1 // SPDX-License-Identifier: GPL-2.0 OR MIT
2 /*
3 * Copyright 2020-2021 Advanced Micro Devices, Inc.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice shall be included in
13 * all copies or substantial portions of the Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21 * OTHER DEALINGS IN THE SOFTWARE.
22 */
23
24 #include <linux/types.h>
25 #include <linux/sched/task.h>
26 #include "amdgpu_sync.h"
27 #include "amdgpu_object.h"
28 #include "amdgpu_vm.h"
29 #include "amdgpu_mn.h"
30 #include "amdgpu.h"
31 #include "amdgpu_xgmi.h"
32 #include "kfd_priv.h"
33 #include "kfd_svm.h"
34 #include "kfd_migrate.h"
35
36 #define AMDGPU_SVM_RANGE_RESTORE_DELAY_MS 1
37
38 /* Long enough to ensure no retry fault comes after svm range is restored and
39 * page table is updated.
40 */
41 #define AMDGPU_SVM_RANGE_RETRY_FAULT_PENDING 2000
42
43 static void svm_range_evict_svm_bo_worker(struct work_struct *work);
44 static bool
45 svm_range_cpu_invalidate_pagetables(struct mmu_interval_notifier *mni,
46 const struct mmu_notifier_range *range,
47 unsigned long cur_seq);
48
49 static const struct mmu_interval_notifier_ops svm_range_mn_ops = {
50 .invalidate = svm_range_cpu_invalidate_pagetables,
51 };
52
53 /**
54 * svm_range_unlink - unlink svm_range from lists and interval tree
55 * @prange: svm range structure to be removed
56 *
57 * Remove the svm_range from the svms and svm_bo lists and the svms
58 * interval tree.
59 *
60 * Context: The caller must hold svms->lock
61 */
svm_range_unlink(struct svm_range * prange)62 static void svm_range_unlink(struct svm_range *prange)
63 {
64 pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx]\n", prange->svms,
65 prange, prange->start, prange->last);
66
67 if (prange->svm_bo) {
68 spin_lock(&prange->svm_bo->list_lock);
69 list_del(&prange->svm_bo_list);
70 spin_unlock(&prange->svm_bo->list_lock);
71 }
72
73 list_del(&prange->list);
74 if (prange->it_node.start != 0 && prange->it_node.last != 0)
75 interval_tree_remove(&prange->it_node, &prange->svms->objects);
76 }
77
78 static void
svm_range_add_notifier_locked(struct mm_struct * mm,struct svm_range * prange)79 svm_range_add_notifier_locked(struct mm_struct *mm, struct svm_range *prange)
80 {
81 pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx]\n", prange->svms,
82 prange, prange->start, prange->last);
83
84 mmu_interval_notifier_insert_locked(&prange->notifier, mm,
85 prange->start << PAGE_SHIFT,
86 prange->npages << PAGE_SHIFT,
87 &svm_range_mn_ops);
88 }
89
90 /**
91 * svm_range_add_to_svms - add svm range to svms
92 * @prange: svm range structure to be added
93 *
94 * Add the svm range to svms interval tree and link list
95 *
96 * Context: The caller must hold svms->lock
97 */
svm_range_add_to_svms(struct svm_range * prange)98 static void svm_range_add_to_svms(struct svm_range *prange)
99 {
100 pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx]\n", prange->svms,
101 prange, prange->start, prange->last);
102
103 list_add_tail(&prange->list, &prange->svms->list);
104 prange->it_node.start = prange->start;
105 prange->it_node.last = prange->last;
106 interval_tree_insert(&prange->it_node, &prange->svms->objects);
107 }
108
svm_range_remove_notifier(struct svm_range * prange)109 static void svm_range_remove_notifier(struct svm_range *prange)
110 {
111 pr_debug("remove notifier svms 0x%p prange 0x%p [0x%lx 0x%lx]\n",
112 prange->svms, prange,
113 prange->notifier.interval_tree.start >> PAGE_SHIFT,
114 prange->notifier.interval_tree.last >> PAGE_SHIFT);
115
116 if (prange->notifier.interval_tree.start != 0 &&
117 prange->notifier.interval_tree.last != 0)
118 mmu_interval_notifier_remove(&prange->notifier);
119 }
120
121 static bool
svm_is_valid_dma_mapping_addr(struct device * dev,dma_addr_t dma_addr)122 svm_is_valid_dma_mapping_addr(struct device *dev, dma_addr_t dma_addr)
123 {
124 return dma_addr && !dma_mapping_error(dev, dma_addr) &&
125 !(dma_addr & SVM_RANGE_VRAM_DOMAIN);
126 }
127
128 static int
svm_range_dma_map_dev(struct amdgpu_device * adev,struct svm_range * prange,unsigned long offset,unsigned long npages,unsigned long * hmm_pfns,uint32_t gpuidx)129 svm_range_dma_map_dev(struct amdgpu_device *adev, struct svm_range *prange,
130 unsigned long offset, unsigned long npages,
131 unsigned long *hmm_pfns, uint32_t gpuidx)
132 {
133 enum dma_data_direction dir = DMA_BIDIRECTIONAL;
134 dma_addr_t *addr = prange->dma_addr[gpuidx];
135 struct device *dev = adev->dev;
136 struct page *page;
137 int i, r;
138
139 if (!addr) {
140 addr = kvmalloc_array(prange->npages, sizeof(*addr),
141 GFP_KERNEL | __GFP_ZERO);
142 if (!addr)
143 return -ENOMEM;
144 prange->dma_addr[gpuidx] = addr;
145 }
146
147 addr += offset;
148 for (i = 0; i < npages; i++) {
149 if (svm_is_valid_dma_mapping_addr(dev, addr[i]))
150 dma_unmap_page(dev, addr[i], PAGE_SIZE, dir);
151
152 page = hmm_pfn_to_page(hmm_pfns[i]);
153 if (is_zone_device_page(page)) {
154 struct amdgpu_device *bo_adev =
155 amdgpu_ttm_adev(prange->svm_bo->bo->tbo.bdev);
156
157 addr[i] = (hmm_pfns[i] << PAGE_SHIFT) +
158 bo_adev->vm_manager.vram_base_offset -
159 bo_adev->kfd.dev->pgmap.range.start;
160 addr[i] |= SVM_RANGE_VRAM_DOMAIN;
161 pr_debug("vram address detected: 0x%llx\n", addr[i]);
162 continue;
163 }
164 addr[i] = dma_map_page(dev, page, 0, PAGE_SIZE, dir);
165 r = dma_mapping_error(dev, addr[i]);
166 if (r) {
167 pr_debug("failed %d dma_map_page\n", r);
168 return r;
169 }
170 pr_debug("dma mapping 0x%llx for page addr 0x%lx\n",
171 addr[i] >> PAGE_SHIFT, page_to_pfn(page));
172 }
173 return 0;
174 }
175
176 static int
svm_range_dma_map(struct svm_range * prange,unsigned long * bitmap,unsigned long offset,unsigned long npages,unsigned long * hmm_pfns)177 svm_range_dma_map(struct svm_range *prange, unsigned long *bitmap,
178 unsigned long offset, unsigned long npages,
179 unsigned long *hmm_pfns)
180 {
181 struct kfd_process *p;
182 uint32_t gpuidx;
183 int r;
184
185 p = container_of(prange->svms, struct kfd_process, svms);
186
187 for_each_set_bit(gpuidx, bitmap, MAX_GPU_INSTANCE) {
188 struct kfd_process_device *pdd;
189 struct amdgpu_device *adev;
190
191 pr_debug("mapping to gpu idx 0x%x\n", gpuidx);
192 pdd = kfd_process_device_from_gpuidx(p, gpuidx);
193 if (!pdd) {
194 pr_debug("failed to find device idx %d\n", gpuidx);
195 return -EINVAL;
196 }
197 adev = (struct amdgpu_device *)pdd->dev->kgd;
198
199 r = svm_range_dma_map_dev(adev, prange, offset, npages,
200 hmm_pfns, gpuidx);
201 if (r)
202 break;
203 }
204
205 return r;
206 }
207
svm_range_dma_unmap(struct device * dev,dma_addr_t * dma_addr,unsigned long offset,unsigned long npages)208 void svm_range_dma_unmap(struct device *dev, dma_addr_t *dma_addr,
209 unsigned long offset, unsigned long npages)
210 {
211 enum dma_data_direction dir = DMA_BIDIRECTIONAL;
212 int i;
213
214 if (!dma_addr)
215 return;
216
217 for (i = offset; i < offset + npages; i++) {
218 if (!svm_is_valid_dma_mapping_addr(dev, dma_addr[i]))
219 continue;
220 pr_debug("dma unmapping 0x%llx\n", dma_addr[i] >> PAGE_SHIFT);
221 dma_unmap_page(dev, dma_addr[i], PAGE_SIZE, dir);
222 dma_addr[i] = 0;
223 }
224 }
225
svm_range_free_dma_mappings(struct svm_range * prange)226 void svm_range_free_dma_mappings(struct svm_range *prange)
227 {
228 struct kfd_process_device *pdd;
229 dma_addr_t *dma_addr;
230 struct device *dev;
231 struct kfd_process *p;
232 uint32_t gpuidx;
233
234 p = container_of(prange->svms, struct kfd_process, svms);
235
236 for (gpuidx = 0; gpuidx < MAX_GPU_INSTANCE; gpuidx++) {
237 dma_addr = prange->dma_addr[gpuidx];
238 if (!dma_addr)
239 continue;
240
241 pdd = kfd_process_device_from_gpuidx(p, gpuidx);
242 if (!pdd) {
243 pr_debug("failed to find device idx %d\n", gpuidx);
244 continue;
245 }
246 dev = &pdd->dev->pdev->dev;
247 svm_range_dma_unmap(dev, dma_addr, 0, prange->npages);
248 kvfree(dma_addr);
249 prange->dma_addr[gpuidx] = NULL;
250 }
251 }
252
svm_range_free(struct svm_range * prange)253 static void svm_range_free(struct svm_range *prange)
254 {
255 pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx]\n", prange->svms, prange,
256 prange->start, prange->last);
257
258 svm_range_vram_node_free(prange);
259 svm_range_free_dma_mappings(prange);
260 mutex_destroy(&prange->lock);
261 mutex_destroy(&prange->migrate_mutex);
262 kfree(prange);
263 }
264
265 static void
svm_range_set_default_attributes(int32_t * location,int32_t * prefetch_loc,uint8_t * granularity,uint32_t * flags)266 svm_range_set_default_attributes(int32_t *location, int32_t *prefetch_loc,
267 uint8_t *granularity, uint32_t *flags)
268 {
269 *location = KFD_IOCTL_SVM_LOCATION_UNDEFINED;
270 *prefetch_loc = KFD_IOCTL_SVM_LOCATION_UNDEFINED;
271 *granularity = 9;
272 *flags =
273 KFD_IOCTL_SVM_FLAG_HOST_ACCESS | KFD_IOCTL_SVM_FLAG_COHERENT;
274 }
275
276 static struct
svm_range_new(struct svm_range_list * svms,uint64_t start,uint64_t last)277 svm_range *svm_range_new(struct svm_range_list *svms, uint64_t start,
278 uint64_t last)
279 {
280 uint64_t size = last - start + 1;
281 struct svm_range *prange;
282 struct kfd_process *p;
283
284 prange = kzalloc(sizeof(*prange), GFP_KERNEL);
285 if (!prange)
286 return NULL;
287 prange->npages = size;
288 prange->svms = svms;
289 prange->start = start;
290 prange->last = last;
291 INIT_LIST_HEAD(&prange->list);
292 INIT_LIST_HEAD(&prange->update_list);
293 INIT_LIST_HEAD(&prange->remove_list);
294 INIT_LIST_HEAD(&prange->insert_list);
295 INIT_LIST_HEAD(&prange->svm_bo_list);
296 INIT_LIST_HEAD(&prange->deferred_list);
297 INIT_LIST_HEAD(&prange->child_list);
298 atomic_set(&prange->invalid, 0);
299 prange->validate_timestamp = 0;
300 mutex_init(&prange->migrate_mutex);
301 mutex_init(&prange->lock);
302
303 p = container_of(svms, struct kfd_process, svms);
304 if (p->xnack_enabled)
305 bitmap_copy(prange->bitmap_access, svms->bitmap_supported,
306 MAX_GPU_INSTANCE);
307
308 svm_range_set_default_attributes(&prange->preferred_loc,
309 &prange->prefetch_loc,
310 &prange->granularity, &prange->flags);
311
312 pr_debug("svms 0x%p [0x%llx 0x%llx]\n", svms, start, last);
313
314 return prange;
315 }
316
svm_bo_ref_unless_zero(struct svm_range_bo * svm_bo)317 static bool svm_bo_ref_unless_zero(struct svm_range_bo *svm_bo)
318 {
319 if (!svm_bo || !kref_get_unless_zero(&svm_bo->kref))
320 return false;
321
322 return true;
323 }
324
svm_range_bo_release(struct kref * kref)325 static void svm_range_bo_release(struct kref *kref)
326 {
327 struct svm_range_bo *svm_bo;
328
329 svm_bo = container_of(kref, struct svm_range_bo, kref);
330 spin_lock(&svm_bo->list_lock);
331 while (!list_empty(&svm_bo->range_list)) {
332 struct svm_range *prange =
333 list_first_entry(&svm_bo->range_list,
334 struct svm_range, svm_bo_list);
335 /* list_del_init tells a concurrent svm_range_vram_node_new when
336 * it's safe to reuse the svm_bo pointer and svm_bo_list head.
337 */
338 list_del_init(&prange->svm_bo_list);
339 spin_unlock(&svm_bo->list_lock);
340
341 pr_debug("svms 0x%p [0x%lx 0x%lx]\n", prange->svms,
342 prange->start, prange->last);
343 mutex_lock(&prange->lock);
344 prange->svm_bo = NULL;
345 mutex_unlock(&prange->lock);
346
347 spin_lock(&svm_bo->list_lock);
348 }
349 spin_unlock(&svm_bo->list_lock);
350 if (!dma_fence_is_signaled(&svm_bo->eviction_fence->base))
351 /* We're not in the eviction worker. Signal the fence. */
352 dma_fence_signal(&svm_bo->eviction_fence->base);
353 dma_fence_put(&svm_bo->eviction_fence->base);
354 amdgpu_bo_unref(&svm_bo->bo);
355 kfree(svm_bo);
356 }
357
svm_range_bo_unref(struct svm_range_bo * svm_bo)358 void svm_range_bo_unref(struct svm_range_bo *svm_bo)
359 {
360 if (!svm_bo)
361 return;
362
363 kref_put(&svm_bo->kref, svm_range_bo_release);
364 }
365
366 static bool
svm_range_validate_svm_bo(struct amdgpu_device * adev,struct svm_range * prange)367 svm_range_validate_svm_bo(struct amdgpu_device *adev, struct svm_range *prange)
368 {
369 struct amdgpu_device *bo_adev;
370
371 mutex_lock(&prange->lock);
372 if (!prange->svm_bo) {
373 mutex_unlock(&prange->lock);
374 return false;
375 }
376 if (prange->ttm_res) {
377 /* We still have a reference, all is well */
378 mutex_unlock(&prange->lock);
379 return true;
380 }
381 if (svm_bo_ref_unless_zero(prange->svm_bo)) {
382 /*
383 * Migrate from GPU to GPU, remove range from source bo_adev
384 * svm_bo range list, and return false to allocate svm_bo from
385 * destination adev.
386 */
387 bo_adev = amdgpu_ttm_adev(prange->svm_bo->bo->tbo.bdev);
388 if (bo_adev != adev) {
389 mutex_unlock(&prange->lock);
390
391 spin_lock(&prange->svm_bo->list_lock);
392 list_del_init(&prange->svm_bo_list);
393 spin_unlock(&prange->svm_bo->list_lock);
394
395 svm_range_bo_unref(prange->svm_bo);
396 return false;
397 }
398 if (READ_ONCE(prange->svm_bo->evicting)) {
399 struct dma_fence *f;
400 struct svm_range_bo *svm_bo;
401 /* The BO is getting evicted,
402 * we need to get a new one
403 */
404 mutex_unlock(&prange->lock);
405 svm_bo = prange->svm_bo;
406 f = dma_fence_get(&svm_bo->eviction_fence->base);
407 svm_range_bo_unref(prange->svm_bo);
408 /* wait for the fence to avoid long spin-loop
409 * at list_empty_careful
410 */
411 dma_fence_wait(f, false);
412 dma_fence_put(f);
413 } else {
414 /* The BO was still around and we got
415 * a new reference to it
416 */
417 mutex_unlock(&prange->lock);
418 pr_debug("reuse old bo svms 0x%p [0x%lx 0x%lx]\n",
419 prange->svms, prange->start, prange->last);
420
421 prange->ttm_res = prange->svm_bo->bo->tbo.resource;
422 return true;
423 }
424
425 } else {
426 mutex_unlock(&prange->lock);
427 }
428
429 /* We need a new svm_bo. Spin-loop to wait for concurrent
430 * svm_range_bo_release to finish removing this range from
431 * its range list and set prange->svm_bo to null. After this,
432 * it is safe to reuse the svm_bo pointer and svm_bo_list head.
