
1001 * Bring missing pages in from swap, to complete THP collapse.
1002 * Only done if khugepaged_scan_pmd believes it is worthwhile.
1003 *
1004 * Called and returns without pte mapped or spinlocks held,
1005 * but with mmap_lock held to protect against vma changes.
1006 */
1007
__collapse_huge_page_swapin(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long haddr,pmd_t * pmd,int referenced)1008 static bool __collapse_huge_page_swapin(struct mm_struct *mm,
1009 struct vm_area_struct *vma,
1010 unsigned long haddr, pmd_t *pmd,
1011 int referenced)
1012 {
1013 int swapped_in = 0;
1014 vm_fault_t ret = 0;
1015 unsigned long address, end = haddr + (HPAGE_PMD_NR * PAGE_SIZE);
1016
1017 for (address = haddr; address < end; address += PAGE_SIZE) {
1018 struct vm_fault vmf = {
1019 .vma = vma,
1020 .address = address,
1021 .pgoff = linear_page_index(vma, haddr),
1022 .flags = FAULT_FLAG_ALLOW_RETRY,
1023 .pmd = pmd,
1024 };
1025
1026 vmf.pte = pte_offset_map(pmd, address);
1027 vmf.orig_pte = *vmf.pte;
1028 if (!is_swap_pte(vmf.orig_pte)) {
1029 pte_unmap(vmf.pte);
1030 continue;
1031 }
1032 swapped_in++;
1033 ret = do_swap_page(&vmf);
1034
1035 /* do_swap_page returns VM_FAULT_RETRY with released mmap_lock */
1036 if (ret & VM_FAULT_RETRY) {
1037 mmap_read_lock(mm);
1038 if (hugepage_vma_revalidate(mm, haddr, &vma)) {
1039 /* vma is no longer available, don't continue to swapin */
1040 trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0);
1041 return false;
1042 }
1043 /* check if the pmd is still valid */
1044 if (mm_find_pmd(mm, haddr) != pmd) {
1045 trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0);
1046 return false;
1047 }
1048 }
1049 if (ret & VM_FAULT_ERROR) {
1050 trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0);
1051 return false;
1052 }
1053 }
1054
1055 /* Drain LRU add pagevec to remove extra pin on the swapped in pages */
1056 if (swapped_in)
1057 lru_add_drain();
1058
1059 trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 1);
1060 return true;
1061 }
1062
collapse_huge_page(struct mm_struct * mm,unsigned long address,struct page ** hpage,int node,int referenced,int unmapped)1063 static void collapse_huge_page(struct mm_struct *mm,
1064 unsigned long address,
1065 struct page **hpage,
1066 int node, int referenced, int unmapped)
1067 {
1068 LIST_HEAD(compound_pagelist);
1069 pmd_t *pmd, _pmd;
1070 pte_t *pte;
1071 pgtable_t pgtable;
1072 struct page *new_page;
1073 spinlock_t *pmd_ptl, *pte_ptl;
1074 int isolated = 0, result = 0;
1075 struct vm_area_struct *vma;
1076 struct mmu_notifier_range range;
1077 gfp_t gfp;
1078
1079 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
1080
1081 /* Only allocate from the target node */
1082 gfp = alloc_hugepage_khugepaged_gfpmask() | __GFP_THISNODE;
1083
1084 /*
1085 * Before allocating the hugepage, release the mmap_lock read lock.
1086 * The allocation can take potentially a long time if it involves
1087 * sync compaction, and we do not need to hold the mmap_lock during
1088 * that. We will recheck the vma after taking it again in write mode.
1089 */
1090 mmap_read_unlock(mm);
1091 new_page = khugepaged_alloc_page(hpage, gfp, node);
1092 if (!new_page) {
1093 result = SCAN_ALLOC_HUGE_PAGE_FAIL;
1094 goto out_nolock;
1095 }
1096
1097 if (unlikely(mem_cgroup_charge(new_page, mm, gfp))) {
1098 result = SCAN_CGROUP_CHARGE_FAIL;
1099 goto out_nolock;
1100 }
1101 count_memcg_page_event(new_page, THP_COLLAPSE_ALLOC);
1102
1103 mmap_read_lock(mm);
1104 result = hugepage_vma_revalidate(mm, address, &vma);
1105 if (result) {
1106 mmap_read_unlock(mm);
1107 goto out_nolock;
1108 }
1109
1110 pmd = mm_find_pmd(mm, address);
1111 if (!pmd) {
1112 result = SCAN_PMD_NULL;
1113 mmap_read_unlock(mm);
1114 goto out_nolock;
1115 }
1116
1117 /*
1118 * __collapse_huge_page_swapin always returns with mmap_lock locked.
1119 * If it fails, we release mmap_lock and jump out_nolock.
1120 * Continuing to collapse causes inconsistency.
1121 */
1122 if (unmapped && !__collapse_huge_page_swapin(mm, vma, address,
1123 pmd, referenced)) {
1124 mmap_read_unlock(mm);
1125 goto out_nolock;
1126 }
1127
1128 mmap_read_unlock(mm);
1129 /*
1130 * Prevent all access to pagetables with the exception of
1131 * gup_fast later handled by the ptep_clear_flush and the VM
1132 * handled by the anon_vma lock + PG_lock.
1133 */
1134 mmap_write_lock(mm);
1135 result = hugepage_vma_revalidate(mm, address, &vma);
1136 if (result)
1137 goto out_up_write;
1138 /* check if the pmd is still valid */
1139 if (mm_find_pmd(mm, address) != pmd)
1140 goto out_up_write;
1141
1142 anon_vma_lock_write(vma->anon_vma);
1143
1144 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, NULL, mm,
1145 address, address + HPAGE_PMD_SIZE);
1146 mmu_notifier_invalidate_range_start(&range);
1147
1148 pte = pte_offset_map(pmd, address);
1149 pte_ptl = pte_lockptr(mm, pmd);
1150
1151 pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */
1152 /*
1153 * This removes any huge TLB entry from the CPU so we won't allow
1154 * huge and small TLB entries for the same virtual address to
1155 * avoid the risk of CPU bugs in that area.
1156 *
1157 * Parallel fast GUP is fine since fast GUP will back off when
1158 * it detects PMD is changed.
