• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/oom_kill.c
4  *
5  *  Copyright (C)  1998,2000  Rik van Riel
6  *	Thanks go out to Claus Fischer for some serious inspiration and
7  *	for goading me into coding this file...
8  *  Copyright (C)  2010  Google, Inc.
9  *	Rewritten by David Rientjes
10  *
11  *  The routines in this file are used to kill a process when
12  *  we're seriously out of memory. This gets called from __alloc_pages()
13  *  in mm/page_alloc.c when we really run out of memory.
14  *
15  *  Since we won't call these routines often (on a well-configured
16  *  machine) this file will double as a 'coding guide' and a signpost
17  *  for newbie kernel hackers. It features several pointers to major
18  *  kernel subsystems and hints as to where to find out what things do.
19  */
20 
21 #include <linux/oom.h>
22 #include <linux/mm.h>
23 #include <linux/err.h>
24 #include <linux/gfp.h>
25 #include <linux/sched.h>
26 #include <linux/sched/mm.h>
27 #include <linux/sched/coredump.h>
28 #include <linux/sched/task.h>
29 #include <linux/sched/debug.h>
30 #include <linux/swap.h>
31 #include <linux/syscalls.h>
32 #include <linux/timex.h>
33 #include <linux/jiffies.h>
34 #include <linux/cpuset.h>
35 #include <linux/export.h>
36 #include <linux/notifier.h>
37 #include <linux/memcontrol.h>
38 #include <linux/mempolicy.h>
39 #include <linux/security.h>
40 #include <linux/ptrace.h>
41 #include <linux/freezer.h>
42 #include <linux/ftrace.h>
43 #include <linux/ratelimit.h>
44 #include <linux/kthread.h>
45 #include <linux/init.h>
46 #include <linux/mmu_notifier.h>
47 #include <linux/cred.h>
48 
49 #include <asm/tlb.h>
50 #include "internal.h"
51 #include "slab.h"
52 
53 #define CREATE_TRACE_POINTS
54 #include <trace/events/oom.h>
55 
56 #undef CREATE_TRACE_POINTS
57 #include <trace/hooks/mm.h>
58 
59 int sysctl_panic_on_oom;
60 int sysctl_oom_kill_allocating_task;
61 int sysctl_oom_dump_tasks = 1;
62 
63 /*
64  * Serializes oom killer invocations (out_of_memory()) from all contexts to
65  * prevent from over eager oom killing (e.g. when the oom killer is invoked
66  * from different domains).
67  *
68  * oom_killer_disable() relies on this lock to stabilize oom_killer_disabled
69  * and mark_oom_victim
70  */
71 DEFINE_MUTEX(oom_lock);
72 /* Serializes oom_score_adj and oom_score_adj_min updates */
73 DEFINE_MUTEX(oom_adj_mutex);
74 
is_memcg_oom(struct oom_control * oc)75 static inline bool is_memcg_oom(struct oom_control *oc)
76 {
77 	return oc->memcg != NULL;
78 }
79 
80 #ifdef CONFIG_NUMA
81 /**
82  * oom_cpuset_eligible() - check task eligibility for kill
83  * @start: task struct of which task to consider
84  * @oc: pointer to struct oom_control
85  *
86  * Task eligibility is determined by whether or not a candidate task, @tsk,
87  * shares the same mempolicy nodes as current if it is bound by such a policy
88  * and whether or not it has the same set of allowed cpuset nodes.
89  *
90  * This function is assuming oom-killer context and 'current' has triggered
91  * the oom-killer.
92  */
oom_cpuset_eligible(struct task_struct * start,struct oom_control * oc)93 static bool oom_cpuset_eligible(struct task_struct *start,
94 				struct oom_control *oc)
95 {
96 	struct task_struct *tsk;
97 	bool ret = false;
98 	const nodemask_t *mask = oc->nodemask;
99 
100 	if (is_memcg_oom(oc))
101 		return true;
102 
103 	rcu_read_lock();
104 	for_each_thread(start, tsk) {
105 		if (mask) {
106 			/*
107 			 * If this is a mempolicy constrained oom, tsk's
108 			 * cpuset is irrelevant.  Only return true if its
109 			 * mempolicy intersects current, otherwise it may be
110 			 * needlessly killed.
111 			 */
112 			ret = mempolicy_in_oom_domain(tsk, mask);
113 		} else {
114 			/*
115 			 * This is not a mempolicy constrained oom, so only
116 			 * check the mems of tsk's cpuset.
117 			 */
118 			ret = cpuset_mems_allowed_intersects(current, tsk);
119 		}
120 		if (ret)
121 			break;
122 	}
123 	rcu_read_unlock();
124 
125 	return ret;
126 }
127 #else
oom_cpuset_eligible(struct task_struct * tsk,struct oom_control * oc)128 static bool oom_cpuset_eligible(struct task_struct *tsk, struct oom_control *oc)
129 {
130 	return true;
131 }
132 #endif /* CONFIG_NUMA */
133 
134 /*
135  * The process p may have detached its own ->mm while exiting or through
136  * kthread_use_mm(), but one or more of its subthreads may still have a valid
137  * pointer.  Return p, or any of its subthreads with a valid ->mm, with
138  * task_lock() held.
139  */
find_lock_task_mm(struct task_struct * p)140 struct task_struct *find_lock_task_mm(struct task_struct *p)
141 {
142 	struct task_struct *t;
143 
144 	rcu_read_lock();
145 
146 	for_each_thread(p, t) {
147 		task_lock(t);
148 		if (likely(t->mm))
149 			goto found;
150 		task_unlock(t);
151 	}
152 	t = NULL;
153 found:
154 	rcu_read_unlock();
155 
156 	return t;
157 }
158 
159 /*
160  * order == -1 means the oom kill is required by sysrq, otherwise only
161  * for display purposes.
162  */
is_sysrq_oom(struct oom_control * oc)163 static inline bool is_sysrq_oom(struct oom_control *oc)
164 {
165 	return oc->order == -1;
166 }
167 
168 /* return true if the task is not adequate as candidate victim task. */
oom_unkillable_task(struct task_struct * p)169 static bool oom_unkillable_task(struct task_struct *p)
170 {
171 	if (is_global_init(p))
172 		return true;
173 	if (p->flags & PF_KTHREAD)
174 		return true;
175 	return false;
176 }
177 
178 /*
179  * Check whether unreclaimable slab amount is greater than
180  * all user memory(LRU pages).