433 */
434 while (!list_empty_careful(&prange->svm_bo_list) || prange->svm_bo)
435 cond_resched();
436
437 return false;
438 }
439
svm_range_bo_new(void)440 static struct svm_range_bo *svm_range_bo_new(void)
441 {
442 struct svm_range_bo *svm_bo;
443
444 svm_bo = kzalloc(sizeof(*svm_bo), GFP_KERNEL);
445 if (!svm_bo)
446 return NULL;
447
448 kref_init(&svm_bo->kref);
449 INIT_LIST_HEAD(&svm_bo->range_list);
450 spin_lock_init(&svm_bo->list_lock);
451
452 return svm_bo;
453 }
454
455 int
svm_range_vram_node_new(struct amdgpu_device * adev,struct svm_range * prange,bool clear)456 svm_range_vram_node_new(struct amdgpu_device *adev, struct svm_range *prange,
457 bool clear)
458 {
459 struct amdgpu_bo_param bp;
460 struct svm_range_bo *svm_bo;
461 struct amdgpu_bo_user *ubo;
462 struct amdgpu_bo *bo;
463 struct kfd_process *p;
464 struct mm_struct *mm;
465 int r;
466
467 p = container_of(prange->svms, struct kfd_process, svms);
468 pr_debug("pasid: %x svms 0x%p [0x%lx 0x%lx]\n", p->pasid, prange->svms,
469 prange->start, prange->last);
470
471 if (svm_range_validate_svm_bo(adev, prange))
472 return 0;
473
474 svm_bo = svm_range_bo_new();
475 if (!svm_bo) {
476 pr_debug("failed to alloc svm bo\n");
477 return -ENOMEM;
478 }
479 mm = get_task_mm(p->lead_thread);
480 if (!mm) {
481 pr_debug("failed to get mm\n");
482 kfree(svm_bo);
483 return -ESRCH;
484 }
485 svm_bo->svms = prange->svms;
486 svm_bo->eviction_fence =
487 amdgpu_amdkfd_fence_create(dma_fence_context_alloc(1),
488 mm,
489 svm_bo);
490 mmput(mm);
491 INIT_WORK(&svm_bo->eviction_work, svm_range_evict_svm_bo_worker);
492 svm_bo->evicting = 0;
493 memset(&bp, 0, sizeof(bp));
494 bp.size = prange->npages * PAGE_SIZE;
495 bp.byte_align = PAGE_SIZE;
496 bp.domain = AMDGPU_GEM_DOMAIN_VRAM;
497 bp.flags = AMDGPU_GEM_CREATE_NO_CPU_ACCESS;
498 bp.flags |= clear ? AMDGPU_GEM_CREATE_VRAM_CLEARED : 0;
499 bp.flags |= AMDGPU_AMDKFD_CREATE_SVM_BO;
500 bp.type = ttm_bo_type_device;
501 bp.resv = NULL;
502
503 r = amdgpu_bo_create_user(adev, &bp, &ubo);
504 if (r) {
505 pr_debug("failed %d to create bo\n", r);
506 goto create_bo_failed;
507 }
508 bo = &ubo->bo;
509 r = amdgpu_bo_reserve(bo, true);
510 if (r) {
511 pr_debug("failed %d to reserve bo\n", r);
512 goto reserve_bo_failed;
513 }
514
515 r = dma_resv_reserve_shared(bo->tbo.base.resv, 1);
516 if (r) {
517 pr_debug("failed %d to reserve bo\n", r);
518 amdgpu_bo_unreserve(bo);
519 goto reserve_bo_failed;
520 }
521 amdgpu_bo_fence(bo, &svm_bo->eviction_fence->base, true);
522
523 amdgpu_bo_unreserve(bo);
524
525 svm_bo->bo = bo;
526 prange->svm_bo = svm_bo;
527 prange->ttm_res = bo->tbo.resource;
528 prange->offset = 0;
529
530 spin_lock(&svm_bo->list_lock);
531 list_add(&prange->svm_bo_list, &svm_bo->range_list);
532 spin_unlock(&svm_bo->list_lock);
533
534 return 0;
535
536 reserve_bo_failed:
537 amdgpu_bo_unref(&bo);
538 create_bo_failed:
539 dma_fence_put(&svm_bo->eviction_fence->base);
540 kfree(svm_bo);
541 prange->ttm_res = NULL;
542
543 return r;
544 }
545
svm_range_vram_node_free(struct svm_range * prange)546 void svm_range_vram_node_free(struct svm_range *prange)
547 {
548 /* serialize prange->svm_bo unref */
549 mutex_lock(&prange->lock);
550 /* prange->svm_bo has not been unref */
551 if (prange->ttm_res) {
552 prange->ttm_res = NULL;
553 mutex_unlock(&prange->lock);
554 svm_range_bo_unref(prange->svm_bo);
555 } else
556 mutex_unlock(&prange->lock);
557 }
558
559 struct amdgpu_device *
svm_range_get_adev_by_id(struct svm_range * prange,uint32_t gpu_id)560 svm_range_get_adev_by_id(struct svm_range *prange, uint32_t gpu_id)
561 {
562 struct kfd_process_device *pdd;
563 struct kfd_process *p;
564 int32_t gpu_idx;
565
566 p = container_of(prange->svms, struct kfd_process, svms);
567
568 gpu_idx = kfd_process_gpuidx_from_gpuid(p, gpu_id);
569 if (gpu_idx < 0) {
570 pr_debug("failed to get device by id 0x%x\n", gpu_id);
571 return NULL;
572 }
573 pdd = kfd_process_device_from_gpuidx(p, gpu_idx);
574 if (!pdd) {
575 pr_debug("failed to get device by idx 0x%x\n", gpu_idx);
576 return NULL;
577 }
578
579 return (struct amdgpu_device *)pdd->dev->kgd;
580 }
581
582 struct kfd_process_device *
svm_range_get_pdd_by_adev(struct svm_range * prange,struct amdgpu_device * adev)583 svm_range_get_pdd_by_adev(struct svm_range *prange, struct amdgpu_device *adev)
584 {
585 struct kfd_process *p;
586 int32_t gpu_idx, gpuid;
587 int r;
588
589 p = container_of(prange->svms, struct kfd_process, svms);
590
591 r = kfd_process_gpuid_from_kgd(p, adev, &gpuid, &gpu_idx);
592 if (r) {
593 pr_debug("failed to get device id by adev %p\n", adev);
594 return NULL;
595 }
596
597 return kfd_process_device_from_gpuidx(p, gpu_idx);
598 }
599
svm_range_bo_validate(void * param,struct amdgpu_bo * bo)600 static int svm_range_bo_validate(void *param, struct amdgpu_bo *bo)
601 {
602 struct ttm_operation_ctx ctx = { false, false };
603
604 amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_VRAM);
605
606 return ttm_bo_validate(&bo->tbo, &bo->placement, &ctx);
607 }
608
609 static int
svm_range_check_attr(struct kfd_process * p,uint32_t nattr,struct kfd_ioctl_svm_attribute * attrs)610 svm_range_check_attr(struct kfd_process *p,
611 uint32_t nattr, struct kfd_ioctl_svm_attribute *attrs)
612 {
613 uint32_t i;
614
615 for (i = 0; i < nattr; i++) {
616 uint32_t val = attrs[i].value;
617 int gpuidx = MAX_GPU_INSTANCE;
618
619 switch (attrs[i].type) {
620 case KFD_IOCTL_SVM_ATTR_PREFERRED_LOC:
621 if (val != KFD_IOCTL_SVM_LOCATION_SYSMEM &&
622 val != KFD_IOCTL_SVM_LOCATION_UNDEFINED)
623 gpuidx = kfd_process_gpuidx_from_gpuid(p, val);
624 break;
625 case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC:
626 if (val != KFD_IOCTL_SVM_LOCATION_SYSMEM)
627 gpuidx = kfd_process_gpuidx_from_gpuid(p, val);
628 break;
629 case KFD_IOCTL_SVM_ATTR_ACCESS:
630 case KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE:
631 case KFD_IOCTL_SVM_ATTR_NO_ACCESS:
632 gpuidx = kfd_process_gpuidx_from_gpuid(p, val);
633 break;
634 case KFD_IOCTL_SVM_ATTR_SET_FLAGS:
635 break;
636 case KFD_IOCTL_SVM_ATTR_CLR_FLAGS:
637 break;
638 case KFD_IOCTL_SVM_ATTR_GRANULARITY:
639 break;
640 default:
641 pr_debug("unknown attr type 0x%x\n", attrs[i].type);
642 return -EINVAL;
643 }
644
645 if (gpuidx < 0) {
646 pr_debug("no GPU 0x%x found\n", val);
647 return -EINVAL;
648 } else if (gpuidx < MAX_GPU_INSTANCE &&
649 !test_bit(gpuidx, p->svms.bitmap_supported)) {
650 pr_debug("GPU 0x%x not supported\n", val);
651 return -EINVAL;
652 }
653 }
654
655 return 0;
656 }
657
658 static void
svm_range_apply_attrs(struct kfd_process * p,struct svm_range * prange,uint32_t nattr,struct kfd_ioctl_svm_attribute * attrs)659 svm_range_apply_attrs(struct kfd_process *p, struct svm_range *prange,
660 uint32_t nattr, struct kfd_ioctl_svm_attribute *attrs)
661 {
662 uint32_t i;
663 int gpuidx;
664
665 for (i = 0; i < nattr; i++) {
666 switch (attrs[i].type) {
667 case KFD_IOCTL_SVM_ATTR_PREFERRED_LOC:
668 prange->preferred_loc = attrs[i].value;
669 break;
670 case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC:
671 prange->prefetch_loc = attrs[i].value;
672 break;
673 case KFD_IOCTL_SVM_ATTR_ACCESS:
674 case KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE:
675 case KFD_IOCTL_SVM_ATTR_NO_ACCESS:
676 gpuidx = kfd_process_gpuidx_from_gpuid(p,
677 attrs[i].value);
678 if (attrs[i].type == KFD_IOCTL_SVM_ATTR_NO_ACCESS) {
679 bitmap_clear(prange->bitmap_access, gpuidx, 1);
680 bitmap_clear(prange->bitmap_aip, gpuidx, 1);
681 } else if (attrs[i].type == KFD_IOCTL_SVM_ATTR_ACCESS) {
682 bitmap_set(prange->bitmap_access, gpuidx, 1);
683 bitmap_clear(prange->bitmap_aip, gpuidx, 1);
684 } else {
685 bitmap_clear(prange->bitmap_access, gpuidx, 1);
686 bitmap_set(prange->bitmap_aip, gpuidx, 1);
687 }
688 break;
689 case KFD_IOCTL_SVM_ATTR_SET_FLAGS:
690 prange->flags |= attrs[i].value;
691 break;
692 case KFD_IOCTL_SVM_ATTR_CLR_FLAGS:
693 prange->flags &= ~attrs[i].value;
694 break;
695 case KFD_IOCTL_SVM_ATTR_GRANULARITY:
696 prange->granularity = min_t(uint32_t, attrs[i].value, 0x3F);
697 break;
698 default:
699 WARN_ONCE(1, "svm_range_check_attrs wasn't called?");
700 }
701 }
702 }
703
704 /**
705 * svm_range_debug_dump - print all range information from svms
706 * @svms: svm range list header
707 *
708 * debug output svm range start, end, prefetch location from svms
709 * interval tree and link list
710 *
711 * Context: The caller must hold svms->lock
712 */
svm_range_debug_dump(struct svm_range_list * svms)713 static void svm_range_debug_dump(struct svm_range_list *svms)
714 {
715 struct interval_tree_node *node;
716 struct svm_range *prange;
717
718 pr_debug("dump svms 0x%p list\n", svms);
719 pr_debug("range\tstart\tpage\tend\t\tlocation\n");
720
721 list_for_each_entry(prange, &svms->list, list) {
722 pr_debug("0x%p 0x%lx\t0x%llx\t0x%llx\t0x%x\n",
723 prange, prange->start, prange->npages,
724 prange->start + prange->npages - 1,
725 prange->actual_loc);
726 }
727
728 pr_debug("dump svms 0x%p interval tree\n", svms);
729 pr_debug("range\tstart\tpage\tend\t\tlocation\n");
730 node = interval_tree_iter_first(&svms->objects, 0, ~0ULL);
731 while (node) {
732 prange = container_of(node, struct svm_range, it_node);
733 pr_debug("0x%p 0x%lx\t0x%llx\t0x%llx\t0x%x\n",
734 prange, prange->start, prange->npages,
735 prange->start + prange->npages - 1,
736 prange->actual_loc);
737 node = interval_tree_iter_next(node, 0, ~0ULL);
738 }
739 }
740
741 static bool
svm_range_is_same_attrs(struct svm_range * old,struct svm_range * new)742 svm_range_is_same_attrs(struct svm_range *old, struct svm_range *new)
743 {
744 return (old->prefetch_loc == new->prefetch_loc &&
745 old->flags == new->flags &&
746 old->granularity == new->granularity);
747 }
748
749 static int
svm_range_split_array(void * ppnew,void * ppold,size_t size,uint64_t old_start,uint64_t old_n,uint64_t new_start,uint64_t new_n)750 svm_range_split_array(void *ppnew, void *ppold, size_t size,
751 uint64_t old_start, uint64_t old_n,
752 uint64_t new_start, uint64_t new_n)
753 {
754 unsigned char *new, *old, *pold;
755 uint64_t d;
756
757 if (!ppold)
758 return 0;
759 pold = *(unsigned char **)ppold;
760 if (!pold)
761 return 0;
762
763 new = kvmalloc_array(new_n, size, GFP_KERNEL);
764 if (!new)
765 return -ENOMEM;
766
767 d = (new_start - old_start) * size;
768 memcpy(new, pold + d, new_n * size);
769
770 old = kvmalloc_array(old_n, size, GFP_KERNEL);
771 if (!old) {
772 kvfree(new);
773 return -ENOMEM;
774 }
775
776 d = (new_start == old_start) ? new_n * size : 0;
777 memcpy(old, pold + d, old_n * size);
778
779 kvfree(pold);
780 *(void **)ppold = old;
781 *(void **)ppnew = new;
782
783 return 0;
784 }
785
786 static int
svm_range_split_pages(struct svm_range * new,struct svm_range * old,uint64_t start,uint64_t last)787 svm_range_split_pages(struct svm_range *new, struct svm_range *old,
788 uint64_t start, uint64_t last)
789 {
790 uint64_t npages = last - start + 1;
791 int i, r;
792
793 for (i = 0; i < MAX_GPU_INSTANCE; i++) {
794 r = svm_range_split_array(&new->dma_addr[i], &old->dma_addr[i],
795 sizeof(*old->dma_addr[i]), old->start,
796 npages, new->start, new->npages);
797 if (r)
798 return r;
799 }
800
801 return 0;
802 }
803
804 static int
svm_range_split_nodes(struct svm_range * new,struct svm_range * old,uint64_t start,uint64_t last)805 svm_range_split_nodes(struct svm_range *new, struct svm_range *old,
806 uint64_t start, uint64_t last)
807 {
808 uint64_t npages = last - start + 1;
809
810 pr_debug("svms 0x%p new prange 0x%p start 0x%lx [0x%llx 0x%llx]\n",
811 new->svms, new, new->start, start, last);
812
813 if (new->start == old->start) {
814 new->offset = old->offset;
815 old->offset += new->npages;
816 } else {
817 new->offset = old->offset + npages;
818 }
819
820 new->svm_bo = svm_range_bo_ref(old->svm_bo);
821 new->ttm_res = old->ttm_res;
822
823 spin_lock(&new->svm_bo->list_lock);
824 list_add(&new->svm_bo_list, &new->svm_bo->range_list);
825 spin_unlock(&new->svm_bo->list_lock);
826
827 return 0;
828 }
829
830 /**
831 * svm_range_split_adjust - split range and adjust
832 *
833 * @new: new range
834 * @old: the old range
835 * @start: the old range adjust to start address in pages