1159 */
1160 _pmd = pmdp_collapse_flush(vma, address, pmd);
1161 spin_unlock(pmd_ptl);
1162 mmu_notifier_invalidate_range_end(&range);
1163 tlb_remove_table_sync_one();
1164
1165 spin_lock(pte_ptl);
1166 isolated = __collapse_huge_page_isolate(vma, address, pte,
1167 &compound_pagelist);
1168 spin_unlock(pte_ptl);
1169
1170 if (unlikely(!isolated)) {
1171 pte_unmap(pte);
1172 spin_lock(pmd_ptl);
1173 BUG_ON(!pmd_none(*pmd));
1174 /*
1175 * We can only use set_pmd_at when establishing
1176 * hugepmds and never for establishing regular pmds that
1177 * points to regular pagetables. Use pmd_populate for that
1178 */
1179 pmd_populate(mm, pmd, pmd_pgtable(_pmd));
1180 spin_unlock(pmd_ptl);
1181 anon_vma_unlock_write(vma->anon_vma);
1182 result = SCAN_FAIL;
1183 goto out_up_write;
1184 }
1185
1186 /*
1187 * All pages are isolated and locked so anon_vma rmap
1188 * can't run anymore.
1189 */
1190 anon_vma_unlock_write(vma->anon_vma);
1191
1192 __collapse_huge_page_copy(pte, new_page, vma, address, pte_ptl,
1193 &compound_pagelist);
1194 pte_unmap(pte);
1195 /*
1196 * spin_lock() below is not the equivalent of smp_wmb(), but
1197 * the smp_wmb() inside __SetPageUptodate() can be reused to
1198 * avoid the copy_huge_page writes to become visible after
1199 * the set_pmd_at() write.
1200 */
1201 __SetPageUptodate(new_page);
1202 pgtable = pmd_pgtable(_pmd);
1203
1204 _pmd = mk_huge_pmd(new_page, vma->vm_page_prot);
1205 _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
1206
1207 spin_lock(pmd_ptl);
1208 BUG_ON(!pmd_none(*pmd));
1209 page_add_new_anon_rmap(new_page, vma, address, true);
1210 lru_cache_add_inactive_or_unevictable(new_page, vma);
1211 pgtable_trans_huge_deposit(mm, pmd, pgtable);
1212 set_pmd_at(mm, address, pmd, _pmd);
1213 update_mmu_cache_pmd(vma, address, pmd);
1214 spin_unlock(pmd_ptl);
1215
1216 *hpage = NULL;
1217
1218 khugepaged_pages_collapsed++;
1219 result = SCAN_SUCCEED;
1220 out_up_write:
1221 mmap_write_unlock(mm);
1222 out_nolock:
1223 if (!IS_ERR_OR_NULL(*hpage))
1224 mem_cgroup_uncharge(*hpage);
1225 trace_mm_collapse_huge_page(mm, isolated, result);
1226 return;
1227 }
1228
khugepaged_scan_pmd(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long address,struct page ** hpage)1229 static int khugepaged_scan_pmd(struct mm_struct *mm,
1230 struct vm_area_struct *vma,
1231 unsigned long address,
1232 struct page **hpage)
1233 {
1234 pmd_t *pmd;
1235 pte_t *pte, *_pte;
1236 int ret = 0, result = 0, referenced = 0;
1237 int none_or_zero = 0, shared = 0;
1238 struct page *page = NULL;
1239 unsigned long _address;
1240 spinlock_t *ptl;
1241 int node = NUMA_NO_NODE, unmapped = 0;
1242 bool writable = false;
1243
1244 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
1245
1246 pmd = mm_find_pmd(mm, address);
1247 if (!pmd) {
1248 result = SCAN_PMD_NULL;
1249 goto out;
1250 }
1251
1252 memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
1253 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
1254 for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
1255 _pte++, _address += PAGE_SIZE) {
1256 pte_t pteval = *_pte;
1257 if (is_swap_pte(pteval)) {
1258 if (++unmapped <= khugepaged_max_ptes_swap) {
1259 /*
1260 * Always be strict with uffd-wp
1261 * enabled swap entries. Please see
1262 * comment below for pte_uffd_wp().
1263 */
1264 if (pte_swp_uffd_wp(pteval)) {
1265 result = SCAN_PTE_UFFD_WP;
1266 goto out_unmap;
1267 }
1268 continue;
1269 } else {
1270 result = SCAN_EXCEED_SWAP_PTE;
1271 goto out_unmap;
1272 }
1273 }
1274 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
1275 if (!userfaultfd_armed(vma) &&
1276 ++none_or_zero <= khugepaged_max_ptes_none) {
1277 continue;
1278 } else {
1279 result = SCAN_EXCEED_NONE_PTE;
1280 goto out_unmap;
1281 }
1282 }
1283 if (pte_uffd_wp(pteval)) {
1284 /*
1285 * Don't collapse the page if any of the small
1286 * PTEs are armed with uffd write protection.
1287 * Here we can also mark the new huge pmd as
1288 * write protected if any of the small ones is
1289 * marked but that could bring unknown
1290 * userfault messages that falls outside of
1291 * the registered range. So, just be simple.
1292 */
1293 result = SCAN_PTE_UFFD_WP;
1294 goto out_unmap;
1295 }
1296 if (pte_write(pteval))
1297 writable = true;
1298
1299 page = vm_normal_page(vma, _address, pteval);
1300 if (unlikely(!page)) {
1301 result = SCAN_PAGE_NULL;
1302 goto out_unmap;
1303 }
1304
1305 if (page_mapcount(page) > 1 &&
1306 ++shared > khugepaged_max_ptes_shared) {
1307 result = SCAN_EXCEED_SHARED_PTE;
1308 goto out_unmap;
1309 }
1310
1311 page = compound_head(page);
1312
1313 /*
1314 * Record which node the original page is from and save this
1315 * information to khugepaged_node_load[].
1316 * Khupaged will allocate hugepage from the node has the max
1317 * hit record.
1318 */
1319 node = page_to_nid(page);
1320 if (khugepaged_scan_abort(node)) {
1321 result = SCAN_SCAN_ABORT;
1322 goto out_unmap;
1323 }
1324 khugepaged_node_load[node]++;
1325 if (!PageLRU(page)) {
1326 result = SCAN_PAGE_LRU;
1327 goto out_unmap;
1328 }
1329 if (PageLocked(page)) {
1330 result = SCAN_PAGE_LOCK;
1331 goto out_unmap;
1332 }
1333 if (!PageAnon(page)) {
1334 result = SCAN_PAGE_ANON;
1335 goto out_unmap;
1336 }
1337
1338 /*
1339 * Check if the page has any GUP (or other external) pins.
1340 *
1341 * Here the check is racy it may see totmal_mapcount > refcount
1342 * in some cases.
1343 * For example, one process with one forked child process.
1344 * The parent has the PMD split due to MADV_DONTNEED, then
1345 * the child is trying unmap the whole PMD, but khugepaged
1346 * may be scanning the parent between the child has
1347 * PageDoubleMap flag cleared and dec the mapcount. So
1348 * khugepaged may see total_mapcount > refcount.