181  * dump_unreclaimable_slab() could help in the case that
182  * oom due to too much unreclaimable slab used by kernel.
183 */
should_dump_unreclaim_slab(void)184 static bool should_dump_unreclaim_slab(void)
185 {
186 	unsigned long nr_lru;
187 
188 	nr_lru = global_node_page_state(NR_ACTIVE_ANON) +
189 		 global_node_page_state(NR_INACTIVE_ANON) +
190 		 global_node_page_state(NR_ACTIVE_FILE) +
191 		 global_node_page_state(NR_INACTIVE_FILE) +
192 		 global_node_page_state(NR_ISOLATED_ANON) +
193 		 global_node_page_state(NR_ISOLATED_FILE) +
194 		 global_node_page_state(NR_UNEVICTABLE);
195 
196 	return (global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B) > nr_lru);
197 }
198 
199 /**
200  * oom_badness - heuristic function to determine which candidate task to kill
201  * @p: task struct of which task we should calculate
202  * @totalpages: total present RAM allowed for page allocation
203  *
204  * The heuristic for determining which task to kill is made to be as simple and
205  * predictable as possible.  The goal is to return the highest value for the
206  * task consuming the most memory to avoid subsequent oom failures.
207  */
oom_badness(struct task_struct * p,unsigned long totalpages)208 long oom_badness(struct task_struct *p, unsigned long totalpages)
209 {
210 	long points;
211 	long adj;
212 
213 	if (oom_unkillable_task(p))
214 		return LONG_MIN;
215 
216 	p = find_lock_task_mm(p);
217 	if (!p)
218 		return LONG_MIN;
219 
220 	/*
221 	 * Do not even consider tasks which are explicitly marked oom
222 	 * unkillable or have been already oom reaped or the are in
223 	 * the middle of vfork
224 	 */
225 	adj = (long)p->signal->oom_score_adj;
226 	if (adj == OOM_SCORE_ADJ_MIN ||
227 			test_bit(MMF_OOM_SKIP, &p->mm->flags) ||
228 			in_vfork(p)) {
229 		task_unlock(p);
230 		return LONG_MIN;
231 	}
232 
233 	/*
234 	 * The baseline for the badness score is the proportion of RAM that each
235 	 * task's rss, pagetable and swap space use.
236 	 */
237 	points = get_mm_rss(p->mm) + get_mm_counter(p->mm, MM_SWAPENTS) +
238 		mm_pgtables_bytes(p->mm) / PAGE_SIZE;
239 	task_unlock(p);
240 
241 	/* Normalize to oom_score_adj units */
242 	adj *= totalpages / 1000;
243 	points += adj;
244 
245 	return points;
246 }
247 
248 static const char * const oom_constraint_text[] = {
249 	[CONSTRAINT_NONE] = "CONSTRAINT_NONE",
250 	[CONSTRAINT_CPUSET] = "CONSTRAINT_CPUSET",
251 	[CONSTRAINT_MEMORY_POLICY] = "CONSTRAINT_MEMORY_POLICY",
252 	[CONSTRAINT_MEMCG] = "CONSTRAINT_MEMCG",
253 };
254 
255 /*
256  * Determine the type of allocation constraint.
257  */
constrained_alloc(struct oom_control * oc)258 static enum oom_constraint constrained_alloc(struct oom_control *oc)
259 {
260 	struct zone *zone;
261 	struct zoneref *z;
262 	enum zone_type highest_zoneidx = gfp_zone(oc->gfp_mask);
263 	bool cpuset_limited = false;
264 	int nid;
265 
266 	if (is_memcg_oom(oc)) {
267 		oc->totalpages = mem_cgroup_get_max(oc->memcg) ?: 1;
268 		return CONSTRAINT_MEMCG;
269 	}
270 
271 	/* Default to all available memory */
272 	oc->totalpages = totalram_pages() + total_swap_pages;
273 
274 	if (!IS_ENABLED(CONFIG_NUMA))
275 		return CONSTRAINT_NONE;
276 
277 	if (!oc->zonelist)
278 		return CONSTRAINT_NONE;
279 	/*
280 	 * Reach here only when __GFP_NOFAIL is used. So, we should avoid
281 	 * to kill current.We have to random task kill in this case.
282 	 * Hopefully, CONSTRAINT_THISNODE...but no way to handle it, now.
283 	 */
284 	if (oc->gfp_mask & __GFP_THISNODE)
285 		return CONSTRAINT_NONE;
286 
287 	/*
288 	 * This is not a __GFP_THISNODE allocation, so a truncated nodemask in
289 	 * the page allocator means a mempolicy is in effect.  Cpuset policy
290 	 * is enforced in get_page_from_freelist().
291 	 */
292 	if (oc->nodemask &&
293 	    !nodes_subset(node_states[N_MEMORY], *oc->nodemask)) {
294 		oc->totalpages = total_swap_pages;
295 		for_each_node_mask(nid, *oc->nodemask)
296 			oc->totalpages += node_present_pages(nid);
297 		return CONSTRAINT_MEMORY_POLICY;
298 	}
299 
300 	/* Check this allocation failure is caused by cpuset's wall function */
301 	for_each_zone_zonelist_nodemask(zone, z, oc->zonelist,
302 			highest_zoneidx, oc->nodemask)
303 		if (!cpuset_zone_allowed(zone, oc->gfp_mask))
304 			cpuset_limited = true;
305 
306 	if (cpuset_limited) {
307 		oc->totalpages = total_swap_pages;
308 		for_each_node_mask(nid, cpuset_current_mems_allowed)
309 			oc->totalpages += node_present_pages(nid);
310 		return CONSTRAINT_CPUSET;
311 	}
312 	return CONSTRAINT_NONE;
313 }
314 
oom_evaluate_task(struct task_struct * task,void * arg)315 static int oom_evaluate_task(struct task_struct *task, void *arg)
316 {
317 	struct oom_control *oc = arg;
318 	long points;
319 
320 	if (oom_unkillable_task(task))
321 		goto next;
322 
323 	/* p may not have freeable memory in nodemask */
324 	if (!is_memcg_oom(oc) && !oom_cpuset_eligible(task, oc))
325 		goto next;
326 
327 	/*
328 	 * This task already has access to memory reserves and is being killed.