836 * @last: the old range adjust to last address in pages
837 *
838 * Copy system memory dma_addr or vram ttm_res in old range to new
839 * range from new_start up to size new->npages, the remaining old range is from
840 * start to last
841 *
842 * Return:
843 * 0 - OK, -ENOMEM - out of memory
844 */
845 static int
svm_range_split_adjust(struct svm_range * new,struct svm_range * old,uint64_t start,uint64_t last)846 svm_range_split_adjust(struct svm_range *new, struct svm_range *old,
847 uint64_t start, uint64_t last)
848 {
849 int r;
850
851 pr_debug("svms 0x%p new 0x%lx old [0x%lx 0x%lx] => [0x%llx 0x%llx]\n",
852 new->svms, new->start, old->start, old->last, start, last);
853
854 if (new->start < old->start ||
855 new->last > old->last) {
856 WARN_ONCE(1, "invalid new range start or last\n");
857 return -EINVAL;
858 }
859
860 r = svm_range_split_pages(new, old, start, last);
861 if (r)
862 return r;
863
864 if (old->actual_loc && old->ttm_res) {
865 r = svm_range_split_nodes(new, old, start, last);
866 if (r)
867 return r;
868 }
869
870 old->npages = last - start + 1;
871 old->start = start;
872 old->last = last;
873 new->flags = old->flags;
874 new->preferred_loc = old->preferred_loc;
875 new->prefetch_loc = old->prefetch_loc;
876 new->actual_loc = old->actual_loc;
877 new->granularity = old->granularity;
878 bitmap_copy(new->bitmap_access, old->bitmap_access, MAX_GPU_INSTANCE);
879 bitmap_copy(new->bitmap_aip, old->bitmap_aip, MAX_GPU_INSTANCE);
880
881 return 0;
882 }
883
884 /**
885 * svm_range_split - split a range in 2 ranges
886 *
887 * @prange: the svm range to split
888 * @start: the remaining range start address in pages
889 * @last: the remaining range last address in pages
890 * @new: the result new range generated
891 *
892 * Two cases only:
893 * case 1: if start == prange->start
894 * prange ==> prange[start, last]
895 * new range [last + 1, prange->last]
896 *
897 * case 2: if last == prange->last
898 * prange ==> prange[start, last]
899 * new range [prange->start, start - 1]
900 *
901 * Return:
902 * 0 - OK, -ENOMEM - out of memory, -EINVAL - invalid start, last
903 */
904 static int
svm_range_split(struct svm_range * prange,uint64_t start,uint64_t last,struct svm_range ** new)905 svm_range_split(struct svm_range *prange, uint64_t start, uint64_t last,
906 struct svm_range **new)
907 {
908 uint64_t old_start = prange->start;
909 uint64_t old_last = prange->last;
910 struct svm_range_list *svms;
911 int r = 0;
912
913 pr_debug("svms 0x%p [0x%llx 0x%llx] to [0x%llx 0x%llx]\n", prange->svms,
914 old_start, old_last, start, last);
915
916 if (old_start != start && old_last != last)
917 return -EINVAL;
918 if (start < old_start || last > old_last)
919 return -EINVAL;
920
921 svms = prange->svms;
922 if (old_start == start)
923 *new = svm_range_new(svms, last + 1, old_last);
924 else
925 *new = svm_range_new(svms, old_start, start - 1);
926 if (!*new)
927 return -ENOMEM;
928
929 r = svm_range_split_adjust(*new, prange, start, last);
930 if (r) {
931 pr_debug("failed %d split [0x%llx 0x%llx] to [0x%llx 0x%llx]\n",
932 r, old_start, old_last, start, last);
933 svm_range_free(*new);
934 *new = NULL;
935 }
936
937 return r;
938 }
939
940 static int
svm_range_split_tail(struct svm_range * prange,uint64_t new_last,struct list_head * insert_list)941 svm_range_split_tail(struct svm_range *prange,
942 uint64_t new_last, struct list_head *insert_list)
943 {
944 struct svm_range *tail;
945 int r = svm_range_split(prange, prange->start, new_last, &tail);
946
947 if (!r)
948 list_add(&tail->insert_list, insert_list);
949 return r;
950 }
951
952 static int
svm_range_split_head(struct svm_range * prange,uint64_t new_start,struct list_head * insert_list)953 svm_range_split_head(struct svm_range *prange,
954 uint64_t new_start, struct list_head *insert_list)
955 {
956 struct svm_range *head;
957 int r = svm_range_split(prange, new_start, prange->last, &head);
958
959 if (!r)
960 list_add(&head->insert_list, insert_list);
961 return r;
962 }
963
964 static void
svm_range_add_child(struct svm_range * prange,struct mm_struct * mm,struct svm_range * pchild,enum svm_work_list_ops op)965 svm_range_add_child(struct svm_range *prange, struct mm_struct *mm,
966 struct svm_range *pchild, enum svm_work_list_ops op)
967 {
968 pr_debug("add child 0x%p [0x%lx 0x%lx] to prange 0x%p child list %d\n",
969 pchild, pchild->start, pchild->last, prange, op);
970
971 pchild->work_item.mm = mm;
972 pchild->work_item.op = op;
973 list_add_tail(&pchild->child_list, &prange->child_list);
974 }
975
976 /**
977 * svm_range_split_by_granularity - collect ranges within granularity boundary
978 *
979 * @p: the process with svms list
980 * @mm: mm structure
981 * @addr: the vm fault address in pages, to split the prange
982 * @parent: parent range if prange is from child list
983 * @prange: prange to split
984 *
985 * Trims @prange to be a single aligned block of prange->granularity if
986 * possible. The head and tail are added to the child_list in @parent.
987 *
988 * Context: caller must hold mmap_read_lock and prange->lock
989 *
990 * Return:
991 * 0 - OK, otherwise error code
992 */
993 int
svm_range_split_by_granularity(struct kfd_process * p,struct mm_struct * mm,unsigned long addr,struct svm_range * parent,struct svm_range * prange)994 svm_range_split_by_granularity(struct kfd_process *p, struct mm_struct *mm,
995 unsigned long addr, struct svm_range *parent,
996 struct svm_range *prange)
997 {
998 struct svm_range *head, *tail;
999 unsigned long start, last, size;
1000 int r;
1001
1002 /* Align splited range start and size to granularity size, then a single
1003 * PTE will be used for whole range, this reduces the number of PTE
1004 * updated and the L1 TLB space used for translation.
1005 */
1006 size = 1UL << prange->granularity;
1007 start = ALIGN_DOWN(addr, size);
1008 last = ALIGN(addr + 1, size) - 1;
1009
1010 pr_debug("svms 0x%p split [0x%lx 0x%lx] to [0x%lx 0x%lx] size 0x%lx\n",
1011 prange->svms, prange->start, prange->last, start, last, size);
1012
1013 if (start > prange->start) {
1014 r = svm_range_split(prange, start, prange->last, &head);
1015 if (r)
1016 return r;
1017 svm_range_add_child(parent, mm, head, SVM_OP_ADD_RANGE);
1018 }
1019
1020 if (last < prange->last) {
1021 r = svm_range_split(prange, prange->start, last, &tail);
1022 if (r)
1023 return r;
1024 svm_range_add_child(parent, mm, tail, SVM_OP_ADD_RANGE);
1025 }
1026
1027 /* xnack on, update mapping on GPUs with ACCESS_IN_PLACE */
1028 if (p->xnack_enabled && prange->work_item.op == SVM_OP_ADD_RANGE) {
1029 prange->work_item.op = SVM_OP_ADD_RANGE_AND_MAP;
1030 pr_debug("change prange 0x%p [0x%lx 0x%lx] op %d\n",
1031 prange, prange->start, prange->last,
1032 SVM_OP_ADD_RANGE_AND_MAP);
1033 }
1034 return 0;
1035 }
1036
1037 static uint64_t
svm_range_get_pte_flags(struct amdgpu_device * adev,struct svm_range * prange,int domain)1038 svm_range_get_pte_flags(struct amdgpu_device *adev, struct svm_range *prange,
1039 int domain)
1040 {
1041 struct amdgpu_device *bo_adev;
1042 uint32_t flags = prange->flags;
1043 uint32_t mapping_flags = 0;
1044 uint64_t pte_flags;
1045 bool snoop = (domain != SVM_RANGE_VRAM_DOMAIN);
1046 bool coherent = flags & KFD_IOCTL_SVM_FLAG_COHERENT;
1047
1048 if (domain == SVM_RANGE_VRAM_DOMAIN)
1049 bo_adev = amdgpu_ttm_adev(prange->svm_bo->bo->tbo.bdev);
1050
1051 switch (adev->asic_type) {
1052 case CHIP_ARCTURUS:
1053 if (domain == SVM_RANGE_VRAM_DOMAIN) {
1054 if (bo_adev == adev) {
1055 mapping_flags |= coherent ?
1056 AMDGPU_VM_MTYPE_CC : AMDGPU_VM_MTYPE_RW;
1057 } else {
1058 mapping_flags |= coherent ?
1059 AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC;
1060 if (amdgpu_xgmi_same_hive(adev, bo_adev))
1061 snoop = true;
1062 }
1063 } else {
1064 mapping_flags |= coherent ?
1065 AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC;
1066 }
1067 break;
1068 case CHIP_ALDEBARAN:
1069 if (domain == SVM_RANGE_VRAM_DOMAIN) {
1070 if (bo_adev == adev) {
1071 mapping_flags |= coherent ?
1072 AMDGPU_VM_MTYPE_CC : AMDGPU_VM_MTYPE_RW;
1073 if (adev->gmc.xgmi.connected_to_cpu)
1074 snoop = true;
1075 } else {
1076 mapping_flags |= coherent ?
1077 AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC;
1078 if (amdgpu_xgmi_same_hive(adev, bo_adev))
1079 snoop = true;
1080 }
1081 } else {
1082 mapping_flags |= coherent ?
1083 AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC;
1084 }
1085 break;
1086 default:
1087 mapping_flags |= coherent ?
1088 AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC;
1089 }
1090
1091 mapping_flags |= AMDGPU_VM_PAGE_READABLE | AMDGPU_VM_PAGE_WRITEABLE;
1092
1093 if (flags & KFD_IOCTL_SVM_FLAG_GPU_RO)
1094 mapping_flags &= ~AMDGPU_VM_PAGE_WRITEABLE;
1095 if (flags & KFD_IOCTL_SVM_FLAG_GPU_EXEC)
1096 mapping_flags |= AMDGPU_VM_PAGE_EXECUTABLE;
1097
1098 pte_flags = AMDGPU_PTE_VALID;
1099 pte_flags |= (domain == SVM_RANGE_VRAM_DOMAIN) ? 0 : AMDGPU_PTE_SYSTEM;
1100 pte_flags |= snoop ? AMDGPU_PTE_SNOOPED : 0;
1101
1102 pte_flags |= amdgpu_gem_va_map_flags(adev, mapping_flags);
1103 return pte_flags;
1104 }
1105
1106 static int
svm_range_unmap_from_gpu(struct amdgpu_device * adev,struct amdgpu_vm * vm,uint64_t start,uint64_t last,struct dma_fence ** fence)1107 svm_range_unmap_from_gpu(struct amdgpu_device *adev, struct amdgpu_vm *vm,
1108 uint64_t start, uint64_t last,
1109 struct dma_fence **fence)
1110 {
1111 uint64_t init_pte_value = 0;
1112
1113 pr_debug("[0x%llx 0x%llx]\n", start, last);
1114
1115 return amdgpu_vm_bo_update_mapping(adev, adev, vm, false, true, NULL,
1116 start, last, init_pte_value, 0,
1117 NULL, NULL, fence, NULL);
1118 }
1119
1120 static int
svm_range_unmap_from_gpus(struct svm_range * prange,unsigned long start,unsigned long last)1121 svm_range_unmap_from_gpus(struct svm_range *prange, unsigned long start,
1122 unsigned long last)
1123 {
1124 DECLARE_BITMAP(bitmap, MAX_GPU_INSTANCE);
1125 struct kfd_process_device *pdd;
1126 struct dma_fence *fence = NULL;
1127 struct amdgpu_device *adev;
1128 struct kfd_process *p;
1129 uint32_t gpuidx;
1130 int r = 0;
1131
1132 bitmap_or(bitmap, prange->bitmap_access, prange->bitmap_aip,
1133 MAX_GPU_INSTANCE);
1134 p = container_of(prange->svms, struct kfd_process, svms);
1135
1136 for_each_set_bit(gpuidx, bitmap, MAX_GPU_INSTANCE) {
1137 pr_debug("unmap from gpu idx 0x%x\n", gpuidx);
1138 pdd = kfd_process_device_from_gpuidx(p, gpuidx);
1139 if (!pdd) {
1140 pr_debug("failed to find device idx %d\n", gpuidx);
1141 return -EINVAL;
1142 }
1143 adev = (struct amdgpu_device *)pdd->dev->kgd;
1144
1145 r = svm_range_unmap_from_gpu(adev, drm_priv_to_vm(pdd->drm_priv),
1146 start, last, &fence);
1147 if (r)
1148 break;
1149
1150 if (fence) {
1151 r = dma_fence_wait(fence, false);
1152 dma_fence_put(fence);
1153 fence = NULL;
1154 if (r)
1155 break;
1156 }
1157 amdgpu_amdkfd_flush_gpu_tlb_pasid((struct kgd_dev *)adev,
1158 p->pasid, TLB_FLUSH_HEAVYWEIGHT);
1159 }
1160
1161 return r;
1162 }
1163
1164 static int
svm_range_map_to_gpu(struct amdgpu_device * adev,struct amdgpu_vm * vm,struct svm_range * prange,unsigned long offset,unsigned long npages,bool readonly,dma_addr_t * dma_addr,struct amdgpu_device * bo_adev,struct dma_fence ** fence)1165 svm_range_map_to_gpu(struct amdgpu_device *adev, struct amdgpu_vm *vm,
1166 struct svm_range *prange, unsigned long offset,
1167 unsigned long npages, bool readonly, dma_addr_t *dma_addr,
1168 struct amdgpu_device *bo_adev, struct dma_fence **fence)
1169 {
1170 struct amdgpu_bo_va bo_va;
1171 bool table_freed = false;
1172 uint64_t pte_flags;
1173 unsigned long last_start;
1174 int last_domain;
1175 int r = 0;
1176 int64_t i, j;
1177
1178 last_start = prange->start + offset;
1179
1180 pr_debug("svms 0x%p [0x%lx 0x%lx] readonly %d\n", prange->svms,
1181 last_start, last_start + npages - 1, readonly);
1182
1183 if (prange->svm_bo && prange->ttm_res)
1184 bo_va.is_xgmi = amdgpu_xgmi_same_hive(adev, bo_adev);
1185
1186 for (i = offset; i < offset + npages; i++) {
1187 last_domain = dma_addr[i] & SVM_RANGE_VRAM_DOMAIN;
1188 dma_addr[i] &= ~SVM_RANGE_VRAM_DOMAIN;
1189
1190 /* Collect all pages in the same address range and memory domain
1191 * that can be mapped with a single call to update mapping.