1349 *
1350 * But such case is ephemeral we could always retry collapse
1351 * later. However it may report false positive if the page
1352 * has excessive GUP pins (i.e. 512). Anyway the same check
1353 * will be done again later the risk seems low.
1354 */
1355 if (!is_refcount_suitable(page)) {
1356 result = SCAN_PAGE_COUNT;
1357 goto out_unmap;
1358 }
1359 if (pte_young(pteval) ||
1360 page_is_young(page) || PageReferenced(page) ||
1361 mmu_notifier_test_young(vma->vm_mm, address))
1362 referenced++;
1363 }
1364 if (!writable) {
1365 result = SCAN_PAGE_RO;
1366 } else if (!referenced || (unmapped && referenced < HPAGE_PMD_NR/2)) {
1367 result = SCAN_LACK_REFERENCED_PAGE;
1368 } else {
1369 result = SCAN_SUCCEED;
1370 ret = 1;
1371 }
1372 out_unmap:
1373 pte_unmap_unlock(pte, ptl);
1374 if (ret) {
1375 node = khugepaged_find_target_node();
1376 /* collapse_huge_page will return with the mmap_lock released */
1377 collapse_huge_page(mm, address, hpage, node,
1378 referenced, unmapped);
1379 }
1380 out:
1381 trace_mm_khugepaged_scan_pmd(mm, page, writable, referenced,
1382 none_or_zero, result, unmapped);
1383 return ret;
1384 }
1385
collect_mm_slot(struct mm_slot * mm_slot)1386 static void collect_mm_slot(struct mm_slot *mm_slot)
1387 {
1388 struct mm_struct *mm = mm_slot->mm;
1389
1390 lockdep_assert_held(&khugepaged_mm_lock);
1391
1392 if (khugepaged_test_exit(mm)) {
1393 /* free mm_slot */
1394 hash_del(&mm_slot->hash);
1395 list_del(&mm_slot->mm_node);
1396
1397 /*
1398 * Not strictly needed because the mm exited already.
1399 *
1400 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
1401 */
1402
1403 /* khugepaged_mm_lock actually not necessary for the below */
1404 free_mm_slot(mm_slot);
1405 mmdrop(mm);
1406 }
1407 }
1408
1409 #ifdef CONFIG_SHMEM
1410 /*
1411 * Notify khugepaged that given addr of the mm is pte-mapped THP. Then
1412 * khugepaged should try to collapse the page table.
1413 */
khugepaged_add_pte_mapped_thp(struct mm_struct * mm,unsigned long addr)1414 static int khugepaged_add_pte_mapped_thp(struct mm_struct *mm,
1415 unsigned long addr)
1416 {
1417 struct mm_slot *mm_slot;
1418
1419 VM_BUG_ON(addr & ~HPAGE_PMD_MASK);
1420
1421 spin_lock(&khugepaged_mm_lock);
1422 mm_slot = get_mm_slot(mm);
1423 if (likely(mm_slot && mm_slot->nr_pte_mapped_thp < MAX_PTE_MAPPED_THP))
1424 mm_slot->pte_mapped_thp[mm_slot->nr_pte_mapped_thp++] = addr;
1425 spin_unlock(&khugepaged_mm_lock);
1426 return 0;
1427 }
1428
1429 /**
1430 * collapse_pte_mapped_thp - Try to collapse a pte-mapped THP for mm at
1431 * address haddr.
1432 *
1433 * @mm: process address space where collapse happens
1434 * @addr: THP collapse address
1435 *
1436 * This function checks whether all the PTEs in the PMD are pointing to the
1437 * right THP. If so, retract the page table so the THP can refault in with
1438 * as pmd-mapped.
1439 */
collapse_pte_mapped_thp(struct mm_struct * mm,unsigned long addr)1440 void collapse_pte_mapped_thp(struct mm_struct *mm, unsigned long addr)
1441 {
1442 unsigned long haddr = addr & HPAGE_PMD_MASK;
1443 struct vm_area_struct *vma = find_vma(mm, haddr);
1444 struct page *hpage;
1445 pte_t *start_pte, *pte;
1446 pmd_t *pmd, _pmd;
1447 spinlock_t *ptl;
1448 int count = 0;
1449 int i;
1450 struct mmu_notifier_range range;
1451
1452 if (!vma || !vma->vm_file ||
1453 !range_in_vma(vma, haddr, haddr + HPAGE_PMD_SIZE))
1454 return;
1455
1456 /*
1457 * This vm_flags may not have VM_HUGEPAGE if the page was not
1458 * collapsed by this mm. But we can still collapse if the page is
1459 * the valid THP. Add extra VM_HUGEPAGE so hugepage_vma_check()
1460 * will not fail the vma for missing VM_HUGEPAGE
1461 */
1462 if (!hugepage_vma_check(vma, vma->vm_flags | VM_HUGEPAGE))
1463 return;
1464
1465 hpage = find_lock_page(vma->vm_file->f_mapping,
1466 linear_page_index(vma, haddr));
1467 if (!hpage)
1468 return;
1469
1470 if (!PageHead(hpage))
1471 goto drop_hpage;
1472
1473 pmd = mm_find_pmd(mm, haddr);
1474 if (!pmd)
1475 goto drop_hpage;
1476
1477 /*
1478 * We need to lock the mapping so that from here on, only GUP-fast and
1479 * hardware page walks can access the parts of the page tables that
1480 * we're operating on.
1481 */
1482 i_mmap_lock_write(vma->vm_file->f_mapping);
1483
1484 /*
1485 * This spinlock should be unnecessary: Nobody else should be accessing
1486 * the page tables under spinlock protection here, only
1487 * lockless_pages_from_mm() and the hardware page walker can access page
1488 * tables while all the high-level locks are held in write mode.
1489 */
1490 start_pte = pte_offset_map_lock(mm, pmd, haddr, &ptl);
1491
1492 /* step 1: check all mapped PTEs are to the right huge page */
1493 for (i = 0, addr = haddr, pte = start_pte;
1494 i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE, pte++) {
1495 struct page *page;
1496
1497 /* empty pte, skip */
1498 if (pte_none(*pte))
1499 continue;
1500
1501 /* page swapped out, abort */
1502 if (!pte_present(*pte))
1503 goto abort;
1504
1505 page = vm_normal_page(vma, addr, *pte);
1506
1507 /*
1508 * Note that uprobe, debugger, or MAP_PRIVATE may change the
1509 * page table, but the new page will not be a subpage of hpage.