329 	 * Don't allow any other task to have access to the reserves unless
330 	 * the task has MMF_OOM_SKIP because chances that it would release
331 	 * any memory is quite low.
332 	 */
333 	if (!is_sysrq_oom(oc) && tsk_is_oom_victim(task)) {
334 		if (test_bit(MMF_OOM_SKIP, &task->signal->oom_mm->flags))
335 			goto next;
336 		goto abort;
337 	}
338 
339 	/*
340 	 * If task is allocating a lot of memory and has been marked to be
341 	 * killed first if it triggers an oom, then select it.
342 	 */
343 	if (oom_task_origin(task)) {
344 		points = LONG_MAX;
345 		goto select;
346 	}
347 
348 	points = oom_badness(task, oc->totalpages);
349 	if (points == LONG_MIN || points < oc->chosen_points)
350 		goto next;
351 
352 select:
353 	if (oc->chosen)
354 		put_task_struct(oc->chosen);
355 	get_task_struct(task);
356 	oc->chosen = task;
357 	oc->chosen_points = points;
358 next:
359 	return 0;
360 abort:
361 	if (oc->chosen)
362 		put_task_struct(oc->chosen);
363 	oc->chosen = (void *)-1UL;
364 	return 1;
365 }
366 
367 /*
368  * Simple selection loop. We choose the process with the highest number of
369  * 'points'. In case scan was aborted, oc->chosen is set to -1.
370  */
select_bad_process(struct oom_control * oc)371 static void select_bad_process(struct oom_control *oc)
372 {
373 	oc->chosen_points = LONG_MIN;
374 
375 	if (is_memcg_oom(oc))
376 		mem_cgroup_scan_tasks(oc->memcg, oom_evaluate_task, oc);
377 	else {
378 		struct task_struct *p;
379 
380 		rcu_read_lock();
381 		for_each_process(p)
382 			if (oom_evaluate_task(p, oc))
383 				break;
384 		rcu_read_unlock();
385 	}
386 }
387 
dump_task(struct task_struct * p,void * arg)388 static int dump_task(struct task_struct *p, void *arg)
389 {
390 	struct oom_control *oc = arg;
391 	struct task_struct *task;
392 
393 	if (oom_unkillable_task(p))
394 		return 0;
395 
396 	/* p may not have freeable memory in nodemask */
397 	if (!is_memcg_oom(oc) && !oom_cpuset_eligible(p, oc))
398 		return 0;
399 
400 	task = find_lock_task_mm(p);
401 	if (!task) {
402 		/*
403 		 * All of p's threads have already detached their mm's. There's
404 		 * no need to report them; they can't be oom killed anyway.
405 		 */
406 		return 0;
407 	}
408 
409 	pr_info("[%7d] %5d %5d %8lu %8lu %8ld %8lu         %5hd %s\n",
410 		task->pid, from_kuid(&init_user_ns, task_uid(task)),
411 		task->tgid, task->mm->total_vm, get_mm_rss(task->mm),
412 		mm_pgtables_bytes(task->mm),
413 		get_mm_counter(task->mm, MM_SWAPENTS),
414 		task->signal->oom_score_adj, task->comm);
415 	task_unlock(task);
416 
417 	return 0;
418 }
419 
420 /**
421  * dump_tasks - dump current memory state of all system tasks
422  * @oc: pointer to struct oom_control
423  *
424  * Dumps the current memory state of all eligible tasks.  Tasks not in the same
425  * memcg, not in the same cpuset, or bound to a disjoint set of mempolicy nodes
426  * are not shown.
427  * State information includes task's pid, uid, tgid, vm size, rss,
428  * pgtables_bytes, swapents, oom_score_adj value, and name.
429  */
dump_tasks(struct oom_control * oc)430 static void dump_tasks(struct oom_control *oc)
431 {
432 	pr_info("Tasks state (memory values in pages):\n");
433 	pr_info("[  pid  ]   uid  tgid total_vm      rss pgtables_bytes swapents oom_score_adj name\n");
434 
435 	if (is_memcg_oom(oc))
436 		mem_cgroup_scan_tasks(oc->memcg, dump_task, oc);
437 	else {
438 		struct task_struct *p;
439 
440 		rcu_read_lock();
441 		for_each_process(p)
442 			dump_task(p, oc);
443 		rcu_read_unlock();
444 	}
445 }
446 
dump_oom_summary(struct oom_control * oc,struct task_struct * victim)447 static void dump_oom_summary(struct oom_control *oc, struct task_struct *victim)
448 {
449 	/* one line summary of the oom killer context. */
450 	pr_info("oom-kill:constraint=%s,nodemask=%*pbl",
451 			oom_constraint_text[oc->constraint],
452 			nodemask_pr_args(oc->nodemask));
453 	cpuset_print_current_mems_allowed();
454 	mem_cgroup_print_oom_context(oc->memcg, victim);
455 	pr_cont(",task=%s,pid=%d,uid=%d\n", victim->comm, victim->pid,
456 		from_kuid(&init_user_ns, task_uid(victim)));
457 }
458 
dump_header(struct oom_control * oc,struct task_struct * p)459 static void dump_header(struct oom_control *oc, struct task_struct *p)
460 {
461 	pr_warn("%s invoked oom-killer: gfp_mask=%#x(%pGg), order=%d, oom_score_adj=%hd\n",
462 		current->comm, oc->gfp_mask, &oc->gfp_mask, oc->order,
463 			current->signal->oom_score_adj);
464 	if (!IS_ENABLED(CONFIG_COMPACTION) && oc->order)
465 		pr_warn("COMPACTION is disabled!!!\n");
466 
467 	dump_stack();
468 	if (is_memcg_oom(oc))
469 		mem_cgroup_print_oom_meminfo(oc->memcg);
470 	else {
471 		show_mem(SHOW_MEM_FILTER_NODES, oc->nodemask);
472 		if (should_dump_unreclaim_slab())
473 			dump_unreclaimable_slab();
474 	}
475 	if (sysctl_oom_dump_tasks)
476 		dump_tasks(oc);
477 	if (p)
478 		dump_oom_summary(oc, p);
479 }
480 
481 /*
482  * Number of OOM victims in flight
483  */
484 static atomic_t oom_victims = ATOMIC_INIT(0);
485 static DECLARE_WAIT_QUEUE_HEAD(oom_victims_wait);
486 
487 static bool oom_killer_disabled __read_mostly;
488 
489 #define K(x) ((x) << (PAGE_SHIFT-10))
490 
491 /*
492  * task->mm can be NULL if the task is the exited group leader.  So to
493  * determine whether the task is using a particular mm, we examine all the
494  * task's threads: if one of those is using this mm then this task was also
495  * using it.