1192 */
1193 if (i < offset + npages - 1 &&
1194 last_domain == (dma_addr[i + 1] & SVM_RANGE_VRAM_DOMAIN))
1195 continue;
1196
1197 pr_debug("Mapping range [0x%lx 0x%llx] on domain: %s\n",
1198 last_start, prange->start + i, last_domain ? "GPU" : "CPU");
1199
1200 pte_flags = svm_range_get_pte_flags(adev, prange, last_domain);
1201 if (readonly)
1202 pte_flags &= ~AMDGPU_PTE_WRITEABLE;
1203
1204 pr_debug("svms 0x%p map [0x%lx 0x%llx] vram %d PTE 0x%llx\n",
1205 prange->svms, last_start, prange->start + i,
1206 (last_domain == SVM_RANGE_VRAM_DOMAIN) ? 1 : 0,
1207 pte_flags);
1208
1209 r = amdgpu_vm_bo_update_mapping(adev, bo_adev, vm, false, false,
1210 NULL, last_start,
1211 prange->start + i, pte_flags,
1212 last_start - prange->start,
1213 NULL, dma_addr,
1214 &vm->last_update,
1215 &table_freed);
1216
1217 for (j = last_start - prange->start; j <= i; j++)
1218 dma_addr[j] |= last_domain;
1219
1220 if (r) {
1221 pr_debug("failed %d to map to gpu 0x%lx\n", r, prange->start);
1222 goto out;
1223 }
1224 last_start = prange->start + i + 1;
1225 }
1226
1227 r = amdgpu_vm_update_pdes(adev, vm, false);
1228 if (r) {
1229 pr_debug("failed %d to update directories 0x%lx\n", r,
1230 prange->start);
1231 goto out;
1232 }
1233
1234 if (fence)
1235 *fence = dma_fence_get(vm->last_update);
1236
1237 if (table_freed) {
1238 struct kfd_process *p;
1239
1240 p = container_of(prange->svms, struct kfd_process, svms);
1241 amdgpu_amdkfd_flush_gpu_tlb_pasid((struct kgd_dev *)adev,
1242 p->pasid, TLB_FLUSH_LEGACY);
1243 }
1244 out:
1245 return r;
1246 }
1247
1248 static int
svm_range_map_to_gpus(struct svm_range * prange,unsigned long offset,unsigned long npages,bool readonly,unsigned long * bitmap,bool wait)1249 svm_range_map_to_gpus(struct svm_range *prange, unsigned long offset,
1250 unsigned long npages, bool readonly,
1251 unsigned long *bitmap, bool wait)
1252 {
1253 struct kfd_process_device *pdd;
1254 struct amdgpu_device *bo_adev;
1255 struct amdgpu_device *adev;
1256 struct kfd_process *p;
1257 struct dma_fence *fence = NULL;
1258 uint32_t gpuidx;
1259 int r = 0;
1260
1261 if (prange->svm_bo && prange->ttm_res)
1262 bo_adev = amdgpu_ttm_adev(prange->svm_bo->bo->tbo.bdev);
1263 else
1264 bo_adev = NULL;
1265
1266 p = container_of(prange->svms, struct kfd_process, svms);
1267 for_each_set_bit(gpuidx, bitmap, MAX_GPU_INSTANCE) {
1268 pr_debug("mapping to gpu idx 0x%x\n", gpuidx);
1269 pdd = kfd_process_device_from_gpuidx(p, gpuidx);
1270 if (!pdd) {
1271 pr_debug("failed to find device idx %d\n", gpuidx);
1272 return -EINVAL;
1273 }
1274 adev = (struct amdgpu_device *)pdd->dev->kgd;
1275
1276 pdd = kfd_bind_process_to_device(pdd->dev, p);
1277 if (IS_ERR(pdd))
1278 return -EINVAL;
1279
1280 if (bo_adev && adev != bo_adev &&
1281 !amdgpu_xgmi_same_hive(adev, bo_adev)) {
1282 pr_debug("cannot map to device idx %d\n", gpuidx);
1283 continue;
1284 }
1285
1286 r = svm_range_map_to_gpu(adev, drm_priv_to_vm(pdd->drm_priv),
1287 prange, offset, npages, readonly,
1288 prange->dma_addr[gpuidx],
1289 bo_adev, wait ? &fence : NULL);
1290 if (r)
1291 break;
1292
1293 if (fence) {
1294 r = dma_fence_wait(fence, false);
1295 dma_fence_put(fence);
1296 fence = NULL;
1297 if (r) {
1298 pr_debug("failed %d to dma fence wait\n", r);
1299 break;
1300 }
1301 }
1302 }
1303
1304 return r;
1305 }
1306
1307 struct svm_validate_context {
1308 struct kfd_process *process;
1309 struct svm_range *prange;
1310 bool intr;
1311 unsigned long bitmap[MAX_GPU_INSTANCE];
1312 struct ttm_validate_buffer tv[MAX_GPU_INSTANCE];
1313 struct list_head validate_list;
1314 struct ww_acquire_ctx ticket;
1315 };
1316
svm_range_reserve_bos(struct svm_validate_context * ctx)1317 static int svm_range_reserve_bos(struct svm_validate_context *ctx)
1318 {
1319 struct kfd_process_device *pdd;
1320 struct amdgpu_device *adev;
1321 struct amdgpu_vm *vm;
1322 uint32_t gpuidx;
1323 int r;
1324
1325 INIT_LIST_HEAD(&ctx->validate_list);
1326 for_each_set_bit(gpuidx, ctx->bitmap, MAX_GPU_INSTANCE) {
1327 pdd = kfd_process_device_from_gpuidx(ctx->process, gpuidx);
1328 if (!pdd) {
1329 pr_debug("failed to find device idx %d\n", gpuidx);
1330 return -EINVAL;
1331 }
1332 adev = (struct amdgpu_device *)pdd->dev->kgd;
1333 vm = drm_priv_to_vm(pdd->drm_priv);
1334
1335 ctx->tv[gpuidx].bo = &vm->root.bo->tbo;
1336 ctx->tv[gpuidx].num_shared = 4;
1337 list_add(&ctx->tv[gpuidx].head, &ctx->validate_list);
1338 }
1339
1340 r = ttm_eu_reserve_buffers(&ctx->ticket, &ctx->validate_list,
1341 ctx->intr, NULL);
1342 if (r) {
1343 pr_debug("failed %d to reserve bo\n", r);
1344 return r;
1345 }
1346
1347 for_each_set_bit(gpuidx, ctx->bitmap, MAX_GPU_INSTANCE) {
1348 pdd = kfd_process_device_from_gpuidx(ctx->process, gpuidx);
1349 if (!pdd) {
1350 pr_debug("failed to find device idx %d\n", gpuidx);
1351 r = -EINVAL;
1352 goto unreserve_out;
1353 }
1354 adev = (struct amdgpu_device *)pdd->dev->kgd;
1355
1356 r = amdgpu_vm_validate_pt_bos(adev, drm_priv_to_vm(pdd->drm_priv),
1357 svm_range_bo_validate, NULL);
1358 if (r) {
1359 pr_debug("failed %d validate pt bos\n", r);
1360 goto unreserve_out;
1361 }
1362 }
1363
1364 return 0;
1365
1366 unreserve_out:
1367 ttm_eu_backoff_reservation(&ctx->ticket, &ctx->validate_list);
1368 return r;
1369 }
1370
svm_range_unreserve_bos(struct svm_validate_context * ctx)1371 static void svm_range_unreserve_bos(struct svm_validate_context *ctx)
1372 {
1373 ttm_eu_backoff_reservation(&ctx->ticket, &ctx->validate_list);
1374 }
1375
kfd_svm_page_owner(struct kfd_process * p,int32_t gpuidx)1376 static void *kfd_svm_page_owner(struct kfd_process *p, int32_t gpuidx)
1377 {
1378 struct kfd_process_device *pdd;
1379 struct amdgpu_device *adev;
1380
1381 pdd = kfd_process_device_from_gpuidx(p, gpuidx);
1382 adev = (struct amdgpu_device *)pdd->dev->kgd;
1383
1384 return SVM_ADEV_PGMAP_OWNER(adev);
1385 }
1386
1387 /*
1388 * Validation+GPU mapping with concurrent invalidation (MMU notifiers)
1389 *
1390 * To prevent concurrent destruction or change of range attributes, the
1391 * svm_read_lock must be held. The caller must not hold the svm_write_lock
1392 * because that would block concurrent evictions and lead to deadlocks. To
1393 * serialize concurrent migrations or validations of the same range, the
1394 * prange->migrate_mutex must be held.
1395 *
1396 * For VRAM ranges, the SVM BO must be allocated and valid (protected by its
1397 * eviction fence.
1398 *
1399 * The following sequence ensures race-free validation and GPU mapping:
1400 *
1401 * 1. Reserve page table (and SVM BO if range is in VRAM)
1402 * 2. hmm_range_fault to get page addresses (if system memory)
1403 * 3. DMA-map pages (if system memory)
1404 * 4-a. Take notifier lock
1405 * 4-b. Check that pages still valid (mmu_interval_read_retry)
1406 * 4-c. Check that the range was not split or otherwise invalidated
1407 * 4-d. Update GPU page table
1408 * 4.e. Release notifier lock
1409 * 5. Release page table (and SVM BO) reservation
1410 */
svm_range_validate_and_map(struct mm_struct * mm,struct svm_range * prange,int32_t gpuidx,bool intr,bool wait)1411 static int svm_range_validate_and_map(struct mm_struct *mm,
1412 struct svm_range *prange,
1413 int32_t gpuidx, bool intr, bool wait)
1414 {
1415 struct svm_validate_context ctx;
1416 unsigned long start, end, addr;
1417 struct kfd_process *p;
1418 void *owner;
1419 int32_t idx;
1420 int r = 0;
1421
1422 ctx.process = container_of(prange->svms, struct kfd_process, svms);
1423 ctx.prange = prange;
1424 ctx.intr = intr;
1425
1426 if (gpuidx < MAX_GPU_INSTANCE) {
1427 bitmap_zero(ctx.bitmap, MAX_GPU_INSTANCE);
1428 bitmap_set(ctx.bitmap, gpuidx, 1);
1429 } else if (ctx.process->xnack_enabled) {
1430 bitmap_copy(ctx.bitmap, prange->bitmap_aip, MAX_GPU_INSTANCE);
1431
1432 /* If prefetch range to GPU, or GPU retry fault migrate range to
1433 * GPU, which has ACCESS attribute to the range, create mapping
1434 * on that GPU.
1435 */
1436 if (prange->actual_loc) {
1437 gpuidx = kfd_process_gpuidx_from_gpuid(ctx.process,
1438 prange->actual_loc);
1439 if (gpuidx < 0) {
1440 WARN_ONCE(1, "failed get device by id 0x%x\n",
1441 prange->actual_loc);
1442 return -EINVAL;
1443 }
1444 if (test_bit(gpuidx, prange->bitmap_access))
1445 bitmap_set(ctx.bitmap, gpuidx, 1);
1446 }
1447 } else {
1448 bitmap_or(ctx.bitmap, prange->bitmap_access,
1449 prange->bitmap_aip, MAX_GPU_INSTANCE);
1450 }
1451
1452 if (bitmap_empty(ctx.bitmap, MAX_GPU_INSTANCE))
1453 return 0;
1454
1455 if (prange->actual_loc && !prange->ttm_res) {
1456 /* This should never happen. actual_loc gets set by
1457 * svm_migrate_ram_to_vram after allocating a BO.
1458 */
1459 WARN(1, "VRAM BO missing during validation\n");
1460 return -EINVAL;
1461 }
1462
1463 svm_range_reserve_bos(&ctx);
1464
1465 p = container_of(prange->svms, struct kfd_process, svms);
1466 owner = kfd_svm_page_owner(p, find_first_bit(ctx.bitmap,
1467 MAX_GPU_INSTANCE));
1468 for_each_set_bit(idx, ctx.bitmap, MAX_GPU_INSTANCE) {
1469 if (kfd_svm_page_owner(p, idx) != owner) {
1470 owner = NULL;
1471 break;
1472 }
1473 }
1474
1475 start = prange->start << PAGE_SHIFT;
1476 end = (prange->last + 1) << PAGE_SHIFT;
1477 for (addr = start; addr < end && !r; ) {
1478 struct hmm_range *hmm_range;
1479 struct vm_area_struct *vma;
1480 unsigned long next;
1481 unsigned long offset;
1482 unsigned long npages;
1483 bool readonly;
1484
1485 vma = find_vma(mm, addr);
1486 if (!vma || addr < vma->vm_start) {
1487 r = -EFAULT;
1488 goto unreserve_out;
1489 }
1490 readonly = !(vma->vm_flags & VM_WRITE);
1491
1492 next = min(vma->vm_end, end);
1493 npages = (next - addr) >> PAGE_SHIFT;
1494 WRITE_ONCE(p->svms.faulting_task, current);
1495 r = amdgpu_hmm_range_get_pages(&prange->notifier, mm, NULL,
1496 addr, npages, &hmm_range,
1497 readonly, true, owner);
1498 WRITE_ONCE(p->svms.faulting_task, NULL);
1499 if (r) {
1500 pr_debug("failed %d to get svm range pages\n", r);
1501 goto unreserve_out;
1502 }
1503
1504 offset = (addr - start) >> PAGE_SHIFT;
1505 r = svm_range_dma_map(prange, ctx.bitmap, offset, npages,
1506 hmm_range->hmm_pfns);
1507 if (r) {
1508 pr_debug("failed %d to dma map range\n", r);
1509 goto unreserve_out;
1510 }
1511
1512 svm_range_lock(prange);
1513 if (amdgpu_hmm_range_get_pages_done(hmm_range)) {
1514 pr_debug("hmm update the range, need validate again\n");
1515 r = -EAGAIN;
1516 goto unlock_out;
1517 }
1518 if (!list_empty(&prange->child_list)) {
1519 pr_debug("range split by unmap in parallel, validate again\n");
1520 r = -EAGAIN;
1521 goto unlock_out;
1522 }
1523
1524 r = svm_range_map_to_gpus(prange, offset, npages, readonly,
1525 ctx.bitmap, wait);
1526
1527 unlock_out:
1528 svm_range_unlock(prange);
1529
1530 addr = next;
1531 }
1532
1533 if (addr == end)
1534 prange->validated_once = true;
1535
1536 unreserve_out:
1537 svm_range_unreserve_bos(&ctx);
1538
1539 if (!r)
1540 prange->validate_timestamp = ktime_to_us(ktime_get());
1541
1542 return r;
1543 }
1544
1545 /**
1546 * svm_range_list_lock_and_flush_work - flush pending deferred work
1547 *
1548 * @svms: the svm range list
1549 * @mm: the mm structure
1550 *
1551 * Context: Returns with mmap write lock held, pending deferred work flushed
1552 *
1553 */
1554 static void
svm_range_list_lock_and_flush_work(struct svm_range_list * svms,struct mm_struct * mm)1555 svm_range_list_lock_and_flush_work(struct svm_range_list *svms,
1556 struct mm_struct *mm)
1557 {
1558 retry_flush_work:
1559 flush_work(&svms->deferred_list_work);
1560 mmap_write_lock(mm);
1561
1562 if (list_empty(&svms->deferred_range_list))
1563 return;
1564 mmap_write_unlock(mm);
1565 pr_debug("retry flush\n");
1566 goto retry_flush_work;
1567 }
1568
svm_range_restore_work(struct work_struct * work)1569 static void svm_range_restore_work(struct work_struct *work)
1570 {
1571 struct delayed_work *dwork = to_delayed_work(work);
1572 struct svm_range_list *svms;
1573 struct svm_range *prange;
1574 struct kfd_process *p;
1575 struct mm_struct *mm;
1576 int evicted_ranges;
1577 int invalid;
1578 int r;
1579
1580 svms = container_of(dwork, struct svm_range_list, restore_work);
1581 evicted_ranges = atomic_read(&svms->evicted_ranges);
1582 if (!evicted_ranges)
1583 return;
1584
1585 pr_debug("restore svm ranges\n");
1586
1587 /* kfd_process_notifier_release destroys this worker thread. So during
1588 * the lifetime of this thread, kfd_process and mm will be valid.
1589 */
1590 p = container_of(svms, struct kfd_process, svms);
1591 mm = p->mm;
1592 if (!mm)
1593 return;
1594
1595 svm_range_list_lock_and_flush_work(svms, mm);
1596 mutex_lock(&svms->lock);
1597
1598 evicted_ranges = atomic_read(&svms->evicted_ranges);
1599
1600 list_for_each_entry(prange, &svms->list, list) {
1601 invalid = atomic_read(&prange->invalid);
1602 if (!invalid)
1603 continue;
1604
1605 pr_debug("restoring svms 0x%p prange 0x%p [0x%lx %lx] inv %d\n",
1606 prange->svms, prange, prange->start, prange->last,
1607 invalid);
1608
1609 /*
1610 * If range is migrating, wait for migration is done.
1611 */
1612 mutex_lock(&prange->migrate_mutex);
1613
1614 r = svm_range_validate_and_map(mm, prange, MAX_GPU_INSTANCE,
1615 false, true);
1616 if (r)
1617 pr_debug("failed %d to map 0x%lx to gpus\n", r,
1618 prange->start);
1619
1620 mutex_unlock(&prange->migrate_mutex);
1621 if (r)
1622 goto out_reschedule;
1623
1624 if (atomic_cmpxchg(&prange->invalid, invalid, 0) != invalid)
1625 goto out_reschedule;
1626 }
1627
1628 if (atomic_cmpxchg(&svms->evicted_ranges, evicted_ranges, 0) !=
1629 evicted_ranges)
1630 goto out_reschedule;
1631
1632 evicted_ranges = 0;
1633
1634 r = kgd2kfd_resume_mm(mm);
1635 if (r) {
1636 /* No recovery from this failure. Probably the CP is
1637 * hanging. No point trying again.