1510 */
1511 if (hpage + i != page)
1512 goto abort;
1513 count++;
1514 }
1515
1516 /* step 2: adjust rmap */
1517 for (i = 0, addr = haddr, pte = start_pte;
1518 i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE, pte++) {
1519 struct page *page;
1520
1521 if (pte_none(*pte))
1522 continue;
1523 page = vm_normal_page(vma, addr, *pte);
1524 page_remove_rmap(page, false);
1525 }
1526
1527 pte_unmap_unlock(start_pte, ptl);
1528
1529 /* step 3: set proper refcount and mm_counters. */
1530 if (count) {
1531 page_ref_sub(hpage, count);
1532 add_mm_counter(vma->vm_mm, mm_counter_file(hpage), -count);
1533 }
1534
1535 /* step 4: collapse pmd */
1536 /* we make no change to anon, but protect concurrent anon page lookup */
1537 if (vma->anon_vma)
1538 anon_vma_lock_write(vma->anon_vma);
1539
1540 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, NULL, mm, haddr,
1541 haddr + HPAGE_PMD_SIZE);
1542 mmu_notifier_invalidate_range_start(&range);
1543 _pmd = pmdp_collapse_flush(vma, haddr, pmd);
1544 mm_dec_nr_ptes(mm);
1545 tlb_remove_table_sync_one();
1546 mmu_notifier_invalidate_range_end(&range);
1547 pte_free(mm, pmd_pgtable(_pmd));
1548
1549 if (vma->anon_vma)
1550 anon_vma_unlock_write(vma->anon_vma);
1551 i_mmap_unlock_write(vma->vm_file->f_mapping);
1552
1553 drop_hpage:
1554 unlock_page(hpage);
1555 put_page(hpage);
1556 return;
1557
1558 abort:
1559 pte_unmap_unlock(start_pte, ptl);
1560 i_mmap_unlock_write(vma->vm_file->f_mapping);
1561 goto drop_hpage;
1562 }
1563
khugepaged_collapse_pte_mapped_thps(struct mm_slot * mm_slot)1564 static void khugepaged_collapse_pte_mapped_thps(struct mm_slot *mm_slot)
1565 {
1566 struct mm_struct *mm = mm_slot->mm;
1567 int i;
1568
1569 if (likely(mm_slot->nr_pte_mapped_thp == 0))
1570 return;
1571
1572 if (!mmap_write_trylock(mm))
1573 return;
1574
1575 if (unlikely(khugepaged_test_exit(mm)))
1576 goto out;
1577
1578 for (i = 0; i < mm_slot->nr_pte_mapped_thp; i++)
1579 collapse_pte_mapped_thp(mm, mm_slot->pte_mapped_thp[i]);
1580
1581 out:
1582 mm_slot->nr_pte_mapped_thp = 0;
1583 mmap_write_unlock(mm);
1584 }
1585
retract_page_tables(struct address_space * mapping,pgoff_t pgoff)1586 static void retract_page_tables(struct address_space *mapping, pgoff_t pgoff)
1587 {
1588 struct vm_area_struct *vma;
1589 struct mm_struct *mm;
1590 unsigned long addr;
1591 pmd_t *pmd, _pmd;
1592
1593 i_mmap_lock_write(mapping);
1594 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
1595 /*
1596 * Check vma->anon_vma to exclude MAP_PRIVATE mappings that
1597 * got written to. These VMAs are likely not worth investing
1598 * mmap_write_lock(mm) as PMD-mapping is likely to be split
1599 * later.
1600 *
1601 * Not that vma->anon_vma check is racy: it can be set up after
1602 * the check but before we took mmap_lock by the fault path.
1603 * But page lock would prevent establishing any new ptes of the
1604 * page, so we are safe.
1605 *
1606 * An alternative would be drop the check, but check that page
1607 * table is clear before calling pmdp_collapse_flush() under
1608 * ptl. It has higher chance to recover THP for the VMA, but
1609 * has higher cost too. It would also probably require locking
1610 * the anon_vma.
1611 */
1612 if (vma->anon_vma)
1613 continue;
1614 addr = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
1615 if (addr & ~HPAGE_PMD_MASK)
1616 continue;
1617 if (vma->vm_end < addr + HPAGE_PMD_SIZE)
1618 continue;
1619 mm = vma->vm_mm;
1620 pmd = mm_find_pmd(mm, addr);
1621 if (!pmd)
1622 continue;
1623 /*
1624 * We need exclusive mmap_lock to retract page table.
1625 *
1626 * We use trylock due to lock inversion: we need to acquire
1627 * mmap_lock while holding page lock. Fault path does it in
1628 * reverse order. Trylock is a way to avoid deadlock.
1629 */
1630 if (mmap_write_trylock(mm)) {
1631 if (!khugepaged_test_exit(mm)) {
1632 struct mmu_notifier_range range;
1633
1634 mmu_notifier_range_init(&range,
1635 MMU_NOTIFY_CLEAR, 0,
1636 NULL, mm, addr,
1637 addr + HPAGE_PMD_SIZE);
1638 mmu_notifier_invalidate_range_start(&range);
1639 /* assume page table is clear */
1640 _pmd = pmdp_collapse_flush(vma, addr, pmd);
1641 mm_dec_nr_ptes(mm);
1642 tlb_remove_table_sync_one();
1643 pte_free(mm, pmd_pgtable(_pmd));
1644 mmu_notifier_invalidate_range_end(&range);
1645 }
1646 mmap_write_unlock(mm);
1647 } else {
1648 /* Try again later */
1649 khugepaged_add_pte_mapped_thp(mm, addr);
1650 }
1651 }
1652 i_mmap_unlock_write(mapping);
1653 }
1654
1655 /**
1656 * collapse_file - collapse filemap/tmpfs/shmem pages into huge one.