496  */
process_shares_mm(struct task_struct * p,struct mm_struct * mm)497 bool process_shares_mm(struct task_struct *p, struct mm_struct *mm)
498 {
499 	struct task_struct *t;
500 
501 	for_each_thread(p, t) {
502 		struct mm_struct *t_mm = READ_ONCE(t->mm);
503 		if (t_mm)
504 			return t_mm == mm;
505 	}
506 	return false;
507 }
508 
509 #ifdef CONFIG_MMU
510 /*
511  * OOM Reaper kernel thread which tries to reap the memory used by the OOM
512  * victim (if that is possible) to help the OOM killer to move on.
513  */
514 static struct task_struct *oom_reaper_th;
515 static DECLARE_WAIT_QUEUE_HEAD(oom_reaper_wait);
516 static struct task_struct *oom_reaper_list;
517 static DEFINE_SPINLOCK(oom_reaper_lock);
518 
__oom_reap_task_mm(struct mm_struct * mm)519 bool __oom_reap_task_mm(struct mm_struct *mm)
520 {
521 	struct vm_area_struct *vma;
522 	bool ret = true;
523 
524 	/*
525 	 * Tell all users of get_user/copy_from_user etc... that the content
526 	 * is no longer stable. No barriers really needed because unmapping
527 	 * should imply barriers already and the reader would hit a page fault
528 	 * if it stumbled over a reaped memory.
529 	 */
530 	set_bit(MMF_UNSTABLE, &mm->flags);
531 
532 	for (vma = mm->mmap ; vma; vma = vma->vm_next) {
533 		if (!can_madv_lru_vma(vma))
534 			continue;
535 
536 		/*
537 		 * Only anonymous pages have a good chance to be dropped
538 		 * without additional steps which we cannot afford as we
539 		 * are OOM already.
540 		 *
541 		 * We do not even care about fs backed pages because all
542 		 * which are reclaimable have already been reclaimed and
543 		 * we do not want to block exit_mmap by keeping mm ref
544 		 * count elevated without a good reason.
545 		 */
546 		if (vma_is_anonymous(vma) || !(vma->vm_flags & VM_SHARED)) {
547 			struct mmu_notifier_range range;
548 			struct mmu_gather tlb;
549 
550 			mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0,
551 						vma, mm, vma->vm_start,
552 						vma->vm_end);
553 			tlb_gather_mmu(&tlb, mm);
554 			if (mmu_notifier_invalidate_range_start_nonblock(&range)) {
555 				tlb_finish_mmu(&tlb);
556 				ret = false;
557 				continue;
558 			}
559 			unmap_page_range(&tlb, vma, range.start, range.end, NULL);
560 			mmu_notifier_invalidate_range_end(&range);
561 			tlb_finish_mmu(&tlb);
562 		}
563 	}
564 
565 	return ret;
566 }
567 
568 /*
569  * Reaps the address space of the give task.
570  *
571  * Returns true on success and false if none or part of the address space
572  * has been reclaimed and the caller should retry later.
573  */
oom_reap_task_mm(struct task_struct * tsk,struct mm_struct * mm)574 static bool oom_reap_task_mm(struct task_struct *tsk, struct mm_struct *mm)
575 {
576 	bool ret = true;
577 
578 	if (!mmap_read_trylock(mm)) {
579 		trace_skip_task_reaping(tsk->pid);
580 		return false;
581 	}
582 
583 	/*
584 	 * MMF_OOM_SKIP is set by exit_mmap when the OOM reaper can't
585 	 * work on the mm anymore. The check for MMF_OOM_SKIP must run
586 	 * under mmap_lock for reading because it serializes against the
587 	 * mmap_write_lock();mmap_write_unlock() cycle in exit_mmap().
588 	 */
589 	if (test_bit(MMF_OOM_SKIP, &mm->flags)) {
590 		trace_skip_task_reaping(tsk->pid);
591 		goto out_unlock;
592 	}
593 
594 	trace_start_task_reaping(tsk->pid);
595 
596 	/* failed to reap part of the address space. Try again later */
597 	ret = __oom_reap_task_mm(mm);
598 	if (!ret)
599 		goto out_finish;
600 
601 	pr_info("oom_reaper: reaped process %d (%s), now anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB\n",
602 			task_pid_nr(tsk), tsk->comm,
603 			K(get_mm_counter(mm, MM_ANONPAGES)),
604 			K(get_mm_counter(mm, MM_FILEPAGES)),
605 			K(get_mm_counter(mm, MM_SHMEMPAGES)));
606 out_finish:
607 	trace_finish_task_reaping(tsk->pid);
608 out_unlock:
609 	mmap_read_unlock(mm);
610 
611 	return ret;
612 }
613 
614 #define MAX_OOM_REAP_RETRIES 10
oom_reap_task(struct task_struct * tsk)615 static void oom_reap_task(struct task_struct *tsk)
616 {
617 	int attempts = 0;
618 	struct mm_struct *mm = tsk->signal->oom_mm;
619 
620 	/* Retry the mmap_read_trylock(mm) a few times */
621 	while (attempts++ < MAX_OOM_REAP_RETRIES && !oom_reap_task_mm(tsk, mm))
622 		schedule_timeout_idle(HZ/10);
623 
624 	if (attempts <= MAX_OOM_REAP_RETRIES ||
625 	    test_bit(MMF_OOM_SKIP, &mm->flags))
626 		goto done;
627 
628 	pr_info("oom_reaper: unable to reap pid:%d (%s)\n",
629 		task_pid_nr(tsk), tsk->comm);
630 	sched_show_task(tsk);
631 	debug_show_all_locks();
632 
633 done:
634 	tsk->oom_reaper_list = NULL;
635 
636 	/*
637 	 * Hide this mm from OOM killer because it has been either reaped or
638 	 * somebody can't call mmap_write_unlock(mm).