1638 */
1639 pr_debug("failed %d to resume KFD\n", r);
1640 }
1641
1642 pr_debug("restore svm ranges successfully\n");
1643
1644 out_reschedule:
1645 mutex_unlock(&svms->lock);
1646 mmap_write_unlock(mm);
1647
1648 /* If validation failed, reschedule another attempt */
1649 if (evicted_ranges) {
1650 pr_debug("reschedule to restore svm range\n");
1651 schedule_delayed_work(&svms->restore_work,
1652 msecs_to_jiffies(AMDGPU_SVM_RANGE_RESTORE_DELAY_MS));
1653 }
1654 }
1655
1656 /**
1657 * svm_range_evict - evict svm range
1658 *
1659 * Stop all queues of the process to ensure GPU doesn't access the memory, then
1660 * return to let CPU evict the buffer and proceed CPU pagetable update.
1661 *
1662 * Don't need use lock to sync cpu pagetable invalidation with GPU execution.
1663 * If invalidation happens while restore work is running, restore work will
1664 * restart to ensure to get the latest CPU pages mapping to GPU, then start
1665 * the queues.
1666 */
1667 static int
svm_range_evict(struct svm_range * prange,struct mm_struct * mm,unsigned long start,unsigned long last)1668 svm_range_evict(struct svm_range *prange, struct mm_struct *mm,
1669 unsigned long start, unsigned long last)
1670 {
1671 struct svm_range_list *svms = prange->svms;
1672 struct svm_range *pchild;
1673 struct kfd_process *p;
1674 int r = 0;
1675
1676 p = container_of(svms, struct kfd_process, svms);
1677
1678 pr_debug("invalidate svms 0x%p prange [0x%lx 0x%lx] [0x%lx 0x%lx]\n",
1679 svms, prange->start, prange->last, start, last);
1680
1681 if (!p->xnack_enabled) {
1682 int evicted_ranges;
1683
1684 list_for_each_entry(pchild, &prange->child_list, child_list) {
1685 mutex_lock_nested(&pchild->lock, 1);
1686 if (pchild->start <= last && pchild->last >= start) {
1687 pr_debug("increment pchild invalid [0x%lx 0x%lx]\n",
1688 pchild->start, pchild->last);
1689 atomic_inc(&pchild->invalid);
1690 }
1691 mutex_unlock(&pchild->lock);
1692 }
1693
1694 if (prange->start <= last && prange->last >= start)
1695 atomic_inc(&prange->invalid);
1696
1697 evicted_ranges = atomic_inc_return(&svms->evicted_ranges);
1698 if (evicted_ranges != 1)
1699 return r;
1700
1701 pr_debug("evicting svms 0x%p range [0x%lx 0x%lx]\n",
1702 prange->svms, prange->start, prange->last);
1703
1704 /* First eviction, stop the queues */
1705 r = kgd2kfd_quiesce_mm(mm);
1706 if (r)
1707 pr_debug("failed to quiesce KFD\n");
1708
1709 pr_debug("schedule to restore svm %p ranges\n", svms);
1710 schedule_delayed_work(&svms->restore_work,
1711 msecs_to_jiffies(AMDGPU_SVM_RANGE_RESTORE_DELAY_MS));
1712 } else {
1713 unsigned long s, l;
1714
1715 pr_debug("invalidate unmap svms 0x%p [0x%lx 0x%lx] from GPUs\n",
1716 prange->svms, start, last);
1717 list_for_each_entry(pchild, &prange->child_list, child_list) {
1718 mutex_lock_nested(&pchild->lock, 1);
1719 s = max(start, pchild->start);
1720 l = min(last, pchild->last);
1721 if (l >= s)
1722 svm_range_unmap_from_gpus(pchild, s, l);
1723 mutex_unlock(&pchild->lock);
1724 }
1725 s = max(start, prange->start);
1726 l = min(last, prange->last);
1727 if (l >= s)
1728 svm_range_unmap_from_gpus(prange, s, l);
1729 }
1730
1731 return r;
1732 }
1733
svm_range_clone(struct svm_range * old)1734 static struct svm_range *svm_range_clone(struct svm_range *old)
1735 {
1736 struct svm_range *new;
1737
1738 new = svm_range_new(old->svms, old->start, old->last);
1739 if (!new)
1740 return NULL;
1741
1742 if (old->svm_bo) {
1743 new->ttm_res = old->ttm_res;
1744 new->offset = old->offset;
1745 new->svm_bo = svm_range_bo_ref(old->svm_bo);
1746 spin_lock(&new->svm_bo->list_lock);
1747 list_add(&new->svm_bo_list, &new->svm_bo->range_list);
1748 spin_unlock(&new->svm_bo->list_lock);
1749 }
1750 new->flags = old->flags;
1751 new->preferred_loc = old->preferred_loc;
1752 new->prefetch_loc = old->prefetch_loc;
1753 new->actual_loc = old->actual_loc;
1754 new->granularity = old->granularity;
1755 bitmap_copy(new->bitmap_access, old->bitmap_access, MAX_GPU_INSTANCE);
1756 bitmap_copy(new->bitmap_aip, old->bitmap_aip, MAX_GPU_INSTANCE);
1757
1758 return new;
1759 }
1760
1761 /**
1762 * svm_range_add - add svm range and handle overlap
1763 * @p: the range add to this process svms
1764 * @start: page size aligned
1765 * @size: page size aligned
1766 * @nattr: number of attributes
1767 * @attrs: array of attributes
1768 * @update_list: output, the ranges need validate and update GPU mapping
1769 * @insert_list: output, the ranges need insert to svms
1770 * @remove_list: output, the ranges are replaced and need remove from svms
1771 *
1772 * Check if the virtual address range has overlap with any existing ranges,
1773 * split partly overlapping ranges and add new ranges in the gaps. All changes
1774 * should be applied to the range_list and interval tree transactionally. If
1775 * any range split or allocation fails, the entire update fails. Therefore any
1776 * existing overlapping svm_ranges are cloned and the original svm_ranges left
1777 * unchanged.
1778 *
1779 * If the transaction succeeds, the caller can update and insert clones and
1780 * new ranges, then free the originals.
1781 *
1782 * Otherwise the caller can free the clones and new ranges, while the old
1783 * svm_ranges remain unchanged.
1784 *
1785 * Context: Process context, caller must hold svms->lock
1786 *
1787 * Return:
1788 * 0 - OK, otherwise error code
1789 */
1790 static int
svm_range_add(struct kfd_process * p,uint64_t start,uint64_t size,uint32_t nattr,struct kfd_ioctl_svm_attribute * attrs,struct list_head * update_list,struct list_head * insert_list,struct list_head * remove_list)1791 svm_range_add(struct kfd_process *p, uint64_t start, uint64_t size,
1792 uint32_t nattr, struct kfd_ioctl_svm_attribute *attrs,
1793 struct list_head *update_list, struct list_head *insert_list,
1794 struct list_head *remove_list)
1795 {
1796 unsigned long last = start + size - 1UL;
1797 struct svm_range_list *svms = &p->svms;
1798 struct interval_tree_node *node;
1799 struct svm_range new = {0};
1800 struct svm_range *prange;
1801 struct svm_range *tmp;
1802 int r = 0;
1803
1804 pr_debug("svms 0x%p [0x%llx 0x%lx]\n", &p->svms, start, last);
1805
1806 INIT_LIST_HEAD(update_list);
1807 INIT_LIST_HEAD(insert_list);
1808 INIT_LIST_HEAD(remove_list);
1809 svm_range_apply_attrs(p, &new, nattr, attrs);
1810
1811 node = interval_tree_iter_first(&svms->objects, start, last);
1812 while (node) {
1813 struct interval_tree_node *next;
1814 struct svm_range *old;
1815 unsigned long next_start;
1816
1817 pr_debug("found overlap node [0x%lx 0x%lx]\n", node->start,
1818 node->last);
1819
1820 old = container_of(node, struct svm_range, it_node);
1821 next = interval_tree_iter_next(node, start, last);
1822 next_start = min(node->last, last) + 1;
1823
1824 if (node->start < start || node->last > last) {
1825 /* node intersects the updated range, clone+split it */
1826 prange = svm_range_clone(old);
1827 if (!prange) {
1828 r = -ENOMEM;
1829 goto out;
1830 }
1831
1832 list_add(&old->remove_list, remove_list);
1833 list_add(&prange->insert_list, insert_list);
1834
1835 if (node->start < start) {
1836 pr_debug("change old range start\n");
1837 r = svm_range_split_head(prange, start,
1838 insert_list);
1839 if (r)
1840 goto out;
1841 }
1842 if (node->last > last) {
1843 pr_debug("change old range last\n");
1844 r = svm_range_split_tail(prange, last,
1845 insert_list);
1846 if (r)
1847 goto out;
1848 }
1849 } else {
1850 /* The node is contained within start..last,
1851 * just update it
1852 */
1853 prange = old;
1854 }
1855
1856 if (!svm_range_is_same_attrs(prange, &new))
1857 list_add(&prange->update_list, update_list);
1858
1859 /* insert a new node if needed */
1860 if (node->start > start) {
1861 prange = svm_range_new(prange->svms, start,
1862 node->start - 1);
1863 if (!prange) {
1864 r = -ENOMEM;
1865 goto out;
1866 }
1867
1868 list_add(&prange->insert_list, insert_list);
1869 list_add(&prange->update_list, update_list);
1870 }
1871
1872 node = next;
1873 start = next_start;
1874 }
1875
1876 /* add a final range at the end if needed */
1877 if (start <= last) {
1878 prange = svm_range_new(svms, start, last);
1879 if (!prange) {
1880 r = -ENOMEM;
1881 goto out;
1882 }
1883 list_add(&prange->insert_list, insert_list);
1884 list_add(&prange->update_list, update_list);
1885 }
1886
1887 out:
1888 if (r)
1889 list_for_each_entry_safe(prange, tmp, insert_list, insert_list)
1890 svm_range_free(prange);
1891
1892 return r;
1893 }
1894
1895 static void
svm_range_update_notifier_and_interval_tree(struct mm_struct * mm,struct svm_range * prange)1896 svm_range_update_notifier_and_interval_tree(struct mm_struct *mm,
1897 struct svm_range *prange)
1898 {
1899 unsigned long start;
1900 unsigned long last;
1901
1902 start = prange->notifier.interval_tree.start >> PAGE_SHIFT;
1903 last = prange->notifier.interval_tree.last >> PAGE_SHIFT;
1904
1905 if (prange->start == start && prange->last == last)
1906 return;
1907
1908 pr_debug("up notifier 0x%p prange 0x%p [0x%lx 0x%lx] [0x%lx 0x%lx]\n",
1909 prange->svms, prange, start, last, prange->start,
1910 prange->last);
1911
1912 if (start != 0 && last != 0) {
1913 interval_tree_remove(&prange->it_node, &prange->svms->objects);
1914 svm_range_remove_notifier(prange);
1915 }
1916 prange->it_node.start = prange->start;
1917 prange->it_node.last = prange->last;
1918
1919 interval_tree_insert(&prange->it_node, &prange->svms->objects);
1920 svm_range_add_notifier_locked(mm, prange);
1921 }
1922
1923 static void
svm_range_handle_list_op(struct svm_range_list * svms,struct svm_range * prange)1924 svm_range_handle_list_op(struct svm_range_list *svms, struct svm_range *prange)
1925 {
1926 struct mm_struct *mm = prange->work_item.mm;
1927
1928 switch (prange->work_item.op) {
1929 case SVM_OP_NULL:
1930 pr_debug("NULL OP 0x%p prange 0x%p [0x%lx 0x%lx]\n",
1931 svms, prange, prange->start, prange->last);
1932 break;
1933 case SVM_OP_UNMAP_RANGE:
1934 pr_debug("remove 0x%p prange 0x%p [0x%lx 0x%lx]\n",
1935 svms, prange, prange->start, prange->last);
1936 svm_range_unlink(prange);
1937 svm_range_remove_notifier(prange);
1938 svm_range_free(prange);
1939 break;
1940 case SVM_OP_UPDATE_RANGE_NOTIFIER:
1941 pr_debug("update notifier 0x%p prange 0x%p [0x%lx 0x%lx]\n",
1942 svms, prange, prange->start, prange->last);
1943 svm_range_update_notifier_and_interval_tree(mm, prange);
1944 break;
1945 case SVM_OP_UPDATE_RANGE_NOTIFIER_AND_MAP:
1946 pr_debug("update and map 0x%p prange 0x%p [0x%lx 0x%lx]\n",
1947 svms, prange, prange->start, prange->last);
1948 svm_range_update_notifier_and_interval_tree(mm, prange);
1949 /* TODO: implement deferred validation and mapping */
1950 break;
1951 case SVM_OP_ADD_RANGE:
1952 pr_debug("add 0x%p prange 0x%p [0x%lx 0x%lx]\n", svms, prange,
1953 prange->start, prange->last);
1954 svm_range_add_to_svms(prange);
1955 svm_range_add_notifier_locked(mm, prange);
1956 break;
1957 case SVM_OP_ADD_RANGE_AND_MAP:
1958 pr_debug("add and map 0x%p prange 0x%p [0x%lx 0x%lx]\n", svms,
1959 prange, prange->start, prange->last);
1960 svm_range_add_to_svms(prange);
1961 svm_range_add_notifier_locked(mm, prange);
1962 /* TODO: implement deferred validation and mapping */
1963 break;
1964 default:
1965 WARN_ONCE(1, "Unknown prange 0x%p work op %d\n", prange,
1966 prange->work_item.op);
1967 }
1968 }
1969
svm_range_drain_retry_fault(struct svm_range_list * svms)1970 static void svm_range_drain_retry_fault(struct svm_range_list *svms)
1971 {
1972 struct kfd_process_device *pdd;
1973 struct amdgpu_device *adev;
1974 struct kfd_process *p;
1975 uint32_t i;
1976
1977 p = container_of(svms, struct kfd_process, svms);
1978
1979 for_each_set_bit(i, svms->bitmap_supported, p->n_pdds) {
1980 pdd = p->pdds[i];
1981 if (!pdd)
1982 continue;
1983
1984 pr_debug("drain retry fault gpu %d svms %p\n", i, svms);
1985 adev = (struct amdgpu_device *)pdd->dev->kgd;
1986
1987 amdgpu_ih_wait_on_checkpoint_process(adev, &adev->irq.ih1);
1988 pr_debug("drain retry fault gpu %d svms 0x%p done\n", i, svms);
1989 }
1990 }
1991
svm_range_deferred_list_work(struct work_struct * work)1992 static void svm_range_deferred_list_work(struct work_struct *work)
1993 {
1994 struct svm_range_list *svms;
1995 struct svm_range *prange;
1996 struct mm_struct *mm;
1997
1998 svms = container_of(work, struct svm_range_list, deferred_list_work);
1999 pr_debug("enter svms 0x%p\n", svms);
2000
2001 spin_lock(&svms->deferred_list_lock);
2002 while (!list_empty(&svms->deferred_range_list)) {
2003 prange = list_first_entry(&svms->deferred_range_list,
2004 struct svm_range, deferred_list);
2005 spin_unlock(&svms->deferred_list_lock);
2006 pr_debug("prange 0x%p [0x%lx 0x%lx] op %d\n", prange,
2007 prange->start, prange->last, prange->work_item.op);
2008
2009 /* Make sure no stale retry fault coming after range is freed */
2010 if (prange->work_item.op == SVM_OP_UNMAP_RANGE)
2011 svm_range_drain_retry_fault(prange->svms);
2012
2013 mm = prange->work_item.mm;
2014 mmap_write_lock(mm);
2015 mutex_lock(&svms->lock);
2016
2017 /* Remove from deferred_list must be inside mmap write lock,
2018 * otherwise, svm_range_list_lock_and_flush_work may hold mmap
2019 * write lock, and continue because deferred_list is empty, then
2020 * deferred_list handle is blocked by mmap write lock.