1657 *
1658 * @mm: process address space where collapse happens
1659 * @file: file that collapse on
1660 * @start: collapse start address
1661 * @hpage: new allocated huge page for collapse
1662 * @node: appointed node the new huge page allocate from
1663 *
1664 * Basic scheme is simple, details are more complex:
1665 * - allocate and lock a new huge page;
1666 * - scan page cache replacing old pages with the new one
1667 * + swap/gup in pages if necessary;
1668 * + fill in gaps;
1669 * + keep old pages around in case rollback is required;
1670 * - if replacing succeeds:
1671 * + copy data over;
1672 * + free old pages;
1673 * + unlock huge page;
1674 * - if replacing failed;
1675 * + put all pages back and unfreeze them;
1676 * + restore gaps in the page cache;
1677 * + unlock and free huge page;
1678 */
collapse_file(struct mm_struct * mm,struct file * file,pgoff_t start,struct page ** hpage,int node)1679 static void collapse_file(struct mm_struct *mm,
1680 struct file *file, pgoff_t start,
1681 struct page **hpage, int node)
1682 {
1683 struct address_space *mapping = file->f_mapping;
1684 gfp_t gfp;
1685 struct page *new_page;
1686 pgoff_t index, end = start + HPAGE_PMD_NR;
1687 LIST_HEAD(pagelist);
1688 XA_STATE_ORDER(xas, &mapping->i_pages, start, HPAGE_PMD_ORDER);
1689 int nr_none = 0, result = SCAN_SUCCEED;
1690 bool is_shmem = shmem_file(file);
1691 int nr;
1692
1693 VM_BUG_ON(!IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS) && !is_shmem);
1694 VM_BUG_ON(start & (HPAGE_PMD_NR - 1));
1695
1696 /* Only allocate from the target node */
1697 gfp = alloc_hugepage_khugepaged_gfpmask() | __GFP_THISNODE;
1698
1699 new_page = khugepaged_alloc_page(hpage, gfp, node);
1700 if (!new_page) {
1701 result = SCAN_ALLOC_HUGE_PAGE_FAIL;
1702 goto out;
1703 }
1704
1705 if (unlikely(mem_cgroup_charge(new_page, mm, gfp))) {
1706 result = SCAN_CGROUP_CHARGE_FAIL;
1707 goto out;
1708 }
1709 count_memcg_page_event(new_page, THP_COLLAPSE_ALLOC);
1710
1711 /* This will be less messy when we use multi-index entries */
1712 do {
1713 xas_lock_irq(&xas);
1714 xas_create_range(&xas);
1715 if (!xas_error(&xas))
1716 break;
1717 xas_unlock_irq(&xas);
1718 if (!xas_nomem(&xas, GFP_KERNEL)) {
1719 result = SCAN_FAIL;
1720 goto out;
1721 }
1722 } while (1);
1723
1724 __SetPageLocked(new_page);
1725 if (is_shmem)
1726 __SetPageSwapBacked(new_page);
1727 new_page->index = start;
1728 new_page->mapping = mapping;
1729
1730 /*
1731 * At this point the new_page is locked and not up-to-date.
1732 * It's safe to insert it into the page cache, because nobody would
1733 * be able to map it or use it in another way until we unlock it.
1734 */
1735
1736 xas_set(&xas, start);
1737 for (index = start; index < end; index++) {
1738 struct page *page = xas_next(&xas);
1739
1740 VM_BUG_ON(index != xas.xa_index);
1741 if (is_shmem) {
1742 if (!page) {
1743 /*
1744 * Stop if extent has been truncated or
1745 * hole-punched, and is now completely
1746 * empty.
1747 */
1748 if (index == start) {
1749 if (!xas_next_entry(&xas, end - 1)) {
1750 result = SCAN_TRUNCATED;
1751 goto xa_locked;
1752 }
1753 xas_set(&xas, index);
1754 }
1755 if (!shmem_charge(mapping->host, 1)) {
1756 result = SCAN_FAIL;
1757 goto xa_locked;
1758 }
1759 xas_store(&xas, new_page);
1760 nr_none++;
1761 continue;
1762 }
1763
1764 if (xa_is_value(page) || !PageUptodate(page)) {
1765 xas_unlock_irq(&xas);
1766 /* swap in or instantiate fallocated page */
1767 if (shmem_getpage(mapping->host, index, &page,
1768 SGP_NOALLOC)) {
1769 result = SCAN_FAIL;
1770 goto xa_unlocked;
1771 }
1772 } else if (trylock_page(page)) {
1773 get_page(page);
1774 xas_unlock_irq(&xas);
1775 } else {
1776 result = SCAN_PAGE_LOCK;
1777 goto xa_locked;
1778 }
1779 } else { /* !is_shmem */
1780 if (!page || xa_is_value(page)) {
1781 xas_unlock_irq(&xas);
1782 page_cache_sync_readahead(mapping, &file->f_ra,
1783 file, index,
1784 end - index);
1785 /* drain pagevecs to help isolate_lru_page() */
1786 lru_add_drain();
1787 page = find_lock_page(mapping, index);
1788 if (unlikely(page == NULL)) {
1789 result = SCAN_FAIL;
1790 goto xa_unlocked;
1791 }
1792 } else if (PageDirty(page)) {
1793 /*
1794 * khugepaged only works on read-only fd,
1795 * so this page is dirty because it hasn't
1796 * been flushed since first write. There
1797 * won't be new dirty pages.
1798 *
1799 * Trigger async flush here and hope the
1800 * writeback is done when khugepaged
1801 * revisits this page.
1802 *
1803 * This is a one-off situation. We are not
1804 * forcing writeback in loop.
1805 */
1806 xas_unlock_irq(&xas);
1807 filemap_flush(mapping);
1808 result = SCAN_FAIL;
1809 goto xa_unlocked;
1810 } else if (PageWriteback(page)) {
1811 xas_unlock_irq(&xas);
1812 result = SCAN_FAIL;
1813 goto xa_unlocked;
1814 } else if (trylock_page(page)) {
1815 get_page(page);
1816 xas_unlock_irq(&xas);
1817 } else {
1818 result = SCAN_PAGE_LOCK;
1819 goto xa_locked;
1820 }
1821 }
1822
1823 /*
1824 * The page must be locked, so we can drop the i_pages lock
1825 * without racing with truncate.
1826 */
1827 VM_BUG_ON_PAGE(!PageLocked(page), page);
1828
1829 /* make sure the page is up to date */
1830 if (unlikely(!PageUptodate(page))) {
1831 result = SCAN_FAIL;
1832 goto out_unlock;
1833 }
1834
1835 /*
1836 * If file was truncated then extended, or hole-punched, before
1837 * we locked the first page, then a THP might be there already.
1838 */
1839 if (PageTransCompound(page)) {
1840 result = SCAN_PAGE_COMPOUND;
1841 goto out_unlock;
1842 }
1843
1844 if (page_mapping(page) != mapping) {
1845 result = SCAN_TRUNCATED;
1846 goto out_unlock;
1847 }
1848
1849 if (!is_shmem && (PageDirty(page) ||
1850 PageWriteback(page))) {
1851 /*
1852 * khugepaged only works on read-only fd, so this
1853 * page is dirty because it hasn't been flushed
1854 * since first write.