639 	 */
640 	set_bit(MMF_OOM_SKIP, &mm->flags);
641 
642 	/* Drop a reference taken by queue_oom_reaper */
643 	put_task_struct(tsk);
644 }
645 
oom_reaper(void * unused)646 static int oom_reaper(void *unused)
647 {
648 	while (true) {
649 		struct task_struct *tsk = NULL;
650 
651 		wait_event_freezable(oom_reaper_wait, oom_reaper_list != NULL);
652 		spin_lock_irq(&oom_reaper_lock);
653 		if (oom_reaper_list != NULL) {
654 			tsk = oom_reaper_list;
655 			oom_reaper_list = tsk->oom_reaper_list;
656 		}
657 		spin_unlock_irq(&oom_reaper_lock);
658 
659 		if (tsk)
660 			oom_reap_task(tsk);
661 	}
662 
663 	return 0;
664 }
665 
wake_oom_reaper(struct timer_list * timer)666 static void wake_oom_reaper(struct timer_list *timer)
667 {
668 	struct task_struct *tsk = container_of(timer, struct task_struct,
669 			oom_reaper_timer);
670 	struct mm_struct *mm = tsk->signal->oom_mm;
671 	unsigned long flags;
672 
673 	/* The victim managed to terminate on its own - see exit_mmap */
674 	if (test_bit(MMF_OOM_SKIP, &mm->flags)) {
675 		put_task_struct(tsk);
676 		return;
677 	}
678 
679 	spin_lock_irqsave(&oom_reaper_lock, flags);
680 	tsk->oom_reaper_list = oom_reaper_list;
681 	oom_reaper_list = tsk;
682 	spin_unlock_irqrestore(&oom_reaper_lock, flags);
683 	trace_wake_reaper(tsk->pid);
684 	wake_up(&oom_reaper_wait);
685 }
686 
687 /*
688  * Give the OOM victim time to exit naturally before invoking the oom_reaping.
689  * The timers timeout is arbitrary... the longer it is, the longer the worst
690  * case scenario for the OOM can take. If it is too small, the oom_reaper can
691  * get in the way and release resources needed by the process exit path.
692  * e.g. The futex robust list can sit in Anon|Private memory that gets reaped
693  * before the exit path is able to wake the futex waiters.
694  */
695 #define OOM_REAPER_DELAY (2*HZ)
queue_oom_reaper(struct task_struct * tsk)696 static void queue_oom_reaper(struct task_struct *tsk)
697 {
698 	/* mm is already queued? */
699 	if (test_and_set_bit(MMF_OOM_REAP_QUEUED, &tsk->signal->oom_mm->flags))
700 		return;
701 
702 	get_task_struct(tsk);
703 	timer_setup(&tsk->oom_reaper_timer, wake_oom_reaper, 0);
704 	tsk->oom_reaper_timer.expires = jiffies + OOM_REAPER_DELAY;
705 	add_timer(&tsk->oom_reaper_timer);
706 }
707 
oom_init(void)708 static int __init oom_init(void)
709 {
710 	oom_reaper_th = kthread_run(oom_reaper, NULL, "oom_reaper");
711 	return 0;
712 }
subsys_initcall(oom_init)713 subsys_initcall(oom_init)
714 #else
715 static inline void queue_oom_reaper(struct task_struct *tsk)
716 {
717 }
718 #endif /* CONFIG_MMU */
719 
720 /**
721  * mark_oom_victim - mark the given task as OOM victim
722  * @tsk: task to mark
723  *
724  * Has to be called with oom_lock held and never after
725  * oom has been disabled already.
726  *
727  * tsk->mm has to be non NULL and caller has to guarantee it is stable (either
728  * under task_lock or operate on the current).
729  */
730 static void mark_oom_victim(struct task_struct *tsk)
731 {
732 	const struct cred *cred;
733 	struct mm_struct *mm = tsk->mm;
734 
735 	WARN_ON(oom_killer_disabled);
736 	/* OOM killer might race with memcg OOM */
737 	if (test_and_set_tsk_thread_flag(tsk, TIF_MEMDIE))
738 		return;
739 
740 	/* oom_mm is bound to the signal struct life time. */
741 	if (!cmpxchg(&tsk->signal->oom_mm, NULL, mm)) {
742 		mmgrab(tsk->signal->oom_mm);
743 		set_bit(MMF_OOM_VICTIM, &mm->flags);
744 	}
745 
746 	/*
747 	 * Make sure that the task is woken up from uninterruptible sleep
748 	 * if it is frozen because OOM killer wouldn't be able to free
749 	 * any memory and livelock. freezing_slow_path will tell the freezer
750 	 * that TIF_MEMDIE tasks should be ignored.
751 	 */
752 	__thaw_task(tsk);
753 	atomic_inc(&oom_victims);
754 	cred = get_task_cred(tsk);
755 	trace_mark_victim(tsk, cred->uid.val);
756 	put_cred(cred);
757 }
758 
759 /**
760  * exit_oom_victim - note the exit of an OOM victim
761  */
exit_oom_victim(void)762 void exit_oom_victim(void)
763 {
764 	clear_thread_flag(TIF_MEMDIE);
765 
766 	if (!atomic_dec_return(&oom_victims))
767 		wake_up_all(&oom_victims_wait);
768 }
769 
770 /**
771  * oom_killer_enable - enable OOM killer
772  */
oom_killer_enable(void)773 void oom_killer_enable(void)
774 {
775 	oom_killer_disabled = false;
776 	pr_info("OOM killer enabled.\n");
777 }
778 
779 /**
780  * oom_killer_disable - disable OOM killer
781  * @timeout: maximum timeout to wait for oom victims in jiffies
782  *
783  * Forces all page allocations to fail rather than trigger OOM killer.
784  * Will block and wait until all OOM victims are killed or the given
785  * timeout expires.
786  *
787  * The function cannot be called when there are runnable user tasks because
788  * the userspace would see unexpected allocation failures as a result. Any
789  * new usage of this function should be consulted with MM people.