2021 */
2022 spin_lock(&svms->deferred_list_lock);
2023 list_del_init(&prange->deferred_list);
2024 spin_unlock(&svms->deferred_list_lock);
2025
2026 mutex_lock(&prange->migrate_mutex);
2027 while (!list_empty(&prange->child_list)) {
2028 struct svm_range *pchild;
2029
2030 pchild = list_first_entry(&prange->child_list,
2031 struct svm_range, child_list);
2032 pr_debug("child prange 0x%p op %d\n", pchild,
2033 pchild->work_item.op);
2034 list_del_init(&pchild->child_list);
2035 svm_range_handle_list_op(svms, pchild);
2036 }
2037 mutex_unlock(&prange->migrate_mutex);
2038
2039 svm_range_handle_list_op(svms, prange);
2040 mutex_unlock(&svms->lock);
2041 mmap_write_unlock(mm);
2042
2043 spin_lock(&svms->deferred_list_lock);
2044 }
2045 spin_unlock(&svms->deferred_list_lock);
2046
2047 pr_debug("exit svms 0x%p\n", svms);
2048 }
2049
2050 void
svm_range_add_list_work(struct svm_range_list * svms,struct svm_range * prange,struct mm_struct * mm,enum svm_work_list_ops op)2051 svm_range_add_list_work(struct svm_range_list *svms, struct svm_range *prange,
2052 struct mm_struct *mm, enum svm_work_list_ops op)
2053 {
2054 spin_lock(&svms->deferred_list_lock);
2055 /* if prange is on the deferred list */
2056 if (!list_empty(&prange->deferred_list)) {
2057 pr_debug("update exist prange 0x%p work op %d\n", prange, op);
2058 WARN_ONCE(prange->work_item.mm != mm, "unmatch mm\n");
2059 if (op != SVM_OP_NULL &&
2060 prange->work_item.op != SVM_OP_UNMAP_RANGE)
2061 prange->work_item.op = op;
2062 } else {
2063 prange->work_item.op = op;
2064 prange->work_item.mm = mm;
2065 list_add_tail(&prange->deferred_list,
2066 &prange->svms->deferred_range_list);
2067 pr_debug("add prange 0x%p [0x%lx 0x%lx] to work list op %d\n",
2068 prange, prange->start, prange->last, op);
2069 }
2070 spin_unlock(&svms->deferred_list_lock);
2071 }
2072
schedule_deferred_list_work(struct svm_range_list * svms)2073 void schedule_deferred_list_work(struct svm_range_list *svms)
2074 {
2075 spin_lock(&svms->deferred_list_lock);
2076 if (!list_empty(&svms->deferred_range_list))
2077 schedule_work(&svms->deferred_list_work);
2078 spin_unlock(&svms->deferred_list_lock);
2079 }
2080
2081 static void
svm_range_unmap_split(struct mm_struct * mm,struct svm_range * parent,struct svm_range * prange,unsigned long start,unsigned long last)2082 svm_range_unmap_split(struct mm_struct *mm, struct svm_range *parent,
2083 struct svm_range *prange, unsigned long start,
2084 unsigned long last)
2085 {
2086 struct svm_range *head;
2087 struct svm_range *tail;
2088
2089 if (prange->work_item.op == SVM_OP_UNMAP_RANGE) {
2090 pr_debug("prange 0x%p [0x%lx 0x%lx] is already freed\n", prange,
2091 prange->start, prange->last);
2092 return;
2093 }
2094 if (start > prange->last || last < prange->start)
2095 return;
2096
2097 head = tail = prange;
2098 if (start > prange->start)
2099 svm_range_split(prange, prange->start, start - 1, &tail);
2100 if (last < tail->last)
2101 svm_range_split(tail, last + 1, tail->last, &head);
2102
2103 if (head != prange && tail != prange) {
2104 svm_range_add_child(parent, mm, head, SVM_OP_UNMAP_RANGE);
2105 svm_range_add_child(parent, mm, tail, SVM_OP_ADD_RANGE);
2106 } else if (tail != prange) {
2107 svm_range_add_child(parent, mm, tail, SVM_OP_UNMAP_RANGE);
2108 } else if (head != prange) {
2109 svm_range_add_child(parent, mm, head, SVM_OP_UNMAP_RANGE);
2110 } else if (parent != prange) {
2111 prange->work_item.op = SVM_OP_UNMAP_RANGE;
2112 }
2113 }
2114
2115 static void
svm_range_unmap_from_cpu(struct mm_struct * mm,struct svm_range * prange,unsigned long start,unsigned long last)2116 svm_range_unmap_from_cpu(struct mm_struct *mm, struct svm_range *prange,
2117 unsigned long start, unsigned long last)
2118 {
2119 struct svm_range_list *svms;
2120 struct svm_range *pchild;
2121 struct kfd_process *p;
2122 unsigned long s, l;
2123 bool unmap_parent;
2124
2125 p = kfd_lookup_process_by_mm(mm);
2126 if (!p)
2127 return;
2128 svms = &p->svms;
2129
2130 pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx] [0x%lx 0x%lx]\n", svms,
2131 prange, prange->start, prange->last, start, last);
2132
2133 unmap_parent = start <= prange->start && last >= prange->last;
2134
2135 list_for_each_entry(pchild, &prange->child_list, child_list) {
2136 mutex_lock_nested(&pchild->lock, 1);
2137 s = max(start, pchild->start);
2138 l = min(last, pchild->last);
2139 if (l >= s)
2140 svm_range_unmap_from_gpus(pchild, s, l);
2141 svm_range_unmap_split(mm, prange, pchild, start, last);
2142 mutex_unlock(&pchild->lock);
2143 }
2144 s = max(start, prange->start);
2145 l = min(last, prange->last);
2146 if (l >= s)
2147 svm_range_unmap_from_gpus(prange, s, l);
2148 svm_range_unmap_split(mm, prange, prange, start, last);
2149
2150 if (unmap_parent)
2151 svm_range_add_list_work(svms, prange, mm, SVM_OP_UNMAP_RANGE);
2152 else
2153 svm_range_add_list_work(svms, prange, mm,
2154 SVM_OP_UPDATE_RANGE_NOTIFIER);
2155 schedule_deferred_list_work(svms);
2156
2157 kfd_unref_process(p);
2158 }
2159
2160 /**
2161 * svm_range_cpu_invalidate_pagetables - interval notifier callback
2162 *
2163 * If event is MMU_NOTIFY_UNMAP, this is from CPU unmap range, otherwise, it
2164 * is from migration, or CPU page invalidation callback.
2165 *
2166 * For unmap event, unmap range from GPUs, remove prange from svms in a delayed
2167 * work thread, and split prange if only part of prange is unmapped.
2168 *
2169 * For invalidation event, if GPU retry fault is not enabled, evict the queues,
2170 * then schedule svm_range_restore_work to update GPU mapping and resume queues.
2171 * If GPU retry fault is enabled, unmap the svm range from GPU, retry fault will
2172 * update GPU mapping to recover.
2173 *
2174 * Context: mmap lock, notifier_invalidate_start lock are held
2175 * for invalidate event, prange lock is held if this is from migration
2176 */
2177 static bool
svm_range_cpu_invalidate_pagetables(struct mmu_interval_notifier * mni,const struct mmu_notifier_range * range,unsigned long cur_seq)2178 svm_range_cpu_invalidate_pagetables(struct mmu_interval_notifier *mni,
2179 const struct mmu_notifier_range *range,
2180 unsigned long cur_seq)
2181 {
2182 struct svm_range *prange;
2183 unsigned long start;
2184 unsigned long last;
2185
2186 if (range->event == MMU_NOTIFY_RELEASE)
2187 return true;
2188 if (!mmget_not_zero(mni->mm))
2189 return true;
2190
2191 start = mni->interval_tree.start;
2192 last = mni->interval_tree.last;
2193 start = (start > range->start ? start : range->start) >> PAGE_SHIFT;
2194 last = (last < (range->end - 1) ? last : range->end - 1) >> PAGE_SHIFT;
2195 pr_debug("[0x%lx 0x%lx] range[0x%lx 0x%lx] notifier[0x%lx 0x%lx] %d\n",
2196 start, last, range->start >> PAGE_SHIFT,
2197 (range->end - 1) >> PAGE_SHIFT,
2198 mni->interval_tree.start >> PAGE_SHIFT,
2199 mni->interval_tree.last >> PAGE_SHIFT, range->event);
2200
2201 prange = container_of(mni, struct svm_range, notifier);
2202
2203 svm_range_lock(prange);
2204 mmu_interval_set_seq(mni, cur_seq);
2205
2206 switch (range->event) {
2207 case MMU_NOTIFY_UNMAP:
2208 svm_range_unmap_from_cpu(mni->mm, prange, start, last);
2209 break;
2210 default:
2211 svm_range_evict(prange, mni->mm, start, last);
2212 break;
2213 }
2214
2215 svm_range_unlock(prange);
2216 mmput(mni->mm);
2217
2218 return true;
2219 }
2220
2221 /**
2222 * svm_range_from_addr - find svm range from fault address
2223 * @svms: svm range list header
2224 * @addr: address to search range interval tree, in pages
2225 * @parent: parent range if range is on child list
2226 *
2227 * Context: The caller must hold svms->lock
2228 *
2229 * Return: the svm_range found or NULL
2230 */
2231 struct svm_range *
svm_range_from_addr(struct svm_range_list * svms,unsigned long addr,struct svm_range ** parent)2232 svm_range_from_addr(struct svm_range_list *svms, unsigned long addr,
2233 struct svm_range **parent)
2234 {
2235 struct interval_tree_node *node;
2236 struct svm_range *prange;
2237 struct svm_range *pchild;
2238
2239 node = interval_tree_iter_first(&svms->objects, addr, addr);
2240 if (!node)
2241 return NULL;
2242
2243 prange = container_of(node, struct svm_range, it_node);
2244 pr_debug("address 0x%lx prange [0x%lx 0x%lx] node [0x%lx 0x%lx]\n",
2245 addr, prange->start, prange->last, node->start, node->last);
2246
2247 if (addr >= prange->start && addr <= prange->last) {
2248 if (parent)
2249 *parent = prange;
2250 return prange;
2251 }
2252 list_for_each_entry(pchild, &prange->child_list, child_list)
2253 if (addr >= pchild->start && addr <= pchild->last) {
2254 pr_debug("found address 0x%lx pchild [0x%lx 0x%lx]\n",
2255 addr, pchild->start, pchild->last);
2256 if (parent)
2257 *parent = prange;
2258 return pchild;
2259 }
2260
2261 return NULL;
2262 }
2263
2264 /* svm_range_best_restore_location - decide the best fault restore location
2265 * @prange: svm range structure
2266 * @adev: the GPU on which vm fault happened
2267 *
2268 * This is only called when xnack is on, to decide the best location to restore
2269 * the range mapping after GPU vm fault. Caller uses the best location to do
2270 * migration if actual loc is not best location, then update GPU page table
2271 * mapping to the best location.
2272 *
2273 * If vm fault gpu is range preferred loc, the best_loc is preferred loc.
2274 * If vm fault gpu idx is on range ACCESSIBLE bitmap, best_loc is vm fault gpu
2275 * If vm fault gpu idx is on range ACCESSIBLE_IN_PLACE bitmap, then
2276 * if range actual loc is cpu, best_loc is cpu
2277 * if vm fault gpu is on xgmi same hive of range actual loc gpu, best_loc is
2278 * range actual loc.
2279 * Otherwise, GPU no access, best_loc is -1.
2280 *
2281 * Return:
2282 * -1 means vm fault GPU no access
2283 * 0 for CPU or GPU id
2284 */
2285 static int32_t
svm_range_best_restore_location(struct svm_range * prange,struct amdgpu_device * adev,int32_t * gpuidx)2286 svm_range_best_restore_location(struct svm_range *prange,
2287 struct amdgpu_device *adev,
2288 int32_t *gpuidx)
2289 {
2290 struct amdgpu_device *bo_adev;
2291 struct kfd_process *p;
2292 uint32_t gpuid;
2293 int r;
2294
2295 p = container_of(prange->svms, struct kfd_process, svms);
2296
2297 r = kfd_process_gpuid_from_kgd(p, adev, &gpuid, gpuidx);
2298 if (r < 0) {
2299 pr_debug("failed to get gpuid from kgd\n");
2300 return -1;
2301 }
2302
2303 if (prange->preferred_loc == gpuid)
2304 return prange->preferred_loc;
2305
2306 if (test_bit(*gpuidx, prange->bitmap_access))
2307 return gpuid;
2308
2309 if (test_bit(*gpuidx, prange->bitmap_aip)) {
2310 if (!prange->actual_loc)
2311 return 0;
2312
2313 bo_adev = svm_range_get_adev_by_id(prange, prange->actual_loc);
2314 if (amdgpu_xgmi_same_hive(adev, bo_adev))
2315 return prange->actual_loc;
2316 else
2317 return 0;
2318 }
2319
2320 return -1;
2321 }
2322 static int
svm_range_get_range_boundaries(struct kfd_process * p,int64_t addr,unsigned long * start,unsigned long * last)2323 svm_range_get_range_boundaries(struct kfd_process *p, int64_t addr,
2324 unsigned long *start, unsigned long *last)
2325 {
2326 struct vm_area_struct *vma;
2327 struct interval_tree_node *node;
2328 struct rb_node *rb_node;
2329 unsigned long start_limit, end_limit;
2330
2331 vma = find_vma(p->mm, addr << PAGE_SHIFT);
2332 if (!vma || (addr << PAGE_SHIFT) < vma->vm_start) {
2333 pr_debug("VMA does not exist in address [0x%llx]\n", addr);
2334 return -EFAULT;
2335 }
2336 start_limit = max(vma->vm_start >> PAGE_SHIFT,
2337 (unsigned long)ALIGN_DOWN(addr, 2UL << 8));
2338 end_limit = min(vma->vm_end >> PAGE_SHIFT,
2339 (unsigned long)ALIGN(addr + 1, 2UL << 8));
2340 /* First range that starts after the fault address */
2341 node = interval_tree_iter_first(&p->svms.objects, addr + 1, ULONG_MAX);
2342 if (node) {
2343 end_limit = min(end_limit, node->start);
2344 /* Last range that ends before the fault address */
2345 rb_node = rb_prev(&node->rb);
2346 } else {
2347 /* Last range must end before addr because
2348 * there was no range after addr
2349 */
2350 rb_node = rb_last(&p->svms.objects.rb_root);
2351 }
2352 if (rb_node) {
2353 node = container_of(rb_node, struct interval_tree_node, rb);
2354 if (node->last >= addr) {
2355 WARN(1, "Overlap with prev node and page fault addr\n");
2356 return -EFAULT;
2357 }
2358 start_limit = max(start_limit, node->last + 1);
2359 }
2360
2361 *start = start_limit;
2362 *last = end_limit - 1;
2363
2364 pr_debug("vma start: 0x%lx start: 0x%lx vma end: 0x%lx last: 0x%lx\n",
2365 vma->vm_start >> PAGE_SHIFT, *start,
2366 vma->vm_end >> PAGE_SHIFT, *last);
2367
2368 return 0;
2369
2370 }
2371 static struct
svm_range_create_unregistered_range(struct amdgpu_device * adev,struct kfd_process * p,struct mm_struct * mm,int64_t addr)2372 svm_range *svm_range_create_unregistered_range(struct amdgpu_device *adev,
2373 struct kfd_process *p,
2374 struct mm_struct *mm,
2375 int64_t addr)
2376 {
2377 struct svm_range *prange = NULL;
2378 unsigned long start, last;
2379 uint32_t gpuid, gpuidx;
2380
2381 if (svm_range_get_range_boundaries(p, addr, &start, &last))
2382 return NULL;
2383
2384 prange = svm_range_new(&p->svms, start, last);
2385 if (!prange) {
2386 pr_debug("Failed to create prange in address [0x%llx]\n", addr);
2387 return NULL;
2388 }
2389 if (kfd_process_gpuid_from_kgd(p, adev, &gpuid, &gpuidx)) {
2390 pr_debug("failed to get gpuid from kgd\n");
2391 svm_range_free(prange);
2392 return NULL;
2393 }
2394
2395 svm_range_add_to_svms(prange);
2396 svm_range_add_notifier_locked(mm, prange);
2397
2398 return prange;
2399 }
2400
2401 /* svm_range_skip_recover - decide if prange can be recovered
2402 * @prange: svm range structure
2403 *
2404 * GPU vm retry fault handle skip recover the range for cases:
2405 * 1. prange is on deferred list to be removed after unmap, it is stale fault,
2406 * deferred list work will drain the stale fault before free the prange.
2407 * 2. prange is on deferred list to add interval notifier after split, or
2408 * 3. prange is child range, it is split from parent prange, recover later
2409 * after interval notifier is added.