1855 */
1856 result = SCAN_FAIL;
1857 goto out_unlock;
1858 }
1859
1860 if (isolate_lru_page(page)) {
1861 result = SCAN_DEL_PAGE_LRU;
1862 goto out_unlock;
1863 }
1864
1865 if (page_has_private(page) &&
1866 !try_to_release_page(page, GFP_KERNEL)) {
1867 result = SCAN_PAGE_HAS_PRIVATE;
1868 putback_lru_page(page);
1869 goto out_unlock;
1870 }
1871
1872 if (page_mapped(page))
1873 unmap_mapping_pages(mapping, index, 1, false);
1874
1875 xas_lock_irq(&xas);
1876 xas_set(&xas, index);
1877
1878 VM_BUG_ON_PAGE(page != xas_load(&xas), page);
1879 VM_BUG_ON_PAGE(page_mapped(page), page);
1880
1881 /*
1882 * The page is expected to have page_count() == 3:
1883 * - we hold a pin on it;
1884 * - one reference from page cache;
1885 * - one from isolate_lru_page;
1886 */
1887 if (!page_ref_freeze(page, 3)) {
1888 result = SCAN_PAGE_COUNT;
1889 xas_unlock_irq(&xas);
1890 putback_lru_page(page);
1891 goto out_unlock;
1892 }
1893
1894 /*
1895 * Add the page to the list to be able to undo the collapse if
1896 * something go wrong.
1897 */
1898 list_add_tail(&page->lru, &pagelist);
1899
1900 /* Finally, replace with the new page. */
1901 xas_store(&xas, new_page);
1902 continue;
1903 out_unlock:
1904 unlock_page(page);
1905 put_page(page);
1906 goto xa_unlocked;
1907 }
1908 nr = thp_nr_pages(new_page);
1909
1910 if (is_shmem)
1911 __mod_lruvec_page_state(new_page, NR_SHMEM_THPS, nr);
1912 else {
1913 __mod_lruvec_page_state(new_page, NR_FILE_THPS, nr);
1914 filemap_nr_thps_inc(mapping);
1915 /*
1916 * Paired with smp_mb() in do_dentry_open() to ensure
1917 * i_writecount is up to date and the update to nr_thps is
1918 * visible. Ensures the page cache will be truncated if the
1919 * file is opened writable.
1920 */
1921 smp_mb();
1922 if (inode_is_open_for_write(mapping->host)) {
1923 result = SCAN_FAIL;
1924 __mod_lruvec_page_state(new_page, NR_FILE_THPS, -nr);
1925 filemap_nr_thps_dec(mapping);
1926 goto xa_locked;
1927 }
1928 }
1929
1930 if (nr_none) {
1931 __mod_lruvec_page_state(new_page, NR_FILE_PAGES, nr_none);
1932 if (is_shmem)
1933 __mod_lruvec_page_state(new_page, NR_SHMEM, nr_none);
1934 }
1935
1936 xa_locked:
1937 xas_unlock_irq(&xas);
1938 xa_unlocked:
1939
1940 if (result == SCAN_SUCCEED) {
1941 struct page *page, *tmp;
1942
1943 /*
1944 * Replacing old pages with new one has succeeded, now we
1945 * need to copy the content and free the old pages.
1946 */
1947 index = start;
1948 list_for_each_entry_safe(page, tmp, &pagelist, lru) {
1949 while (index < page->index) {
1950 clear_highpage(new_page + (index % HPAGE_PMD_NR));
1951 index++;
1952 }
1953 copy_highpage(new_page + (page->index % HPAGE_PMD_NR),
1954 page);
1955 list_del(&page->lru);
1956 page->mapping = NULL;
1957 page_ref_unfreeze(page, 1);
1958 ClearPageActive(page);
1959 ClearPageUnevictable(page);
1960 unlock_page(page);
1961 put_page(page);
1962 index++;
1963 }
1964 while (index < end) {
1965 clear_highpage(new_page + (index % HPAGE_PMD_NR));
1966 index++;
1967 }
1968
1969 SetPageUptodate(new_page);
1970 page_ref_add(new_page, HPAGE_PMD_NR - 1);
1971 if (is_shmem)
1972 set_page_dirty(new_page);
1973 lru_cache_add(new_page);
1974
1975 /*
1976 * Remove pte page tables, so we can re-fault the page as huge.
1977 */
1978 retract_page_tables(mapping, start);
1979 *hpage = NULL;
1980
1981 khugepaged_pages_collapsed++;
1982 } else {
1983 struct page *page;
1984
1985 /* Something went wrong: roll back page cache changes */
1986 xas_lock_irq(&xas);
1987 mapping->nrpages -= nr_none;
1988
1989 if (is_shmem)
1990 shmem_uncharge(mapping->host, nr_none);
1991
1992 xas_set(&xas, start);
1993 xas_for_each(&xas, page, end - 1) {
1994 page = list_first_entry_or_null(&pagelist,
1995 struct page, lru);
1996 if (!page || xas.xa_index < page->index) {
1997 if (!nr_none)
1998 break;
1999 nr_none--;
2000 /* Put holes back where they were */
2001 xas_store(&xas, NULL);
2002 continue;
2003 }
2004
2005 VM_BUG_ON_PAGE(page->index != xas.xa_index, page);
2006
2007 /* Unfreeze the page. */
2008 list_del(&page->lru);
2009 page_ref_unfreeze(page, 2);
2010 xas_store(&xas, page);
2011 xas_pause(&xas);
2012 xas_unlock_irq(&xas);
2013 unlock_page(page);
2014 putback_lru_page(page);
2015 xas_lock_irq(&xas);
2016 }
2017 VM_BUG_ON(nr_none);
2018 xas_unlock_irq(&xas);
2019
2020 new_page->mapping = NULL;
2021 }
2022
2023 unlock_page(new_page);
2024 out:
2025 VM_BUG_ON(!list_empty(&pagelist));
2026 if (!IS_ERR_OR_NULL(*hpage))
2027 mem_cgroup_uncharge(*hpage);
2028 /* TODO: tracepoints */
2029 }
2030
khugepaged_scan_file(struct mm_struct * mm,struct file * file,pgoff_t start,struct page ** hpage)2031 static void khugepaged_scan_file(struct mm_struct *mm,
2032 struct file *file, pgoff_t start, struct page **hpage)
2033 {
2034 struct page *page = NULL;
2035 struct address_space *mapping = file->f_mapping;
2036 XA_STATE(xas, &mapping->i_pages, start);
2037 int present, swap;
2038 int node = NUMA_NO_NODE;
2039 int result = SCAN_SUCCEED;
2040
2041 present = 0;
2042 swap = 0;
2043 memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
2044 rcu_read_lock();
2045 xas_for_each(&xas, page, start + HPAGE_PMD_NR - 1) {
2046 if (xas_retry(&xas, page))
2047 continue;
2048
2049 if (xa_is_value(page)) {
2050 if (++swap > khugepaged_max_ptes_swap) {
2051 result = SCAN_EXCEED_SWAP_PTE;
2052 break;
2053 }
2054 continue;
2055 }
2056
2057 if (PageTransCompound(page)) {
2058 result = SCAN_PAGE_COMPOUND;
2059 break;
2060 }
2061
2062 node = page_to_nid(page);
2063 if (khugepaged_scan_abort(node)) {
2064 result = SCAN_SCAN_ABORT;
2065 break;
2066 }
2067 khugepaged_node_load[node]++;
2068
2069 if (!PageLRU(page)) {
2070 result = SCAN_PAGE_LRU;
2071 break;
2072 }
2073
2074 if (page_count(page) !=
2075 1 + page_mapcount(page) + page_has_private(page)) {
2076 result = SCAN_PAGE_COUNT;
2077 break;
2078 }
2079
2080 /*
2081 * We probably should check if the page is referenced here, but
2082 * nobody would transfer pte_young() to PageReferenced() for us.