790  *
791  * Returns true if successful and false if the OOM killer cannot be
792  * disabled.
793  */
oom_killer_disable(signed long timeout)794 bool oom_killer_disable(signed long timeout)
795 {
796 	signed long ret;
797 
798 	/*
799 	 * Make sure to not race with an ongoing OOM killer. Check that the
800 	 * current is not killed (possibly due to sharing the victim's memory).
801 	 */
802 	if (mutex_lock_killable(&oom_lock))
803 		return false;
804 	oom_killer_disabled = true;
805 	mutex_unlock(&oom_lock);
806 
807 	ret = wait_event_interruptible_timeout(oom_victims_wait,
808 			!atomic_read(&oom_victims), timeout);
809 	if (ret <= 0) {
810 		oom_killer_enable();
811 		return false;
812 	}
813 	pr_info("OOM killer disabled.\n");
814 
815 	return true;
816 }
817 
__task_will_free_mem(struct task_struct * task)818 static inline bool __task_will_free_mem(struct task_struct *task)
819 {
820 	struct signal_struct *sig = task->signal;
821 
822 	/*
823 	 * A coredumping process may sleep for an extended period in exit_mm(),
824 	 * so the oom killer cannot assume that the process will promptly exit
825 	 * and release memory.
826 	 */
827 	if (sig->flags & SIGNAL_GROUP_COREDUMP)
828 		return false;
829 
830 	if (sig->flags & SIGNAL_GROUP_EXIT)
831 		return true;
832 
833 	if (thread_group_empty(task) && (task->flags & PF_EXITING))
834 		return true;
835 
836 	return false;
837 }
838 
839 /*
840  * Checks whether the given task is dying or exiting and likely to
841  * release its address space. This means that all threads and processes
842  * sharing the same mm have to be killed or exiting.
843  * Caller has to make sure that task->mm is stable (hold task_lock or
844  * it operates on the current).
845  */
task_will_free_mem(struct task_struct * task)846 static bool task_will_free_mem(struct task_struct *task)
847 {
848 	struct mm_struct *mm = task->mm;
849 	struct task_struct *p;
850 	bool ret = true;
851 
852 	/*
853 	 * Skip tasks without mm because it might have passed its exit_mm and
854 	 * exit_oom_victim. oom_reaper could have rescued that but do not rely
855 	 * on that for now. We can consider find_lock_task_mm in future.
856 	 */
857 	if (!mm)
858 		return false;
859 
860 	if (!__task_will_free_mem(task))
861 		return false;
862 
863 	/*
864 	 * This task has already been drained by the oom reaper so there are
865 	 * only small chances it will free some more
866 	 */
867 	if (test_bit(MMF_OOM_SKIP, &mm->flags))
868 		return false;
869 
870 	if (atomic_read(&mm->mm_users) <= 1)
871 		return true;
872 
873 	/*
874 	 * Make sure that all tasks which share the mm with the given tasks
875 	 * are dying as well to make sure that a) nobody pins its mm and
876 	 * b) the task is also reapable by the oom reaper.
877 	 */
878 	rcu_read_lock();
879 	for_each_process(p) {
880 		if (!process_shares_mm(p, mm))
881 			continue;
882 		if (same_thread_group(task, p))
883 			continue;
884 		ret = __task_will_free_mem(p);
885 		if (!ret)
886 			break;
887 	}
888 	rcu_read_unlock();
889 
890 	return ret;
891 }
892 
__oom_kill_process(struct task_struct * victim,const char * message)893 static void __oom_kill_process(struct task_struct *victim, const char *message)
894 {
895 	struct task_struct *p;
896 	struct mm_struct *mm;
897 	bool can_oom_reap = true;
898 
899 	p = find_lock_task_mm(victim);
900 	if (!p) {
901 		pr_info("%s: OOM victim %d (%s) is already exiting. Skip killing the task\n",
902 			message, task_pid_nr(victim), victim->comm);
903 		put_task_struct(victim);
904 		return;
905 	} else if (victim != p) {
906 		get_task_struct(p);
907 		put_task_struct(victim);
908 		victim = p;
909 	}
910 
911 	/* Get a reference to safely compare mm after task_unlock(victim) */
912 	mm = victim->mm;
913 	mmgrab(mm);
914 
915 	/* Raise event before sending signal: task reaper must see this */
916 	count_vm_event(OOM_KILL);
917 	memcg_memory_event_mm(mm, MEMCG_OOM_KILL);
918 
919 	/*
920 	 * We should send SIGKILL before granting access to memory reserves
921 	 * in order to prevent the OOM victim from depleting the memory
922 	 * reserves from the user space under its control.
923 	 */
924 	do_send_sig_info(SIGKILL, SEND_SIG_PRIV, victim, PIDTYPE_TGID);
925 	mark_oom_victim(victim);
926 	pr_err("%s: Killed process %d (%s) total-vm:%lukB, anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB, UID:%u pgtables:%lukB oom_score_adj:%hd\n",
927 		message, task_pid_nr(victim), victim->comm, K(mm->total_vm),
928 		K(get_mm_counter(mm, MM_ANONPAGES)),
929 		K(get_mm_counter(mm, MM_FILEPAGES)),
930 		K(get_mm_counter(mm, MM_SHMEMPAGES)),
931 		from_kuid(&init_user_ns, task_uid(victim)),
932 		mm_pgtables_bytes(mm) >> 10, victim->signal->oom_score_adj);
933 	task_unlock(victim);
934 
935 	/*
936 	 * Kill all user processes sharing victim->mm in other thread groups, if
937 	 * any.  They don't get access to memory reserves, though, to avoid
938 	 * depletion of all memory.  This prevents mm->mmap_lock livelock when an
939 	 * oom killed thread cannot exit because it requires the semaphore and
940 	 * its contended by another thread trying to allocate memory itself.
941 	 * That thread will now get access to memory reserves since it has a
942 	 * pending fatal signal.
943 	 */
944 	rcu_read_lock();
945 	for_each_process(p) {
946 		if (!process_shares_mm(p, mm))
947 			continue;
948 		if (same_thread_group(p, victim))
949 			continue;
950 		if (is_global_init(p)) {
951 			can_oom_reap = false;
952 			set_bit(MMF_OOM_SKIP, &mm->flags);
953 			pr_info("oom killer %d (%s) has mm pinned by %d (%s)\n",
954 					task_pid_nr(victim), victim->comm,
955 					task_pid_nr(p), p->comm);
956 			continue;
957 		}
958 		/*
959 		 * No kthread_use_mm() user needs to read from the userspace so
960 		 * we are ok to reap it.