2410 *
2411 * Return: true to skip recover, false to recover
2412 */
svm_range_skip_recover(struct svm_range * prange)2413 static bool svm_range_skip_recover(struct svm_range *prange)
2414 {
2415 struct svm_range_list *svms = prange->svms;
2416
2417 spin_lock(&svms->deferred_list_lock);
2418 if (list_empty(&prange->deferred_list) &&
2419 list_empty(&prange->child_list)) {
2420 spin_unlock(&svms->deferred_list_lock);
2421 return false;
2422 }
2423 spin_unlock(&svms->deferred_list_lock);
2424
2425 if (prange->work_item.op == SVM_OP_UNMAP_RANGE) {
2426 pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx] unmapped\n",
2427 svms, prange, prange->start, prange->last);
2428 return true;
2429 }
2430 if (prange->work_item.op == SVM_OP_ADD_RANGE_AND_MAP ||
2431 prange->work_item.op == SVM_OP_ADD_RANGE) {
2432 pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx] not added yet\n",
2433 svms, prange, prange->start, prange->last);
2434 return true;
2435 }
2436 return false;
2437 }
2438
2439 static void
svm_range_count_fault(struct amdgpu_device * adev,struct kfd_process * p,int32_t gpuidx)2440 svm_range_count_fault(struct amdgpu_device *adev, struct kfd_process *p,
2441 int32_t gpuidx)
2442 {
2443 struct kfd_process_device *pdd;
2444
2445 /* fault is on different page of same range
2446 * or fault is skipped to recover later
2447 * or fault is on invalid virtual address
2448 */
2449 if (gpuidx == MAX_GPU_INSTANCE) {
2450 uint32_t gpuid;
2451 int r;
2452
2453 r = kfd_process_gpuid_from_kgd(p, adev, &gpuid, &gpuidx);
2454 if (r < 0)
2455 return;
2456 }
2457
2458 /* fault is recovered
2459 * or fault cannot recover because GPU no access on the range
2460 */
2461 pdd = kfd_process_device_from_gpuidx(p, gpuidx);
2462 if (pdd)
2463 WRITE_ONCE(pdd->faults, pdd->faults + 1);
2464 }
2465
2466 static bool
svm_fault_allowed(struct mm_struct * mm,uint64_t addr,bool write_fault)2467 svm_fault_allowed(struct mm_struct *mm, uint64_t addr, bool write_fault)
2468 {
2469 unsigned long requested = VM_READ;
2470 struct vm_area_struct *vma;
2471
2472 if (write_fault)
2473 requested |= VM_WRITE;
2474
2475 vma = find_vma(mm, addr << PAGE_SHIFT);
2476 if (!vma || (addr << PAGE_SHIFT) < vma->vm_start) {
2477 pr_debug("address 0x%llx VMA is removed\n", addr);
2478 return true;
2479 }
2480
2481 pr_debug("requested 0x%lx, vma permission flags 0x%lx\n", requested,
2482 vma->vm_flags);
2483 return (vma->vm_flags & requested) == requested;
2484 }
2485
2486 int
svm_range_restore_pages(struct amdgpu_device * adev,unsigned int pasid,uint64_t addr,bool write_fault)2487 svm_range_restore_pages(struct amdgpu_device *adev, unsigned int pasid,
2488 uint64_t addr, bool write_fault)
2489 {
2490 struct mm_struct *mm = NULL;
2491 struct svm_range_list *svms;
2492 struct svm_range *prange;
2493 struct kfd_process *p;
2494 uint64_t timestamp;
2495 int32_t best_loc;
2496 int32_t gpuidx = MAX_GPU_INSTANCE;
2497 bool write_locked = false;
2498 int r = 0;
2499
2500 if (!KFD_IS_SVM_API_SUPPORTED(adev->kfd.dev)) {
2501 pr_debug("device does not support SVM\n");
2502 return -EFAULT;
2503 }
2504
2505 p = kfd_lookup_process_by_pasid(pasid);
2506 if (!p) {
2507 pr_debug("kfd process not founded pasid 0x%x\n", pasid);
2508 return -ESRCH;
2509 }
2510 if (!p->xnack_enabled) {
2511 pr_debug("XNACK not enabled for pasid 0x%x\n", pasid);
2512 r = -EFAULT;
2513 goto out;
2514 }
2515 svms = &p->svms;
2516
2517 pr_debug("restoring svms 0x%p fault address 0x%llx\n", svms, addr);
2518
2519 mm = get_task_mm(p->lead_thread);
2520 if (!mm) {
2521 pr_debug("svms 0x%p failed to get mm\n", svms);
2522 r = -ESRCH;
2523 goto out;
2524 }
2525
2526 mmap_read_lock(mm);
2527 retry_write_locked:
2528 mutex_lock(&svms->lock);
2529 prange = svm_range_from_addr(svms, addr, NULL);
2530 if (!prange) {
2531 pr_debug("failed to find prange svms 0x%p address [0x%llx]\n",
2532 svms, addr);
2533 if (!write_locked) {
2534 /* Need the write lock to create new range with MMU notifier.
2535 * Also flush pending deferred work to make sure the interval
2536 * tree is up to date before we add a new range
2537 */
2538 mutex_unlock(&svms->lock);
2539 mmap_read_unlock(mm);
2540 mmap_write_lock(mm);
2541 write_locked = true;
2542 goto retry_write_locked;
2543 }
2544 prange = svm_range_create_unregistered_range(adev, p, mm, addr);
2545 if (!prange) {
2546 pr_debug("failed to create unregistered range svms 0x%p address [0x%llx]\n",
2547 svms, addr);
2548 mmap_write_downgrade(mm);
2549 r = -EFAULT;
2550 goto out_unlock_svms;
2551 }
2552 }
2553 if (write_locked)
2554 mmap_write_downgrade(mm);
2555
2556 mutex_lock(&prange->migrate_mutex);
2557
2558 if (svm_range_skip_recover(prange)) {
2559 amdgpu_gmc_filter_faults_remove(adev, addr, pasid);
2560 goto out_unlock_range;
2561 }
2562
2563 timestamp = ktime_to_us(ktime_get()) - prange->validate_timestamp;
2564 /* skip duplicate vm fault on different pages of same range */
2565 if (timestamp < AMDGPU_SVM_RANGE_RETRY_FAULT_PENDING) {
2566 pr_debug("svms 0x%p [0x%lx %lx] already restored\n",
2567 svms, prange->start, prange->last);
2568 goto out_unlock_range;
2569 }
2570
2571 if (!svm_fault_allowed(mm, addr, write_fault)) {
2572 pr_debug("fault addr 0x%llx no %s permission\n", addr,
2573 write_fault ? "write" : "read");
2574 r = -EPERM;
2575 goto out_unlock_range;
2576 }
2577
2578 best_loc = svm_range_best_restore_location(prange, adev, &gpuidx);
2579 if (best_loc == -1) {
2580 pr_debug("svms %p failed get best restore loc [0x%lx 0x%lx]\n",
2581 svms, prange->start, prange->last);
2582 r = -EACCES;
2583 goto out_unlock_range;
2584 }
2585
2586 pr_debug("svms %p [0x%lx 0x%lx] best restore 0x%x, actual loc 0x%x\n",
2587 svms, prange->start, prange->last, best_loc,
2588 prange->actual_loc);
2589
2590 if (prange->actual_loc != best_loc) {
2591 if (best_loc) {
2592 r = svm_migrate_to_vram(prange, best_loc, mm);
2593 if (r) {
2594 pr_debug("svm_migrate_to_vram failed (%d) at %llx, falling back to system memory\n",
2595 r, addr);
2596 /* Fallback to system memory if migration to
2597 * VRAM failed
2598 */
2599 if (prange->actual_loc)
2600 r = svm_migrate_vram_to_ram(prange, mm);
2601 else
2602 r = 0;
2603 }
2604 } else {
2605 r = svm_migrate_vram_to_ram(prange, mm);
2606 }
2607 if (r) {
2608 pr_debug("failed %d to migrate svms %p [0x%lx 0x%lx]\n",
2609 r, svms, prange->start, prange->last);
2610 goto out_unlock_range;
2611 }
2612 }
2613
2614 r = svm_range_validate_and_map(mm, prange, gpuidx, false, false);
2615 if (r)
2616 pr_debug("failed %d to map svms 0x%p [0x%lx 0x%lx] to gpus\n",
2617 r, svms, prange->start, prange->last);
2618
2619 out_unlock_range:
2620 mutex_unlock(&prange->migrate_mutex);
2621 out_unlock_svms:
2622 mutex_unlock(&svms->lock);
2623 mmap_read_unlock(mm);
2624
2625 svm_range_count_fault(adev, p, gpuidx);
2626
2627 mmput(mm);
2628 out:
2629 kfd_unref_process(p);
2630
2631 if (r == -EAGAIN) {
2632 pr_debug("recover vm fault later\n");
2633 amdgpu_gmc_filter_faults_remove(adev, addr, pasid);
2634 r = 0;
2635 }
2636 return r;
2637 }
2638
svm_range_list_fini(struct kfd_process * p)2639 void svm_range_list_fini(struct kfd_process *p)
2640 {
2641 struct svm_range *prange;
2642 struct svm_range *next;
2643
2644 pr_debug("pasid 0x%x svms 0x%p\n", p->pasid, &p->svms);
2645
2646 /* Ensure list work is finished before process is destroyed */
2647 flush_work(&p->svms.deferred_list_work);
2648
2649 list_for_each_entry_safe(prange, next, &p->svms.list, list) {
2650 svm_range_unlink(prange);
2651 svm_range_remove_notifier(prange);
2652 svm_range_free(prange);
2653 }
2654
2655 mutex_destroy(&p->svms.lock);
2656
2657 pr_debug("pasid 0x%x svms 0x%p done\n", p->pasid, &p->svms);
2658 }
2659
svm_range_list_init(struct kfd_process * p)2660 int svm_range_list_init(struct kfd_process *p)
2661 {
2662 struct svm_range_list *svms = &p->svms;
2663 int i;
2664
2665 svms->objects = RB_ROOT_CACHED;
2666 mutex_init(&svms->lock);
2667 INIT_LIST_HEAD(&svms->list);
2668 atomic_set(&svms->evicted_ranges, 0);
2669 INIT_DELAYED_WORK(&svms->restore_work, svm_range_restore_work);
2670 INIT_WORK(&svms->deferred_list_work, svm_range_deferred_list_work);
2671 INIT_LIST_HEAD(&svms->deferred_range_list);
2672 spin_lock_init(&svms->deferred_list_lock);
2673
2674 for (i = 0; i < p->n_pdds; i++)
2675 if (KFD_IS_SVM_API_SUPPORTED(p->pdds[i]->dev))
2676 bitmap_set(svms->bitmap_supported, i, 1);
2677
2678 return 0;
2679 }
2680
2681 /**
2682 * svm_range_is_valid - check if virtual address range is valid
2683 * @mm: current process mm_struct
2684 * @start: range start address, in pages
2685 * @size: range size, in pages
2686 *
2687 * Valid virtual address range means it belongs to one or more VMAs
2688 *
2689 * Context: Process context
2690 *
2691 * Return:
2692 * true - valid svm range
2693 * false - invalid svm range
2694 */
2695 static bool
svm_range_is_valid(struct mm_struct * mm,uint64_t start,uint64_t size)2696 svm_range_is_valid(struct mm_struct *mm, uint64_t start, uint64_t size)
2697 {
2698 const unsigned long device_vma = VM_IO | VM_PFNMAP | VM_MIXEDMAP;
2699 struct vm_area_struct *vma;
2700 unsigned long end;
2701
2702 start <<= PAGE_SHIFT;
2703 end = start + (size << PAGE_SHIFT);
2704
2705 do {
2706 vma = find_vma(mm, start);
2707 if (!vma || start < vma->vm_start ||
2708 (vma->vm_flags & device_vma))
2709 return false;
2710 start = min(end, vma->vm_end);
2711 } while (start < end);
2712
2713 return true;
2714 }
2715
2716 /**
2717 * svm_range_best_prefetch_location - decide the best prefetch location
2718 * @prange: svm range structure
2719 *
2720 * For xnack off:
2721 * If range map to single GPU, the best prefetch location is prefetch_loc, which
2722 * can be CPU or GPU.
2723 *
2724 * If range is ACCESS or ACCESS_IN_PLACE by mGPUs, only if mGPU connection on
2725 * XGMI same hive, the best prefetch location is prefetch_loc GPU, othervise
2726 * the best prefetch location is always CPU, because GPU can not have coherent
2727 * mapping VRAM of other GPUs even with large-BAR PCIe connection.
2728 *
2729 * For xnack on:
2730 * If range is not ACCESS_IN_PLACE by mGPUs, the best prefetch location is
2731 * prefetch_loc, other GPU access will generate vm fault and trigger migration.
2732 *
2733 * If range is ACCESS_IN_PLACE by mGPUs, only if mGPU connection on XGMI same
2734 * hive, the best prefetch location is prefetch_loc GPU, otherwise the best
2735 * prefetch location is always CPU.
2736 *
2737 * Context: Process context
2738 *
2739 * Return:
2740 * 0 for CPU or GPU id
2741 */
2742 static uint32_t
svm_range_best_prefetch_location(struct svm_range * prange)2743 svm_range_best_prefetch_location(struct svm_range *prange)
2744 {
2745 DECLARE_BITMAP(bitmap, MAX_GPU_INSTANCE);
2746 uint32_t best_loc = prange->prefetch_loc;
2747 struct kfd_process_device *pdd;
2748 struct amdgpu_device *bo_adev;
2749 struct amdgpu_device *adev;
2750 struct kfd_process *p;
2751 uint32_t gpuidx;
2752
2753 p = container_of(prange->svms, struct kfd_process, svms);
2754
2755 if (!best_loc || best_loc == KFD_IOCTL_SVM_LOCATION_UNDEFINED)
2756 goto out;
2757
2758 bo_adev = svm_range_get_adev_by_id(prange, best_loc);
2759 if (!bo_adev) {
2760 WARN_ONCE(1, "failed to get device by id 0x%x\n", best_loc);
2761 best_loc = 0;
2762 goto out;
2763 }
2764
2765 if (p->xnack_enabled)
2766 bitmap_copy(bitmap, prange->bitmap_aip, MAX_GPU_INSTANCE);
2767 else
2768 bitmap_or(bitmap, prange->bitmap_access, prange->bitmap_aip,
2769 MAX_GPU_INSTANCE);
2770
2771 for_each_set_bit(gpuidx, bitmap, MAX_GPU_INSTANCE) {
2772 pdd = kfd_process_device_from_gpuidx(p, gpuidx);
2773 if (!pdd) {
2774 pr_debug("failed to get device by idx 0x%x\n", gpuidx);
2775 continue;
2776 }
2777 adev = (struct amdgpu_device *)pdd->dev->kgd;
2778
2779 if (adev == bo_adev)
2780 continue;
2781
2782 if (!amdgpu_xgmi_same_hive(adev, bo_adev)) {
2783 best_loc = 0;
2784 break;
2785 }
2786 }
2787
2788 out:
2789 pr_debug("xnack %d svms 0x%p [0x%lx 0x%lx] best loc 0x%x\n",
2790 p->xnack_enabled, &p->svms, prange->start, prange->last,
2791 best_loc);
2792
2793 return best_loc;
2794 }
2795
2796 /* FIXME: This is a workaround for page locking bug when some pages are
2797 * invalid during migration to VRAM
2798 */
svm_range_prefault(struct svm_range * prange,struct mm_struct * mm,void * owner)2799 void svm_range_prefault(struct svm_range *prange, struct mm_struct *mm,
2800 void *owner)
2801 {
2802 struct hmm_range *hmm_range;
2803 int r;
2804
2805 if (prange->validated_once)
2806 return;
2807
2808 r = amdgpu_hmm_range_get_pages(&prange->notifier, mm, NULL,
2809 prange->start << PAGE_SHIFT,
2810 prange->npages, &hmm_range,
2811 false, true, owner);
2812 if (!r) {
2813 amdgpu_hmm_range_get_pages_done(hmm_range);
2814 prange->validated_once = true;
2815 }
2816 }
2817
2818 /* svm_range_trigger_migration - start page migration if prefetch loc changed
2819 * @mm: current process mm_struct
2820 * @prange: svm range structure
2821 * @migrated: output, true if migration is triggered
2822 *
2823 * If range perfetch_loc is GPU, actual loc is cpu 0, then migrate the range
2824 * from ram to vram.
2825 * If range prefetch_loc is cpu 0, actual loc is GPU, then migrate the range
2826 * from vram to ram.
2827 *
2828 * If GPU vm fault retry is not enabled, migration interact with MMU notifier
2829 * and restore work:
2830 * 1. migrate_vma_setup invalidate pages, MMU notifier callback svm_range_evict
2831 * stops all queues, schedule restore work
2832 * 2. svm_range_restore_work wait for migration is done by
2833 * a. svm_range_validate_vram takes prange->migrate_mutex
2834 * b. svm_range_validate_ram HMM get pages wait for CPU fault handle returns
2835 * 3. restore work update mappings of GPU, resume all queues.