2083 * And rmap walk here is just too costly...
2084 */
2085
2086 present++;
2087
2088 if (need_resched()) {
2089 xas_pause(&xas);
2090 cond_resched_rcu();
2091 }
2092 }
2093 rcu_read_unlock();
2094
2095 if (result == SCAN_SUCCEED) {
2096 if (present < HPAGE_PMD_NR - khugepaged_max_ptes_none) {
2097 result = SCAN_EXCEED_NONE_PTE;
2098 } else {
2099 node = khugepaged_find_target_node();
2100 collapse_file(mm, file, start, hpage, node);
2101 }
2102 }
2103
2104 /* TODO: tracepoints */
2105 }
2106 #else
khugepaged_scan_file(struct mm_struct * mm,struct file * file,pgoff_t start,struct page ** hpage)2107 static void khugepaged_scan_file(struct mm_struct *mm,
2108 struct file *file, pgoff_t start, struct page **hpage)
2109 {
2110 BUILD_BUG();
2111 }
2112
khugepaged_collapse_pte_mapped_thps(struct mm_slot * mm_slot)2113 static void khugepaged_collapse_pte_mapped_thps(struct mm_slot *mm_slot)
2114 {
2115 }
2116 #endif
2117
khugepaged_scan_mm_slot(unsigned int pages,struct page ** hpage)2118 static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
2119 struct page **hpage)
2120 __releases(&khugepaged_mm_lock)
2121 __acquires(&khugepaged_mm_lock)
2122 {
2123 struct mm_slot *mm_slot;
2124 struct mm_struct *mm;
2125 struct vm_area_struct *vma;
2126 int progress = 0;
2127
2128 VM_BUG_ON(!pages);
2129 lockdep_assert_held(&khugepaged_mm_lock);
2130
2131 if (khugepaged_scan.mm_slot)
2132 mm_slot = khugepaged_scan.mm_slot;
2133 else {
2134 mm_slot = list_entry(khugepaged_scan.mm_head.next,
2135 struct mm_slot, mm_node);
2136 khugepaged_scan.address = 0;
2137 khugepaged_scan.mm_slot = mm_slot;
2138 }
2139 spin_unlock(&khugepaged_mm_lock);
2140 khugepaged_collapse_pte_mapped_thps(mm_slot);
2141
2142 mm = mm_slot->mm;
2143 /*
2144 * Don't wait for semaphore (to avoid long wait times). Just move to
2145 * the next mm on the list.
2146 */
2147 vma = NULL;
2148 if (unlikely(!mmap_read_trylock(mm)))
2149 goto breakouterloop_mmap_lock;
2150 if (likely(!khugepaged_test_exit(mm)))
2151 vma = find_vma(mm, khugepaged_scan.address);
2152
2153 progress++;
2154 for (; vma; vma = vma->vm_next) {
2155 unsigned long hstart, hend;
2156
2157 cond_resched();
2158 if (unlikely(khugepaged_test_exit(mm))) {
2159 progress++;
2160 break;
2161 }
2162 if (!hugepage_vma_check(vma, vma->vm_flags)) {
2163 skip:
2164 progress++;
2165 continue;
2166 }
2167 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2168 hend = vma->vm_end & HPAGE_PMD_MASK;
2169 if (hstart >= hend)
2170 goto skip;
2171 if (khugepaged_scan.address > hend)
2172 goto skip;
2173 if (khugepaged_scan.address < hstart)
2174 khugepaged_scan.address = hstart;
2175 VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
2176 if (shmem_file(vma->vm_file) && !shmem_huge_enabled(vma))
2177 goto skip;
2178
2179 while (khugepaged_scan.address < hend) {
2180 int ret;
2181 cond_resched();
2182 if (unlikely(khugepaged_test_exit(mm)))
2183 goto breakouterloop;
2184
2185 VM_BUG_ON(khugepaged_scan.address < hstart ||
2186 khugepaged_scan.address + HPAGE_PMD_SIZE >
2187 hend);
2188 if (IS_ENABLED(CONFIG_SHMEM) && vma->vm_file) {
2189 struct file *file = get_file(vma->vm_file);
2190 pgoff_t pgoff = linear_page_index(vma,
2191 khugepaged_scan.address);
2192
2193 mmap_read_unlock(mm);
2194 ret = 1;
2195 khugepaged_scan_file(mm, file, pgoff, hpage);
2196 fput(file);
2197 } else {
2198 ret = khugepaged_scan_pmd(mm, vma,
2199 khugepaged_scan.address,
2200 hpage);
2201 }
2202 /* move to next address */
2203 khugepaged_scan.address += HPAGE_PMD_SIZE;
2204 progress += HPAGE_PMD_NR;
2205 if (ret)
2206 /* we released mmap_lock so break loop */
2207 goto breakouterloop_mmap_lock;
2208 if (progress >= pages)
2209 goto breakouterloop;
2210 }
2211 }
2212 breakouterloop:
2213 mmap_read_unlock(mm); /* exit_mmap will destroy ptes after this */
2214 breakouterloop_mmap_lock:
2215
2216 spin_lock(&khugepaged_mm_lock);
2217 VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
2218 /*
2219 * Release the current mm_slot if this mm is about to die, or
2220 * if we scanned all vmas of this mm.
2221 */
2222 if (khugepaged_test_exit(mm) || !vma) {
2223 /*
2224 * Make sure that if mm_users is reaching zero while
2225 * khugepaged runs here, khugepaged_exit will find
2226 * mm_slot not pointing to the exiting mm.