961 		 */
962 		if (unlikely(p->flags & PF_KTHREAD))
963 			continue;
964 		do_send_sig_info(SIGKILL, SEND_SIG_PRIV, p, PIDTYPE_TGID);
965 	}
966 	rcu_read_unlock();
967 
968 	if (can_oom_reap)
969 		queue_oom_reaper(victim);
970 
971 	mmdrop(mm);
972 	put_task_struct(victim);
973 }
974 #undef K
975 
976 /*
977  * Kill provided task unless it's secured by setting
978  * oom_score_adj to OOM_SCORE_ADJ_MIN.
979  */
oom_kill_memcg_member(struct task_struct * task,void * message)980 static int oom_kill_memcg_member(struct task_struct *task, void *message)
981 {
982 	if (task->signal->oom_score_adj != OOM_SCORE_ADJ_MIN &&
983 	    !is_global_init(task)) {
984 		get_task_struct(task);
985 		__oom_kill_process(task, message);
986 	}
987 	return 0;
988 }
989 
oom_kill_process(struct oom_control * oc,const char * message)990 static void oom_kill_process(struct oom_control *oc, const char *message)
991 {
992 	struct task_struct *victim = oc->chosen;
993 	struct mem_cgroup *oom_group;
994 	static DEFINE_RATELIMIT_STATE(oom_rs, DEFAULT_RATELIMIT_INTERVAL,
995 					      DEFAULT_RATELIMIT_BURST);
996 
997 	/*
998 	 * If the task is already exiting, don't alarm the sysadmin or kill
999 	 * its children or threads, just give it access to memory reserves
1000 	 * so it can die quickly
1001 	 */
1002 	task_lock(victim);
1003 	if (task_will_free_mem(victim)) {
1004 		mark_oom_victim(victim);
1005 		queue_oom_reaper(victim);
1006 		task_unlock(victim);
1007 		put_task_struct(victim);
1008 		return;
1009 	}
1010 	task_unlock(victim);
1011 
1012 	if (__ratelimit(&oom_rs))
1013 		dump_header(oc, victim);
1014 
1015 	/*
1016 	 * Do we need to kill the entire memory cgroup?
1017 	 * Or even one of the ancestor memory cgroups?
1018 	 * Check this out before killing the victim task.
1019 	 */
1020 	oom_group = mem_cgroup_get_oom_group(victim, oc->memcg);
1021 
1022 	__oom_kill_process(victim, message);
1023 
1024 	/*
1025 	 * If necessary, kill all tasks in the selected memory cgroup.
1026 	 */
1027 	if (oom_group) {
1028 		mem_cgroup_print_oom_group(oom_group);
1029 		mem_cgroup_scan_tasks(oom_group, oom_kill_memcg_member,
1030 				      (void *)message);
1031 		mem_cgroup_put(oom_group);
1032 	}
1033 }
1034 
1035 /*
1036  * Determines whether the kernel must panic because of the panic_on_oom sysctl.
1037  */
check_panic_on_oom(struct oom_control * oc)1038 static void check_panic_on_oom(struct oom_control *oc)
1039 {
1040 	if (likely(!sysctl_panic_on_oom))
1041 		return;
1042 	if (sysctl_panic_on_oom != 2) {
1043 		/*
1044 		 * panic_on_oom == 1 only affects CONSTRAINT_NONE, the kernel
1045 		 * does not panic for cpuset, mempolicy, or memcg allocation
1046 		 * failures.
1047 		 */
1048 		if (oc->constraint != CONSTRAINT_NONE)
1049 			return;
1050 	}
1051 	/* Do not panic for oom kills triggered by sysrq */
1052 	if (is_sysrq_oom(oc))
1053 		return;
1054 	dump_header(oc, NULL);
1055 	panic("Out of memory: %s panic_on_oom is enabled\n",
1056 		sysctl_panic_on_oom == 2 ? "compulsory" : "system-wide");
1057 }
1058 
1059 static BLOCKING_NOTIFIER_HEAD(oom_notify_list);
1060 
register_oom_notifier(struct notifier_block * nb)1061 int register_oom_notifier(struct notifier_block *nb)
1062 {
1063 	return blocking_notifier_chain_register(&oom_notify_list, nb);
1064 }
1065 EXPORT_SYMBOL_GPL(register_oom_notifier);
1066 
unregister_oom_notifier(struct notifier_block * nb)1067 int unregister_oom_notifier(struct notifier_block *nb)
1068 {
1069 	return blocking_notifier_chain_unregister(&oom_notify_list, nb);
1070 }
1071 EXPORT_SYMBOL_GPL(unregister_oom_notifier);
1072 
1073 /**
1074  * out_of_memory - kill the "best" process when we run out of memory
1075  * @oc: pointer to struct oom_control
1076  *
1077  * If we run out of memory, we have the choice between either
1078  * killing a random task (bad), letting the system crash (worse)
1079  * OR try to be smart about which process to kill. Note that we
1080  * don't have to be perfect here, we just have to be good.
1081  */
out_of_memory(struct oom_control * oc)1082 bool out_of_memory(struct oom_control *oc)
1083 {
1084 	unsigned long freed = 0;
1085 
1086 	if (oom_killer_disabled)
1087 		return false;
1088 
1089 	if (!is_memcg_oom(oc)) {
1090 		blocking_notifier_call_chain(&oom_notify_list, 0, &freed);
1091 		if (freed > 0)
1092 			/* Got some memory back in the last second. */
1093 			return true;
1094 	}
1095 
1096 	/*
1097 	 * If current has a pending SIGKILL or is exiting, then automatically
1098 	 * select it.  The goal is to allow it to allocate so that it may
1099 	 * quickly exit and free its memory.
1100 	 */
1101 	if (task_will_free_mem(current)) {
1102 		mark_oom_victim(current);
1103 		queue_oom_reaper(current);
1104 		return true;
1105 	}
1106 
1107 	/*
1108 	 * The OOM killer does not compensate for IO-less reclaim.