2836 *
2837 * Context: Process context
2838 *
2839 * Return:
2840 * 0 - OK, otherwise - error code of migration
2841 */
2842 static int
svm_range_trigger_migration(struct mm_struct * mm,struct svm_range * prange,bool * migrated)2843 svm_range_trigger_migration(struct mm_struct *mm, struct svm_range *prange,
2844 bool *migrated)
2845 {
2846 uint32_t best_loc;
2847 int r = 0;
2848
2849 *migrated = false;
2850 best_loc = svm_range_best_prefetch_location(prange);
2851
2852 if (best_loc == KFD_IOCTL_SVM_LOCATION_UNDEFINED ||
2853 best_loc == prange->actual_loc)
2854 return 0;
2855
2856 if (!best_loc) {
2857 r = svm_migrate_vram_to_ram(prange, mm);
2858 *migrated = !r;
2859 return r;
2860 }
2861
2862 r = svm_migrate_to_vram(prange, best_loc, mm);
2863 *migrated = !r;
2864
2865 return r;
2866 }
2867
svm_range_schedule_evict_svm_bo(struct amdgpu_amdkfd_fence * fence)2868 int svm_range_schedule_evict_svm_bo(struct amdgpu_amdkfd_fence *fence)
2869 {
2870 /* Dereferencing fence->svm_bo is safe here because the fence hasn't
2871 * signaled yet and we're under the protection of the fence->lock.
2872 * After the fence is signaled in svm_range_bo_release, we cannot get
2873 * here any more.
2874 *
2875 * Reference is dropped in svm_range_evict_svm_bo_worker.
2876 */
2877 if (svm_bo_ref_unless_zero(fence->svm_bo)) {
2878 WRITE_ONCE(fence->svm_bo->evicting, 1);
2879 schedule_work(&fence->svm_bo->eviction_work);
2880 }
2881
2882 return 0;
2883 }
2884
svm_range_evict_svm_bo_worker(struct work_struct * work)2885 static void svm_range_evict_svm_bo_worker(struct work_struct *work)
2886 {
2887 struct svm_range_bo *svm_bo;
2888 struct kfd_process *p;
2889 struct mm_struct *mm;
2890
2891 svm_bo = container_of(work, struct svm_range_bo, eviction_work);
2892
2893 /* svm_range_bo_release destroys this worker thread. So during
2894 * the lifetime of this thread, kfd_process and mm will be valid.
2895 */
2896 p = container_of(svm_bo->svms, struct kfd_process, svms);
2897 mm = p->mm;
2898 if (!mm)
2899 return;
2900
2901 mmap_read_lock(mm);
2902 spin_lock(&svm_bo->list_lock);
2903 while (!list_empty(&svm_bo->range_list)) {
2904 struct svm_range *prange =
2905 list_first_entry(&svm_bo->range_list,
2906 struct svm_range, svm_bo_list);
2907 list_del_init(&prange->svm_bo_list);
2908 spin_unlock(&svm_bo->list_lock);
2909
2910 pr_debug("svms 0x%p [0x%lx 0x%lx]\n", prange->svms,
2911 prange->start, prange->last);
2912
2913 mutex_lock(&prange->migrate_mutex);
2914 svm_migrate_vram_to_ram(prange, svm_bo->eviction_fence->mm);
2915
2916 mutex_lock(&prange->lock);
2917 prange->svm_bo = NULL;
2918 mutex_unlock(&prange->lock);
2919
2920 mutex_unlock(&prange->migrate_mutex);
2921
2922 spin_lock(&svm_bo->list_lock);
2923 }
2924 spin_unlock(&svm_bo->list_lock);
2925 mmap_read_unlock(mm);
2926
2927 dma_fence_signal(&svm_bo->eviction_fence->base);
2928 /* This is the last reference to svm_bo, after svm_range_vram_node_free
2929 * has been called in svm_migrate_vram_to_ram
2930 */
2931 WARN_ONCE(kref_read(&svm_bo->kref) != 1, "This was not the last reference\n");
2932 svm_range_bo_unref(svm_bo);
2933 }
2934
2935 static int
svm_range_set_attr(struct kfd_process * p,uint64_t start,uint64_t size,uint32_t nattr,struct kfd_ioctl_svm_attribute * attrs)2936 svm_range_set_attr(struct kfd_process *p, uint64_t start, uint64_t size,
2937 uint32_t nattr, struct kfd_ioctl_svm_attribute *attrs)
2938 {
2939 struct mm_struct *mm = current->mm;
2940 struct list_head update_list;
2941 struct list_head insert_list;
2942 struct list_head remove_list;
2943 struct svm_range_list *svms;
2944 struct svm_range *prange;
2945 struct svm_range *next;
2946 int r = 0;
2947
2948 pr_debug("pasid 0x%x svms 0x%p [0x%llx 0x%llx] pages 0x%llx\n",
2949 p->pasid, &p->svms, start, start + size - 1, size);
2950
2951 r = svm_range_check_attr(p, nattr, attrs);
2952 if (r)
2953 return r;
2954
2955 svms = &p->svms;
2956
2957 svm_range_list_lock_and_flush_work(svms, mm);
2958
2959 if (!svm_range_is_valid(mm, start, size)) {
2960 pr_debug("invalid range\n");
2961 r = -EFAULT;
2962 mmap_write_unlock(mm);
2963 goto out;
2964 }
2965
2966 mutex_lock(&svms->lock);
2967
2968 /* Add new range and split existing ranges as needed */
2969 r = svm_range_add(p, start, size, nattr, attrs, &update_list,
2970 &insert_list, &remove_list);
2971 if (r) {
2972 mutex_unlock(&svms->lock);
2973 mmap_write_unlock(mm);
2974 goto out;
2975 }
2976 /* Apply changes as a transaction */
2977 list_for_each_entry_safe(prange, next, &insert_list, insert_list) {
2978 svm_range_add_to_svms(prange);
2979 svm_range_add_notifier_locked(mm, prange);
2980 }
2981 list_for_each_entry(prange, &update_list, update_list) {
2982 svm_range_apply_attrs(p, prange, nattr, attrs);
2983 /* TODO: unmap ranges from GPU that lost access */
2984 }
2985 list_for_each_entry_safe(prange, next, &remove_list,
2986 remove_list) {
2987 pr_debug("unlink old 0x%p prange 0x%p [0x%lx 0x%lx]\n",
2988 prange->svms, prange, prange->start,
2989 prange->last);
2990 svm_range_unlink(prange);
2991 svm_range_remove_notifier(prange);
2992 svm_range_free(prange);
2993 }
2994
2995 mmap_write_downgrade(mm);
2996 /* Trigger migrations and revalidate and map to GPUs as needed. If
2997 * this fails we may be left with partially completed actions. There
2998 * is no clean way of rolling back to the previous state in such a
2999 * case because the rollback wouldn't be guaranteed to work either.
3000 */
3001 list_for_each_entry(prange, &update_list, update_list) {
3002 bool migrated;
3003
3004 mutex_lock(&prange->migrate_mutex);
3005
3006 r = svm_range_trigger_migration(mm, prange, &migrated);
3007 if (r)
3008 goto out_unlock_range;
3009
3010 if (migrated && !p->xnack_enabled) {
3011 pr_debug("restore_work will update mappings of GPUs\n");
3012 mutex_unlock(&prange->migrate_mutex);
3013 continue;
3014 }
3015
3016 r = svm_range_validate_and_map(mm, prange, MAX_GPU_INSTANCE,
3017 true, true);
3018 if (r)
3019 pr_debug("failed %d to map svm range\n", r);
3020
3021 out_unlock_range:
3022 mutex_unlock(&prange->migrate_mutex);
3023 if (r)
3024 break;
3025 }
3026
3027 svm_range_debug_dump(svms);
3028
3029 mutex_unlock(&svms->lock);
3030 mmap_read_unlock(mm);
3031 out:
3032 pr_debug("pasid 0x%x svms 0x%p [0x%llx 0x%llx] done, r=%d\n", p->pasid,
3033 &p->svms, start, start + size - 1, r);
3034
3035 return r;
3036 }
3037
3038 static int
svm_range_get_attr(struct kfd_process * p,uint64_t start,uint64_t size,uint32_t nattr,struct kfd_ioctl_svm_attribute * attrs)3039 svm_range_get_attr(struct kfd_process *p, uint64_t start, uint64_t size,
3040 uint32_t nattr, struct kfd_ioctl_svm_attribute *attrs)
3041 {
3042 DECLARE_BITMAP(bitmap_access, MAX_GPU_INSTANCE);
3043 DECLARE_BITMAP(bitmap_aip, MAX_GPU_INSTANCE);
3044 bool get_preferred_loc = false;
3045 bool get_prefetch_loc = false;
3046 bool get_granularity = false;
3047 bool get_accessible = false;
3048 bool get_flags = false;
3049 uint64_t last = start + size - 1UL;
3050 struct mm_struct *mm = current->mm;
3051 uint8_t granularity = 0xff;
3052 struct interval_tree_node *node;
3053 struct svm_range_list *svms;
3054 struct svm_range *prange;
3055 uint32_t prefetch_loc = KFD_IOCTL_SVM_LOCATION_UNDEFINED;
3056 uint32_t location = KFD_IOCTL_SVM_LOCATION_UNDEFINED;
3057 uint32_t flags_and = 0xffffffff;
3058 uint32_t flags_or = 0;
3059 int gpuidx;
3060 uint32_t i;
3061
3062 pr_debug("svms 0x%p [0x%llx 0x%llx] nattr 0x%x\n", &p->svms, start,
3063 start + size - 1, nattr);
3064
3065 /* Flush pending deferred work to avoid racing with deferred actions from
3066 * previous memory map changes (e.g. munmap). Concurrent memory map changes
3067 * can still race with get_attr because we don't hold the mmap lock. But that
3068 * would be a race condition in the application anyway, and undefined
3069 * behaviour is acceptable in that case.
3070 */
3071 flush_work(&p->svms.deferred_list_work);
3072
3073 mmap_read_lock(mm);
3074 if (!svm_range_is_valid(mm, start, size)) {
3075 pr_debug("invalid range\n");
3076 mmap_read_unlock(mm);
3077 return -EINVAL;
3078 }
3079 mmap_read_unlock(mm);
3080
3081 for (i = 0; i < nattr; i++) {
3082 switch (attrs[i].type) {
3083 case KFD_IOCTL_SVM_ATTR_PREFERRED_LOC:
3084 get_preferred_loc = true;
3085 break;
3086 case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC:
3087 get_prefetch_loc = true;
3088 break;
3089 case KFD_IOCTL_SVM_ATTR_ACCESS:
3090 get_accessible = true;
3091 break;
3092 case KFD_IOCTL_SVM_ATTR_SET_FLAGS:
3093 case KFD_IOCTL_SVM_ATTR_CLR_FLAGS:
3094 get_flags = true;
3095 break;
3096 case KFD_IOCTL_SVM_ATTR_GRANULARITY:
3097 get_granularity = true;
3098 break;
3099 case KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE:
3100 case KFD_IOCTL_SVM_ATTR_NO_ACCESS:
3101 fallthrough;
3102 default:
3103 pr_debug("get invalid attr type 0x%x\n", attrs[i].type);
3104 return -EINVAL;
3105 }
3106 }
3107
3108 svms = &p->svms;
3109
3110 mutex_lock(&svms->lock);
3111
3112 node = interval_tree_iter_first(&svms->objects, start, last);
3113 if (!node) {
3114 pr_debug("range attrs not found return default values\n");
3115 svm_range_set_default_attributes(&location, &prefetch_loc,
3116 &granularity, &flags_and);
3117 flags_or = flags_and;
3118 if (p->xnack_enabled)
3119 bitmap_copy(bitmap_access, svms->bitmap_supported,
3120 MAX_GPU_INSTANCE);
3121 else
3122 bitmap_zero(bitmap_access, MAX_GPU_INSTANCE);
3123 bitmap_zero(bitmap_aip, MAX_GPU_INSTANCE);
3124 goto fill_values;
3125 }
3126 bitmap_copy(bitmap_access, svms->bitmap_supported, MAX_GPU_INSTANCE);
3127 bitmap_copy(bitmap_aip, svms->bitmap_supported, MAX_GPU_INSTANCE);
3128
3129 while (node) {
3130 struct interval_tree_node *next;
3131
3132 prange = container_of(node, struct svm_range, it_node);
3133 next = interval_tree_iter_next(node, start, last);
3134
3135 if (get_preferred_loc) {
3136 if (prange->preferred_loc ==
3137 KFD_IOCTL_SVM_LOCATION_UNDEFINED ||
3138 (location != KFD_IOCTL_SVM_LOCATION_UNDEFINED &&
3139 location != prange->preferred_loc)) {
3140 location = KFD_IOCTL_SVM_LOCATION_UNDEFINED;
3141 get_preferred_loc = false;
3142 } else {
3143 location = prange->preferred_loc;
3144 }
3145 }
3146 if (get_prefetch_loc) {
3147 if (prange->prefetch_loc ==
3148 KFD_IOCTL_SVM_LOCATION_UNDEFINED ||
3149 (prefetch_loc != KFD_IOCTL_SVM_LOCATION_UNDEFINED &&
3150 prefetch_loc != prange->prefetch_loc)) {
3151 prefetch_loc = KFD_IOCTL_SVM_LOCATION_UNDEFINED;
3152 get_prefetch_loc = false;
3153 } else {
3154 prefetch_loc = prange->prefetch_loc;
3155 }
3156 }
3157 if (get_accessible) {
3158 bitmap_and(bitmap_access, bitmap_access,
3159 prange->bitmap_access, MAX_GPU_INSTANCE);
3160 bitmap_and(bitmap_aip, bitmap_aip,
3161 prange->bitmap_aip, MAX_GPU_INSTANCE);
3162 }
3163 if (get_flags) {
3164 flags_and &= prange->flags;
3165 flags_or |= prange->flags;
3166 }
3167
3168 if (get_granularity && prange->granularity < granularity)
3169 granularity = prange->granularity;
3170
3171 node = next;
3172 }
3173 fill_values:
3174 mutex_unlock(&svms->lock);
3175
3176 for (i = 0; i < nattr; i++) {
3177 switch (attrs[i].type) {
3178 case KFD_IOCTL_SVM_ATTR_PREFERRED_LOC:
3179 attrs[i].value = location;
3180 break;
3181 case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC:
3182 attrs[i].value = prefetch_loc;
3183 break;
3184 case KFD_IOCTL_SVM_ATTR_ACCESS:
3185 gpuidx = kfd_process_gpuidx_from_gpuid(p,
3186 attrs[i].value);
3187 if (gpuidx < 0) {
3188 pr_debug("invalid gpuid %x\n", attrs[i].value);
3189 return -EINVAL;
3190 }
3191 if (test_bit(gpuidx, bitmap_access))
3192 attrs[i].type = KFD_IOCTL_SVM_ATTR_ACCESS;
3193 else if (test_bit(gpuidx, bitmap_aip))
3194 attrs[i].type =
3195 KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE;
3196 else
3197 attrs[i].type = KFD_IOCTL_SVM_ATTR_NO_ACCESS;
3198 break;
3199 case KFD_IOCTL_SVM_ATTR_SET_FLAGS:
3200 attrs[i].value = flags_and;
3201 break;
3202 case KFD_IOCTL_SVM_ATTR_CLR_FLAGS:
3203 attrs[i].value = ~flags_or;
3204 break;
3205 case KFD_IOCTL_SVM_ATTR_GRANULARITY:
3206 attrs[i].value = (uint32_t)granularity;
3207 break;
3208 }
3209 }
3210
3211 return 0;
3212 }
3213
3214 int
svm_ioctl(struct kfd_process * p,enum kfd_ioctl_svm_op op,uint64_t start,uint64_t size,uint32_t nattrs,struct kfd_ioctl_svm_attribute * attrs)3215 svm_ioctl(struct kfd_process *p, enum kfd_ioctl_svm_op op, uint64_t start,
3216 uint64_t size, uint32_t nattrs, struct kfd_ioctl_svm_attribute *attrs)
3217 {
3218 int r;
3219
3220 start >>= PAGE_SHIFT;
3221 size >>= PAGE_SHIFT;
3222
3223 switch (op) {
3224 case KFD_IOCTL_SVM_OP_SET_ATTR:
3225 r = svm_range_set_attr(p, start, size, nattrs, attrs);
3226 break;
3227 case KFD_IOCTL_SVM_OP_GET_ATTR:
3228 r = svm_range_get_attr(p, start, size, nattrs, attrs);
3229 break;
3230 default:
3231 r = EINVAL;
3232 break;
3233 }
3234
3235 return r;
3236 }
3237