2227 */
2228 if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
2229 khugepaged_scan.mm_slot = list_entry(
2230 mm_slot->mm_node.next,
2231 struct mm_slot, mm_node);
2232 khugepaged_scan.address = 0;
2233 } else {
2234 khugepaged_scan.mm_slot = NULL;
2235 khugepaged_full_scans++;
2236 }
2237
2238 collect_mm_slot(mm_slot);
2239 }
2240
2241 return progress;
2242 }
2243
khugepaged_has_work(void)2244 static int khugepaged_has_work(void)
2245 {
2246 return !list_empty(&khugepaged_scan.mm_head) &&
2247 khugepaged_enabled();
2248 }
2249
khugepaged_wait_event(void)2250 static int khugepaged_wait_event(void)
2251 {
2252 return !list_empty(&khugepaged_scan.mm_head) ||
2253 kthread_should_stop();
2254 }
2255
khugepaged_do_scan(void)2256 static void khugepaged_do_scan(void)
2257 {
2258 struct page *hpage = NULL;
2259 unsigned int progress = 0, pass_through_head = 0;
2260 unsigned int pages = READ_ONCE(khugepaged_pages_to_scan);
2261 bool wait = true;
2262
2263 lru_add_drain_all();
2264
2265 while (progress < pages) {
2266 if (!khugepaged_prealloc_page(&hpage, &wait))
2267 break;
2268
2269 cond_resched();
2270
2271 if (unlikely(kthread_should_stop() || try_to_freeze()))
2272 break;
2273
2274 spin_lock(&khugepaged_mm_lock);
2275 if (!khugepaged_scan.mm_slot)
2276 pass_through_head++;
2277 if (khugepaged_has_work() &&
2278 pass_through_head < 2)
2279 progress += khugepaged_scan_mm_slot(pages - progress,
2280 &hpage);
2281 else
2282 progress = pages;
2283 spin_unlock(&khugepaged_mm_lock);
2284 }
2285
2286 if (!IS_ERR_OR_NULL(hpage))
2287 put_page(hpage);
2288 }
2289
khugepaged_should_wakeup(void)2290 static bool khugepaged_should_wakeup(void)
2291 {
2292 return kthread_should_stop() ||
2293 time_after_eq(jiffies, khugepaged_sleep_expire);
2294 }
2295
khugepaged_wait_work(void)2296 static void khugepaged_wait_work(void)
2297 {
2298 if (khugepaged_has_work()) {
2299 const unsigned long scan_sleep_jiffies =
2300 msecs_to_jiffies(khugepaged_scan_sleep_millisecs);
2301
2302 if (!scan_sleep_jiffies)
2303 return;
2304
2305 khugepaged_sleep_expire = jiffies + scan_sleep_jiffies;
2306 wait_event_freezable_timeout(khugepaged_wait,
2307 khugepaged_should_wakeup(),
2308 scan_sleep_jiffies);
2309 return;
2310 }
2311
2312 if (khugepaged_enabled())
2313 wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
2314 }
2315
khugepaged(void * none)2316 static int khugepaged(void *none)
2317 {
2318 struct mm_slot *mm_slot;
2319
2320 set_freezable();
2321 set_user_nice(current, MAX_NICE);
2322
2323 while (!kthread_should_stop()) {
2324 khugepaged_do_scan();
2325 khugepaged_wait_work();
2326 }
2327
2328 spin_lock(&khugepaged_mm_lock);
2329 mm_slot = khugepaged_scan.mm_slot;
2330 khugepaged_scan.mm_slot = NULL;
2331 if (mm_slot)
2332 collect_mm_slot(mm_slot);
2333 spin_unlock(&khugepaged_mm_lock);
2334 return 0;
2335 }
2336
set_recommended_min_free_kbytes(void)2337 static void set_recommended_min_free_kbytes(void)
2338 {
2339 struct zone *zone;
2340 int nr_zones = 0;
2341 unsigned long recommended_min;
2342
2343 if (!khugepaged_enabled()) {
2344 calculate_min_free_kbytes();
2345 goto update_wmarks;
2346 }
2347
2348 for_each_populated_zone(zone) {
2349 /*
2350 * We don't need to worry about fragmentation of
2351 * ZONE_MOVABLE since it only has movable pages.
2352 */
2353 if (zone_idx(zone) > gfp_zone(GFP_USER))
2354 continue;
2355
2356 nr_zones++;
2357 }
2358
2359 /* Ensure 2 pageblocks are free to assist fragmentation avoidance */
2360 recommended_min = pageblock_nr_pages * nr_zones * 2;
2361
2362 /*
2363 * Make sure that on average at least two pageblocks are almost free
2364 * of another type, one for a migratetype to fall back to and a
2365 * second to avoid subsequent fallbacks of other types There are 3
2366 * MIGRATE_TYPES we care about.
2367 */
2368 recommended_min += pageblock_nr_pages * nr_zones *
2369 MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
2370
2371 /* don't ever allow to reserve more than 5% of the lowmem */
2372 recommended_min = min(recommended_min,
2373 (unsigned long) nr_free_buffer_pages() / 20);
2374 recommended_min <<= (PAGE_SHIFT-10);
2375
2376 if (recommended_min > min_free_kbytes) {
2377 if (user_min_free_kbytes >= 0)
2378 pr_info("raising min_free_kbytes from %d to %lu to help transparent hugepage allocations\n",
2379 min_free_kbytes, recommended_min);
2380
2381 min_free_kbytes = recommended_min;
2382 }
2383
2384 update_wmarks:
2385 setup_per_zone_wmarks();
2386 }
2387
start_stop_khugepaged(void)2388 int start_stop_khugepaged(void)
2389 {
2390 int err = 0;
2391
2392 mutex_lock(&khugepaged_mutex);
2393 if (khugepaged_enabled()) {
2394 if (!khugepaged_thread)
2395 khugepaged_thread = kthread_run(khugepaged, NULL,
2396 "khugepaged");
2397 if (IS_ERR(khugepaged_thread)) {
2398 pr_err("khugepaged: kthread_run(khugepaged) failed\n");
2399 err = PTR_ERR(khugepaged_thread);
2400 khugepaged_thread = NULL;
2401 goto fail;
2402 }
2403
2404 if (!list_empty(&khugepaged_scan.mm_head))
2405 wake_up_interruptible(&khugepaged_wait);
2406 } else if (khugepaged_thread) {
2407 kthread_stop(khugepaged_thread);
2408 khugepaged_thread = NULL;
2409 }
2410 set_recommended_min_free_kbytes();
2411 fail:
2412 mutex_unlock(&khugepaged_mutex);
2413 return err;
2414 }
2415
khugepaged_min_free_kbytes_update(void)2416 void khugepaged_min_free_kbytes_update(void)
2417 {
2418 mutex_lock(&khugepaged_mutex);
2419 if (khugepaged_enabled() && khugepaged_thread)
2420 set_recommended_min_free_kbytes();
2421 mutex_unlock(&khugepaged_mutex);
2422 }
2423