1109 	 * pagefault_out_of_memory lost its gfp context so we have to
1110 	 * make sure exclude 0 mask - all other users should have at least
1111 	 * ___GFP_DIRECT_RECLAIM to get here. But mem_cgroup_oom() has to
1112 	 * invoke the OOM killer even if it is a GFP_NOFS allocation.
1113 	 */
1114 	if (oc->gfp_mask && !(oc->gfp_mask & __GFP_FS) && !is_memcg_oom(oc))
1115 		return true;
1116 
1117 	/*
1118 	 * Check if there were limitations on the allocation (only relevant for
1119 	 * NUMA and memcg) that may require different handling.
1120 	 */
1121 	oc->constraint = constrained_alloc(oc);
1122 	if (oc->constraint != CONSTRAINT_MEMORY_POLICY)
1123 		oc->nodemask = NULL;
1124 	check_panic_on_oom(oc);
1125 
1126 	if (!is_memcg_oom(oc) && sysctl_oom_kill_allocating_task &&
1127 	    current->mm && !oom_unkillable_task(current) &&
1128 	    oom_cpuset_eligible(current, oc) &&
1129 	    current->signal->oom_score_adj != OOM_SCORE_ADJ_MIN) {
1130 		get_task_struct(current);
1131 		oc->chosen = current;
1132 		oom_kill_process(oc, "Out of memory (oom_kill_allocating_task)");
1133 		return true;
1134 	}
1135 
1136 	select_bad_process(oc);
1137 	/* Found nothing?!?! */
1138 	if (!oc->chosen) {
1139 		int ret = false;
1140 
1141 		trace_android_vh_oom_check_panic(oc, &ret);
1142 		if (ret)
1143 			return true;
1144 
1145 		dump_header(oc, NULL);
1146 		pr_warn("Out of memory and no killable processes...\n");
1147 		/*
1148 		 * If we got here due to an actual allocation at the
1149 		 * system level, we cannot survive this and will enter
1150 		 * an endless loop in the allocator. Bail out now.
1151 		 */
1152 		if (!is_sysrq_oom(oc) && !is_memcg_oom(oc))
1153 			panic("System is deadlocked on memory\n");
1154 	}
1155 	if (oc->chosen && oc->chosen != (void *)-1UL)
1156 		oom_kill_process(oc, !is_memcg_oom(oc) ? "Out of memory" :
1157 				 "Memory cgroup out of memory");
1158 	return !!oc->chosen;
1159 }
1160 
1161 /*
1162  * The pagefault handler calls here because some allocation has failed. We have
1163  * to take care of the memcg OOM here because this is the only safe context without
1164  * any locks held but let the oom killer triggered from the allocation context care
1165  * about the global OOM.
1166  */
pagefault_out_of_memory(void)1167 void pagefault_out_of_memory(void)
1168 {
1169 	static DEFINE_RATELIMIT_STATE(pfoom_rs, DEFAULT_RATELIMIT_INTERVAL,
1170 				      DEFAULT_RATELIMIT_BURST);
1171 
1172 	if (mem_cgroup_oom_synchronize(true))
1173 		return;
1174 
1175 	if (fatal_signal_pending(current))
1176 		return;
1177 
1178 	if (__ratelimit(&pfoom_rs))
1179 		pr_warn("Huh VM_FAULT_OOM leaked out to the #PF handler. Retrying PF\n");
1180 }
1181 
SYSCALL_DEFINE2(process_mrelease,int,pidfd,unsigned int,flags)1182 SYSCALL_DEFINE2(process_mrelease, int, pidfd, unsigned int, flags)
1183 {
1184 #ifdef CONFIG_MMU
1185 	struct mm_struct *mm = NULL;
1186 	struct task_struct *task;
1187 	struct task_struct *p;
1188 	unsigned int f_flags;
1189 	bool reap = false;
1190 	struct pid *pid;
1191 	long ret = 0;
1192 
1193 	if (flags)
1194 		return -EINVAL;
1195 
1196 	pid = pidfd_get_pid(pidfd, &f_flags);
1197 	if (IS_ERR(pid))
1198 		return PTR_ERR(pid);
1199 
1200 	task = get_pid_task(pid, PIDTYPE_TGID);
1201 	if (!task) {
1202 		ret = -ESRCH;
1203 		goto put_pid;
1204 	}
1205 
1206 	/*
1207 	 * Make sure to choose a thread which still has a reference to mm
1208 	 * during the group exit
1209 	 */
1210 	p = find_lock_task_mm(task);
1211 	if (!p) {
1212 		ret = -ESRCH;
1213 		goto put_task;
1214 	}
1215 
1216 	mm = p->mm;
1217 	mmgrab(mm);
1218 
1219 	/*
1220 	 * If we are too late and exit_mmap already checked mm_is_oom_victim
1221 	 * then will block on mmap_read_lock until exit_mmap releases mmap_lock
1222 	 */
1223 	set_bit(MMF_OOM_VICTIM, &mm->flags);
1224 
1225 	if (task_will_free_mem(p))
1226 		reap = true;
1227 	else {
1228 		/* Error only if the work has not been done already */
1229 		if (!test_bit(MMF_OOM_SKIP, &mm->flags))
1230 			ret = -EINVAL;
1231 	}
1232 	task_unlock(p);
1233 
1234 	if (!reap)
1235 		goto drop_mm;
1236 
1237 	if (mmap_read_lock_killable(mm)) {
1238 		ret = -EINTR;
1239 		goto drop_mm;
1240 	}
1241 	/*
1242 	 * Check MMF_OOM_SKIP again under mmap_read_lock protection to ensure
1243 	 * possible change in exit_mmap is seen
1244 	 */
1245 	if (!test_bit(MMF_OOM_SKIP, &mm->flags) && !__oom_reap_task_mm(mm))
1246 		ret = -EAGAIN;
1247 	mmap_read_unlock(mm);
1248 
1249 drop_mm:
1250 	mmdrop(mm);
1251 put_task:
1252 	put_task_struct(task);
1253 put_pid:
1254 	put_pid(pid);
1255 	return ret;
1256 #else
1257 	return -ENOSYS;
1258 #endif /* CONFIG_MMU */
1259 }
1260